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Abstract
The use of digital phenotyping continues to expand across
all fields of health. By collecting quantitative data in real-
time using devices such as smartphones or smartwatches,
researchers and clinicians can develop a profile of a wide
range of conditions. Smartphones contain sensors that
collect data, such as GPS or accelerometer data, which can
inform secondary metrics such as time spent at home, lo-
cation entropy, or even sleep duration. These metrics, when
used as digital biomarkers, are not only used to investigate
the relationship between behavior and health symptoms
but can also be used to support personalized and preven-
tative care. Successful phenotyping requires consistent
long-term collection of relevant and high-quality data. In this
paper, we present the potential of newly available, for ap-
proved research, opt-in SensorKit sensors on iOS devices in
improving the accuracy of digital phenotyping. We collected

opt-in sensor data over 1 week from a single person with
depression using the open-source mindLAMP app devel-
oped by the Division of Digital Psychiatry at Beth Israel
Deaconess Medical Center. Five sensors from SensorKit were
included. The names of the sensors, as listed in official
documentation, include the following: phone usage, mes-
sages usage, visits, device usage, and ambient light. We
compared data from these five new sensors from SensorKit
to our current digital phenotyping data collection sensors to
assess similarity and differences in both raw and processed
data. We present sample data from all five of these new
sensors. We also present sample data from current digital
phenotyping sources and compare these data to SensorKit
sensors when applicable. SensorKit offers great potential for
health research. Many SensorKit sensors improve upon
previously accessible features and produce data that ap-
pears clinically relevant. SensorKit sensors will likely play a
substantial role in digital phenotyping. However, using these
data requires advanced health app infrastructure and the
ability to securely store high-frequency data.
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Introduction

The emergence of digital phenotyping, defined as “the
moment-by-moment quantification of the individual-
level human phenotype in situ using data from per-
sonal digital devices” [1], offers a paradigm shift across
fields which study the dynamic of human physiology,
emotions, behavior, and health symptoms [2]. Personal
devices like smartphones and smartwatches can capture
and record temporally dense, multimodal, longitudinal,
and quasi-real-time data. From these data, secondary
metrics measuring behavioral patterns and health con-
ditions like sleep quality and socialness can be computed,
and human behavior can be categorized into observable
patterns. These patterns serve as digital biomarkers for
conditions ranging from schizophrenia to spinal cord
disorders [3, 4].

Digital phenotyping has great potential. For example,
digital phenotyping can provide the data required for
just-in-time adaptive interventions triggered by vulner-
able states and delivered at opportune moments [5, 6]. It
already has applications in health prevention, screening,
diagnosis, monitoring [7–10]. Not only can quantitative
patterns in data uncover relationships between conditions
but they can also be used to predict the onset of symptom
severity.

Effective, replicable, and reliable digital phenotyping
requires access to high-quality and relevant raw sensor
data. Mobile devices contain sensors which passively
record information surrounding user activity, including
but not limited to geolocation, motion, and exercise.
Native device software sometimes processes data into
secondary metrics automatically (e.g., step count), but
most data can be collected in its raw form (e.g., accel-
erometer, GPS). Despite the interpretability of pre-
processed metrics, there may be advantages to collecting
raw data directly. Raw data permits novel analysis and the
creation of new biomarkers with high clinical relevance.
For example, by combining raw accelerometer and screen
state (off/on) data from a smartphone, it is feasible to use
algorithms that estimate sleep duration [11].

Clinicians at the Division of Digital Psychiatry at
BIDMC integrate digital phenotyping to augment clinical
care already [12]. In addition to standard clinical as-
sessments, patients use the open-source mindLAMP app
to complete real-time surveys about their mental health,
engage in therapy exercises between clinical visits, and
passively capture digital phenotyping signals related to
underlying health behaviors [13]. Providing ecological
momentary assessments with passive data collection
using mindLAMP can capture information in a patient’s

natural environment, providing more avenues for un-
derstanding dynamic trends in illness/recovery in addi-
tion to standard clinical assessments. This allows for
more personalized care and better shared clinical
decision-making. Patients and clinicians both receive
weekly phenotyping summaries including correlations
between mental health survey scores and processed be-
havioral metrics from digital phenotyping data (e.g.,
mood vs. time spent at home, anxiety vs. sleep duration,
stress vs. steps). These digital biomarkers can build
emotional self-awareness and facilitate discussion with
the clinical team [14]. In addition, although beyond the
scope of this paper, patients can complete therapy-related
skill-building and practice exercises on mindLAMP that
best align with weekly treatment goals.

Previous studies surrounding digital phenotyping and
mental health have demonstrated success. For example,
mindLAMP research has observed associations between
access to green space (as measured by GPS mapping) and
mental health symptoms [15]. Anomaly detection models
have demonstrated how aberrations in mindLAMP
sensor data captured over months can provide early
warning signs for relapse in people with serious mental
illnesses [3]. Digital phenotyping data analysis displays
versatility. The data used in these studies, as well as their
analytical pipelines, can be applied to other disorders.
Digital data can quantify psychosocial well-being tra-
jectories after spinal cord injury or explore the role of
cognition in Parkinson’s disease [16]. Although smart-
phone data analysis has shown potential toward more
personalized and better preventative care, assessing its full
potential requires exploration at scale.

In recent years, larger studies have offered a more
nuanced picture of the field. This picture, while con-
firming the potential of digital phenotyping, also high-
lights some of its challenges. For example, correlations
between digital phenotyping data and clinical outcomes
may appear smaller than expected when investigated with
larger sample sizes [17]. Other larger digital phenotyping
studies have even reported that data quality concerns
(related to the amount of sensor data captured vs. ex-
pected) preclude any reliable formal analysis [18]. To
assess the full potential of digital phenotyping, the field
requires replication of study results. However, many app
research platforms are unstable. For example, the app
Purple Robot was used to conduct many early and im-
pressive digital phenotyping studies but today is no
longer available or supported [19]. For those apps still in
existence, a lack of standards around digital phenotyping
data prevents easy replication or reliable reporting. Going
forward, the digital phenotyping approach to research
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and clinical care requires robust, continuously main-
tained, and research-friendly digital phenotyping infra-
structure with open standards for replication.

Toward that end, we explore an advancement in
improving the reliability of digital phenotyping: the ad-
vent of SensorKit by Apple, now supported on iPhones.
SensorKit allows carefully selected and approved
smartphone applications to access new digital pheno-
typing metrics related to step count, accelerometer, ro-
tation rate, ambient light in the physical environment,
and commute or travel habits. Even with SensorKit
available on an app, users must opt into sharing each
sensor. Given the sensitive nature of all digital pheno-
typing data, Apple vets all requests for SensorKit and only
permits its use only in Ethics Board-/IRB-approved
research.

In this paper, we introduce and describe the new
sources of data made available by SensorKit. To show our
ability to collect these data, and its structure toward
helping the field better understand its nature, potential
uses, and benefits/limitations, we present data from a
single patient enrolled in a research study (IRB
#202000956, BIDMC). This patient used mindLAMP to
passively collect sensor data with SensorKit installed with
the goal of assessing how this new digital phenotyping
data compares to existing approaches. Because of the
novelty of SensorKit data, we do not draw any clinical
conclusions in this paper but instead aim to introduce
SensorKit to the field while identifying targets for future
research surrounding SensorKit and digital phenotyping
as a whole.

Methods

Sample SensorKit data in this study were captured over 1 week
in a single person with depression using the open-source mind-
LAMP app. SensorKit was approved for use by both Apple and the
BIDMC IRB (#202000956) in this study. The SensorKit API was
integrated into mindLAMP and data were retrieved using the
mindLAMP API through Python 3.8. Data produced by these
sensors differ in format and temporal resolution. Therefore, al-
though collected over the same range of time, not all samples in
this paper are reported over the same range of time. Apps using
SensorKit are required to obtain user consent as the first step as
stated in the developer documentation (https://developer.apple.
com/documentation/sensorkit) below:

“When your app attempts to read sensor information for the
first time on a user’s device, the system presents a sheet that
explains your app’s study and the information your app collects.
The sheet, at the time of this writing in 2023, prompts the user to
approve access to personal information at a granular level, and
your app can let the user know which information is essential to

the study. You supply the study purpose, requested sensors, and
privacy policy URL in the project’s Info.plist.”

Upon assigning sensors, participants are notified by iOS, and
are prompted to accept or deny the collection of data. They can
later modify their choices in iOS settings. Data from five sensors
were collected in this study. The names of the sensors, as listed in

Fig. 1. Cortex feature hierarchy.
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official documentation, include the following: phone usage, mes-
sages usage, visits, device usage, and ambient light. It should be
noted that SensorKit offers more sensors than the ones we report
in this paper. Because Apple grants separate permission for each
sensor, we report only on sensors for which we obtained per-
mission to use them in this study. A full list of SensorKit sensors
can be viewed in Apple’s official documentation.

This study also captured digital phenotyping data indepen-
dently from SensorKit using the existing sensor data capturing and
processing infrastructure of mindLAMP. Upon these data, we can
apply our data analysis pipeline called LAMP-cortex to convert
raw data into secondary information. This pipeline, a Python 3
package available on GitHub, consists of a hierarchy of data
processing tools called “features” (Fig. 1). Data can be queried
directly from the LAMP API in real-time using cortex. Cortex
features are Python functions that process this raw data into more
interpretable metrics, and are categorized into three groups:
secondary, primary, and raw. Terminal and fully processed cortex
features are named “secondary” features. Features which are
computed from raw data and then used in the computation of
other features are called “primary” features. “Raw” features simply
query raw data from the mindLAMP API, but convert the raw data
into simple, convenient, and vectorized outputs. Some of the
sensors offered by SensorKit are comparable to other sensors or
features are already available through cortex. Therefore, in this
paper, we compare raw data collected using SensorKit sensors and
queried via the LAMP API to analogous raw data queried and
processed using cortex. Eventually, we also plan to incorporate
SensorKit sensors into cortex as raw features, from which we will
produce new primary and secondary features.

Results

Below, we summarize data formats and present sample
data collected from SensorKit sensors. Although the
mindLAMP API reports raw data as obtained by iOS
sensors, the schema of the reported data is specific to the
mindLAMP API. In some cases, the data itself may be
different between platforms in addition to the blueprint. For
example, the mindLAMP API automatically converts units
of timestamp to epoch time (milliseconds since 1970). The
sampling rate of each sensor is at a default of 5 Hz, but
software settings can decrease collection frequency. For
example, GPS will not be collected continuously if users
only allow GPS data collection when the mindLAMP ap-
plication is open and running (though during periods of
collection, frequency will remain at 5 Hz or whatever
frequency was defined by the researcher managing the
mindLAMP account). The mindLAMP API also processes
raw data to a minor extent automatically by rejecting du-
plicate data points (where the content and timestamp of a
data point are identical between two or more data points).
We report sample data below, as well as comparisons to
existing cortex features, when applicable.

Phone Usage
This SensorKit sensor collects information regarding

phone call events (Table 1).
The comparable data sensor native to mindLAMP,

called “telephony,” also reports instances of phone
calls. For comparison, we show a bar chart of results for
total call number as reported by SensorKit and tele-
phony over a sample 3-day period where data from
both sensors were available (Fig. 2). Of note, neither
SensorKit nor mindLAMP report on the phone
numbers or content or messages associated with any
phone call.

Messages Usage
This sensor reports general texting activity by a par-

ticipant (Table 2). Before this sensor, mindLAMP could
not record text activity. SensorKit does not report any
phone numbers or message content.

Visits
This SensorKit sensor collects anonymized metrics

derived from GPS data (Table 3).
Descriptions of data types include the following:

• Location category: the type of location reported as an
integer value. In the table, “location type” refers to the
corresponding string name of the integer category.

• Time spent at location: date range reported in seconds,
computed from the difference between arrival and
departure intervals.

• Distance from home: distance from home location
reported in meters.
The SensorKit visits feature has similarities to the

native mindLAMP feature called “GPS.” “GPS” reports
raw data in terms of longitude, latitude, and timestamps,
from which a wide variety of secondary metrics can be
computed. For example, this mindLAMP raw location
data can be used to recreate the visit features in SensorKit
as well as derive novel ones such as levels of exposed
pollution by a participant across a defined period of time.
The SensorKit visits feature presents up to 5 different
location categories but does not offer exact coordinates
unlike mindLAMP.

Device Usage
This SensorKit sensor broadly reports the timestamps

and durations of device usage events by participants.
Device usage data includes total unlocks, unlocked du-
ration (screen time), and total screen wakes (Table 4).
Device usage also breaks down phone usage into specific
details when possible.

Descriptions of data collected include the following:
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• Total unlocks: the number of times the user unlocked
their phone using a passcode or face ID (if
applicable).

• Unlocked duration: the total time the device remained
in an unlocked state during the report (seconds).

• Total screen wakes: the total number of events in which
the screen awoke from a sleep state.
While in use, device usage also collects specific semantic

details regarding mobile application activity, notifications
received, and web browsing activity (i.e., time spent

Table 1. SensorKit sensor collects
information regarding phone call
events

Date Call duration, s Outgoing calls Incoming calls Unique contacts

6 Oct 2022 1,851 2 0 2
7 Oct 2022 807 2 2 3
8 Oct 2022 224 4 0 2

Fig. 2. Comparison of sensors.

Table 2. SensorKit reports general
texting activity by a participant Date Incoming messages Outgoing messages Unique contacts

26 Sep 2022 95 28 4
27 Sep 2022 105 62 4
28 Sep 2022 88 61 2
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browsing the internet broken into categories of website
type). Device usage categorizes these data into broad
categories of application or website domain types. For
instance, it is possible to collect and report time spent using
sports or healthcare applications or websites, as well as the
number of notifications received from applications of
those same categories (Fig. 3). A full list of these properties
and their categories can be found in Apple’s official
documentation.

This sensor can also be used to break down application
usage by time of the day, allowing patients and clinicians
to track behavior on a precise temporal scale. We present
a clock plot depicting average minutes spent using social
media by time of day as observed by SensorKit data over
the course of 1 week (Fig. 4).

The new device usage data have clear similarities to
the native mindLAMP “device state” sensor. The
“device state” sensor reports device status in one of four
possibilities (on and unlocked, on and locked, off and
unlocked, off and locked). For comparison, we created a
bar chart showing total unlocks as reported by device
usage versus total unlocks as reported by “device state”
across a 5-day sample where data from both sensors
was available (Fig. 5). However, the native mindLAMP
function “device state” cannot report on the types of
websites visited or apps opened. Of note, neither
SensorKit nor mindLAMP report on the exact website
opened or any content viewed or entered in the website
or app.

Ambient Light
This SensorKit sensor collects information from

light captured by the device’s camera (Table 5). This
sensor reports the chromaticity values of the observed

light sources as (x, y) pairs. We binned ambient light
data into periods of 15 min and summed the number of
captured light events over each bin (Fig. 6). The near-
cyclic periods of captured light and lack of captured
light likely reflect sleep-wake periods. This function-
ality is not available in native mindLAMP without
SensorKit.

Descriptions of data collected include the following:
• Lux: describes the luminous flux per unit area of the
light source in units of lx (lumen/m/m).

• Chromaticity: an (x, y) pair describing the hue (shade
of color) and colorfulness (intensity of color) of a light
source.

Discussion

In this paper, we report sample data collected from the
following five sensors included in Apple’s SensorKit:
phone usage, messages usage, visits, device usage, and
ambient light. Our results suggest SensorKit generates
unique data not available with other digital phenotyping
apps, but that integrating it into existing apps is feasible
and can produce rich data with broad healthcare
applications.

SensorKit data can be raw data or processed. Ambient
light chromaticity, for example, reports hue and color-
fulness as raw (x, y) pairs. On the contrary, the visits
sensor reports GPS data processed into distinct and broad
location categories. Although raw data collection gen-
erally shows more potential for analysis, as it allows
greater flexibility in secondary metric computation, raw
GPS causes privacy concerns and a data storage burden. A
simple process such as converting data into features (e.g.,

Table 3. SensorKit anonymized metrics derived from GPS data

Date Location category Location type Time spent at location Distance from home

27 Sep 2022 0 Gym 1800 1,320
27 Sep 2022 1 Home 36000 0
27 Sep 2022 2 Work 29700 3,324

Table 4. SensorKit reports the
timestamps and durations of device
usage events by participants

Date Total unlocks Unlocked duration Total screen wakes

12 Oct 2022 152 17,774 182
13 Oct 2022 127 33,502 145
14 Oct 2022 42 3,971 51
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home time) and averaging these features across days can
minimize privacy risks and data storage requirements.
While the details of how Apple determines location
categories remain unclear, and while changing the al-
gorithm without alerting the research community could
threaten reproducible research, the location data pre-
sented by SensorKit may be appealing to many origi-
nations or smaller teams that cannot maintain the nec-
essary infrastructure to protect raw data or process it into
features. Therefore, in this case, the preprocessed nature
of visits data may be an exception to the general ad-
vantages of raw data collection.

In this paper, we also compared two of the new
SensorKit sensors to previously available sensors. Spe-
cifically, we compared phone usage and device usage to
“telephony” and “device state,” respectively. These sen-
sors appear to mostly agree with each other, although
there were small differences around the number of phone
unlock events. Determining the level of agreement be-
tween these sensors with precision would require a
thorough investigation with more data and more par-
ticipants or research using simulation with an exact
number of phone lock events conducted per day. Overall,
device usage offers screen activity information to a level of
detail that far surpasses the current capabilities of any
digital phenotyping app. Access to the category of each
website or app opened by a user adds a new level of

contextual richness to screen time without revealing any
exact website or screen content. This context has broad
potential. For example, this new data stream could help
determine the relationship between anxiety and social
media activity or between screen use and mental health
overall.

Two of the SensorKit sensors presented in this report
are completely novel (ambient light and messages usage)
and can be integrated into research or clinical practice.
Text activity data can build upon prior studies on phone
activity [5, 6]. Ambient light data can indicate circadian
rhythms. Levels of ambient light would likely improve
Bayesian models of sleep estimation. Estimated sleep
onset and offset parameters could be informed by prior
distributions of ambient light levels (i.e., a participant is
more likely to be sleeping during times of low levels of
ambient light), among other variables. Integrating more
variables into such models will improve their precision
and accuracy.

The introduction of new sources of data enables research
on relationships which previously could not be recorded.
For example, as mentioned, SensorKit allows for the in-
vestigation of the relationship between texting activity and
temporal anxiety levels. Collecting new data streams could
help patients and clinicians alike to determine which
metrics are associated with worsening or improving
symptoms by correlating behavior with survey scores. For

Fig. 3. Application usage by category over 1 week.
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example, clinicians can present data visualizations to pa-
tients to better understand trends in behavior and how these
trends associate with symptom changes. Metrics derived
from SensorKit sensors can also be incorporated into
machine learning models. For example, mindLAMP has
previously applied its digital phenotyping data to anomaly
detection models to predict relapse risk of schizophrenia
and, using a separate similarity matrix-based model, to
determine the relationship between behavioral abnormal-
ities and clinical scores [20]. Adding novel socialness
(messaging activity) andmore accurate sleep features (using
ambient light) would likely improve both the sensitivity and
specificity of relapse prediction.

Some limitations to the SensorKit sensors include
chiefly that it is designed to be used on a platform
compatible with Apple’s APIs. Obtaining access to
SensorKit sensors requires direct permission from Apple
and local IRB approval. Because each sensor requires
individual permission from patients, it may be difficult to
consistently obtain consent and enforce study protocols
involving SensorKit data collection. The lack of raw data
for visits presents many advantages but could pose a
challenge to replication. Limitations of this paper itself
include the use of data from a single person to explore the
potential of SensorKit without making any direct or
indirect clinical claims. Although useful in showcasing

Fig. 4. Average number of minutes spent using social media by hour of the day.
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the potential of SensorKit, analyzing data from a single
participant in this paper precludes the possibility of
creating reliable digital phenotypes. But this case example
and others n = 1 reports of digital tools do offer value
[21–23]. Further research should compare data both
between and within groups of patients with differences in
clinical diagnosis. Further research should also involve
more participants on a longitudinal basis. This would
ensure the reliability of these data over time and that it
can detect important differences between and within

patient groups. This paper also does not include data
from some of the SensorKit sensors, as we did not collect
data from sensors for which we did not request per-
mission from Apple. Additionally, the device usage sensor
records application activity broken down into broad
categories of application type. The category to which each
app belongs is determined by the application developers
and may not agree with clinician or patient expectations.

In conclusion, SensorKit offers broad potential for
health research as it unlocks novel digital phenotyping
signals and opportunities for truly scalable research. The
flexible nature of deploying SensorKit means that it can
be run in addition to native digital phenotyping apps like
mindLAMP which offers a novel means for assessing the
validity of data and improving prediction models. If
SensorKit is widely adopted, it may offer a trusted
platform from which health fields can better explore the
potential of digital phenotyping at scale.

Fig. 5. Comparison of sensors.

Table 5. SensorKit light captured by the device’s camera

Light Sample Lux Chromaticity

1 10 (0.34, 0.36)
2 11 (0.33, 0.35)
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