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Abstract
To achieve net-zero emissions, public policy needs to foster rapid innovation of climate
technologies. However, there is a scarcity of comprehensive and up-to-date evidence to guide
policymaking by monitoring climate innovation systems. This is notable, especially at the center of
the innovation process, where nascent inventions transition into profitable and scalable market
solutions. Here, we discuss the potential of large language models (LLMs) to monitor climate
technology innovation. By analyzing large pools of unstructured text data sources, such as
company reports and social media, LLMs can automate information retrieval processes and
thereby improve existing monitoring in terms of cost-effectiveness, timeliness, and
comprehensiveness. In this perspective, we show how LLMs can play a crucial role in informing
innovation policy for the energy transition by highlighting promising use cases and prevailing
challenges for research and policy.

1. Introduction

Accelerating the invention and diffusion of climate
technologies thatmitigate or remove emissions is cru-
cial for achieving net-zero emissions (IPCC 2023).
Around half of the emissions reductions until 2050
will potentially be achieved through technologies that
are currently still under development or in demon-
stration (IEA 2020).

As such, the development of climate technologies
and their transition into profitable and scalable mar-
ket solutions remains a major challenge (Grubb et al
2014). While early demonstration and commercializ-
ation are crucial for technological ‘learning’, nascent
climate technologies are often not competitive with
established technologies at market entry. Reasons
include higher costs, immature infrastructure, and
more pronounced investment risks (Egli et al 2018).
Therefore, public policy plays a crucial role in pro-
moting the development and deployment of climate
technologies and alleviating hurdles along the innov-
ation process by, for example, funding pilot projects,
incentivizing industry collaboration, and stimulating

market incentives through subsidies, regulations, and
other mechanisms (Doblinger et al 2019, Goldstein
et al 2020, Probst et al 2021, Meckling et al 2022).

Designing and implementing innovation policies
requires evidence of technological developments and
surrounding innovation systems, which helps to
identify where certain measures could be effective.
This includes, for example, evidence of investment
landscapes, industry collaborations, or public accept-
ance. However, collecting such evidence from differ-
ent sources is highly time-consuming and expensive.
Therefore, relevant pieces are often not comprehens-
ive and up-to-date.

Here, we discuss the potential of large language
models (LLMs) to improve the monitoring of climate
technology innovation. LLMs have gained broad
attention for their human-like capabilities of retriev-
ing relevant information from unstructured text at a
large scale (Brown et al 2020, Liu et al 2023). Thereby,
LLMs can help researchers and policy-makers retrieve
novel and up-to-date evidence from large pools of rel-
evant data sources such as policy documents, social
media data, and company reports. In this paper, we
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discuss promising use cases and challenges of apply-
ing LLMs in climate innovation research and policy.

2. Relevance of monitoring along the
innovation process

For the majority of climate technologies, the innova-
tion process can be divided into threemain stages: the
invention stage, the innovation stage, and the diffu-
sion stage (figure 1; (Grubb et al 2014)). This process
is iterative and embedded in dynamically evolving
technology innovation systems comprising networks
of relevant actors (e.g. manufacturers, vendors) and
institutions (e.g. regulations, social norms) (Bergek
et al 2015, Markard 2020). A critical point is the
innovation stage where technological solutions need
to find profitable markets (Gallagher et al 2012,
Grubler and Wilson 2014). At this stage, climate
innovations often compete with more mature fossil
technologies and, thereby, need to overcome financial
and techno-economic deficits, such as the range and
charging time of electric vehicles (EVs) (Goldstein
et al 2020).

Policies can help to overcome such hurdles by
addressing infrastructural requirements (e.g. improv-
ing charging infrastructure for EVs), providing fin-
ance (e.g. through grants or public procurement), or
stimulating demand (e.g. through subsidies or regula-
tions, such as carbon taxes) (Gallagher et al 2012). To
foster the effective implementation of such policies,
it is particularly important to monitor climate tech-
nology innovations with comprehensive and up-to-
date information. In this way, the current functioning
of innovation systems can be analyzed, allowing the
identification of current hurdles and targeted alloc-
ation of resources (Hekkert et al 2007). Yet, espe-
cially at the center of the innovation process, exist-
ing processes for retrieving information on innova-
tion systems are often extremely expensive and time-
consuming, which affects the timeliness and compre-
hensiveness of provided evidence.

3. Existing information retrieval processes
for monitoring climate technology
innovation

Existing databases that enable monitoring of climate
technology innovation are typically based on struc-
tured information provided through (1) secondary
data sources, (2) surveys, and (3) manual retrieval
from unstructured sources.We discuss the three cases
in the following.

In the first case, databases are assembled from sec-
ondary data sources, that is, other databases, where
the latter are originally curated for their own distinct
purposes like academic publication platforms, patent
databases, or trade data. As such, they benefit from
individuals and organizations being either legally

obliged (e.g. companies that are required to report
trade activities to national customs authorities) or
strongly incentivized to contribute specific informa-
tion (e.g. inventors that file a patent to gain protec-
tion for an invention). While, in general, secondary
data sources are relatively comprehensive, the under-
lying self-reporting process may also cause specific
selection biases. For example, the database PATSTAT
(European Patent Office 2023) collects patent data
from national patent offices of leading industrialized
and developing countries. While PATSTAT contains
more than 300 thousand patent documents on clean
energy technologies, some inventors might refrain
from using patents to protect climate inventions
because of time, costs, or secrecy, which likely leads
to a lower representation of small companies, lower
income countries, or software-based inventions.

In the second case, surveys are used to collect
specific information directly from primary sources.
However, only a few organizations can convince com-
panies and other organizations to directly contrib-
ute information without legal obligations or sub-
stantial value delivered in return. For example, the
International Energy Agency (IEA) requests inform-
ation on technology costs directly from companies,
and the Organizations of Economic Cooperation and
Development (OECD) collects policy-related inform-
ation from national ministries. While acquiring such
information directly from the source organizations
usually leads to accurate information, the underly-
ing bureaucratic workload only allows for a limited
number of sources. In some cases, such as the estim-
ation of technology costs across countries, generaliz-
ability can be affected if the number of contributing
organizations only represents a small share of the total
population.

In the third case, databases aremanually collected,
so that information on innovation systems from vari-
ous unstructured sources is captured. For example,
databases, such as Bloomberg New Energy Finance
(BNEF) (BloombergNEF 2023) or i3 (Cleantech
Group 2023), provide information on clean energy
companies, but are manually compiled by screening
news announcements, company reports, and com-
pany websites. This is an extremely expensive and
time-consuming process. As a result, such databases
usually charge high subscription fees. Furthermore,
the data-collection process is often not transparent,
revealing little information about potential biases
and other limitations. For example, although BNEF
is considered the most comprehensive database for
renewable energy project finance, there are still major
concerns about the accurate representation of pro-
jects across different countries (Lilliestam et al 2020).

Overall, secondary sources with structured
information on climate innovation are commonly
located at the early invention and late diffusion
stages of the innovation process. Monitoring climate
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Figure 1. Evidence along the technology innovation process. For simplicity, the innovation process is visualized as a chain based
on Grubb et al (2014) with only direct feedback loops between the links. Shown are selected and simplified examples of areas of
evidence on climate innovation along the innovation process.

innovation around the center of the innovation pro-
cess thus often requires information retrieval via sur-
veys or manual data collection. Both involve extens-
ive bureaucratic and manual workload. This, for
example, applies to information retrieval of private
R&D investments, innovation ecosystems, or skilled
labor (see figure 1). As we argue below, LLMs can
help to automate information retrieval from unstruc-
tured sources, speeding up the processes while, at the
same time, reducing costs. Thereby, LLMs can enable
information retrieval from much larger pools of data
sources, such as newspapers, company websites, or
social media, and produce more timely evidence on
innovation systems. Furthermore, LLMs can be used
to enrich evidence from patents or academic public-
ations with additional context from corresponding
raw texts.

4. Tracking climate technology innovation
with LLMs

4.1. Background on information retrieval with
LLMs
LLMs are deep learning models for processing and
generating human language. Compared to previous
approaches in natural language processing, LLMs are
muchmore powerful. For example, the parameter size
of pretrained LLMs typically ranges from 20 million
to more than 100 billion parameters (Devlin et al
2018, Lewis et al 2019, Floridi and Chiriatti 2020,
Touvron et al 2023).

Threemain abilities distinguish LLMs fromprevi-
ous approaches in natural language processing. First,
instead of treating text as a bag of words without
ordering, LLMs take the sequence of words into
account and thereby understand hierarchies and rela-
tionships between entities. As a result, LLMs can cap-
ture complex semantics and even generate meaning-
ful content as output. Second, LLMs allow users to
retrieve information via so-called ‘prompts’ which
are commands in natural language. As such, they
can perform information retrieval tasks through in-
context learning, where, examples of the task can be
directly provided in the prompts (Liu et al 2023).
Third, LLMs are pre-trained on vast corpora of text
data. This enables few-shot learning, where high per-
formance can be achieved with little additional train-
ing data, potentially avoiding large sets of manually-
annotated data (Brown et al 2020).

LLMs can perform a wide range of information
retrieval tasks on texts, and each task has particular
advantages and limitations. We discuss these inform-
ation retrieval tasks in the context of climate innova-
tion monitoring in the following:

Through text classification, the model learns to
categorize documents along specified dimensions
(e.g. the sustainable development goals; climate tech-
nology classes (Toetzke et al 2022c)). Text classifica-
tion offers customized, consistent, and replicable out-
comes and reports clear performance metrics (e.g.
accuracy, F1-score). By nature, the task is restricted
to a set of predefined labels (e.g. solar energy, wind
energy, etc., for classifying climate technologies).

3
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Figure 2. Exemplary use cases of LLMs in innovation studies, structured by information retrieval tasks and areas of evidence from
the innovation system. Note that the selection of data sources, areas, and use cases is exemplary and not comprehensive.

Through topic modeling, the model identifies
prominent topics from a large corpus of documents
(e.g. policy reports). As such, topic modeling ana-
lyzes text documents for exploratory purposes (e.g.
‘What are most prominent topics in company sustain-
ability reports?’). Topic modeling is an unsupervised
task, which means that it does not require predefined
labels. Instead, it explores potential clusterings of the
text documents at hand. This is beneficial for monit-
oring tasks where no categorization scheme yet exists.
However, in turn, topic modeling does not allow
users to target their analyses on specific questions of
interest.

Through information extraction, the model
extracts numbers (e.g. financials, technical paramet-
ers) and named entities (e.g. names of regions or
companies) from texts. LLMs allow such information
extraction with few- or even zero-shot learning where
examples can be included in the prompts (e.g. ‘Extract
names of companies, such as Siemens AG or BlackRock,
Inc, from the following text’). By nature, information
extraction only returns information that is explicitly
mentioned in the text (e.g. revenue numbers, legal
paragraphs).

Through text generation, themodel generates cus-
tomized summaries of large text corpora based on

specific user questions. As such, text generation can
answer semantically complex questions about large
texts without the need for downstream training (e.g.

‘Name the most promising technologies for energy stor-
age in the IPCC reports’). On the one hand, text gen-
eration is a very versatile task with highly flexible out-
puts. On the other hand, it is comparatively difficult
to evaluate, difficult to control algorithmically, and
prone to hallucination, where plausible but factually
wrong answers can be returned.

4.2. Promising use cases for LLMs in climate
innovation research
Through the above-described tasks, LLMs can auto-
mate information retrieval and, thereby, help to
address various evidence gaps along the innovation
process. In the context of climate innovation monit-
oring, the selection of information retrieval tasks is
essential as different tasks enable different use cases.
Figure 2 provides a schematic overview of exem-
plary use cases, attributed to different areas of evid-
ence, information retrieval tasks, and potential data
sources.

4.2.1. Technology characteristics
Applications of LLMs can help to provide more con-
text to existing monitoring of technology character-
istics by analyzing scientific publications, patents, or
company reports at scale. For example, text classi-
fication allows for distinctions in patents between
product and process inventions or core versus com-
plementary inventions. As such, one could analyze
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whether inventions of specific climate technologies,
such as e-fuels, focus on technology production or
downstream technology integration. Topic models,
conversely, are more suitable for exploratory tasks,
such as clustering product descriptions to identify
technology variations (e.g. in carbon removal techno-
logies). Through information extraction, LLMs can
extract technology parameters, such as input materi-
als for EV batteries from patents or battery capacities
from product descriptions.

4.2.2. Basic research and applied R&D investments
Public research funding is usually reported in detail
by public financiers (e.g. research foundations) and
recipients (e.g. universities), including structured
information (e.g. research disciplines) and additional
textual descriptions on the project level (Meckling
et al 2022). Here, LLMs can be used to further con-
textualize existing monitoring via topic models, text
classification (e.g. regarding the inclusion of econom-
ical, technological, or social aspects), or chats with
text generation models to identify projects of interest
(e.g. ‘Which research projects investigate the poten-
tial of hydrogen production in sub-Saharan Africa?’).
In contrast, companies report only basic informa-
tion on their R&D spending, such as overall R&D
budgets. While further details are often not disclosed
(e.g. spending by technology), LLMs can still be used
to systematically peruse millions of company reports
and extract relevant information where existing.

4.2.3. Innovation ecosystems
Databases for monitoring innovation ecosystems
mostly focus on specific types of innovation net-
works, such as venture capital investments in startups
or project finance for renewable energy. Such data-
bases are usually compiled manually from different
sources, including news announcements and com-
pany websites. However, often the underlying data
lacks evidence on emerging technologies or develop-
ing countries and is biased toward specific sources.
Here, LLMs can automate the information retrieval
process and systematically review much larger pools
of secondary data. For example, a recent study uses
LLMs to analyze partnership announcements of cli-
mate technology companies from several million
social media posts, classifying them by the type of
interaction (e.g. equity funding, R&D collaboration)
and targeted technology, and extracting the names
of collaborating actors and with corresponding roles
(e.g. investor, developer) (Toetzke et al 2023).

4.2.4. Skilled labor
While employment data helps monitor different
occupations across industries, scant evidence exists
on labor demand and available skills. Due to the
energy transition, labor markets are changing dra-
matically, leading to both extensive job loss and the
creation of new jobs (Zaussinger et al 2023). Here,

LLMs can help to monitor changes in the job mar-
ket structure, on the demand side, by classifying job
descriptions (e.g. required qualifications, job linkage
to climate or fossil technologies), and on the sup-
ply side, by analyzing the availability of skills (e.g.
through clustering university degrees). Furthermore,
LLMs can extract information on job-specific salaries.
This can help to compare whether job losses in fossil
industries can be compensated through climate tech-
nology jobs in the same region and requiring equival-
ent skills, thereby supporting a just energy transition.

4.2.5. Public acceptance
For consumer products (e.g. EVs or rooftop photo-
voltaic systems), public acceptance can be proxied
through product sales. Here, using LLMs to analyze
product reviews on, for example, marketplaces can
help to understand consumer behavior and identify
decisive factors in purchase decisions (e.g. charging
time of EVs; costs of electricity for solar power).
For infrastructure-heavy climate technologies, such
as wind parks or nuclear plants, public acceptance
is challenging to monitor with traditional methods.
Opinion polls are expensive and only capture small
samples (Cox et al 2020). Here, LLMs can be used to
monitor public acceptance across large populations
by classifying social media posts or newspaper cover-
age along relevant aspects (e.g. safety, sustainability,
costs), while distinguishing between positive, negat-
ive, and neutral stances (Toetzke et al 2022b).

4.2.6. Policies and political targets
Monitoring policies and political targets tradition-
ally requires substantial resources. For example, the
Net Zero Tracker (Lang et al 2023) relies on large
numbers of research assistants and volunteers to col-
lect information on emission targets across coun-
tries, cities, and industries. Other organizations, such
as the OECD, use self-reporting by national minis-
tries to distribute the excessive workload of retriev-
ing information from relevant sources (Toetzke et al
2022a). Here, LLMs can automate the information
retrieval process through classification (e.g. types
of innovation policies), information extraction (e.g.
emissions reduction targets), or even interactions
with chatbots pre-trained on relevant policy reports
and databases (e.g. ‘Which countries currently have
a carbon price above USD 100?’). While the com-
pilation of relevant sources remains a necessary pre-
requisite, using LLMs allows organizations to speed
up the information retrieval process and scale it to
much larger pools of data sources and varieties of
parameters, at low costs.

4.2.7. Adoption
The adoption of climate technologies is often not
monitored comprehensively, especially for develop-
ing countries and emerging technologies. Here, LLMs
can help identify demonstration projects through
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project announcements via different channels, such
as company reports, newspapers, or social media.
However, smaller installations, such as residential
solar PV systems, are likely to not be captured by these
secondary data sources. In this case, sales figures for
climate technologies could be extracted from com-
pany reports and websites, if disclosed properly.

4.2.8. Supply chains
LLMs can help to map climate technology supply
chains by extracting buyer-supplier ties from social
media announcements, company reports, or web-
sites. A major bottleneck here is that, in many cases,
buyer-supplier information is not fully disclosed,
which could lead to incomprehensive and potentially
biased evidence. LLMs can also be used to monitor
risks of climate technology supply chains (e.g. scarce
input materials) and analyze how companies address
such risks in their reporting.

5. Discussion

LLMs show great potential for informing climate
innovation research and policy. Across the entire
innovation process, they can help to retrieve new
evidence through classification, topic modeling,
information extraction, and text generation from
large pools of relevant text data. Thereby, they can
provide more comprehensive and timely insights on
climate innovation systems through automated, cost-
efficient, continuous, and scalable monitoring. As
such, monitoring can support targeted innovation
policies, identifying emerging innovation clusters,
suitable deployment locations, and promising mar-
kets. Especially at the center of the innovation process,
LLMs can improve information retrieval processes
that are currently cumbersome and limited in scope,
by mapping innovation ecosystems, analyzing public
acceptance, and comparing innovation policies across
countries at large scale. Thereby, innovation policy
can address prevalent bottlenecks (e.g. investment
shortages or public safety concerns) and accelerate
the translation of climate inventions into scalable
solutions.

However, using LLMs for monitoring climate
innovation has limitations in terms of model applic-
ability and model outcomes. In terms of model
applicability, data availability and computational
resources represent major bottlenecks. While, in
many contexts, relevant data is made publicly avail-
able (e.g. patents by inventors, research funding by
public institutions, or public opinions via social
media), in some contexts (e.g. corporate R&D invest-
ments or supply chain information), available data
can be limited due to non-disclosure. Here, LLMs
still facilitate the search for relevant information
by screening documents from different sources at a
scale that would be impractical to conduct manually.

However, to improve the overall comprehensiveness
of monitoring, it is essential that policy-makers foster
company reporting and open data. Furthermore,
LLMs demand significant computational resources
at both training and inference time (e.g. high-
performance GPUs and ample storage capacity),
which pose financial and technical barriers.

In terms of model outcomes, applying LLMs for
information retrieval raises important questions con-
cerning validity and transparency. This is especially
relevant for prompt-based information retrieval or
in-context learning where task-specific training on
large sets of self-annotated training data is avoided.
This enforces the black-box character of LLMs as
inferences become less transparent. Because the
underlying reasoning of LLMs is based on excess-
ive primary training data, which also includes fac-
tually doubtable sources, outcomes can potentially
be biased. Furthermore, LLMs are prone to hal-
lucination where incorrect answers are generated.
To address these shortcomings, we expect the fol-
lowing procedures to be helpful: First, user stud-
ies or annotated test sets should validate the model
performance, using data that have not been used
for prompt engineering, context-provision, or fine-
tuning. Second, codebooks should be manually com-
piled by experts to provide important definitions and
categorizations as a basis for performance validations
and, potentially, as additional context for the model
task. Third, where available, fine-tuned models could
be used that have been specifically trained on factu-
ally proven sources related to the required task, such
as ChatClimate, which has been trained on the latest
IPCC report (Vaghefi et al 2023).

The application of LLMs has several practical
benefits compared to traditional approaches from
natural language processing. As such, LLMs allow
users to avoid several labor- and cost-intensive
steps in text preprocessing and model training. For
example, LLMs enable few-shot learning, where only
a small number of data samples are needed for train-
ing. Currently, we observe rapid and continuous
improvements in model efficiency, which allows the
deployment of LLMs on traditional hardware (Rasley
et al 2020, Hu et al 2021). In the future, we expect
a steep growth in the availability of user-friendly
interfaces for customized training and deployment
of LLMs as well as improvements in the verifiabil-
ity of outputs through generating citations to credible
references.

In summary, we expect substantial advances in
innovation research and policy driven by the applic-
ation of LLMs. As the field continues to evolve, fur-
ther work should be dedicated to addressing major
challenges, such as the availability of open data,
algorithmic interpretability, and cross-disciplinary
collaboration to maximize the potential of LLMs in
monitoring climate innovation.

6



Environ. Res. Lett. 18 (2023) 091004 M Toetzke et al

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

MT acknowledges funding from the Swiss National
Science Foundation (SNSF) as part of the Eccellenza
grant 186932 as well as from the Swiss Federal Office
of Energy’s “SWEET” programme as part of the
PATHFNDR consortium.

ORCID iD

Malte Toetzke https://orcid.org/0000-0002-1153-
2702

References

Bergek A, Hekkert M, Jacobsson S, Markard J, Sandén B and
Truffer B 2015 Technological innovation systems in
contexts: conceptualizing contextual structures and
interaction dynamics Environ. Innov. Soc. Transit. 16 51–64

BloombergNEF 2023 BloombergNEF (available at: www.bnef.
com/) (Accessed 31 January 2023)

Brown T et al 2020 Language models are few-shot learners
Advances in Neural Information Processing Systems vol 33
pp 1877–901

Cleantech Group 2023 Discover i3 Market Intelligence (available
at: https://i3connect.com/)

Cox E, Spence E and Pidgeon N 2020 Public perceptions of
carbon dioxide removal in the United States and the United
Kingdom Nat. Clim. Change 10 744–9

Devlin J, Chang M-W, Lee K and Toutanova K 2018 Bert:
pre-training of deep bidirectional transformers for language
understanding (arXiv:1810.04805)

Doblinger C, Surana K and Anadon L D 2019 Governments as
partners: the role of alliances in US cleantech startup
innovation Res. Policy 48 1458–75

Egli F, Steffen B and Schmidt T S 2018 A dynamic analysis of
financing conditions for renewable energy technologies Nat.
Energy 3 1084–92

European Patent Office 2023 PATSTAT (available at: www.epo.
org/searching-for-patents/business/patstat.html)

Floridi L and Chiriatti M 2020 GPT-3: its nature, scope,
limits, and consequencesMinds Mach.
30 681–94

Gallagher K S, Grübler A, Kuhl L, Nemet G and Wilson C 2012
The energy technology innovation system Annu. Rev.
Environ. Resour. 37 137–62

Goldstein A, Doblinger C, Baker E and Anadón L D 2020
Patenting and business outcomes for cleantech startups
funded by the advanced research projects agency-energy
Nat. Energy 5 803–10

Grubb M, Hourcade J-C and Neuhoff K 2014 Planetary Economics
(Routledge)

Grubler A and Wilson C 2014 Energy Technology Innovation
(Cambridge University Press)

Hekkert M P, Suurs R A A, Negro S O, Kuhlmann S and Smits R E
HM 2007 Functions of innovation systems: a new approach
for analysing technological change Technol. Forecast. Soc.
Change 74 413–32

Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Yuanzhi L, Wang S, Wang L
and Chen W 2021 Lora: low-rank adaptation of large
language models (arXiv:2106.09685)

IEA 2020 Energy technology perspectives 2020 (available at: www.
iea.org/reports/energy-technology-perspectives-2020)

IPCC 2023 Climate change 2023: synthesis report (available at:
www.ipcc.ch/report/ar6/syr/)

Lang J, Hyslop C, Yeo Z Y, Black R, Chalkley P and Hale T 2023
Net zero tracker (available at: zerotracker.net)

Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O,
Stoyanov V and Zettlemoyer L 2019 Bart: denoising
sequence-to-sequence pre-training for natural language
generation, translation, and comprehension
(arXiv:1910.13461)

Lilliestam J, Melliger M, Ollier L, Schmidt T S and Steffen B 2020
Understanding and accounting for the effect of exchange
rate fluctuations on global learning rates Nat. Energy
5 71–78

Liu P, Yuan W, Jinlan F, Jiang Z, Hayashi H and Neubig G 2023
Pre-train, prompt, and predict: a systematic survey of
prompting methods in natural language processing ACM
Comput. Surv. 55 1–35

Markard J 2020 The life cycle of technological innovation systems
Technol. Forecast. Soc. Change 153 119407

Meckling J, Galeazzi C, Shears E, Xu T and Anadon L D 2022
Energy innovation funding and institutions in major
economies Nat. Energy 7 876–85

Probst B, Touboul S, Glachant M and Dechezlepr̂etre A 2021
Global trends in the invention and diffusion of
climate change mitigation technologies Nat. Energy
6 1077–86

Rasley J, Rajbhandari S, Ruwase O and Yuxiong H 2020
Deepspeed: system optimizations enable training deep
learning models with over 100 billion parameters Proc. 26th
ACM SIGKDD Int. Conf. on Knowledge Discovery & Data
Mining pp 3505–6

Toetzke M, Banholzer N and Feuerriegel S 2022a Monitoring
global development aid with machine learning Nat. Sustain.
5 533–41

Toetzke M, Probst B, Tatar Y, Feuerriegel S and Hoffmann V
2022b Analyzing the global energy discourse with machine
learning NeurIPS 2022 Workshop on Tackling Climate Change
with Machine Learning (available at: www.climatechange.ai/
papers/neurips2022/96)

Toetzke M, Re F, Probst B, Feuerriegel S , Diaz Anadon L and
Hoffmann V 2023 Mapping global innovation networks
around clean energy technologies ICLR 2023 Workshop on
Tackling Climate Change with Machine Learning (available
at: www.climatechange.ai/papers/iclr2023/32)

Toetzke M, Stünzi A and Egli F 2022c Consistent and replicable
estimation of bilateral climate finance Nat. Clim. Change
12 897–900

Touvron H et al 2023 Llama: open and efficient foundation
language models (arXiv:2302.13971)

Vaghefi S A et al 2023 Chatclimate: grounding conversational AI
in climate science

Zaussinger F, Egli F and Schmidt T S 2023 The impact of the
low-carbon transition on employment and skills in Europe

7

https://orcid.org/0000-0002-1153-2702
https://orcid.org/0000-0002-1153-2702
https://orcid.org/0000-0002-1153-2702
https://doi.org/10.1016/j.eist.2015.07.003
https://doi.org/10.1016/j.eist.2015.07.003
https://www.bnef.com/
https://www.bnef.com/
https://i3connect.com/
https://doi.org/10.1038/s41558-020-0823-z
https://doi.org/10.1038/s41558-020-0823-z
https://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.respol.2019.02.006
https://doi.org/10.1016/j.respol.2019.02.006
https://doi.org/10.1038/s41560-018-0277-y
https://doi.org/10.1038/s41560-018-0277-y
https://www.epo.org/searching-for-patents/business/patstat.html
https://www.epo.org/searching-for-patents/business/patstat.html
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1146/annurev-environ-060311-133915
https://doi.org/10.1146/annurev-environ-060311-133915
https://doi.org/10.1038/s41560-020-00683-8
https://doi.org/10.1038/s41560-020-00683-8
https://doi.org/10.1016/j.techfore.2006.03.002
https://doi.org/10.1016/j.techfore.2006.03.002
https://arxiv.org/abs/2106.09685
https://www.iea.org/reports/energy-technology-perspectives-2020
https://www.iea.org/reports/energy-technology-perspectives-2020
https://www.ipcc.ch/report/ar6/syr/
https://zerotracker.net
https://arxiv.org/abs/1910.13461
https://doi.org/10.1038/s41560-019-0531-y
https://doi.org/10.1038/s41560-019-0531-y
https://doi.org/10.1016/j.techfore.2018.07.045
https://doi.org/10.1016/j.techfore.2018.07.045
https://doi.org/10.1038/s41560-022-01117-3
https://doi.org/10.1038/s41560-022-01117-3
https://doi.org/10.1038/s41560-021-00931-5
https://doi.org/10.1038/s41560-021-00931-5
https://doi.org/10.1038/s41893-022-00874-z
https://doi.org/10.1038/s41893-022-00874-z
https://www.climatechange.ai/papers/neurips2022/96
https://www.climatechange.ai/papers/neurips2022/96
https://www.climatechange.ai/papers/iclr2023/32
https://doi.org/10.1038/s41558-022-01482-7
https://doi.org/10.1038/s41558-022-01482-7
https://arxiv.org/abs/2302.13971

