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On the visual analytic intelligence of neural
networks

Stanisław Woźniak 1 , Hlynur Jónsson1,2, Giovanni Cherubini1,
Angeliki Pantazi1 & Evangelos Eleftheriou1

Visual oddity task was conceived to study universal ethnic-independent ana-
lytic intelligence of humans from a perspective of comprehension of spatial
concepts. Advancements in artificial intelligence led to important break-
throughs, yet excelling at such abstract tasks remains challenging. Current
approaches typically resort to non-biologically-plausible architectures with
ever-growing models consuming substantially more energy than the brain.
Motivated by the brain’s efficiency and reasoning capabilities, we present a
biologically inspired system that receives inputs from synthetic eye move-
ments – reminiscent of saccades, and processes them with neuronal units
incorporating dynamics of neocortical neurons. We introduce a procedurally
generated visual oddity dataset to train an architecture extending conven-
tional relational networks and our proposed system. We demonstrate that
both approaches are capable of abstract problem-solving at high accuracy, and
we uncover that both share the same essential underlying mechanism of rea-
soning in seemingly unrelated aspects of their architectures. Finally, we show
that the biologically inspired network achieves superior accuracy, learns faster
and requires fewer parameters than the conventional network.

A long-term goal of artificial intelligence (AI) research is to devise
cognitive systems that exhibit the capability of abstract reasoning,
thus far deemed a distinctive characteristic of human intelligence. Not
only is this a quest to improve our understanding of the nature of
intelligence, but alsomayenableAI to assist humans in solving abstract
complex tasks of repetitive nature or scale beyond the grasp of
humans. In recent years, as deep learning has become more promi-
nent, machine learning models have outperformed humans in several
fields, including image classification and playing strategic games1,2,
albeit relying on unsustainably increasing model sizes3. The energy
requirements of these models are in stark contrast to ≈20W required
by the human brain4, whose principles of operation may provide cru-
cial inspiration for improvements in AI, reducing the environmental
footprint of existing solutions and enabling new low-power applica-
tions at the edge. Moreover, taking inspiration from brain’s operation
during versatile tasks, such as those where abstract or relational rea-
soning capabilities are required, will pave theway for the development

of novel valuable AI architectures. The interest in demonstrating
applicability of artificial neural networks for reasoning has recently
grown as more demanding tasks are being considered and large
datasets are being created5–9

In an attempt to tackle these tasks, several neural network archi-
tectures have been proposed. A network architecture called Relation
Network (RN)wasproposed in ref. 10 to achieve state-of-the-art results
on the CLEVR dataset6, a visual reasoning task with textual questions.
In ref. 10 it was argued that RNs have a structure suitable for relational
reasoning, as they learn to infer an existing relation between objects.
The objects, or vector embeddings, are produced by a convolutional
neural network (CNN) froman image. At this stage, RN shares the input
processing part with Siamese networks11 and related similarity analysis
architectures12, which evaluate the embeddings for similarity between
a particular designated template or search image and other images, or
even subparts of a larger image13,14. However, the subsequent evalua-
tion of embeddings in RNs involves a specific comparison of
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embeddings for all pairs of objects combined with an embedding of
the question in the task that enables to reason about relations between
groups of objects. The initial model was tailored towards a visual
question answering task with a single image, but an RN-based archi-
tecture appears to be useful across all kinds of reasoning tasks. A
network calledWildRelationNetwork (WReN)wasproposed in ref. 5 to
solve Raven’s ProgressiveMatrices (RPMs), which involve selecting the
correct pattern from eight candidate responses to complete a matrix
with eight context patterns. This task is difficult for powerful deep
networks, including CNNs and recurrent networks5. WReN surpasses
their accuracy by applying RN modules to infer relations between the
elements of matrices. For the solution of problems that require mul-
tiple steps of relational reasoning, for example Sudoku riddles, an
advanced recurrent RN module has been developed in ref. 15. A the-
oretical framework to characterize what tasks a neural network can
reason aboutwas developed in ref. 16. Building on the observation that
reasoning processes resemble algorithms, it explains the reasoning
capabilities through comparisons of network’s computations to rea-
soning algorithms.

Another important class of tasks requiring analytic intelligence is
the so-called visual oddity, first introduced in ref. 17 as part of a neu-
roscientific experiment to study the knowledge of core conceptual
principles of geometry. This specific visual oddity task is defined on
geometrical objects and consists of 45 distinct riddles designed to
discover which basic concepts of geometry such as points, lines, par-
allelism, and symmetry, are understood by the participants of the
study. Each riddle contains six frames, five of which include a geo-
metrical concept being tested. One of the frames violates the geo-
metrical concept and is called the oddity. The goal is to classify which
one of the six frames is the oddity. The taskwas originally presented to
two different groups of people: Americans and Munduruku, an Ama-
zonian indigenous group. Individual riddle accuracies of both groups
were recorded for children and adults. The results showed no sig-
nificant difference in accuracies between the American and the Mun-
duruku children. This suggests that the core knowledge of geometry
required for solving the abstract problem of the visual oddity tasks is
accessible to children also in the absence of schooling and experience
with graphic symbols and geometrical terms. Simultaneously, while
the results of Munduruku adults remained indistinguishable from
these of Munduruku children, educated American adults scored sig-
nificantly higher. The participants from the Munduruku population
solved on average 66.8% riddles, performing well with the core con-
cepts of topology, Euclidean geometry, and basic geometrical figures.
Recognizing the odditywithin geometrical transformations turned out
to be significantly more challenging, thus suggesting that such trans-
formations may represent inherently more difficult concepts, that
through process of education become accessible to American adults
solving ≈84.8% riddles. These results render the visual oddity task as an
appealing abstract reasoning task to assess the accessibility of the
visual abstract concepts in AI systems.

An approach to study the visual oddity task by resorting to a
computational model was proposed in refs. 18,19, where the authors
used the frames from the original work17 to first generate representa-
tions based on glyphs, while separately considering properties of
edges, shapes, lines, points, etc. The model then adopts a structure-
mapping engine to find the commonality across the frames. This is
obtained by relying on analogical generalization to build up a repre-
sentation of the common features in the images of a riddle. Individual
images are compared to the generalization, and the odd image is sin-
gled out as the one that exhibits the lowest similarity. The model
operates based on a predefined set of geometric concepts, grounded
in psychological research, that are then used for qualitative compar-
isons of cultural differences in solving the riddles19.

Still, current models applied for visual analytic tasks operate
markedly different from how the brain operates. Firstly, saccadic

movements made by the human eye during inspection of different
images play an important role while solving analytic tasks20. In the
context of artificial neural networks, saccades were studied with two
distinct motivations: predicting human saccadic movements21,22, and
exploiting saccadic input, primarily in terms of reducing the amount of
input data23; yet not from a perspective of their computational prop-
erties. Furthermore, signals from the eyes are processed by biological
neurons,which canbemodeled as spiking neural networks (SNNs) that
represent a very efficient class of biologically inspired neural
networks24–27 They are passing information through sequences of
spikes, realizing an efficient sparse communication with all-or-none
events. Concurrently, their rich internal dynamics modeling the tem-
poral integration of incoming spikes from the synapses at the den-
drites makes them well suited to tackling problems that involve the
temporal evolution of the input information fed into the network28.

In this work, we take a biologically inspired perspective on
investigating AI systems, which can be capable of solving analytic
intelligence tasks. Specifically, we take substantial inspiration from
biology in several aspects, including neural dynamics, neural archi-
tecture, and input image processing to improve the efficiency and to
devise a novel architecture with reasoning capabilities. Initially, to
provide an RN-based baseline, we develop anOddity Relation Network
(OReN) with a task-specific architecture suitable for the solution of the
visual oddity task. Then, inspired by biology, we develop a new
approach for solving analytic intelligence tasks. To that end, we focus
on an implementationwith SNNs leveraging their energy efficiency and
rich temporal neural dynamics. We demonstrate that SNNs are also
inherently capable of relational reasoning when coupled with a bio-
logically realistic approach to input image processing. In particular, we
investigate a novel perspective on the role of saccades as a computa-
tional primitive. We explore how they can constitute an important
function in performing relational reasoning by delimiting the analyzed
image from the context stored within the temporal neural dynamics.
Our proposed approach demonstrates that relational reasoning
becomes possible in a biologically inspired architecture through
interactions of neural dynamics and saccadic inputs. Furthermore,
when compared with the conventional deep learning approach of
OReN, it provides superior accuracy and smaller model sizes for sol-
ving the visual oddity task. It turns out that, although the accuracy of
artificial neural networks extensively trained in a machine learning
setup cannot be directly comparable to that of humans, both OReN
and SNNs solve on average proportionally more riddles than humans.

Results
Generation of visual oddity riddles
Following the deep learning paradigm, it is essential to use large
training datasets to achieve high performance. For instance, to train
models solving RPMs, a large dataset comprising so-called procedu-
rally generated matrices was developed5. The generation procedure
consists of creating an abstract structure for each matrix by first
sampling triples from three primitive sets (relation types, object types,
and attribute types) that represent the challenge posed by the matrix.
For example, such a triple could consist of progression, shape, and
number. From the sampled triple, attributes are also sampled from the
primitive sets for each type in the triple. However, determining a
similar structure for the visual oddity task is infeasible, because of the
variability of the frames within a single riddle and across the 45 dif-
ferent riddles. To that end, we created a dataset where different
samples of each riddle with a specific underlying geometrical concept
are procedurally generated by 45 riddle-specific generators. Twelve
samples of generated riddles representing different core concepts are
illustrated in Fig. 1. For each riddle, a key spatial concept is present in
five of the six images. All other spatial features are irrelevant and may
vary randomly. For example, in the top left sample in Fig. 1, five out of
six images follow the key concept of vertical symmetry, whereas the
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exact size and form of each shape varies. The details of the generation
procedure are explained in “Methods” and in Supplementary Note 1,
with code link available. Training and test examples for all riddles are
provided in Supplementary Fig. 1.

As mentioned earlier, the visual oddity task evaluates the cap-
ability of making analogies by relying on geometric concepts such as
points, lines, and angles. Therefore, the detection of similarities is key
to solving the riddles. For humans, abstract reasoning is crucial to find
a correct answer, as no two images are the same and there are several
ways to detect an odd image. In fact, to succeed, the participantsmust
infer the geometrical relationship between the array of images.
Therefore, the challenge for neural networks lies in whether they can
infer the abstract geometrical relationships between the images.
Training different neural network architectures to solve the visual
oddity task provides an insight into their relation-forming capabilities.

Oddity Relation Network (OReN)
RNs provide a general solution to relational reasoning in neural net-
works that extract information about a relation thatmay be formed by
all pairs of objects in certain contexts. They exhibit three main char-
acteristics, which make them well suited for solving relational rea-
soning tasks. First, these networks are capable of learning to infer the
existence of object relations, as all pairs of objects and their potential
relations are considered. Second, they compute each relation by a
single function, typically a multi-layer perceptron (MLP), which leads
to high data efficiency. The MLP operates on a batch of object pairs,
where each sample of the batch is drawn from the same set. Third, they
operate on a set of objects for which a specific order is not required,
thus ensuring that the RN’s output contains information that reliably
represents the relations within the set.

As mentioned in the introduction, the WReN is an RN that was
specifically proposed to solve RPMs. Consequently, it is particularly
appropriate to address reasoning tasks that require the detection of
similarity between images. The model computes pair-wise relations
between context panels and responsepanels in anRPMdataset to infer
the relations between the eight matrix elements and the eight candi-
date answers. The information pertaining to context-context relations
and context-multiple-choice relations is then integrated to provide a
score for the selection of the answer. For the visual oddity task, there
are neither context panels nor choice panels, as all frames can be

classified as the oddity. Therefore, we modify the WReN to obtain the
OReN and investigate its capability to solve all 45 riddles of the visual
oddity task. In the OReN, first the pair-wise relations between each
panel and the remaining five panels are formed, then the resulting
information is integrated to obtain a score for the identification of the
oddity.

In contrast to the computational model in ref. 19, we put an
emphasis on working directly with the raw image data and have the
network discover the relevant concepts without prior information
through the process of training. For the experiments, we use datasets
generated as described in “Methods”. Each sample in a dataset com-
prises six frames and a label, which indicates the index of the oddity.
Each frame is first input into a 5-layer CNN, referred to as the vision
model. For every frame k, k ∈ [1, 2,…, 6], the vision model outputs a
frame embedding ηk, represented as a vector with D dimensions. For
each frame embedding ηk, pairs are generated by ordered con-
catenation with all six frame embeddings. A total of 36 pairs are thus
generated. Each pair is input to a function, gθ, parameterized by a
neural network θ. The six outputs of gθ corresponding to frame k are
summedup for each frame. The summedoutput of each frame is input
to a second function, fφ, also parameterized by a neural network φ, to
calculate the final score. The score for each frame k is then calculated
as

qk = f φ
X6

i = 1

gθ ηk ,ηi

� �
 !

: ð1Þ

A softmax function isfinally applied across all scores to determine
the probability of each frame being the oddity. A generic architecture
for theOReN is illustrated inFig. 2, withdetails described in “Methods”.
This figure also depicts the generation of the vector embeddings from
the images of a riddle by the vision model.

Saccadic neural network
The human approach to analytic reasoning differs from the operation
of relational networks, such as OReN, starting with the manner the
input stimuli are delivered from the eyes. Solving analytic reasoning
tasks, where the inspection of various images is required, involves a
series of repeated back-and-forth rapid eye movements, called sac-
cades. The saccades allow the brain to compare all candidate images

Symmetrical figures  (vertical, horizontal, or oblique axis) Chiral (circle)

CurveStraight lineHolesConnectedness

Homothecy (fixed size) Symmetry (horizontal, vertical, or oblique)

Fig. 1 | Generated visual oddity riddles.A set of twelve visual oddity riddles representing different core concepts with odd imagesmarkedwith red borders, analogous to
the original neuroscientific experimental work17.
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over a certain period and reach a conclusion, as observed in human
subjects solving the RPM task20. Moreover, the operation of the bio-
logical neurons in the brain is characterized by spike-based commu-
nication and rich temporal neural dynamics that is often abstracted
into a so-called leaky integrate andfire (LIF) neuronmodel, usedwidely
in SNNs25,29, Therefore, it is appealing to explore analytic reasoning for
the visual oddity task taking direct inspiration fromamorebiologically
motivated approach.

To this end, we synthesize a series of eye saccades over the can-
didate frames and input them into a temporal saccadic neural network
model, as illustrated in Fig. 3a. To ensure a balanced distribution of the
vision input stimuli, i.e., that each candidate frame is observed the
same number of times, we construct the input as a series of six random
permutations of all six candidate frames, resulting in 36 time steps
simulating a series of saccades. At each time step t, the saccadic net-
workoutputs its belief that the currently presented frame is theoddity:
p(oddity|t). During testing, the initial SI = 18 saccades are used to
initialize the temporal dynamics of the reasoning neurons, whereas the
probabilities obtained during the SE = 18 evaluation saccades are inte-
grated in order to provide the final decision.

The architecture of the saccadic network model is biologically
inspired in several aspects. The vision model is a CNN that is reminis-
cent of the receptive fields in the visual cortex30. For a fair comparison
with OReN, the same CNN structure is used in the saccadic network.
Then, the recurrent neural units implement the temporal dynamics
found in neocortical neurons. Specifically, as illustrated in Fig. 3b, the
LIF abstraction of the biological neurons is simulated using a deep
learning recurrent unit following the SNU approach31. The state
equations for a layer of SNUs are

st = g Wxt +Hyt�1 + λ� st�1 � 1� yt�1

� �� �

yt = h st +b
� �

,
ð2Þ

where xt denotes the input vector at time t, st indicates the internal
state vectormodeling themembrane potentialsVm for each neuron, yt
denotes the output vector, and g and h represent the input and output

activation functions, respectively. Furthermore, W and H represent
input and recurrent synaptic weight matrices, λ denotes a leak para-
meter, b is a vector of biases that determine the firing thresholds, and
� denotes point-wise multiplication. For the saccadic network, we
employ three SNU layers, with N units each, followed by a single
sigmoid readout neuron, that provides the belief value at its output.
This formulation, which is relying on a deep learning approach,
enables to operate in the spike-based SNN mode with SNUs assuming
h =Θ, the Heaviside function, as well as in the standard artificial neural
networkmodewith soft SNUs assuming h = σ, the sigmoid function, or
even to use the popular LSTMunits. This allows us also to compare the
performance of the biologically inspired neural units with that of
common deep learning recurrent units.

The key feature of the stateful neurons considered here consists
in the processing of the current input within the context of the
neuronal state that reflects the information from the past inputs. In
other words, both the comparison of embeddings and the accumu-
lation of information is performed over time, rather than over space
as is done in RNs. Importantly, we show that the obtained membrane
potential integration, in conjunction with a biologically realistic
saccadic input stream, enables analytic reasoning. Common stateless
deep networks struggle to solve analytic reasoning tasks. Our initial
attempts to solve the visual oddity task with fully connected net-
works or even ResNet architectures led to ≈17% accuracy, which
corresponds to guessing by chance. The essential functionalities
introduced in the RN architecture, which enable analytic reasoning in
such networks, are the addition of the processed representations and
the reuse of the gθ and fφ modules for all the frames. Apparently, the
first functionality is inherently present in neural recurrent units, such
as SNUs, where an input xt, transformed by the weightsW is added to
the previously processed inputs represented in the state st−1. Fur-
thermore, the idea of RN to process a series of inputs by replicating
the same parameters in space, see Fig. 2, is naturally realized by a
series of saccadic movements, where each input is processed by the
same units, thus reusing the same synaptic weights W. The two bio-
logically realistic aspects, namely the stateful operation in
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combination with a saccadic input sequence, provide the means for
analytic reasoning.

Canbiologically inspiredneural networks competewith relation
networks?
We compared the accuracy of OReN and saccadic networks in two
setups. First, in a separate training setup, in which networks were
trained and evaluated for each riddle separately. Second, in a joint
training setup, in which a single network was trained and evaluated on
all riddles. In both setups, we varied the layer size N following a geo-
metric progression, from 16 to 256 and from 64 to 4096, respectively,
to study the dependency between the model size and accuracy for
each architecture and unit. For a saccadic network we considered four
types of units in the reasoning part: SNU-based spiking LIF neurons
(SNN), soft SNUs (sSNU), soft SNUs with layer-wise recurrency
(sSNU-R), and standard LSTMs. Details are described in “Methods”.

The results for the separate setup are presented in Fig. 4a. OReNs
achieved an impressive average accuracy of 98.3% for N = 128 (≈1.0M
model parameters). This demonstrates that the RN-based approach
enables the visual oddity task to be effectively solved. Saccadic net-
works with LSTM units performed slightly worse with 98.2%, while
requiring many more parameters, ≈4.7M for N = 256, for legibility
reasons not shown within the plot boundary—see Supplementary
Note 3 for a table with comprehensive results. Remarkably, the sac-
cadic networks operating with much simpler biologically inspired
dynamics achieved the best result of ≈99% using the fewest para-
meters: ≈0.5M (N = 128) for SNN, ≈0.3M (N = 64) for sSNU and ≈0.2M
(N = 32) for sSNU-R. Even the 98.7% accuracy of the smallest
N = 16 sSNU saccadic networkwith ≈0.15Mparameters surpassed both
the highest result of 98.2% (≈4.7M) of the saccadic architecture with
LSTM units, commonly used in machine learning, as well as of 98.3%
(≈1M) of OReN architecture. These facts illustrate potential benefits of
incorporating more biological inspiration into AI architectures that
can provide a more favorable parameters vs. accuracy characteristics
and reduce the model sizes by an order of magnitude.

Figure 4b illustrates the results for the joint training setup, which
ismore challenging as the network needs to capture all visual concepts
and seamlessly switch between recognizing 45 different kinds of
oddities. In consequence, larger models were required to learn well,
and the final accuracy levels dropped by ≈2%. OReN in the best per-
forming configuration of N = 1024 (≈12M) obtained 95.2%, which is a
very good result in absolute terms. However, all saccadic networks
performed better, reaching a top accuracy of 97.0% for sSNU-R with

N = 2048 (≈28M). SNN and sSNU achieved 95.3%withN = 1024 (≈5.5M)
and 96.3% with N = 256 (≈1M), respectively. In comparison with the
soft versions of SNU, the accuracy of the spiking version decreased
relatively more, whereas the saccadic network with LSTM units per-
formed quite well, achieving 96.4% for N = 512 (≈12M). Overall, con-
sidering the number of parameters vs. accuracy characteristics,
biologically inspired sSNU-R and sSNU remained the most favorable
options also in the joint case, achieving high accuracy using ≈1.3M
(N = 256) and ≈1M (N = 256) parameters, respectively. Comparing for
instance 96.8% accuracy of sSNU-R ≈1.3M (N = 256) with the best
performing OReN reaching 95.2% and LSTM-based saccadic network
reaching 96.4%, where both have ≈12M parameters, the networks with
biologically inspired neural dynamics demonstrate substantial
advantages.

The average accuracy achieved by OReNs and saccadic networks
is very high, yet some riddles are consistently more challenging than
others. The prior art approach utilizing the computational model
explored how the presence of particular concepts makes a riddle dif-
ficult for humans. That model’s accuracy was found to be significantly
correlatedwith humanperformance18,19, As the concepts present in our
generated dataset directly correspond to the ones from the original
experiment, we perform a similar comparison based on the detailed
accuracies reported for the Munduruku participants17. Figure 4c
depicts the human performance for the riddles ranked by increasing
difficulty level for humans along with the accuracy for the most bio-
logically plausible of our models: a saccadic network with spiking
neurons (N = 128). Although for some more difficult riddles, e.g., 31 or
33, the final accuracy indeed dropped, we observed no statistically
significant correlation of the final accuracy-dependence on the riddle
difficulty index. This consistently high accuracy, surpassing 66.8%
accuracy of Munduruku and ≈84.8% accuracy of adult Americans17 as
well as 86.7% of the computational model19, stems from a markedly
different setup from the original visual oddity experiment.

It is important to understand that although our accuracy values
quantitativelymeasure network’s accuracy on riddles analogous to the
original experiment, qualitatively they are not directly comparable
with human accuracy. Firstly, humans solve the riddles through gen-
eralization of analytic reasoning principles acquired in various con-
texts throughout their lives, whereas in our setup the networks were
trained to discover these principles from examples directly reflecting
the riddles. Following the standard machine learning approach, we
obtained the training, validation, and test datasets by splittingmultiple
instances of each riddle generated from the same distribution.

.
.
.

SI initial saccades SE evaluation saccades
t

a

Last 
saccade

1st

saccade
2nd

saccade

... ...

0.9 0.1 0.0

Eye position

Final 
decision p(oddity|t)...

...
Saccadic network Recurrent units

reset: 1-yt-1

...
SNU

λ

b Biology  

Synapse
Dendrite

Input spikes

W
ytst

Deep Learning

N

.
.
.

N

σ

N

.
.
.

D

6
One-hot

Vision model

Vm Output spikes

Axon

Vm >Vth

g h

H

...
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an output spike each time Vm crosses the spiking threshold Vth.
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Secondly, the number of examples presented during training and
testing of our models is substantially higher than just a single pre-
sentation in the original experiment. On the one hand, a high number
of testing examples provides amore statistically accurate performance
measure of ourmodels than the original experiment with one example
per riddle presented to each participant. On the other hand, a high
number of training examples provides a substantial advantage to our
models. Figure 4d illustrates howmany training epochs were required
to reach the human-level accuracy by the SNN saccadic model. On
average it required ≈3.5 epochs, corresponding to presentation of
8932 examples. For comparison, the best OReN model with N = 128
required ≈4.1 epochs, corresponding to 10,524 examples. Devising
machine learning systems operating in amore human-likemanner and
in human-comparable setups remains an important research question.
In this context, human performance remains quite impressive.

Although OReNs and saccadic networks seemingly operate based
on different principles, the discussion in the previous sections
unveiled similarities of the reasoning mechanisms between the two
approaches. We conjectured that OReN’s reasoning mechanism relies
on a series of comparisons in space, whereas the saccadic network
performs them over time. We validate these statements by visualizing
the internal representation during inference of trained OReNs and
saccadic networks with SNNs, with N = 32 for both. The activity maps
calculated in an OReN through gθ and fφ are depicted in Fig. 5a. The
second activity map is visually distinct from others, and after the
application of the scoring function fφ, the OReN correctly identifies
that the second input image is the oddity. Next, the same set of images
is presented to the saccadic network through a series of saccades. The
state values of Layer 3 are visualized in Fig. 5b. Gradual and abrupt
decrease of Vm over time (the time axis is vertical) corresponds to
membrane potential leakage with parameter λ and resetting after

spikes, respectively. In this form, it is difficult to compare bothmodels.
However, as seen in Fig. 5c, whenmembrane potentials are sorted as if
the input saccades would follow the order of the first items from the
OReN embedding pairs, the membrane potentials of Layer 3 neurons
become visually distinctive for the saccades comprising the oddity,
similarly to the activity maps in the OReN. This functional correspon-
dence between the Vm and the activity of OReN is qualitatively differ-
ent than the commonly observed similarity between the ANN activities
and the SNN spiking rates32. Eventually, both models correctly identify
the second image as the oddity based on the same principle of com-
parisons. In the OReN the comparisons are performed in space, with
each pair of input images explicitly presented at different inputs of the
network at the same time. In the saccadic network, the temporal
dynamics implicitly stores the context and it is possible to operatewith
only one input image observed at a time. This is similar to how the
brain analyzes the sensory inputs from saccades over time and com-
pares information to the past context to perform analytic reasoning.

We investigated the visual oddity task, which requires a high level
of visual analytic intelligence, from the perspective of both RNs and
biologically inspired saccadic architectures. We first generated a large
dataset of visual oddity riddles that represent the core concepts to be
tested and allow thorough network comparisons. Then we explored
two avenues, one where the RN approach was extended to give origin
to anOReNcapableof tackling the visual oddity task, the otherwhere a
novel biologically inspired architectureprocesses a streamof the same
input panels one-at-a-time to determine the oddity. Both avenues lead
to networks that are characterized by the capability of establishing
relations between the images of a riddle, and outperform previously
proposed computational models, as well as previously reported aver-
age human performance, the latter being achieved though in a dif-
ferent setup and context of lifetime experience. Furthermore, we

Riddle difficulty index

Riddle difficulty index

a

b

c

d

Fig. 4 | Accuracy comparison. a, b Average test accuracy for different model sizes
(N value reported next to each point) for separate (a) and joint (b) training setup.
Legend labels report the best average accuracy and the corresponding N value for
each series. See Supplementary Note 3 for detailed values. c SNN (N = 128) separate
training accuracy with min/max error bars plotted along with the human-level

accuracy, for riddles ranked by difficulty level for humans reported in ref. 17, for
which a difficulty index ranging from 1 (the easiest) to 45 (the most difficult) is
assigned. d Test accuracy evolution over the first 20 training epochs with marked
epochs when reaching human-level accuracy obtained in a different setup,
described in text.
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validated the conjecture that saccadic networks evaluate the image
relations sequentially over time, whereas the RNs operate in parallel
over space. Our findings indicate that saccadic network models with
biologically inspired units achieve better performance than RNs and
require a significantly lower number ofmodel parameters, providing a
potential avenue for improving the efficiency of deep learning and a
prospective widespread applicability in edge applications. In parti-
cular, vision-related applications, such as anomaly detection or object
classification at the edge may yield qualitative improvements through
inclusion of abstract reasoning capabilities and our saccadic approach,
tailored to more realistic human-like selective observation of
the world.

Methods
Generation of riddles
Touse standard supervised learningmethods to solve the visual oddity
task we need a dataset for each of the 45 different riddles. As the
original paper17 only contains one sample per riddle, we created a
dataset where each riddle is procedurally generated. Below we
describe the riddle generation procedure. Each of the 45 different
riddles has individual attributes. For the dataset generation process,
we consider the attributes of each riddle in a procedural way. In order
to ensure as much variability as possible in the dataset, we include all
the possible attributes as variables that take randomized values. Each
sample in the dataset is a combination of six 100 × 100 frames and a

label, which indicates the index of the oddity in the array. Every frame
we generate is an 8-bit grayscale figure. Each pixel has 256 possible
values ranging from 0 (black) to 255 (white). Each frame has a back-
ground grayscale value ranging from 235 to 255. For each frame, we
additionally randomly sample a grayscale value between 0 and 61 to
be used for all surfaces, edges, and points. The generated frames are
comparedwith eachother to ensure that they are all pixel-wise unique.
We generate 45 small datasets of size 3840 separately for each specific
oddity type, and one large dataset of size 108,000 comprising all
oddity types. Each dataset is split into training, validation and test set,
with sample count following a ratio of 4:1:1, respectively.

When generating a dataset for a single riddle, the riddle index
(ranging from 1 to 45) is fixed, so it will be the only riddle for which
frames are generated. In contrast, when generating a dataset con-
tainingmultiple riddles, the riddle index is sampled randomly from the
set of riddles for each sample in the dataset. Each riddle has its own
generator that first generates five frames that contain the common
conceptual geometrical property of the riddle, called non-oddities.
Afterward, the riddle generator generates one frame that does not
contain the property, i.e., the oddity. The six frames are then randomly
shuffled and the index of the oddity is returned as the label. All sizes
are determined in a percentage of the maximum frame size to allow
the generation of various frame sizes. An example of each generator
output can be seen in Supplementary Fig. 1, where the oddity of each
riddle is also highlighted.
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Fig. 5 | Activity comparison of an OReN and a saccadic network using spiking
neurons.N = 32. a OReN identifies the oddity through calculation of gθ for pairs of
input embeddings, followed by aggregation and scoring through fφ. The embed-
ding pairs comprising the oddity as the first element lead to a visually distinctive gθ
activation map for the oddity. b The saccadic network receives a temporal stream

of inputs that lead to the evolution of the internal states, Vm, visualized for Layer 3.
cMembrane potentials sorted by the order of the first OReN embedding pair item
exhibit similar visual distinction for the oddity. Visualized values were normalized
row-wise, i.e., over 32 neurons.
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All 45 riddles are divided into eight categories as defined in ref. 17,
where each category corresponds to one of the considered geome-
trical challenges. The details of each category along with the variables
used in each riddle are listed in Supplementary Note 1. Some variables
are used for every riddle in a category and some are used for several
categories, as indicated in Supplementary Tables 1–8.

Detailed architecture of OReN
The OReN architecture, depicted in Fig. 2a, was implemented in Ten-
sorFlow 1. It comprises a CNN vision model that is applied six times to
produce 3200-dimensional embeddings of the six candidate frames.
The embeddings are paired into 6400-dimensional vectors that are
processed by theMLP g. The resulting vectors are summed and scored
by a second MLP f. The oddity is determined by detecting which
neuron yields the highest value from the final softmax layer.

The CNN vision model, depicted in Fig. 2b, receives an input
image rescaled to 80 × 80 and processes it using five 32-channel
convolutional layers with 5 × 5 kernels and no border padding. Each
convolution is followed by a batch normalization. The first, third, and
the fifth convolution layers are followed by a dropout operation with
0.3 dropout rate. The second and the fourth convolution layers are
followedby 2 × 2maxpoolingwith horizontal and vertical strides equal
to two, and zero padding at the borders. The output of the final con-
volutional layer is flattened into a 3200-dimensional embedding vec-
tor. A detailed visualization of the vision model is included in
Supplementary Note 2.

The g function is instantiated for a series of 6400-dimensional
vectors comprising concatenated pairs of embeddings, as depic-
ted in Fig. 2c. In each case, the vector is processed by a four-layer
fully connected network with N rectified linear units per layer. Each
layer is followed by a dropout operation with 0.3 dropout rate. The
output is an N-dimensional vector. For each embedding pair
group, six such vectors are added and form an input to the f
function, as illustrated in detail in Fig. 2d. This input is processed
by two fully connected layers with N rectified linear units per layer,
followed by a single linear neuron that produces the final score for
the considered group of the embedding pairs. The six scalar scores
from the six instantiations of f are processed by a softmax layer
that provides the final probability distribution, where the neuron
yielding the highest value indicates the index of the oddity. A
categorical cross-entropy loss between the output probabilities
and the ground-truth indices of the oddities is minimized during
training using the Adam optimizer.

Detailed architecture of saccadic network
The saccadic network architecture, depicted in Fig. 3b, was imple-
mented in TensorFlow 1 and comprises the same CNN vision model as
the OReN network. For each saccade, the vision model computes a
3200-dimensional embedding that is concatenated with the current
eye position encoded as a one-hot vector (all zeros except the position
corresponding to the index of the currently examined panel). The
concatenated vectors are processed by three consecutive fully-
connected layers with N recurrent units.

The recurrent units are either LSTMs or SNUs. The default Ten-
sorFlow 1 configurations of activation functions, parameter initializers
and other settings are used unless stated otherwise. The specific
hyperparameters for SNUs are the input activation function g that is
set to identity function (no input activation) and leak parameter λ that
is set to 0.8. SNUs in SNN configuration have the activation function h
set to the step function and in sSNU configuration it is set to the
sigmoid function. SNUs with letter R in suffix include recurrent con-
nections matrix H, that is skipped otherwise. The biases are initi-
alized to −1.0.

The outputs from the recurrent units are processed by a single
stateless sigmoidal output neuron that provides the output value for

the current saccade. A series of saccades leads to a sequence of sig-
moidal outputs, for which the error is minimized using a binary cross-
entropy loss and Adam optimizer. The binary cross-entropy loss is
masked, so that it considers only the relevant saccades. The outputs
for the first two saccades are masked, as the appearance of the third
distinct frame is the earliest possible moment when it becomes pos-
sible to conjecture which frame is the oddity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dataset generation details are described in “Methods” and Supple-
mentary Note 1. The generated files are available from the corre-
sponding author upon request due to their large size. Preferred
approach is to generate the dataset using the published source code.
Detailed raw values from the figures are included in Supplemen-
tary Note 3.

Code availability
Visual oddity dataset generation code is available at https://github.
com/IBM/visual-oddity.
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