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A B S T R A C T

Humans naturally integrate various senses to understand our surroundings,
enabling us to compensate for partially missing sensory input. On the
contrary, machine learning models excel at harnessing extensive datasets
but face challenges in handling missing data effectively.

While utilizing multiple data types provides a more comprehensive
perspective, it also raises the likelihood of encountering missing values, un-
derscoring the significance of proper missing data management in machine
learning techniques.

In this thesis, we advocate for developing machine learning models
that emulate the human approach of merging diverse sensory inputs into
a unified representation, demonstrating resilience in the face of missing
input sources. Generating labels for multiple data types is laborious and
often costly, resulting in a scarcity of fully annotated multimodal datasets.
On the other hand, multimodal data naturally possesses a form of weak
supervision. We understand that these samples describe the same event
and assume that certain underlying generative factors are shared among
the group members, providing a form of weak guidance.

Our thesis focuses on learning from data characterized by weak supervi-
sion, delving into the interrelationships among group members. We start
by exploring novel techniques for machine learning models capable of
processing multimodal inputs while effectively handling missing data. Our
emphasis is on variational autoencoders (VAE) for learning from weakly
supervised data. We introduce a generalized formulation of probabilistic
aggregation functions, designed to overcome the limitations of previous
methods, and we show how this generalized formulation correlates with
performance enhancements.

At a higher level, we investigate the impact of implicit assumptions re-
garding group structure on a model’s learning behavior and efficacy. We
find that the assumption of a single shared latent space is overly restrictive
for generating coherent and high-quality samples. To overcome this limita-
tion, we introduce modality-specific latent subspaces within multimodal
VAEs, reflecting a more flexible modeling approach.

While we observe that greater flexibility in modeling assumptions, or
assumptions aligned with the actual data generation process, leads to
improved performance, we still depend on prior knowledge concerning the
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relationship of a group of multimodal or weakly supervised samples. As the
number of group members grows, their underlying relationships become
potentially more intricate, increasing the risk of overly rigid assumptions.

Therefore, in the final section, we shift our focus to minimizing the
assumptions required when learning from weakly supervised data and
simultaneously deducing the group structure during the learning process.
In this context, we introduce a novel differentiable formulation of a random
partition model, which follows a two-stage process. In the first step, we
estimate the number of elements using a newly proposed differentiable
formulation of the hypergeometric distribution. In the second step, we
allocate the appropriate number of elements to each subset. We can demon-
strate that our differentiable random partition model can learn shared and
independent generative factors in the weakly supervised setting.

We aspire that this thesis and its contributions will enhance future ap-
plications in multimodal machine learning and reduce the assumptions
necessary for learning from weakly supervised data in general.
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Z U S A M M E N FA S S U N G

Um unsere Umwelt zu verstehen, nutzen Menschen auf natürliche und
effiziente Weise verschiedene Sinneswahrnehmungen. Diese Fähigkeit er-
laubt es uns, (teilweise) auf einen Teil unserer Sinne zu verzichten, ohne
handlungsunfähig zu werden. Im Gegensatz dazu zeichnen sich maschi-
nelle Lernmodelle durch ihre Fähigkeit aus, große Mengen an Daten zu
verarbeiten und zu verstehen, haben jedoch Schwierigkeiten im Umgang
mit fehlenden Daten.

Gleichermassen wie die unterschiedlichen menschlichen Sinne ein umfas-
senderes Verständnis der Umgebung ermöglichen, versprechen verschiede-
ne Arten von Daten oder Modalitäten, Methoden des maschinellen Lernens
zu verbessern. Allerdings steigt damit auch die Wahrscheinlichkeit, dass
einige Datenpunkte fehlen, was die Notwendigkeit für Methoden des ma-
schinellen Lernens verstärkt, mit fehlenden Daten umgehen können.

Die zentrale Fragestellung dieser Dissertation dreht sich um die Ent-
wicklung von Methoden des maschinellen Lernens, die dem menschlichen
Vorbild folgen, indem sie verschiedene Sensoren gemeinsam verarbeiten,
und gleichzeitig robust gegenüber fehlenden Daten sind – ohne dabei die
Hilfe von annotierten Datensätzen in Anspruch nehmen zu müssen. Dies
ist von großer Bedeutung, da das Annotieren verschiedener Datentypen oft
aufwändig und kostspielig ist, und vollständig annotierte Datensätze, die
mehrere Modalitäten abdecken, selten sind. Verschiedene Datentypen, die
gleichzeitig erfasst werden, liefern jedoch zusätzliche Informationen, die
keine explizite Annotation erfordern.

Die Dissertation widmet sich Datensätzen, die eine solche schwache Form
der Annotation aufweisen, wobei angenommen wird, dass eine Gruppe von
Modalitäten dasselbe Phänomen beschreibt und einige zugrundeliegende
generative Faktoren zwischen den Gruppenmitgliedern geteilt werden.

Im ersten Teil werden neue Ansätze für maschinelles Lernen untersucht,
die die Verarbeitung verschiedener Datentypen ermöglichen und gleich-
zeitig mit fehlenden Werten umgehen können. Ein Schwerpunkt liegt auf
der Verwendung von Variational Autoencodern (VAEs) zur Modellierung
der schwach annotierten Daten und der Einführung einer generalisier-
ten Formulierung einer probabilistischen Aggregationsmethode, die die
Einschränkungen ähnlicher Methoden überwindet.
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Eine weitere Ebene der Forschung betrifft die Auswirkungen von Annah-
men über die Gruppenstruktur auf die Lernprozesse und Ergebnisse der
Modelle. Wir stellten fest, dass die Annahme eines einzigen gemeinsamen
latenten Raums zu restriktiv ist und Schwierigkeiten bei der Generierung
kohärenter und qualitativ hochwertiger Datenbeispiele mit sich bringt.
Daher werden VAEs vorgestellt, die sowohl einen gemeinsamen als auch
modalitätsspezifische latente Räume nutzen.

Obwohl flexiblere Annahmen und eine genauere Modellierung des Daten-
entstehungsprozesses zu besseren Ergebnissen führen, bleibt die Abhängig-
keit von a priori Wissen über die Gruppenstruktur bestehen, insbesondere
bei komplexeren Strukturen mit einer größeren Anzahl von Gruppenmit-
gliedern.

Im letzten Abschnitt der Dissertation liegt der Fokus darauf, die An-
nahmen über die Datenstruktur zu minimieren, um die Gruppenstruktur
während des Lernens zu inferieren. Hier wird eine neue Formulierung für
ein differenzierbares zweistufiges zufälliges Partitionsmodell (RPM) präsen-
tiert. Es schätzt zunächst die Anzahl der Elemente in jeder Untergruppe mit
einer differenzierbaren Formulierung der hypergeometrischen Verteilung
und weist dann die richtige Anzahl von Elementen jeder Untergruppe
zu. Es wurde gezeigt, dass dieses differenzierbare RPM die geteilten und
unabhängigen generativen Faktoren von schwach annotierten Datensätzen
erlernen kann.

Wir hoffen, dass diese Dissertation und ihre Ergebnisse zukünftige An-
wendungen im Bereich des multimodalen maschinellen Lernens verbessern
können, indem sie die Abhängigkeit von Annahmen reduzieren und die
Effektivität bei der Verarbeitung von schwach annotierten Daten steigern.
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1
I N T R O D U C T I O N

Machine Learning (ML) is the field of science trying to create machines
that learn from experience [Mit07]. Methodological improvements in com-
bination with enormous computational resources have led to various suc-
cessful applications of ML algorithms, such as mastering the game of Go
[Sil+16; Sil+17], accurate protein folding structure prediction [Jum+21], the
recent success of text-to-image generative models such as Dall-E [Ram+22;
Ram+21] or large language models and ChatGPT [Bro+20; Bub+23; Rad+18].

Using vast amounts of data, ML methods achieve exceptional and even
super-human performances in different subfields of ML, such as com-
puter vision [Den+09], natural language processing [Wan+19; Wan+18], and
speech recognition [Pan+15].

The success of ML methods is often attributed to having good data
representations, either by having a data collection process to that effect
or by learning meaningful representations from raw data [BCV13]. The
former involves a carefully designed data collection process with a priori
knowledge about the problem to be tackled. What do we mean by that? We
need detailed knowledge about the task we want to solve or the outcome
we want to predict before collecting the data. Hence, the data collection
process is designed with one specific task in mind. Biomarkers or biological
markers, for example, are biological observations that provide information
on a clinically relevant endpoint [AF17; Bio+01; ST10]. Therefore, combina-
tions of biomarkers allow the prediction of diseases, but discovering new
biomarkers requires research effort in various fields of science, such as
biology and medicine [HW20; LHM19].

The latter approach, finding meaningful representations from raw or
routinely collected data, aims to compress high-dimensional data into de-
scriptive factors useful for various downstream tasks. Although meaningful
is a vague term, for now, a good representation of the data can capture
the factors of variations present in a dataset [BCV13]. Given enough la-
beled data, ML and Deep Learning (DL) have shown the advantage of
this approach, as the results described in the beginning prove. DL is the
sub-field of ML [GBC16], responsible for its recent advances and most
headline-generating news. One of the drawbacks of DL is its hunger for
data, specially labeled data, with data set sizes being in the millions, e. g.
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2 introduction

Figure 1.1: Modalities of different types, such as various tests and measurements
of a patient in a hospital, surround us. In machine learning, we
want to benefit from the additional information a set of modalities
provides. We must rely on assumptions about how the modalities are
connected because we do not know the underlying group structure
of different data types describing a phenomenon. This thesis focuses
on learning from grouped data under different assumptions – and
how we can reduce the dependency on the assumptions regarding the
group structure and instead understand the relation between multiple
modalities. Icons © Adobe Stock.

the famous computer vision dataset ImageNet consists of 1401970122 an-
notated images [Den+09]. While there are billions of natural images and
texts describing everyday life stored on the internet, other areas do not
have access to an almost infinite amount of data. Collecting data can be
labor-intensive for healthcare and medical data, and annotating data re-
quires highly skilled specialists, making labeling medical data expensive.
Therefore, most labeled medical datasets tend to be small or not publicly
available, even for (almost) routinely-collected data such as x-ray images
[KL21]1. The size of annotated medical datasets illustrates the need for ML,
especially DL methods, to learn from unlabelled data, as the data in most
areas cannot be as easily annotated as for natural images and language.

1 Exceptions include the large x-ray databases from Johnson et al. [Mimic-Cxr, Joh+19] or Irvin
et al. [CheXpert, Irv+19]
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Machine Learning

i.i.d. non-i.i.d.

supervised weakly-supervised unsupervised

time series multiview multimodal

Figure 1.2: The topics of this thesis are centered around weakly-supervised
learning. In weakly-supervised learning, where the weak supervision
arises from the data collection process not being independently and
identically distributed, i. e. i.i.d., we are interested in leveraging the
underlying group structure of the data. Examples are time-series
data, where the temporal ordering between data points defines an
unknown structure; multiview data, where multiple images depict the
same scene; or multimodal data, where different data types describe
the same phenomena. We focus on multimodal and multiview data
in this thesis.

1.1 multimodality and weak supervision

While the focus in learning without explicit supervision is on learning from
single data types [BCV13; GH10; KW14; OLV18], such as natural [Che+20]
and medical images [Azi+21; Cha+20], text [Rad+18; Yan+17], and speech
[Bae+20; VDO+16], many situations are inherently described using multi-
modal data. For example, assessing a patient’s health in a hospital needs
multiple data types. As depicted in Figure 1.1, the data collection process
during a hospital visit involves a set of different tests and examinations to
receive information on the patient’s health status [Aco+22; Hua+20]. Hence,
we need ML methods that leverage the additional information provided
by the multitude of tests and measurements – similar to clinicians, who
rely on all these tests when deciding on a diagnosis or procedure. Learning
from multiple data types without the help of explicit supervision through
labels is essential to advance ML in fields like healthcare and medicine.



4 introduction

Empirical risk minimization [ERM, Vap91] is the leading approach for
training ML models. It assumes that all samples of a dataset are indepen-
dently and identically distributed (i.i.d.) such that the loss function decomposes
into a sum of individual terms for every sample. It is questionable whether
the i.i.d. assumption is as reasonable for multimodal data, such as the
tests and measurements collected per patient, as for unimodal datasets. In
our patient example, we know a set of tests and measurements describes
a single patient, and we can naturally group such a dataset by patients.
Hence, we have additional knowledge about the structure of the data,
which is based on the data collection process and, therefore, should be
leveraged. The additional structure in the data provides a weak supervi-
sion signal, which arises in environments beyond the multimodal setting
where multiple data samples form a group. Time-series data such as video
[Dwi+19], electrocardiograms- [ECG, Rib+20], and electroencephalograms
[EEG, CHCV19] belong to the class of weakly-supervised data, as well
as multiview data where multiple cameras record the same scene from
different angles [Luo+15]. Because multiple samples form a group in the
weakly-supervised setting, the i.i.d. assumption is simplistic. Treating the
different views in a multiview setting as independent does not capture the
underlying data collection process and is neither done in practice [HZ03;
XTX13].

Figure 1.2 illustrates how we embed data collected under weak supervi-
sion into the general ML world. We see multiple modalities in the multi-
modal, multiple images in the multiview, and multiple events in the time
series setting as a group of samples. The connection between group mem-
bers is different in every sub-category. It is the similarity on the time axis for
time series data, the same scene recorded by multiple cameras for multiview
data, and a single phenomenon described by different data types in the
multimodal setting. So far, different weakly-supervised approaches require
heuristics and specialized architectures trying to leverage the additional
structure in the data instead of treating the inference of group structure as
part of the learning objective.

1.2 deep generative modeling of weakly-supervised data

While the human brain is not yet fully understood [DZR12], we intuitively
describe an image using high-level concepts. For example, we characterize
a dog image using attributes like the dog’s size, fur color, and pattern, or
the shape of its head. Given a dataset of dog images, a low-dimensional
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representation consists of all the necessary information to generate sample
images of dogs.

We have already briefly touched on the importance of low-dimensional
representations in ML. In ML, especially representation learning, we assume
that some underlying and unknown probability distribution, which we call
the data-generating process [GBC16], generates our dataset. We typically
assume that a two-step process generates every data point. We first sample a
low-dimensional latent variable z, i. e. z ⇠ p(z), which ideally corresponds
to high-level concepts [BCV13; Loc+19]. In a second step, we generate
the data point x conditioned on the low-dimensional latent variable z, i. e.
x ⇠ p(x | z). In our dog example, the sampled latent variable would ideally
reflect high-level attributes (e. g., fur color, size). The data point would
then correspond to an image reflecting these attributes. Hence, the goal of
representation learning, extracting such factors directly from the data, stems
from the assumption that a lower-dimensional set of explanatory factors
can explain high-dimensional data [BCV13; Loc+19]. However, neither the
generative factors nor their number are generally known for unimodal
datasets. Nevertheless, many areas of science use latent variables, such
as medicine, political science, or psychology [BMVH03; RHS08; RKF19;
Thu27].

Following the concept of a data-generating process based on a set of
explanatory factors, we define weakly-supervised data as groups of samples
where some of the explanatory or generative factors are shared [see Loc+20].
Following this assumption, the set of shared factors determines this group
structure. For example, group members sharing the same factors or only
having pairwise shared factors both define a group of samples but with
different underlying assumptions on the group structure. However, we do
not know this underlying group structure.

In this thesis, we describe and investigate how different assumptions on
group structure influence the learning process and performance of deep
generative models of weakly supervised data. Please note that we only use
the term group in the ordinary sense of a group of samples or modalities.
We do not use it in its mathematical sense. Hence, we do not draw any
connection or make any implications related to the mathematical theory of
groups.

Intuitively, we would want to learn a representation that directly inverts
the data-generating process, i. e., z ⇠ p(z | x) [BLC13]. Unfortunately, the
posterior distribution p(z | x) is often expensive or even intractable to
compute [BKM17], which we discuss in more detail in Section 2.1. Based
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on the principles of variational inference [VI, JJ13; Jor+99], variational au-
toencoders [VAE, KW14; RMW14] offer an elegant solution to approximate
the intractable p(z | x) by choosing a tractable variational posterior distri-
bution q(z | x). VAEs are a probabilistic autoencoder architecture, where
the encoder models the variational posterior distribution mapping a data
point x to a latent representation z ⇠ q(z | x) and the decoder the condi-
tional data generating distribution mapping a latent variable z to a data
point x ⇠ p(x | z). Although problem-dependent, choosing the variational
distribution q(z | x) is a trade-off between accuracy and efficiency. It has to
be flexible enough to capture the variation in the data and efficient enough
to evaluate and sample from. The VAE objective approximates the true
posterior distribution. It maximizes the evidence lower bound (ELBO) of
the data distribution p(x), which we discuss in more detail in Section 2.2.

Unlike pure representation learning methods [e. g. Che+20] that want to
learn the latent factors given the data, generative latent variable models
[LVM, BN06], like the VAE, additionally learn to approximate the data
distribution p(x). In our dog image example, only some people who can
describe a dog’s (latent) attributes in an image can also draw a decent
picture of a dog. Hence, we want to learn a more difficult task than just
inferring representations. However, generative models offer additional ben-
eficial properties over pure representation learning approaches [Tom22].
They hold promise for generating synthetic samples from the data distribu-
tion, increased interpretability [DCS18], and uncertainty estimation [CJ18;
GHL17]. Additionally, generative models of weakly-supervised data can
estimate missing group samples based on the available ones.

Text-to-image generative models made headlines recently (early 2020s).
Methods like Dall-E [Ram+22; Ram+21], Imagen [Sah+22], or Stable Diffu-
sion [Rom+22] achieve impressive performance in generating images based
on text input. These models implicitly learn the conditional distribution
of images given text to transform any text input into a visually appealing
image. While this is a practical approach for a single conditional path, e. g.,
from a text to an image, we cannot use the learned distribution when trans-
forming images to texts, resulting in unfeasible constraints for more than
two modalities. There are 2M different subsets of modalities in a multimodal
dataset of M modalities. Hence, to generate all modalities conditioned on
any subset of modalities, we need to learn 2M different conditional mod-
els. Given current conditional multimodal models’ size and training time
[Ram+22; Rom+22; Sah+22], this is computationally not feasible. In contrast,
directly mapping between modalities is a subtask of learning the joint data
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distribution of images and text, multimodal or weakly-supervised datasets.
Hence, a single model that learns the joint data distribution optimizes for
all the conditional distributions.

In the first part of this thesis (Chapters 3 and 4), we investigate how to
learn from multimodal datasets efficiently. Following the data-generating
process for weakly supervised data outlined before, the group structure
of a multimodal dataset is unknown. In other words, we do not know a
priori what connects a group of multimodal samples. Hence, multimodal
methods rely on assumptions regarding the group structure. We evaluate
the performance of multimodal methods and investigate how the perfor-
mance of a method is related to the assumptions on the underlying group
structure. We are interested in VAE-based methods that infer meaningful
representations and generate missing modalities. We extend VAEs to the
multimodal setting because they have proven successful in these tasks for
unimodal datasets [VK20; VDOVo17]. Additionally, we want to learn a joint
multimodal distribution, unlike the current state-of-the-art conditional gen-
eration methods. We are interested in scalable approaches where we define
a method as scalable if it only requires M encoders, one for every modality
m 2 M. In contrast, a straightforward implementation of a multimodal VAE
would require an exponential number of encoders, one for every subset of
modalities.

We first explore multimodal VAEs that assume a single joint latent space
for all modalities (Chapter 3). This class of VAEs optimizes a multimodal
ELBO of the joint multimodal distribution p(X) where X = {x1, . . . ,xM}

is a set of M modalities xm [Shi+19; SDV21; WG18]. Equal to the unimodal
VAE, the variational posterior q(z | X) of a multimodal VAE models an
encoder that maps X to a joint latent distribution z ⇠ q(z | X), and
the conditional generative distribution X ⇠ p(X | z) a decoder, which
generates multimodal samples X based on some latent variable z. We
discuss the subtleties of the multimodal ELBO in more detail in Section 2.3.3.

Scalable multimodal VAEs rely on the late fusion principle [BAM18; SM22].
Every modality xm is mapped to the latent factors z using q(z | xm), its
unimodal encoder. The joint latent distribution follows from a probabilistic
aggregation function agg(·)

q(z | X) = agg(q(z | x1), . . . , q(z | xM)) (1.1)

The aggregation function agg(·) needs to handle a varying number of
inputs, i. e., be robust to missing values and invariant to its inputs’ permu-
tations. Additionally, we need to be able to sample from the resulting joint
distribution q(z | X) and evaluate its likelihood.
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In Chapter 3, we introduce a generalized aggregation function, which
efficiently combines the information from all subsets of modalities. We show
the improved performance of our generalized formulation compared to
previous works and outline the limitations of multimodal VAEs following
their restrictive assumptions.

The constraints for the aggregation function agg(·) limit the possible
choices. Compared to non-linear and parameterized transformation func-
tions, we rely on non-parametric formulations that aggregate independently
of input values. Hence, a scalable multimodal VAE with a single joint latent
space implicitly assumes that the modalities share all latent factors. We
define weakly-supervised data as groups of samples with a subset of shared
generative factors, and a learned representation should encode the factors of
variation in the data. Hence, it seems over-restrictive to aggregate all latent
factors of multimodal or weakly-supervised data. There is no incentive to
aggregate the information of latent factors that do not encode the same
information. However, if we infer the latent factors z using a variational
posterior with a single joint latent space, this is the case. Hence, using
a single joint latent space seems over-restrictive [BTN18; Hos18]. Chap-
ter 4 investigates more flexible modeling assumptions of the underlying
group structure for multimodal data. Using more flexible assumptions,
multimodal VAEs overcome their limitations. However, we explain why the
improved performance does not come for free.

1.3 learning group structure under weak supervision

Section 1.2 defines weakly-supervised data as a group of samples sharing a
set of generative factors. The weak supervision follows from the knowledge
that all samples describe the same phenomenon. However, the number of
generative factors and the subset of shared factors are unknown [Loc+20],
and such detailed knowledge requires human annotation or a controlled
data collection process [Loc+20]. Hence, we require additional assumptions
on the set of shared factors, e. g., the complete set or a pre-defined subset of
generative factors are shared (see Section 1.2). Assumption-based models
lead to well-performing methods for specific datasets [BTN18; Hos18]. How-
ever, the assumptions must be re-evaluated every time the data collection
slightly changes, hindering development, and acquiring expert annotation
is time-consuming and expensive (Section 1.1). Hence, we must reduce
the assumptions required for learning from weakly-supervised data. In
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Figure 1.3: In weakly-supervised learning, we assume that a set of genera-
tive factors is shared between group members, e. g., between the
two images of a robot arm. We are interested in learning from
the paired data and inferring the relationship between the views,
which is equivalent to learning the shared and independent la-
tent factors. The robot arm images are taken from Locatello et al.
[Loc+20]. Originally, they are from the mpi3d dataset. See https:
//github.com/rr-learning/disentanglement_dataset.

other words, we need to formulate probabilistic models, which infer the
underlying group structure in parallel to learning from the data.

Figure 1.3 shows a weakly-supervised multiview example: Two images
of a robot arm with an unknown subset of shared generative factors (high-
lighted in red). If we can discover shared and independent generative
factors, we can infer the relationship of a group of samples. Please note that
we are not interested in learning fully disentangled latent representations,
which is impossible [Loc+19]. Instead, we want to define probability distri-
butions that allow finding latent factors that depend on different subsets of
group members [Dau+23; Gre+20; Loc+20; Shu+19].

Learning the underlying group structure in the weakly supervised setting
is equivalent to learning a group’s shared and independent latent factors.
Hence, inference of the shared and independent factors has to be incorpo-
rated into the learning objective instead of being replaced by heuristics and
simplified assumptions.

The second part of this thesis (Chapter 5) discusses how to learn the
relationship between group members, which we can reformulate as finding
independent and shared generative factors. Hence (see Figure 1.3), we learn
which and how many generative factors are shared and which and how

https://github.com/rr-learning/disentanglement_dataset
https://github.com/rr-learning/disentanglement_dataset
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many are independent without a priori knowledge. In addition, we can
extend the approach to having more than just two subsets of factors, which
would reflect a different group structure. Hence, we need to formulate the
problem of learning the group structure as finding a probability distribution
that assigns every generative factor to precisely one of the K groups.

Partitioning a set of elements into subsets is a classical mathematical
problem that attracted much interest over the last few decades [MS16].
A partition model assigns every element of a set to precisely one of K
subsets, and a random partition model [RPM, Har90] defines a probability
distribution over the space of partitions. While there are many well-studied
combinatorial partitioning problems [GKP89; Rot64], most existing RPMs
either lack a reparameterization scheme or are computationally intractable
for large datasets, prohibiting their use in ML pipelines [Mac67; Pit96;
Pla75].

Reparameterization schemes [KW14; RMW14; TLG15] enable low-variance
gradients of probability distributions such that we can learn the distribution
parameters using gradient-based optimization. However, discrete probabil-
ity distributions are non-differentiable in general. Only the Gumbel-Softmax
trick [GST, JGP16; MMT17] has enabled the gradient-based optimization
of categorical distributions. In contrast, most discrete distributions cannot
be efficiently reparameterized. Theoretically, we can model every discrete
distribution as a categorical distribution by defining every distribution state
as one category. In practice, however, the number of states quickly becomes
computationally infeasible, e. g., when modeling RPMs as categorical distri-
butions. Therefore, naively using the GST to make RPMs differentiable is
unattainable. The increase in possible states for partition problems shows
the need for specialized formulations to optimize discrete distributions.

Chapter 5 describes a new differentiable formulation for a random parti-
tion model based on a two-stage procedure. First, we infer the number of
elements per subset. Second, we assign the according number of elements
to every subset. We use a newly proposed differentiable formulation of the
hypergeometric distribution to infer the number of elements per subset. We
then apply the newly introduced RPM to the weakly-supervised setting by
modeling the generative factors as a set of elements. Using a differentiable
RPM, we can infer the group structure in the weakly-supervised setting
and overcome the need for (over-)restrictive assumptions.

This thesis proposes novel approaches to learning from multimodal data,
a complex case of weakly-supervised data. We show the sensitivity of
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multimodal VAEs regarding the assumptions on the underlying group
structure of a multimodal dataset. To tackle this limitation, we propose a
novel formulation of differentiable random partition models that enables
the inference of the group structure. Inferring the group structure while
learning from data overcomes the need for restrictive assumptions or precise
a priori knowledge.

1.4 contributions of the thesis

In the previous sections, we outlined the motivation for and challenges in
learning from weakly-supervised data, such as multimodal and multiview
data, and the need for scalable and generative approaches. We provide the
following contributions to improve learning from weakly supervised data
based on a priori group definitions and to include the learning of the group
structure in the training objective.

a generalized probabilistic aggregation method We propose
a new probabilistic aggregation function for scalable multimodal VAEs,
which generalizes the aggregation methods of previous work. We show that
a multimodal VAE equipped with the new mixture of products of experts
posterior approximation outperforms existing works. The results show that
the proposed formulation can generate coherent and high-quality samples.
In evaluating previous works, we can relate the strengths and weaknesses
of every method to its respective particular case regarding our generalized
formulation.

limitations of joint latent space multimodal vaes We un-
cover the limitations of multimodal VAEs using a single joint latent space,
which results in inferior generative quality compared to unimodal VAEs.
We attribute the limitations to a combination of the formulation of the vari-
ational posterior distribution and over-restrictive assumptions regarding
the underlying group structure.

multimodal vaes using shared and modality-specific latent
spaces We propose a new formulation for multimodal VAEs follow-
ing a more flexible modeling assumption. Instead of a single joint latent
space, we equip multimodal VAEs with shared and modality-specific latent
spaces. This simple yet effective change enables scalable multimodal VAEs
to encode shared and modality-specific latent factors. We show that the
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more flexible modeling assumptions increase generative quality for scalable
multimodal VAEs without a trade-off concerning the quality of learned
latent representations and coherence of generated samples. Hence, we show
that assumptions regarding the underlying group structure are critical to
learning from multimodal data.

differentiable hypergeometric distribution We propose a
novel differentiable formulation for the multivariate hypergeometric distri-
bution. Our differentiable and reparameterizable formulation enables the
integration of the hypergeometric distribution into deep learning pipelines
as a stochastic node. We compare the new distribution against a non-
differentiable reference distribution using the Kolmogorov-Smirnov test,
which shows the correctness of our formulation.

differentiable random partition model We propose a two-
stage differentiable random partition model. We first estimate the number
of elements for every subset, and second, we assign the according number
of elements to the respective subsets. We model the number of elements
per subset using the proposed differentiable hypergeometric distribution.
Assigning a given number of elements to subsets follows a Plackett-Luce
ranking model. Given our fully-differentiable random partition model, we
highlight its versatility in three popular machine learning applications:
clustering, multitask learning, and weakly-supervised learning.

learning the group structure under weak supervision Based
on our findings from learning from multimodal data and the importance
of assumptions regarding the underlying group structure, we propose to
model the relationship between group members with a random partition
model. We partition the latent factors of a weakly-supervised dataset into
subsets and show that the subsets reflect shared and independent generative
factors. Using our differentiable random partition model, we can eliminate
over-restrictive assumptions regarding underlying group structure in the
weakly-supervised setting and directly learn the relationship between group
members from the data.
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1.5 overview of the thesis

In Chapter 2, we introduce the essential concepts this thesis is based on.
Compared to Chapter 1, it is a technical introduction and motivation for
the research done during my Ph.D.

In Chapter 3, we discuss multimodal VAEs using a joint latent space. We
derive our generalized formulation, the basis of the proposed MoPoE-VAE,
and we connect it to MoPoE-VAE’s performance improvements in two
experiments. Towards the end of this chapter, we uncover the limitations
of using a single joint latent space in the multimodal setting and the over-
restrictive assumptions underlying this concept.

Chapter 4 presents a more flexible scalable multimodal VAE class that
models the latent factors as a combination of shared and modality-specific
spaces. On two different datasets, we can show that the changes in the
underlying assumptions lead to better generative quality of multimodal
VAEs. At the end of the chapter, we demonstrate its sensitivity to the choice
of hyperparameters when introducing modality-specific latent subspaces.

Chapter 5 introduces two new differentiable formulations of important
discrete distributions: the multivariate noncentral hypergeometric distribu-
tion and random partition models. We leverage these new formulations to
learn the shared and independent factors in a weakly supervised setting
and eliminate poorly motivated heuristics and over-restrictive assumptions.
We show the versatility of the proposed differentiable random partition
model (DRPM) in three popular ML applications, the already discussed
weakly-supervised learning, clustering, and multitask learning.

At the end of this thesis (Chapter 6), we summarize, analyze, and discuss
the contributions and limitations of this thesis. Additionally, we provide
an outlook on the potential next steps in research on weakly supervised
learning.





2
P R E L I M I N A R I E S

This chapter provides information on the underlying concepts and methods
for this thesis. It should equip the reader with the required knowledge to
understand this dissertation and further motivate the thesis topic based on
previous work.

2.1 latent variable models

The aim of latent variable models (LVM) is a simplified description of
the structure of high-dimensional data or observations by a model [BN06;
Eve84]. These latent variables explain the factors of variation in the data
and describe the underlying concepts of the high-dimensional and hard-
to-interpret observed data [BCV13]. Let X = {x(i)}N

i=1 2 RN⇥p describe a
dataset of N i.i.d samples. Let Z = {z(i)}N

i=1 2 RN⇥d be the corresponding
set of latent variables, and p(X, Z) the joint distribution of X and Z. We
assume p � d without loss of generality.

The inference problem is to compute the conditional density of the
latent variables given the observations, p(Z | X). We rewrite the posterior
distribution as [BKM17]

p(Z | X) =
p(Z, X)

p(X)
(2.1)

The marginal density of observed variables p(X) in the denominator, also
called evidence, is calculated by marginalizing out the latent variables z
from the joint density

p(X) =
Z

Z
p(Z, X)dZ (2.2)

For many models, the integral in Equation (2.2) is unavailable in closed form
or requires exponential time to compute [BKM17]. We need the evidence
to compute the conditional posterior distribution p(Z | X). This is why
inference in latent variable models is difficult.

15
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2.2 variational inference and variational autoencoders

Variational Inference [VI, Jor+99; WJ08] is a method for approximating
intractable probability distributions. VI is an alternative strategy to Markov
Chain Monte Carlo [MCMC, Has70] in approximating posterior densities for
Bayesian models. Despite constant progress and landmark developments
such as the Metropolis-Hastings algorithm [Has70; Met+53], the Gibbs
sampler [GG84], and its many applications to Bayesian statistics [GS90],
MCMC sampling is not well suited for large datasets [BKM17].

2.2.1 Basic Variational Inference

Unlike MCMC, a sampling-based approach to approximate posterior distri-
butions, the main idea behind VI is optimization. First, we posit a family
of approximate distributions D, a set of densities over the latent variables.
Then we try to find the member of that family that minimizes the Kullback-
Leibler divergence [KL, KL51] to the exact posterior,

q⇤(Z) = arg min
q(Z)2D

DKL[q(Z) || p(Z | X)], (2.3)

where the KL divergence between two distributions q(Z) and p(Z | X) is
given as

DKL[q(Z) || p(Z | X)] =
Z

Z
q(Z) log

✓
q(Z)

p(Z | X)

◆
dZ (2.4)

= Eq(Z)


log
✓

q(Z)
p(Z | X)

◆�
(2.5)

Hence, VI turns the inference problem into an optimization problem, where
the reach of the family of distributions D controls the complexity of this
optimization. One of the key ideas behind VI is to choose D to be flexible
enough to capture a density close to the true p(Z | X) but simple enough
for efficient optimization. We write the variational distribution as q(Z; L)
where L 2 RN⇥pv are the variational parameters, and pv is the number of
variational parameters per latent variable. Every latent variable z(i) 2 Z has
its own variational parameters �(i) 2 Rpv such that L = [�(1), . . . ,�(N)]T .
Please note that, in general, pv can vary across different data points and
their latent variables. For the rest of this work, we restrict ourselves to pv
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being the same for all data points. Following the introduction of variational
parameters L, we write Equation (2.3) as

q⇤(Z; L⇤) = arg min
L

DKL[q(Z; L) || p(Z | X)], (2.6)

where L⇤ are the variational parameters minimizing the right hand side of
Equation (2.6).

However, the direct computation of Equation (2.6) is generally not pos-
sible as it involves the intractable calculation of p(X) (see Equation (2.2)).
Because we cannot directly compute Equation (2.6), we optimize an alterna-
tive objective, which is equivalent up to an additive constant. Minimizing
the KL divergence equals finding the variational distribution, which is as
close to the true posterior as the variational family of distributions D and
its parameters L allow.

DKL(q(Z; L) || p(Z | X)) = Eq(Z;L) [log q(Z; L)� log p(Z | X)]

= Eq(Z;L)


log q(Z; L)� log

p(Z, X)
p(X)

�

= Eq(Z;L) [log q(Z; L)� log p(Z, X) + log p(X)]

= Eq(Z;L) [log q(Z; L)� log p(Z, X)]

+ log p(X) (2.7)

Equation (2.7) reveals the dependence of Equation (2.3) on log p(X), but
also the evidence lower bound (ELBO).

Definition 2.2.1 (Evidence Lower Bound).
The evidence lower bound L(L; X) is defined as

L(L; X) = Eq(Z;L) [p(X, Z)� log q(Z; L)] (2.8)

We want to look closer at two interesting properties of the ELBO. The first
property follows directly from its name: it lower-bounds the log-evidence
of log p(X).

Lemma 2.2.1 (The ELBO is a lower bound).
The ELBO defined in Definition 2.2.1 is a lower bound to the marginal log-
probability of the data log p(X).

log p(X) � L(L; X) (2.9)
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Proof. Rearranging Equation (2.7), it follows

log p(X) = DKL[q(Z; L) || p(Z | X)]�Eq(Z;L) [log q(Z; L)� log p(Z, X)]

As DKL(·) � 0 [KL51], we have

log p(X) � �Eq(Z;L) [log q(Z; L)� log p(Z, X)]

= Eq(Z;L) [log p(Z, X)� log q(Z; L)]

= L(L; X)

From Lemma 2.2.1 it follows that minimizing the KL divergence in Equa-
tion (2.6) is equivalent to maximizing the ELBO. In addition, the ELBO
defines an objective that does not depend on p(X).

The second property of the ELBO follows from examining its terms:

L(L; X) = Eq(Z;L) [log p(Z, X)� log q(Z; L)] (2.10)

= Eq(Z;L) [log p(X | Z) + log p(Z)� log q(Z; L)] (2.11)

= Eq(Z;L) [log p(X | Z) + log p(Z)� log q(Z; L)] (2.12)

= Eq(Z;L) [log p(X | Z)]� DKL[q(Z; L) || p(Z)] (2.13)

The first term of the ELBO is the expected log-likelihood, which favors con-
figurations of latent variables that explain the data. The second term is the
negative KL divergence between the variational and the prior distribution.
It encourages the variational approximation to remain similar to the prior
distribution. The two terms mirror the balance between likelihood and prior
[BKM17].

2.2.2 Stochastic Variational Inference

For many large datasets, we assume the data samples to be i.i.d. distributed.
Hence, the joint probability of the dataset log p(X) factorizes into the
following form

log p(X) =
N

Â
i=1

log p
⇣
x(i)

⌘
= Â

x2X
log p (x) (2.14)

We again assume variational parameters �(i) per latent variable z(i). To
improve readability and reduce clutter in the notation, we write x instead of
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x(i) for a random sample of the dataset X and z instead of z(i), respectively.
Rewriting Equation (2.8), it follows

L(L; X) = Â
x2X

L(�;x) (2.15)

= Â
x2X

Eq(z;�) [log p(x, z)� log q(z;�)] (2.16)

The variational objective in Equation (2.15) is the sum of contributions from
N data points.

Stochastic Variational Inference [SVI, Hof+13; HV03; Sat01] applies stochas-
tic optimization to the ELBO objective function. Stochastic optimization
efficiently solves problems, which sum individual contributions [Bot10;
RM51]. Hence, we can optimize the ELBO in Equation (2.15) using gradient
descent. In SVI, we randomly select mini-batches XS to obtain a stochastic
estimate of the ELBO

L̂(L; XS) =
N
|S| Â

x2XS

Eq(z;�) [log p(x, z)� log q(z;�)] (2.17)

where |S| is the number of samples in the mini-batch XS. Calculating the
gradient in Equation (2.17) returns a noisy estimator. The noisy estimator
points toward the steepest ascent of the true ELBO (Equation (2.15)). When
|S| = N, SVI equals the basic batch VI. However, we only obtain computa-
tional savings for |S|⌧ N. The optimal mini-batch size | S | is a trade-off
between computational speed-up and gradient noise [Zha+18].

2.2.3 Black-box Variational Inference

Basic and stochastic VI (Sections 2.2.1 and 2.2.2) are limited to families of
distributions for which we can analytically compute the ELBO [Hof+13;
Zha+18].

Black-box variational inference methods [BBVI, RGB14] remove the need
for analytic solutions of the ELBO. It only requires the generative process of
the data to be specified. The idea behind BBVI is to represent the gradient
of the ELBO as an expectation and to estimate it using Monte Carlo (MC)
sampling [Zha+18]. Sampling from the variational distribution provides
an unbiased gradient estimator without having to compute the ELBO
analytically [PBJ12; RGB14]. We write the gradient of the ELBO as an
expectation of the variational distribution [RGB14; Zha+18]:

r�L(�;x) = Eq [r� log q(z | �)(log p(x, z)� log q(z | �))] (2.18)
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r�L can now be approximated by a stochastic gradient estimator r�L̂sgd
by sampling from q:

r�L̂sgd(�;x) =
1
L

L

Â
l=1
r� log q(zl | �)(log p(x, zl)� log q(zl | �)) (2.19)

where zl ⇠ q(z | �). Hence, BBVI provides a black box gradient estimator
for VI using r� log q(zl | �) as a score function. Score function-based
gradient estimators, such as REINFORCE [Wil92], suffer from high variance
when e. g. directly optimizing Equation (2.19). Only the improvement in
stability via reducing the variance through Rao-Blackwellization [Bla47;
Kol50; RR45] and control variates (e. g. Lemieux [Lem14]) made the success
of BBVI possible [RGB14].

2.2.3.1 BBVI using reparameterization gradients

An alternative to the REINFORCE gradients is the reparameterization
gradients. Transforming random variables with a deterministic function
of a noise distribution enables reparameterization gradients of the ELBO
using MC samples [KW14; RMW14; TLG15; Zha+18]. The random variable
z is given by

z = g(",�) where " ⇠ r("), (2.20)

for some deterministic transformation g(·) and an independent noise distri-
bution r(·) such that q(z;�) and g(",�) share the same parameters �.

According to the change of variables in integrals, which follows from the
fundamental theorem of calculus [e. g., Spi19], we can compute any expec-
tation over z as an expectation over " [KW14; RMW14; TLG15; Zha+18].
Using reparameterization gradients, the reformulated ELBO is given as

r�L̂rep(�;x) =
1
L

L

Â
l=1
r� (log p(x, g("l ,�))� log q(g("l ,�) | �) , (2.21)

"l ⇠ r("l),

where L is the number of MC samples. Although a theoretical guaran-
tee is missing [Gal16], empirically, reparameterization gradients do not
suffer from the high variance issue of their REINFORCE counterpart. A
major drawback of reparameterization tricks is that they do not trivially
extend to many distributions, especially discrete distributions. We discuss
reparameterizations for discrete distributions in more detail in Section 2.4.
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2.2.4 Amortized Variational Inference

In Sections 2.2.1 to 2.2.3, every latent variable z has its variational parame-
ters �. Hence, optimizing � for every data point x is necessary, which is
computationally expensive. Amortized inference replaces the local varia-
tional parameters � with a single function whose parameters are shared
across all data points, z = f (x) [Day+95; GG14; Zha+18]. The basic assump-
tion of amortized VI is that a parameterized function of the data q�(· | x)
can predict the local variational parameters �. The function q�(· | x) can be
arbitrarily complex and � = [f1, . . .] is the vector of its parameters. Amor-
tized VI combines the probabilistic formulation of VI with the advantages
of DL [Zha+18].

We use two sets of neural networks: a generative model mapping from a
latent variable z to a data point x and an inference model for the variational
posterior qf(z | x) projecting the data point x to the latent variable z. Hence,
we write the generative model as

pq(X | Z) = ’
x2X

pq (x | z) (2.22)

and the inference model as

qf(Z | X) = ’
x2X

qf (z | x) (2.23)

where q are the learnable parameters of the generative, and f of the infer-
ence model.

Definition 2.2.2 (Amortized ELBO).
The amortized ELBO L(q, f;x) of a single data point x is defined as

L (q, f;x) = Eqf(z|x)

⇥
log pq (x, z)� log qf (z | x)

⇤
(2.24)

where qf (z | x) is the posterior approximation.

The ELBO of the full dataset L(q, f; X) is the sum of the data point
specific ELBOs, i. e.

L(q, f; X) = Â
x2X

L (q, f;x) , (2.25)

which directly follows from the assumptions in eqs. (2.22) and (2.23). How-
ever, it is important to remember that the inference and generative model
parameters, f and q, are shared between all data points x. The ELBO
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L (q, f;x) in Equation (2.24) can be rewritten to include the KL divergence
[KL51]

L (q, f;x) = Eqf(z|x)


log pq (x | z)� log

qf (z | x)

pq (z)

�

= Eqf(z|x) [log pq (x | z)]� DKL
⇥
qf (z | x) || pq (z)

⇤
(2.26)

The ELBO objective L (q, f;x) in Equation (2.26) shows that during opti-
mization the conditional log-likelihood pq (x | z) is maximized. In parallel,
the variational distribution qf (z | x) is regularized with the prior distribu-
tion pq (z).

If we assume a Gaussian distribution N (z;µ, S) with parameters µ and
S for the variational approximation qf (z | x), we can write the inference
model as

qf (z | x) = N (z;µ(x), S(x)) (2.27)

where µ(·) and S(·) are two (non-linear) functions that map the data points
x to the parameters describing the variational distribution. The same holds
for the generative model. For pq(x | z) being a Gaussian distribution, we
map a reparameterized latent variable z to the parameters of a Gaussian
distribution using two non-linear functions µ(·) and S(·)

pq (x | z) = N (x;µ(z), S(z)) (2.28)

2.2.5 Variational Autoencoders

The concept of amortized VI resulted in variational autoencoders [VAE,
KW14; RMW14; TLG15]. Compared to basic amortized VI, VAEs jointly train
the inference and generative model while optimizing the ELBO [Zha+18].

To approximate L (q, f;x) in Equation (2.26), we draw L MC samples "l ⇠

p(") from a noise distribution. Using a reparameterization function gf(·)
such that zl = gf("l ,x) reflect samples from the variational distribution
qf(z | x). We are able to approximate the amortized ELBO L (q, f;x) in
Definition 2.2.2 using L MC samples

L̂ (q, f;x) =
1
L

L

Â
l=1

log pq
�
x, gf ("l ,x)

�

�
1
L

L

Â
l=1

log qf
�

gf ("l ,x) | x
�

(2.29)
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For qf (z | x) being a Gaussian distribution as in Equation (2.27), the
function gf("l ,x) takes the simple form [KW14; RMW14]

zl = µ (x) + S (x) "l (2.30)

For the prior pq(z) also being a Gaussian distribution N (µp, Sp), the KL
divergence term in Equation (2.26) can be calculated in closed form and
does not need to be approximated using MC samples.
The introduction to variational inference and variational autoencoders pre-
sented in this section is based on Blei, Kucukelbir, and McAuliffe [BKM17]
and Zhang et al. [Zha+18].

2.3 multimodal and weakly-supervised machine learning

According to Merriam-Webster, a modality is one of the main avenues of
sensation, such as vision [Mer]. A dataset is characterized as multimodal
when it includes different sensory inputs. Primary examples of sensory
inputs are visual and vocal signals and natural language. Still, they also
include modalities from the medical domain, such as ultrasound [CP11] or
magnetic resonance imaging [Mai+18]. Multimodal Machine Learning aims
to build models to process and connect information from multiple modal-
ities. Despite its potential, multimodal machine learning brings unique
challenges rooted directly in the heterogeneity of the data and the limited
knowledge of how different modalities relate to each other [BAM18]. On
the other hand, non-i.i.d. data collection also appears in different settings.
In Figure 1.2, we put time-series and multiview data next to multimodality.
Hence, we see multimodal data as a particular case of non-i.i.d. data.

In this thesis, we are interested in learning from non-i.i.d. data with-
out explicit supervision. Fully-supervised approaches [Fan+15; KFF15]
perform well but labeling multiple data types, and group members is time-
consuming and expensive. Hence, relying on fully-annotated datasets could
hinder potential applications. In contrast, weakly-supervised learning offers
the potential to leverage all the unlabelled data. Therefore, we want our
methods to learn from non-i.i.d. data without needing expert labeling. We
use the short notation weakly-supervised data when referring to the general
case of non-i.i.d. data in the weakly-supervised learning setting.

In this section, we first discuss and define assumptions for multimodal
data because it is the most general instance of non-i.i.d. data. Afterward,
we discuss how other forms of non-i.i.d. data can be described and related
to multimodal data.
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2.3.1 Desiderata for Multimodal Machine Learning

We want multimodal methods to fulfill the following desiderata, which help
overcome obstacles and leverage additional information (see Section 1.1).

handling of missing data If we can guarantee access to all data
types at all times, there is no need to request the ability to handle missing
data. In many real-world scenarios, though, there is a non-zero probability
that some data might be missing. An example is a multi-sensor environment
where some sensors might break. A second example is patient data, where
an electronic health record (EHR) [Cas+16a] consists of different modalities
like x-ray images, tabular data, lab values, and more. However, different
patients require different medical tests, so developing methods that work
well independently of the available multimodal subset is desirable.

scalability If we have a multimodal dataset consisting of M modalities,
there are 2M � 1 subsets of modalities if we exclude the empty set ∆.
Therefore, a straightforward implementation of a multimodal VAE, which
handles missing data [SNM16; Ved+18], needs 2M � 1 different encoders:
one encoder for every subset of modalities. This exponential growth in the
number of encoders needed for multimodal VAEs is not feasible, and we
need scalable multimodal VAEs.

meaningful representations We want our models to learn mean-
ingful representations, i. e., representations that make it easier to extract
useful information from the data for downstream tasks, e. g. regression or
classification tasks [BCV13]. A multimodal method has access to multiple
data types and, therefore, more information than an unimodal method.
Hence, we are interested in methods that can benefit from this additional
information regarding the learned representation and performance metrics
in general.

generation In the case of missing modalities, we want our method
to be able to give an estimate of these modalities. Additionally, generated
samples have to be coherent. A generated multimodal sample is coherent
if it contains the same shared information as the conditioning subset. For
example, we are interested in learning from a multimodal dataset consisting
of X-rays from multiple views and the radiology report like in Johnson et al.
[Mimic-Cxr, Joh+19]. We want to infer potential diseases and anomalies
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from the X-ray scans and generate a report based on the images. However,
the generated report is only meaningful if coherent with the X-rays con-
cerning diseases, anomalies, and findings. Next to being able to generate
coherent samples, we want to generate high-quality samples.

2.3.2 Definitions and Assumptions

This work describes multimodal data using the following two Defini-
tions 2.3.1 and 2.3.2.

Definition 2.3.1 (Multimodal dataset).

We define a multimodal dataset X =
n
X(i)

oN

i=1
= {X1, . . . , XM} as a set of

M random vectors Xm where every random vector Xm =
n
x
(i)
m

oN

i=1
2 RN⇥pm

consists of N unimodal samples.

We denote a modality using its modality index m 2 M = {1, . . . , M}.
X(i) = {x

(i)
1 , . . . ,x(i)

M } describes the random sample i from X. To improve
readability and reduce clutter in the notation, we write X and xm instead
of X(i) and x

(i)
m if it is clear from the context that we refer to a single

multimodal set or data point.

Definition 2.3.2 (Multimodal Subset).

We define a multimodal subset XA =
n
X

(i)
A

oN

i=1
, where X

(i)
A = {x

(i)
m : m 2

A, A ✓M}.

Given the impossibility of recovering the disentangled set of attributes in
the unsupervised setting [HP99; Loc+19], we use the modality attributes y
as an illustrative concept and explanatory model for the group structure.

Definition 2.3.3 (Modality Attributes).

For every modality m, there exists a set of attributes
n
y
(i)
m

oN

i=1
2 RN⇥nym such

that xm = f (ym) where f is some non-linear function. nym is the number of
attributes for modality m.

We are interested in recovering the unknown generative factors of the
data ym of a unimodal dataset Xm based on the principles of VI using a
VAE. The variational posterior z ⇠ qf(z | xm) ideally learns to map a data
sample to its unknown set of attributes such that z ⇡ ym [BCV13].
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(a) Generative Model
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(b) Non-Scalable Inference Model

Figure 2.1: Basic graphical models for multimodal VAEs. Figure 2.1a shows the
generative model and Figure 2.1b the inference model. Note that the
generative model reflects the conditional independence pqm (xm | z)
of a data sample xm given the latent vector z. The inference model
qF(z | X) does not specify how the different modalities xm 2 X are
aggregated into a single joint representation z.

Definition 2.3.4 (Shared Attributes).
The shared attributes {y(i)

A }N
i=1 2 RN⇥nyA between a subset of modalities XA are

defined as the intersection of attributes ym 2 Rnym of all modalities m 2 A, i. e.

yA =
\

m2A
ym (2.31)

nyA is the number of shared attributes of subset A ✓M. The full set of attributes
y for a multimodal set X is given as

y =
[

A✓M

yA (2.32)

From the set definition, it follows that multiple instances of an attribute
yj 2 y are not allowed [Sto79]. The concept of shared attributes is closely
related to group structure. The complete set of shared attributes y describes
how the modalities x 2 X are connected and, hence, the underlying
group structure. If we have the complete set of attributes y, we know the
relationship and, hence, also the structure between a group of samples. In
this thesis, we define the structure of a group as the set of shared attributes
between a group of samples. Note again that there is no connection to
group algebra or how the term structure is used in group algebra.

Similar to the assumptions for the unimodal setting (see Section 2.1)1, we
assume the data is generated by some random process involving a joint

1 If not stated differently, the same assumptions hold as in the unimodal setting.
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hidden random variable z. See Figure 2.1 for the corresponding graphical
model. We assume that the sets of shared attributes yA, 8 A 2 P(M) as
well as the modality attributes ym, m 2 M are unknown. From the data
collection process, we only assume that the set of modalities X is connected
by some attributes.

In this setting, we want to learn the underlying attributes y of a multi-
modal sample X . Although we can define a variational posterior z ⇠ qF(z |

X), compared to the unimodal setting, it is additionally unknown what
connects the different modalities. Hence, we want to learn a variational
posterior z ⇠ qF(z | X) such that z ⇡ y, which reflects the complete set of
shared and independent attributes.

2.3.3 Multimodal ELBO

Similar to the unimodal ELBO described in Section 2.2.1 and definition 2.2.1,
we define the ELBO for multimodal datasets X as L(Q, F; X). Following
the amortized ELBO for unimodal data in Definition 2.2.2, we directly jump
to the multimodal amortized ELBO L(Q, F; X) where Q and F are the
amortization parameters of the generative and inference model. Having the
same assumptions as in Definition 2.2.2, we can write the ELBO of the full
dataset as a contribution of ELBOs of multimodal samples

L(Q, F; X) = Â
X2X

L(Q, F;X) (2.33)

Similar to Definition 2.2.2, we define the amortized ELBO L(Q, F;X) for
multimodal samples X .

Definition 2.3.5 (Multimodal Amortized ELBO).
We write the multimodal evidence lower bound L(Q, F;X) as

L(Q, F;X) = EqF(z|X) [log pQ(X , z)� log qF(z | X)] (2.34)

where qF(z | X) is the joint posterior approximation given the multimodal sample
X , Q are the parameters of the generative model, and F of the inference model.

VAEs provide an efficient and elegant solution to optimize large-scale
datasets [KW14]. Hence, we optimize the ELBO in Definition 2.3.5 using a
multimodal VAE in this thesis.

We follow the assumptions in VAEs and multimodal VAEs [KW14; Shi+19;
WG18] on the conditional independence of the generative model pQ(X | z)
given the latent variable z, i. e. pQ(X | z) = ’m pqm(xm | z). We have
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the amortization parameters Q = [q1, . . . , qM] where qm are the parameters
for the generative model of modality xm. The objective in Definition 2.3.5
changes accordingly.

L(Q, F;X) = EqF(z|X)

"
log

 
pQ(z)

M

’
m=1

pqm(xm | z)

!#

�EqF(z|X) [log qF(z | X)]

= EqF(z|X)

"
log pQ(z) +

M

Â
m=1

log pqm(xm | z)

#

�EqF(z|X) [log qF(z | X)]

=
M

Â
m=1

EqF(z|X) [log pqm(xm | z)]

�EqF(z|X)


log

qF(z | X)
pQ(z)

�

=
M

Â
m=1

EqF(z|X) [log pqm(xm | z)]

� DKL [qF(z | X) || pQ(z)] (2.35)

Optimizing the ELBO L(Q, F;X), we maximize the expected conditional
log-likelihoods log pqm(xm | z) and regularize the joint posterior approxi-
mation qF(z | X) with the KL divergence to the prior distribution pQ(z).

Following Section 2.2 and the desiderata for multimodal ML in Sec-
tion 2.3.1, this thesis discusses VAE-based generative approaches to learning
from multimodal data. VAEs offer to simultaneously learn meaningful rep-
resentations and generation of data samples, which both are especially im-
portant when dealing with multimodal data as outlined above. Sections 2.3.4
and 2.3.5 describe approaches to learning multimodal representations and
generation in more detail.

2.3.4 Multimodal Representations

Learning to represent and summarize multimodal data by exploiting the
complementary and redundant properties of the different modalities is a
fundamental challenge [BAM18]. The importance of good representations
in machine learning has been shown in the unimodal setting [BCV13; Hin;
KSH12; Mik+13]. Compared to the unimodal setting, additional difficul-
ties surface in learning multimodal representations: how to combine the



2.3 multimodal and weakly-supervised machine learning 29

different data types? How to handle missing data? How to deal with the
different noise levels of the individual modalities? While learning good
representations is at the forefront of ML research and has even evolved
into its subfield [BCV13], this has only recently changed for multimodal
datasets [BAM18; LZM22; SM22].

We can write the joint latent representation z of a multimodal sample as

z = f (X) = f (x1, . . . ,xM) (2.36)

where f (·) is a function mapping all modalities X to a joint latent repre-
sentation z. Joint representations combine the unimodal signals into the
same representation space. In this thesis, we want to learn multimodal
representations that recover the shared and modality-specific attributes
(see Section 2.3.2). Hence, the function f (·) should extract shared and
modality-specific information from the different data types.

In the pre-DL era, there is only the difference between early and late fusion
of modalities [Atr+10; MHA14]. In early fusion, concatenated modalities are
used as input to the model, whereas in late fusion, the latent representations
zj 8 j are mapped to a joint representation z via, e.g., an aggregation
function [Kol30].

With deep neural networks being the most popular method for learn-
ing representations z of unimodal datasets X, the ways to fuse modalities
became more diverse. A standard scheme to construct a multimodal rep-
resentation is that every modality xj starts with several modality-specific
neural layers f j(·), followed by additional shared layers [Ant+15; BAM18;
MMG15; OCW14; Wu+14]. One of the disadvantages of learning joint rep-
resentations this way is the inability of the model to handle missing data
naturally [BAM18; Ngi+11; Wan+15].

Following the definitions in Section 2.3.2, we are interested in learning
joint representations of subsets XA in a scalable way. Therefore, we restrict
ourselves to aggregation methods following the late fusion principle.

2.3.5 Multimodal Generation

We are interested in deep generative models of multimodal data [Tom22].
Hence, we are not only interested in learning meaningful representations of
multimodal samples (see Section 2.3.4) but also in the generation thereof.

We want to have methods that can generate random samples, i. e. samples
that are conditioned on random input, and conditional samples, i. e. samples
that are based on input from a subset XA. In probabilistic latent variable
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models, random generation is equal to generation based on a random input
vector z where z ⇠ pQ(z) is drawn from the prior pQ(z). Conditional
generation samples the full multimodal set X conditioned on some input
set XA. In probabilistic latent variable models, we sample z ⇠ qFA(z |

XA) from some posterior approximation qFA(z | XA) conditioned on the
respective subset XA.

2.3.5.1 Evaluation of Sample Quality

A big challenge facing generative models is their evaluation. When gen-
erating an image based on text, translating a text from one language to
another, or writing an image caption, often multiple correct solutions exist.
Deciding which one is the best of these solutions is not straightforward.
There does not even need to be one single best solution. The preference
between different solutions might follow subjective reasons. Fortunately,
there are approximate metrics for evaluating generative models [BAM18].

For most tasks, the gold standard in evaluating generated samples is
to have a group of humans independently judge every sample. We can
construct a single metric using a Likert-like scale [Lik32], which also helps
scale responses in survey research [BAM18]. Another method is to perform
preference studies where the participant sees at least two examples and
decides on a favorite or ranking. However, despite being the gold standard
because they result in an evaluation close to human judgment, user studies
are time-consuming and expensive. Furthermore, special attention and
care must be paid to avoid biases when designing and conducting studies
[BAM18].

text-domain metrics For evaluating generated or translated text,
multiple automatic metrics have been proposed, e.g., [Pap+02, BLEU],
[LH03, ROUGE], [DL14, Meteor], and [VLZP15, CIDEr].

image-domain metrics Various metrics have been proposed to eval-
uate the quality of generated images. The inception score [IS, Sal+16]
calculates a score that uses a pre-trained Inception-Net [Sze+16]. The IS is
based on the output of the pre-trained network. It is maximized under the
following conditions:

1. The entropy of the output label distribution given an image p(· | x)
should be small, i.e., the InceptionV3-Net should be able to predict
the output class of the generated image confidently,
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2. The entropy of the marginalized output label distribution
R
z p(y | x =

G(z)dz should be large, i.e., the generated samples should generate
as many different output classes as possible.

The higher the IS, the better the quality of generated samples.
Unlike IS, the Fréchet-Inception-distance [FID, Heu+17] calculates a met-

ric based on the generated and the original images in the training set. The
FID compares the mean and standard deviation of the last hidden layer of
the Inception-Net [Sze+16] between original and generated samples using
the Fréchet distance [Fré57].

Other metrics, which try to circumvent the one-dimensional nature of
the FID, also exist. Given a dataset, we want the generated samples to be
sharp and distinct but also reflect the total entropy of the training set, e.g.,
we do not want a model to produce a single perfect image but always
the same one. Hence, precision-recall-like metrics to assess fidelity and
diversity for evaluating generated samples have been proposed [Kyn+19;
Nae+20; Saj+18; SWR19]. These metrics allow the evaluation of generated
samples using two dimensions of performance metrics, which can highlight
the trade-offs between precision and recall of generated samples.

The metrics for evaluating generated texts and images are modality-specific,
and adapting them to other data types is not straightforward. They either
rely on pre-trained networks as for the FID [Heu+17; Sze+16], or a priori
knowledge about well-working architectures [Nae+20]. Additionally, not
every type of modality xm can be evaluated visually to get at least a quali-
tative impression of model performance, which poses additional challenges
for learning from multimodal datasets if there is a lack of good evaluation
metrics.

likelihood-based evaluation Every VAE optimizes the marginal
log-likelihood of the data log p(X) by maximizing the ELBO (see Sec-
tion 2.2.5). Hence, given the assumptions of the model and the data distri-
bution, we can evaluate the quality of the approximation to log p(X) using
the achieved log-likelihood. Although Theis, Oord, and Bethge [TOB15]
point out the difficulties of using likelihood-based evaluation of sample
quality when comparing different classes of models, we find it adequate
to compare the generated samples of different multimodal VAEs that are
based on the same assumptions and use the same network architectures
(see Section 3.2).
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2.3.5.2 Evaluation of Coherence

For multimodal data, generated samples should be coherent. A coherent
multimodal sample X is aligned by the same attributes y. In other words,
the attribute(s) shared by the modalities m 2 X should be visible in a
generated multimodal sample. We can illustrate the concept of coherence
using an example dataset. We are given a dataset of images, text, and
audio samples that shares the same digit information. This means that
all modalities display the same digit in their respective modality, e. g. the
image shows the number "8", the text writes "eight", and the audio sample
is a recording of a person saying "eight". In this setting, we say that a
conditionally generated sample of a missing modality is coherent if it
displays the same digit information as the input modalities. A randomly
generated multimodal sample is coherent if the samples of all modalities
display the same digit in their respective modality.

Definition 2.3.6 (Coherence of randomly generated samples).
A randomly generated multimodal sample XA ⇠ pQA(XA | z) where z ⇠
pQA(z) is coherent if the shared attributes yA \ ym of all modalities m 2 A are
equal, i. e.

(yA \ ym) = (yA \ yn) 8m, n 2 A (2.37)

Definition 2.3.7 (Coherence of conditionally generated samples).
A multimodal sample XA ⇠ pQA(XA | z), A ✓M that is generated conditioned
on some multimodal subset XB, B ✓M, i. e. z ⇠ qFB(z | XB), is coherent if it is
invariant concerning all attributes that are shared between A and B, i. e., yA \ yB.
Additionally, the generated multimodal sample XA needs to be coherent as defined
in Definition 2.3.6.

For evaluating different methods based on their achieved coherence (see
Definitions 2.3.6 and 2.3.7), we need to know the underlying attributes.
Therefore, the coherence measure is more of a theoretical value and is
important for the development of models. In real-world scenarios where
the number of labeled samples is small for multimodal datasets, coherence
as defined in Definitions 2.3.6 and 2.3.7 is challenging to calculate.

2.3.6 Weakly-Supervised Data In General

Given a multimodal dataset X that follows Definition 2.3.1, we assume that
a sample X = {x1, . . . ,xM} of M data types xm is an unordered set. Gen-
erally, every data type xm needs its particular architecture because the data
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dimensions and inductive biases differ. Hence, sharing network parameters
[see CS96] to leverage the additional information more efficiently is impos-
sible. In the multiview setting, on the other hand, we collect a set of images
XI = {xI,1, . . . ,xI,M} where every image xI,m has the same dimensionality.
Because there is only one data type with the same dimensionality, we can
use the same architecture for all images xI,m with shared network parame-
ters [e. g., Loc+20]. Like this, we leverage the additional information more
directly than in the multimodal setting. Additionally, there is no ordering
between the different data types of a multimodal sample, which differs
from time series. In time-series data, on the other hand, we cannot only
leverage the same network as in the multiview setting, but we also know
from the data collection process that the time axis provides an ordering
between measurement values. Hence, the time axis provides additional
knowledge on the data structure that can and should be leveraged [e. g.,
For+20].

2.4 gradient-based optimization of discrete structures

VAEs (see Section 2.2.5) combine deep learning and the learning of proba-
bility distributions. Utilizing the reparameterization trick [KW14; RMW14;
TLG15] and integrating continuous probability distributions in the compu-
tation graph as stochastic nodes enables the learning of the distributions’
trainable parameters using gradient-based optimization [Hui+21]. However,
discrete building blocks pose an additional challenge. Direct reparame-
terization of discrete distributions is infeasible due to their discontinuous
nature [JGP16; MMT17; Pau+20]. On the other hand, discrete distributions
enable us to describe structures and relations in a more interpretable way
compared to continuous distributions.

differentiable discrete distributions In recent years, finding
continuous relaxations for discrete distributions to integrate them into dif-
ferentiable pipelines gained popularity following the Gumbel-Softmax trick
[GST, JGP16; MMT17]. The GST enables reparameterized gradients with
respect to the parameters of the categorical distribution and their use in
differentiable models. Methods to select k elements - instead of only one -
are subsequently introduced. Kool, Hoof, and Welling [KHW19; KHW20a]
implemented sequential sampling without replacement using a stochastic
beam search (including an extension [KHW20b]). Multiple works on differ-
entiable sorting procedures and permutation matrices have been proposed,



34 preliminaries

e.g., Linderman et al. [Lin+18], Petersen et al. [Pet+21], and Prillo and
Eisenschlos [PE20]. Further, Grover et al. [Gro+19] described the distribu-
tion over permutation matrices p(p) for a permutation matrix p using the
Plackett-Luce (PL) distribution [Luc59; Pla75]. Prillo and Eisenschlos [PE20]
proposed a computationally simpler variant of Grover et al. [Gro+19]. Based
on [Gro+19], Xie and Ermon [XE19] proposed subset selection algorithm of
a given number k out of n elements.

In the remaining part of this section, we first re-introduce the categorical dis-
tribution and the Gumbel-Max trick. We then describe the Gumbel-Softmax
trick [GST, JGP16; MMT17], the continuous relaxation and reparameteriza-
tion for the categorical distribution. Afterward, we discuss ranking models,
how they relate to categorical distributions, and how they can be used to
describe continuous relaxations for more complex structures and distri-
butions. Toward the end of this chapter, we introduce random partition
models and the hypergeometric distributions.

2.4.1 Categorical Distribution

A categorical distribution is a discrete probability distribution of K classes.
We parameterize a categorical distribution using normalized probabilities
↵ 2 [0, 1]K where ÂK

k=1 ak = 1.0, un-normalized scores s 2 RK
+ or un-

normalized log-scores log s 2 RK. The tempered categorical distribution
Cat(s, t), also known as Gibbs [Gib02] or Boltzmann distribution [Bol68],
introduces an additional temperature parameter t 2 R+. We denote the
tempered parameters with an additional subscript, e. g. st . It follows

ak,t =
exp(log sk/t)

ÂK
j=1 exp(log sj/t)

=
sk,t

ÂK
j=1 sj,t

=
sk,t
Zt

(2.38)

where Zt = ÂK
k=1 sk,t 2 R+ is the normalizing constant of the distribution.

For t ! 0, Cat(s, t) becomes a one-hot encoding equal to a determin-
istic function where the same class is always selected. For t ! •, the
tempered categorical distribution equals a non-informative uniform distri-
bution where every class is equally likely. Equation (2.38) is also known as
the tempered softmax function with temperature parameter t [Hui+21].
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2.4.1.1 Gumbel-Max Trick

gumbel distribution The Gumbel-distribution [Gum35] is an extreme
value distribution [Mis36], which models optima and rare events [Hui+21].
It is parameterized by location µ 2 R and scale b 2 R+ parameters. The
probability (PDF) and cumulative (CDF) density functions are defined as
follows

f (x) =
1
b

exp
✓
�

x� µ

b

◆
exp

✓
exp

✓
�

x� µ

b

◆◆
(2.39)

F(x) = exp
✓
� exp

✓
�

x� µ

b

◆◆
(2.40)

We use the short notation G(µ, b) for a Gumbel distribution with location
parameter µ and scale parameter b. The standard distribution follows from
µ = 0 and b = 1 (i. e. G(0, 1)). µ and b are not the mean and variance of the
distribution. Mean and variance are given as

EG(µ,b) [x] = µ + gb, (2.41)

EG(µ,b)

h
(x�EG(µ,b) [x])

2
i
=

p2

6
b2 (2.42)

where g ⇡ 0.577 is the Euler-Mascheroni constant [Bre37; Eul40], and
p ⇡ 3.14 is the constant, which is the ratio of a circle’s circumference and
diameter. The inverse cumulative density function (ICDF) is given as

F�1(u) = �b log(� log u) + µ (2.43)

From Equation (2.43), we see that the Gumbel distribution is closed under
addition and scaling, i. e. any Gumbel variable can be generated by scaling a
standard Gumbel variable x ⇠ G(0, 1) with b and shifting it by µ [Hui+21].
We use Equation (2.43) for inverse transform sampling of Gumbel vari-
ables x ⇠ G(µ, b). In inverse transform sampling, we transform a sample
u ⇠ U(0, 1) where U(0, 1) is a uniform distribution between 0 and 1 into
a Gumbel sample with location parameter µ and scale parameter b via
a double negative logarithm relation. Therefore, we refer to the Gumbel
distribution as a double exponential distribution [Hui+21].

The Gumbel-Max trick [Gum54] draws a sample from a categorical distri-
bution I ⇠ Cat(↵) by adding i.i.d. Gumbel noise samples gk to unnormal-
ized log-scores (or log-probabilities). After perturbing the log-scores, the
Gumbel-Max trick selects the index with the maximum value.
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Theorem 2.4.1 (Gumbel-Max trick [Gum54]).
Given some scores s 2 RK

+, we can sample from a categorical distribution with
weights ↵ = s/Z where Z = ÂK

k=1 sk by adding i.i.d. Gumbel noise gk ⇠

G(0, 1), 8 k  K to the un-normalized log-scores log sk, such that

I = arg max
kK

(log sk + gk) ⇠ Cat(↵) (2.44)

M = max
kK

(log sk + gk) ⇠ G(log Z, 1) (2.45)

We provide the proof to Theorem 2.4.1 in Appendix A.1.1. In other words,
the Gumbel-Max trick describes an efficient sampling procedure from a
categorical distribution Cat(s, t) with un-normalized parameters without
the need of normalizing the values using softmax function, i. e.

z = one_hot(arg max
k

(log sk + gk)) (2.46)

where gk as in Theorem 2.4.1. However, the Gumbel-Max trick does not
enable reparameterized gradients because of the jump discontinuities of
the argmax function. The derivative of the arg max function returns 0
everywhere except at the boundary of state changes, where it is undefined,
which makes the Gumbel-Max trick not suitable for reparameterization
[Pau+20]. Hence, we need to overcome this limitation to include categorical
distributions as stochastic nodes in gradient-based optimization.

2.4.1.2 Gumbel-Softmax Trick

Gumbel-Softmax is a continuous distribution approximating the categorical
distribution whose parameter gradients can be easily computed using
the reparameterization trick [JGP16; MMT17]. Maddison, Mnih, and Teh
[MMT17] name it Concrete distribution, continuous relaxations of discrete
random variables.

Although an efficient approach to sampling from a categorical distribu-
tion, the arg max in Equation (2.46) still prohibits the use of a reparameter-
ized gradient estimator, i. e.

E


dL(z)

ds

�
=

d
ds

E [L(z)] (2.47)

is not possible for any loss function L(·), random variable z and scores s
as in Equation (2.46) due to the discontinuities of the arg max function.
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The Gumbel-Softmax trick [GST, JGP16; MMT17] overcomes this limi-
tation by approximating the arg max using a tempered softmax function,
i. e.

zk,t =
exp((log sk + gk)/t)

ÂK
j=1 exp((log sj + gj)/t)

for k = 1, . . . , K (2.48)

where t is a temperature parameter and the distribution of zk,t has a closed
form [JGP16; MMT17].

Definition 2.4.1 (Concrete or Gumbel-Softmax Random Variables [JGP16;
MMT17]).
Given scores s 2 RK

+ and temperature t 2 R+. zt has a concrete distribution, i. e.
z ⇠ Concrete(s, t) with location parameter s and temperature parameter t, if its
density is given as

ps,t(z) = G(K)tK�1
K

’
k=1

 
skz�t�1

k

ÂK
j=1 sjz�t

j

!
(2.49)

Equation (2.48) enables the optimization of

E


dL(zt)

ds

�
=

d
ds

E [L(zt)] for t > 0 (2.50)

using gradient-based optimization. Although Equation (2.48) leads to a
biased estimation of Equation (2.47), it is an unbiased estimation of the right-
hand side of Equation (2.50), and as t goes to zero, the softmax function
approximates the arg max function [Pau+20]. Hence, the Gumbel-Softmax
distribution approximates the categorical distribution in the t ! 0 limit.

The straight-through Gumbel estimator [JGP16; MMT17] provides a way
to use hard samples in the forward pass of a network but use its soft version
in the backward pass to still allow the backpropagation of gradients. It is
related to and based on the biased path derivative estimator proposed in
Bengio, Léonard, and Courville [BLC13]. For the straight-through Gumbel
estimator, we use the argmax to discretize the perturbed categorical weights
in Equation (2.48), but still use the continuous approximation with the
softmax function in the backward pass.

2.4.2 Ranking Models

Data consisting of rankings appear in Psychology, Animal Science, Educa-
tional Testing, Sociology, Economics, and Biology [Mar96], and problems
involving ranked lists are widespread [GS09].
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In statistics, it has been a field of study for some time [Gum54; Luc59;
Pla68; Thu27] (or e. g. Marden [Mar96] for an overview). The field of ML
approached ranking data with learning to rank applications [Joa+07; Lo09].
Explicitly modeling ranking data only recently gained attention in the ML
community with the introduction of continuous relaxations for discrete
distributions (see Section 2.4.1.2). This section gives a short overview of
ranking models and their probability distributions. We introduce the under-
lying theory behind the Plackett-Luce (PL) ranking model [Luc59; Pla68],
describe under which settings PL models are equal to Thurstonian models
[Thu27; Yel77], and set the GST in context to ranking models.

We use the short notation [n] to denote a set of n elements, which are
named using the integers 1, . . . , n, i. e. [n] = {1, . . . , n}. Additionally, we use
p 2 Pn to describe an ordering of [n], where Pn is the set of all orderings
of n elements.

2.4.2.1 Luce’s Choice Axiom

Luce’s choice axiom [LCA, Luc59] envisions a setting in which an individual
makes repeated choices from a set [n] containing n alternatives [Yel01]. On
each occasion, precisely one element i is chosen where choice is assumed to
be probabilistic. P(i; A) denotes the probability that i is chosen when the set
of available alternatives is A ✓ [n]. LCA allows us to describe relationships
between choice probabilities for sets of available alternatives, where the
particular case of 2-alternative choice (i. e. paired comparison) has its own
notation P(i, j) [Yel01].

Axiom 2.4.1.1 (Luce’s choice axiom [Luc59]).
For P(A; [n]) being the probability that when the full set [n] is available, the
alternative chosen belongs to the subset A, i. e. P(A; [n]) = Âi2A P(i; [n]),
and P(i, j) the probability of choosing i when the available set is {i, j} (i. e.
probability of the paired comparison), we have

1. if P(i, j) 6= 0 8 i, j 2 A, i 6= j, then 8 A ✓ [n] and every j 2 A:

P(i; [n]) = P(i; A)P(A; [n]) (2.51)

2. if P(i, j) = 0 for some pair i, j 2 [n], then 8 A ⇢ [n]:

P(A; [n]) = P(A \ {i}; [n] \ {i}) (2.52)
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Note that in the first part of Axiom 2.4.1.1, the assumption P(i, j) > 0
together with Equation (2.51), implies P(i; A) > 0 8 i. As a result, P(A; [n])
is non-zero, and we can write Equation (2.51) as [Yel01]

P(i; A) =
P(i; [n])
P(A; [n])

(2.53)

The right-hand side of Equation (2.53) is the conditional probability that we
choose i from [n], given that the choice of [n] is some member of A [Yel01].

LCA implies that there is a function v(·) mapping the n alternatives in [n]
to n non-negative real numbers v(1), . . . v(n) with the following property
[Yel01]: 8 i 2 A ✓ [n], we have

P(i; A) =
v(i)

Âj2A v(j)
(2.54)

From Equation (2.53), it is clear that v(i) = P(i; [n]) is such a scale function
[Luc59]. Multiplying P(i; A) by a constant factor c > 0 such that ṽ(i) =
cv(i) 8 i 2 [n] does not change Equation (2.54). Therefore, v(·) is a ratio
scale [Yel01].

From Equation (2.54), it follows that

P(i; A)
P(j; A)

=
v(i)
v(j)

=
P(i; [n])
P(j; [n])

, (2.55)

which is called the constant-ratio rule. In other words, the ratio between the
probability of selecting element i and the probability of selecting element j
is independent of the remaining options [Luc59; Yel01].

Gumbel random variables also adhere to LCA [Hui+21]. For si = v(i)
being the score associated with element i, following Equation (2.54) we can
write

P(i; A) =
v(i)

Âj2A v(j)
=

si

Âj2A sj
, (2.56)

which is equal to the right hand-side of Equation (2.38) for t = 1. Scaling the
un-normalized probabilities of a categorical distribution s with a constant
factor Z results in subtraction in log-space

log
si
Z

= log si � log Z (2.57)

Given the scaling-invariance of the arg max function, the Gumbel-Max trick
also applies to normalized log-probabilities log si/Z

I = arg max
in

(log si + gi) = arg max
in

(log
si
Z
+ gi), (2.58)
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which is a direct result from Gumbel random variables following LCA
[Hui+21]. As a result, we can apply the Gumbel-Max trick over sub-domains
of categorical distributions using the un-normalized scores s [Luc59; Pla68].

2.4.2.2 Plackett-Luce Model

Given a set of n elements [n] = {1, . . . , n}, the Plackett-Luce model [PL,
Luc59; Pla68] is based on some positive scores s = [s1, . . . , sn] 2 Rn

+ where
the score si is associated with element i. The PL model describes a ranking
of elements using the probability of a random ordering p 2 Pn where Pn
defines the set of all orderings of n elements. The underlying assumption
of the PL model over rankings is that the larger the score si, the more
preferred element i is. Hence, we write the probability that element i is
selected first as p(p1 = i; s) with s being the parameters of the PL model
over orderings and pk the index of the element ranked at position k. The
score si is proportional to the probability that i is selected first [Mar96], i. e.

p(p1 = i; s) =
si

Ân
j=1 sj

(2.59)

One of the key assumptions of the PL model is that the probability
p(p1 = i; s) to rank element i first is proportional to the identical scores
s as the probability p(pk = j | p1 = i1, . . . , pk�1 = ik�1; s) of ranking
element j at the kth position given the elements ranked at positions 1 to
k� 1 [Mar96] (see also Section 2.4.2.1). We write the probability p(pk = j |
p1 = i1, . . . , pk�1 = ik�1; s) as

p(pk = j | p1 = i1, . . . , pk�1 = ik�1; s) =
sj

Âl /2{i1,...,ik�1}
sl

(2.60)

We construct the probability p(p; s) of the ordering of the set [n] from the
individual probabilities p(pk = j | p1 = i1, . . . , pk�1 = ik�1; s)

p(p; s) = p(p1 = i1) · · · p(pn = in | p1 = i1, . . . , pn�1 = in�1; s) (2.61)
= p(p1; s) · · · p(pn | p1, . . . , pn�1; s) (2.62)

where the second line is a short notation of the first one.

Definition 2.4.2 (Plackett-Luce Model [Luc59; Pla75]).
Given a set of elements [n] = {1, . . . , n} and scores s = [s1, . . . , sn] 2 Rn

+ where
score si is associated with element i, the probability of an ordering p 2 Pn of the
set [n] following the Plackett-Luce model is given as

p(p; s) =
s1
Z

·
s2

Z� s1
· · ·

sn�1

Z�Ân�2
j=1 sj

·
sn

Z�Ân�1
j=1 sj

(2.63)
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where Z = Ân
i=1 si, and Pn is the set of all orderings of n elements.

We can write every ordering as a permutation matrix, where the ith index
of the first row indicates that the ith element is ranked at the first position.
Multiplying the permutation matrix p with the scores s re-orders the scores
according to the ordering induced by p, i. e.

p(p; s) =
(ps)1

Z
· · ·

(ps)n

Z�Ân�1
j=1 (ps)j

(2.64)

where (ps)k is a short notation for (ps)k = Ân
i=1(ps)k, which denotes the

score of the element j ranked at position k.

2.4.2.3 Thurstonian Model

A Thurstonian model [Thu27] assumes an unobserved (and typically in-
dependent) random score variable si for every item i 2 [n]. Drawing from
the score distribution and sorting according to the sampled scores provides
a sample ranking p. In consequence, the score distribution results in a
distribution over orderings [GS09].

Definition 2.4.3 (Thurstonian Model [Thu27]).
Given some unobserved and independent scores s 2 Rn

+ where score si is associated
with element i, we can generate a ranking p 2 Pn, which is derived from s using
a deterministic function f , i. e. p = f (s), such that (ps)1 > · · · > (ps)n.

The parameters of a Thurstonian model are the parameters of the distribu-
tion of the underlying scores s. Definition 2.4.3 shows that the probability
of an ordering is described using the parameters of the underlying score
distribution. Yellott [Yel77] provides the result of the relation between PL-
and Thurstonian models.

Theorem 2.4.2 (Equality between Placket-Luce [Luc59; Pla75] and Thursto-
nian Models [Thu27; Yel77]).
Suppose the score variables are independent, and the score distributions are identical
up to their mean. In that case, the score distributions give rise to the PL model if
and only if the scores s are distributed according to a Gumbel distribution.

We provide the proof to Theorem 2.4.2 [Yel77] in Appendix A.1.2. Following
Definitions 2.4.2 and 2.4.3 and Theorem 2.4.2, we can describe the probabil-
ity of a random ordering p = f (s̃) using the parameters s of the underlying
score distribution, and sample from the distribution.
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Corollary 2.4.1 (Sampling from Plackett-Luce Models [Gro+19; Yel77]).
Given scores s 2 Rn

+ where the score si corresponds to element i 2 [n], we sample
gi ⇠ Gumbel(0, b) independently with zero mean and fixed scale b. Let s̃ denote
the perturbed log-scores such that s̃i = b log si + gi and p = f (s̃), where f (·) is
a deterministic function, then

p((ps̃)1 � · · · � (ps̃)n) =
(ps)1

Z
· · ·

(ps)n

Z�Ân�1
j=1 (ps)j

(2.65)

where Z = Ân
i=1 si

In other words, the probability of a random ordering p that follows the
probability distribution p(p; s) as defined in Corollary 2.4.1 has a closed
form solution based on the random ordering p itself and the underlying
and non-perturbed scores s of the distribution.

2.4.2.4 Differentiable Ranking Models

To integrate probability distributions over orderings p(p; s) (see Sections 2.4.2.2
and 2.4.2.3) into gradient-based optimization pipelines, the deterministic
function f (·) generating the random ordering p needs to be differentiable.

Permutation matrices belong to the class of doubly-stochastic matrices,
i. e. every column and every row sum to one,

n

Â
k=1

p[k, i] = 1, and
n

Â
i=1

p[k, i] = 1 (2.66)

Hence, a permutation matrix p ranks element i at position k, if p[k, i] = 1.
Following Definition 2.4.3, the deterministic function f (·) generating the

permutation matrix p has to be the sort operator, i. e.

p = f (s) = sort(s) (2.67)

However, the vanilla sort operator is not differentiable. In the remaining
part of this section, we describe the work of Grover et al. [Gro+19], which
introduced a differentiable sorting method based on PL models, where the
scores s follow a Gumbel distribution. In combination with Corollary 2.4.1,
their work, NeuralSort, describes a continuous relaxation for p(p; s). At
the beginning of this section, we described other differentiable sorting
mechanisms, some of which could be used too.
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Corollary 2.4.2 (From Grover et al. [Gro+19]).
Given a vector of scores s = [s1, . . . , sn]T 2 Rn

+, and the matrix As of pairwise
absolute differences of the elements of s, i. e. As[i, j] = |si � sj|. The permutation
matrix p = sort(s) is given by

p[i, j] =

(
1 if j = arg max((n + 1� 2i)s� As1)

0 otherwise
(2.68)

where 1 = [1, . . . , 1]T.

Corollary 2.4.2 (we provide the proof in Appendix A.1.4) formulates a sort-
ing operator based on the pairwise differences between elements As. The
arg max operator is not differentiable (see Section 2.4.1.2), which prohibits
taking derivatives of p with respect to s. Similar to Section 2.4.1.2, we use
the tempered softmax function such that

pt [i, :] = softmax
✓
(n + 1� 2i)s� As1

t

◆
(2.69)

where t is again the temperature parameter for the softmax function. The
resulting relaxation is continuous everywhere and differentiable almost
everywhere with respect to s [Gro+19].

Combining Corollaries 2.4.1 and 2.4.2 enables a continuous relaxation
for the distribution p(p; s), which is differentiable and reparameterizable.
NeuralSort scales O(n2) in computation steps and memory requirements,
whereas the fastest non-differentiable sorting methods only need O(n log n)
computation steps [Gro+19; Knu97].

In the remaining part of this work, we remove the sub-script t for all
continuous relaxations. However, we always use their tempered versions.

2.5 set partitions and random partition models

Partitioning a set of elements into subsets is a classical mathematical prob-
lem that has attracted much interest over the last few decades. A partition
over a given set is a collection of non-overlapping subsets such that their
union results in the original set. While there are many well-studied combi-
natorial partitioning problems [GKP89; Rot64], recent advances in machine
learning give rise to new challenges revolving around set-partitioning.

A random partition model [RPM, Har90; MQR11] defines a probability
distribution on the space of set partitions. Previous works on RPMs include
product partition models [Har90], species sampling models [Pit96], and
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model-based clustering approaches [BS04]. Further, Lee and Sang [LS22]
investigate the balancedness of subset sizes of RPMs. They all require
tedious manual adjustment, are non-differentiable, and are unsuitable for
modern ML pipelines.

In ML, partitioning a set of elements into different subsets is essential for
many applications, such as classification or clustering, e. g. [Dil+16; Jia+16;
Man+21] implicitly define RPMs to perform clustering. They compute
partitions using VAEs by making i.i.d. assumptions about the samples in
the dataset and imposing soft assignments of the clusters to data points
during training.

In the following, we introduce the notation for random partition models,
some key properties, and popular non-differentiable random partition
models. Let S be a set of natural numbers. In case of S being the first n
natural numbers, we use the same notation as in Section 2.4.2, i. e. [n] =
{1, . . . , n}.

Definition 2.5.1 (Set partition r [MS16]).
A set partition r = [S1, . . . ,SK] of a set [n] = {1, . . . , n} is a collection
S1, . . . ,SK of non-empty disjoint subsets of [n] such that [K

k=1Sk = [n]. The
size of a subset is given by nk = |S|.

Hence, a set partition assigns every element i to precisely one of K subsets
where K is a priori unknown. We use the terms set partition and partition
model interchangeably in this thesis.

We denote the set of all set partitions of [n] by Pn, and the number of all
set partitions of [n] by |Pn|, with |P0| = 1. |P0| = 1 comes from the fact that
there is only a single partition for the empty set ∆. The numbers |Pn| are
known as Bell numbers.

Definition 2.5.2 (Stirling Number of the second kind [GKP89; MS16]).
The set of all set partitions of [n] with exactly K subsets is denoted by Pn,K. The
number of |Pn,K| of set partitions of [n] into K blocks is denoted by S(n, K) and is
called the Stirling number of the second kind.

The Stirling number of the second kind S(n, K) for n � K � 1 is given as

S(n, K) =
1
K!

K

Â
j=1

✓
K
j

◆
(�1)K�j jn (2.70)

The Bell number |Pn| follows by definition

|Pn| =
n

Â
k=1

S(n, k) (2.71)
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Famous examples of RPMS include discrete random probability mea-
sures induced RPMS, such as Dirichlet process [Fer73], Pitman-Yor process
[PPY92; PY97], and the mixture of finite mixtures [MH18].

2.5.1 Dirichlect Prior Partition Model

Sampling from a Dirichlet process prior [DP, Fer73] is one of the most
popular RPMs [Mül+15]. Consider a model of the type

X1, . . . , Xn | F ⇠ F, F ⇠ DP(lF0) (2.72)

where DP is a Dirichlet process with base measure F0 and weight parameter
l > 0 [Qui06]. Since F is discrete, there can be ties among the different Xi.
The Polya urn representation [BM73] offers a second view of this property.
A partition of [n] can be formed by defining clusters over equivalence
classes under the relation i ⇠ j if and only if Xi = Xj. Let ci denote the
cluster membership of element i, then, let c1 = 1, X⇤1 = X1, and for j > 1,
let cj = ci if Xj = Xi for some 1  j � 1 and cj = max{c1, . . . , cj�1} if
Xj /2 {X1, . . . , Xj�1}, in which case X⇤cj

= Xj. See Arratia, Barbour, and
Tavaré [ABT92] for the Chinese restaurant process, a more colorful description
of the induced partition structure using a DP prior.

2.5.2 Product Partition Models

Product partition models [PPM, Har90] define an alternative probability
distribution over partition models [Mül+15; Qui06]. For any partition r =
{S1, . . . ,SK} and data samples x1, . . . ,xn, we assume that

p(x1, . . . ,xn | r) =
K

’
k=1

pSk (XSk ), (2.73)

where XSk = {xi : i 2 Sk} and pSk (XSk ) depends only on Sk and not on
any of the other subsets Sj, j 6= k. In turn, the partition r is assigned a prior
distribution as follows

p(r = {S1, . . . ,SK}) =
1
P0

K

’
k=1

coh(Sk), (2.74)

where coh(A) is the cohesion function of a subset A ✓ [n] such that
coh(A) � 0, and P0 is the normalizing constant such that Âr p(r) = 1.
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Additional applications of PPMs can be found in Barry and Hartigan
[BH92], Barry and Hartigan [BH93], Loschi and Cruz [LC02], and Loschi
et al. [Los+03].

2.5.3 Model-Based Clustering

RPMs based on mixture distributions are known as model-based cluster-
ing [MBC, BR93; DR98; MR84]. The data points x1, . . . ,xn are modelled
independently as a mixture distribution

p(x1, . . . ,xn | K,✓) =
n

’
i=1

K

Â
k=1

ak pk(xi | qk), (2.75)

where K is the number of components in the mixture distribution, ak
is the weight of the kth component such that it holds ak � 0, 8 k and
ÂK

k=1 ak = 1. ✓ = [q1, . . . , qK] are the distribution parameters with poten-
tially component-specific parameters [Qui06]. Mixture distributions are also
used for regression tasks, such as in Jordan and Jacobs [JJ94] or Bishop and
Svensén [BS04].

2.6 multivariate hypergeometric distribution

The hypergeometric distribution is applied in various areas of science, such
as social and computer science and biology [Sut+23a], e. g., modeling gene
mutations, recommender systems, and analyzing social networks [Bec+11;
Cas+16b; Las+07; Lod+18; Lod+15; OMT03; PCT06]. It can also be used
as a modeling assumption in more theoretical work, e. g. in submodular
maximization [FHK17; Har+19], k-means clustering variants [CPM18], or
random permutation graphs [BM17].

The hypergeometric distribution is a discrete probability distribution that
describes the probability of n1 successes in n draws without replacement
from a finite population of size (m1 + m2) with m1 elements that are part
of the success class. Unlike the binomial distribution, which describes the
probability distribution of n1 successes in n draws with replacement.
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Definition 2.6.1 (Hypergeometric Distribution [Gon36]2).
A random variable N1 follows the hypergeometric distribution if its probability
mass function is given by

P(N1 = n1) = pN1(n1) =
(m1

n1
)( m2

n�n1
)

(m1+m2
n )

(2.76)

Urn models are typical examples of hypergeometric probability distribu-
tions. Suppose we think of an urn with marbles in two different colors, e. g.,
green and purple. We can label the drawing of a green marble as a success.
Then (m1 + m2) defines the total number of marbles and m1 the number of
green marbles in the urn. n1 is the number of green marbles, and n� n1 is
the number of drawn purple marbles.

The multivariate hypergeometric distribution describes an urn with more
than two colors, e. g., green, purple, and yellow, in the simplest case, with
three colors. As described by Johnson [Joh87], the definition is given by:

Definition 2.6.2 (Multivariate Hypergeometric Distribution).
A random vector N follows the multivariate hypergeometric distribution, if its
joint probability mass function is given by

P(N = n) = pN (n) =
’K

k=1 (
mk
nk
)

(Âk mk
n )

(2.77)

where K 2 N is the number of different classes (e. g. marble colors in the urn),
m = [m1, . . . , mK] 2 NK describes the number of elements per class (e.g. marbles
per color), ÂK

k=1 mk is the total number of elements (e. g. all marbles in the urn)
and n 2 {0, . . . , Âk mk} is the number of elements (e. g. marbles) to draw.

The support S of the probability mass function is given by

S =

(
n 2 NK

0 : 8 k nk  mi,
K

Â
k=1

nk = n

)
(2.78)

Every marble is picked with equal probability under the central hyperge-
ometric distribution. The number of selected elements per class is then
proportional to the ratio between the number of elements per class and the
total number of elements in the urn. This assumption is often too restrictive,
and we want an additional modeling parameter for the importance of a
class. We call generalizations, which make certain classes more likely to

2 Although the distribution itself is older, Gonin [Gon36] were the first to name it hypergeometric
distribution
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be picked, noncentral hypergeometric distributions. In the remaining part
of this dissertation, we refer to the noncentral hypergeometric distribution
even if we write hypergeometric distribution.

In the literature, Fisher’s [Fis35] and Wallenius’ [Che76; Wal63] distribu-
tion are two different versions of the noncentral hypergeometric distribution.
This thesis refers to Fisher’s version of the noncentral hypergeometric dis-
tribution.

Definition 2.6.3 (Multivariate Fisher’s Noncentral Hypergeometric Distri-
bution [Fis35]).
A random vector N follows Fisher’s noncentral multivariate distribution, if its
joint probability mass function is given by

P(N = n;!) = pN (n;!) =
1
P0

K

’
k=1

✓
mk
nk

◆
wnk

k (2.79)

where P0 = Â
y2S

K

’
k=1

✓
mk
yk

◆
w

yk
k (2.80)

The support S of the noncentral hypergeometric distribution is independent
of the group importance !. The total number of samples per class m, the
number of samples to draw n, and the class importance ! parameterize
the multivariate distribution. Throughout this thesis, we assume m and
n constant per experiment. In our applications of the hypergeometric dis-
tributions, the group importance ! is the unknown parameter of interest.
Consequently, we use ! as the distribution parameter in Equation (2.79)
and this thesis.
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M O D E L I N G G R O U P S T R U C T U R E U S I N G A J O I N T
L AT E N T S PA C E

In this chapter, we describe different implementations of scalable multi-
modal VAEs. We start by explaining the need for methods that are scalable
in the number of modalities and why the definition of the joint posterior
approximation is an essential building block for these models. We evaluate
three different methods according to the desiderata of multimodal methods
introduced in Section 2.3. Toward the end of this chapter, we discuss and
explain why none of the introduced models can fulfill the complete set of
desiderata.

We extend and generalize existing work in scalable multimodal gen-
erative models. We use the definition of scalability as we defined it in
Section 2.3.1, i. e. scalable in the sense that a single model approximates
the joint distribution over all modalities (including all marginal and condi-
tional distributions) instead of requiring individual models for every subset
of modalities [e.g., HG18; Hua+18; TE19]. The latter approach requires a
prohibitive number of models, exponential in the number of modalities.

multimodal vaes Among scalable multimodal generative models,
multimodal VAEs [KGS19; Shi+20; Shi+19; SDV20; SNM16; Tsa+19; Ved+18;
WG18] have recently been the dominant approach for learning a joint
distribution of multiple modalities. They are suitable for learning a joint
distribution over multiple modalities and enable joint inference given a
subset of modalities. However, to efficiently approximate the joint posterior
for all subsets of modalities, it is required to introduce additional assump-
tions on the form of the joint posterior. Previous work relies on either
the Product of Experts [KGS19; WG18] or the Mixture of Experts [Shi+20;
Shi+19] distribution to combine the unimodal posteriors and overcome the
scalability issue. This chapter describes a method to unite these approaches
in a generalized formulation – a mixture of products joint posterior – that
encapsulates both approaches and combines their benefits [SDV21].

multimodal posteriors The MVAE [WG18] assumes that the joint
posterior is a product of unimodal posteriors - a product of experts [PoE,
Hin99; Hin02]. The PoE has the benefit of aggregating information across

49
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any subset of unimodal posteriors. It, therefore, provides an efficient way
of dealing with missing modalities for specific types of unimodal posteriors
(e.g., Gaussians). However, to handle missing modalities, the MVAE relies
on an additional sub-sampling of unimodal log-likelihoods, which no
longer guarantees a valid lower bound on the joint log-likelihood [WG19].
Previous work provides empirical results that exhibit the shortcomings
of the MVAE, attributing them to a precision miscalibration of experts
[Shi+19] or the averaging over inseparable individual beliefs [KGS19]. In
Sutter, Daunhawer, and Vogt [SDV21], we can show that the PoE works well
in practice if it is applied to all subsets of modalities, which naturally leads
to the proposed mixture of products of experts (MoPoE) generalization,
which yields a valid lower bound on the joint log-likelihood. In this thesis,
we define PoE-VAE as a multimodal VAE, which uses a product of experts
aggregation function for the joint multimodal posterior approximation
distribution but no additional loss terms.

On the other hand, the MMVAE [Shi+19] assumes that the joint pos-
terior approximation is a mixture of unimodal posteriors – a mixture of
experts (MoE). The MMVAE is suitable for the approximation of unimodal
posteriors and translation between pairs of modalities. However, it cannot
take advantage of multiple modalities because it only considers the uni-
modal posteriors during training. In contrast, the proposed MoPoE-VAE
computes the joint posterior for all subsets of modalities, enabling efficient
many-to-many translations.

While multiple extensions of multimodal VAEs [Dau+20; KGS19; Shi+20;
SDV20] have introduced additional loss terms, these are mostly indepen-
dent of the used aggregation function. This chapter compares the three
probabilistic aggregation functions, PoE, MoE, and MoPoE, and their appli-
cation to multimodal VAEs. Therefore, we do not consider any additional
objectives in our experimental setup.

3.1 scalable multimodal learning

Following Definition 2.3.5 of the multimodal ELBO, the particular case of
scalable multimodal learning is not apparent. It is only apparent in having
access to multiple data types and the desiderata, which follow from there
as described in Section 2.3.1.

Definition 3.1.1 (Scalable Multimodal VAEs).
A multimodal VAE is scalable if the number of encoder and decoder networks scales
linearly with the number of modalities M.
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z

xM

N

xmx1 · · · · · ·

X

Figure 3.1: Graphical model for scalable inference in the multimodal setting.
Compared to the graphical model in Figure 2.1b, the unimodal sam-
ples xm 2 X are aggregated outside of the grey area representing the
multimodal set X . The aggregation represents the late fusion step of
the unimodal experts qfm (z | xm) into the joint posterior qF(z | X)
approximation using the scalable function fagg (see Definitions 3.1.1
and 3.1.2).

Following Definitions 2.3.5 and 3.1.1, the focus in this section is on achieving
scalability in multimodal VAEs. The methods that we discuss in this chapter
differ in their definition of the joint posterior approximation distribution
qF(z | X). They rely on defining the joint posterior approximation qF(z |

X) as a non-parametric function fagg of the unimodal approximations
q�m(z | xm) [Shi+19; SDV21; WG18].

Definition 3.1.2 (Scalable Posterior Approximation).
A joint posterior approximation distribution qF(z | X) is scalable if it is a function
fagg of unimodal posterior approximations q�m(z | xm)

qF(z | X) = fagg(q�1(z | x1), . . . , q�M (z | xM)) (3.1)

where the amortization parameters of the inference networks are given as F =
[�1, . . . ,�M].

In Definition 3.1.2, there are no learnable parameters for the function fagg
and, therefore, the amortization parameters of the inference function are
just a concatenation of the unimodal posterior amortization parameters,
i. e. F = [�1, . . . ,�M]. Definition 3.1.2 implies that every modality xm is
encoded individually using its variational posterior qfm(z | xm). The joint
posterior approximation qF(z | X) follows from a late fusion [e. g., BAM18]
of the unimodal posterior approximations qfm(z | xm) using the function
fagg. Scalable aggregation functions fagg follow the concept of abstract mean
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functions [NP05]. Abstract mean functions unify a family of mean function
Fagg

Fagg(p) = f�1

 
1
M

M

Â
m=1

f (pm)

!
, (3.2)

where M is the number of elements to be aggregated. The function f
needs to be injective for f�1 to exist. For f (pm) = apm + b we receive the
arithmetic mean, i. e. MoE, and for f (pm) = log pm the geometric mean, i. e.
PoE [Nie19].

Definition 3.1.3 (Valid Joint Posterior approximation).
A joint posterior distribution qF(z | X) following Definition 3.1.2 is a valid
variational distribution if the function fagg satisfies

Z

z
fagg

�
q�1(z | x1), . . . , q�M (z | xM)

�
dz = 1 (3.3)

3.2 probabilistic aggregation functions for multimodal
vaes

In Section 3.1, we introduced the concept of scalable multimodal VAEs.
We introduced a general class of scalable multimodal VAEs, which use a
function fagg to combine unimodal posterior approximations qfm(z | xm)
into a joint posterior approximation qF(z | X). This section introduces
different implementations of the function fagg.

3.2.1 Product of Experts

Wu and Goodman [WG18] define the joint posterior approximation as a
product of experts [PoE, Hin99; Hin02]. A PoE joint posterior approximation
is given by

qF(z | X) =
1
Z

M

’
m=1

q�m(z | xm) (3.4)

where Z is normalization constant such that Definition 3.1.3 is fulfilled and
Equation (3.4) defines a probability distribution, i. e.

R
q(z | X)dz = 1.

No general closed-form solution exists for Equation (3.4). There is an an-
alytical solution for Equation (3.4) for all unimodal experts being Gaussian
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distributions, i. e. q�m(z | xm) = N (z;µ(xm), S(xm)). The product distri-
bution is itself proportional to a Gaussian distribution N (z;µPoE, SPoE),
where µPoE and SPoE are given as [PPo08]

SPoE = Â
i

S�1
i (3.5)

µPoE = S�1
PoE Â

i
S�1

i µi (3.6)

for µi and Si being the distribution parameters of the individual experts.
Murphy [Mur07] showed that the product of Gaussians equals a Gaussian
distribution after it is normalized to integrate to one. Hence, using

Z

z

M

’
m=1

q�m(z | xm) = Z (3.7)

leads to a properly normalized Gaussian distribution, i. e.

1
Z

M

’
m=1

q�m(z | xm) = NF(z;µPoE(X), SPoE(X)) (3.8)

Accordingly, we write the joint posterior approximation qF(z | X) as

qF,PoE(z | X) = NF(z;µPoE(X), SPoE(X)) (3.9)

3.2.1.1 Multimodal PoE ELBO

Defining the joint posterior approximation distribution using a PoE leads
to the following ELBO formulation LPoE(Q, F;X)

LPoE(Q, F;X) = EqF,PoE(z|X)


log pQ(X | z)� log

qF,PoE(z | X)
pQ(z)

�

=
M

Â
m=1

EqF,PoE(z|X) [log pqm(xm | z)]

� DKL (qF,PoE(z | X) || pQ(z)) (3.10)

=
M

Â
m=1

EqF,PoE(z|X) [log pqm(xm | z)]

� DKL [NF(z;µPoE(X), SPoE(X)) || pQ(z)] (3.11)

One of the advantages of the PoE ELBO LPoE formulation is the calculation
of the KL divergence term. The KL divergence between two Gaussian
distributions can be calculated in closed form, which makes LPoE an efficient
objective.
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3.2.2 Mixture of Experts

Shi et al. [Shi+19] define the joint posterior approximation as a mixture of
experts distribution [MoE, Lin95] where the mixture components are the
unimodal posterior approximations

qF,MoE(z | X) = Â
m2M

amqfm(z | xm) (3.12)

↵ = [a1, . . . , aM] 2 RM are the mixture weights such that 0  am  1 8 m
and ÂM

m=1 am = 1. If not stated differently, we assume equal weights am for
all experts in the mixture distribution, i. e. am = 1

M , 8 m. It follows

qF,MoE(z | X) =
1
M Â

m2M

qfm(z | xm) (3.13)

3.2.2.1 Multimodal MoE ELBO

Defining the joint posterior approximation distribution as a MoE leads to
the following ELBO

LMoE(Q, F;X) = EqF,MoE(z|X)


log pQ(X | z)� log

qF,MoE(z | X)
pQ(z)

�

=
M

Â
m=1

EqF,MoE(z|X) [log pqm(xm | z)]

� DKL [qF,MoE(z | X) || pQ(z)] (3.14)

Unlike the PoE distribution, the KL divergence between the MoE posterior
approximation and the prior distribution cannot be calculated exactly in
closed form. This is not only impossible for the general case but also for
the particular case of both unimodal posterior approximations and prior
distribution being Gaussian distributions.

Using Jensen’s inequality [Jen06] and the fact that the KL divergence is a
convex function [see e. g. CT06], we can upper bound the KL divergence of
a convex sum by a sum of KL divergences

DKL

"
1
M

M

Â
m=1

qfm(z | xm) || pQ(z)

#


1
M

M

Â
m=1

DKL
⇥
qfm(z | xm) || pQ(z)

⇤

(3.15)

In the case of Gaussian distributions for unimodal posterior approximations
qfm(z | xm) and prior distribution pQ(z), the sum of KL divergences
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offers again a closed form solution. We write the ELBO LMoE(Q, F;X)
accordingly

LMoE(Q, F;X) =
M

Â
m=1

EqF,MoE(z|X) [log pqm(xm | z)]

� DKL (qF,MoE(z | X) || pQ(z))

�

M

Â
m=1

EqF,MoE(z|X) [log pqm(xm | z)]

�
1
M

M

Â
m=1

DKL
�
qfm(z | xm) || pQ(z)

�
(3.16)

The prize for being able to optimize a closed form divergence measure
is the lower bound that is optimized compared to the original ELBO
LMoE(Q, F;X).

3.2.3 Mixture of Products of Experts

In Sutter, Daunhawer, and Vogt [SDV21], we introduced the multimodal
mixture of products of experts (MoPoE) distribution. It is also a mixture
distribution, but different to Shi et al. [Shi+19], the set of experts does
not only contain the unimodal posterior approximations. MoPoE instead
includes all subsets of modalities in the set of experts for the mixture
distribution, i. e. the set of experts is the powerset P(M) without the empty
set ∆. For ease of notation, we, by default, exclude the empty set ∆ when
we talk about the powerset P(M) of a set of modalities M. Therefore,

P(M) = {A : A ✓M \ ∆} (3.17)

The MoPoE distribution is given by

qF,MoPoE(z | X) =
1

|P(M)| Â
A✓M

qFA(z | XA) (3.18)

As the name suggests, the posterior approximation given any input subset
XA follows a PoE [Hin99; Hin02]

qFA(z | XA) µ ’
m2A

qfm(z | xm) (3.19)

The variational amortization parameters for every subset FA are given by
the unimodal parameters fm of all modalities m 2 A:

FA = {fm : m 2 A} (3.20)
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Despite iterating over all subsets A ✓ M, it follows from Equation (3.20)
and definition 3.1.2 that the total number of variational parameters |F| is
equivalent to the sum of the unimodal variational parameters fm, i. e.

|FMoPoE| = Â
m2M

|fm| (3.21)

It is clear from Equations (3.20) and (3.21) that all probabilistic aggregation
functions discussed so far, i. e. MoE, PoE, and MoPoE, are non-parametric
functions. They are all a function of the unimodal variational posteriors and
their learnable parameters. Hence, the functions are instances of late fusion
probabilistic aggregation methods.

3.2.3.1 Multimodal MoPoE ELBO

Defining the joint posterior distribution as MoPoE distribution leads to the
following ELBO

LMoPoE(Q, F;X) =EqF,MoPoE(z|X)


log pQ(X | z)� log

qF,MoPoE(z | X)
pQ(z)

�

=
M

Â
m=1

EqF,MoPoE(z|X) [log pqm(xm | z)]

� DKL [qF,MoPoE(z | X) || pQ(xm)] (3.22)

We can again use the upper bound to the KL divergence of a mixture
distribution (see Equation (3.15)), leading to a looser ELBO.

LMoPoE(Q, F;X) �
M

Â
m=1

EqF,MoPoE(z|X) [log pqm(xm | z)]

�
1

|P(M)| Â
A✓M

DKL [qF(z | XA) || pQ(z)] (3.23)

3.2.4 A Generalized Formulation for Probabilistic Aggregation Functions

The MoPoE formulation can be further generalized. In Section 3.2.3, we
define the mixture distribution over the powerset of possible subsets of
modalities P(M), i. e.

qF,MoPoE(z | X) =
1

|P(M)| Â
A✓M

qFA(z | XA) (3.24)
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Instead of the powerset P(M), any set of subsets A ✓ P(M) is eligible to
define a mixture distribution.

Definition 3.2.1 (Generalized Multimodal Posterior Approximation [SDV21]).
Given a set of subsets A where A ✓ P(M), the generalized mixture of products
of experts joint posterior approximation is given as

qF(z | X ; A) =
1

|A|
Â

A2A

qFA(z | XA) (3.25)

where

qFA(z | XA) µ ’
m2A

qfm(z | xm) (3.26)

Using Definition 3.2.1, we derive the following generalized ELBO

L(Q, F;X , A) �
M

Â
m=1

EqF(z|X ;A) [log pqm(xm | z)]

� DKL (qF(z | X ; A) || pQ(xm | z)) (3.27)

The slightly modified L(Q, F;X , A) and qF(z | X ; A) highlight their de-
pendency on the set of subsets A. We are now able to rewrite the three
methods based on PoE (Section 3.2.1), MoE (Section 3.2.2), and MoPoE
(Section 3.2.3) as special cases of the general scalable multimodal formula-
tion in Definition 3.2.1. We use the set of subsets A in the notation of the
ELBO L(Q, F;X , A) to distinguish between the three aggregation methods
discussed. In the following, we formalize this finding in three corollaries.
We start with the PoE (Corollary 3.2.1), then the MoE (Corollary 3.2.2), and
last the MoPoE (Corollary 3.2.3).

Corollary 3.2.1. For A = {M} in Definition 3.2.1, the resulting joint posterior
approximation is equal to the PoE formulation introduced in Section 3.2.1 [WG18].

Proof.

qF(z | X ; A) = qF(z | X ; {M}) (3.28)

=
1

|{M}|
Â

A2{M}

qFA(z | XA) (3.29)

= qF(z | X) (3.30)
µ ’

m2M

qfm(z | xm) (3.31)
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= qF,PoE(z | X) (3.32)

The ELBO L(Q, F;X , {M}) is already derived in Section 3.2.1.1.

Corollary 3.2.2. For A = M in Definition 3.2.1, the resulting joint posterior ap-
proximation is equal to the MoE formulation introduced in Section 3.2.2 [Shi+19].

Proof.

qF(z | X ; A) = qF(z | X ; M) (3.33)

=
1

|M|
Â

A2M

qFA(z | XA) (3.34)

=
1
M Â

m2M

qfm(z | xm) (3.35)

= qF,MoE(z | X) (3.36)

The ELBO L(Q, F;X , M) is already derived in Section 3.2.2.1.

Corollary 3.2.3. For A = P(M) in Definition 3.2.1, the resulting joint posterior
approximation is equal to the MoPoE formulation introduced in Section 3.2.3
[SV21].

Proof.

qF(z | X ; A) = qF(z | X ;P(M)) (3.37)

=
1

|P(M)| Â
A2P(M)

qFA(z | XA) (3.38)

= qF,MoPoE(z | X) (3.39)

The ELBO L(Q, F;X ,P(M)) is already derived in Section 3.2.3.1.

3.3 experiments & results

The following section describes the experiments, datasets, and results we
used to evaluate multimodal methods. We designed the experiments such
that we can assess the methods’ ability to fulfill the desiderata for multi-
modal learning described in Section 2.3. Figure 3.2 depicts the basic archi-
tecture for the methods used in these experiments. As already described
in Section 3.2, they only differ in how they fuse the unimodal posterior
approximations qfm(z | xm) to a joint posterior approximation qF(z | X),
which is depicted abstractly in the fagg(·) building block in Figure 3.2
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EncMEncmEnc1

xMxmx1

DecMDecmDec1

x̂Mx̂mx̂1

fagg(·)

z ⇠ qF(z | X)

qfm(z | xm)qf1(z | x1) qfM (z | xM)

Figure 3.2: The basic architecture of all methods is described in Section 3.2.
They only differ in the aggregation function building block fagg.
Every modality separately infers qfm (z | xm). A scalable fagg (see
Section 3.2) generates qF(z | X) using the unimodal posterior ap-
proximations qfm (z | xm).

3.3.1 Datasets

To evaluate the methods proposed in Section 3.2, we perform experiments
on two different datasets, MNIST-SVHN-Text and PolyMNIST [SV21].

3.3.1.1 MNIST-SVHN-Text

MNIST-SVHN-Text (MST) is a multimodal combination of the MNIST digit
dataset [LeC+98], the SVHN digit dataset [Net+11], and a text modality.
We use the MST dataset to highlight the ability of the different methods to
adapt to modalities of different difficulties. See Figure 3.3 for MST samples
of the digits 0 to 9.

The MNIST modality consists of white handwritten digits on a black
background of size 28⇥ 28. It consists of 600000 training images and 100000
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zero one two three four five six seven eight nine

Figure 3.3: Samples from the MNIST-SVHN-Text dataset. Every column is an
example of X = {xM,xS,xT}, where the weak supervision comes
from the alignment of the multimodal sets concerning their digit
information. xM denotes the MNIST modality, xS SVHN, and xT
the text modality. We see the increased difficulty of the SVHN digit
dataset in the exemplary multi-digit samples of digits 1 and 4.

test images. Every image displays a digit between 0 and 9. It contains
writing samples from approximately 250 different writers [LeC+98].

The Street View House Numbers modality [SVHN, Net+11] is a real-world
image modality displaying digits in natural scenes. It consists of 730257
training samples and 260032 test samples. For our purpose, we use the
dataset version with cropped images, where a square of size 32⇥ 32 is cut
around the digit to be approximately in the center of the image. Note that
this does not necessarily mean only a single digit is visible in the image.
The image’s label, though, corresponds to the center digit (see Figure 3.3).
Given the real-world scenario of these images and the background, which
stems from a natural scene, the SVHN dataset is more challenging than
MNIST. Shi et al. [Shi+19] already designed a bimodal dataset consisting
of MNIST and SVHN samples. We add a text modality to this dataset to
have a non-image modality and to show how different multimodal methods
perform in settings with more than two modalities. The text modality is
the digit written as a word in English, e. g. "five" for the label 5. To have
an additional difficulty level, we randomly shift the start point of the digit
string. The length of the string per sample is set to 8. Following Shi et al.
[Shi+19], we also pair every MNIST image with 20 SVHN images which
increases the dataset size by a factor of 20 to a total of 102000000 training
tuples and 2000000 test tuples.

3.3.1.2 PolyMNIST

PolyMNIST is also based on the MNIST digit dataset [LeC+98]. Different
from the MST dataset, it only consists of image-based modalities. This
dataset compares the different methods in Section 3.2 according to their
ability to adapt to more modalities. In PolyMNIST, the modalities differ at
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Figure 3.4: Sample from the PolyMNIST dataset.

first by their background. Every MNIST image xm 2 [0, 1]28⇥28 of modality
m is fused with a background image BGm 2 [0, 255]h⇥w⇥3 where h � 28
and w� 28. We take a random 28⇥ 28 patch from BGm as a background
for modality m (see Appendix A.2.1 for the source information on the back-
ground images). Additionally, we binarize the MNIST image and invert the
binarized version of the digit concerning the background color. Equal to
the experiments in this section, Figure 3.4 shows an example with M = 5
modalities.

To compare the three methods introduced in Section 3.2, we evaluate their
ability to infer meaningful latent representations and generate expressive
samples that reflect the distribution of the dataset X. We ablate all measures
over the different possible input modalities, i. e. for M = 5, and evaluate
the methods based on their averaged performance for |A| 2 {1, 2, 3, 4, 5}.
We want the methods to benefit from having access to multiple modali-
ties. Hence, their performance measures should benefit from an increasing
number of input modalities.

3.3.2 Implementation & Training

In this subsection, we describe the network architectures for the encoders
and decoders of the multimodal VAEs and the training procedure. We first
report the hyperparameter settings, which are invariant for both the MST
and the PolyMNIST datasets. Afterwards, we detail the dataset-specific
settings in Sections 3.3.2.1 and 3.3.2.2.

All unimodal posterior approximations are assumed to be Gaussian
distributed N (µm(xm), diag(�2

m(xm))), as well as the prior distribution
pq(z), which we define as N (0, I). For all encoders, the last layers map to
µm(xm) and diag(s2

m(xm)) of the approximate posterior distribution of the
respective modalities N (z;µm(xm), diag(�2

m(xm))).
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The image modalities are modeled with a Laplace likelihood, and the
text modality is modeled with a categorical likelihood. The scaling between
log-likelihood values log pQ(X | z) and KL-divergence DKL[qF(z | X) ||
pF(z)] is crucial for making any VAE-based method work. The focus is on
the b hyperparameter, which scales the KL divergence [Hig+16]. The same
holds for multimodal VAEs. With multimodal datasets, the log-likelihoods
log pqm(xm | z) may have different ranges that make it difficult to optimize
them equally well for all modalities xm 2 X . Therefore, we introduce
additional hyperparameters am to weight the log-likelihoods pqm(xm | z).

L(Q, F;X) µ
M

Â
m=1

amEqF(z|X) [log pqm(xm | z)]

� bDKL[qF(z | X) || pQ(z)] (3.40)

We choose the parameters am according to the data dimension of every
modality xm such that

am =
maxµ2M |xµ|

|xm|
(3.41)

where |xm| denotes the dimensionsality of modality m 2 M. In mixture
distributions, we weight every mixture component with 1

|A|
as it is already

the case in Section 3.2.
We use the Adam optimizer [KB14] with a starting learning rate 0f 0.001

for all datasets.

3.3.2.1 MNIST-SVHN-Text

Because the MST dataset is based on the MNIST-SVHN dataset [Shi+19], we
stick to the network architectures used in Shi et al. [Shi+19] for the MNIST
and SVHN modality (see Tables A.1 and A.3). The network architecture used
for the text modality is described in Table A.5. All network architectures
are described in detail in Appendix A.2.2. Following Equation (3.41), we
choose the parameters am according to the data dimensionality of every
modality xm where

|xM| = w⇥ h = 28 · 28 = 784 (3.42)
|xS| = w⇥ h⇥ c = 32 · 32 · 3 = 3072 (3.43)
|xT | = len(string) = 8 (3.44)
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We choose the modality xm with the biggest data dimension, i. e. SVHN, as
a reference and set am = 1.0. From there, we set the following weights

aM =
|xS|

|xM|
= 3.92 (3.45)

aS =
|xS|

|xS|
= 1.0 (3.46)

aT =
|xS|

|xT |
= 384.0 (3.47)

We set b = 5.0 for all MST experiments and use a latent space of size 20.
We use a batch size of 256 for training and train all methods for 50 epochs.

3.3.2.2 PolyMNIST

The latent space dimension is 512 for all modalities, models, and runs.
All results are based on b = 2.5. We use the same architectures for all
methods and train all models for 300 epochs. Unlike the MST dataset,
all modalities are image-based in the PolyMNIST dataset. Hence, we use
different initializations of the same network structure for all modalities in
the PolyMNIST dataset instead of 5 different architectures. However, no
network parameters are shared. The architecture is based on feedforward
convolutional neural networks. Table A.7 in Appendix A.2.2 explains the
network architecture used for all modalities xm.

3.3.3 Evaluation & Results

Tables 3.1, 3.3 and 3.6 show the results of the methods introduced in Sec-
tion 3.2 for the MST dataset. We see the improved performance of the
proposed MoPoE-VAE model [SDV21] compared to previous works, i. e.
MoE-VAE [Shi+19] and PoE-VAE [WG18]. Figure 3.5 shows the results
for the PolyMNIST dataset. MoPoE-VAE performs well when applied to
a heterogeneous dataset such as MST and scales well to many modalities,
as in PolyMNIST. It improves the performance with an increasing number
of modalities and still performs well if only a single modality is given as
input to the model. We describe the results in detail in the following sec-
tions. We assess the methods’ performance using the latent representation
classification and the coherence and quality of generated samples.
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qfM (z | xM) qfS(z | xS) qfT (z | xT)

PoE 0.71 ± 0.05 0.10 ± 0.00 1.00 ± 0.01
MoE 0.96 ± 0.00 0.80 ± 0.02 0.97 ± 0.02
MoPoE 0.96 ± 0.00 0.82 ± 0.01 1.00 ± 0.00

(a) Single Modality: 8 A : |A| = 1

qFM,S(z | XM,S) qFM,T (z | XM,T) qFS,T (z | XS,T)

PoE 0.70 ± 0.05 0.99 ± 0.01 1.00 ± 0.00
MoE 0.88 ± 0.01 0.93 ± 0.04 0.83 ± 0.04
MoPoE 0.97 ± 0.00 0.99 ± 0.01 0.98 ± 0.01

(b) Subsets of two modalities: 8 A : |A| = 2

qF(z | X)

PoE 0.99 ± 0.01
MoE 0.86 ± 0.03
MoPoE 0.98 ± 0.01

(c) Full set of modalities: |A| = 3

Table 3.1: Linear classification accuracy of latent representations on the MNIST-
SVHN-Text dataset for models using a single joint latent space. We
evaluate the joint representations z ⇠ qFA (z | XA) of all subsets
XA. The abbreviations of the modalities are xM for MNIST, xS for
SVHN, and xT for text. The reported results are the mean and standard
deviation of five runs.
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(a) Latent Representation (b) Coherence (c) Log-Likelihood

Figure 3.5: Results for the PolyMNIST dataset. We compare three methods, PoE-
VAE, MoE-VAE, and MoPoE-VAE, regarding their ability to infer
meaningful latent representations (fig. 3.5a), generate coherent multi-
modal samples (fig. 3.5b), and quality of generated samples (fig. 3.5c).
For all metrics, we see a similar behavior of the methods: MoE-VAE
performs well in case only a single modality is given as input to
the model, PoE-VAE benefits from an increasing number of input
modalities, and MoPoE-VAE performs well independent of the input
subset.

3.3.3.1 Latent Representation Classification

Given the goal of self-supervised multimodal learning to infer meaningful
latent representations, we are interested in evaluating the learned represen-
tations of the three methods proposed in Section 3.2 (see also Section 2.3.4).

We infer the latent representations of Ntrain samples from the original
training set using the encoder of a trained VAE model. Using these Ntrain
representations, we train a linear classifier to predict the shared information
of the multimodal samples. The prediction performance of the classifier
is evaluated on the Ntest encodings of the original test set. We use the
performance of the linear classifier as a measure for the quality of the
learned latent representations [BCV13; Loc+19]. For all experiments in this
section, we set Ntrain = 500 and Ntest to the size of the test set.

In Table 3.1, we report the performance of the three methods, PoE-VAE,
MoE-VAE, and MoPoE-VAE, concerning their learned latent representation
on the MST dataset. Given the goal of robustness regarding missing data, we
assess the performance of a model by evaluating the latent representations
of all possible subsets XA, A 2 P(M). We see that the PoE-VAE benefits
from having access to the complete set of modalities X = {xM,xS,xT}. Put
differently, there is a performance drop if we evaluate the latent representa-
tion inferred by a subset of modalities XA. On the other hand, MoE-VAE
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can achieve high classification accuracy if only a single modality xm is given
as input. Still, it cannot benefit from subsets XA of more than one modality
as input to the model, i. e. |A| > 1.

We see the same behavior in Figure 3.5a. Different to the results from
Table 3.1, we report the average classification accuracy of all subsets
XA, A 2 P(M) of a given size |A| where |A| 2 {1, 2, 3, 4, 5}. Similar to
the MST results, the PolyMNIST results show how PoE-VAE can utilize an
increasing number of modalities in inferring its latent representation and
how MoE-VAE reaches a stable classification accuracy independent of the
input subset size.

MoPoE-VAE benefits from being the generalized version of MoE-VAE
and PoE-VAE. It can infer meaningful latent representations independent
of the input subset XA. It benefits as much from an increasing number
of modalities as PoE-VAE but achieves the same stable performance for a
single modality xm as MoE-VAE (see Table 3.1 and fig. 3.5a).

3.3.3.2 Generation Coherence

Unlike unimodal generative models, especially VAEs, generated samples of
multimodal VAEs must approximate the empirical data distribution and be
coherent (see Section 2.3.5.2). We train a deep classifier for every modality
m to evaluate the coherence of generated multimodal samples. The deep
classifier has the same architecture as the corresponding encoder of the
multimodal VAE. It is trained on the original training set to predict the
shared information based on a sample from the original dataset xm. For all
modalities m 2 M, the trained classifier predicts the shared information
for every generated sample of modality m. Coherence is the amount of
agreement between the classifiers’ predictions. We call a generated sample
coherent if the classifiers of all modalities m 2M predict the same shared
information. In the case of randomly generated samples, they only must
agree amongst themselves. In the case of conditionally generated samples,
they must agree amongst themselves and with the shared information from
the input. Coherence measures how well the generated samples follow the
multimodal structure. See Section Section 2.3.5.2 for a detailed discussion
of coherence in generative multimodal models.

Table 3.3 shows the coherence results for the MST dataset. The table
structure is designed such that every subtable reflects the conditional gen-
eration of one modality xm given the remaining subsets XA, m /2 A. The
classification accuracy of the generated samples follows the dynamics al-
ready seen in the evaluation of the classification accuracy of the latent
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xM ⇠ pqM (xM | z)

Model qfS(z | xS) qfT (z | xT) qFS,T (z | XS,T)

PoE 0.10 ± 0.00 0.27 ± 0.10 0.27 ± 0.10
MoE 0.79 ± 0.02 0.99 ± 0.01 0.89 ± 0.01
MoPoE 0.79 ± 0.01 0.99 ± 0.01 0.97 ± 0.01

(a) Conditional Generation: xM

xS ⇠ pqS(xS | z)

Model qfM (z | xM) qfT (z | xT) qFM,T (z | XM,T)

PoE 0.20 ± 0.04 0.36 ± 0.27 0.42 ± 0.31
MoE 0.38 ± 0.04 0.32 ± 0.03 0.35 ± 0.03
MoPoE 0.42 ± 0.05 0.36 ± 0.02 0.40 ± 0.04

(b) Conditional Generation: xS

xT ⇠ pqT (xT | z)

Model qfM (z | xM) qfS(z | xS) qFM,S(z | XM,S)

PoE 0.16 ± 0.01 0.10 ± 0.00 0.19 ± 0.04
MoE 0.96 ± 0.00 0.80 ± 0.02 0.88 ± 0.01
MoPoE 0.96 ± 0.00 0.81 ± 0.01 0.97 ± 0.00

(c) Conditional Generation: xT

Table 3.3: Generation Coherence on the MNIST-SVHN-Text dataset for methods
using a single joint latent space. The modality above the second hori-
zontal line is generated based on the subsets below the same line in
every subtable. The first row on the right side of every table shows
the generative model pqm (xm | z) whereas the second line shows the
different variational approximations qFA (z | XA), m /2 A. The abbrevi-
ations of the different modalities are xM for MNIST, xS for SVHN, and
xT for text. The reported results are the mean and standard deviation
of five runs.
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Model X ⇠ pQ(X | z)

PoE 0.24 ± 0.00
MoE 0.33 ± 0.00
MoPoE 0.31 ± 0.00

Table 3.5: Random Generation Coherence on the MNIST-SVHN-Text dataset for
methods using a single joint latent space. We condition the generation
of multimodal samples X on random latent vectors z ⇠ pQ(z). The
reported results are the mean and standard deviation of five runs.

representations. MoE-VAE achieves good performance for the generation of
samples conditioned on a single modality xm but is not able to benefit from
having access to more than one modality (most right column in Tables 3.4a
to 3.4c). Similar to the evaluation of the latent representation, we also report
the average performance over subsets XA of the same size |A| for assessing
the coherence for the PolyMNIST dataset in Figure 3.5b. The evaluation
of the PolyMNIST dataset confirms the results from the MST dataset for
MoE-VAE.

PoE-VAE shows difficulties generating coherent samples if not condi-
tioned on the complete set of modalities X . Similar to the latent representa-
tion classification accuracy, the coherence of generated samples improves
when the generation is conditioned on two modalities instead of a sin-
gle modality (see the first row in Tables 3.4a to 3.4c). Again, we confirm
the MST dataset results with the results on the PolyMNIST dataset (see
Figure 3.5b). The coherence of generated samples by PoE-VAE improves
with an increasing number of input modalities but cannot compete with
MoE-VAE and MoPoE-VAE.

MoPoE-VAE outperforms the two previous works, PoE-VAE and MoE-
VAE, regarding the coherence of generated samples. We see good results in
Table 3.3 and Figure 3.5b.

3.3.3.3 Test Set Log-Likelihood

To measure the quality of the approximation to the empirical data distri-
bution, we estimate the test set log-likelihoods of modalities m 2M. The
test set log-likelihood measures the probability of the samples in the test
set given the learned model. Multimodal VAEs optimize the likelihood of a
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qfM (z | xM) qfS(z | xS) qfT (z | xT)

PoE �2127.1 ± 31.6 �1939.5 ± 8.6 �2533.6 ± 483.5
MoE �1985.7 ± 1.5 �1856.2 ± 10.8 �2018.3 ± 1.7
MoPoE �1988.4 ± 1.7 �1856.3 ± 3.6 �2021.5 ± 1.8

(a) 8 A : |A| = 1 (Single Modality)

qFM,S(z | XM,S) qFM,T (z | XM,T) qFS,T (z | XS,T)

PoE �1882.4 ± 9.6 �2436.6 ± 472.7 �1884.1 ± 14.5
MoE �1911.8 ± 6.6 �2001.7 ± 1.4 �1924.5 ± 7.4
MoPoE �1819.9 ± 2.9 �1983.7 ± 1.8 �1848.2 ± 3.3

(b) 8 A : |A| = 2

qF(z | X)

PoE �1801.4 ± 3.0
MoE �1940.7 ± 5.7
MoPoE �1815.5 ± 2.8

(c) 8 A : |A| = 3 (Full set of modalities)

Table 3.6: Test set log-likelihoods on MNIST-SVHN-Text. We report the test set
log-likelihoods of the joint generative model pQ(X | z) conditioned
on the variational posterior of subsets of modalities qFA (z | XA).
The abbreviations for the different modalities are xM for MNIST, xS
for SVHN, and xT for text. We denote the full set of modalities as
X = {xM,xS,xT}.
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data sample X given some latent vector z. Hence, it is possible to evaluate
a trained model based on the achieved test-set log-likelihood.

Table 3.6 reports the test set log-likelihoods for the three methods PoE-
VAE, MoE-VAE, and MoPoE-VAE. We report the log-likelihoods based
on the posterior approximations of different subsets XA. Similar to the
reported results for the latent representation classification and the coherence
of generated samples, we also want a high quality of generated samples
independent of the available modalities. The behavior of the three methods
is again similar for both datasets, MST and PolyMNIST (see Sections 3.3.3.1
and 3.3.3.2). In Table 3.6, MoE-VAE achieves the best log-likelihoods if
only a single modality is available. For more than a single input modality,
PoE-VAE and MoPoE-VAE outperform MoE-VAE.

MoPoE-VAE improves its log-likelihood numbers with increasing modal-
ities, but not as much as PoE-VAE, achieving the best log-likelihood results
given the complete set X as input. Figure 3.5c confirms the results from the
MST dataset. We aggregate the achieved log-likelihood numbers from dif-
ferent subsets XA of the same size |A|. We see that also for the PolyMNIST
dataset, MoE-VAE achieves the highest log-likelihood if only a single modal-
ity is given as input. PoE-VAE and MoPoE-VAE improve their performance
for multiple modalities, outperforming MoE-VAE.

The performance of PoE-VAE for some input subsets seems unstable over
multiple seeds, which we see in the high standard deviations.

3.3.3.4 Fidelity Metrics for Image Modalities

We additionally evaluate the sample quality of image modalities based on
fidelity metrics, as discussed in Section 2.3.5.1. Fidelity metrics offer an
alternative view of the quality of generated samples compared to test set
log-likelihoods. Table 3.8 reports the average precision of the precision-recall
metric for generative models [Saj+18] (see also Section 2.3.5.1) for the MST
dataset. In Table 3.9a, we report the results for the generation of MNIST
samples, and in Table 3.9b for the generation of SVHN samples. In both
cases, we evaluate the conditional generation performance of pqm(xm | z)
based on the posterior approximations qFA(z | XA), 8 A 2 {A : m /2 A}.
Interestingly, the impact on the performance of PoE-VAE of having access
to only a single modality instead of the complete set X is smaller than
the impact on the reported test set log-likelihoods. Besides that, PoE-VaE
can outperform the other two methods, MoE- and MoPoE-VAE, concerning
the visual quality of generated image modalities. Among the latter two,
MoPoE-VAE outperforms MoE-VAE, which follows the trend we already
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xM ⇠ pqM (xM | z)

Model qfS(z | xS) qfT (z | xT) qFS,T (z | XS,T) pQ(z)

PoE 0.58 ± 0.02 0.40 ± 0.04 0.40 ± 0.05 0.58 ± 0.02
MoE 0.17 ± 0.02 0.10 ± 0.02 0.15 ± 0.02 0.32 ± 0.01
MoPoE 0.28 ± 0.02 0.18 ± 0.02 0.13 ± 0.02 0.42 ± 0.02

(a) MNIST

xS ⇠ pqS(xS | z)

Model qfM (z | xM) qfT (z | xT) qFM,T (z | XM,T) pQ(z)

PoE 0.37 ± 0.06 0.19 ± 0.10 0.19 ± 0.10 0.37 ± 0.07
MoE 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.23 ± 0.02
MoPoE 0.07 ± 0.03 0.05 ± 0.03 0.04 ± 0.03 0.25 ± 0.03

(b) SVHN

Table 3.8: Quality of generated samples on MNIST-SVHN-Text. We report the
average precision based on the precision-recall metric for generative
models (higher is better) for conditionally and randomly generated
image data. We denote the type of generation (random or conditional)
using the variational approximation distribution qFA (z | XA) or the
prior distribution pQ(z) in the second row of every table.
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saw in the log-likelihood results (see Table 3.6). Also, we see that the average
reported numbers for generating SVHN samples are lower than the MNIST
ones, reflecting the two datasets’ relative difficulty.

3.3.4 Discussion of Results

The evaluation of methods in Section 3.3.3 shows the improved performance
of MoPoE-VAE over PoE-VAE and MoE-VAE. Its generalized formulation,
which takes all subsets of modalities XA, A 2 P(M) into account, can
overcome most of the limitations of previous works. We can show that
MoPoE-VAE infers meaningful latent representations and generates coher-
ent samples for all input subsets XA, A 2 P(M). In addition, MoPoE-VAE
also produces high-quality samples according to the achieved test set log-
likelihoods.

Figure 3.6 shows a qualitative comparison of random samples generated
by the three multimodal VAEs, complementing the evaluation based on
log-likelihoods and fidelity metrics. Qualitatively, the samples in Figure 3.6
confirm the evaluation and results described in Section 3.3: PoE-VAE pro-
vides better generative quality than MoE-VAE, leading to more coherent
samples, and MoPoE-VAE provides the best trade-off between coherence
and quality of all three methods.

3.4 limitations of scalable multimodal vaes

Multimodal VAEs are a promising method for efficient generative learn-
ing. However, there seems to be a trade-off between the generative qual-
ity of samples and their coherence [Dau+22]. In Section 3.3, we see that
MoPoE-VAE [SDV21] is not able to surpass the PoE-VAE [WG18] regarding
generative quality if the complete set X is present.

In Daunhawer et al. [Dau+22], we investigate the drawbacks of mixture-
based multimodal VAEs concerning the quality of their generated samples.
We can show a gap in the quality of generated samples between mixture-
based models and their unimodal counterparts on the PolyMNIST dataset
(see Section 3.3.1.2). In Section 3.2.4, we showed how the MoPoE-based joint
posterior approximation generalizes the formulation of previous works
[Shi+19; SDV21; WG18]. Therefore, the discovered limitations apply to all
methods that follow Definition 3.2.1.

Figure 3.8 shows the results for the three multimodal VAEs we introduced
in Section 3.2. We evaluate the methods for different b values.
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(a) PoE: MNIST (b) PoE: SVHN (c) PoE: Text

(d) MoE: MNIST (e) MoE: SVHN (f) MoE: Text

(g) MoPoE: MNIST (h) MoPoE: SVHN (i) MoPoE: Text

Figure 3.6: We qualitatively compare the random generation of the three methods:
PoE-VAE, MoE-VAE, and MoPoE-VAE. From the prior distribution,
we generate samples by first sampling z ⇠ pQ(z), which are then
input to the respective decoder pqm (xm | z). We use the same z for
corresponding cells of the image matrices of every row such that
we have coherence in the generated samples. The samples reflect
the log-likelihoods reported in Table 3.7c and coherence results in
Table 3.3 with PoE-VAE producing the highest quality of samples but
lacking coherence.
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(a) PoE (b) MoE (c) MoPoE

Figure 3.7: Ten unconditionally generated multimodal PolyMNIST samples.
Column-wise, we use the same latent codes sampled from the prior
distribution. Note that, row-wise, the digits should not be ordered.

(a) Latent Representation (b) Coherence (c) Log-Likelihood

Figure 3.8: Sensitivity analysis over different b values for three multimodal VAEs
on the PolyMNIST dataset. We show the results for PoE-VAE, MoE-
VAE, and MoPoE-VAE. All methods are trained and evaluated for
b 2 {3e�4, 3e�3, 3e�2, 3e�1, 1, 3, 9}.

We assess the quality of the learned joint latent representations by classi-
fying them according to the shared information of the multimodal set (see
Section 3.3.3). We evaluate the quality of the learned latent representation in
the same way as described in Section 3.3.3. We train a linear classifier on 500
samples of the joint representations of the training set to predict the digit
information, which is shared among all modalities. This linear classifier is
then used to predict the digit information from joint representations of the
test set. In Figure 3.8a, all methods perform well for different b values. The
results reflect those reported in Section 3.3.3.1.

We also evaluate the coherence of generated samples. In Figure 3.8b, we
see the results of the methods’ conditional generation coherence. We use
the same pre-trained classifiers as in Section 3.3.3.2 to predict the digit
information from generated samples. We give 4 out of 5 modalities as input
and generate the missing modality conditioned on the input modalities.
Similar to the quality of the learned latent representations, we see that the
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results for the coherence evaluation of generated samples are also robust
for a big part of the b range. The coherence of the PoE-VAE increases only
for high b values but cannot reach the performance of both MoE-VAE and
MoPoE-VAE. Additionally, using a high b value reduces the stability of the
PoE-VAE to the extent that we could not report results for b = 9.0. Besides
that, MoPoE-VAE achieves the highest coherence for all b values, reflecting
the results from Section 3.3.3.2.

To evaluate the quality of samples for different b values, we look again
at the test set log-likelihood as in Section 3.3.3.3. In Figure 3.8c, we report
the joint log-likelihood for the three different multimodal VAEs introduced
in Section 3.2. Additionally, we train unimodal VAEs on all 5 PolyMNIST
modalities and report the sum of their test set log-likelihoods. No multi-
modal VAE can reach the same quality of samples as independent unimodal
VAEs [Dau+22].

3.4.1 Discussion of Limitations

In this section, we show the limitations of multimodal VAEs that use a
MoPoE-based distribution for their joint variational posterior approximation
in combination with a single joint latent space according to Section 3.2.3. For
the complete set of input modalities, MoPoE-based multimodal VAEs lack
generative quality compared to the unimodal VAE despite their advantage
of having access to more information (see Figure 3.8c). From the methods
following Definition 3.2.1, PoE-VAE shows the best generative quality
but is still worse than the unimodal VAE. On the other hand, PoE-VAE
shows inferior performance regarding the coherence measure in case of
missing modalities (see Figure 3.8b). Interestingly, the relative performance
of methods seems to be consistent for different b-values (see Figure 3.8)
[Hig+16].

3.5 conclusion

This chapter discusses three VAE-based methods to learn from multi-
modal data. We introduce a new probabilistic aggregation function [MoPoE,
SDV21], which outperforms and generalizes previous works. MoPoE is a
mixture of products of experts, which defines a mixture distribution over
all multimodal subsets, which it combines using the product of experts.
We show how the idea behind MoPoE-VAE [SDV21] generalizes previous
works [Shi+19; WG18] and is critical to a better trade-off between the quality
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and coherence of generated samples. While MoE-VAE [Shi+19] performs
best if only a single modality is given as input, PoE-VAE [WG18] reaches
the best performance if the full set of modalities is given as input. Only
MoPoE-VAE achieves a stable and good performance across all possible
input subsets.

Nevertheless, MoPoE-based multimodal VAEs show a gap in genera-
tive quality compared to unimodal VAEs despite their theoretical advan-
tage of belonging to the class of weakly-supervised learning problems
and, therefore, having access to more data and information than their
unimodal counterpart [Dau+22]. Multimodal data is a complex form of
weakly-supervised data, as the relationship between modalities is unknown.
Therefore, PoE-VAE [WG18], MoE-VAE [Shi+19], and MoPoE-VAE [SDV21]
implicitly make restrictive assumptions regarding the underlying group
structure of a multimodal sample. The assumptions focus on extracting the
shared information between modalities while neglecting the information
only present in the individual modalities, which seems to hurt the genera-
tive quality of multimodal VAEs. In Chapter 4, we introduce an extension to
learning from multimodal data, which is targeted toward providing more
flexible assumptions regarding the underlying group structure.



4
M O R E F L E X I B I L I T Y B Y I N T R O D U C I N G
M O D A L I T Y- S P E C I F I C L AT E N T S U B S PA C E S

In Chapter 3, we describe and evaluate different approaches to implement
scalable multimodal VAEs. In the limitations section (Section 3.4) we ex-
plain and discuss why none of the proposed methods, PoE (section 3.2.1),
MoE (section 3.2.2) or MoPoE (section 3.2.3), can fulfill all desiderata for
multimodal models (see Section 2.3). In this chapter, we introduce modality-
specific latent subspaces for multimodal VAEs. Instead of only having a
single joint latent space as in the previous chapter, we assume a shared
multimodal latent space and additional modality-specific latent subspaces.
The shared latent factors represent the information shared between all
modalities, and the modality-specific latent factors encode the information
specific to individual modalities.

Hsu and Glass [HG18] and Tsai et al. [Tsa+19] proposed models with
modality-specific and shared latent distributions. The former [HG18] relies
on supervision by labels to extract shared generative factors, while the latter
approach [Tsa+19] is non-scalable. Bouchacourt, Tomioka, and Nowozin
[BTN18] and Hosoya [Hos18] introduce latent subspaces for datasets, where
they assume knowledge of the grouping information. Recently, Palumbo,
Daunhawer, and Vogt [PDV22] proposed a multimodal VAE using shared
and modality-specific latent subspaces, which uses auxiliary prior distribu-
tions.

Learning disentangled representations holds the promise of being more
interpretable and intervenable, more suitable for downstream tasks and
transfer learning approaches [BCV13; Lak+17; Loc+19; PJS17; Sch92; TBL18].
Locatello et al. [Loc+20] and Shu et al. [Shu+19] discuss the disentanglement
of groups of shared and independent latent factors in the weakly-supervised
setting. Methods using additional loss terms or contrastive approaches as
regularizers to achieve a better disentanglement of modality-specific and
shared latent factors are available [Che+18; Hwa+21; Joy+21; Shi+20], and
probably would improve the performance and results presented in this
section further. Adding more regularizers and loss terms makes analyzing
and interpreting results and methods more difficult. We base our findings
on clean loss functions without additional objectives; the shared encoding
is the output of either an MoE, PoE, or MoPoE aggregation function. On

77
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purpose, we relinquish any additional loss terms or objectives, improving
disentanglement between the latent spaces, as we are interested in the effect
of different aggregation functions and assumptions on multimodal metrics.

4.1 shared and modality-specific latent spaces

In Chapter 3, we aggregate the unimodal latent experts qfm(z | xm) based
on some probabilistic aggregation function f resulting in the joint posterior
distribution qF(z | X), where the aggregation is independent of the infor-
mation stored in the latent dimension zj 2 z. I. e., the aggregation function
f applies the same operation to all latent factors.

Bouchacourt, Tomioka, and Nowozin [BTN18] and Hosoya [Hos18] pro-
pose extensions to the vanilla VAE incorporating group information be-
tween samples. Group information is a form of weak supervision as it
provides additional information compared to the i.i.d. setting [Loc+20].
Grouped observations are assumed to be invariant regarding specific gener-
ative factors that define the group. In Section 2.3, we describe how multiple
modalities naturally form a group depending on the data collection process.
We assume that a multimodal sample X = {x1, . . . ,xM} is a group of M
samples, which are connected by some shared latent factors y. Please note
that, in general, the shared factors y do not need to be shared between
all modalities X , as there can be a more complicated structure of shared
attributes between subsets yA (see Section 2.3.2). In this section, the under-
lying modeling assumption is that all modalities xm, m 2M have the same
shared attributes y ⇢ ym such that it holds

y =
\

m2A
ym 8 A ✓M, (4.1)

where ym are the generative factors of modality m 2M.
Hence, instead of aggregating all dimensions of the unimodal posterior

approximations qfm(z | xm), we introduce latent subspaces that enable
us to aggregate only shared information between the modalities m 2 M

[Dau+20; SDV20]. And instead of a single latent variable z 2 Rd, we
now have zs̄ 2 Rds̄ for the shared information between modalities and
zm 2 Rdm , 8 m 2M for the modality-specific information, i. e.

z = [zs̄, z1, . . . ,zM] (4.2)
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zs̄

xM

N

xmx1 · · · · · ·

X

z1 zm zM

(a) Generative Model

zs̄

xM

N

xmx1 · · · · · ·

X

z1 zm zM

(b) Inference Model

Figure 4.1: Graphical models for multimodal VAEs utilizing additional modality-
specific latent subspaces zm. We assume that every modality xm
is generated by some underlying latent factors [zs̄, zm]. The latent
factors zs̄ are shared between all modalities xm 2 X whereas the
factors zm are modality-specific, i. e. they are only present in modality
xm.

Lemma 4.1.1 (Multimodal ELBO using latent subspaces [Dau+20; SDV20]).

For ds̄ 2 N and dm 2 N, m 2 M, the multimodal ELBO L(Q, FM,s̄;X)
using a shared latent subspace zs̄ 2 Rds̄ and M modality-specific subspaces
zm 2 Rdm , 8 m 2M is given as

L(Q, FM,s̄;X) = EqFs̄ (zs̄ |X)

"
M

Â
m=1

Eqfm (zm |xm) [log pqm (xm | zs̄, zm)]

#

� DKL [qFs̄(zs̄ | X) || pQ(zs̄)] (4.3)

�

M

Â
m=1

DKL
⇥
qfm(zm | xm) || pqm(zm)

⇤

where qfm(zm | xm) are the modality-specific posterior approximations and
qF(zs̄ | X) the shared posterior approximation. The variational parameters
FM,s̄ = [FM, Fs̄] are split into modality-specific parameters FM = [f1, . . . , fM]
and shared parameters Fs̄.

Proof. By assumption, the variational posterior qfm(zm | xm) inferring
the modality-specific factors zm of modality m is only conditioned on
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xm. The variational posterior qFs̄(zs̄ | X) inferring the shared factors zs̄
is instead conditioned on the full set of modalities X . Additionally, we
assume conditional independence of the latent vectors zs̄ and zm, 8 m 2M.

qF(z | X) =qFM,s̄(zs̄, z1, . . . ,zM | X) (4.4)

=qFs̄(zs̄ | X)qFM
(z1, . . . ,zM | X) (4.5)

=qFs̄(zs̄ | X) ’
m2M

qfm(zm | xm) (4.6)

Also by assumption, the probability of a data sample of modality pqm(xm |

z) is reformulated to be conditioned on the shared latent z̄s and the
modality-specific information zm only, 8 m 2M

pQ(X | z) =pQ(X | zs̄, z1, . . . zM) (4.7)
= ’

m2M

pqm(xm | zs̄, z1, . . . zM) (4.8)

= ’
m2M

pqm(xm | zs̄, zm) (4.9)

Hence, we formulate the multimodal ELBO L(Q, FM,s̄;X) using zs̄ and zm
as follows

LLS = EqFM,s̄ (z|X)

"
M

Â
m=1

log pqm(xm | zs̄, zm)

#
(4.10)

�EqFM,s̄ (z|X)

"
log

qFs̄(zs̄ | X)’M
m=1 qfm(zm | xm)

pQ(zs̄)’M
m=1 pqm(zm)

#

= EqFM,s̄ (z|X)

"
M

Â
m=1

log pqm(xm | zs̄, zm)

#
(4.11)

�EqFs̄ (z|X)


log

qFs̄(zs̄ | X)
pQ(zs̄)

�

�

M

Â
m=1

Eqfm (z|xm)


log

qfm(zm | xm)

pqm(zm)

�

= EqFs̄ (zs̄ |X)

"
M

Â
m=1

Eqfm (zm |xm) [log pqm(xm | zs̄, zm)]

#
(4.12)

� DKL [qFs̄(zs̄ | X) || pQ(zs̄)]�
M

Â
m=1

DKL
⇥
qfm(zm | xm) || pqm(zm)

⇤

Please note that we use the short notation LLS to denote the multimodal
ELBO L(Q, FM,s̄;X).
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To infer the variational posterior qF(z̄s | X), we leverage the aggregation
functions introduced in Section 3.2. Following Lemma 4.1.1, the latent space
capacity of the split model is equal to single joint space models described
in Section 3.2 if

d = ds̄ + dm 8 m 2M (4.13)

In addition, introducing latent subspaces for the modality-specific informa-
tion would enable the latent spaces of different sizes for different modalities
i, j 2M. If di 6= dj, we can adapt the size of the modality-specific subspace
to the difficulty of the respective modalities i and j. In this thesis, we set
the size of the modality-specific latent spaces to be equal for all m 2M.

4.2 experiments & results

This section describes the experiments, datasets, and results used to evaluate
the proposed multimodal VAEs using modality-specific latent subspaces.
We use the same evaluation metrics as in Chapter 3 such that the results
from different modeling assumptions are comparable. We also perform
experiments on the MNIST-SVHN-Text dataset. In addition, we introduce a
bimodal version of the CelebA dataset to highlight the improved generative
performance from the more flexible modeling assumptions. At the end of
this chapter, we again discuss the results and limitations of the introduced
method.

4.2.1 Datasets

We evaluate the different methods on two different datasets. First, the
MNIST-SVHN-Text (MST) dataset, which we already introduced in Sec-
tion 3.3.1. Second, we introduce a bimodal version of the CelebA dataset
[Liu+15], which consists of images and text.

4.2.1.1 Bimodal CelebA

CelebA [Liu+15] is an image dataset showing the faces of celebrities. It
consists of N = 2020559 samples from 100177 individuals, and every im-
age is labeled according to 40 different attributes. We generate a bimodal
dataset by converting each of the 40 labels to text. The text modality is a
concatenation of the textual description of the available attributes into a
comma-separated text. Underline characters are replaced by a blank space.
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EncM
. . .Enc1

xMx1

DecM
. . .Dec1

x̂Mx̂1

fagg(·)

zs̄ ⇠ qF(zs̄ | X)

qfM (zs̄ | xM)qf1(zs̄ | x1)

z1 ⇠ qf1(z1 | x1) zM ⇠ qfM (zM | xM)

Figure 4.2: The basic architecture of all methods is described in Section 4.1.
They only differ in the fagg building block. Different to the basic
architecture in Figure 3.2, the latent representation of every encoder
Encm is the input to fully-connected layers mapping to the shared
latent subspace qfm (zs̄ | xm) and the modality-specific latent subspace
qfm (zm | xm). To reduce clutter, we illustrate it with two modalities
only.
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(a) Eyeglasses (b) Wearing Hat

(c) Bangs (d) Wavy Hair

Figure 4.3: Examples of Celeba images. Every subfigure shows three samples that
are labeled positively with the corresponding attribute, eyeglasses
(Figure 4.3a), wearing hat (Figure 4.3b), bangs (Figure 4.3c), and wavy
hair (Figure 4.3d). The images are taken from the project website
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html [Liu+15].

We create strings of 256 characters (the maximum string length possible
following the described rules). If a given face has only a small number
of attributes, which would result in a short string, we fill the remaining
space with the asterisk character ⇤. Figure 4.3 shows image examples, and
Table 4.1 shows examples of strings.

4.2.2 Implementation & Training

We generally follow the same assumptions as in Section 3.3.2. The sig-
nificant difference is how to implement modality-specific and shared la-
tent subspaces. We use a single encoder per modality where the split be-
tween modality-specific and shared latent subspace, qfm(zm | xm) and
qfm(zs̄ | xm), only happens in the last linear layer. E. g. for the MST
dataset we have 4 linear layers for every modality m instead of only 2
as in Tables A.2a, A.4a and A.6a. Two linear layers encode µm(xm) and
diag(�m(xm)), and the remaining two µs̄(xm) and diag(�s̄(xm)). In a sim-
plification of notation, we remove the additional subscripts M and s̄ in
the description of the variational parameters in this section, as it is clear
from context whether we infer the shared zs̄ or modality-specific zm latent
variable.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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bags under eyes, chubby, eyeglasses, gray hair, male, mouth slightly open, oval face, sideburns, smiling, straight hair
big nose, male, no beard, young
attractive, big nose, black hair, bushy eyebrows, high cheekbones, male, mouth slightly open, oval face, smiling, young
5 o clock shadow, bushy eyebrows, chubby, double chin, gray hair, high cheekbones, male, smiling, straight hair
arched eyebrows, attractive, bangs, black hair, heavy makeup, smiling, straight hair, wearing lipstick, young
attractive, brown hair, bushy eyebrows, high cheekbones, male, oval face, smiling, young
attractive, high cheekbones, oval face, smiling, wearing lipstick, young
attractive, blond hair, heavy makeup, high cheekbones, oval face, smiling, wearing lipstick, young
attractive, brown hair, heavy makeup, oval face, pointy nose, straight hair, wearing lipstick, young
5 o clock shadow, bags under eyes, big nose, brown hair, male, mouth slightly open, smiling, young
attractive, brown hair, heavy makeup, high cheekbones, smiling, wavy hair, wearing earrings, wearing lipstick, young
attractive, bangs, blond hair, heavy makeup, high cheekbones, smiling, wavy hair, wearing earrings, wearing lipstick, young

Table 4.1: Examples of strings from the text modality of CelebA. We can generate
pairs of images and texts using the text we generated from the label
descriptions, resulting in a bimodal dataset. For illustrative reasons,
we dropped the asterisk characters.

For methods using a single joint latent space, the latent spaces z of all
modalities xm have the same number of dimensions due to the aggregation
step. By introducing modality-specific subspaces, we get rid of this addi-
tional restriction. Only the shared subspaces of all data types must have the
same number of latent dimensions. The number of latent space dimensions
could account for different difficulty levels between modalities.

We use a batch size of 256 and the Adam optimizer [KB14] with a starting
learning rate of 0.001 for both experiments. We train all models for 100
epochs.

4.2.2.1 MNIST-SVHN-Text

We use the same network architectures as in the experiments with methods
using a single joint latent space (see Tables A.1, A.3 and A.5). To have an
equal number of parameters, we set the modality-specific and shared latent
subspace size to 4 and 16 for all modalities. This allows for a fair comparison
between the two variants regarding the capacity of the latent space. We
model the modalities with the same likelihoods as in Section 3.3.2.

We set b to 5.0 for all MST experiments. Unlike the methods with a
single joint latent space, we introduce an additional hyperparameter bMS
for regularizing the sum of the KL divergences of the modality-specific
subspaces. For all experiments, the bMS for the modality-specific subspaces
is set equal to the number of modalities, i. e.. bMS = 3.0. Additionally,
we add bm for regularizing the KL-divergences of the modality-specific
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subspaces individually. bT for the text modality is set to 5.0, and bm = 1.0
for the other 2 modalities.

4.2.2.2 Bimodal CelebA

For the CelebA experiments, we switched to a ResNet architecture [He+16]
for encoders and decoders of image and text modality due to the difficulty
of the dataset. We describe the specifications of the individual layers for
the image and text networks in Tables A.9 and A.11 in Appendix A.3.1.
The image modality pqI (xI | zs̄, zI) is modelled with a Laplace likelihood
and the text modality pqT (xT | zs̄, zT) with a categorical likelihood. The
likelihoods are scaled following Equation (3.41) where the data dimensions
are

|xI | = 64⇥ 64⇥ 3 = 12288 (4.14)
|xT | = 256 (4.15)

Therefore, we have the following ↵

aI =
|xI |

|xI |
= 1.0 (4.16)

aT =
|xI |

|xT |
= 48.0 (4.17)

The global b is set to 2.5, and the bMS of the modality-specific subspaces
again to the number of modalities, i. e., 2. The shared as well as the modality-
specific latent spaces consist of 32 dimensions.

4.2.3 Evaluation & Results

To evaluate the additional modality-specific latent subspaces, we compare
the same three methods, PoE-VAE, MoE-VAE, and MoPoE-VAE, as in
Chapter 3. This time, every method combines shared and modality-specific
latent subspaces as described in Section 4.1. Hence, we not only compare
the new modeling assumptions to the single joint latent space models in
Chapter 3, we also compare the effect of the new assumption on the three
probabilistic aggregation methods, PoE, MoE, and MoPoE. We evaluate
the methods using the same performance metrics and experiments as in
Chapter 3: latent representation classification and generative coherence and
quality.
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4.2.3.1 Latent Representation Classification

To evaluate the learned representations, we train linear classifiers on the
inferred latent representations of the training set. The procedure is the
same as for methods with a single joint latent space (see Section 3.3.3.1 for
details) except we train and evaluate the linear classifiers on the shared
subspace zs̄ ⇠ qFA(zs̄ | XA), A 2 P(M). Otherwise, we keep the setting
from Section 3.3.3.1.

Compared to the models using only a single joint latent space, the per-
formance remains stable with respect to the classification accuracy. We see
that reducing the number of latent dimensions of the shared subspace to 16
dimensions compared to the 20 dimensions of the joint space does not hurt
the quality of the learned latent representation. For the PoE-VAE, we see
that adding modality-specific latent subspaces does not help in overcoming
the inferior performance for subsets with |A| < 3 (see Tables 4.3a and 4.3b).

4.2.3.2 Generation Coherence

We rely on the same procedure as described in Section 3.3.3 to evaluate
the coherence of the generated samples. We also use the same pre-trained
classifiers when evaluating the joint latent space models.

Conditionally generating samples is different, though. For methods using
a single joint latent space, we generate samples xm conditioned on the
shared latent representation z, where z ⇠ qFA(z | XA) follows the varia-
tional posterior of the input subset A. In the case of conditional generation,
we only choose subsets A where m /2 A. And for random generation, the
subset A is the empty set, i. e. A = ∆ and z ⇠ pQ(z).

For methods using shared and modality-specific subspaces, we gener-
ate samples xm conditioned on the shared zs̄ and the modality-specific zm
latent representations, where zs̄ ⇠ qFA(zs̄ | XA) follows the variational pos-
terior for the shared subspace of the input subset A, and zm ⇠ qfm(zm | xm)
the variational approximation for the modality-specific subspace of modal-
ity m. For the conditional generation of modality m, we again only choose
subsets A where m /2 A. Hence, we sample zs̄ from the variational approx-
imation, i. e. zs̄ ⇠ qFA(zs̄ | XA), and zm from its prior distribution, i. e.
zm ⇠ pqm(zm). For random generations, we sample both zs̄ and zm from
their prior distributions, i. e. zs̄ ⇠ pQ(zs̄) and zm ⇠ pqm(zm) respectively.

Table 4.4 shows the coherence results of PoE-VAE, MoE-VAE, and MoPoE-
VAE using modality-specific latent subspaces on the MST dataset. The
performance is approximately equal to the joint space models when evalu-
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qfM (zs̄ | xM) qfS(zs̄ | xS) qfT (zs̄ | xT)

PoE 0.72 ± 0.07 0.10 ± 0.01 1.00 ± 0.00
MoE 0.96 ± 0.01 0.81 ± 0.03 1.00 ± 0.00
MoPoE 0.96 ± 0.00 0.81 ± 0.02 1.00 ± 0.00

(a) Single Modality: 8 A : |A| = 1

qFM,S(zs̄ | XM,S) qFM,T (zs̄ | XM,T) qFS,T (zs̄ | XS,T)

PoE 0.71 ± 0.07 0.99 ± 0.01 1.00 ± 0.01
MoE 0.88 ± 0.02 0.98 ± 0.00 0.90 ± 0.01
MoPoE 0.97 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

(b) Subsets of two modalities: 8 A : |A| = 2

qF(zs̄ | X)

PoE 0.98 ± 0.01
MoE 0.92 ± 0.01
MoPoE 0.99 ± 0.00

(c) Full set of modalities: |A| = 3

Table 4.2: Linear classification accuracy of latent representations on the MNIST-
SVHN-Text dataset for models using shared and modality-specific
latent subspaces. We evaluate the shared representations zs̄ ⇠ qFA (zs̄ |

XA) of all subsets XA. The abbreviations of the modalities are xM for
MNIST, xS for SVHN, and xT for text. The reported results are the
mean and standard deviation of five runs.
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(a) PoE: MNIST (b) PoE: SVHN (c) PoE: Text

(d) MoE: MNIST (e) MoE: SVHN (f) MoE: Text

(g) MoPoE: MNIST (h) MoPoE: SVHN (i) MoPoE: Text

Figure 4.4: Using shared and modality-specific subspaces, we qualitatively
compare the random generations of the three methods, PoE-VAE,
MoE-VAE, and MoPoE-VAE. We first sample zs̄ ⇠ pQ(zs̄) and
zm ⇠ pqm (zm) from their prior distributions, which are then input
to the respective decoder pqm (xm | zs̄, zm). We use the same zs̄ for
corresponding cells of the image matrices of every row such that we
have coherence in the generated samples.
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xM ⇠ pqM (xM | zs̄, zM)

Model qfS(zs̄ | xS) qfT (zs̄ | xT) qFS,T (zs̄ | XS,T)

PoE 0.10 ± 0.00 0.42 ± 0.12 0.42 ± 0.11
MoE 0.75 ± 0.05 0.95 ± 0.03 0.85 ± 0.04
MoPoE 0.76 ± 0.02 0.98 ± 0.00 0.96 ± 0.00

(a) Conditional Generation: xM

xS ⇠ pqS(xS | zs̄, zS)

Model qfM (zs̄ | xM) qfT (zs̄ | xT) qFM,T (zs̄ | XM,T)

PoE 0.17 ± 0.02 0.38 ± 0.19 0.44 ± 0.22
MoE 0.88 ± 0.00 0.93 ± 0.00 0.91 ± 0.00
MoPoE 0.89 ± 0.00 0.93 ± 0.01 0.93 ± 0.00

(b) Conditional Generation: xS

xT ⇠ pqT (xT | zs̄, zS)

Model qfM (zs̄ | xM) qfS(zs̄ | xS) qFM,S(zs̄ | XM,S)

PoE 0.18 ± 0.03 0.10 ± 0.00 0.18 ± 0.03
MoE 0.76 ± 0.11 0.65 ± 0.10 0.70 ± 0.10
MoPoE 0.91 ± 0.01 0.74 ± 0.03 0.91 ± 0.02

(c) Conditional Generation: xT

Table 4.4: Generation Coherence on the MNIST-SVHN-Text dataset for methods
using shared and modality-specific latent subspaces. The modality
above the second horizontal line is generated based on the subsets
below the same line for every subtable. The first row on the right side
of every table shows the generative model pqm (xm | zs̄, zm) whereas
the second line shows the different variational approximations qFA (zs̄ |

XA), m /2 A. The abbreviations of the different modalities are xM for
MNIST, xS for SVHN, and xT for text. The reported results are the
mean and standard deviation of five runs.
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Model X ⇠ pQ(X | zs̄, zM, zS, zT)

PoE 0.23 ± 0.00
MoE 0.30 ± 0.00
MoPoE 0.41 ± 0.00

Table 4.6: Random Generation Coherence on the MNIST-SVHN-Text dataset for
methods including shared and modality-specific latent subspaces. We
draw random latent vectors zs̄ ⇠ pQ(zs̄) and zm ⇠ pqm (zm) from the
respective prior distributions. The reported results are the mean and
standard deviation of five runs.

ating the coherence of conditionally generated MNIST samples. MoE-VAE
and MoPoE-VAE perform slightly inferior, but PoE-VAE can increase its
coherence numbers for the MNIST modality. Assessing the coherence of
generated SVHN samples, we see that PoE-VAE achieves similar results to
its joint latent space version. Moe-VAE and MoPoE-VAE can improve their
coherence significantly compared to their joint latent space versions. For
the text modality, the coherence of all methods is slightly worse compared
to the joint space models. Interestingly, only MoPoE-VAE can increase its
joint random coherence compared to the joint space models. PoE-VAE and
MoE-VAE show the same performance.

4.2.3.3 Generative Quality of Samples

To evaluate the generative quality of samples, we again look at test set
log-likelihoods and fidelity metrics for image modalities. The generation
of samples follows the scheme described in Section 4.2.3.2. Different from
the coherence results, we always approximate the joint log-likelihoods
log pQ(X) and not the likelihoods of single modalities log pqm(xm). In Ta-
ble 4.7, we report the test set log-likelihoods, and in Table 4.9, the average
precision of the precision-recall metric for generative models [Saj+18]. We
report the log-likelihood results in three subtables for the generation con-
ditioned on subsets of the same size |A|. Table 4.8a shows the result for
|A| = 1, Table 4.8b for |A| = 2, and Table 4.8c for the full input set.

Compared to the test set log-likelihoods from models with a single
joint latent space, the numbers for models with shared and modality-
specific latent subspaces are slightly inferior. Surprisingly, this result is
independent of the input subset’s size |A|. When generating the complete
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qfM (zs̄ | xM) qfS(zs̄ | xS) qfT (zs̄ | xT)

PoE �2139.0 ± 13.6 �1940.7 ± 7.9 �2525.5 ± 614.7
MoE �2068.8 ± 2.3 �1916.6 ± 2.6 �2082.7 ± 4.0
MoPoE �2065.8 ± 4.7 �1915.2 ± 4.7 �2084.0 ± 2.7

(a) Subsets consisting of a single modality: 8 A : |A| = 1

qFM,S(zs̄ | XM,S) qFM,T (zs̄ | XM,T) qFS,T (zs̄ | XS,T)

PoE �1907.9 ± 19.7 �2443.3 ± 614.5 �1895.1 ± 12.0
MoE �1914.1 ± 2.2 �2083.4 ± 4.0 �2086.2 ± 3.9
MoPoE �1907.1 ± 5.6 �2079.7 ± 5.4 �2082.6 ± 6.9

(b) Subsets consisting of two modalities: 8 A : |A| = 2

qF(zs̄ | X)

PoE �1821.1 ± 14.5
MoE �2085.6 ± 3.8
MoPoE �2079.4 ± 9.5

(c) Full set of modalities: 8 A : |A| = 3

Table 4.7: Test set log-likelihoods on the MNIST-SVHN-Text dataset for meth-
ods including shared and modality-specific latent subspaces. We
report the test set log-likelihoods of the joint generative model
Âm2M pqm (xm | zs̄, zm) conditioned on the variational posterior of
subsets of modalities qFA (zs̄ | XA). The modalities are given as xM
for MNIST, xS for SVHN, xT for text. We denote the full set of modal-
ities as X = {xM,xS,xT}. The reported results are the mean and
standard deviation of five runs.
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set of modalities X from a subset of modalities XA, the modality-specific
information zm for the missing modalities xm, m /2 A has to be sampled
from the prior pqm(zm). Hence, compared to the joint space models, a lower
test-set log-likelihood is reasonable because joint space models do not have
to sample from the prior distribution pQ(z) when conditionally generating
samples. More surprisingly, we see the same results pattern even for the
complete set of input modalities X , where we do not have to sample from
the prior distributions of the modality-specific subspaces pqm(zm) either.
Again, we see the unstable performance of PoE-VAE (see Section 3.3.3.3)
over different seeds, which we see in the high standard deviations.

In Table 4.9, we report the results for the precision-recall metric for
generative models for the image modalities, MNIST (Table 4.10a) and SVHN
(Table 4.10b). Compared to Table 3.8, where we report the performance of
models using a single joint latent space, we see that all models improve their
performance when using shared and modality-specific latent subspaces for
both modalities. MoE-VAE and MoPoE-VAE benefit a lot and surpass PoE-
VAE in most cases regarding the generative quality of samples, although
PoE-VAE also reports better numbers.

Visually comparing randomly generated samples, i. e., samples, which are
sampled from the prior distribution pQ(zs̄, zM, zS, zT) or pQ(z) respectively,
confirms the findings on a qualitative level (see Figure 4.4 to the ones
in Figure 3.6): extending multimodal VAEs with modality-specific latent
subspaces improves the quality of their generated samples. The two sets of
generated samples were selected randomly in Figure 3.6 and Figure 4.4.

4.2.3.4 Results for Bimodal CelebA

We evaluate the learned latent representations and the coherence and quality
of generated samples. Unlike the experiments on the MST and PolyMNIST
datasets, we measure the performance on the bimodal CelebA dataset using
the average precision metric. There are 40 different attributes for every
multimodal sample. The class imbalance for the different attributes varies,
so average precision is better suited than accuracy to report the results.
To simplify the reporting of classification metrics, we report the mean
average precision of the 40 attributes in Tables 4.11 and 4.12. Similar to the
experiments on the MST and PolyMNIST datasets, we assess the coherence
and latent representations of the different methods according to all the
possible input subsets. The sample quality is evaluated in Figure 4.5 on a
qualitative level only.
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xM ⇠ pqM (xM | zs̄, zM)

Model qfS(zs̄ | xS) qfT (zs̄ | xT) qFS,T (zs̄ | XS,T) pQ(zs̄)

PoE 0.55 ± 0.01 0.33 ± 0.03 0.33 ± 0.03 0.56 ± 0.02
MoE 0.62 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.51 ± 0.02
MoPoE 0.62 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.51 ± 0.01

(a) MNIST

xS ⇠ pqS(xS | zs̄, zS)

Model qfM (zs̄ | xM) qfT (zs̄ | xT) qFM,T (zs̄ | XM,T) pQ(zs̄)

PoE 0.38 ± 0.02 0.18 ± 0.05 0.20 ± 0.05 0.38 ± 0.02
MoE 0.23 ± 0.02 0.23 ± 0.02 0.22 ± 0.02 0.19 ± 0.02
MoPoE 0.23 ± 0.02 0.22 ± 0.02 0.23 ± 0.02 0.20 ± 0.02

(b) SVHN

Table 4.9: Quality of generated samples on MNIST-SVHN-Text. We report the
average precision based on the precision-recall metric for generative
models (higher is better) for conditionally and randomly generated
image data. We denote the type of generation (random or conditional)
using the variational approximation distribution qFA (zs̄ | XA) or the
prior distribution pQ(z) in the second row of every table. The gener-
ation follows the process described in Section 4.2.3.2. The modalities
are given as xM for MNIST, xS for SVHN, xT for text.
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Table 4.11 shows the performance of the three methods, PoE-VAE, MoE-
VAE, and MoPoE-VAE, regarding their learned latent representations.
Again, MoE-VAE and MoPoE-VAE outperform PoE-VAE regarding the
quality of learned representation according to linear classification accuracy.
Given the bimodal nature of the dataset, the performances of MoE-VAE
and MoPoE-VAE are approximately equal, as the aggregation of different
modalities is less critical in the two-modality setting.

Interestingly, the coherence results in Table 4.12 for the conditional gener-
ation of text based on an input image xT ⇠ pqT (xT | zs̄, zT) do not reflect
the results seen on the MST and PolyMNIST datasets. PoE-VAE achieves the
best coherence among the three methods. MoE-VAE and MoPoE-VAE seem
to have difficulties learning the generation of text conditioned on input
images. For the text-to-image generation, xI ⇠ pqI (xI | zs̄, zI), MoPoE-VAE
and MoE-VAE again achieve better numbers compared to PoE-VAE.

Model qfI,s̄(zs̄ | xI) qfT,s̄(zs̄ | xI) qFs̄(zs̄ | X)

PoE 0.30 0.31 0.32
MoE 0.35 0.38 0.35
MoPoE 0.40 0.39 0.39

Table 4.11: Linear classification results of latent representations on the bimodal
CelebA dataset for models using shared and modality-specific sub-
spaces. We report the mean average precision across all 40 attributes
to assess the quality of the learned representations. We evaluate the
shared representation zs̄ ⇠ qFA (zs̄ | XA), A ✓ {I, T}. xI denotes the
image modality, and xT the text modality such that X = {xI ,xT}.

4.3 discussion and limitations

In Section 4.2.3, methods using shared and modality-specific latent sub-
spaces improve on most metrics over models using a single joint latent
space only (see Section 3.3.3). More flexible modeling assumptions improve
the quality of generated samples. Latent representation classification and
coherence of generated samples overall benefit as well, which is more
surprising as these metrics are based on the shared latent factors zs̄. As
described in Section 4.2.2, we reduce the shared dimensions by the size of
the modality-specific subspaces zm. Hence, we can achieve a better perfor-
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xT ⇠ pqT (xT | zs̄, zT) xT ⇠ pqI (xI | zs̄, zI)

Model qfI,s̄(zs̄ | xI) qfT,s̄(zs̄ | xT)

PoE 0.26 0.33
MoE 0.14 0.41
MoPoE 0.15 0.43

Table 4.12: Coherence results on the bimodal CelebA dataset for methods using
shared and modality-specific latent subspaces. The first row on the
right side of every table shows the generative model pqm (xm | zs̄, zm)
whereas the second line shows the different variational approxima-
tions qFA (zs̄ | XA), m /2 A. We report the mean average precision
across all 40 attributes to assess the coherence of generated samples.
xI denotes the image modality, and xT the text modality.

Figure 4.5: Qualitative results for bimodal CelebA. The images are conditionally
generated by MoPoE-VAE using the text on top of each column.
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(a) |A| = 1 (b) |A| = 2 (c) |A| = 3

(d) |A| = 1 (e) |A| = 2 (f) |A| = 3

(g) |A| = 1 (h) |A| = 2 (i) |A| = 3

Figure 4.6: Results for different latent subspace sizes on the MNIST-SVHN-Text
dataset for methods using shared and modality-specific latent sub-
spaces. For all plots, we use the same subspace size d for all modali-
ties, i. e. d = ds̄ + dm = 20, 8 m 2 {M, S, T}. The x-axis of every plot
shows the size of the shared space ds̄, where the y-axis shows the
performance metric. The first row shows the results for evaluating
the latent representations, the second for the coherence, and the last
for the joint log-likelihoods. The columns sort the plots according to
the size of the input subset |A|. We report the mean and standard
deviations over 5 runs.
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mance although the shared latent space in this chapter ds̄ is smaller than
the joint latent space d in Chapter 3, i. e., ds̄ < d.

Modeling multimodal data as having shared and modality-specific gen-
erative factors improves the quality of generated samples compared to
multimodal VAEs using the more restrictive assumption of having only a
single joint latent space.

However, adding latent subspaces leads to additional hyperparameters
that must be carefully selected. Hyperparameters such as the size of the
modality-specific and shared latent subspaces are crucial for achieving good
results. In Figure 4.6, we show the performance of PoE-VAE, MoE-VAE,
and MoPoE-VAE for different dimensions ds̄ of the shared latent subspace.
For all values of ds̄, the combined capacity of shared and modality-specific
latent subspaces equals the one in Section 4.2. Figure 4.6 shows a non-
negligible influence of the subspace size on the performance concerning the
latent representation classification and coherence and quality of generated
samples. Hence, an increasing number of modalities in a dataset simulta-
neously increases the effort needed to find good hyperparameter settings.
Although not part of the initial definition of scalability for multimodal ML
(see Definition 3.1.1), the need for excessive hyperparameter tuning slows
the development of new models. To some extent, it contradicts our goal of
scalable multimodal ML.

It will depend on practical constraints whether the performance improve-
ments of methods using shared and modality-specific latent subspaces
compared to methods using a single joint latent space justify the additional
overhead in finding a good set of hyperparameters.

Nevertheless, Section 4.2 shows that using more flexible modeling as-
sumptions is beneficial for a method’s performance, as we can see for MST
(e. g., Figure 4.4) and bimodal CelebA (Section 4.2.1.1).

In these two datasets, the shared generative factors are shared between all
modalities, reflecting a simplified relationship between multimodal samples
and might originate in their generation. Both datasets are originally uni-
modal, which we combined with other datasets for MST or extended using
additional information for Bimodal CelebA. However, more complicated
group structures are possible, such as only pairwise shared generative
factors. We must expect a more complex group structure for real-world
multimodal or weakly-supervised datasets. In such a setting, the modeling
assumption of shared and modality-specific latent subspaces would not
hold anymore. In a real-world setting, it is unlikely that we will have precise
knowledge about the underlying group structure. Hence, our assumptions
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will either be too restrictive or too flexible, making an adaptive approach
inevitable. Given the performance improvements across all tasks between
having a single joint latent space to shared and modality-specific subspaces,
we need to be able to infer the relationships between group members in the
weakly-supervised setting.



5
L E A R N I N G T H E R E L AT I O N S H I P B E T W E E N G R O U P S O F
S A M P L E S

The proposed multimodal VAEs in Chapters 3 and 4 leveraged assumptions
regarding the multimodal group structure. While they enabled the first
promising results, restrictive assumptions are a limiting factor in learn-
ing from multimodal data. In this chapter, we want to overcome these
assumptions and learn the relationship between groups of modalities or
views. In contrast to previous chapters, we do not impose any assumption
on the relationship between generative factors of weakly-supervised data
but integrate a random partition model into the data-generating process.
The random partition model selects groups of shared and independent
generative factors between samples.

We present a differentiable random partition model. Our approach fol-
lows a two-stage procedure: first, we model the number of elements per
subset, and second, we learn an ordering of the elements to assign the
correct number of elements to every subset.

We introduce a differentiable approximation to the multivariate non-
central hypergeometric distribution [MVHG, Sut+23a] for modeling the
number of elements per subset. Despite being non-differentiable, current
sampling schemes for the MVHG are a trade-off between numerical sta-
bility and computational efficiency [Fog08a; Fog08b; LR01]. In Sutter et al.
[Sut+23a], we overcome this trade-off.

For assigning the already inferred number of elements to subsets, we
propose to use a Plackett-Luce [Luc59; Pla68] model for sorting the elements.
Based on this ordering, we assign the first n1 elements to the first subset,
the second n2 elements to the second subset, and continue until we reach
the last subset. nk is the number of elements for the kth subset according
to the MVHG. Using differentiable distributions over sorting procedures
[Gro+19; PE20] allows us to learn their parameters using gradient-based
optimization.

We propose the differentiable random partition model [DRPM, Sut+23b],
a fully-differentiable relaxation for RPMs that allows reparameterizable
sampling. DRPM enables their integration into modern machine learning
frameworks and their learning from data using stochastic optimization.

99
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Jiang et al. [Jia+16] approached differentiable RPMs by tackling non-
continuous loss functions and zero gradients almost everywhere with over-
restrictive i.i.d assumptions. Every element is modeled with a categorical
distribution over the number of subsets, where the assignment of elements
to a subset is independent of other elements. Most deep probabilistic
clustering approaches belong to this class of random partition models [see
e. g. Dil+16; Man+21].

A problem related to set partitioning is the earth mover’s distance prob-
lem [EMD, Mon81; RTG00]. However, EMD aims to assign a set’s elements
to different subsets based on a cost function and given subset sizes. Efficient
solutions to the problem exist [Sin64], and various methods have recently
been proposed, e.g., for document ranking [AZ11] or permutation learning
[Men+18; SC+17].

Differentiable reparameterizations of complex distributions with learn-
able parameters enable new applications, as shown in Section 5.3, where we
highlight the versatility of the new approach in three different experiments:
clustering, multitask learning, and weakly-supervised learning.

In the remaining part of this chapter, we introduce our differentiable
formulation for the MVHG, followed by our two-stage procedure for our
DRPM method and experiments to highlight the versatility and general
applicability of differentiable random partition models in ML.

5.1 the differentiable multivariate hypergeometric distri-
bution

We first describe the sampling procedure used for the differentiable hyper-
geometric distribution [Sut+23a]. Doing so, we connect it to the Gumbel-
Softmax trick [GST, JGP16; MMT17] (or see Section 2.4.1.2), and how we
relax the formulation of the hypergeometric distribution to make it differ-
entiable. We show the correctness of the approach by comparing random
samples of the proposed approach to samples from a reference distribu-
tion and evaluating their distance using the Kolmogorov-Smirnov test [KS,
Kol30; Smi39].

We base the reparameterizable sample for the differentiable hypergeo-
metric distribution, which is introduced in Sutter et al. [Sut+23a], on three
steps:

1. Reformulate the multivariate distribution as a sequence of interdepen-
dent and conditional univariate hypergeometric distributions (Algo-
rithms 1 and 2).
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m1 = 3 m2 = 5 m3 = 4

n = 5

Figure 5.1: Illustration of the basic setting of the multivariate hypergeometric
distribution. We have K = 3 classes of elements (green, orange, and
blue) with different and unknown class importance wk, k 2 {1, . . . , K}.
The total number of elements in our urn is given by the sum of
elements of all classes, i. e., Âk mk. From this urn, we draw a group of
n samples. In this example, n = 5. The group importance wk is often
unknown and difficult to estimate. Our formulation helps to learn
wk using gradient-based optimization when simulating how given
samples are drawn from the urn.

2. Calculate the probability mass function of the respective univariate
distributions (Algorithm 3).

3. Sample from the conditional distributions utilizing the Gumbel-Softmax
trick (Algorithm 4).

We explain all steps in the following Sections 5.1.1 to 5.1.3. Additionally,
Algorithm 1 and Algorithms 2 to 4 describe the full reparameterizable
sampling method using pseudo-code and Figures 5.1 and 5.2 illustrate it
graphically.

5.1.1 Sequential Sampling Using Conditional Distributions

We use the conditional sampling algorithm [Fog08b; LR01] because it scales
linearly with the number of classes and not with the size of the support S of
the hypergeometric distribution (see Definition 2.6.3). Using the chain rule
of probability, we reformulate the joint probability pN (n;!) into a sequence
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Âk mk = 12

n = 5

mL = m1 = 3
mR = m2 + m3 = 9

wL = w1

wR = w2m2+w3m3
mR

(a) Step 1: N1 = 1

Âk mk = 9

n = 4

mL = m2 = 5
mR = m3 = 4

wL = w2
wR = w3

(b) Step 2: N2 = 3

Âk mk = 4

n = 1

mL = m3 = 4
mR = 0

wL = w3

wR = 0

(c) Step 3: N3 = 1

Figure 5.2: Illustration of the proposed conditional sampling from the multivari-
ate noncentral hypergeometric distribution. We use the same urn
as in Figure 5.1 with m = [3, 5, 4] and n = 5. As described, we se-
quentially sample random variates of the individual classes. Hence,
we start by sampling class 1 (fig. 5.2a). For that, we merge classes 2
and 3 (illustrated by the half-blue and half-orange balls), creating the
necessary parameters mL, mR, wL, wR for pNL (·) (described in the left
column). This is also described in Algorithms 1 to 4. Using the uni-
variate distribution pNL (·), we sample the random variable N1, which
is equal to 1 in our example (symbolized by the single green ball). We
continue with the sampling of class 2 (fig. 5.2b). The merge operation
simplifies to assigning mL = m2 and mR = m3, and n is the original n
minus N1. We draw N2 = 3 in our example (again illustrated by the
three orange balls below the urn). Because the number of drawn balls
must sum to n, the last class N3 is determined already (fig. 5.2c).
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Algorithm 1 Sampling from the differentiable hypergeometric distribution.
The individual building blocks are explained in more detail in Sections 5.1.1
to 5.1.3 and Algorithms 2 to 4.

Input: m 2 NK, ! 2 RK
0+, n 2 N, t 2 R0+

Output: n 2 NK
0 , {↵i 2 Rmi}K

i=1, {r̂i 2 Rmi}K
i=1

# Formulate the multivariate as a univariate distribution (section 5.1.1)
for i 2 {1, . . . , K} do

L i, R {
SK

j=i+1 j}
m! mL, mR 2 N0, ! ! wL, wR 2 R0+
nL,↵L, r̂L  sampleUNCHG(mL, mR, wL, wR, n, t)
# Re-assign classes for next step
n n� nL, m m \mL, !  ! \!L
# Assign values for class i
ni  nL,↵i  ↵L, r̂i  r̂L

end for

return n, {↵i}
K
i=1, {r̂i}

K
i=1

of conditional probabilities, which allows us to sample the different classes
in the urn sequentially.

pN (n;!) = pN1(n1;!)
K

’
k=2

pNk

 
nk |

(
[

l<k
nl

)
;!

!
(5.1)

Following Equation (5.1), every pNk (·) describes the probability of the num-
ber of samples of a single class k given the already sampled classes l < k. In
the conditional sampling method, we model every conditional distribution
pNk (·) as a univariate hypergeometric distribution with two classes L and
R: for k 2 {1, . . . , K}, we define a new class L := {k} as the left class and a
second new class R := {l : l > k ^ l  K} as the right class [Sut+23a]. We
can now sequentially sample from the new univariate hypergeometric dis-
tributions with classes L and R, approximating sampling from the original
MVHG. The parameters for each of the univariate distributions of the new
classes L and R can be computed as [Fog08b]

mL = Â
l2L

ml (5.2)

mR = Â
r2R

mr (5.3)

wL =
Âl2L wl · ml

mL
(5.4)
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Algorithm 2 Sampling from the differentiable hypergeometric distribution.
We describe in pseudo-code the sampling procedure for every univariate
hypergeometric distribution. We explain the sub-routines in Sections 5.1.2
and 5.1.3 and Algorithms 3 and 4.

Input: mi, mj 2 N0; wi, wj 2 R0+; n 2 N0; t 2 R0+
Output: ni 2 N0,↵i 2 Rmi , r̂i 2 Rmi

function sampleUNCHG(mi, mj, wi, wj, n, t)
↵i  calcLogPMF(mi, mj, wi, wj, n) # section 5.1.2
ni, r̂i  contRelaxSample(↵i, t)) # section 5.1.3
return ni,↵i, r̂i

end function

wR =
Âr2R wr · mr

mR
(5.5)

Sampling strategies based on univariate conditional distributions are only
approximately equal to samples from the joint noncentral MVHG with
equal !̃. The merging operation defined by Equations (5.2) to (5.5) intro-
duces a bias, which is only equal to zero for the central MVHG. Different
grouping strategies or class subset selection algorithms can be a strategy to
reduce this approximation error [Fog08b]. However, it is essential to note
that the approximation error relates to a non-differentiable reference imple-
mentation with the same ! but not the underlying and desired true class
importance. Comparing the average number of drawn samples per class,
we can still recover the true class importance if ! is not a hyperparameter
but learned as in our applications. Hence, we found the error irrelevant to
our applications and left the exploration of different grouping strategies for
future work.

5.1.2 Calculate Probability Mass Function

The exponent of ! and the combinatorial terms can lead to numerical
instabilities, making the direct calculation of the PMF in Equation (5.17)
at least non-desirable. Hence, we focus on the log-probability distribution
instead.
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Algorithm 3 Subroutine for calculating the un-normalized logits of the
probability mass function (PMF) of the hypergeometric distribution using
pseudo-code (see Section 5.1.2).

Input: ml , mr 2 N0; wl , wr 2 R0+; n 2 N0
Output: ↵l 2 Rml

function calcLogPMF(ml , mr, wl , wr, n)
for k 2 {0, . . . , ml} do

nl,k  (k + 1)
nr,k  (ReLU(n� k) + 1)

end for

l log G(nl + 1) + log G(ml �nl + 1)
r  log G(nr + 1) + log G(mr �nr + 1)
↵l  nl log wl +nr log wr � (l+ r)
return ↵l

end function

deriving log pN (n ; ! ) Calculations in log-domain increase numerical
stability for such large domains while keeping the relative ordering. We
start with the PMF of the MVHG

pN (n;!) =
1
P0

K

’
k=1

✓
mk
nk

◆
wnk

k (5.6)

where P0 is defined as in Equation (2.79). From there, it follows

log pN (n;!) = log

 
1
P0

K

’
k=1

✓
mk
nk

◆
wnk

k

!
(5.7)

= log
✓

1
P0

◆
+ log

 
K

’
k=1

✓
mk
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◆
wnk

k

!
(5.8)

= log
✓

1
P0

◆
+

K

Â
k=1

log
✓✓

mk
nk

◆
wnk

k

◆
(5.9)

= log
✓

1
P0

◆
+

K

Â
k=1

✓
log
✓

mk
nk

◆
+ log

�
wnk

k
�◆

(5.10)

= log
✓

1
P0

◆
+

K

Â
k=1

✓
log
✓

mk
nk

◆
+ nk log (wk)

◆
(5.11)

Because the ordering of categories is not influenced by scaling with a
constant factor (due to the arg max, see Section 2.4.1), we can remove any



106 learning the relationship between groups of samples

normalization term of the PMF and still end up with the unnormalized
log-probabilities of the noncentral MVHG. It follows

log pN (n;!) =
K

Â
k=1

✓
log
✓

mk
nk

◆
+ nk log (wk)

◆
+ C (5.12)

=
K

Â
k=1

✓
log

1
nk!(mk � nk)!

+ nk log (wk)

◆
+ C̃ (5.13)

=
K

Â
k=1

(� log (G(nk + 1)G(mk � nk + 1)) + nk log (wk))

+ C̃ (5.14)

We used the relation G(k + 1) = k! in the last line. Setting C = C̃, it directly
follows

log pN (n;!) =
K

Â
k=1

nk log wk + yF(n) + C (5.15)

where yF(n) = �ÂK
k=1 log (G(nk + 1)G(mk � nk + 1)) and the Gamma func-

tion is defined as [WW96]

G(z) =
Z •

0
xz�1e�xdx (5.16)

We first derived the log-probability distribution for the multivariate case
but defined Lemma 5.1.1 for the univariate case as in Sutter et al. [Sut+23a].
Following Section 2.6 and the previous paragraph, we write the proba-
bility mass function (PMF) pNL(nL;!) for the univariate hypergeometric
distribution of two classes L and R as

pNL(nL;!) =
1
P0

✓
mL
nL

◆
wnL

L

✓
mR

n� xL

◆
wn�nL

R (5.17)

P0 is defined as in Equation (2.79), wL, wR and their derivation from !, and
mL, mR as in Equations (5.2) to (5.5).

Lemma 5.1.1 (Sutter et al. [Sut+23a]).
The unnormalized log-probabilities

log pNL(nL;!) =nL log wL + (n� nL) log wR + yF(nL) + C (5.18)
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define the unnormalized weights of a categorical distribution that follows Fisher’s
noncentral hypergeometric distribution. C is a constant and yF(nL) is defined as

yF(nL) =� log (G(nL + 1)G(n� nL + 1))
� log (G(mL � nL + 1)G(mR � n + nL + 1)) (5.19)

Proof. Factors that are constant for all n do not change the relative ordering
between different values of n. Hence, removing them preserves the ordering
of values n [Bar17].

log pNL(nL;!) = log
✓

1
P0

✓
mL
n

◆
wnL

L

✓
mR

n� nL

◆
wn�nL

R

◆
(5.20)

= log
✓

mL
nL

◆
+ log

✓
mR

n� nL

◆

+ log
�
wnL

L
�
+ log

⇣
wn�nL

R

⌘
+ C (5.21)

Using the definition of the binomial coefficient (see Section 2.6) and the
Gamma function G(k + 1) = k!, it follows

log pNL(nL;!) =n · log wL + (n� nL) · log wR (5.22)
� log (G(nL + 1)G(n� nL + 1))
� log (G(mL � nL + 1)G(mR � n + nL + 1)) + C

With yF(n) defined as in Equation (5.19), Equation (5.18) follows directly.

Automatic differentiation frameworks1 have numerically stable implemen-
tations of log G(·), which allows to compute Equations (5.18) and (5.19)
efficiently and reliably. Lemma 5.1.1 relates to the calcLogPMF function in
Algorithm 2, and Algorithm 3 describes calcLogPMF in more detail.

Using the multivariate form of Lemma 5.1.1 (see Section 2.6), it is possible
to directly calculate the categorical weights for the MVHG, which would
result in a computational speed-up for large K compared to the proposed
formulation. However, the size of the support S of the MVHG is ’K

k=1 mk,
which results in unfeasible memory constraints for most interesting appli-
cations.
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Algorithm 4 The contRelaxSample sub-routine of the differentiable sam-
pling procedure for the multivariate hypergeometric distribution (see Sec-
tion 5.1.3).

Input: ↵l 2 Rml , t 2 0+
Output: nl 2 N0, r̂l 2 Rml

function contRelaxSample(↵l , t)
u U (0,1)
g  � log(� logu)
r̂l  ↵l + g
pl  Softmax(r̂l/t)
nl  Count-Index(Straight-Through(pl))
return nl , r̂l

end function

5.1.3 Continuous Relaxation for the Conditional Distribution

Following Lemma 5.1.1, we use the GST to reparameterize the MVHG based
on its conditional distributions pNL(·).

Lemma 5.1.2 (Sutter et al. [Sut+23a]).
The Gumbel-Softmax trick can be applied to the conditional distribution pNk (nk |

{nl}l<k;!) of class k given the already sampled classes l < k.

Proof. When sampling class k, we draw nk samples from class k such that
nk  mk. The conditional distribution pNk (nk | {nl}l<k;!) for class k given
the already sampled classes l < k simultaneously defines the weights of
a categorical distribution. Sampling nk elements from class k can be seen
as selecting the (nk + 1)th category from the distribution defined by the
weights pNk (nk | {nl}l<k;!). Therefore,

Â
0nkmk

pNk (nk | {nl}l<k;!) = 1, (5.23)

which allows us to apply the Gumbel-Max trick and, respectively, the GST
trick.

In Lemma 5.1.2, we connect the GST trick to the MVHG. Hence, reparame-
terizing enables gradients with respect to the parameter ! of the MVHG:

u ⇠ U (0, 1), gk = � log(� log(u)), r̂k = ↵k(!) + gk (5.24)

1 E. g. Tensorflow [Aba+16] or PyTorch [Pas+19]
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where u 2 [0, 1]mk+1 is a random vector of mk i.i.d. uniform distributions U
and gk is therefore i.i.d. gumbel noise (see Sections 2.4.1.1 and 2.4.1.2). We
perturb the unnormalized weights of the conditional univariate distribu-
tions ↵k(!), which are given as

↵k(!) = logpNk (nk;!)� C
= [log pNk (0;!), . . . , log pNk (mk;!)]� C, (5.25)

Perturbing ↵k(!) results in r̂k. Equal to the original GST, we use the tem-
pered softmax function to generate (mk + 1)-dimensional sample vectors
from the perturbed unnormalized weights r̂k/t, where t is the tempera-
ture parameter (see Section 2.4.1.2 for more details on the GST). Due to
Lemma 5.1.2, we do not need to calculate the constant C in Equations (5.18)
and (5.25). Algorithm 4 describes Lemma 5.1.2 using pseudo code. Using
the straight-through operator [BLC13] in Algorithm 4 (see Section 2.4.1.2),
we can use hard samples in the forward path, but the relaxed vector in
the backward path, which allows the computation of the derivatives. The
Count-Index in Algorithm 4 maps the one-hot vector to an index, which is
equal to the number of selected class elements in our case.

Although we use the GST, there is a difference compared to the vanilla
GST. The log-weights ↵k of class k are a function of the class importance !
and the pre-defined nk = [0, . . . , mk]. A sequence of categorical distributions
would result in ÂK

k=1 mk learnable parameters, whereas there are only K
learnable parameters for the differentiable MVHG.

5.1.4 Kolmogorov-Smirnov Test

We evaluate the accuracy of the proposed method against a reference im-
plementation using the Kolmogorov-Smirnov test [KS, Kol33; Smi39]. It is a
nonparametric test to estimate the equality of two distributions by quanti-
fying the distance between the empirical distributions of their samples. The
null distribution of this test is calculated under the null hypothesis that the
two groups of samples are drawn from the same distribution. If the test
fails to reject the null hypothesis, the same distribution has generated the
two groups of samples, i.e., the two underlying distributions are equal. This
experiment is from Sutter et al. [Sut+23a].

For this experiment, we use an MVHG of three classes, where we com-
pare samples from our differentiable formulation to samples from a non-
differentiable reference implementation [SciPy, Vir+20]. We perform a sensi-
tivity analysis concerning the class weights !. We keep w1 and w3 fixed at
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1.0, and w2 is increased from 1.0 to 10.0 in steps of 1.0. For every value of
w2, we sample 500000 i.i.d. random vectors. We use the Benjamini-Hochberg
correction [BH95] to adjust the p-values for the false discovery rate of mul-
tiple comparisons as we perform K = 3 tests per joint distribution. Given
a significance threshold of t = 0.05, p > 0.05 implies that we cannot reject
the null hypothesis, which is desirable for our application as the proposed
and the reference distribution are similar.

In Figure 5.3, we compare samples from the proposed distribution to the
reference distribution. We show the histograms of samples generated by
the reference and the proposed distribution for a visual comparison. The
histograms per subfigure relate to samples generated by distributions with
different !. Figure 5.4 shows the results of the KS test for all classes k for
the different values of w2. We see that the calculated distances of the KS test
are small, and the corrected p-values are well above the threshold. Many are
even close to 1.0. Hence, the test fails to reject the null hypothesis in 30 out
of 30 cases. Additionally, the proposed and the reference implementation
histograms are visually similar. The results of the KS test strongly imply
that the proposed differentiable formulation effectively follows a noncentral
hypergeometric distribution.

5.1.5 Minimal Example

We present the minimal example of Sutter et al. [Sut+23a] using a step-
by-step procedure to provide intuition and further illustrate the proposed
method. Here, we learn the generative model of an urn model using stochas-
tic gradient descent when given samples from an urn model with a priori
unknown weights !. We use a generative approach to demonstrate how
our method allows backpropagation when modeling the generative process
of the samples by reparameterizing the MVHG. Additionally, we illustrate
the minimal example with two figures (Figures 5.1 and 5.2), which explain
the sampling procedure visually.

We are given a dataset of n i.i.d samples D 2 Nn⇥K
0 from an MVHG

distribution with unknown !gt 2 RK
+. n denotes the number of samples in

the dataset, K the number of classes, and ND 2 D a random sample from
the dataset. For every ND 2 D, it holds that Âk ND,k = n. Additionally,
we assume that we know the total number of elements in the urn, e.g.
m = [m1, m2, ..., mK].

We want to learn the unknown group importance ! with a generative
model using stochastic gradient descent (SGD). Hence, we assume a data
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(a) Histograms class 1

(b) Histograms class 2

(c) Histograms class 3

Figure 5.3: Comparing random variables from the proposed differentiable for-
mulation to a non-differentiable reference implementation. We draw
samples from a multivariate noncentral hypergeometric distribution
consisting of three classes: mk = 200 8 k and n = 180. For all classes,
we show the histograms over the number of elements sampled per
class for different values of w2. The class weights w1 and w3 for
classes 1 and 3 are set to 1.0, w2 is increased from 1.0 to 10.0 with a
step size of 1.0 (w2 in the figure).
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Figure 5.4: Comparing random variables from the proposed differentiable formu-
lation to a non-differentiable reference implementation. For the same
configurations as in Figure 5.3, we show the calculated distance values
of the KS test between the reference and proposed implementation
(upper plot) and their respective p-values (lower plot). The distance
values of the KS test are small, while the p-values are high, indicating
that the proposed and the reference distributions are similar.

generating distribution pN (n;!) such that N ⇠ pN (n;!). The loss func-
tion L is given as

L = Â
ND2D

EN⇠pN (n;!)

h
(ND �N )2

i
(5.26)

= Â
ND2D

EN⇠pN (n;!) [L(ND,N )] (5.27)

where L is the loss per sample. pN (n;!) is a noncentral multivariate
hypergeometric distribution as defined in Definition 2.6.3 where the class
importance ! is unknown.

To minimize E[L(ND,N )], we want to optimize !. Using SGD, we
optimize the parameters ! in an iterative manner:

!t+1 := !t � h
d

d!
EN⇠pN (n;!) [L(ND,N )] (5.28)

where h is the learning rate, and t is the step in the optimization process. Un-
fortunately, we do not have a reparameterization estimator d

d!E[L(ND,N )]
because of the jump discontinuities of the arg max function in the categori-
cal distributions.

As described in sections 5.1.1 and 5.1.3, we can rewrite pN (n;!) as a
sequence of conditional distributions.
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In more detail, we rewrite the joint probability distribution pN (n;!) as

pN (n;!) = pN1(n1;!)
nk

’
k=2

pNc(nk | n1, ..., nk�1;!) (5.29)

where every distribution pNk (·;!) is a categorical distribution. We sample
every Nk using Equation (5.18), i.e.

pNk (nLk ;!) = nLk log wLk + (nk � nL) log wRk + yF(nLk ) + C (5.30)

wLk , wRk , mLk , mRk , and nk = Âl<k Nl are calculated according to eqs. (5.2)
to (5.5) and sequentially for every class.

The expected element-wise loss EN⇠pN (n;!) [L(ND,N )] changes to

EN⇠pN (x;!) [L(ND,N )] = EN⇠pN (n;!)

"
K

Â
k=1

(ND,k � Nk)
2

#
(5.31)

= EN⇠pN (n;!)

"
K

Â
k=1

L(ND,k, Nk)

#
(5.32)

=
K

Â
k=1

EN⇠pN (n;!) [L(ND,k, Nk)] (5.33)

Hence,

d
d!

E[L(ND,N )] =
K

Â
k=1

d
d!

EN⇠pN (n;!) [L(ND,k, Nk)] (5.34)

Unfortunately, for every d
d!E [L(ND,c, Nc)], we face the problem of not

having a reparameterizable gradient estimator. We cannot calculate the
gradients of the loss directly, but pNc(·) being categorical distributions
allows us to use the GST [JGP16; MTM14; Pau+20].

It follows [JGP16]

y = softmax((↵+ g)/t) (5.35)
= softmaxt(↵+ g) (5.36)

where g1, . . . , gk are i.i.d. samples drawn from Gumbel(0, 1), and t is a
temperature parameter. y is a continuous approximation to a one-hot
vector, i.e. 0  yi  1 such that Âi yi = 1.

Different to the standard GST, we infer the log-scores ↵ from the proba-
bility density function log pN (·) (see eqs. (5.24) and (5.25)), which results
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in ↵k(!) in Section 5.1.3. We write for a single conditional class nLk as the
procedure is the same for all classes. It follows

Nt,k(!, g) = softmaxt(↵k(!) + g) (5.37)

where nLk = [0, mLk ]. See Section 5.1.3 for the computation of ↵k(!).
The Gumbel-Softmax approximation is smooth for t > 0, and therefore
E[L(ND,Nt)] has well-defined gradients d

d! .
We write the loss function to optimize its gradients as

Eg [L(ND,Nt(!, g))] =
K

Â
k=1

Eg [L(ND,c, Nt,k(!, g))] (5.38)

d
d!

Eg [L(ND,Nt(!, g))] =
K

Â
k=1

Eg


d

d!
L(ND,k, Nt,k(!, g))

�
(5.39)

By replacing the categorical distribution in eq. (5.18) with the Gumbel-
Softmax distribution (see lemma 5.1.2), we can thus use backpropagation
and automatic differentiation frameworks to compute gradients and opti-
mize the parameters ! [JGP16].

We implemented our minimal example for K = 3 classes. We set m =
[m1, m2, m3] = [200, 200, 200] and n = 180. We create 10 datasets D 2

N1000⇥3 generated from different !gt and show the performance of the
proposed method. From these 1000 samples, we use 800 for training and 200
for validation. Similar to the setting we use for the KS test (see section 5.1.4),
we choose 10 values for wgt,2, i. e., wgt,2 = [1.0, 2.0, . . . , 10.0]. The values for
wgt,1 and wgt,3 are set to 1.0 for all datasets versions.

As described above, the model cannot access the data generating !gt.
So, for every dataset D, we optimize the unknown ! based on the loss L

defined in eq. (5.33).
Figure 5.5 shows the training and validation losses over the training steps.

We train the model for 10 epochs, but we see that the model converges
earlier. The losses only differ at the beginning of the training procedure,
which is probably an initialization effect, but quickly converge to similar
values independent of the wgt,2 value that generated the dataset. Figure 5.6
shows the estimation of log!. The x-axis shows the training step, and the
y-axis shows the estimated value. Figures 5.6a to 5.6b demonstrate that the
hypergeometric distribution is invariant to the scale of !. With increasing
value of wgt,2, the values of w1 and w3 decrease, although their ground
truth values wgt,1 and wgt,3 do not change. Neither the training nor the
validation loss increases though (figs. 5.5a and 5.5b), which demonstrates
the scale-invariance of !.
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(a) Training Loss (b) Validation Loss

Figure 5.5: Training and validation losses for different values of !gt of our mini-
mal example described in section 5.1.5.

(a) Estimation of log w1 (b) Estimation of log w2 (c) Estimation of log w3

Figure 5.6: The estimated log! values over the training procedure for different
ground truth !gt values of our minimal example (see section 5.1.5).
These plots illustrate the scale invariance of the ! parameter. With
the value of w2 increasing, the estimated values for w1 and w3 change
as well, but the training and validation loss remain low (see fig. 5.5).
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Figure 5.7: Illustration of the proposed DRPM method. We first sample a permu-
tation matrix p, and a set of subset sizes n separately in two stages.
We then use n and p to generate the assignment matrix Y, the matrix
representation of a partition r.

5.2 towards differentiable random partition models

We can infer the number of elements per subset using the MVHG (Sec-
tion 5.1). To have a random partition model, we need to formulate a proba-
bility distribution for assigning a given number of elements to the respective
subset in combination with having a distribution over the number of el-
ements per subset. We derive the differentiable random partition model
using the newly proposed MVHG in this section.

We want to partition n elements [n] = {1, . . . , n} into K subsets (S1, . . . ,SK)
where K is a priori unknown. For a partition r = (S1, . . . ,SK) to be valid, it
must hold that

S1 [ · · · [ SK = [n] and 8 i 6= j : Si \ Sj = ∆ (5.40)

Put differently, every element i has to be assigned to precisely one subset
Sk. Alternatively to r, we describe a partition r as an assignment matrix
Y = [y1, . . . ,yK]T 2 {0, 1}K⇥n. Every row yk 2 {0, 1}1⇥n is a multi-hot
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vector, where yki = 1 assigns element i to subset Sk. We denote the size |Sk|

of the k-th subset Sk as nk.
In this work, we propose a new two-stage procedure for partition models.

The proposed formulation separately infers the number of elements per
subset nk and the assignment of elements to subsets Sk by inducing an order
on the n elements and filling S1, ...,SK sequentially in this order. Figure 5.7
illustrates the proposed sampling method.

Definition 5.2.1 (Two-stage partition model [Sut+23b]).
Let n = [n1, . . . , nK] 2 NK

0 be the subset sizes in r, with N0 the set of natural
numbers including 0 and ÂK

k=1 nk = n, where n is the total number of elements.
Let p 2 {0, 1}n⇥n be a permutation matrix that defines an order over the n
elements. We define the two-stage partition model of n elements into K subsets as
an assignment matrix Y = [y1, . . . ,yK]T 2 {0, 1}K⇥n with

yk =
nk+nk

Â
i=nk+1

⇡i, where nk =
k�1

Â
i=1

ni (5.41)

such that Y = [{yk | nk}
K
k=1]

T.

In contrast to previous works on partition models [MS16], we allow Sk to
be the empty set ∆. Hence, K defines the maximum number of possible
subsets, not the actual number of non-empty subsets.

To model the order of the elements, we use a permutation matrix p =
[⇡1, . . . ,⇡n]T 2 {0, 1}n⇥n which is a square matrix where every row and
column sums to 1. This doubly stochastic property of all permutation
matrices p [Mar60] thus ensures that the columns of Y remain one-hot
vectors. At the same time, its rows correspond to nk-hot vectors yk in
Definition 5.2.1 and therefore serve as subset assignment vectors.

Corollary 5.2.1 ([Sut+23b]). A two-stage partition model Y, which follows
Definition 5.2.1, is a valid partition model satisfying Equation (5.40).

Proof. By definition, every row ⇡i and column ⇡j of p is a one-hot vector,
hence Ânk

⇡i results in a nk-hot encoding. Therefore, Ânk
i=1 Ân

j=1 pij = nk
follows directly from p being a permutation matrix. Hence, if Âk nk = n,
every element i is assigned to one and only one yk. Thus, Definition 5.2.1
fulfills S1 [ · · · [ SK = [n], and Si \ Sj = ∆ 8 i, j and i 6= j.
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5.2.1 Differentiable Random Partition Models

An RPM p(Y) defines a probability distribution over partitions Y. In this
section, we derive how to extend the two-stage procedure from Defini-
tion 5.2.1 to the probabilistic setting, creating a two-stage RPM. To derive
the two-stage RPM’s probability distribution p(Y), we must model dis-
tributions over n and p. We choose the MVHG distribution p(n;!) (see
Sections 2.6 and 5.1) and the PL distribution p(p; s) (see Section 2.4.2).
For the remainder of this thesis, we denote p(Y) as p(Y;!, s) to indicate
dependence on the MVHG parameter ! and PL parameter s.

We calculate the probability p(Y;!, s) sequentially over the probabilities
of subsets pyk := p(yk | y<k;!, s). pyk itself depends on the probability over
subset permutations pp̄k := p(p̄ | nk,y<k; s), where a subset permutation
matrix p̄ represents an ordering over nk out of n elements.

Definition 5.2.2 (Subset permutation matrix p̄ [Sut+23b]).
A subset permutation matrix p̄ 2 {0, 1}nk⇥n, where nk  n, must fulfill

8 i  nk :
n

Â
j=1

p̄ij = 1 and 8 j  n :
nk

Â
i=1

p̄ij  1.

We describe the probability distribution over subset permutation matrices
pp̄k using Definition 5.2.2 and corollary 2.4.1.

Lemma 5.2.1 (Probability over subset permutations pp̄k [Sut+23b]).
The probability pp̄k of any subset permutation matrix

p̄k = [⇡̄1, . . . , ⇡̄nk ]
T
2 {0, 1}nk⇥n (5.42)

is given by

pp̄k := p(p̄ | nk,y<k; s) (5.43)

=
nk

’
i=1

(p̄s)i

Zk �Âi�1
j=1(p̄s)j

(5.44)

where y<k = {y1, ...,yk�1}, Zk = Z�Âj2S<k
sj and S<k =

Sk�1
j=1 Sj.

Proof. We provide the proof for pp̄1 , but it is equivalent for all other subsets.
Without loss of generality, we assume that there are n1 elements in S1.
Following Corollary 2.4.1, the probability of a permutation matrix p(p; s)
is given by

p(p; s) =
(ps)1

Z
(ps)2

Z� (ps)1
· · ·

(ps)n

Z�Ân�1
j=1 (ps)j

(5.45)
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At the moment, we are only interested in the ordering of the first n1
elements. The probability of the first n1 is given by marginalizing over the
remaining n� n1 elements:

p(p̄ | n1;!) = Â
p2P1

p(p | s) (5.46)

where P1 is the set of permutation matrices such that the top n1 rows
select the elements in a specific ordering p̄ 2 {0, 1}n1⇥n, i.e. P1 = {p :
[⇡1, . . . ,⇡n1 ]

T = p̄}. It follows

p(p̄ | n1;!) = Â
p2P1

p(p | s)

= Â
p2P1

n

’
i=1

(ps)i

Z�Âi�1
j=1(ps)j

=
n1

’
i=1

(p̄s)i

Z�Âi�1
j=1(p̄s)j

Â
p2P1

n�n1

’
i=1

(ps)n1+i

Z�Ân1
j=1(p̄s)j �Âi�1

j=1(p̄s)j

=
n1

’
i=1

(p̄s)i

Z�Âi�1
j=1(p̄s)j

Â
p2P1

n�n1

’
i=1

(ps)n1+i

Z1 �Âi�1
j=1(p̄s)j

where Z1 = Z�Ân1
j=1(p̄s)j. It follows

p(p̄ | n1;!) =
n1

’
i=1

(p̄s)i

Z�Âi�1
j=1(p̄s)j

Lemma 5.2.1 describes the probability of drawing the elements i 2 Sk in the
order described by the subset permutation matrix p̄ given that the elements
in S<k are already determined. Note that in a slight abuse of notation, we
use p(p̄ | nk,y<k;!, s) as the probability of a subset permutation p̄ given
that there are nk elements in Sk and thus p̄ 2 {0, 1}nk⇥n. Additionally, we
condition on the subsets y<k and nk, the size of subset Sk. In contrast to the
distribution over permutations matrices p(p; s) in Corollary 2.4.1, we take
the product over nk terms and have a different normalization constant Zk.
Although we induce an ordering over all elements i in Definition 5.2.1, the
probability pyk is invariant to intra-subset orderings of elements i 2 Sk.

Lemma 5.2.2 (Probability distribution pyk [Sut+23b]).
The probability distribution over subset assignments pyk is given by

pyk := p(yk | y<k;!, s)
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= p(nk | n<k;!) Â
p̄2Pyk

p(p̄ | nk,y<k; s)

where Pyk = {p̄ 2 {0, 1}nk⇥n : yk = Ânk
i=1 ⇡̄i} and p(p̄ | nk,y<k; s) as in

Lemma 5.2.1.

Proof. We can proof the statement of Lemma 5.2.2 as follows:

pyk = p(yk | y<k;!, s)
= Â

n0k

p(yk, n0k | y<k;!, s) (5.47)

= Â
n0k

p(n0k | y<k;!, s)p(yk | n0k,y<k;!, s) (5.48)

= Â
n0k

p(n0k | n<k;!, s)p(yk | n0k,y<k; s) (5.49)

= p(nk | n<k;!, s)p(yk | nk,y<k; s) (5.50)
= p(nk | n<k;!) Â

p̄2Pyk

p(p̄ | nk,y<k; s) (5.51)

Equation (5.47) holds by marginalization, where n0k denotes the random
variable that stands for the size of the subset Sk. By Bayes’ rule, we can then
derive Equation (5.48). The next derivations stem from the fact that we can
compute n<k if y<k is given, as the assignments y<k hold information on the
size of subsets S<k. More explicitly, nk = Ân

j=1 ykj. Further, yk is indepen-
dent of ! if the size n0k of subset Sk is given, leading to Equation (5.49). We
further observe that p(yk | n0k,y<k; s) is only non-zero, if n0k = Ân

i=1 yki = nk.
Dropping all zero terms from the sum in Equation (5.49) thus results in
Equation (5.50). Finally, by Definition 5.2.1, we know that yk = Ânk+nk

i=nk+1 ⇡i,
where nk = Âk�1

i=1 ni and p 2 {0, 1}n⇥n a permutation matrix. Hence, to get
yk given y<k, we need to marginalize over all permutations of the elements
of yk given that the elements in y<k are already ordered. This corresponds
exactly to marginalizing over all subset permutation matrices p̄, such that
yk = Ânk

i=1 ⇡̄i, resulting in Equation (5.51).

Here, we describe the set of all subset permutations p̄ of elements i 2 Sk
by Pyk . Put differently, we make p(yk | y<k;!, s) invariant to the order-
ing of elements i 2 Sk by marginalizing over the probabilities of subset
permutations pp̄k [XE19].

We propose the DRPM p(Y;!, s), a differentiable and reparameterizable
two-stage RPM. Since Y = [y1, . . . ,yK]T , we calculate p(Y;!, s), the distri-
bution of the differentiable RPM, sequentially using Lemmas 5.2.1 and 5.2.2,
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where we leverage the PL distribution for permutation matrices p(p; s) to
describe the probability distribution over subsets p(yk | y<k;!, s).

Proposition 5.2.1 (Two-stage Random Partition Model [Sut+23b]).
Given Lemmas 5.2.1 and 5.2.2, the probability mass function p(Y;!,n) of the
two-stage RPM is given by

p(Y;!, s) = p(y1, . . . ,yK;!, s) (5.52)
= p(n;!) Â

p2PY

p(p; s) (5.53)

where PY = {p : yk = Ânk+nk
i=nk+1 ⇡i, k = 1, . . . , K}, p(n;!) and p(p; s) as in

Section 5.1 and corollary 2.4.1, and nk as in Definition 5.2.1.

Proof. From Lemmas 5.2.1 and 5.2.2, we write

p(Y) = p(y1, . . . ,yK;!, s) = p(y1;!, s) · · · p(yK | {yj}j<K;!, s)

=

0

@p(n1;!) Â
p̄12Py1

p(p̄1 | n1; s)

1

A

· · ·

0

@p(nK | {nj}j<K;!) Â
p̄K2PyK

p(p̄K | {nj}jK; s)

1

A

= p(n1;!) · · · p(nK | {nK}j<K;!)

·

0

@ Â
p̄12Py1

p(p̄1 | n1; s) · · · Â
pK2PyK

p(p̄K | {nj}jK; s)

1

A

= p(n;!)

0

@ Â
p̄12Py1

· · · Â
pK2PyK

p(p̄1 | n1; s) · · · p(p̄K | {nj}jK; s)

1

A

= p(n;!) Â
p2PY

p(p | n; s)

= p(n;!) Â
p2PY

p(p; s)
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5.2.1.1 Approximating the distribution over RPMs

The number of permutations per subset |Pyk | scales factorially with the sub-
set size nk, i.e. |Pyk | = nk!. Consequently, the number of valid permutation
matrices |PY| is given as a function of n, i.e.

|PY| =
K

’
k=1

|Pyk | =
K

’
k=1

nk! (5.54)

Although Proposition 5.2.1 describes a well-defined distribution for p(Y;!, s),
it is in general computationally intractable due to Equation (5.54). In prac-
tice, we thus approximate p(Y;!, s) using the following Lemma.

Lemma 5.2.3 (Upper and lower bounds for p(Y;!, s) [Sut+23b]).
p(Y;!, s) can be upper and lower bounded as follows

8p 2 PY : p(Y;!, s) � p(n;!)p(p; s) (5.55)

p(Y;!, s)  |PY|p(n;!)max
p

p(p; s) (5.56)

Proof. Since p(p; s) is a probability distribution we know that

8p 2 {0, 1}n⇥n : p(p; s) � 0 (5.57)

Thus, it follows directly that:

8p 2 PY : p(Y;!, s) = p(n;!) Â
p02PY

p(p0; s) � p(n;!)p(p; s),

proving Equation (5.55).
On the other hand, we can prove Equation (5.56) by:

p(Y;!, s) = p(n;!) Â
p02PY

p(p0; s)

 p(n;!) Â
p02PY

max
p2PY

p(p; s)

= p(n;!) max
p2PY

p(p; s) Â
p02PY

1

= |PY| · p(n;!) max
p2PY

p(p; s)

 |PY| · p(n;!)max
p

p(p; s)

We can compute the maximum probability maxp p(p; s) with the probabil-
ity of the permutation matrix fp(s), which sorts the unperturbed scores in
decreasing order.
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Note that from Corollary 2.4.1 we see that maxp p(p; s) = p( fp(s); s), since
p(p; s) is maximal if p = fp(s), i.e. when sorting the unperturbed scores s.

5.2.1.2 Differentiable two-stage RPM

The following Lemma guarantees differentiability, allowing us to integrate
the proposed DRPM into gradient-based optimization methods:

Lemma 5.2.4 (DRPM [Sut+23b]). A two-stage RPM as proposed in Proposi-
tion 5.2.1 is differentiable and reparameterizable if the distribution over subset
sizes p(n;!) and the distribution over orderings p(p; s) are differentiable and
reparameterizable.

Proof. To prove that our two-stage RPM is differentiable, we need to prove
that we can compute gradients for the bounds in Lemma 5.2.3 and to
provide a reparameterization scheme for the two-stage approach in Defini-
tion 5.2.1.

Gradients for the bounds: Since we assume that p(n;!) and p(p; s) are
differentiable and reparameterizable, we only need to show that we can
compute |PY| and maxp̃ p(p̃; s) in a differentiable manner to prove that the
bounds in Lemma 5.2.3 are differentiable. By definition (see Section 5.2.1.1),

|PY| =
K

’
k=1

|Pyk | =
K

’
k=1

nk!.

Hence, |PY| can be computed given a reparametrized nk, which is provided
by the reparametrization trick for the MVHG p(n;!). Further, from Equa-
tion (2.63), we immediately see that the most probable permutation is given
by the order induced by sorting the original, unperturbed scores s from
highest to lowest. This implies that maxp̃ p(p̃; s) = p(ps; s), which we can
compute due to p(ps; s) being differentiable according to our assumptions.

Reparametrization of the two-stage approach: Given reparametrized
versions of n and p, we compute a partition as follows:

yk =
nk+nk

Â
i=nk+1

⇡i, where nk =
k�1

Â
i=1

ni (5.58)

The challenge here is that we need to be able to backpropagate through nk,
which appears as an index in the sum. Let ↵k = {0, 1}n, such that

(↵k)i =

(
1 if nk < i  nk+1

0 otherwise
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Given such ↵k, we can rewrite Equation (5.58) with

yk =
n

Â
i=1

(↵k)i⇡i. (5.59)

While this solves the problem of propagating through sum indices, it is not
clear how to compute ↵k in a differentiable manner. Similar to other works
on continuous relaxations [JGP16; MMT17], we can compute a relaxation
of ↵k by introducing a temperature t. Let us introduce auxiliary function
f : N ! [0, 1]n, that maps an integer x to a vector with entries

fi(x; t) = s

✓
x� i + e

t

◆
,

such that fi(x; t) ⇡ 0 if x�i
t < 0 and fi(x; t) ⇡ 1 if x�i

t � 0. Note that s(·)
is the standard sigmoid function, and e << 1 is a small positive constant to
break the tie at s(0). We then compute an approximation of ↵k with

↵̃k(t) = f (nk; t)� f (nk�1; t),

↵̃k(t) 2 [0, 1]n. Then, for t ! 0 we have ↵̃k(t)! ↵k. In practice, we cannot
set t = 0 since this would amount to a division by 0. Instead, we can apply
the straight-through estimator [BLC13] to the auxiliary function f (x; t) in
order to get ↵̃k 2 {0, 1}n and use it to compute Equation (5.59).

5.2.2 Sampling partitions from the DRPM

To sample a partition Y from our DRPM, i. e. Y ⇠ p(Y;!, s), we use the
two methods from Sections 2.4.2.4 and 5.1, which introduced differentiable
and reparameterizable distributions for p(p; s) and p(n;!) respectively
[Gro+19; Sut+23a]. We thus propose the following sampling procedure:

1. sample p ⇠ p(p; s)

2. sample n ⇠ p(n;!)

3. calculate Y = f (p,n) according to Definition 5.2.1 by summing the
rows of p according to n. Hence, 8 k = 1, . . . , K we have:

yk =
nk+nk

Â
i=nk+1

⇡i where nk = Â
j<k

nj (5.60)
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Using this two-stage procedure, we can infer and resample partitions in
a differentiable and reparameterizable way. Additionally, due to Proposi-
tion 5.2.1 and lemma 5.2.3, we are also able to efficiently estimate p(Y;!, s)
for a given DRPM sample Y.

In summary, we introduce an efficient model to deterministically and
probabilistically learn partitions end-to-end. In contrast to previous RPMs,
which often need exponentially many distribution parameters [Pla75], the
proposed DRPM needs only (n + K) parameters to create an RPM for n
elements: the score parameters s 2 Rn

+ and the group importance parame-
ters ! 2 RK

+. Our DRPM enables us to integrate partition models in any
gradient-based optimization pipeline. In the following experiments, we
present how to use the DRPM with both deterministic and probabilistic
models.

5.3 experiments

We demonstrate the versatility and effectiveness of the proposed DRPM in
three different experiments. First, we propose a novel generative clustering
method based on the DRPM and validate it against state-of-the-art differen-
tiable clustering methods. Then, we apply the DRPM to multitask learning
(MTL), where the DRPM enables an adaptive neural network architecture
that partitions layers based on task difficulty. Finally, we demonstrate how
the DRPM can infer shared and independent generative factors under weak
supervision.

In Chapters 1, 3 and 4, we discuss the limitations of implying restrictive
assumptions on the group structure in a weakly-supervised setting. The
proposed DRPM shows the benefits of inferring shared and independent
generative factors during optimization, equivalent to learning the group
structure.

5.3.1 Variational Clustering with Random Partition Models

Our first experiment introduces a new clustering method based on the
DRPM.

5.3.1.1 Method

Because of the intractable generative process of the dataset, we perform
variational clustering. We assume that each sample x(i) of a dataset X =
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Figure 5.8: Graphical model of the DRPM clustering model. Generative paths
are marked with thin arrows, whereas inference is in bold.

Figure 5.9: Architecture of the DRPM clustering model.
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NMI ARI ACC

GMM 0.32±0.01 0.22±0.02 0.41±0.01

Latent GMM 0.86±0.02 0.83±0.06 0.88±0.07

VADE 0.84±0.01 0.76±0.05 0.82±0.04

DRPM-VC 0.89±0.01 0.88±0.03 0.94±0.02

(a) MNIST

NMI ARI ACC

GMM 0.49±0.01 0.33±0.00 0.44±0.01

Latent GMM 0.60±0.00 0.47±0.01 0.62±0.01

VADE 0.56±0.02 0.40±0.04 0.56±0.03

DRPM-VC 0.64±0.00 0.51±0.01 0.65±0.00

(b) FMNIST

Table 5.1: We compare the clustering performance of the DRPM-VC on test sets
of MNIST and FMNIST between Gaussian Mixture Models (GMM),
GMM in latent space (Latent GMM), and Variational Deep Embedding
(VADE). We measure performance in terms of the Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI), and cluster accuracy
(ACC) over five seeds and put the best model in bold.

{x(i)}N
i=1 2 RN⇥p is generated by a latent vector z(i). Instead of assuming

a single Gaussian prior N (µ, diag(�)) for the latent vectors like in vanilla
variational autoencoders [VAE, KW14], we assume every z(i) to be sampled
from one of K different latent Gaussian distributions N (µk, diag(�k)), k 2
{1, . . . , K}. The assignments y(i) of every z(i) to their respective clusters are
then distributed according to an RPM, potentially resulting in dependencies
between latent vectors z(i). In the following, let Z = {z(1), ...,z(N)} 2

Rd⇥N , and Y = {y(1), ...,y(N)} 2 {0, 1}K⇥N contain the respective latent
vectors and cluster assignments for each sample of a given dataset X =
{x(1), ...,x(N)} with N samples. Every y(i) is a one-hot vector where the
index set to one defines the cluster assignment.
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We illustrate the generative process in the graphical model in Figure 5.8
and derive it as follows: First, we sample the cluster assignments Y from
an RPM, i.e., Y ⇠ p(Y;!, s). Given Y, we can sample the latent variables
Z, where z(i) ⇠ N (µk(i) , diag(�k(i) )) where k(i) = arg maxk y

(i) in a slight
abuse of notation. Finally, we sample X, where x(i) ⇠ pq(x

(i) | z(i)) is
sampled from the data distribution pq(·) given the respective latent vector
z(i). In the derivation of the ELBO L(q, f; X), we remove the super scripts
(i) to remove clutter.

Assuming this generative process and using Bayes’ rule and Jensen’s
inequality, we derive the following ELBO L(q, f; X) for p(X) as follows:

log p(X) = log

 Z
Â
Y

pq(X, Y, Z)dZ

!
(5.61)

� Eqf(Z,Y|X)


log
✓

p(X | Z)pq(Z | Y)pq(Y)
qf(Z, Y | X)

◆�
(5.62)

=: L(q, f; X) (5.63)

where q are the amortization parameters of the generative distribution. We
then assume that we can factorize the approximate posterior as follows:

qf(Z, Y | X) = qf(Y | X) ’
x2X

qf(z|x), (5.64)

where f are the amortization parameters of the variational distribution.
Note that while we do assume conditional independence between z given
its corresponding x, we model qf(Y | X) with the DRPM and do not have
to assume conditional independence between different cluster assignments.
This has the advantage that we directly leverage dependencies between
samples from the dataset. Hence, we can rewrite the ELBO as follows:

L(q, f; X) = Eqf(Z|X) [log(pq(X | Z))]

�Eqf(Y|X)

⇥
DKL[qf(Z | X) || pq(Z | Y)]

⇤

� DKL[qf(Y | X) || pq(Y)] (5.65)
= Â

x2X
Eqf(z|x) [log pq(x | z)]

� Â
x2X

Eqf(Y|X)

⇥
DKL[qf(z | x) || pq(z | Y)]

⇤

� DKL[qf(Y | X) || pq(Y)] (5.66)
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Note that computing DKL[q(Y | X) || p(Y)] directly is computationally
intractable, and we need to upper bound it according to Lemma 5.2.3, i.e.

DKL[qf(Y | X) || pq(Y)]  Eqf(Y|X)


log

|PY| · qf(n;!(X))

pq(n;!)p(pY; s)

�

+ log
⇣

max
p

qf(p; s(X))
⌘

, (5.67)

where pY is any p 2 PY.

5.3.1.2 Dataset & Implementation

We train and compare our method to three baselines on two different
datasets, the MNIST [LeC+98] and Fashion-MNIST [FMNIST, XRV17]
dataset. We use a simple, fully connected autoencoder architecture for
our clustering experiments. Figure 5.9 shows a high-level overview of its
structure. We have a fully connected encoder E with four layers mapping
the input to 500, 500, 500, and 2000 neurons, respectively. We then compute
each parameter by passing the encoder output through a linear layer and
mapping to the respective parameter dimension in the last layer. In our ex-
periments, we use a latent dimension size of 10, hence µi,�i 2 R10. To learn
dependencies between samples, we map the last layer of the !X block in Fig-
ure 5.9 to K, where K is the number of dimensions. We then apply a softmax
activation for each sample, average the resulting vector over the batch, and
take the logarithm since we want to model log!X . To compute the score si
of a sample x, we map the last layer to dimension K and apply a softmax
activation to that representation to compute the intermediate representation
r 2 [0, 1]K. Since we know that the scores for samples in the same cluster
should be approximately equal, we compute si by log(si) = l ÂK

k=1 k · rk,
where l is a learnable parameter that is responsible for scaling the scores
to an appropriate magnitude. Note that we thus compute si per sample
independently of the other samples in the batch. Finally, once we resample
z ⇠ N (µi, diag(�i)), we pass it through a fully connected decoder D with
four layers mapping z to 2000, 500, and 500 neurons in the first three layers
and then finally back to the input dimension in the last layer to end up
with the reconstructed sample x̂. Figure 5.9 shows a simplified architecture
model used for the DRPM clustering method.

Based on the derivations in Section 5.3.1.1, we use the following loss to
train the clustering experiment:

L(q, f; X) = Â
x2X

Eqf(z|x) [log pq(x | z)] (5.68)
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� Â
x2X

Eqf(Y|X)

⇥
DKL[qf(z | x) || pq(z | Y)]

⇤
(5.69)

�Eqf(Y|X)


log

|PY| · qf(n;!(X))

pq(n;!)pq(pY; s)

�
(5.70)

� log
⇣

max
p

qf(p; s(X))
⌘

(5.71)

For GST-based experiments, the temperature is – especially at the beginning
of training – a sensitive parameter [Gro+19; JGP16]. In order to resample n
and p, we need to apply temperature annealing [Gro+19; JGP16; Sut+23a].
To do this, we apply the exponential schedule that was originally proposed
together with the GST in Jang, Gu, and Poole [JGP16], i.e.

t = max(tf inal , exp(�rt)), (5.72)

where t is the current training step and r is the annealing rate. For our
experiments, we choose the following annealing configuration

r =
log(tf inal)� log(tinit)

#steps
(5.73)

tinit = 1.0 (5.74)
tf inal = 0.5 (5.75)

#steps = 100000 (5.76)

in order to anneal the temperature t from 1.0 to 0.5 over 100000 training
steps.

Similar to Jiang et al. [Jia+16], we quickly realized that proper initializa-
tion of the cluster parameters and network weights is crucial for variational
clustering. In our experiments, we pre-trained the autoencoder structure
by adapting the contrastive loss of [Li+22], as they demonstrated that their
representations manage to retain clusters in low-dimensional space. Further,
we also added a reconstruction loss to initialize the decoder properly. To
initialize the prior parameters, we fit a GMM to the pre-trained embeddings
of the training set and took the resulting Gaussian parameters to initialize
our priors. Note that we used the same initialization across all baselines.

To optimize the DRPM-VC and VADE in our experiments, we used the
AdamW [LH17] optimizer with a learning rate of 0.0001 with a batch size of
256 for 1024 epochs. Appendix A.4.1 provides more details on the training
specifications. During initial experiments with the DRPM-VC, we realized
that the pre-trained weights of the encoder would often lose the learned
structure in the first couple of training epochs. We suspect this to be an



5.3 experiments 131

Figure 5.10: A sample drawn from a DRPM-VC model trained on FMNIST. On
top is the sampled partition with the cluster assignments, and on
the bottom are generated images corresponding to the sampled
assignment matrix. The DRPM-VC learns consistent clusters for
different pieces of clothing and can generate new samples of each
cluster with great variability.

artifact of instabilities induced by temperature annealing. To deal with these
problems, we decided to freeze the first three layers of the encoder when
training the DRPM-VC, giving us much better results.

5.3.1.3 Experiments & Results

Two of the baselines are based on a Gaussian Mixture Model, where one
is directly trained on the original data space (GMM), whereas the other
takes the embeddings from a pre-trained encoder as input (Latent GMM).
The third baseline is variational deep embedding [VADE, Jia+16], which is
similar to the DRPM-VC but assumes i.i.d. categorical cluster assignments.
For all methods except GMM, we use the weights of a pre-trained encoder
to initialize the models and priors at the start of training. All baseline
methods assume i.i.d. sampling of the latent clusters through a categorical
distribution with categorical weights �, i.e., y(i) ⇠ Cat(�).
In Table 5.1, we compare the normalized mutual information [NMI, Dan+05;
LFK09; MGH11] and adjusted rand index [ARI, HA85; Ran71; VEB09] scores
of the different baselines to our DRPM model. As can be seen, we outper-
form all baselines, indicating that modeling the inherent dependencies
implied by finite datasets benefits the performance of variational cluster-
ing. While achieving decent clustering performance, another benefit of
variational clustering methods is that their reconstruction-based nature
intrinsically allows unsupervised conditional generation. In Figure 5.10, we
present the result of sampling a partition and the corresponding generations
from the respective clusters after training the DRPM-VC on FMNIST. The
model produces coherent generations despite not having access to labels,
allowing us to investigate the structures learned by the model more closely.
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Figure 5.11: Samples from the noisyMultiMNIST dataset with increasing noise
ratio in the right task.

5.3.2 Multitask Learning

Many machine learning applications aim to solve specific tasks, optimizing
for a single objective while ignoring potentially helpful information from
related tasks. In multitask learning [MTL, Car93; CS96], we share repre-
sentations between related tasks to improve the generalization on all tasks
[Car93]. Hard parameter sharing [CS96] is helpful in many scenarios as the
tasks share the same base network with only task-specific sub-networks.
For MTL methods utilizing hard parameter sharing, the loss is simply the
sum of the losses of all tasks. Recent works [Kur+22; Xin+22] show that
using a convex combination of task losses is difficult to outperform if the
task losses are scaled according to the task difficulty. Although challenging
to outperform, finding the optimal weights is a tedious and inefficient ap-
proach to MTL. A more automated way of weighting multiple tasks would
thus be vastly appreciated.

In this experiment, we demonstrate how the DRPM, in its deterministic
setting, achieves precisely that by automatically learning task importance
and assigning specific neurons to different output layers, therefore special-
izing them to particular tasks.

5.3.2.1 Dataset, Implementation & Training

We use the MTL pipeline from Sener and Koltun [SK18] and perform exper-
iments on MultiMNIST [SFH17]. In MultiMNIST, there are two overlapping
MNIST digits on every image. Hence, the two tasks, classification of the
digit on the left- and the right-hand side (see Figure 5.11 for an example),
are of approximately equal difficulty by default (left-most image in Fig-
ure 5.11). In Sutter et al. [Sut+23b], we introduce the noisyMultiMNIST
dataset to increase the difficulty of one of the two tasks. There, we control
the task difficulty by adding salt and pepper noise to one of the two digits,
subsequently increasing the difficulty of that task with increasing noise
ratios (from left to right in Figure 5.11). Varying the noise, we evaluate
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Task L

Task R

hqL

hqR

encq

encj !, s

zL

zR

p(yL,yR;!, s)

z

Figure 5.12: Overview of the multitask learning pipeline of the DRPM-MTL
method.

how our DRPM-MTL method adapts to imbalanced difficulties, where one
usually has to tediously search for optimal loss weights to reach a good
performance. We compare DRPM-MTL to a unitary loss scaling method
(ULS), which weights the two tasks equally. ULS is a standard baseline for
MTL methods [see e. g., Kur+22; SK18; Xin+22].

The multitask loss function for the MultiMNIST dataset is

L = wLLL + wRLR (5.77)

where wL and wL are the loss weights, and LL and LR are the individual
loss terms for the respective tasks L and R. We are interested in showing the
effects of equal task weights if the tasks increasingly diverge in difficulty.
Hence, in our experiments, we set the same task weights for DRPM-MTL
and ULS and for all dataset versions, i. e., wL = wR = 0.5. On the other
hand, the DRPM-MTL method does not need additional weighting of loss
terms as it should adapt the selection of task-specific neurons to the task
difficulty.

The task losses are defined as cross-entropy losses

Lt = �
Ct

Â
c=1

gtc logpc = �gt
T logp (5.78)

where CL = CR = 10 for MultiMNIST, gt is a one-hot encoded label vector
and p is a categorical vector of estimated class assignments probabilities,
i. e. Âc pc = 1.
The predictions for the individual tasks pt are given as

pt = hqt(z), where (5.79)
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z = encq(x) (5.80)

for a sample x 2 X (see also Figure 5.12). We use an adaptation of the
LeNet-5 architecture [LeC+98] to the multitask learning problem [SK18].
Both DRPM-MTL and ULS use the same network encq(·), where the neurons
are shared between the two tasks up to some layer, after which the network
branches into two task-specific sub-networks that perform the classifications
(see Figures 5.12 and A.1). Figure A.1 shows the MTL pipeline used for the
ULS method.

Unlike the ULS method, the task-specific networks of DRPM-MTL predict
the digit using only a subset of z. DRPM-MTL uses the following prediction
scheme (see Figure 5.12)

pt = hqt(zt), where (5.81)
zt = z � yt (5.82)
yt = p(Y;!(x), s(x))t = p(Y; encj(x))t (5.83)

The DRPM-MTL encoder first predicts a latent representation z encq(x),
where x is the input image. Using the same encoder architecture but differ-
ent parameters j, we predict a partitioning encoding z0  encj(x). With a
single linear layer per DRPM log-parameter log! and log s are computed.
Next we infer the partition masks yL,yR ⇠ p(yL,yR;!, s). We then feed
the masked latent representations zL  z � yL and zR  z � yR into the
task specific classification networks hqL(zL) and hqR(zR) respectively to
obtain the task specific predictions. Since the two tasks in the MultiMNIST
dataset are similar, the task-specific networks hqL and hqR share the same
architecture, but have different parameters.

5.3.2.2 Experiments & Results

Recent works [Kur+22; Xin+22] show that maximum performance can be
reached by perfectly scaling the task losses. I.e., in case of equal difficulty
of the two tasks, a classifier with equal weighting of the two classification
losses serves as an upper bound in terms of performance. On the other
hand, weighting losses equally is not ideal for increasing noise levels and
would require a reweighting of the loss terms to adapt their weights to
the task difficulty. Instead of weighting the task losses, we assume that
the representation size per task implicitly serves as a weighting of task
losses depending on their difficulty or importance. DRPM-MTL allows
us to partition the weights of the last shared layer using gradient-based
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Figure 5.13: Results for the noisyMultiMNIST experiment. We compare the task
accuracy of the two methods, ULS and the proposed DRPM-MTL,
for five seeds and different noise ratios a (upper plot). DRPM-MTL
can reach higher accuracy for most noise levels a. DRPM-MTL
intuitively assigns the number of dimensions per task according to
their difficulty (lower plot).
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Figure 5.14: Graphical Model for the weakly-supervised experiment. Follow-
ing the assumption of weakly-supervised data, we use a random
partition model for inference and generation of shared zs̄ and inde-
pendent z1 and z2 factors.

optimization such that only a subset of the neurons are used for every task.
Note the difference to the ULS method, where the task-specific branches
access all neurons of the last shared layer.

In contrast to the other experiments (Sections 5.3.1 and 5.3.3), we use
DRPM-MTL as a deterministic model by inferring Y in the two-step proce-
dure of Definition 5.2.1. We learn n and p by adapting the deterministic
versions of the PL and MVHG distributions [Gro+19; Sut+23a]. We evalu-
ate the DRPM-MTL method concerning its classification accuracy on the
two tasks and the inferred subset sizes per task for different noise ratios
a 2 {0.0, . . . , 0.9} of the noisyMultiMNIST dataset (see Figure 5.13). The
DRPM-MTL method achieves the same or better accuracy on both tasks
for most noise levels (upper part of Figure 5.13). It is interesting to see
that DRPM-MTL tries to overcome the increasing difficulty of the task
on the right-hand side by assigning more dimensions to it (lower part of
Figure 5.13, noise ratio a 0.6-0.8). For the maximum noise ratio a = 0.9,
DRPM-MTL can no longer estimate an RPM that reaches state-of-the-art
performance.
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5.3.3 Weakly-Supervised Learning

Data modalities that are not collected as i.i.d. samples, such as consecutive
frames in a video, provide a weak-supervision signal for generative models
and representation learning [Sut+23a] (see also Chapter 1 and section 2.3)
Working with coupled datasets can provide both advantages and additional
challenges compared to the i.i.d. setting (Chapters 3 and 4). Here, on top
of learning meaningful representations of the data samples, we are also
interested in discovering the relation between the coupled samples. In
such a setting, our DRPM enables us to infer the number of shared and
independent generative factors and assign latent factors to be shared or
independent. Shared and independent factors relate to the underlying group
structure as explained in Chapter 1 and section 2.3.2. Next, we introduce
DRPM-VAE for learning from weakly-supervised datasets.

5.3.3.1 Method

For DRPM-VAE, we model the distribution of shared and independent
latent factors as RPM using the proposed DRPM p(Y;!, s) (see Proposi-
tion 5.2.1). We add a posterior approximation of the form q(Y;!(X), s(X))
where the notation !(X) and s(X) implies that the distribution parame-
ters are inferred from data X , and additionally a prior distribution of the
form p(Y;!p, sp).

Without loss of generality, we assume a weakly-supervised dataset
X = [x1,x2] of two views. We assume the following generative model
for DRPM-VAE

p(X) =
Z

z
p(X , z)dz =

Z

z
p(X | z)p(z)dz (5.84)

where z = {zs̄, z1, z2}. The two frames share an unknown number ns̄
of generative latent factors zs̄, and an unknown number, n1 and n2, of
independent factors z1 and z2. Given that we use the same encoding
function for both views (see Figure 5.15), we have n1 = n2. The RPM
samples nk and zk using Y. Hence, the generative model extends to
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p(X) =
Z

z
p(X | z)Â

Y
p(z | Y)p(Y)dz

=
Z

z
p(x1,x2 | zs̄, z1, z2)Â

Y
p(z | Y)p(Y)dz

=
Z

zs̄ ,z1,z2
p(x1 | zs̄, z1)p(x2 | zs̄, z2)

Â
Y

p(zs̄, z1, z2 | Y)p(Y)dzs̄dz1dz2 (5.85)

Figure 5.14 shows the generative and inference model assumptions. Follow-
ing Lemma 5.2.3 and Equation (5.85), we are able to optimize DRPM-VAE
using the following ELBO L(q, f;X):

L(q, f;X) = Eqf(z,Y|X)


log pq(X | z, Y)� log

qf(z, Y | X)

pq(z, Y)

�

= Eqf(z,Y|X) [log pq(x1,x2 | z)

� log
qf(z | Y,X)

pq(z)
� log

qf(Y | X)

pq(Y)

�

= Eqf(z,Y|X) [log pq(x1 | zs̄, z1)] + Eqf(z,Y|X) [log pq(x2 | zs̄, z2)]
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qf(n | X ;!) · |PY|

pq(n;!p)pq(p | X ; sp)

�

� log max
p2PY

qf(p | X ; s) (5.86)

q are the amortization parameters for the generative model, and f for
the inference model. Please note the similarity to the ELBO used in the
clustering experiment in Section 5.3.1, which also shows the versatility
of the proposed DRPM formulation. Similar to the ELBO in Section 5.3.1
or Higgins et al. [Hig+16], the terms need some manual adjustment for
optimal results (see Appendix A.4.3).
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5.3.3.2 Dataset, Implementation & Training

In this experiment, we use paired frames X = [x1,x2] from the mpi3d
toy dataset [Gon+19]. In Chapter 1, Figure 1.2 shows an example pair of
images of a robot arm. Every pair of frames shares a subset of its seven
generative factors. The model maximizes the ELBO on the marginal log-
likelihood of the images through a VAE [KW14]. In this experiment, we use
the disentanglement_lib from Locatello et al. [Loc+20]. We use the same
architectures proposed in the original paper for all comparison methods.
Figure 5.15 shows the pipeline shared between all methods.

We compare the proposed DRPM-VAE to three methods, which only
differ in how they infer shared and latent dimensions. While the Label-VAE
[BTN18; Hos18] implicitly assumes that the number of independent factors
is known, the Ada-VAE [Loc+20] relies on a heuristics-based approach to
infer shared and independent latent factors. Like in Locatello et al. [Loc+20],
we assume a single known independent generative factor for Label-VAE
in all experiments2. Additionally, we compare DRPM-VAE to HG-VAE
[Sut+23a]. HG-VAE only models the number of shared and independent
factors using the MVHG (see Section 5.1), but not the assignment step
needed for a RPM. HG-VAE relies on a heuristic for the assignment step,
which is not part of the ELBO formulation.

The baseline algorithms, Label-VAE [BTN18; Hos18] and Ada-VAE [Loc+20]
are already implemented in disentanglement_lib3. We did not change any
hyperparameters or network settings.

The different methods only differ in the View Aggregation module (see
Figure 5.15), which contains the procedure to select shared and independent
latent factors. Given a subset Ss̄ of shared latent factors, it follows

qf(zi | xj) = fagg(qf(zi | x1), qf(zi | x2)) 8 i 2 Ss̄ (5.87)

qf(zi | xj) = qf(zi | xj) else (5.88)

where fagg is the aggregation function and j 2 {1, 2}. The aggregation
function fagg(·) is the same for all methods. They aggregate shared latent
factors using the GroupVAE method proposed in Hosoya [Hos18], aggregat-
ing shared latent factors using an arithmetic mean. We stick to GroupVAE

2 Please note the similarity of Label-VAE to the multimodal VAE in Chapter 4 using shared and
modality-specific latent subspaces. Both methods share the same assumptions regarding the
underlying group structure.

3 For additional details on the implementation of these methods we refer to the original paper
from Locatello et al. [Loc+20].
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x̂1
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qf(z | x1)

qf(z | x2)

Figure 5.15: The basic architecture for all methods used for the weakly-
supervised experiments. They only differ in determining the number
of shared ns̄ and independent n1 and n2 generative factors.

because of its simplicity. Any other aggregation method (see Section 3.2)
would be a feasible option too.

Figure 5.15 shows the building blocks used. With a single encoder, all
methods independently encode both images to some latent representation,
jointly used to infer shared latent dimensions. A single decoder, which
represents pq(xj | zs̄, zj), sequentially reconstructs the two views from
an aggregated latent vector consisting of a combination of shared and
independent factors.

All models are trained on five random seeds, and the reported results are
averaged over the five seeds. We report mean performance with standard
deviations. We train all models for 3000000 steps using the Adam optimizer
[KB14] with an initial learning rate of 10�5 and a batch size of 64. The
temperature annealing of the Gumbel-Softmax modules in DRPM follows
the same schedule as in our clustering experiments (see Section 5.3.1.2).
Also, it anneals the temperature from tinit = 1.0 to tf inal = 0.5 over the
3000000 training steps. Appendix A.4.3 provides more details on the precise
loss function and its hyperparameters.

5.3.3.3 Experiments & Results

evaluation To evaluate the methods, we compare their performance
on two different tasks, which challenge the methods regarding their es-
timation of the relationship between images. Because we have access to
the data-generating process, we can control the number of shared ns̄ and
independent ni factors. We compare the methods on four different weakly-
supervised datasets with ns̄ 2 {0, 1, 3, 5}. On purpose, we also evaluate the
edge case of ns̄ = 0, which is equal to the two views not sharing any genera-
tive factors. We assess the methods according to their ability to estimate the
number of shared generative factors (Figure 5.16) and how well they encode
the latent representations into shared and independent factors (Table 5.3).
We measure the mean squared error MSE(ns̄, n̂s̄) between the actual number
of shared latent factors ns̄ and the estimated number n̂s̄ (Figure 5.16) and
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Figure 5.16: The mean squared error between the estimated number of shared
factors n̂s̄ and the true number of shared factors ns̄ across five seeds
for the Label-VAE, Ada-VAE, HG-VAE, and DRPM-VAE.

the classification accuracy of predicting the generative factors on the shared
and independent subsets of the learned representations (Table 5.3).

For the downstream task, we randomly sample 100000 samples from the
training set and 50000 samples from the test set. We extract both views’
predicted shared and independent parts for each sample. Then, for every
generative factor of the dataset, three individual classifiers are trained on
the respective latent representations of the 100000 training samples. After-
ward, every classifier evaluates its predictive performance on the latent
representations of the 50000 test samples. To arrive at the final scores, we
extract the prediction of the shared factors on the shared representation
and compute the balanced accuracy. Similarly, we calculate the balanced
accuracy of the independent factors on the respective independent rep-
resentation classifiers and average their balanced accuracy. Because the
number of classes differs between generative factors, we report the adjusted
balanced accuracy4.

For all shared generative factors, we average the accuracies of the indi-
vidual classifiers into a single average balanced accuracy. We do the same
for the independent factors. This allows us to report the amount of shared

4 We use the scikit-learn [Ped+11] implementation. For details, see https://scikit-learn.o
rg/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
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Model Label Ada HG DRPM

ns = 0 I 0.14 ± 0.01 0.12 ± 0.01 0.18 ± 0.01 0.26± 0.02

ns = 1 S 0.19 ± 0.03 0.19 ± 0.01 0.22 ± 0.05 0.39± 0.07

I 0.16 ± 0.01 0.15 ± 0.01 0.19 ± 0.01 0.20± 0.01

ns = 3 S 0.10 ± 0.00 0.10 ± 0.03 0.08 ± 0.02 0.15± 0.01

I 0.23 ± 0.01 0.22 ± 0.02 0.28 ± 0.01 0.29± 0.02

ns = 5 S 0.34 ± 0.00 0.33 ± 0.03 0.28 ± 0.01 0.42± 0.03

I 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Table 5.3: We evaluate the learned latent representations of the four meth-
ods (Label-VAE, Ada-VAE, HG-VAE, DRPM-VAE) in the weakly-
supervised experiment with respect to the shared (S) and independent
(I) generative factors. We do this by fitting linear classifiers on the
shared and independent dimensions of the representation, predicting
the respective generative factors. We report the results in adjusted
balanced accuracy [Sut+23a] across five random seeds.



5.4 discussion 143

and independent information in the learned latent representation and the
respective subspaces.

Similar to the latent representation in Sections 3.3.3.1 and 4.2.3.1, we train
linear classifiers to evaluate the latent representation. Specifically, we use
logistic regression classifiers [Cox58] from scikit-learn [Ped+11]. To train the
model, we increased the max_iter parameter so that all models converged
and left everything else on default settings.

results In Figure 5.16, we see that DRPM-VAE can accurately estimate
the true number of shared generative factors. It matches the performance
of HG-VAE and outperforms the other two baselines, which consistently
overestimate the true number of shared factors. In Table 5.3, we see a con-
siderable performance improvement for DRPM-VAE compared to previous
work when assessing the learned latent representations. We assume this to
be due to its ability to estimate the subset sizes of latent and shared factors
like HG-VAE and to learn to assign latent dimensions to corresponding
shared or independent representations. Thus, DRPM-VAE can dynami-
cally learn more meaningful representations of shared and independent
subspaces for all dataset versions.

DRPM-VAE provides empirical evidence of how RPMs can help with
specific weakly supervised learning tasks, in which we are interested in
maximizing the data likelihood while also learning representations that
capture the relation between coupled data samples. Additionally, we can
explicitly model the data-generating process in a theoretically grounded
fashion instead of relying on heuristics.

5.4 discussion

This chapter presents the first steps toward learning the relationship be-
tween group members in a weakly-supervised setting. Similar to the mul-
timodal setting, we assume an unknown set of shared generative factors.
Using the hypergeometric distribution, we present a novel two-step RPM.
Given its differentiable and reparameterizable formulation, we can inte-
grate the proposed DRPM into any modern ML framework and learn the
parameters of its distribution using gradient-based optimization.

We proposed two novel continuous relaxations for discrete distributions.
Our new formulations enable us to learn the distribution parameters using
gradient-based optimization.
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In a weakly supervised multiview setting, we show that DRPM-VAE, a
VAE integrating DRPM into its variational distribution, learns the number
of shared factors and encodes shared and independent information accord-
ingly into the shared and independent latent subspaces. Compared to the
baseline methods, which must rely on restrictive assumptions and heuris-
tics, DRPM-VAE achieves better performance. Like the methods presented
in Chapters 3 and 4, over-restrictive assumptions and heuristics hurt the
learning process of the baseline methods.

In addition, we show that DRPM is a versatile building block and use it
in a clustering application (Section 5.3.1), where we partly overcome the
i.i.d. assumption and an MTL setting (Section 5.3.2), where we partition the
output layer of a neural network according to different tasks.

On the other hand, learning the needed scores s and group importance
! is a complex optimization problem. Although we reduce the number
of hyperparameters and restrictive assumptions compared to the methods
using shared and modality-specific latent subspaces in Chapter 4, we must
choose the remaining hyperparameters carefully.

In future steps, we want to apply DRPM to other weakly-supervised
settings. We want to use it in a multiview setting with more than two
views, where more complicated relationships between images appear, and
multimodal data, where not the same encoder generates the latent repre-
sentations, and, as such, presents a more complex problem.



6
S U M M A RY A N D C O N C L U S I O N

In this chapter, we summarize the results and discuss the limitations of this
thesis, which is based on findings and results of the research publications
during my PhD [Dau+22; Dau+20; SDV20; SDV21; Sut+23a; Sut+23b; SV21].
We describe our contributions in three chapters, where every chapter dis-
cusses and tackles a different but related aspect of multimodal and weakly
supervised learning.

First (Chapter 3), we analyzed the implications of different probabilistic
aggregation methods for multimodal scalable VAEs in combination with the
assumption of a single joint latent space. Hence, we infer a single joint latent
variable, which we then use to condition the generative distributions of all
modalities. Given potentially missing data types, we require multimodal
VAEs to have a joint posterior approximation, which is robust to missing
modalities. Hence, early-fusion multimodal models, where the aggregation
of different modalities is part of the network architecture, are not a valid
option because they always require the same number of input modalities
and cannot handle missing modalities.

Unlike early fusion, late fusion aggregation functions efficiently handle
any number of inputs. Therefore, we introduced a new probabilistic ag-
gregation function, a mixture of products of experts distribution (MoPoE).
The MoPoE joint posterior approximation combines all multimodal subsets
using their mixture distribution and aggregates the modalities in every sub-
set using their product distribution. We showed that the proposed MoPoE
distribution improves performance and generalizes previous works [Shi+19;
WG18]. Previous works on scalable multimodal VAEs only considered spe-
cific subsets in their probabilistic aggregation functions and are only special
cases of the MoPoE formulation. In our experiments, we showed that the
performance of every method is directly related to the choice of subsets
considered in the aggregation function. While there is a trade-off between
generative quality and coherence, we showed that the choice of aggregation
function strongly impacts the performance of scalable multimodal VAEs.
Hence, only our MoPoE-based formulation fulfills the requirements and
desiderata of multimodal learning across all subsets and is robust to missing
input modalities.

145
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However, we uncovered that no method under our generalized formu-
lation generates samples of the same quality as if a comparable unimodal
VAE generated them. We attributed this limitation to the over-restrictive
assumption of having a single joint latent space and the drawbacks of mix-
ture distributions as probabilistic aggregation functions in the multimodal
setting.

Second (Chapter 4), we showed how a more flexible assumption of the
underlying multimodal group structure improves the generative perfor-
mance of multimodal VAEs. We introduced additional modality-specific
latent subspaces to overcome the over-restrictive assumption of a single
joint latent space. Hence, we model every data type as having shared and
modality-specific generative factors. In the experiments, the more flexible
assumptions led to the better generative quality of samples than more re-
strictive assumptions. More surprisingly, the learned latent representations
and the coherence of generated samples improved, too.

Our experiments showed that all multimodal VAEs benefit from addi-
tional modality-specific latent subspaces — independent of the probabilistic
aggregation function used for the joint variational posterior. Mixture-based
multimodal VAEs such as MoPoE – in addition to their high coherence
in generated samples when using a single joint latent space – show the
high quality of generated samples when using modality-specific latent
subspaces. The downside of additional modality-specific subspaces is the
increased number of hyperparameters. During the experiments, we saw a
high sensitivity of the model performance to the choice of hyperparameters,
which is not surprising for a VAE-based approach [Hig+16; Loc+19].

However, additional latent subspaces requiring additional hyperparame-
ters intensify an already existing issue. Therefore, we pay for the increased
quality with a more intense hyperparameter selection procedure, arguably
contradictory to our original goal of designing scalable multimodal VAEs.

In the last chapter (Chapter 5), we worked toward integrating the modeling
of group structures into the learning process. The step from restrictive
(Chapter 3) to more flexible modeling assumptions (Chapter 4) led to
performance improvements regarding the coherence and quality of sam-
ples. However, the assumptions still reflect a simplistic group structure of
a weakly-supervised dataset. In the chapters on multimodal learning, a
particular case of the general weakly-supervised setting, we showed the
importance of having assumptions that match the relationship between
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group members. Following the difficulty of getting precise knowledge about
the underlying group structure, there was a need to incorporate the infer-
ence of this relationship into the learning process. We needed probabilistic
formulations that do not rely on a priori knowledge about the underlying
group structure of weakly supervised data.

Chapter 5 showed how partition models enable learning the group struc-
ture instead of relying on assumptions or pre-defined heuristics. We in-
troduced a differentiable and reparameterizable random partition model,
which learns to select shared and independent latent factors while maximiz-
ing the ELBO in a weakly supervised setting. The proposed differentiable
RPM is based on a two-stage approach. First, we sample the number of
elements per subset using the multivariate noncentral hypergeometric dis-
tribution. Second, we assign the corresponding number of elements to the
respective subsets based on a Plackett-Luce model. For the first step, we
introduced a new differentiable and reparameterizable formulation of the
hypergeometric distribution. Next to the weakly supervised experiment,
we show the versatility of the proposed RPM formulation in two additional
ML experiments, clustering and multitask learning. The selection of experi-
ments in the last chapter highlights the importance of differentiable discrete
distributions for ML.

Overall, we additionally motivate comparing methods with respect to
multiple performance metrics – and not only a single one. We assess the
performance of multimodal and weakly-supervised VAEs using several
performance measures. In the multimodal setting, which can be seen as
a challenging weakly-supervised setting, we see that different methods
perform well on single tasks such as latent representations or generative
quality. Hence, it is essential to not only compare different tasks but also
different inputs. We can only see the limitations and strengths of different
methods and assumptions by evaluating all metrics with respect to different
multimodal subsets.

We only looked at amortized inference schemes in our experiments.
Cremer, Li, and Duvenaud [CLD18] show that the inference of VAEs is
suboptimal compared to methods that infer the latent representation using
gradient-based optimization. This "amortization gap" is likely caused by
the amortization of posterior approximations using inference networks.
Combining gradient-based optimization of inference and multimodal VAEs
could help improve the performance of multimodal models - independent
of their aggregation function - and presents an interesting line of research
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for future research. However, the results of the experiments of this thesis
showed that learning a model that fulfills all desiderata of multimodality
goes beyond approximating the training distribution (Sections 3.3 and 4.2).
For e. g., the Poe-VAE achieves the best log-likelihood numbers if all modal-
ities are given. However, it shows reduced performance if only a subset of
modalities is given as input, making it a sub-optimal multimodal model.

This thesis aims to uncover and overcome limiting assumptions in learn-
ing from data under weak supervision. During this process, we evaluate our
hypotheses mainly on synthetic datasets. The more realistic an application
gets, the more complicated the involved networks and architectures of the
models are. Hence, the disentanglement of contributions of the individual
building blocks and methods is difficult. On the other hand, synthetic data
allows the controllable generation of datasets and their evaluation with
respect to generative factors.

Nevertheless, the missing experiments on real-world data are a limitation
of this thesis. Foreseeing all the difficulties and caveats of real-world data is
unlikely. Hence, the assumptions and relationships built into a synthetic
dataset will differ from the complete set of problems surfacing in a real-
world experiment. Therefore, future work must include an evaluation of the
proposed methods and formulations on real-world data and applications.
Transferring the gained knowledge and improved methods to more realistic
settings would give us more insights and test the ability of the proposed
methods to learn in real-world scenarios.

This thesis’s proposed methods and formulations rely on the weak su-
pervision of the collected data. However, datasets of different data types
describing a specific phenomenon are often unaligned, which makes it diffi-
cult to leverage this rich source of information. For example, the information
from x-ray images and computer tomography scans of different patient
populations but the same part of the human body cannot be integrated by
methods described in this work. However, leveraging unaligned datasets
would improve multimodal methods. Using this source information is an
interesting next step for multimodal learning requiring different approaches
[e. g., GNX22; Mos+22].

Current state-of-the-art generative models train conditional text-to-image
models [Ram+22; Ram+21]. Hence, they can only generate images based
on text, but not text based on images, raising the question of how much
multimodality in conditional methods is. While for a bimodal dataset of
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images and text, it is feasible to train models for both conditional distri-
butions, i. e., image to text and text to image, the number of conditional
distributions increases exponentially with the number of modalities. Given
the computational cost of training a single state-of-the-art text-to-image
generative model [Bro+20, section 6.3 and appendix B], it is questionable
whether training an exponential number of models is a good development
strategy. This thesis focuses on learning the joint distribution of weakly-
supervised datasets, where multimodal data is a particular case. Given the
conceptual problems with conditional models, we must tackle the more
difficult problem of learning the joint data distribution. The proposed ap-
proaches to learning from weakly supervised data outlined in this thesis
enable models that scale linearly in the number of group members and
naturally provide many-to-many mappings between group members or
modalities. However, learning the joint distribution of weakly supervised
data poses additional challenges. Coherent and high-quality generation
of multimodal samples, in combination with scalability, is a non-trivial
challenge in the weakly-supervised setting.

Currently, contrastive methods [Che+20] are the state-of-the-art self-
supervised representation learning approach, diffusion models [Rom+22]
for image generation and transformer-based architectures for natural lan-
guage processing and generation [Bro+20; Vas+17]. While extensions to
the vanilla VAE, such as hierarchical VAEs[Chi20; VK20], show impres-
sive generative quality, the prime spot in conditional generation belongs
to the more specialized models or combinations thereof. E. g. conditional
text-to-image models such as Dall-E [Ram+22; Ram+21] rely on a combi-
nation of transformers, contrastive methods, and diffusion models. The
possibility of learning meaningful representations and generating samples
while optimizing only a single objective is both a strength and weakness
for VAEs [see also Mil21]. Nevertheless, the strength of multimodal and
weakly-supervised VAEs presented in this work is their formulation based
on the principles of variational inference. This principled approach allows
us to simultaneously learn meaningful representations and high-quality
generations for any data type and propose new probabilistic formulations.

In multimodal learning, we want to learn from any data type, not just the
ubiquitous text and image modality. Therefore, providing methods to learn
from and generate any data type is essential. Hence, the ELBO optimization
makes multimodal VAEs a suitable method for any data type we can define
and evaluate the log-likelihood. However, multimodal VAEs adopt not only
the strengths but also the weaknesses of a VAE-based approach. The log-
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likelihood definitions to evaluate a generated sample of a data type with
unknown data distribution, e. g., images, rely on heuristics. Likelihood-
free methods, e. g., GANs [Goo+14], provide a better objective leading
to a better quality of generated samples. Bridging the gap between the
likelihood-based objective applicable to any data type and state-of-the-art
specialized models by reducing over-restrictive assumptions of the defined
data log-likelihoods is an essential step for unimodal and multimodal VAEs.

Throughout this thesis, we are concerned with learning from weakly-
supervised data and how different assumptions on the group structure and
its generative factors affect the learning process. Using the principles of
variational approximation, we can uncover the hidden relation between
samples in the form of shared and independent latent factors. In summary,
this thesis shows the importance of integrating the learning of group struc-
ture into the optimization process and the value of overcoming simplistic
assumptions.
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A
A P P E N D I X

a.1 gradient-based optimization of discrete structures

a.1.1 Proof of Gumbel-Max Trick

In this section, we provide the proof of the Gumbel-Max trick in Theo-
rem 2.4.1.

Proof. In the proof, we show that P(I = k) = ak, i. e. sampling using the
Gumbel-Max as described in Theorem 2.4.1 results in exact samples from
Cat(↵).

P(I = k) = EG(log sk ,1)

"

’
jK,j 6=k

p(G(log sj, 1) < G(log sk, 1)))

#
(A.1)

where we start the proof by understanding that P(I = k) = ak holds if and
only if G(log sk, 1) > G(log sj, 1), 8 j  K, j 6= k. The product on the right
hand side in Equation (A.1) follows from the independence assumption of
the gumbel variables gk. In the following, we use fk(·) to denote the PDF of
the distribution G(log sk, 1)). We continue the proof with

P(I = k) =
Z

fk(m) ’
jK,j 6=k

p(G(log sj, 1) < m))dm (A.2)

=
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=
Z

sk exp (�m) exp

 
� exp (�m) · Â

jK
sj

!
dm (A.7)

We have Z = ÂK
j=1 sj and ak = skZ by definition:

P(I = k) = akZ
Z

exp (�m) exp (�Z exp (�m)) dm (A.8)

Using
R

exp (�m) exp (�Z exp (�m)) dm = 1
Z , it follows

P(I = k) = ak (A.9)

a.1.2 Proof of the equality between Thurstonian and Plackett-Luce models

In this section, we provide the proof of the Gumbel-Max trick in Theo-
rem 2.4.2.

Proof. We take the proof from Grover et al. [Gro+19], which again follows a
result from Yellott [Yel77], and also provide a proof sketch only and refer
the reader to Yellott [Yel77] for more details.

Consider random variables {Xi}
n
i=1 such that Xi ⇠ exp(si). We may prove

by induction a generalization of the memoryless property:

q(X1...n | x  min
i

Xi) = q(X1  · · ·  Xn | x  min
i

Xi) (A.10)

=
Z •

0
q(x  X1  X1 + t | x  min

i
Xi) (A.11)

q(X2  · · ·  Xn | x + t  min
i�2

Xi)dt

=
Z •

0
q(0  X1  t) (A.12)

q(X2  · · ·  Xn | x + t  min
i�2

Xi)dt

If we assume as inductive hypothesis that q(X2  · · ·  Xn | x + t 
mini�2 Xi) = q(X2  · · ·  Xn | t  mini�2 Xi), we complete the induction
as:

q(X1...n | x  min
i

Xi) = q(X1  · · ·  Xn | x  min
i

Xi) (A.13)

=
Z •

0
q(0  X1  t) (A.14)
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q(X2  · · ·  Xn | t  min
i�2

Xi)dt

=q(X1  X2  · · ·  Xn | 0  min
i

Xi) (A.15)

It follows from a familiar property of argmin of exponential distributions
that:

q(X1...n | x  min
i

Xi) = q(X1  · · ·  Xn | x  min
i

Xi) (A.16)

=q(X1  min
i

Xi)q(X2  · · ·  Xn | Xi  min
i

Xi)

(A.17)

=
si
Z

q(X2  · · ·  Xn | Xi  min
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Xi) (A.18)

=
si
Z

Z •
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q(X1 = x)q(X2  · · ·  Xn | x  min
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(A.19)

=
si
Z

q(X2  · · ·  Xn) (A.20)

and by another induction, we have

q(X1  · · ·  Xn) =
n

’
i=

si

Z�Âi�1
j=1 sj

. (A.21)

Finally, following the argument of Balog et al. [Bal+17], we apply the
strictly decreasing function g(x) = �b log x to this identity, which from the
definition of the Gumbel distribution implies

q(s̃1  · · ·  s̃n) =
n

’
i=

si

Z�Âi�1
j=1 sj

. (A.22)

We follow Grover et al. [Gro+19] for this proof.

a.1.3 Derivation of differentiable Sorting Operator

Grover et al. [Gro+19] make use of the following lemma [OT03] in the
derivation of their differentiable sorting procedure. For completeness, we
provide the lemma here.

Lemma A.1.1 (Lemma 1 from Ogryczak and Tamir [OT03]). Given a vector
of scores s = [s1, . . . , sn]T 2 Rn

+ and a permutation matrix p 2 Pn, which sorts
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the scores s in decreasing order, i. e. (ps))1 � (ps))2 � . . . � (ps))n, the sum
of the k-largest elements is given as

k

Â
i=1

(ps))i = min
l2s

lk +
n

Â
i=1

max(si � l, 0) (A.23)

Proof. For any value of l, the following inequalities hold

k

Â
i=1

(ps)i = lk +
k

Â
i=1

((ps)i � l) (A.24)

 lk +
k

Â
i=1

max((ps)i � l, 0) (A.25)

 lk +
n

Â
i=1

max((ps)i � l, 0) (A.26)

Furthermore, for l = (ps)k:

lk +
n

Â
i=1

max((ps)i � l, 0) = (ps)kk +
n

Â
i=1

max((ps)i � (ps)k, 0) (A.27)

= (ps)kk +
k

Â
i=1

((ps)i � (ps)k) (A.28)

=
k

Â
i=1

(ps)i (A.29)

a.1.4 Proof of Differentiable Permutation Matrix

In this section, we provide the proof of Corollary 2.4.2.

Proof. We first consider at exactly what values of l the sum in Lemma A.1.1
is minimized. Please note that the proof only holds if all values si 2 s are
distinct.

The equality Âk
i=1(ps)i = lk + Ân

i=1 max(si � l, 0) holds only when
(ps)k  l  (ps)k+1. Following Lemma A.1.1, these values of l also
minimize the right-hand side of the equality.

Symmetrically, if we consider the scores t = �s, then l(n � k + 1) +
Ân

i=1 max(ti � l, 0) is minimized at (pt)n�k+1  l  (pt)k.
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Replacing l with �l and using the definition of t implies that l(k� 1�
n) + Ân

i=1 max(l� si, 0) is minimized at (ps)k�1  l  (ps)k.
It follows

(ps)k = arg min
l2s

" 
lk +

n

Â
i=1

max(si � l, 0)

!

+

 
lk(k� 1� n) +

n

Â
i=1

max(l� si, 0)

!#
(A.30)

= arg min
l2s

"
l(2k� 1� n) +

n

Â
i=1

|si � l|

#
(A.31)

Therefore, it follows that if si = (ps)k, then i = arg min(2k � 1� n)s+
As1.
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a.2 joint latent space models

a.2.1 PolyMNIST Background Images

We use the following background images BGm to generate the PolyMNIST
dataset:

1. John Burkardt. Licensed under GNU LGPL.
https://people.sc.fsu.edu/~jburkardt/data/jpg/fractal_tree.
jpg
[Online; retrieved 27.09.2020]

2. Edvard Munch. The Scream. Public domain.
https://upload.wikimedia.org/wikipedia/commons/f/f4/The_Scr
eam.jpg
[Online; retrieved 27.09.2020]

3. The Waterloo Image Repository. Lena. Copyright belongs to the au-
thor.
http://links.uwaterloo.ca/Repository/TIF/lena3.tif
[Online; retrieved 27.09.2020]

4. John Burkardt. Licensed under GNU LGPL.
https://people.sc.fsu.edu/~jburkardt/data/jpg/star_field.j
pg
[Online; retrieved 27.09.2020]

5. John Burkardt. Licensed under GNU LGPL.
https://people.sc.fsu.edu/~jburkardt/data/jpg/shingles.jpg
[Online; retrieved 27.09.2020]

a.2.2 Network Architectures

This section describes the network architectures of the encoders and de-
coders used in Chapters 3 and 4.

https://people.sc.fsu.edu/~jburkardt/data/jpg/fractal_tree.jpg
https://people.sc.fsu.edu/~jburkardt/data/jpg/fractal_tree.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f4/The_Scream.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f4/The_Scream.jpg
http://links.uwaterloo.ca/Repository/TIF/lena3.tif
https://people.sc.fsu.edu/~jburkardt/data/jpg/star_field.jpg
https://people.sc.fsu.edu/~jburkardt/data/jpg/star_field.jpg
https://people.sc.fsu.edu/~jburkardt/data/jpg/shingles.jpg
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Layer Type # Features In # Features Out

1 linear 784 400
2a linear 400 20
2b linear 400 20

(a) MNIST Encoder

Layer Type # Features In # Features Out

1 linear 20 400
2 linear 400 784

(b) MNIST Decoder

Table A.1: MIST: Encoder and Decoder Layers. The ReLU activation function
follows every layer. The only exceptions are the linear layers 2a and 2b,
which we use to map the encodings to µ and s2I of the approximate
posterior distribution.

a.3 modality-specific latent subspaces

a.3.1 Network Architectures for Bimodal CelebA

This section describes the network architectures used in the bimodal CelebA
experiment in Chapter 4.
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Layer Type #F. In #F. Out Spec.

1 conv2d 3 32 (4, 2, 1, 1)
2 conv2d 32 64 (4, 2, 1, 1)
3 conv2d 64 64 (4, 2, 1, 1)
4 conv2d 64 128 (4, 2, 0, 1)
5a linear 128 20
5b linear 128 20

(a) SVHN Encoder

Layer Type #F. In #F. Out Spec.

1 linear 20 128
2 convT

2d 128 64 (4, 2, 0, 1)
3 convT

2d 64 64 (4, 2, 1, 1)
4 convT

2d 64 32 (4, 2, 1, 1)
5 convT

2d 32 3 (4, 2, 1, 1)

(b) SVHN Decoder

Table A.3: SVHN: Encoder and Decoder Layers. The specifications name kernel
size, stride, padding, and dilation. A ReLU activation function follows
all layers.
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Layer Type #F. In #F. Out Spec.

1 conv1d 71 128 (1, 1, 0, 1)
2 conv1d 128 128 (4, 2, 1, 1)
3 conv1d 128 128 (4, 2, 0, 1)
4a linear 128 20
4b linear 128 20

(a) Text Encoder

Layer Type #F. In #F. Out Spec.

1 linear 20 128
2 convT

1d 128 128 (4, 1, 0, 1)
3 convT

1d 128 128 (4, 2, 1, 1)
4 convT

1d 128 71 (1, 1, 0, 1)

(b) Text Decoder

Table A.5: Text for MNIST-SVHN-Text: Encoder and Decoder Layers. The spec-
ifications name kernel size, stride, padding, and dilation. A ReLU
activation function follows all layers.
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Layer Type #F. In #F. Out Spec.

1 conv2d 3 32 (4, 2, 1, 1)
2 conv2d 32 64 (4, 2, 1, 1)
3 conv2d 64 64 (4, 2, 1, 1)
4 conv2d 64 128 (4, 2, 0, 1)
5 Flatten 128 2048
6a linear 2048 512
6b linear 2048 512

(a) PolyMNIST Encoder

Layer Type #F. In #F. Out Spec.

1 linear 512 2048
2 Unflatten 2048 128
3 convT

2d 128 64 (4, 2, 0, 1)
4 convT

2d 64 64 (4, 2, 1, 1)
5 convT

2d 64 32 (4, 2, 1, 1)
6 convT

2d 32 3 (4, 2, 1, 1)

(b) PolyMNIST Decoder

Table A.7: PolyMNIST network architectures. We use the same basic structure
for all modalities xm 2 X , but with different initialization such that
the networks represent different encoding and decoding functions.
The specifications name kernel size, stride, padding, and dilation. A
ReLU activation function follows all layers.
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Layer Type #F. In #F. Out Spec.

1 conv2d 3 128 (3, 2, 1, 1)
2 res2d 128 256 (4, 2, 1, 1)
3 res2d 256 384 (4, 2, 1, 1)
4 res2d 384 512 (4, 2, 1, 1)
5 res2d 512 640 (4, 2, 1, 1)
6a linear 640 32
6b linear 640 32

(a) Image Encoder

Layer Type #F. In #F. Out Spec.

1 linear 64 640
2 resT

2d 640 512 (4, 1, 0, 1)
3 resT

2d 512 384 (4, 1, 1, 1)
4 resT

2d 384 256 (4, 1, 1, 1)
5 resT

2d 256 128 (4, 1, 1, 1)
6 convT

2d 128 3 (3, 2, 1, 1)

(b) Image Decoder

Table A.9: CelebA Image: Encoder and Decoder Layers. The specifications name
kernel size, stride, padding, and dilation. res names a residual block.
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Layer Type #F. In #F. Out Spec.

1 conv1d 71 128 (3, 2, 1, 1)
2 res1d 128 256 (4, 2, 1, 1)
3 res1d 256 384 (4, 2, 1, 1)
4 res1d 384 512 (4, 2, 1, 1)
5 res1d 512 640 (4, 2, 1, 1)
6 res1d 640 640 (4, 2, 1, 1)
7 res1d 640 640 (4, 2, 0, 1)
8a linear 640 32
8b linear 640 32

(a) Text Encoder

Layer Type #F. In #F. Out Spec.

1 linear 64 896
2 resT

1d 640 640 (4, 2, 0, 1)
3 resT

1d 640 640 (4, 2, 1, 1)
4 resT

1d 640 512 (4, 2, 1, 1)
5 resT

1d 512 384 (4, 2, 1, 1)
6 resT

1d 384 256 (4, 2, 1, 1)
7 resT

1d 256 128 (4, 2, 1, 1)
8 convT

1d 128 71 (3, 2, 1, 1)

(b) Text Decoder

Table A.11: CelebA Text: Encoder and Decoder Layers. The specifications name
kernel size, stride, padding, and dilation. res names a residual block.
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a.4 learning the relationship between groups of samples

a.4.1 Clustering

Since we applied an upper bound on the KL-divergence DKL[qf(Y | X) ||
pq(Y)], we need to weight the KL divergence terms similarly as in the b-
VAE [Hig+16] or in the multimodal VAEs (Sections 3.3 and 4.2). To balance
regularization for balanced clusters and randomness of the permutations
independently, we reshuffle the terms in Equations (5.70) and (5.71) to come
up with the following formulation:

L(q, f; X) = Â
x2X

Eqf(z|x) [log pq(x | z)]

� Â
x2X

Eqf(Y|X)

⇥
b · DKL[qf(z | x) || pq(z | Y)]

⇤

�Eqf(Y|X)


g · log

✓
|PY| · qf(n;!(X))

pq(n;!)

◆

+ d · log
✓

maxp qf(p; s(X))

pq(pY; s)

◆�
(A.32)

As in vanilla VAEs, we can estimate the reconstruction term in Equa-
tion (5.68) with MCMC by applying the reparametrization trick [KW14]
to q(z | x) to sample L samples z(l) ⇠ qf(z | x) and compute their re-
construction error to estimate Equation (5.68). Similarly, as described in
Section 5.2.2, we apply the reparametrization trick to p(n; s) and p(p; s) to
attain L reparametrized samples Y(l) ⇠ qf(Y | X). These can then be used
to compute the KL divergences in Equations (5.69) to (5.71) in closed form.
Finally, this leads to the following loss during training:

L(q, f; X) = Â
x2X

1
L

L

Â
l=1

log pq(x | z(l))

� Â
x2X

1
L

L

Â
l=1

b · DKL[qf(z | x) || pq(z | Y(l))] (A.33)

�
1
L

L

Â
l=1

 
g · log

 
|PY(l) | · q(n(l);!(X ))

p(n(l);!)

!

+ d · log
✓

maxp qf(p; s(X))

pq(p(l); s)

◆◆
(A.34)

In our experiments, we set L = 100 since the MVHG and PL distributions
are not concentrated around their mean very well, such that more Monte
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Task L

Task R

hqL

hqR

encq z

Figure A.1: Overview of the multitask learning pipeline of the ULS method.

Carlo samples lead to much better approximations of the expectation terms.
Please note that we could increase efficiency by reducing the number of
MC samples of the generative model ptheta(x | z(l)).

In addition to the temperature annealing (see Section 5.3.1.2), we also
annealed the weights b, g, and d with the same schedule, setting binit =
0.1 · b f inal , b f inal = 0.1, ginit = 0.1 · g f inal , g f inal = 1, dinit = 0.1 · d f inal , and
d f inal = 0.001.

a.4.2 Multitask Learning

Figure A.1 show the baseline architecture for the unitary loss scaling (ULS)
multitask learning method.

a.4.3 Weakly Supervised Learning

The ELBO L(q, f;X) to be optimized is re-written accordingly as

L(q, f;X) = Eqf(z,Y|X) [log pq(x1 | zs̄, z1)] + Eqf(z,Y|X) [log pq(x2 | zs̄, z2)]

� b · Eqf(z,Y|X)


log

qf(zs̄, z1, z2 | Y,X)

pq(zs̄, z1, z2)

�

� g ·

✓
Eqf(z,Y|X)


log

qf(n | X ;!) · |PY|

pq(n;!p)pq(p | X ; sp)

�

+ log max
p2PY

qf(p | X ; s)
◆

(A.35)

We did not change any hyperparameters or network details. All experiments
were performed using b = 1, which is the best performing b (according
to Locatello et al. [Loc+20]). For DRPM-VAE, we choose g = 0.25 for all
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runs. We use the same parameters for the prior distributions for all dataset
versions. To not introduce any a priori knowledge on the number of shared
factors, we set all si = 1.0 and all wk = 1.0.
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