ETH zürich

An introduction to surrogate modelling for uncertainty quantification in computational sciences

Other Conference Item

Author(s): Sudret, Bruno

Publication date: 2023-10-05

Permanent link: https://doi.org/10.3929/ethz-b-000635152

Rights / license: In Copyright - Non-Commercial Use Permitted

ETHzürich

An introduction to surrogate modelling for uncertainty quantification in computational sciences

Bruno Sudret

How to cite?

This presentation is an invited lecture given at the SimTech2023 Conference at the University of Stuttgart on October 5th, 2023.

How to cite

Sudret, B. *An introduction to surrogate modelling for uncertainty quantification in computational sciences*, International Conference on Data-Integrated Simulation Science (SimTech2023), University of Stuttgart, *Invited Lecture*, October 5th, 2023.

Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators

A computational model combines:

• A mathematical description of the physical phenomena (governing equations), *e.g.* mechanics, electromagnetism, fluid dynamics, etc.

- Discretization techniques which transform continuous equations into linear algebra problems
- Algorithms to solve the discretized equations

div $\boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0}$ $\boldsymbol{\sigma} = \boldsymbol{D} \cdot \boldsymbol{\varepsilon}$ $\boldsymbol{\varepsilon} = \frac{1}{2} \left(\nabla \boldsymbol{u} + {}^{\mathsf{T}} \nabla \boldsymbol{u} \right)$

Computational models in engineering

Computational models are used:

- To explore the design space ("virtual prototypes")
- To optimize the system (e.g. minimize the mass) under performance constraints
- · To assess its robustness w.r.t uncertainty and its reliability
- Together with experimental data for calibration purposes

Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (QoI) (a.k.a. model responses) as a function of input parameters

Real world is uncertain

- Differences between the designed and the real system:
 - Dimensions (tolerances in manufacturing)
 - Material properties (e.g. variability of the stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides), climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)

Outline

Introduction

Uncertainty quantification: why surrogate models?

Basics of polynomial chaos expansions

PCE basis and coefficients Sparse PCE Post-processing

Conclusions

Global framework for uncertainty quantification

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral methods (2007)

Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

- A sample set $\mathcal{X} = \{x_1, \ldots, x_n\}$ is drawn according to the input distribution $f_{\boldsymbol{X}}$
- For each sample the quantity of interest (resp. performance criterion) is evaluated, say $\mathcal{Y} = \{\mathcal{M}(x_1), \ldots, \mathcal{M}(x_n)\}$
- · The set of model outputs is used for moments-, distribution- or reliability analysis

ETH zürich

Uncertainty propagation using Monte Carlo simulation

Advantages/Drawbacks of Monte Carlo simulation

Advantages

- Universal method: only rely upon sampling random numbers and running repeatedly the computational model
- Sound statistical foundations: convergence when $n \to \infty$
- Suited to High Performance Computing: "embarrassingly parallel"

Drawbacks

- Statistical uncertainty: results are not exactly reproducible when a new analysis is carried out (handled by computing confidence intervals)
- Low efficiency: convergence rate $\propto n^{-1/2}$

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape
- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ x^{(i)}, i = 1, \dots, n \right\}$

Simulated data

• It is fast to evaluate!

Surrogate models for uncertainty quantification

Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
	$\alpha \in \mathcal{A}$	
Low-rank tensor approximations	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{l=1}^{M} b_l \left(\prod_{i=1}^{M} v_l^{(i)}(x_i) ight)$	$b_l,z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$ ilde{\mathcal{M}}(oldsymbol{x}) = eta_{m}^{ au = 1} oldsymbol{f}^{ au}(oldsymbol{x}) + Z(oldsymbol{x},\omega)$	$oldsymbol{eta},\sigma_Z^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum^m a_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$oldsymbol{a},b$
(Deep) Neural networks	$ ilde{\mathcal{M}}^{i=1}_{n}\left(\cdots f_{2}\left(b_{2}+f_{1}\left(b_{1}+oldsymbol{w}_{1}\cdotoldsymbol{x} ight)\cdotoldsymbol{w}_{2} ight) ight)$	$oldsymbol{w},oldsymbol{b}$

ETHzürich

Ingredients for building a surrogate model

- Select an experimental design \mathcal{X} that covers at best the domain of input parameters:
 - (Monte Carlo simulation)
 - Latin hypercube sampling (LHS)
 - Low-discrepancy sequences

Ingredients for building a surrogate model

• Smartly post-process the data $\{\mathcal{X}, \mathcal{M}(\mathcal{X})\}$ through a learning algorithm

Name	Learning method	
Polynomial chaos expansions	sparse grid integration, least-squares,	
	compressive sensing	
Low-rank tensor approximations	alternate least squares	
Kriging	maximum likelihood, Bayesian inference	
Support vector machines	quadratic programming	

• Validate the surrogate model, *e.g.* estimate a global error $\varepsilon = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \tilde{\mathcal{M}}(\boldsymbol{X})\right)^2\right]$

Advantages of surrogate models

Usage

 $\mathcal{M}(m{x}) ~pprox$ hours per run

 $ilde{\mathcal{M}}(m{x})$ seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Suited to high performance computing: "embarrassingly parallel"

Efficiency

Challenges

- Need for rigorous validation
- Communication: advanced mathematical background

- 6-8 orders of magnitude (!) less CPU for a single run
- 2-3 orders of magnitude less runs compared to a full Monte Carlo simulation

Surrogate modelling vs. machine learning

Features	Supervised learning	Surrogate modelling
Computational model $\mathcal M$		
	×	\checkmark
Probabilistic model of the input $oldsymbol{X} \sim f_{oldsymbol{X}}$		
	×	\checkmark
Training data: $\mathcal{X} = \{(oldsymbol{x}_i, y_i), i=1, \dots , n\}$		
	v	
	Training data set	Experimental design
	(big data)	(small data)
Prediction goal: for a new $x \notin \mathcal{X}, y(x)$?	$\sum_{i=1}^m y_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$\sum_{oldsymbol{lpha}\in\mathcal{A}}y_{oldsymbol{lpha}}\Psi_{oldsymbol{lpha}}(oldsymbol{x})$
Validation (resp. cross-validation)		
	 ✓ 	V
	Validation set	Leave-one-out CV

Surrogate modelling for UQ

Outline

Introduction

Uncertainty quantification: why surrogate models?

Basics of polynomial chaos expansions PCE basis and coefficients Sparse PCE

Post-processing

Conclusions

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

- We assume here for simplicity that the input parameters are independent with $X_i \sim f_{X_i}, \ i=1,\ldots,M$
- PCE is also applicable in the general case using an isoprobabilistic transform $X\mapsto \Xi$

The polynomial chaos expansion of the (random) model response reads:

$$Y = \sum_{oldsymbol{lpha} \in \mathbb{N}^M} y_{oldsymbol{lpha}} \, \Psi_{oldsymbol{lpha}}(oldsymbol{X})$$

where:

Risk, Safety &

- $\Psi_{\alpha}(X)$ are basis functions (multivariate orthonormal polynomials)
- y_{α} are coefficients to be computed (coordinates)

Sampling (MCS) vs. spectral expansion (PCE)

Whereas MCS explores the output space /distribution point-by-point, the polynomial chaos expansion assumes a generic structure (polynomial function), which better exploits the available information (runs of the original model)

Example: load bearing capacity P_{cr} of a shallow foundation

Thousands (resp. millions) of points are needed to grasp the structure of the response (resp. capture the rare events)

Defined as a function of the soil cohesion c and friction angle φ

Visualization of the PCE construction

= "Sum of coefficients × basic surfaces"

Surrogate modelling for UQ

Visualization of the PCE construction

ETHzürich

Multivariate polynomial basis

Univariate polynomials

• For each input variable X_i , univariate orthogonal polynomials $\{P_k^{(i)}, k \in \mathbb{N}\}$ are built:

$$\left\langle P_{j}^{(i)}, P_{k}^{(i)} \right\rangle = \int P_{j}^{(i)}(u) P_{k}^{(i)}(u) f_{X_{i}}(u) du = \gamma_{j}^{(i)} \delta_{jk}$$

e.g. , Legendre polynomials if $X_i \sim \mathcal{U}(-1,1),$ Hermite polynomials if $X_i \sim \mathcal{N}(0,1)$

• Normalization:
$$\Psi_j^{(i)} = P_j^{(i)} / \sqrt{\gamma_j^{(i)}}$$
 $i = 1, \dots, M, j \in \mathbb{N}$

Tensor product construction

$$\Psi_{oldsymbol{lpha}}(oldsymbol{x}) \stackrel{\mathsf{def}}{=} \prod_{i=1}^{M} \Psi_{lpha_{i}}^{(i)}(x_{i}) \qquad \mathbb{E}\left[\Psi_{oldsymbol{lpha}}(oldsymbol{X})\Psi_{oldsymbol{eta}}(oldsymbol{X})
ight] = \delta_{oldsymbol{lpha}oldsymbol{eta}}$$

where $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_M)$ are multi-indices (partial degree in each dimension)

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P} \equiv \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where : $\mathbf{Y} = \{y_{\alpha}, \alpha \in \mathcal{A}\} \equiv \{y_0, \dots, y_{P-1}\}$ (*P* unknown coefficients)

$$oldsymbol{\Psi}(oldsymbol{x}) = \{ \Psi_0(oldsymbol{x}), \, \ldots \,, \Psi_{P-1}(oldsymbol{x}) \}$$

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$\hat{\mathbf{Y}} = rg\min \mathbb{E}\left[\left(\mathbf{Y}^{\mathsf{T}} \mathbf{\Psi}(\mathbf{X}) - \mathcal{M}(\mathbf{X})\right)^{2}
ight]$$

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \; : \; |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathsf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}),\,\ldots\,,\mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

• Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j \left(\boldsymbol{x}^{(i)} \right) \quad i = 1, \dots, n \; ; \; j = 0, \dots, P-1$$

• Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{M}$$

Simple is beautiful !

ETHzürich

Error estimators

• In least-squares analysis, the generalization error is defined as:

$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

The empirical error based on the experimental design X is a poor estimator in case of overfitting

$$E_{emp} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Leave-one-out cross validation

Risk, Safety 6

• From statistical learning theory, model validation shall be carried out using independent data

$$E_{LOO} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC}(\boldsymbol{x}^{(i)})}{1 - h_i} \right)^2$$

where h_i is the *i*-th diagonal term of matrix $\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$

Outline

Introduction

Uncertainty quantification: why surrogate models?

Basics of polynomial chaos expansions

PCE basis and coefficients

Sparse PCE

Post-processing

Conclusions

Curse of dimensionality

- The cardinality of the truncation scheme $\mathcal{A}^{M,p}$ is $P = \frac{(M+p)!}{M! \, n!}$
- Typical computational requirements: $n = OSR \cdot P$ where the oversampling rate is OSR = 2 3

However ... most coefficients are close to zero !

Example

Risk, Safety 6

- Elastic truss structure with M = 10 independent input variables
- PCE of degree p = 5 (P = 3,003 coefficients)

23/31

Surrogate modelling for UQ

Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by ℓ_1 -regularization:

$$\boldsymbol{y}_{\boldsymbol{\alpha}} = \arg\min\frac{1}{n}\sum_{i=1}^{n}\left(\boldsymbol{\mathsf{Y}}^{\mathsf{T}}\boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)})\right)^{2} + \boldsymbol{\lambda} \parallel \boldsymbol{y}_{\boldsymbol{\alpha}} \parallel_{1}$$

- Different algorithms: LASSO, orthogonal matching pursuit, LARS, Bayesian compressive sensing, subspace pursuit, etc.
- State-of-the-art-review and comparisons available in:

Lüthen, N., Marelli, S. & Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark, SIAM/ASA J. Unc. Quant., 2021, 9, 593-649 https://doi.org/10.1137/20M1315774

-, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications, Int.

J. Uncertainty Quantification, 2022, 12, 49-74

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021036153

Surrogate modelling for UQ

Outline

Introduction

Uncertainty quantification: why surrogate models?

Basics of polynomial chaos expansions

PCE basis and coefficient Sparse PCE Post-processing

Conclusions

Post-processing sparse PC expansions

Statistical moments

 Due to the orthogonality of the basis functions (E [Ψ_α(X)Ψ_β(X)] = δ_{αβ}) and using E [Ψ_{α≠0}] = 0 the statistical moments read:

Mean:
$$\hat{\mu}_Y = y_0$$

/ariance: $\hat{\sigma}_Y^2 = \sum_{oldsymbol{lpha} \in \mathcal{A} \setminus oldsymbol{0}} y_c^2$

Distribution of the Qol

Risk, Safety 6

• The PCE can be used as a response surface for sampling:

$$\mathfrak{y}_j = \sum_{oldsymbol{lpha} \in \mathcal{A}} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x}_j) \quad j = 1, \ldots, n_{big}$$

• The PDF of the response is estimated by histograms or kernel smoothing

Surrogate modelling for UQ

Sensitivity analysis

Goal

Sobol' (1993); Saltelli et al. (2008)

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof) influence the most the response variability (variance decomposition)

Hoeffding-Sobol' decomposition

$$(\boldsymbol{X} \sim \mathcal{U}([0,1]^M))$$

$$\mathcal{M}(\boldsymbol{x}) = \mathcal{M}_0 + \sum_{i=1}^M \mathcal{M}_i(x_i) + \sum_{1 \le i < j \le M} \mathcal{M}_{ij}(x_i, x_j) + \dots + \mathcal{M}_{12\dots M}(\boldsymbol{x})$$
$$= \mathcal{M}_0 + \sum_{\boldsymbol{u} \subset \{1, \dots, M\}} \mathcal{M}_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) \qquad (\boldsymbol{x}_{\boldsymbol{u}} \stackrel{\text{def}}{=} \{x_{i_1}, \dots, x_{i_s}\})$$

• The summands satisfy the orthogonality condition:

$$\int_{[0,1]^M} \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \, \mathcal{M}_{\mathbf{v}}(\boldsymbol{x}_{\mathbf{v}}) \, d\boldsymbol{x} = 0 \qquad \forall \, \mathbf{u} \neq \mathbf{v}$$

Surrogate modelling for UQ

Sobol' indices

Total variance:

$$D \equiv \operatorname{Var} \left[\mathcal{M}(\boldsymbol{X}) \right] = \sum_{\boldsymbol{\mathsf{u}} \subset \{1, \dots, M\}} \operatorname{Var} \left[\mathcal{M}_{\boldsymbol{\mathsf{u}}}(\boldsymbol{X}_{\boldsymbol{\mathsf{u}}}) \right]$$

• Sobol' indices:

$$S_{\mathbf{u}} \stackrel{\text{def}}{=} \frac{\operatorname{Var}\left[\mathcal{M}_{\mathbf{u}}(\boldsymbol{X}_{\mathbf{u}})\right]}{D}$$

• First-order Sobol' indices:

$$S_i = \frac{D_i}{D} = \frac{\operatorname{Var}\left[\mathcal{M}_i(X_i)\right]}{D}$$

Quantify the additive effect of each input parameter separately

• Total Sobol' indices:

$$S_i^T \stackrel{\text{def}}{=} \sum_{\mathbf{u} \supset i} S_{\mathbf{u}}$$

Quantify the total effect of X_i , including interactions with the other variables.

Link with PC expansions

Sobol decomposition of a PC expansion

Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion $\mathcal{M}^{PC}(\mathbf{X}) \stackrel{\text{def}}{=} \sum_{\alpha \in \mathcal{A}} y_{\alpha} \Psi_{\alpha}(\mathbf{X})$

Interaction sets

$$\begin{aligned} & \text{For a given } \mathbf{u} \stackrel{\text{def}}{=} \{i_1, \dots, i_s\} : \qquad \mathcal{A}_{\mathbf{u}} = \{ \boldsymbol{\alpha} \in \mathcal{A} \, : \, k \in \mathbf{u} \Leftrightarrow \alpha_k \neq 0 \} \\ & \mathcal{M}^{\text{PC}}(\boldsymbol{x}) = \mathcal{M}_0 + \sum_{\mathbf{u} \subset \{1, \dots, M\}} \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \quad \text{where} \quad \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \stackrel{\text{def}}{=} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{\mathbf{u}}} y_{\boldsymbol{\alpha}} \, \Psi_{\boldsymbol{\alpha}}(\boldsymbol{x}) \end{aligned}$$

PC-based Sobol' indices

$$S_{\mathbf{u}} = D_{\mathbf{u}}/D = \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{\mathbf{u}}} y_{\boldsymbol{\alpha}}^2 / \sum_{\boldsymbol{\alpha} \in \mathcal{A} \setminus \mathbf{0}} y_{\boldsymbol{\alpha}}^2$$

The Sobol' indices are obtained analytically, at any order from the coefficients of the PC expansion

Conclusions

- Surrogate models are unavoidable for solving uncertainty quantification problems involving costly computational models (*e.g.* finite element models)
- Depending on the analysis, specific surrogates are most suitable: polynomial chaos expansions for distribution- and sensitivity analysis, Kriging (and active learning) for reliability analysis
- Sparse PCE and its extensions (time warping, PC-NARX, PC-Kriging, DRSM, etc.) allow us to address
 a wide range of engineering problems, including Bayesian inverse problems (without the need for
 MCMC simulations)
- Techniques for constructing surrogates are versatile, general-purpose and field-independent
- All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab

UQLab The Framework for Uncertainty Quantification

"Make uncertainty quantification available for anybody, in any field of applied science and engineering"

www.uqlab.com

- MATLAB®-based Uncertainty
 Quantification framework
- State-of-the art, highly optimized open source algorithms
- · Fast learning curve for beginners
- · Modular structure, easy to extend
- · Exhaustive documentation

ETHzürich

UQLab: The Uncertainty Quantification Software BSD 3-Clause license: • Free access to academic, industrial, governmental and non-governmental users • \sim 6,400+ registered users from 94 countries since 2015 http://www.uglab.com The cloud version of UQLab, accessible via an API (SaaS) Available with python bindings for beta testing UQ[py]Lab https://ugpvlab.ug-cloud.io/

Country	# Users
China	1083
United States	914
France	506
Germany	480
Switzerland	410
United Kingdom	252
India	246
Brazil	227
Italy	221
Belgium	120
Canada	124
The Netherlands	111

As of October 1st, 2023

UQWorld: the community of UQ

https://uqworld.org/

Questions ?

Risk, Safety &

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification Software

www.uqlab.com

www.uqpylab.uq-cloud.io

UQ[py]Lab

The Uncertainty Quantification Community

www.uqworld.org

Surrogate modelling for UQ