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ABSTRACT1
Mobility on-demand services like ride-hailing, ride-sharing, and car-sharing are changing the way2
we travel, offering us more options and flexibility. They can be best understood and planned for by3
using detailed computer simulations. However, these simulations often forget about the weekends.4
They focus mostly on the average working day when travel is high and fairly predictable.5

But the way we travel has changed. Unlike the weekdays with rush hours, people tend6
to travel throughout the day on weekends, especially on Saturdays. In fact, these new types of7
transport services are used most heavily during the weekends. Even the way we share rides changes8
- we are more likely to share a ride with others at the weekend than during the week. This difference9
in our habits could have big impacts on these new travel services and even on the future of transport10
itself.11

Our study looks at this overlooked area. We include weekend travel data to get a full12
picture of how we could use these services. We compare travel patterns during the week and at the13
weekend for Zurich, Switzerland, as a case study. Our goal is to understand the unique aspects of14
weekend travel and what they mean for these on-demand services.15

16
Keywords: mobility On-demand, Shared Autonomous Vehicle simulation, ridesharing, weekend17
modelling, MATSim, agent-based simulation18
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INTRODUCTION1
There is a growing interest in modelling various Mobility on Demand (MoD) services, including2
ride-hailing, ride-sharing, car-sharing, and even Shared Autonomous Vehicles (SAV). These ser-3
vices are viewed as potential strategies to mitigate transport-related externalities. Agent-based sim-4
ulations have gained popularity as a robust tool for modelling these MoD services. They provide5
a detailed, microscopic perspective of complex transport scenarios, thus offering valuable insights6
into the effects of diverse policy decisions and operational interventions on travel behaviour.7

MoD services, by their nature, offer flexible transport options catering to passenger de-8
mand with both spatial and temporal flexibility, which can only be properly captured through a9
microscopic representation of individual travellers and vehicles. Agent-based simulations, thus,10
can help to understand the impact of such flexible and dynamic behaviour on the transport system,11
hence their growing popularity.12

Typically, these MoD simulation models are based on average working day scenarios, and13
the weekend is rarely considered. The result is that the simulation outcomes, may not fully cap-14
ture the overall picture of externalities of travel behaviours, and policy impacts (1, 2). While15
historically, travel demand models have centred around weekdays, rationalised by the higher travel16
demand on these days, as well as defined commuting patterns that can be modelled, the transporta-17
tion landscape has changed with the introduction of these flexible modes. For example, unlike18
weekdays’ predictable rush hour periods, weekend travel demand is distributed throughout the day19
(1, 3, 4).20

This can be seen in Figure 1 showing the share of trips across the day for the weekday,21
Saturday and Sunday based on the 2015 Swiss household travel survey. From this figure one can22
observe that the peak is most pronounced on the average day, indicating a typical rush hour pattern23
likely due to work and school commutes. On Saturday and Sunday, the morning peak is less24
intense, which could be due to more flexible schedules or reduced work and school-related travel.25
Furthermore, many studies have revealed that existing MoD services experience peak demand26
on weekends, especially on Saturdays. Also, ridesharing patterns differ between weekdays and27
weekends as travellers may tend to pool more on the weekends (5, 6). Consequently, this deviation28
in travel patterns between weekdays and weekends can substantially impact the planning for these29
emerging modes and future mobility solutions such as SAVs.30

Therefore, including weekend travel data is particularly pertinent for planning and policy31
decisions related to MoD services. In this context, our study aims to fill this gap in research by32
examining the role of weekend travel in the operational efficiency of MoD services. By compar-33
ing weekday and weekend travel patterns, the study hopes to show the unique characteristics of34
weekend travel and its implications for on-demand service operations.35

The rest of the paper is structured as follows: Section 3 looks at the relevant background36
literature. Section 4 outlines the methodology used. Section 5 discusses the results and their37
implications in detail, and Section 6 concludes the paper, offering directions for future research in38
this area.39

BACKGROUND40
Several studies exist that have examined week-long and weekend travel behaviour, and they pro-41
vide an analysis of the differences in travel behaviour between weekends and weekdays (7–12).42
These studies argue that special attention needs to be paid to weekend travel to develop a compre-43
hensive travel demand model for evaluating transportation policies to reduce congestion, improve44
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FIGURE 1: "Comparing hourly trip share by day of the Week"

air quality, and enhance well-being. For example, Bhat and Misra (8) noted as early as the 1990s1
that policies focusing on weekday traffic can exacerbate weekend traffic congestion.2

The differences in weekend trip patterns are reflected in the activity types, trip length, mode3
choice, and even duration of trips. Leisure trips account for a higher percentage of weekend trips,4
and vehicle occupancy is higher because there is more time to participate in household and group5
activities (12–15). For example, Hunt et al. (13) found that weekend mode choice was related6
to travel party size, while Yagi et al. (16) found in Indonesia that the mode share of fully joint7
household trips differed between weekdays and weekends. Furthermore, the value of time (VoTs)8
between the weekday and weekends differ. While some studies report lower VoTs on the weekends9
than on weekdays (13), others suggest higher VoTs on weekends, especially when joint household10
activities are considered (15, 17). These differences in VoTs can be linked to the various forms11
of activities and trip chaining patterns, and travel behaviour during the weekend compared to the12
weekday.13

These differences in trip patterns also occur between the two weekend days. For example,14
while the consensus is that weekend trips are generally longer than weekday trips, some studies15
show that Saturday trips are longer than Sunday trips (9), while others find the opposite (12). This16
could depend on the region, so it may be necessary to model Saturday and Sunday independently.17

Transport Network Companies (TNC) data serve as a rich data source for various empirical18
studies on ride-hailing and ridesharing. In the Chicago, New York, Boston, Chengdu, Berlin, and19
Hamburg regions, these data are available, and studies based on these data show the differences20
and similarities between weekday and weekend trip patterns for various travel characteristics (4–21
6, 9, 18–20). These studies emphasize the need to model the demand for weekdays and weekends22
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separately. For example, a strong relationship has been found between ride-hailing use and leisure1
activities (2, 4, 21), which stands to reason that ride-hailing use is more prevalent on weekends2
than on weekdays, when people engage in more leisure activities. This can be observed in different3
regions of the world.4

However, the results do not always agree on some points and reveal that the travel patterns5
depend on the region. Du et al. (18) and Dean and Kockelman (5) found that ridesharing happened6
more during the week in Chicago (4.5% higher). However, based on TNC data from the pooling-7
only service MOIA for two German cities, it was found that there were more ridesharing trips8
on Saturdays than on any other day of the week (20). Gehrke et al. (6) found that ridesharing in9
the Boston area was more prevalent on weekends or in the middle of the day during the week.10
This suggests that a better analysis of weekend ridesharing is needed, especially when examining11
the potential of future mobility services such as SAVs for ridesharing. In addition, a distinction12
between Saturday and Sunday is necessary. In Berlin, Bischoff et al. (22) using GPS trajectories,13
observed a peak in demand for ridehailing and ridesharing trips on Saturdays and lower demand14
on Sundays. This is similar to other cities such as Madrid, where usage increases on late Friday15
evenings and on Saturdays (4).16

Since agent-based simulations are appropriate tools for understanding these MoD services,17
several MoD simulation studies exist. However, few have addressed the weekend aspect. These18
few are either toy examples (23), focused on electric vehicles and their energy demand (24, 25),19
or choose a weekend day, typically Saturday, considered as the day with the highest demand (20,20
22, 26, 27). In general, these studies do not fully explore the differences between weekends and21
weekdays, and as far as the authors are aware, no study examines and compares the impact of22
weekends and weekdays, especially considering the potential for ridesharing. That is why this23
paper presents a first step towards opening up discussions and research on including richer data,24
i.e., weekend travel behaviour in MoD simulations.25

METHOD26
This section describes the methods used in this study to develop an agent-based model for simu-27
lating an on-demand mobility service in Zurich, Switzerland, for the weekend (see Figure 2).28

This study uses the multi-agent transport simulation framework MATSim (28) to develop29
the agent-based model. MATSim is a powerful simulation tool that can model detailed interactions30
between transport demand and supply. To represent the transportation system within MATSim,31
the following scenario data is required: a network representation consisting of links and nodes as32
well as the public transport infrastructure, travel demand data in the form of a synthetic population33
of agents with their corresponding travel plans, and additional transport elements such as facility34
locations and transit schedules.35

The study area consists of the city of Zurich extended by a 5 km buffer covering an area36
of 383.56 km2 and contains a population of roughly 1.2 million. The transport network for the37
region is extensive, with 61,930 network links represented in MATSim and it facilitates various38
modes of transport. The 2015 Mikrozensus Household Travel Survey (HTS) by the Bundesamt39
für Statistik (BFS) provides insights into the travel behaviour in the region. Within Zurich, 57%40
of the daily distance travelled by citizens of the Canton of Zurich is done by private car, 32% by41
public transport and 10% by foot, bike or e-bike with little to no presence of on-demand services42
such as Uber or Lyft. Given Zurich’s urban dynamics, MoD simulation is of particular relevance43
to the city as its transport planners contemplate sustainable transport solutions in the face of rapid44



Kagho, Balac, and Axhausen 6

FIGURE 2: Analyzed study area with Zurich’s city limit indicated with black line)

urbanisation. As a result studies on the impact of MoD systems have and are currently being1
conducted in the city (29, 30).2

The travel demand model for the Zurich region for this study is extracted from a syn-3
thetic travel demand for Switzerland. The demand generation process for an average workday for4
Switzerland has been developed by Tchervenkov et al. (31), Hörl (32) and a calibrated simulation5
scenario for an average workday for the study region is presented in Hörl et al. (33). Below, the6
demand generation process for the weekend is described in detail.7

The weekend travel demand model8
Several agent-based transport simulation studies conducted for Switzerland use the available Switzer-9
land Baseline Scenario, a MATSim scenario created using an established synthetic population10
pipeline for Switzerland (31) based on the Eqasim framework (34, 35). The Eqasim pipeline11
creates a realistic agent population matching the sociodemographics, mobility patterns, transport12
networks and facilities of Switzerland. It draws on raw data, including census records, travel sur-13
veys, OpenStreetMap, and GTFS transit data. The resulting output of the pipeline is simulation14
files needed by MATSim, which include population, households, facilities, network, and transit15
vehicle and schedules files in XML format. The Switzerland Baseline scenario, based on the Swiss16
household travel survey (HTS), models an average working day and consists of a synthetic agent17
population that reproduces the sociodemographic characteristics and travel behaviour of Switzer-18
land. The HTS reports the daily travel behaviour of nearly 60,000 respondents living in Switzer-19
land and contains additional information that characterizes weekend travel. Over 22% of the trips20
recorded in the HTS are weekend trips, which provides an opportunity to capture weekend travel21
behaviour.22

Following an approach similar to that used to develop the average workday travel demand23
for Switzerland, an extension of the model has been developed in this study to create a weekend24
travel demand model for Switzerland. In Switzerland, Saturday and Sunday have distinctive trip25
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patterns. As a result, the weekend model represents individual Saturday and Sunday synthetic1
travel demand. This extended model creates a synthetic population with households and persons2
and then defines daily activity patterns for the synthesized persons, using statistical matching ap-3
proaches that use the weekend observations of the HTS to attach whole activity chains based on4
sociodemographic attributes. A generic pipeline for this synthesis process can be found in (35) and5
its application to Switzerland in (31, 32). Below is a brief description of the weekend travel demand6
generation process while emphasizing the methodological differences to the weekday model.7

The Synthesis Process8
This section summarises the synthesis process developed for the weekend travel demand model,9
highlighting key differences from the weekday model. The process is detailed sequentially: gener-10
ation of synthetic population, statistical matching, assignment of primary and secondary activities,11
alongside unique considerations for the weekend model. Refer to Figure 3 for a pipeline diagram12
of the process. The synthesis process constitutes a chain of models to transform the data into a13
desired synthetic travel demand that can be used in an agent-based transport simulation.14

FIGURE 3: The Synthesis process

Synthetic Population Generation: A synthetic population for Switzerland is generated15
from the census data. This involves using household-level and person-level data from the census to16
create agents representative of the population. The resulting synthetic population is then enriched17
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with attributes such as driver’s licence and car ownership derived from the Swiss HTS under the1
assumption of correlation between these attributes and activity chains. The enrichment process is2
detailed in the subsequent section.3

Statistical Matching: This stage involves enriching each agent in the synthetic population4
with daily activity chains, which include start and end times, travel distances, and modes. The5
enrichment process uses a statistical matching algorithm that matches synthetic agents to observa-6
tions in the HTS based on similar attributes (35, 36). For the weekend model, only Saturday and7
Sunday activity chains are considered. The matching process is a multi-step process that involves8
defining a set of attributes at household and individual levels, noting down attribute vectors for9
both target and source observations, and then using a selection set level to sample source obser-10
vations based on matching attributes and their weights, with the order of attributes relaxed when11
necessary to avoid overfitting. At the household level, five matching attributes, age, sex, type of12
residence municipality (urban, suburban or rural), marital status and household size, are used. At13
the individual level, additional attributes, household income, number of cars, and number of bikes14
are considered. In the matching process, source observations are matched to the target based on15
these attributes and use their weights for sampling, while ensuring an adequate number of source16
observations to avoid overfitting. After matching, additional attributes are added to the synthetic17
persons, and activity chains are attached, detailing the purpose of activities and modes of transport.18

Primary Activity Location Assignment: This stage assigns locations for primary activ-19
ities such as home, work, and education. In the weekend model, work and education activity20
locations are sampled based on a Swiss-defined facility type and function categorisation (NOGA)21
with commute distances that are assigned using a probability distribution derived from House-22
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hold Travel Survey (HTS) data. This approach contrasts with the weekday model, which assigns1
the nearest facility for commute trips based on Origin-Destination (OD) matrices from the Swiss2
structural survey data. To reduce selection bias, this stage also involves creating a selection region3
to choose facilities from, detailed in Figure 4. A unique consideration for the weekend model4
is the reduced number of education and work trips, which is reflected in the assignment process.5
Educational facilities active during weekends differ from those during weekdays, leading to addi-6
tional categorisation of education facilities for the weekend model. Education facilities categories7
that are considered for the weekend include tertiary schools, driving schools, cultural education,8
IT training schools, language schools, sports and hobbies schools, adult training and others.9

Secondary Activity Location Assignment: Secondary activities include leisure, shop-10
ping, and other activities that require multiple places per agent. These activities can be performed11
in multiple places by each agent. Following a method outlined by Hörl and Axhausen (37), dis-12
crete locations are assigned to secondary activities whilst maintaining realistic distance distribu-13
tions given travel times and modes in an activity chain. The output of the synthesis process is a14
travel demand scenario that can be used as an input to the MATSim simulation.15

Validation of the Synthesis Process16
It is important for the synthetic population that is generated from the synthesis process to match the17
overall patterns and capture the variability and distributions observed in real-world data. Figure 15,18
6a, 15 and 7 and in Appendix 11 show the validation process which demonstrates that the synthetic19
population generation for the weekend is reasonably successful in replicating the distribution of20
activity patterns and the travel distances for various purposes, and social demographic groups21
found in the HTS data.22

First is an activity chain comparison that shows the distribution of various activity chains23
for the whole synthetic population and for male, female and age groups above 18 years. This is24
presented in Figure 15 for Saturday and in Appendix 11. The figures compare the frequency of25
different activity chains, where each chain represents a sequence of activities, e.g., home-leisure-26
home (h-l-h) or home-shop-home (h-s-h). The 15 shows that the Saturday trips are mostly leisure27
trips, as one would expect, with home-leisure-home (h-l-h) and home-shopping-shopping (h-s-h)28
well represented in the synthetic population. Most activity chains are either under-represented or29
over-represented, and this is more pronounced when looking at the home activity where people30
stay at home and also in the sociodemographic grouping for age and gender in Appendix 11.31

Figure 6a shows the activity counts and Figure 6b shows the activity counts per purpose.32
The activity counts are done for activities that start from home. For a chain of h-l-h, this chain has33
only one activity, while a chain of h-s-h-l-h, has three activities.34

Figure 7 presents a cumulative distance distribution graph for the different activities, com-35
paring the probability of travel distances between the synthetic population and HTS for different36
activities. The result shows that the location assignment process performed reasonably well as the37
synthetic model closely follows the HTS data, although there are a few deviations, particularly for38
education trips which have very few observations in the travel survey.39

The validation results suggest that further refinements could be made to improve the fidelity40
of the weekend synthetic population, particularly in better matching the HTS data for less common41
activity chains and distribution of activity counts. Still, the results are reasonable for this study and42
present an opportunity for further calibration to enhance the representativeness of the synthetic43
population.44
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FIGURE 5: Activity chains for Saturday

Weekend mode-choice model1
To study the transport mode choices that people make, a discrete mode-choice (DMC) extension2
of MATSim (34, 38) is used, which was already applied to study MoD in Zurich (33).3

A mode choice model for the average workday in Zurich already exists and is based on4
an empirical study conducted on mode choice patterns from a stated preference survey of the5
Zurich region that also considered emerging autonomous mobility (33). Hörl et al. (33) formulated6
a multinomial discrete choice model with utility equations defined for car, PT, walk, bike, and7
aMoD and the mode choice variables including in-vehicle travel time, out-of-vehicle travel time8
(plus wait time and access/egress time), and travel cost. The model formulation can be found in9
Appendix 10.10

For the weekend mode choice model estimation, the estimated average workday model is11
extended by calibrating the ASCs for each mode of transportation. This process aims to accurately12
represent the mode shares observed in the HTS during weekends. Applying this method here is13
based on the assumption that Value of Time (VOTs) and weekend travel dynamics align closely14
with the average workday. This assumption will be later discussed in this paper.15

Calibration16
The calibration process for the MATSim simulation was executed without the aMoD service, as17
aMoD trips are not present in the HTS data and thus cannot be validated. Adjustments were made18
to the ASCs for car, bike, and walk modes separately for Saturday and Sunday models. The ASC19
for PT remained at zero, as it served as the reference. These adjustments continued until we20
achieved a satisfactory alignment of modal shares and mode-specific distances with those recorded21
in the HTS. This calibration process was implemented to emulate the trip shares that initiate and22
conclude within our study region.23



Kagho, Balac, and Axhausen 11

0 1 2 3 4 5 6
Number of activities in the activity chain

0

5

10

15

20

25

P
er
ce
nt
ag
e

HTS
Synthetic

(a) Activity counts

h -
2 t
im
es

s -
1 t
im
e

l -
1 t
im
e

h -
3 t
im
es

l -
2 t
im
es

o -
1 t
im
e

h -
4 t
im
es

w
- 1
tim
e

s -
2 t
im
es

l -
3 t
im
es

o -
2 t
im
es

h -
1 t
im
e

e -
1 t
im
e

w
- 2
tim
es

h -
5 t
im
es

l -
4 t
im
es

s -
3 t
im
es

o -
3 t
im
es

l -
5 t
im
es

h -
6 t
im
es

Activities with the same purpose in the activity chain

0

5

10

15

20

P
er
ce
nt
ag
e

HTS
Synthetic

(b) Activity counts by purpose

FIGURE 6: Number of activities for Saturday



Kagho, Balac, and Axhausen 12

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0
Pr

ob
ab

ilit
y

Activity: Work

HTS
Synthetic

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Activity: Shop

HTS
Synthetic

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Activity: Home

HTS
Synthetic

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Activity: Leisure

HTS
Synthetic

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Activity: Other

HTS
Synthetic

0 10 20
Crowfly Distance [km]

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Activity: Education

HTS
Synthetic

FIGURE 7: Cummulative distance distribution for Saturday

The results of this calibration are detailed in Table 1 and Figure 8, which present a compari-1
son between the mode shares of the HTS (serving as the reference data) and the calibrated scenario2
(Sim). The HTS and simulation data are filtered to include only the trips that occur entirely within3
the study region.4

The primary objective of the initial calibration was to achieve modal shares closely mirror-5
ing those of the HTS as shown in Table 1. Simultaneously, the second calibration objective was6
to ensure a reasonable distribution of distances per mode. Given the lack of reference data for7
trips exceeding 7km—about 40 observations—we constrained our calibration by only comparing8
distances up to 7.5km. This ensured that our simulation data adhered closely to the curve shape9
of the reference data. Figure 8 illustrates the modal shares of the calibrated modes, with distances10
segmented into 1km bins.11

Avgday Saturday Sunday
βASC,car -0.8 −1.6108 −1.6632
βASC,bicycle 0.1522 −0.640 −1.575
βASC,walk 0.5903 −0.305 −0.6875

TABLE 1: Updated parameters from average workday model

Weekend Simulation of MoD12
In this study, the representation of a MoD service utilizes the MATSim Demand-Responsive Tran-13
sit (DRT) extension (39). The DRT extension was specifically developed to enable MATSim to14
simulate dynamic ridesharing services, where vehicles can pick up and drop off passengers upon15
request. A central dispatching system manages the fleet of vehicles and is responsible for schedul-16
ing and accepting incoming requests.17

When a request is made, the dispatcher is presented with a list of available vehicles. The18
dispatcher algorithm traverses the list and assigns each request to the closest vehicle while ensur-19
ing that predefined constraints on wait and detour times for passengers are not violated. These20
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constraints include: (1) ensuring that the overall travel time for passengers, including those cur-1
rently in the vehicle or waiting for the vehicle, and the new customer, does not exceed predefined2
thresholds, and (2) ensuring that the expected boarding times for awaiting customers and the new3
customer fall within a requested time frame. If no suitable vehicle is available, the request is4
rejected. For further details on the DRT extension, refer to Bischoff et al. (39).5

The MoD service offers a convenient door-to-door experience and allows for pooling, with6
a maximum seating capacity of four people. The service has a defined coverage area for only trips7
originating and ending within the study region. The service is not available for trips shorter than8
250 meters in Euclidean distance.9

MoD mode choice: For the MoD service, the utility is calculated based on Equation 1. The10
equation includes x variables, which represent estimated trip level attributes such as travel time11
and wait time. The β represents behavioural parameters that are estimated from empirical studies12
and quantify the share of the mode in the overall generalized costs for the trip. The ξ represents13
the elasticities of Euclidean distance on travel time (ξTD), cost (ξCD), and household income (ξCI).14
The variables used to define trip purposes or location are represented with xwork and xcity. The15
model parameters in Equation 1 are listed in Table 4 in Appendix 10.16

ṽAMoD(x) =βASC,AMoD

+βinVehicleTime,AMoD ·ξTD · xinVehicleTime,AMoD

+βaccessEgressTime,AMoD · xaccessEgressTime,AMoD

+βwaitingTime,AMoD · xwaitingTime,AMoD

+βwork,AMoD · xwork

+βhighAge,AMoD · [aage ≥ 60]
+βcost ·ξCD ·ξCI · xcost,AMoD

(1)17

Travel times and costs are provided by the MATSim network router, which is estimated dy-18
namically during the simulation’s evolution depending on traffic, the number of vehicles, pricing,19
departure time, etc. Wait times and additional delays for the MoD service observed throughout20
the day are fed back into the choice model based on the estimation of the average wait times per21
defined zones and time intervals. This is to add additional behavioural realism as travellers make22
decisions; they should be informed by the operator of the expected wait time or delays in their23
area and during the time of day that they would make the trip so as to decide to use the service.24
Therefore during every iteration of the mobility simulation, wait times and travel time information25
of agents who use the MoD service are tracked for each time interval and zone. Then the mean is26
calculated over all waiting times and delays experienced in the zone. When no waiting is observed27
in a zone and time interval in a particular iteration, the existing value is maintained, and in the case28
when none exists, a default wait time of 10 minutes is applied. After different sensitivity analyses,29
a square grid size of 1km is used with a time interval of 15 minutes.30

Additionally, since a door-to-door DRT scheme is applied in this study, there is no access31
or egress time, and the parameter is set to zero. The cost is taken from the study by (33) where 0.632
CHF/person km is determined to cover the cost of operating a 4000 fleet for Zurich city. This is33
reasonable to use across the different fleet sizes as the study by Bösch et al. (40) estimated that the34
cost of taxi services would be about 0.41 CHF/person km for the canton of Zurich.35
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Simulation Scenarios1
This study focuses on the potential impact of considering weekend travel demand when modelling2
MoD services. Focusing on the weekend demand aims to address a gap in the current research3
landscape and explore an important aspect of operational planning for on-demand services.4

A baseline scenario which represents the current travel demand state without the MoD5
service is defined for each of the modelled days: an average workday, Saturday and Sunday. The6
transport network encompasses a comprehensive representation of the study area, including its road7
infrastructure and transit lines. Different transit schedules have been generated for the weekend,8
using the 18th and 19th of January 2020 for Saturday and Sunday, respectively, and the 15th of9
January 2020 (a Wednesday) to represent a typical workday.10

Eight MoD service scenarios are defined for each of the simulation days. Each MoD sce-11
nario is differentiated by simulating different fleet sizes ranging from 3,000 to 10,000 in 1,00012
intervals. See Table 213

TABLE 2: Simulation scenarios

Scenario Simulation Day MoD Fleet Size Range
Baseline Average workday, Saturday, Sunday N/A (No MoD)
MoD Scenario 1-8 Average workday, Saturday, Sunday 3,000 - 10,000

The study focuses on the following areas:14
• Operational planning policies: The impact of various fleet sizes on the MoD level of15

service and vehicle utilization is examined.16
• Service reliability and availability: How the demand varies temporarily and spatially17

between the days, which can affect service reliability.18
• Policy and planning implications: The implications for transport policies on modal shifts19

are drawn out by examining how the shifts occur for the different days modelled and20
potentially revealing why.21

RESULTS22
The following section presents the results for the scenarios simulated, providing insights into the23
impact of weekend travel demand on service reliability, operational planning policies, and policy24
implications.25

Operational Planning Policies26
The operational planning policies of MoD services, particularly fleet sizing, are examined here27
in regards to the weekend travel demand. Figure 9 shows the influence of varying fleet sizes on28
the level of service metrics, which reveals potential impacts on MoD’s operational efficiency and29
effectiveness during weekends.30

Since the fare structure is fixed at a rate of 0.6 CHF/km, regardless of the fleet size, one31
can examine how the fleet size is influenced by demand patterns across different days, allowing32
for insights into how potential users may weigh service wait times and delays against the utility of33
alternative modes of transport. It can be observed that the demand patterns are different depending34
on the day. Thus, the number of vehicles required to provide reliable service varies with the35
fluctuating demand. By considering these different demand patterns, we can better address the36
crucial question of the optimal fleet size. For example, Saturday and Sunday, which have a higher37



Kagho, Balac, and Axhausen 16

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Fleet size

0.05

0.10

0.15

0.20

0.25
Dr

t D
em

an
d 

sh
ar

e
Average day
Saturday
Sunday

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Fleet size

8

10

12

14

16

18

Av
g 

W
ai

tin
g 

Ti
m

e 
(m

in
) Average day

Saturday
Sunday

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Fleet size

1.225

1.250

1.275

1.300

1.325

1.350

Av
g 

Di
st

an
ce

 d
et

ou
r f

ac
to

r Average day
Saturday
Sunday

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Fleet size

750

1000

1250

1500

1750

2000

Re
ve

nu
e 

(th
ou

sa
nd

s C
HF

) Average day
Saturday
Sunday

FIGURE 9: Service level metrics by fleet size

demand for the MoD service, do not necessarily have a larger difference in wait times than the1
average day; however, the travellers may experience longer delays during the weekends, possibly2
due to the spatial distribution of the demand and is reflected in the longer detours for the average3
work day. Furthermore, distances travelled on Saturday are longer, bringing in more revenue that4
could cover operational costs.5

Similarly, Figure 10 highlights how various fleet sizes perform in key areas, travel distance,6
operational cost, empty distance travelled and vehicle occupancy and operational performance7
metrics that contribute to decision-making concerning fleet sizing and operational cost. The cost8
of maintaining a fleet of vehicles is calculated using the cost calculator suggested by Bösch et al.9
(40) and adapted in Hörl et al. (33) where the authors feed the Bösch et al. (40)’s cost model10
with measured values from an agent-based transport simulation, as opposed to using "best-guess"11
predictions for fleet utilization and empty distances.12

C f leet = cperDistance.d f leetDistance + cperTrip.nnumberO f Trips + cperVehicle.n f leetSize (2)13
where dperDistance describes the total fleet distance, nnumberO f Trips describes the total num-14

ber of rides given, and n f leetSize describes the number of vehicles in the fleet. The following cost15
units are used:16

cperDistance = 0.098 CHF/km17
cperTrip = 0.375 CHF18
cperVehicle = 33.30 CHF (per day)19
From an operator’s standpoint, tracking distances, costs, and vehicle occupancy are essen-20

tial to ensure optimal fleet performance at a minimal cost. For instance, although the average day21
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FIGURE 10: Vehicle operational performance by fleet size

and Sunday demonstrate similar trip distances compared to Saturday, the ’empty’ distances vary,1
likely owing to differing demand densities. This observation is supported by the vehicle occupancy2
results, which hint at increased ride pooling for Saturday and very low pooling for Sunday. No-3
tably, this study does not account for group travel, implying that for weekend trips, which have a4
higher potential for group travel, the vehicle occupancy could be underestimated.5

Operational costs play a critical role in determining fleet size. While having enough ve-6
hicles to minimise wait times and delays is essential, maintaining the fleet’s costs is equally im-7
portant. The results show the costs between the average day and weekend are not very different.8
Saturday only incurs on average about a 10% increase in cost compared to Sunday and an aver-9
age day. However, this higher expenditure is offset by the increased revenue generated over the10
weekend.11

If using empty vehicle distance and vehicle occupancy as a determinant of a reasonable12
fleet size that can serve the different days, one can see that if only the average day is considered,13
the size of the fleet that would be selected would be different than when the weekend is considered.14
Furthermore, Table 3 illustrates the operational performance across different days for a fleet size15
of 5000. By examining the empty distance ratio and net income, the cost of operating this fleet16
can be covered by the revenue generated on all the days, with an average wait time of 15 minutes17
across all days. Consequently, this fleet size is utilised in the subsequent analysis.18

Service Reliability and Availability19
This section presents the findings related to the service reliability and availability of the MoD20
service, specifically focusing on the impact of weekend travel demand. The analysis looks at21
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FIGURE 11: Temporal distribution of travel patterns

how reliable the service is over the different days of the week, both temporally and spatially, by1
identifying demand peaks. This helps to examine how the fluctuating demand during the weekends2
might affect service reliability in comparison to the weekday and then be able to identify the3
specific time slots or regions that experience higher demand and may require additional attention.4
As expected, from Figure 11, the average day has distinct peaks following the typical morning and5
afternoon commute patterns in Switzerland, compared to the weekend, although the evening peak6
is missing. However, for the weekend, one can observe that trips start a bit later, and the demand7
is almost flat most of the day, especially for Sunday. What is also noticeable is that wait times and8
delays are higher towards the evening period, and this could be in effect due to overall congestion9
of the roads from car users.10

Similarly, the spatial distribution of demand differs between the weekday and weekends, as11
can be seen from Figure 12. One can observe two clusters of originating MoD trips for the average12
day (Zurich city centre and Oerlikon) compared to weekends where trips are concentrated in the13
centre. This makes sense as Oerlikon is a commercial centre which would attract commuting trips14
that use MoD. Considering these differences in temporal and spatial patterns, attention needs to15
be paid to the outcomes of dispatching and rebalancing methods to account for these differences,16
among other factors.17
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TABLE 3: Operational performance for the scenario with a fleet size of 5000

Average day Saturday Sunday
Metric
Demand 231166 271291 226842
Avg Waiting Time (min) 11.75 15.25 12.87
Avg Distance detour factor 1.24 1.36 1.3
Avg Time detour factor 2.98 4.04 3.69
Passenger Distance (thousands pkm) 1724.59 2275.68 1762.4
Total vehicle driven distance (thousands km) 1238.5 1579.7 1291.04
Total vehicle occupied distance (thousands km) 1110.67 1446.39 1174.73
Total empty vehicle distance (thousands km) 127.83 133.32 116.31
Empty ratio 0.1 0.08 0.09
Rejections 0 0 0
Rejections rate 0 0 0
Avg Travel time (min) 20.57 17.1 15.56
Cost (thousands CHF) 374.56 423.05 378.09
Revenue (thousands CHF) 1034.75 1365.41 1057.44
Net income (thousands CHF) 660.19 942.36 679.35

Average day Saturday Sunday

FIGURE 12: Spatial distribution of on-demand mobility trips
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FIGURE 13: Modal shift dynamics between the baseline scenario and MoD scenario

Policy and Planning Implications1
This section discusses the policy and planning implications of the study’s findings with a focus on2
modal shift analysis. The analysis examined how weekend travel demand affected modal shifts,3
considering whether individuals were more inclined to switch from private vehicles or other travel4
modes to MoD services during weekends. To do this, MoD trips in a selected MoD scenario for5
each day of the week are identified in the baseline scenarios where there was no MoD service. The6
set of trips is compared, and the results of this analysis are shown in Figures 13 and 14. First, from7
the Sankey diagram presented in Figure 13 one can see how much private car mode is shifting to8
the MoD service compared to PT and active modes. While one can observe that more PT trips are9
being replaced during the weekend. The reason for this can be observed in Figure 14, which shows10
that travellers shift from PT to the MoD service mostly for long-distance trips during the weekend11
compared to the shift from private cars.12

These findings contribute to a deeper understanding of the challenges and opportunities13
associated with incorporating weekend travel demand in the modelling and planning of MoD ser-14
vices, ultimately informing policy and decision-making processes in the field of urban mobility.15

DISCUSSION AND CONCLUSION16
The study’s hypothesis centred around the relevance of including weekend travel data for effective17
MoD operational planning and policy decisions, is supported by the evidence produced in the study.18
The role of weekend travel demand in MoD service efficiency was examined through various key19
areas: operational planning policies, service reliability and availability, and policy and planning20
implications.21

The results presented the nuances of weekend travel demand and its impact on MoD simu-22
lations. Variations in demand patterns across the days of the week were shown to affect the choice23
of the optimal fleet size required to deliver reliable service. Unsurprisingly, the weekend, particu-24
larly Saturday, showed higher demand levels for MoD services. It was observed that the increase in25
demand during weekends did not dramatically alter wait times compared to weekdays. However,26
there were longer delays, potentially attributed to the differing spatial distribution of demand. The27
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importance of considering such variations when deciding on fleet size becomes apparent, as the1
optimal fleet size would be different if only weekdays were considered.2

The cost analysis showed that the operational cost of the fleet doesn’t vary much between3
the average day and the weekend. Although Saturday showed a slight increase in cost, the corre-4
sponding increase in revenue more than compensated for this, choosing a larger fleet expenditure5
to accommodate weekend demand to be potentially worthwhile.6

Analysing the service reliability and availability revealed distinct patterns in the tempo-7
ral and spatial distribution of the demand between weekdays and weekends. While weekdays8
saw peak demand times aligning with typical commute hours, weekend demand started later and9
remained consistent throughout the day. Also, two major clusters were identified for weekdays10
(Zurich city centre and Oerlikon), while weekend trips were more centralised. These patterns11
provide valuable input for refining dispatching and rebalancing methods in the MoD operational12
strategy. In looking at modal shift to MoD service, particularly over the weekends. Modal shifts13
from private car, PT and active modes were observed, especially for long-distance PT trips.14

In conclusion, including weekend travel demand in MoD simulations is essential for trans-15
port planning. By considering weekend travel demand, MoD services can be optimised to meet16
varying patterns of demand effectively, resulting in enhanced operational efficiency and service re-17
liability. Furthermore, weekend travel demand data can inform policy decisions about encouraging18
a shift away from private vehicle use towards more sustainable modes.19

While informative, the results of this study should be interpreted with a degree of caution.20
Certain limitations are worth noting. A major limitation of the study is estimating the weekend21
mode choice model, whereby an existing average workday model has been extended by calibrating22
the ASCs of the different modes to represent mode shares observed in the HTS for the weekends.23
Using the same VOTs for the weekday and weekends supposes that the behavioural preferences24
that determine the mode of transport on weekdays remain constant and extend to the weekends.25
However, it is important to note that this assumption may oversimplify the complexities of travel26
behaviour (41, 42). As a result, using weekday VOTs to calibrate weekend models could introduce27
bias and potential inaccuracies into the model. However, using average weekday VOTs is practical28
without specific weekend survey data. Therefore, future research in this area should address this29
limitation identified in this study. Collecting specific weekend travel data to calibrate weekend30
models more accurately would be beneficial. Alternatively, a mixed-mode choice model could be31
explored, which allows for heterogeneity in VOT across individuals and potentially captures the32
variances between weekday and weekend travel behaviours as well as accounting for trip purposes.33
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APPENDIX27
MODE CHOICE MODEL FORMULATION FOR ZURICH REGION28
The mode choice model estimation for the weekend is based on the average workday model devel-29
oped from an empirical study conducted on mode choice patterns from a stated preference survey30
of the Zurich region that also considered emerging autonomous mobility Hörl et al. (33). Hörl31
et al. (33) formulated a multinomial discrete choice model with utility equations defined for car,32
PT, walk, bike, and aMoD.33

The model equations are presented in Equations 3, 6, 7, and 8 and the corresponding pa-34
rameter values are presented in Table 4. Within the model, the utility Ui is computed for each mode35
(i), while choice variables are represented as x. The marginal utility parameters are denoted as β ,36
and the alternative specific constants (ASCs) are denoted as βASC,i. The mode choice variables37
encompass factors such as in-vehicle travel time, out-of-vehicle travel time (including wait time38
and access/egress time), and travel cost. The βASC,car had to be adjusted from 0.223 shown in Table39
4 to -0.8 to achieve a good model fit. This is explained in detail in Hörl et al. (33).40

The utility for car is defined by the equation41



Kagho, Balac, and Axhausen 26

ucar =βASC,car

+βinVehicleTime,car ·ξTD · xinVehicleTime,car

+βwork,car · xwork +βcity,car · xcity

+βcost ·ξCD ·ξCI · xcost,car

(3)1

The attribute xwork defines whether the trip originates or ends at a work activity, and the2
attribute xcity describes whether the trip starts or ends inside of the city area of Zurich. ξT D, ξCD3
and ξCI are elasticities of Euclidean distance on travel time and on cost and elasticity of household4
income on cost and they are defined in the utility equations where λ describes additional model5
parameters that need to be estimated.6

ξT D =

(
xeuclideanDistance

θreferenceDistance

)λTD

and ξCD =

(
xeuclideanDistance

θreferenceDistance

)λCD

(4)7

ξCI =

(
ahouseholdIncome

θreferenceIncome

)λCI

(5)8

The utility for PT:9

upt =βASC,pt

+βinVehicleTime,train ·ξTD · xinVehicleTime,train

+βinVehicleTime,other ·ξTD · xinVehicleTime,other

+βinVehicleTime,feeder · xinVehicleTime,feeder

+βwaitingTime,pt · xwaitingTime,pt

+βaccessEgressTime,pt · xaccessEgressTime,pt

+βheadway,pt · xheadway,pt

+∑
G

βpt quality,G · xpt quality,G

+βcost ·ξCD ·ξCI · xcost,pt

(6)10

xinVehicleTime,train is the time a traveler spends in a train. Whereby there are additional feeder11
modes such as buses or trams to a train, xinVehicleTime,feeder is considered as the travel time in these12
feeder modes, while xinVehicleTime,other is zero. In the absence of a rail leg on the chosen route, travel13
time in busses, trams or ferries is considered as xinVehicleTime,other while xinVehicleTime,feeder is set to14
zero.15

The attribute xptQuality quantifies the accessibility to public transport at any place in Switzer-16
land as defined by the Federal Office of Land Use in Switzerland, based on proximity to PT17
stops and stations and the frequency of the respective lines. It is defined on five levels G ∈18
{A,B,C,D,None} with A as the highest.19
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The utility for cycling:1
ubicycle =βASC,bicycle

+βtravelTime,bicycle ·ξT D · xtravelTime,bicycle

+βhighAge,bicycle · [aage ≥ 60]
(7)2

where a represents agent-level attributes, in this case, the age of each agent.3

The utility for walking is defined as:4
uwalk =βASC,walk

+βtravelTime,walk ·ξT D · xtravelTime,walk (8)5

There was a need to correct for an increased attractiveness of the walk mode, therefore6
Equation 8 was adjusted by including an additional penalty term. For shorter travel time, the7
penalty tends to zero while for travel time equal to the threshold of 120 minutes, there is a large8
offset of -100 as shown in Equation 99

uwalki =uwalk − exp
(

log10 · xtravelTime, walk

θwalkThreshold

)
+1 (9)10

VALIDATION OF THE SYNTHESIS PROCESS FOR WEEKEND SYNTHETIC POPU-11
LATION12
The validation of the synthetic population generation process for Sunday is shown in the following13
figures below, which consist of the activity chains, activity counts and distance distribution com-14
parisons between the household travel survey data and the generated synthetic travel demand for15
Saturday and Sunday. The process outline in the Methodology appears to capture the overall trends16
in activity patterns and travel distances but reveals discrepancies in the representation of certain17
activity chains and counts, especially when looking at specific demographic groups. Considering18
the age and gender aspect, it is clear that the synthetic model may need more nuanced behavioural19
patterns specific to different demographic groups.20

Activity Chains21
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FIGURE 15: Activity chains for Sunday
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FIGURE 16: Activity chains for Women for Sunday
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FIGURE 17: Activity chains by Men aged 18 - 40 for Sunday
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FIGURE 18: Activity chains by Men aged 18 - 40 for Saturday
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Parameter Estimate
Car βASC,car 0.224*

βinVehicleTime,car −0.019 [min−1]
βwork,car −1.161
βcity,car −0.459

Public Transport βASC,pt 0.0
βinVehicleTime, feeder −0.045 [min−1]

βinVehicleTime, other −0.012 [min−1]

βinVehicleTime, train −0.007 [min−1]

βtransferTime, pt −0.012 [min−1]

βaccessEgressTime, pt −0.014 [min−1]

βheadway, pt −0.030 [min−1]

βpt quality, B −1.744 [min−1]

βpt quality, C −1.641 [min−1]

βpt quality, D −0.965 [min−1]

βpt quality, None −1.089 [min−1]
Bike βASC,bicycle 0.152

βtravelTime,bicycle −0.126 [min−1]
βhighAge,bicycle −2.659 [a]

Walking βASC,walk 0.590
βtravelTime,walk −0.046 [min−1]

AMOD βASC,AMoD −0.061
βinVehicleTime,AMoD −0.015
βwaitingTime,AMoD −0.093
βwork,AMoD −1.938
βhighAge,AMoD −2.6588

Other Parameters βcost −0.089 [CHF−1]
λCI −0.817
λCD −0.221
λTD 0.115
θreferenceDistance 39 [km]
θreferenceIncome 12.260 [CHF]

TABLE 4: Parameters of the discrete mode choice model
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FIGURE 19: Activity chains by Women for Saturday
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FIGURE 20: Number of activities for Sunday
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FIGURE 21: Activity counts women for Sunday
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FIGURE 22: Activity counts men for Sunday



Kagho, Balac, and Axhausen 34

0 1 2 3 4 5 6
Number of activities in the activity chain

0

5

10

15

20

25

P
er
ce
nt
ag
e

HTS
Synthetic

FIGURE 23: Activity counts women for Saturday
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FIGURE 24: Activity counts men for Saturday
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FIGURE 25: Cummulative distance distribution for Sunday


