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A B S T R A C T

Reinforcement learning (RL) has shown remarkable success in appli-

cations with well-defined reward functions, such as maximizing the

score in a video game or optimizing an algorithm’s run-time. How-

ever, in many real-world applications, there is no well-defined reward

function. Instead, Reinforcement Learning from Human Feedback

(RLHF) allows RL agents to learn from human-provided data, such as

evaluations or rankings of trajectories. In many applications, human

feedback is expensive to collect; therefore, learning robust policies

from limited data is crucial. In this dissertation, we propose novel

algorithms to enhance the sample efficiency and robustness of RLHF.

First, we propose active learning algorithms to improve the sample

efficiency of RLHF by selecting the most informative data points

for the user to label and by exploring the environment guided by

uncertainty about the user’s preferences. Our approach provides

conceptual clarity about active learning for RLHF and theoretical

sample complexity results, drawing inspiration from multi-armed

bandits and Bayesian optimization. Moreover, we provide extensive

empirical evaluations in simulations that demonstrate the benefit of

active learning for RLHF.

Second, we extend RLHF to learning constraints from human pref-

erences instead of or in addition to rewards. We argue that constraints

are a particularly natural representation of human preferences, partic-

ularly in safety-critical applications. We develop algorithms to learn

constraints effectively from demonstrations with unknown rewards

and actively learn constraints from human feedback. Our results

suggest that representing human preferences as constraints can lead

to safer policies and extend the potential applications for RLHF.

The proposed algorithms for reward and constraint learning serve

as a foundation for future research to enhance the efficiency, safety,

and applicability of RLHF.
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Z U S A M M E N FA S S U N G

Reinforcement Learning (RL; dt. bestärkendes Lernen) hat bemer-

kenswerte Erfolge in Anwendungen mit klar definierten Belohnungs-

funktionen erzielt. Beispiele hierfür sind, die Punktzahl in einem

Videospiel zu maximieren oder die Laufzeit eines Algorithmus zu

optimieren. In vielen praktischen Anwendungen gibt es jedoch keine

klar definierte Belohnungsfunktion. Reinforcement Learning from

Human Feedback (RLHF; dt. etwa “bestärkendes Lernen mit mensch-

lichen Rückmeldungen”) ermöglicht es RL-Agenten aus Daten zu

lernen, die von Menschen zur Verfügung gestellt werden, wie z.B.

Bewertungen von Trajektorien. Diese Art der Daten sind in vielen

Anwendungen mit hohen Kosten verbunden. Daher ist es wichtig,

aus wenigen Daten eine robuste Strategie zu lernen. In dieser Disser-

tation werden neue Algorithmen entwickelt, um die Effizienz und

Robustheit von RLHF zu verbessern.

Im ersten Teil werden aktive Lernalgorithmen entwickelt, um die

Effizienz von RLHF zu verbessern. Diese Methoden wählen die aus-

sagekräftigsten Datenpunkte zur Auswertung aus und erkunden die

Umgebung, abhängig von der Unsicherheit über Nutzerpräferen-

zen. Dieser Ansatz liefert neue Erkenntnisse über aktives Lernen für

RLHF und theoretische Ergebnisse zur Effizienz von RLHF inspiriert

von mehrarmigen Banditen und der Bayes’schen Optimierung. Der

Nutzen des aktiven Lernens für RLHF wird durch umfangreiche

empirische Evaluationen der entwickelten Algorithmen belegt.

Im zweiten Teil wird RLHF erweitert, sodass anstelle oder zusätz-

lich zu einer Belohnungsfunktion auch Nebenbedingungen gelernt

werden können. Nebenbedingungen sind eine besonders natürliche

Repräsentation menschlicher Präferenzen, insbesondere in sicher-

heitskritischen RL-Anwendungen. Daher werden sowohl Algorith-

men zum effektiven Lernen von Nebenbedingungen aus Demonstra-

tionen mit unbekannten Belohnungsfunktionen als auch zum akti-
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ven Lernen von Nebenbedingungen aus menschlichen Bewertungen

entwickelt. Die Ergebnisse dieses Teils zeigen, dass durch die Model-

lierung menschlicher Präferenzen als Nebenbedingungen sicherere

Strategien erlernt werden können und der Anwendungsbereich von

RLHF erweitert werden kann.

Die entwickelten Algorithmen für das effiziente Lernen von Be-

lohnungsfunktionen und Nebenbedingungen bilden eine Grundlage

für zukünftige Forschung, um die Effizienz, die Sicherheit und die

Anwendbarkeit von RLHF zu verbessern.
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1
I N T R O D U C T I O N

Reinforcement Learning (RL; [1]) aims to build AI systems that learn

from experience. An RL agent interacts with an environment and

improves its behavior through trial and error, guided by a reward

signal. RL agents have been successful at many impressive tasks,

including playing complex board games (e.g., Chess [2], Go [3], and

Stratego [4]), video games (e.g., Dota [5] and Starcraft [6]), and op-

timizing data center cooling [7], video compression [8], and sorting

algorithms [9]. All of these applications have a well-defined and

measurable reward signal, e.g., whether a game is won or how much

time or memory an algorithm uses.

However, specifying a reward function can be challenging in many

practical tasks [10]. For example, consider designing a reward func-

tion for autonomous driving. Humans consider many different ob-

jectives when driving, including safety, comfort, and efficiency. A re-

ward function for autonomous driving has to consider all of these fac-

tors while also providing a dense enough signal for the agent to learn

from. Knox et al. [11] find that many reward functions proposed in the

autonomous driving literature fail basic consistency checks and, for

example, miss important attributes, have loopholes the agent can ex-

ploit, or have reward-shaping terms that can lead to unsafe behavior.

Reinforcement Learning from Human Feedback (RLHF; [12]) ad-

dresses the difficulty of designing reward functions. In RLHF, rather

than relying solely on a predefined reward function, the agent uses

human feedback, such as evaluations or rankings of the agent’s be-

havior in previous situations (Figure 1.1). RLHF provides a more

intuitive and flexible way to teach complex behaviors to RL agents

and promises to make RL applicable to a broader range of tasks.

Recently, RLHF has shown particular success in natural language

processing, where reward functions are difficult to specify. Building

1



2 introduction

Figure 1.1: Schematic overview of Reinforcement Learning from Human
Feedback (RLHF). In this dissertation, we study methods that
represent human preferences as reward models as well as
constraint models. In the first part, we study reward learn-

ing (shown in blue). We discuss active learning for choosing
queries in Chapter 3 and active exploration in the environ-
ment in Chapter 4. In the second part, we focus on constraint

learning (shown in red). We discuss learning constraints from
demonstrations in Chapter 5 and introduce active learning
for learning constraints in Chapter 6.

on large language models, agents trained using RLHF can summarize

text [13], follow instructions [14], or act as full dialogue agents [15].

Despite its potential, RLHF faces challenges on multiple fronts (cf.

the overview by Casper et al. [16]). These challenges encompass both

modeling and algorithm design considerations (see, e.g., [17]), as

well as human-centered factors (see, e.g., [18]). In this dissertation,

we focus on the algorithmic challenges associated with the sample-

efficiency and robustness of RLHF.

High-quality human feedback is expensive to collect, and cur-

rent methods need a lot of feedback to learn robustly. The human

feedback is invaluable for the learning process [13], but the time,

effort, and expertise required to provide this feedback can often be

prohibitive [19]. Therefore, the first challenge we consider is how to

maximize the value derived from limited human feedback.

Current RLHF methods optimize for a single (learned) reward

function, whereas humans often have multiple objectives and prefer-

ences [20]. Further, some preferences might act as constraints on the

agent’s behavior rather than additional terms in a reward function.
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For example, we could design a reward function for autonomous

driving that simultaneously measures safety, comfort, and efficiency.

However, we usually do not want to optimize all of these objectives

but rather optimize one objective while ensuring that others are satis-

fied. For example, we might want to reach our destination as quickly

as possible while driving safely. The observation that constraints can

be a natural representation of human preferences motivates the second

challenge we consider: how to learn constraints from human feedback.

We now arrived at the two primary research questions that we

investigate in this dissertation:

• How can we make RLHF more sample efficient?

• How can we learn constraints from human feedback?

Our primary approach to address the first research question is

active learning [21], i.e., selecting the most informative data points

for humans to label. Prior work typically adapts standard active

learning methods to RLHF (e.g., [22]). However, the situation in RL

is different from supervised learning in two ways. First, in RL, we do

not want to approximate the “true” reward function well but instead

find a good policy, making the situation more similar to Bayesian

optimization rather than active learning. Second, in RL, we must

explore the environment to collect data for humans to label, which is

unnecessary in supervised learning. These differences motivate us to

define alternative objectives for active learning for RLHF, inspired by

work on multi-armed bandits and Bayesian optimization.

Constraints are pivotal in many safety-critical RL applications,

such as robotics. We argue that in such domains, we should learn

constraint models from human feedback rather than only learning

reward models. To enable this, we develop algorithms to learn con-

straints effectively, addressing our second research question. First,

we focus on learning constraints from demonstrations with unknown

rewards. Second, we combine this approach with active learning

to develop an algorithm to actively learn constraints from human

feedback.
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By improving the algorithms we use to learn rewards and con-

straints from human feedback, we can expand the space of possi-

ble applications for RLHF. Moreover, learning better reward and

constraint models could lead to more robust, reliable, and safe AI

systems capable of handling complex tasks. The algorithms proposed

in this dissertation can serve as a foundation for future research and

development on making RLHF more efficient and safe.

1.1 overview of the dissertation

This dissertation is split into two parts. The first part focuses on

learning reward models. We present a general approach to active

reward learning that focuses on learning a good policy rather than

only reducing approximation error (Chapter 3) and a method to

actively explore the environment in order to collect data to query

an expert about (Chapter 4). The second part focuses on learning

constraint models. We argue that constraints might be a particularly

useful representation for learning human preferences and propose

methods for learning constraints from a set of demonstrations with

unknown rewards (Chapter 5) as well as actively learning constraints

from feedback about the safety of trajectories (Chapter 6).

Figure 1.1 provides an overview of how our contributions relate

to the different parts of a typical RLHF setup. In the following, we

summarize the contributions of the individual chapters.

• In Chapter 3, we propose Information Directed Reward Learning

(IDRL), a general active reward learning approach for learning a

model of the reward function from expensive feedback with the

goal of finding a good policy rather than uniformly reducing the

model’s error. IDRL can use arbitrary Bayesian reward models

and arbitrary types of queries, making it more general than

existing methods. We evaluate IDRL extensively in simulated

environments, including a driving task and high-dimensional

continuous control tasks in the MuJoCo simulator, and show it

significantly outperforms prior methods.
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• In Chapter 4, we focus on active exploration for Inverse Rein-

forcement Learning (IRL), i.e., inferring a reward from expert

demonstrations. We propose the active IRL problem and char-

acterize the necessary and sufficient conditions for solving it.

Then, we propose Active Exploration for Inverse Reinforcement

Learning (AceIRL), a novel algorithm to actively explore the

environment and query the expert policy to infer a good re-

ward function. We provide sample complexity guarantees for

AceIRL and empirically evaluate it in simulated environments,

demonstrating significantly better performance than more naive

exploration strategies.

• In Chapter 5, we study the problem of inferring constraints in

CMDPs from a set of demonstrations with unknown rewards.

We propose Convex Constraint Learning for Reinforcement Learn-

ing (CoCoRL), a novel method for addressing this problem, and

we prove that CoCoRL guarantees safety and asymptotic opti-

mality. Further, our empirical evaluations of CoCoRL in tabular

environments and a continuous driving task with multiple con-

straints show that CoCoRL learns constraints that lead to safe

driving behavior and that can be transferred across different

tasks and environments.

• In Chapter 6, we formalize the active learning problem for in-

ferring constraints as a novel linear bandit problem (Section 6.2)

which we call constrained linear best-arm identification. We pro-

vide an instance-dependent sample complexity lower bound

and propose Adaptive Constraint Learning (ACOL), an algorithm

that almost matches this lower bound. Our empirical evalua-

tion shows that ACOL gets close to the performance of an oracle

solution that has access to the true constraint function while

outperforming a range of simpler baselines.
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1.2 prior publications relevant to the dissertation

Parts of the work presented in this dissertation were published

previously or made available as preprints. This dissertation is based

on the following publications:

1. D. Lindner, M. Turchetta, S. Tschiatschek, K. Ciosek, and A.

Krause, “Information directed reward learning for reinforce-

ment learning”, in Conference on Neural Information Processing

Systems (NeurIPS), 2021.

2. D. Lindner, A. Krause, and G. Ramponi, “Active exploration

for inverse reinforcement learning”, in Conference on Neural

Information Processing Systems (NeurIPS), 2022.

3. D. Lindner, S. Tschiatschek, K. Hofmann, and A. Krause, “In-

teractively learning preference constraints in linear bandits”, in

International Conference on Machine Learning (ICML), 2022.

4. D. Lindner, X. Chen, S. Tschiatschek, K. Hofmann, and A.

Krause, “Learning safety constraints from demonstrations with

unknown rewards”, arXiv preprint arXiv:2305.16147, 2023.

Chapters 1, 2 and 7 are based on all four publications. At the

beginning of each of Chapters 3 to 6, we highlight the publication(s)

relevant to the resepective chapter.



2
B A C K G R O U N D

This chapter lays the groundwork for our main contributions.

We start with an introduction to multi-armed bandits (MABs) in

Section 2.1. MABs have become a key tool for studying learning

under uncertainty. Chapter 6 is directly built on the MAB framework,

and all other chapters use ideas from MABs indirectly.

Active learning and Bayesian optimization, discussed in Section 2.2,

extend the ideas of learning and optimizing under uncertainty to

more complex contexts. Understanding these principles will be es-

sential as we move into studying RLHF. We use ideas from active

learning and Bayesian optimization in Chapters 3, 4 and 6.

Section 2.3 introduces Reinforcement Learning (RL) and constrained

RL, the main problems we study. RL focuses on sequential decision-

making in an unknown environment. In contrast to multi-armed

bandits, RL agents can take actions that influence the environment.

We use the standard RL setup in Chapters 3 and 4 and constrained

RL in Chapter 5 and to some extent in Chapter 6.

Next, in Section 2.4, we introduce Inverse Reinforcement Learning

(IRL) and preference learning, two common approaches to RLHF.

In IRL, the agent learns from expert demonstrations, whereas in

preference learning, the agent learns from a human’s expressed

preferences. IRL is the focus of Chapters 4 and 5, and preference

learning is the focus on Chapters 3 and 6.

Finally, Section 2.5 provides an overview of the notation used

throughout this dissertation. We sometimes deviate from standard no-

tation when combining ideas from different fields. Hence, Section 2.5

aims to be a helpful reference throughout reading this dissertation.

In summary, this chapter provides the context necessary to follow

the later chapters. Each later chapter also includes a brief discussion

7



8 background

of related work to provide specific context for the contributions of

that chapter.

2.1 multi-armed bandits

Multi-Armed Bandits (MABs) are a class of decision-making prob-

lems that have attracted significant attention due to their simplicity

and applicability across various fields. We can view MAB problems as

a restriction of RL. In MABs, the agent cannot influence the environ-

ment, which is a helpful restriction to make the problem significantly

easier to analyze. The term “Multi-Armed Bandit” originates from

a metaphorical scenario where a gambler is faced with several slot

machines (also known as “one-armed bandits”) and has to decide

which machine to play to maximize returns.

A MAB problem is a sequential decision-making task under un-

certainty. The agent can choose between a set of “arms” (or actions)

indexed by i = 1, 2, ..., K. Each arm i has an associated unknown

reward distribution with expected reward µi. At each time step

t = 1, 2, ..., T, the agent selects an arm at and receives a reward rt

sampled from the corresponding reward distribution. The agent’s

goal is to select arms over time to maximize the accumulated reward,

or equivalently, to minimize the regret.

The regret RT is the difference between the expected reward of

the optimal arm (the arm with the highest expected reward) and the

expected reward of the arms chosen by the agent, summed over T

time steps:

RT =
T

∑
t=1

(µ∗ − µat) , (2.1)

where µ∗ = maxi µi is the expected reward of the optimal arm.

The fundamental challenge of the MAB problem is to balance ex-

ploration, i.e., trying out different actions to learn more about their

reward distributions, and exploitation, choosing the action that pro-

vides the highest reward based on the information gathered so far.
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In contrast to regret minimization, pure exploration provides an

alternative objective for MAB problems [23]. In pure exploration, the

agent is not concerned with the accumulated reward. Instead, the

agent only aims to identify the arm with the highest expected reward.

This setting is particularly relevant when the cost of suboptimal

actions is low during learning but high during deployment, e.g.,

when learning in a simulation.

Several popular algorithms exist for regret minimization and pure

exploration in MAB problems. For instance, the Upper Confidence

Bound (UCB) algorithm constructs confidence bounds around the

estimated expected reward of each arm. It always selects the arm

with the highest upper bound, a principle called “optimism in the

face of uncertainty. In each iteration, the basic version of UCB selects

the arm that maximizes:

at = arg max
i

(
µ̂i +

√
2 log(1/δ)

Ni(t)

)
, (2.2)

where µ̂i is the empirical mean reward of arm i and Ni(t) is the

number of times arm i has been selected up to time t. This approach

balances exploration and exploitation because it selects arms with

high uncertainty as long as they could be better than those with

low uncertainty. Assuming fixed sub-Gaussian noise on the rewards,

UCB achieves a regret on the order of O(
√

nk log(k)), where n is the

number of iterations and k the number of arms. This regret bound is

optimal up to logarithmic factors1[25].

Many approaches to pure exploration problems use uncertainty

sampling, i.e., they select the arm with the highest uncertainty about

the estimated reward. Instead of balancing exploration and exploita-

tion, these algorithms only focus on exploration, i.e., they prioritize

learning about the arms over immediate reward.

1 Other variants of the UCB algorithm using different confidence bounds obtain

different regret bounds. See Chapter 7 of Lattimore and Szepesvári [24] for an

analysis of the variant we present here.
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In many practical situations, we have additional information about

the individual arms, even before we choose them the first time. In

particular, we can often expect “similar” arms to have similar reward

distributions. For example, in recommender systems, we have data

about the customers, and we want to generalize from one customer

to another one. The standard MAB framework cannot capture this.

Contextual bandits allow incorporating such side information by

augmenting each arm with a context.

One example of such a model is the linear bandit, where the re-

ward is a linear function of some known feature vector (the context)

associated with each arm and an unknown parameter vector. If arm

i has feature vector xi ∈ R
d and the unknown parameter vector is

θ ∈ R
d, the expected reward of arm i is µi = xT

i θ. The Linear Upper

Confidence Bound (LinUCB) algorithm [26] is a popular algorithm

for linear bandits. LinUCB maintains a confidence interval for the

unknown parameter vector θ and selects the arm with the highest

upper confidence bound, extending the idea of UCB to linear bandits.

Thompson sampling is another popular algorithm for MAB prob-

lems, including contextual bandits. Thompson sampling maintains a

posterior distribution over the reward distributions of each arm. At

each time step, it samples a reward from each posterior distribution

and selects the arm with the highest sampled reward. Thompson sam-

pling is known to be asymptotically optimal for regret minimization

in MAB problems [27].

The MAB problem captures the essence of many practical sequen-

tial decision-making problems, including clinical trials, recommenda-

tion systems, ad placement, and many others [28]. For an accessible

introduction to the theory of multi-armed bandits, we refer to Latti-

more and Szepesvári [24].

2.2 bayesian optimization and active learning

Bayesian optimization (BO; [29]) significantly extends MAB problems

to continuous and high-dimensional situations. BO aims to maximize
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a black-box function f that is expensive to evaluate using as few

evaluations as possible. To this end, BO algorithms maintain a proba-

bilistic model of f , often in the form of a Gaussian Process (GP), and

actively select data to update this model via an acquisition function.

We can view BO as an extension of pure exploration in MABs to

continuous “arms”. In BO, we can evaluate f (x) at any point x ∈ R
d,

whereas in MABs, we can only evaluate a discrete set of arms.

Like BO, Active learning [21] aims to efficiently allocate resources

to learn about an unknown function. However, BO aims to find the

maximum of the function, whereas active learning aims to under-

stand the function as a whole or identify particular characteristics.

Active learning typically involves querying the function where the

model’s uncertainty is high. Thus, active learning and BO can be

viewed as complementary approaches to learning about an unknown

function, using similar methods but with different ultimate objectives.

2.2.1 Gaussian Processes

Gaussian Processes (GPs; [30]) offer a powerful tool for modeling

unknown functions in active learning and Bayesian optimization. A

GP defines a distribution over functions, and is fully specified by a

mean function m(x) and a covariance function k(x, x′), also called

the kernel function. Given a dataset of points X = {x1, x2, ..., xn}, a

GP induces a multivariate normal distribution on the function values

f (X) = ( f (x1), f (x2), ..., f (xn))
T ∼ N (µ, Σ)

with mean µ = m(X), i.e., µi = m(xi), and covariance matrix Σ =

k(X, X), i.e., Σij = k(xi, xj). Importantly, GP models are convenient

to deal with computationally. Suppose we model a function using a

GP model, denoted by f ∼ GP(m, k), and want to update the model

using observed data. Then, the GP posterior conditioned on the data

is still a GP, albeit with a new mean and covariance function.

The mean function m(x) represents the expected value of the

function at x and is often assumed to be zero w.l.o.g. The kernel
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function k(x, x′) measures the similarity between points: larger values

indicate that x and x′ are more similar. Common choices for the

kernel function include the squared exponential kernel, periodic

kernels, and the Matérn kernel, among others. The choice of kernel

function can significantly influence the performance of the GP and

often requires prior knowledge about the problem at hand.

A key advantage of GPs is that they offer a measure of uncertainty

estimate about each prediction. We use this uncertainty in active

learning and BO to decide where to sample next.

2.2.2 Acquisition Functions

In Bayesian optimization, where to sample next is guided by an

acquisition function u(x,D), which uses the GP’s posterior mean and

covariance. Typically a BO algorithm maximizes the acquisition func-

tion over the input space to choose the next point to evaluate.

One well-known acquisition function is the Expected Improvement

(EI; [31]) over the best previous observation under the GP posterior:

uEI(x,D) = E f∼GP [max( f (x)− f (xmax), 0)|D],
where xmax is the best observation so far. The expectation is computed

under the GP posterior. EI implements a natural trade-off between

exploration and exploitation, favoring points where the GP mean is

high (exploitation) or the GP uncertainty is high (exploration).

Another popular acquisition function is the Upper Confidence

Bound (GP-UCB; [32]), which extends the UCB algorithm from MABs

to BO. Using a GP model, the GP-UCB acquisition function is

uUCB(x,D) = µ(x,D) + β · σ(x,D),
where µ(x,D) and σ(x,D) are the GP posterior mean and standard

deviation at x, respectively, and β is a parameter that controls the

trade-off between exploration and exploitation.

Acquisition functions are central to the performance of BO, and

much prior work focuses on developing new acquisition functions

and improving existing ones.
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In active learning, acquisition functions based on information gain

are common. Intuitively, the information gain between two random

variables measures the amount of information we can obtain about

one by observing the other. Formally, for two random variables X

and Y with marginal distributions pX, pY and joint distribution p(X,Y),

the information gain (or mutual information) is

I(X; Y) = DKL(p(X,Y)∥pX · pY),

where DKL(·∥·) is the KL-divergence. Given a third random variable

Z, the conditional information gain is defined as

I(X; Y|Z = z) = DKL(p(X,Y)|Z=z∥pX|Z=z · pY|Z=z).

To perform active learning about a variable of interest Y, we can

choose the conditional information gain as an acquisition function:

uIG(x,D) = I( f (x); Y|D).

This acquisition function chooses points x where the observation

f (x) is expected to provide maximal information about Y, given the

data D observed so far.

In summary, Bayesian optimization and active learning share many

principles. Both aim to learn about an unknown function and use

probabilistic models to represent uncertainty. The main difference

is that Bayesian optimization aims to find the maximum of the

unknown function, while active learning aims to learn about the

function as a whole. We will use ideas from both approaches to

develop algorithms for RLHF.

2.3 reinforcement learning

Reinforcement Learning (RL; [1]) is a broad framework for sequential

decision-making under uncertainty. RL involves an agent interacting

with an environment through trial and error. The agent receives a

reward signal and aims to maximize cumulative reward over time.
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The many solution methods for RL problems include linear pro-

gramming [33], dynamic programming [34], and policy gradient

methods [35]. More recently, many of these methods have been com-

bined with deep neural networks, an approach commonly called

Deep RL [36].

Constrained RL [37] extends the basic RL framework to decision-

making settings with additional constraints. This framework is par-

ticularly relevant to many practical problems where certain safety,

fairness, or resource constraints must be respected.

This section introduces RL and constrained RL and reviews stan-

dard solution approaches. We refer the reader to Sutton and Barto

[1] for a more detailed introduction to RL. We refer to Altman [37]

for an introduction to constrained RL.

2.3.1 Markov Decision Processes

Markov Decision Processes (MDPs) provide a model of sequential

decision-making in dynamical systems. We distinguish between finite-

horizon and infinite-horizon MDPs.

finite-horizon mdps . A finite-horizon (or episodic) MDP is

a tuple M = (S ,A, P, H, γ, µ0, r), where S is the state space, A is

the action space, P : S ×A → ∆(S) is the transition model, H is the

time horizon, γ ∈ [0, 1] is the discount factor, and µ0 is the initial

state distribution.

We describe an agent’s behavior with a (possibly stochastic) policy

π : S × [H]→ ∆(A). The reward function r : S ×A× [H]→ [0, rmax]

maps state-action-timestep triplets to a reward. The agent’s goal is to

maximize the expected cumulative return:

G(π) = EP,π,µ0

[
H

∑
t=0

γtrt(st, at)

]
.

If the state and action space are finite, we call the MDP tabular and

denote the number of states by |S| and the number of actions by |A|.
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We often omit the dependence of the reward on the timestep, writing

r(s, a) instead of rh(s, a) and assuming a fixed reward function over

time. Note that w.l.o.g., we can model any initial state distribution as

a single initial state by modifying the transitions. We sometimes use

this to simplify notation and assume that µ0 is supported on a single

state.

infinite-horizon mdps . An infinite-horizon MDPM = (S ,A,

P, γ, µ0, r) does not have a finite time horizon, but requires a discount

factor γ < 1. The policy π : S → ∆(A) and the reward function

r : S × A → [0, rmax] are now independent of the timestep. The

agent’s goal is still to find a policy π that maximizes the expected

discounted return G(π) = EP,π,µ0

[
∑

∞
t=0 γtr

]
(st, at).

connection to mab problems . Note that we can view a MAB

problem as an MDP with a single state and one action per arm.

The transition model is deterministic, and the reward function is

stochastic. The agent’s goal to maximize the expected cumulative

reward is equivalent to minimizing the MAB regret. In this view,

MABs are a special case of RL problems.

occupancy measures . The (discounted) occupancy measure is

helpful to describe an agent’s behavior in an MDP. In an infinite-

horizon MDP, we define it as:

µπ(s, a) = EP,π,µ0

[
∞

∑
t=0

γt
✶{st=s,at=a}

]
,

where ✶{·} denotes an indicator function. In particular, the occupancy

measure µπ(s, a) is the expected discounted frequency of policy π

visiting state s and taking action a. Note that for finite state and

action spaces, the return is linear in µπ, i.e.,

Gr(π) = ∑
s,a

µπ(s, a)r(s, a).
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In finite-horizon MDPs, there are several ways to define the oc-

cupancy measure. For example, we can define µh,h′
M,π(s, a|s0) as the

probability of being in state s and taking action a at time h′ ≥ h

following policy π in MDPM starting in state s0 at time h. We can

compute it recursively:

µh,h
M,π(s

′, a′|s) := πh(a′|s′)✶{s′=s},

µh,h′+1
M,π (s′, a′|s) := ∑

s̃,ã

πh′(a′|s′)P(s′|s̃, ã)µh,h′
M,π(s̃, ã|s).

Sometimes it is useful to define a state occupancy measure by

marginalizing the actions. We also use µ to denote this quantity,

writing µπ(s) in infinite-horizon MDPs, and µh,h
M,π(s

′|s) in finite-

horizon MDPs.

value function. The value function of a policy π describes the

expected return of the policy when starting in a specific state s at

time h. In infinite-horizon MDPs, we define it as:

Vπ
M(s) = EP,π

[
∞

∑
t=0

γtr(st, at) | s0 = s

]
.

In finite-horizon MDPs, we define the value function as:

Vπ,h
M (s) = EP,π

[
H

∑
h′=h

γh′−hrt(st, at) | sh = s

]
.

q-function. The Q-function (or action-value function) of a policy

π describes the expected return of taking action a in state s at time h,

and then following policy π.

In infinite-horizon MDPs, we define the Q-function as:

Qπ
M(s, a) = EP,π

[
∞

∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

In finite-horizon MDPs, define the Q-function as:
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Qπ,h
M (s, a) = EP,π

[
H

∑
h′=h

γh′−hrt(st, at) | sh = s, ah = a

]
.

Q-function and value function are related by

Vπ,h
M (s) = ∑

a

πh(a|s)Qπ,h
M (s, a).

The advantage function is the difference between Q-function and

value function Aπ,h
M (s, a) = Qπ,h

M (s, a)−Vπ,h
M (s). A policy π is optimal

if and only if Aπ,h
M (s, a) ≤ 0 for each all h, s, a. We denote the set of

optimal policies for the MDPM with Π∗M.

bellman equations . The Bellman equation provides a recur-

sive formulation for the Q-function, value function, or other quanti-

ties. It establishes a fundamental link between a state-action pair’s

value and its successor’s value. The most common form of the Bell-

man equation in the infinite-horizon setting is:

Qπ
M(s, a) = r(s, a) + γ ∑

s′,a′
π(a′|s′)P(s′|s, a)Qπ

M(s′, a′).

The Bellman equation expresses the Q-value as the immediate

reward for the current action plus the discounted expectation of the

Q-values for the next state-action pairs. We can write similar Bellman

equations for the value function, the advantage function, and other

cumulative quantities, in finite- and infinite-horizon MDPs. The

recursive definition of the occupancy measure we introduced before

is also a Bellman equation. Bellman equations form the theoretical

foundation for many Reinforcement Learning algorithms by enabling

recursive computation of value functions.

2.3.2 Constrained Markov Decision Processes

A Constrained Markov Decision Process (CMDP; [37]) augments a

standard MDP with a set of cost functions and associated thresholds.
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This model applies to situations where the agent must not only max-

imize a reward but also consider certain constraints or restrictions.

In a CMDP, we have a set of cost functions c1, . . . , cn, each of which

is defined similarly to the reward function, mapping state-action

pairs to a cost value cj : S × A → [0, 1]. Each cost function has an

associated threshold ξ1, . . . , ξn, which sets a maximum limit on the

acceptable cumulative cost under each function.

The agent’s goal in a CMDP is to maximize the expected dis-

counted return, Gr(π), while ensuring that the expected discounted

cumulative costs satisfy Jj(π) ≤ ξ j for all j.

The cumulative cost of a policy π for a cost function cj is defined

similarly to the expected return:

Jj(π) = EP,π,µ0

[
∞

∑
t=0

γtcj(st, at)

]
.

The cumulative costs are also linear in the occupancy measure:

Jj(π) = ∑
s,a

µπ(s, a)cj(s, a).

CMDPs provide a powerful extension to MDPs. While introducing

constraints results in additional complexity in finding optimal poli-

cies, it allows for a more nuanced representation of decision-making

problems where rewards and constraints are important.

2.3.3 Linear Programming for MDPs and CMDPs

Tabular MDPs and CMDPs with small enough state and action

spaces can efficiently be solved using linear programming (LP; [38]).

There are several ways to formulate MDPs as LPs. This section

introduces a formulation for infinite-horizon MDPs based on the

occupancy measure. We then extend this problem to solve CMDPs,

by introducing additional constraints on the occupancy measure.
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Using the state-action occupancy measure, we can derive the fol-

lowing Bellman-like equation:

µπ(s, a) = µ0(s, a) + γ ∑
s′,a′

P(s|s′, a′)π(a|s)µπ(s
′, a′)

Optimizing the expected return, which is linear in the occupancy

measure, under the constraint implied by the Bellman equation yields

the following linear program:

maximize
µπ(s,a)

∑
s,a

µπ(s, a)r(s, a)

subject to ∑
a

µπ(s, a) = µ0(s) + γ ∑
s′,a′

P(s|s′, a′)µπ(s
′, a′),

µπ(s, a) ≥ 0,

Solving this linear program yields the optimal state-action occupancy

measure µπ∗ . From this, we can determine the optimal policy π∗ by

normalizing µπ∗ :

π∗(a|s) = µπ∗(s, a)

∑a′ µπ∗(s, a′)
.

It is straightforward to extend this linear program to solve CMDPs.

The objective function and the Bellman constraint remain the same,

but we add linear constraints to ensure that the expected cumulative

costs do not exceed the corresponding thresholds. This results in the

following LP:

maximize
µπ(s,a)

∑
s,a

µπ(s, a)r(s, a)

subject to ∑
a

µπ(s, a) = µ0(s) + γ ∑
s′,a′

P(s|s′, a′)µπ(s
′, a′),

∑
s,a

µπ(s, a)cj(s, a) ≤ ξ j, for each constraint j,

µπ(s, a) ≥ 0.

This LP approach is particularly useful for small state and action

spaces, where the LP can be solved efficiently. However, this approach
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becomes intractable for large or continuous state or action spaces.

Fortunately, there are many alternative solution methods for MDPs

and CMDPs, some of which we discuss next.

2.3.4 Dynamic Programming

Dynamic Programming (DP) is a powerful method for solving MDPs

by iteratively improving estimates of the value function or Q-function

and improving a policy based on these estimates. This section pro-

vides a brief overview of the most common dynamic programming

methods in RL: Policy Iteration and Value Iteration. For a more de-

tailed introduction to dynamic programming in the context of RL

and optimal control, we refer to Bertsekas [34]. Extending dynamic

programming methods to CMDPs is more difficult than extending

LP methods, and we do not cover it here. Instead, we refer to Altman

[37] for some discussion.

policy iteration. Policy iteration alternates between evaluating

and improving the current policy based on a value estimate.

In the policy evaluation step, we estimate the value function for

the current policy π. In a tabular environment with a known transi-

tions function, we can do this exactly by solving a system of linear

equations resulting from the Bellman equation

Vπ
M(s) = ∑

a

π(a|s)
(

r(s, a) + γ ∑
s′

P(s′|s, a)Vπ(s′)

)
,

for all states s.

In the policy improvement step, we update the policy to greed-

ily choose actions that maximize the estimated value at each state.

Specifically, the new policy π′ is given by:

π′(a|s) = argmax
a

(
r(s, a) + γ ∑

s′
P(s′|s, a)Vπ(s′)

)
.
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Policy iteration repeats these two steps until convergence. The

algorithm is guaranteed to converge to an optimal policy and value

function.

value iteration. Value Iteration combines policy evaluation

and policy improvement into a single step. Instead of computing

a policy from the current value function estimate, Value Iteration

updates the value function directly as:

V(s)← max
a

(
r(s, a) + γ ∑

s′
P(s′|s, a)V(s′)

)
.

Value Iteration repeats this update for all states until the value func-

tion converges, and only then constructs a policy that acts greedily

w.r.t. the value function estimate. Value Iteration is also guaranteed

to converge to an optimal value function and policy.

2.3.5 Q-Learning

Linear programming and dynamic programming are planning al-

gorithms that can solve MDPs with known transition dynamics.

However, the transition dynamics can typically only be explored by

interacting with the environment. In model-based RL, we estimate a

transition model using interactions with the environment and then

use a planning method with the estimated model.

Model-free RL is an alternative approach that does not construct

an explicit model of the environment. One popular model-free RL

algorithm is Q-learning [39], which learns a Q-function directly by

interacting with the environment.

Q-Learning collects trajectories in the environment using an explo-

ration policy and then updates an estimated Q-function according to

the following rule:

Q(s, a)← Q(s, a) + α

(
r(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)

)
.
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where, α ∈ (0, 1) is a learning rate, and maxa′ Q(s′, a′) represents the

current estimate of the optimal future value.

Commonly the exploration policy is an “ϵ-greedy” policy, which

chooses a random action with probability ϵ and the greedy action

wr.t. the current Q-function estimate with probability 1− ϵ.

Under some assumptions that ensure sufficient exploration and

a decaying learning rate, Q-learning converges to the optimal Q-

function [39]. We can then extract an optimal policy by acting greedily

w.r.t. the learned Q-function.

feature approximation. In practice, the state and action spaces

are often too large to represent the Q-function as a table. Function

approximation can address this by parameterizing the Q-function

Q(s, a; θ) by a set of parameters θ.

A popular choice for the parameterization is a deep neural network,

which results in an algorithm called Deep Q-Network (DQN; [40]). In

DQN, we use stochastic gradient descent to find the parameters θ

that minimize the following loss function at each iteration i:

Li(θi) = EP,π,µ0

[
(yi −Q(s, a; θi))

2
]

,

where yi is the target for iteration i, defined as

yi = EP,π,µ0

[
r(s, a) + γ max

a′
Q(s′, a′; θi−1)

]
.

The expectations are typically approximated using Monte-Carlo

samples, i.e., as the average over a finite number of trajectories from

policy π in the environment. The target yi depends on the previous

iteration’s Q-value parameters θi−1, leading to an iterative updat-

ing scheme called bootstrapping. Simultaneously using function ap-

proximation and bootstrapping causes Q-learning to lose theoretical

convergence guarantees [1]. However, DQN can work well in many

domains in practice if combined with a few heuristic modifications

to stabilize learning [40].
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2.3.6 Policy Optimization

Policy optimization algorithms directly optimize the policy to maxi-

mize the expected return and have shown great success in complex,

high-dimensional environments. Central to most policy optimization

methods is the policy gradient theorem [35], which provides an ana-

lytical form for the gradient of the expected return w.r.t. the policy

parameters. The theorem states that the gradient of the expected

return is given by

∇θGr(πθ) = EP,π,µ0

[
∇θ log πθ(a|s)Qπθ

M(s, a)
]

.

Here, πθ(a|s) is the policy parameterized by θ, and µπθ
is the

stationary occupancy measure under πθ . We can iteratively improve

the policy by estimating the expectation using sampled trajectories

and updating the policy parameter using the policy gradient. This

“vanilla” policy gradient method is the foundation for many policy

optimization methods. However, this basic algorithm can often be

sample inefficient and unstable, which has led to a wide range of

improved policy optimization methods.

Trust Region Policy Optimization (TRPO; [41]) optimizes the policy

while constraining the amount by which the new policy can devi-

ate from the old policy. This constraint stabelizes the learning by

ensuring the policy does not change too drastically at each update.

Proximal Policy Optimization (PPO; [42]) is a simplification of TRPO

that has similar performance but is more straightforward to imple-

ment and tune. Instead of using a constraint optimization problem

to remain in a trust region, PPO clips the policy ratio to encourage

small policy updates.

Constrained Policy Optimization (CPO; [43]) extends the idea of

TRPO to constrained MDPs. It optimizes a policy to maximize the

expected return while satisfying constraints.

There are many more algorithms based on policy optimization,

and we refer the reader to Chapter 5 of François-Lavet et al. [36] for a

more detailed overview.
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2.4 reward learning

In RL, we must specify a reward for each state-action pair to evaluate

the agent’s performance. However, specifying such a reward function

is often challenging. Rather than manually designing a reward func-

tion, reward learning involves learning a reward model from data [44].

The data can, for example, be expert demonstrations, feedback from

human operators, or preferences between different actions or trajec-

tories. We can then use the learned reward model to learn a policy

with any RL algorithm.

Reinforcement Learning from Human Feedback (RLHF) refers

to any RL method that learns from human feedback instead of an

explicit reward function. Reward learning is the most common way

to implement RLHF, and we use both terms interchangeably in

this dissertation. In this section, we introduce two popular methods

used for reward learning: Inverse Reinforcement Learning (IRL) and

Preference Learning.

2.4.1 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) aims to infer a reward function

from expert demonstrations. In IRL, we are given an MDP without a

reward functionM (short MDP \ R) and a set of expert demonstra-

tions D provided by an expert policy πE. We want to infer a reward

function r̂ that explains the expert demonstrations.2 In particular,

we want the expert policy πE to be optimal in the MDP augmented

with the inferred reward function M∪ r̂. Solving this problem is

equivalent to finding a reward function such that the optimal pol-

icy matches the expert policy’s state occupancy measure or feature

expectations if the reward function is linear [45].

IRL is closely related to imitation learning. Whereas imitation

learning directly tries to mimic the expert’s behavior, IRL aims to infer

the reward function that guides the expert’s behavior. We can use IRL

2 Sometimes, we assume full access to the expert policy πE instead of demonstrations.
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for imitation learning. However, by inferring a reward function, IRL

has the potential to generalize beyond the expert’s demonstrations.

Crucially, the IRL problem is underspecified: infinitely many re-

ward functions can explain a set of demonstrations. For instance, a re-

ward function that assigns a constant reward to every state-action pair

makes any given policy optimal. The various IRL methods proposed

in the literature reflect different approaches to resolving this ambigu-

ity, often by introducing additional assumptions or regularizations.

maximum margin irl . Ng and Russell [46] propose to resolve

the ambiguity of IRL by finding the reward function r̂ that max-

imizes the margin by which the expert policy is optimal. To be

optimal, the expert policy must satisfy V̂πE
(s) ≥ Q̂πE

(s, a) for all

states s and actions a. Hence, we can define the optimality margin

as ∑s,a(V̂
πE
(s) − Q̂πE

(s, a)). Here V̂πE
is the value function of the

expert policy computed under inferred reward r̂, and Q̂πE
(s, a) is the

corresponding Q-function. We can formalize the goal of maximum

margin IRL as solving the optimization problem

maximize
r̂,ζ

∑
s,a

ζ(s, a)

subject to V̂πE
(s)− Q̂πE

(s, a) ≥ ζ(s, a), ∀(s, a) ∈ S ×A
0 ≤ r̂(s, a) ≤ rmax

(2.3)

where ζ(s, a) are the optimization variables representing the op-

timality margins. For tabular MDPs, this is a linear program because

both V̂πE
and Q̂πE

are linear in the state-action occupancy vectors.

maximum (causal) entropy irl . Ziebart et al. [47] propose

an IRL algorithm based on the maximum entropy principle, a well-

established idea in statistical physics and information theory. The

maximum entropy principle states that the most appropriate distribu-

tion to estimate under given constraints is the one with the maximum

entropy, intuitively the “most uncertain” distribution.
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We can use the maximum entropy principle to resolve the ambi-

guity of the IRL problem by choosing the reward function r̂ that

maximizes the entropy of the expert. The goal is to infer a reward

function that makes the optimal policy occupancy measure match

the expert’s occupancy measure and maximizes the entropy over

trajectories. More formally, Maximum Entropy RL consists of solving

the following optimization problem:

maximize
r̂

H(π̂) = Eτ∼π̂ [− log P(τ)]

subject to µπ̂(s, a) = µπE(s, a) ∀ s, a

where π̂ is the optimal policy for r̂ and P(τ) is the probability distri-

bution over trajectories implied by rolling out π̂ in the environment.

This formulation implicitly assumes that the expert, while trying

to optimize the underlying reward function, also exhibits a prefer-

ence for more stochastic trajectories that have higher entropy. This

assumption can be problematic in stochastic environments, where it

implies the expert seeks out more random transitions [48].

Maximum Causal Entropy IRL is a more nuanced way of using

the maximum entropy principle in IRL. It avoids issues with stochas-

tic transitions by considering the causality of the decision-making

process. Instead of maximizing the entropy over trajectories, Maxi-

mum Causal Entropy IRL maximizes the entropy of the future action

choices conditioned on the past at each timestep. This leads to a

slightly modified optimization problem:

maximize
r̂

Hcausal(π̂) = EP,π,µ0

[
−

T

∑
t=0

log π̂(at|st)

]

subject to µπ̂(s, a) = µπE(s, a) ∀ s, a

The key difference to Maximum Entropy IRL is that we only con-

sider the entropy of the policy, i.e., the agent’s choices, and exclude

all uncertainty due to the environment dynamics. Maximum Entropy

IRL and Maximum Causal Entropy IRL are equivalent in determin-
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istic environments. In stochastic environments, the causal entropy

variant often yields superior results.

We can solve both Maximum Entropy IRL and Maximum Causal

Entropy IRL by maintaining a reward function and a policy estimate

and alternating between updating them. First, we update the policy

to be optimal for the current reward estimate. For Maximum Entropy

IRL, we can use any standard RL algorithm in this step. Second, we

update the reward estimate based on the discrepancy between the

expert and the current policy. For a tabular environment, we can

update the reward function according to:

r̂(s, a)← r̂(s, a) + α (µπ̂(s, a)− µπE(s, a))

where α is a learning rate. We can straightforwardly extend this

gradient update to non-tabular environments with linear reward

functions, the most common setting in which Maximum Entropy

IRL is applied. Repeating both steps until convergence solves the

Maximum Entropy IRL problem. We can use a similar algorithm for

Maximum Causal Entropy IRL but need to modify the policy update.

For details on this, we refer to Ziebart et al. [47] or Gleave and Toyer

[48].

2.4.2 Preference Learning

IRL is a powerful approach to learning reward functions from human

behavior, but it is limited to situations where expert demonstrations

are readily available. Demonstrating a task can be challenging or even

impossible in many cases, especially in high-dimensional or com-

plex environments or when the task requires specialized expertise.

Furthermore, the quality of the inferred reward function is bounded

by the quality of the demonstrations provided, making it difficult to

exceed human-level performance using IRL.

Alternatively, we can learn directly from evaluative feedback on

agent behavior, a paradigm we refer to as preference learning. This

feedback can by of different types, including numerical ratings, verbal

feedback, or comparisons between possible actions or trajectories.
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human reinforcement. The most direct way to learn from

human feedback is to directly shape a policy using human reinforce-

ment. The feedback comes as a positive or negative reinforcement

signal provided by humans that rewards or punishes specific actions.

TAMER [49] assumes that human reinforcement directly indicates

the long-term value of actions in a short time window before the sig-

nal. This assumption makes credit assignment easier and allows for

sample efficient learning. However, it can be violated in practice, as

humans tend to give feedback depending on the current policy of the

agent [50]. Instead of direct policy shaping, most recent approaches

to RLHF learn reward models from human feedback. Reward models

are often particularly compact representations of the desired behavior

and tend to require less feedback than directly shaping a policy.

evaluations . Similar to direct human reinforcement, we can

learn reward models from evaluations of agent behavior, sometimes

called critiques [51]. Evaluations include, for example, numerical eval-

uations (e.g., [52]) or binary labels indicating whether the behavior

was good or bad (e.g., [53]). We can learn a reward model from such

evaluations using standard supervised learning techniques. However,

interpreting the ratings can be challenging: the scale used by the

rater is often arbitrary, and it can shift over time, making it difficult

to compare ratings or use them to train an agent.

pairwise comparisons . A promising alternative is to learn

from pairwise comparisons [54]. Rather than providing an absolute

rating, the human evaluator only indicates which of two actions or

trajectories they prefer. This approach can simplify the task for the

human evaluator, and the relative nature of the feedback can mitigate

some of the challenges associated with interpreting ratings. Wirth et

al. [55] provide a comprehensive overview of preference-based RL

methods. Christiano et al. [12] popularized learning a reward model
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from pairwise comparisons. They use the Bradley-Terry model [56]

for the probability of a human preferring one of two trajectories:

p(τ1 > τ2|θ) =
exp(rθ(τ1))

exp(rθ(τ1)) + exp(rθ(τ2))
.

where τ1 and τ2 are two trajectories or trajectory segments to compare

and r(τ1) and rθ(τ2) denote the sum of rewards along the trajectories

under the reward model parameterized by θ. Based on this model,

Christiano et al. [12] learn a deep neural network to represent the

reward function from human data via stochastic gradient descent.

They manage to learn complex behaviors in simulated robotics envi-

ronments using learned reward models. Since then, learning reward

models from pairwise comparisons has shown great promise in a

variety of domains, including robotics [57], video games [58], and

large language models [14].

2.5 overview of notation

In this dissertation, we build on work from multiple fields, such

as multi-armed bandits, Bayesian optimization, and Reinforcement

Learning, among others. Unfortunately, there are sometimes clashes

between the standard notation in these fields, forcing us to choose

non-standard notation. As a reference, Table 2.1 provides an overview

of notation shared throughout the thesis, and Tables 2.2 to 2.5 provide

an overview of notation specific to each chapter.
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Symbol Description

M Markov Decision Process

C Constrained Markov Decision Process

S State space

|S| Number of states (for finite state space)

s, st Single state (at time t)

A Action space

|A| Number of actions (for finite action space)

a, at Single action (at time t)

r Reward function

rmax Upper bound on reward

P Transition probability function

µ0 Initial state distribution

γ Discount factor

H Time horizon

π Policy

G(π), Gr(π) Expected return of policy π

(computed using reward function r)

c Cost function

ξ Cost threshold

J(π) Expected cumulative cost of policy π

Q Q-function

V Value function

A Advantage function

τ Trajectory

µ Occupancy measure

Table 2.1: General notation for Reinforcement Learning.
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Symbol Description

Πc Candidate policy set

Qc Candidate query set

f(π)
(Estimated) State occupancy measure of policy

π

D Dataset of observations

r̂ Belief about the reward function

Ĝ(π) Belief about the expected return of policy π

Table 2.2: Specific notation for Chapter 3.

Symbol Name

M∪ r MDP with reward r

M̂ Estimated MDP

r̂ Estimated reward function

πE Expert policy

C Reward confidence interval

Π̂ Policy confidence interval

RB Exact feasible set

R
B̂

Approximate feasible set

Table 2.3: Specific notation for Chapter 4.
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Symbol Description

F True safe set

S Safe set

θ Reward parameter

ϕ Constraint parameter

reval Evaluation reward

f Feature function

R Regret measure

k Number of demonstrations

n Number of constraints

m Number of inferred constraints

ntraj Number of trajectories

Table 2.4: Specific notation for Chapter 5.

Symbol Description

ν CBAI problem instance

θ Reward parameter

ϕ Constraint parameter

x, X Action, Action set

T Exploration budget

X≥θ ,X>

θ (Strictly) better action set w.r.t reward parameter

λ, Aλ Design, Design matrix

τ Stopping time

U Uncertain set

S Safe set

Table 2.5: Specific notation for Chapter 6.



Part I

A C T I V E L E A R N I N G F O R R E WA R D L E A R N I N G





3
I N F O R M AT I O N D I R E C T E D R E WA R D L E A R N I N G

We start our investigation of algorithms for RLHF by studying active

learning for reward models. Since human feedback is expensive,

active reward learning aims to minimize the number of samples neces-

sary to learn a good reward model. Prior work typically focuses on

approximating the reward function uniformly well, which may not

be aligned with the original goal of RL: finding an optimal policy (see

Figure 3.1). Moreover, prior work is often tailored to specific types of

queries, such as comparisons of two trajectories (e.g., [22]) or numeri-

cal evaluations of trajectories (e.g., [52]), limiting its applicability.

In this chapter, we address these limitations. In particular:

• We propose Information Directed Reward Learning (IDRL), a gen-

eral active reward learning approach with the goal of finding a

good policy rather than uniformly reducing the reward model’s

error. IDRL can use arbitrary Bayesian reward models and arbi-

trary types of queries (Section 3.3).

• We describe an exact and efficient implementation of IDRL

using Gaussian process (GP) reward models (Section 3.4) and

different types of queries.

• We show there are close connections between IDRL with a GP

reward model and provably optimal algorithms in multi-armed

bandits (Section 3.5).

• We propose an approximation of IDRL that uses a deep neural

network reward model and a state-of-the-art policy optimiza-

tion algorithm to learn from comparison queries (Section 3.6).

• We evaluate IDRL extensively in simulated environments (Sec-

tion 6.3), including a driving task and high-dimensional con-

tinuous control tasks in the MuJoCo simulator. We find that

35
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T = 4

π1 π2

Ĝ(π1) = r̂( ) + r̂( )

Ĝ(π2) = r̂( ) + r̂( )

Ĝ(π1)− Ĝ(π2) = r̂( )− r̂( )

argmax
q∈{ , , , }

I(Ĝ(π1)− Ĝ(π2), (q, ŷ))︸ ︷︷ ︸
IDRL objective

= { , }

Figure 3.1: Illustration of the active reward learning setting considered
in this chapter. The robot wants to collect food for a human.
It can only move 4 timesteps in the gridworld, cannot pass
through the black walls, and collecting more food is always
better. The robot does not know the human’s preferences but
can ask for food ratings. Common active learning methods
aim to learn the reward uniformly and query all items simi-
larly often. In contrast, IDRL considers only the two plausibly
optimal policies π1 and π2. Since both policies collect the
cherry and do not collect the pear, the robot only needs to
learn about the apple and the corn. IDRL can solve the task
with 2 queries instead of 4.

both implementations of IDRL significantly outperform prior

methods.

Overall, we demonstrate that IDRL is a promising approach to

active learning for RLHF beyond basic uncertainty sampling.

The contents of this chapter are in large parts based on:

D. Lindner, M. Turchetta, S. Tschiatschek, K. Ciosek, and A. Krause,

“Information directed reward learning for reinforcement learning”,

in Conference on Neural Information Processing Systems (NeurIPS),

2021.

3.1 related work

Most work learning reward models for reinforcement learning uses

simple heuristics to select queries to make (e.g., [12, 58]). In contrast,
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Non-linear

Rewards

Single-state

Queries

Trajectory

Queries

Numerical

Queries

Comparison

Queries

Considers

Env. Dynamics

Sadigh et al. [22] ✗ ✗ ✓ ✗ ✓ ✗

Bıyık et al. [59] ✗ ✗* ✓ ✗* ✓ ✗

Bıyık et al. [60] ✓ ✗* ✓ ✗* ✓ ✗

Daniel et al. [52] ✓ ✗* ✓ ✓ ✗* ✓

Wilde et al. [61] ✗ ✗ ✓ ✗ ✓ ✓

IDRL (ours) ✓ ✓ ✓ ✓ ✓ ✓

* The authors do not consider this setting, but we provide an extension to their method in Section 6.3 and Appendix A.2.

Table 3.1: In contrast to most prior work on active reward learning for
RL, IDRL can handle non-linear reward functions and different
query types, in particular numerical evaluations and compar-
isons of individual states and (partial) trajectories. Further,
IDRL takes the environment dynamics into account to achieve
better sample efficiency (cf. Figure 3.1).

active reward learning aims to select the most informative queries in a

principled way. For linear reward functions, Sadigh et al. [22] ask the

expert to compare trajectories synthesized to maximize the volume

removed from a hypothesis space. Bıyık et al. [59] argue that maxi-

mizing information gain leads to better sample efficiency and queries

that are easier to answer than volume removal. Bıyık et al. [60] gen-

eralize maximizing information gain to non-linear reward functions

using a GP model. We also use an information gain objective to select

queries; however, our approach focuses on finding an optimal policy

instead of uniformly reducing the error of the reward model. With a

similar motivation, Wilde et al. [61] aim to capture how informative a

query is for distinguishing policies. However, their method is limited

to comparisons between potentially optimal policies. Daniel et al. [52]

also introduce an acquisition function to measure how informative

a query is for learning a good policy. However, their setting is re-

stricted to observing the cumulative reward of a trajectory, and their

acquisition function is computationally expensive. Table 3.1 gives an

overview of how our method compares to this prior work.
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3.2 problem setting

We focus on MDPs where the reward function is not readily available.

Instead, the agent can query an expert for information about the

reward. In iteration i, the agent makes a query qi to the expert

and receives a response yi. For example, qi could ask the expert to

compare two trajectories or judge a single trajectory, and yi could

indicate which of the two trajectories is better or provide the return

of a single trajectory. We assume that the agent can interact with the

environment cheaply, but queries to the expert are expensive. Hence,

the agent has to find a policy π that maximizes the expected return

G(π) using as few expert queries as possible.

We approach this problem by learning a model of the reward

function, i.e., a model that predicts the reward of a given state,1 and

computing a policy that maximizes the return induced by the model.

Importantly, we want to learn a reward model such that the induced

optimal policy achieves a high return under the true reward function.

Note that we can use any RL algorithm to find the policy. Hence,

the problem reduces to selecting a model for the reward function

and deciding which queries to make. Our key insight is that queries

that help most to find a good policy might differ from those that

uniformly reduce the model’s uncertainty.

3.3 information directed reward learning

This section introduces Information Directed Reward Learning (IDRL)

for a general Bayesian model of the reward and discusses how to

select queries qi, making no assumptions on their form nor on the

responses yi.

reward model . To select informative queries, we need to quan-

tify uncertainty; hence, we use a Bayesian model of the reward

1 Our approach also works for reward functions that depend on state-action pairs or

transitions. We focus on state-dependent rewards for simplicity of exposition.
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function. From a Bayesian perspective, it is important to distinguish

between the agent’s belief about a quantity and its “actual” value

that is unknown to the agent. We denote the belief about the reward

in state s with r̂(s) and its actual value with r(s).

query selection. To select informative queries, we have to

consider that the responses might only give indirect information

about the set of optimal policies. For example, assume the agent

can ask the expert to quantify the reward of individual states. These

rewards provide information about the expected return of a policy

but may yield no information about the set of optimal policies. For

example, if a state is visited similarly often by every plausibly optimal

policy, knowing its reward does not help decide between the policies

(e.g., the cherry in Figure 3.1). Therefore, any approach that only aims

to reduce the uncertainty of the reward model may waste expensive

queries that do not help find an optimal policy.

Intuitively, we want to select instead queries that help identify

the optimal policy. In the language of information theory, we want

to maximize the information gain of a query about the identity of

the optimal policy. More formally, if D = {(q1, y1), . . . , (qt, yt)} is a

dataset of past queries and responses, let us denote with P(π̂∗|D) the

agent’s belief about the optimal policy, induced by our belief about

the reward function r̂. Also, let Qc be a set of candidate queries the

agent can make. Then, we could select queries

q∗ ∈ argmax
q∈Qc

I(π̂∗; (q, ŷ)|D),

where ŷ is the agent’s belief about the response it will get to query

q, and I denotes the information gain. Unfortunately, this objective

has two undesirable properties. First, the agent has to keep track

of a distribution over all possible policies to compute it, which is

intractable in general. Second, reducing uncertainty about the optimal

policy matters only if there are significant differences in the return of

plausibly optimal policies. For example, suppose the agent identifies

a set of plausibly optimal policies with similar returns. In that case,
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we care less about identifying which of these policies is optimal than

when the plausibly optimal policies have very different returns.

To address the first challenge, we obtain a finite set of candidate

policies Πc that are plausibly optimal according to our Bayesian re-

ward model. To address the second challenge, we select the most

informative query for distinguishing policies in terms of their value.

Let us first discuss how to select queries, assuming a set of plau-

sibly optimal policies Πc is available. We can exploit that the belief

about the reward function r̂ induces a belief about the expected

return of policy π ∈ Πc, denoted as Ĝ(π). In a tabular environ-

ment, we can compute the expected return of a policy as the scalar

product G(π) = f(π)T
r, where f(π) is a vector of the (discounted)

state occupancy measure of policy π and r is a vector of rewards

of the corresponding states. In practice, we can estimate f(π) from

trajectories sampled using policy π. This approach also allows us to

compute Ĝ(π) from r̂.

Given Ĝ(π), IDRL proceeds in two steps. It first selects two policies

that maximize the model’s uncertainty about the difference in their

expected returns:

π1, π2 ∈ argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D), (3.1)

where H is the entropy of the belief conditioned on past queries. To

gather information to distinguish between π1 and π2, IDRL then se-

lects queries that maximize the information gain about the difference

in expected return between π1 and π2:

q∗ ∈ argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D). (3.2)

Note that this is not the same as jointly maximizing the information

gain about Ĝ(π1) and Ĝ(π2). Equation (3.2) prefers queries that help

to distinguish π1 and π2 over queries that help to determine the exact

value of Ĝ(π1) and Ĝ(π2). Assuming Πc contains an optimal policy,

reducing the uncertainty about the difference in returns within Πc

will help quickly find an optimal policy. In particular, if there is



3.4 idrl for gp reward models 41

no remaining uncertainty about the differences in return, we can

unambiguously identify an optimal policy.

Let us now discuss how to obtain a set of candidate policies Πc.

For IDRL to select informative queries, Πc has to reflect the agent’s

current belief about optimal policies. We use Thompson sampling (TS;

[62]) as a flexible way to create Πc. We implement TS by repeatedly

sampling a reward function from the posterior reward model and

finding an optimal policy for this sampled reward function. This

approach approximates sampling from the posterior distribution

over optimal policies. Since TS is demanding, in our experiments, we

investigate two ways to alleviate its computational burden: (1) we

update Πc in regular intervals rather than at every step, and (2) we

start from the candidates computed in the previous steps rather than

starting the policy optimization from scratch.

Algorithm 1 shows the full IDRL algorithm. In each iteration, IDRL

identifies two plausibly optimal policies with high uncertainty about

their difference in return and then aims to reduce this uncertainty. We

can stop the algorithm after a fixed number of queries or by checking

a convergence criterion and return a policy π̄∗ that is optimal for the

current reward model.

Note that IDRL is agnostic to how the candidate queries Qc are

generated. Different applications might require different approaches

to generating Qc. In our experiments, for example, we consider: (1)

using all possible queries in small environments; (2) choosing states

or trajectories to query from rollouts of the currently optimal policy

π̄∗; (3) selecting queries from rollouts of the candidate policies; and

(4) selecting queries from trajectories of a pre-defined explorations

policy. Importantly, all of these, and others, are compatible with IDRL.

3.4 idrl for gp reward models

Next, we describe our first concrete implementation of IDRL, which

uses a Gaussian process (GP) reward model and linear query types.
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Algorithm 1 Information Directed Reward Learning (IDRL). The algo-

rithm requires a set of candidate queries Qc, a Bayesian model of the

reward function, and an RL algorithm that returns a policy given

a reward function. Ĝ(π) is the belief about the expected return of

policy π, induced by the reward model P(r̂|D), and r̂ is the belief

about the reward function.
1: D ← {}
2: Πc ← initialize candidate policies

3: Initialize reward model with prior distribution P(r̂)

4: while not converged do

5: Select a query:

6: π1, π2 ∈ argmaxπ,π′∈Πc
H(Ĝ(π)− Ĝ(π′)|D)

7: q∗ ∈ argmaxq∈Qc
I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

8: Make query and update reward model:

9: y∗ ← Response to query q∗

10: Update model: P(r̂|D ∪ {(q∗, y∗)}) ∝ P(y∗|r̂,D, q∗)P(r̂|D)
11: D ← D ∪ {(q∗, y∗)}
12: Optionally update candidate policies Πc

13: r̄ ← mean estimate of the reward model

14: π̄∗ ← RL(r̄)

15: return π̄∗

These choices allow us to compute equations (3.1) and (3.2) exactly

and efficiently.

reward model . We model the reward function as a GP with

(w.l.o.g.) a zero-mean prior distribution r̂(s) ∼ GP(0, k(s, s′)) using a

kernel k which measures the similarity of states.

query selection. We first show how to compute equations

(3.1) and (3.2) if the posterior belief about the reward function is

Gaussian. Then, we discuss a family of practically relevant query

types that satisfy this assumption. We provide proofs for all results

in Appendix A.1.
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Proposition 3.4.1. If r̂(s)|D is a GP, then P(Ĝ(π)− Ĝ(π′)|D) is Gaus-

sian and:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D]

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D) = argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {(q, ŷ)}]

We can compute both variances analytically, enabling exact imple-

mentation of equations (3.1) and (3.2).

query types . To apply this result, we need r̂(s)|D to be a GP,

which is not the case for general observations (qi, yi). If the queries

are individual states, i.e., qi = si and yi = r(si), the problem is

standard GP regression, and r̂(s)|D is a GP. More generally, a we can

show a similar statement if the observations are linear combinations

of rewards.

Definition 3.4.1. We call q = (X, C) a linear reward query, if it consists

of states X = {s1, . . . , sN} and linear weights C = {c1, . . . , cN}, and

the response to query q is a linear combination of rewards y =

∑
N
j=1 cjr(sj) + η, with Gaussian noise η ∼ N (0, σ2

n).

Proposition 3.4.2. Let q be a linear reward query. If the prior belief

about the reward r̂(s) is a GP, then the posterior belief about the

reward r̂(s)|(q, y) is also a GP.

Linear reward queries result in a particularly efficient implemen-

tation of IDRL. Of course, IDRL with a GP model could be extended

to non-linear observations using approximate inference, similar to

Bıyık et al. [60]. However, many commonly used query types can be

modeled as linear reward queries, including the return of trajectories

or comparisons of trajectories. Let us discuss a few query types in

more detail.

single state rewards . If N = 1, a linear query consists of a

single state qi = si ∈ S , for which the expert provides a noisy reward.
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return of trajectories . For N > 1 and all ci = 1, the agent

observes the sum of rewards of states. The set X could contain the

states in a trajectory or a sub-sequence of it. Then, the queries ask

about the return, i.e., the sum of rewards, of this sequence of states.

comparisons of states and trajectories . We can model

a comparison of the reward in states sa and sb by defining X =

{sa, sb} and defining C = {1,−1}. Then the agent might observe

y = r(sa) − r(sb). In practice, comparison queries usually result

in binary feedback, i.e., the expert states that either sa or sb is

prefered. We can model this, e.g., with a Bernoulli distribution

P(y = 1) = (1 + r(sa)− r(sb))/2, if all rewards are between 0 and 1.

The observations from this distribution have expectation r(sa)− r(sb)

and the noise model is sub-Gaussian, which we can approximate

with a Gaussian noise distribution (cf. [63]). Hence, we can model

such comparison queries as linear reward queries. We can model

comparisons between two sets of states, e.g., between two trajecto-

ries, analogously. Other observation models for comparisons have

been proposed in the literature, such as softmax [22], probit [60] or

Bernoulli distributions with constant probability [61]. IDRL can be

extended to these alternatives using approximate inference.

3.5 connection to multi-armed bandits

So far, we motivated IDRL from information-theoretic considerations.

However, there are close connections to related algorithms in multi-

armed bandits (MAB; cf. Section 2.1) that can serve as additional

motivation. Recent work successfully uses decision criteria based

on information gain in various MAB problems [64]. However, our

setting differs from standard MAB problems because we do not

directly observe the quantity we are optimizing for, i.e., the return

of a policy. In this section, we discuss two settings that are more

closely related to our setting: the linear partial monitoring problem

and transductive linear bandits.
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3.5.1 Linear Partial Monitoring

Partial monitoring problems generalize the standard MAB problem

to cases where the agent’s observations provide only indirect infor-

mation about the reward [65]. For tabular MDPs, we can interpret

our reward learning setting as a linear partial monitoring problem.

Let r be a vector of all rewards in a tabular MDP. We consider ob-

servations that are a linear function of the rewards r(si) = cTr, and

the optimization target is also a linear function of the reward vector

G(π) = f(π)T
r. Kirschner et al. [63] analyze linear partial monitoring

problems and propose criteria for selecting observations based on

information gain. One criterion they propose to measure information

gain, called directed information gain, is equivalent to the information

gain criterion IDRL uses (App. B.2 in [63]). However, they consider

cumulative regret minimization, and, therefore, their algorithm has

to trade off the information gain of an observation with its expected

regret. In our setting, minimizing cumulative regret would corre-

spond to maximizing ∑
T
t=1 G(π̄t), where π̄t is the policy that IDRL

returns if it is stopped after t iterations. Instead, we evaluate the final

policy and aim to maximize G(π̄T). Consequently, our algorithm

directly uses directed information gain as a selection criterion.

3.5.2 Transductive Linear Bandits

Our setting is a pure exploration problem: We evaluate only the

performance of the final policy after a fixed budget of queries and

not the intermediary policies. Fiez et al. [66] study pure exploration

in transductive linear bandits where the goal is to maximize a linear

reward function in a set Z by making queries in a potentially different

set X . In this section, we show that for a tabular MDP, our problem

is a special case of the transductive linear bandit problem. We can

understand IDRL as an adaptive version of the RAGE algorithm

introduced by Fiez et al. [66]. To see this connection, let us first define

the transductive linear bandit problem.



46 information directed reward learning

Definition 3.5.1 (Fiez et al. [66]). A transductive linear bandit problem

is defined by two sets X ⊂ R
d and Z ⊂ R

d, where the goal is to find

argmaxz∈Z θTz for some hidden parameter vector θ ∈ R
d. However,

instead of observing this objective directly, the learning agent inter-

acts with the bandit at each time-step by selecting an arm x ∈ X to

play and then observing θTx + η where η is independent, zero-mean,

sub-Gaussian noise. The agent’s goal is to find the maximum in Z
by making as few queries in X as possible.

Proposition 3.5.1. For a tabular MDP, a fixed set of candidate poli-

cies Πc and a set of linear reward queries Qc, our reward learning

problem is a transductive linear bandit problem with Z = {f(π)|π ∈
Πc} ⊂ R

|S| and X = {ci|i ∈ {1, . . . , |Qc|}} ⊂ R
|S| a set of linear

observations.

To see this, note that our goal is to maximize G(π) = f(π)T
r and

we query linear combinations of rewards in each round cit
Tr. Here it

is the index of the query that the agent selects at time t, and cit
is a

vector of linear weights that defines query qit
.

To understand the connection between IDRL and the RAGE algo-

rithm proposed by Fiez et al. [66], let us assume that the reward

function is a linear function of some features of the state, and to use

a linear kernel for the GP model, which is equivalent to Bayesian

linear regression.

Let φ : S → R
d be a feature function, and the true reward function

r(s) = φ(s)Tθ∗. Similarly, we can define a feature vector for each

query q ∈ Qc and overload the notation φ(q) = ∑
N
i=1 Ciφ(si). Also,

we can write the expected return of a policy as G(π) = f(π)ϕ
Tθ∗

with f(π)ϕ = f(π)TΦ and Φ = (φ(s1), . . . , φ(s|S|))
T.

The RAGE algorithm proceeds in multiple rounds. In each round,

it selects arms using the allocation

λ∗t = argmin
λ∈∆X

max
π1,π2∈Ẑt

∥f(π1)ϕ − f(π2)ϕ∥2
Aλ
−1 (3.3)

where Aλ = ∑qi∈Qc
λiφ(qi)φ(qi)

T, and where ∆X is the probability

simplex over candidate queries. This rule selects query qi at round
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t with probability (λ∗t )i. Additionally, RAGE keeps track of a set of

plausibly optimal arms Ẑt, i.e., plausibly optimal policies in our case.

RAGE ensures that the suboptimality gap of arms in this set shrinks

exponentially as the algorithm proceeds.

The following proposition provides an alternative notation for IDRL

that shows a formal similarity to RAGE.

Proposition 3.5.2. Assume we estimate θ̂ with Bayesian linear regres-

sion with noise variance σ2, and prior θ̂ ∼ N (0, α−1 I) after collecting

data

D = ((φ(qi1), yi1), . . . , (φ(qit−1
), yit−1

)).

Also, assume an infinitely wide prior α−1 → ∞.

We can then write the maximization in the first step of IDRL as

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

∥f(π)ϕ − f(π′)ϕ∥2
AD−1

where AD = ∑qi∈Qc
Niφ(qi)φ(qi)

T.

Furthermore, for a given pair of policies, π1 and π2, we can write

the maximization in the second step of IDRL as

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

= argmin
q∈Qc

∥f(π1)ϕ − f(π2)ϕ∥2
AD,q

−1

where AD,q = φ(q)φ(q)T + ∑qi∈Qc
Niφ(qi)φ(qi)

T and Ni is the num-

ber of times qi occurs in D.

Comparing this proposition with equation (3.3) shows a formal

similarity between both algorithms. In particular, we can understand

IDRL as a version of equation (3.3) that adapts to the data seen

so far and selects the next observation that would minimize this

objective. Instead of the matrix Aλ induced by the allocation λ, IDRL

computes the variances using AD, i.e., based on data observed in

the past, and using AD,q, i.e., evaluating the effect of an additional

observation. Additionally, IDRL performs two separate optimizations,
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which we can consider as an approximation to the min-max problem

in equation (3.3), which would be infeasible to evaluate in our setting.

Similar to RAGE, IDRL keeps track of a set of plausibly optimal

policies. However, IDRL uses Thompson sampling, while RAGE uses

suboptimality gaps to build this set.

3.6 idrl for deep rl

GP models provide a convenient way to implement IDRL exactly. But

can IDRL also be used if we can not model the reward function as a

GP? Moreover, can we scale it to large environments on the scale of

typical Deep RL applications?

To address these questions, we propose a second implementa-

tion of IDRL using a deep neural network (DNN) reward model. To

scale IDRL to large Deep RL scenarios, we integrate it into a policy

optimization algorithm, similar to Christiano et al. [12].2 In our exper-

iments, we focus on comparison queries, but extending the algorithm

to other query types is straightforward.

reward model . We use adaptive basis function regression with

DNNs, similar to Snoek et al. [67]. Concretely, we represent the reward

function as a function of observations o and actions a, using a DNN

model µr̂(o, a) = θT fϕ(o, a). We conceptually separate the model into

a feature representation fϕ(o, a) parameterized by weights ϕ and a

linear function θ. In practice, θ is the last layer of the DNN, and

we train ϕ and θ jointly. We train the model from comparisons of

short clips of the agent’s behavior using the Bradley-Terry model (see

Section 2.4) and ℓ2-regularization. Because the Bradley-Terry model is

invariant to shifting the reward function, we use DNN layers without

biases. Additionally, we normalize the model’s output when using it

to train policies.

To compute the IDRL objective, we need a Bayesian posterior. We

treat the learned representation fϕ(o, a) as a basis function and the

2 We compare our setup to Christiano et al. [12] in more detail in Appendix A.2.2.
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final layer of the DNN as a maximum a posteriori (MAP) estimate of

the parameters of a Bayesian logistic regression model. Finally, we

approximate the full posterior using a Laplace approximation:

p(θ|D, ϕ̂) ≈ N (θ̂, H−1)

H =
[
∇2log p(θ|D, ϕ̂)

]∣∣∣
θ=θ̂

where H is the Hessian of the log-likelihood at point θ̂. The Laplace

approximation is a basic technique for approximate inference; how-

ever, it is convenient because it approximates the posterior as a Gaus-

sian distribution. Hence, we can easily compute this distribution’s

entropy and information gain, similar to a GP model.

query selection. Because of the Laplace approximation, the

posterior distribution of r̂(s)|D is Gaussian, and we can compute

equations (3.1) and (3.2) the same way we did for a GP reward model.

query types . Similar to Christiano et al. [12], we consider queries

qi = (σ1
i , σ2

i ) that compare two segments of trajectories σ1
i and σ2

i ,

where the user responds with their preference yi ∈ {−1, 1}.

candidate policies . In large environments, training new poli-

cies from scratch during the Thompson sampling step is infeasible.

To avoid this, we maintain a fixed set of policies that we update

regularly instead of training new policies from scratch whenever we

receive new samples.

candidate queries . We generate candidate queries by rolling

out the current policy optimized for the mean estimate of the reward

model, as well as the candidate policies and uniformly sampling

pairs of segments from the resulting trajectories.

full algorithm . We use the soft actor-critic algorithm (SAC;

[68]) to train a policy for the current reward model and the candidate
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policies. Similar to Christiano et al. [12], the agent queries compar-

isons following a fixed schedule in which the number of samples is

proportional to 1
T , where T is the number of policy training steps,

i.e., we provide more samples early during training and less later on.

Algorithm 2 shows the full pseudocode for our Deep RL implemen-

tation of IDRL; for details on hyperparameters, see Appendix A.2.2.

3.7 experiments

We empirically test IDRL in several environments, ranging from Grid-

worlds to complex continuous control tasks, and for several query

types, including numerical evaluations and comparisons of trajec-

tories. Our evaluation covers most scenarios from prior work and

shows that IDRL attains comparable or superior performance to meth-

ods designed for specific scenarios.

In all experiments, we simulate expert feedback based on an un-

derlying true reward function unknown to the agent. We usually

evaluate the regret of a policy π trained using the reward model, i.e.,

G(π∗)− G(π) for an optimal policy π∗. If we do not know π∗, we

approximate it with a policy trained on the true reward function.

We first validate that GP-based IDRL improves sample efficiency

in simple environments for numerical and comparison queries (Sec-

tion 3.7.2). Next, we consider the most common setup in the literature:

learning from comparisons of trajectories. We compare GP-based

IDRL against alternative approaches in a driving simulator, proposed

in prior work (Section 3.7.3). Then, we study another natural feed-

back type: ratings of clips of the agent’s behavior. In this setting, we

demonstrate how GP-based IDRL can be scaled up to bigger environ-

ments in the MuJoCo simulator (Section 3.7.4). Finally, we further

demonstrate scalability by considering the Deep RL implementation

of IDRL to learn standard MuJoCo tasks from comparisons of clips of

trajectories, similar to Christiano et al. [12] (Section 3.7.5).

We choose our setup for each environment to be close to prior

work to promote a fair comparison. Consequently, our choice of
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Algorithm 2 Information Directed Reward Learning (IDRL) using neural

networks. The main training loop alternates between updating the

policy π̄∗, querying new samples, and updating the candidate poli-

cies. The algorithm selects queries using the IDRL objective, where

line 13 corresponds to equation (3.1) and line 19 corresponds to equa-

tion (3.2). Line 4 updates the feature representation and estimates the

MAP of the posterior, and line 5 approximates the posterior using a

Laplace approximation.

1: Initialize policy π̄∗, candidates Πc ← {πc
1, . . . , πc

n}, D ← {}
2: Initialize DNN reward model µr̂(o, a) = θT fϕ(o, a)

3: while not done do

4: Update DNN parameters, ϕ and θ, on D
5: H ←

[
∇2 log p(θ|D, ϕ)

]∣∣∣
θ

6: Train policy π̄∗ on reward ri(o, a) = θT fϕ(o, a) using SAC

7: if update candidate policies then

8: Sample ω1, . . . , ωn from N (θ, H−1)

9: for i ∈ {1, . . . , n} do

10: Train πc
i on reward ri(o, a) = ωT

i fϕ(o, a) using SAC

11: Estimate occupancy measure f(πc
i ) using rollouts

12: if query samples then

13: π1, π2 ∈ argmaxπ,π′∈Πc
(f(π)− f(π′))T H−1(f(π)− f(π′))

14: v(π1, π2)← f(π1)− f(π2)

15: Roll out policy π̄∗ and collect candidate queries Qc

16: for qi ∈ Qc do

17: Compute Hessian with the expected response to qi:

18: Hqi
←
[
∇2 log p(θ|D ∪ {(qi, ŷi)}, ϕ)

]∣∣∣
θ

19: u(qi,D)← −v(π1, π2)T H−1
qi

v(π1, π2)

20: Sort queries by u(qi,D) and select top k: {q1, . . . , qk}
21: Make queries {q1, . . . , qk} and observe {y1, . . . , yk}
22: D ← D ∪ {((q1, y1), . . . , (qk, yk))}
23: return π̄∗
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RL solver and query types differ between environments. As a side

effect, this highlights IDRL’s generality. Appendix A.2 provides some

additional details on our implementation and experiments.

3.7.1 Baselines

We consider five baselines:

• Uniform sampling selects queries from Qc with equal probability.

• Information gain on the reward (IGR) selects queries that maxi-

mize information gain about the reward I((q, ŷ); r̂|D). For a GP

model, this is equivalent to maximizing Var[ŷ|D, q]. Bıyık et al.

[59] use IGR to learn rewards from comparisons of trajectories;

however, it can be extended to other query types.

• Expected improvement on the reward (EIR) maximizes the improve-

ment in the value of a query compared to the best observation

so far, in expectation, and is a common acquisition function in

BO [31]. EIR can not be applied to comparison queries.

• Expected policy divergence (EPD) is an active reward learning

method introduced by Daniel et al. [52], which makes queries

that maximally change the current policy. Since EPD updates

the policy for each potential observation, it is prohibitively

expensive for large Qc. While EPD was introduced to query

the return of trajectories, we extend it to other query types (cf.

Appendix A.2).

• Maximum regret (MR) is an acquisition function proposed by

Wilde et al. [61]. It assumes access to a set of candidate reward

functions and corresponding optimal policies. MR compares

policies that perform well according to one reward function but

poorly according to a different one. It can only be used with

comparisons of full trajectories.

We also tested expected volume removal (EVR; [22]) for comparison

queries; however, we found it to get stuck often, which confirms the
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findings of Bıyık et al. [59]. Note that IGR and EIR reduce uncertainty

uniformly over the state space, while EPD and MR consider the

environment dynamics.

3.7.2 Can IDRL Improve Sample Efficiency?

We first validate our hypothesis that IDRL improves sample efficiency

in small environments. We study a set of Gridworlds similar to Fig-

ure 3.1, and two toy environments, we call Chain and Junction, that

isolate specific reasons we expect IDRL to perform well.

toy environments . Figure 3.2 shows the Chain and Junction

MDPs. Importantly, in both environments, there are states in which

the agent’s actions do not change the transitions. The rewards of these

transitions are not as decision-relevant as the rewards of transitions

the agent can influence. Hence, we expect IDRL to focus on the latter.

gridworlds . We consider 10 × 10 Gridworlds with randomly

placed walls and objects with different rewards. The agent has to

find the object with the largest reward, similar to Figure 3.1.

query types . We consider queries about the reward of individual

states, i.e., qi = si ∈ S and yi = r(si), and comparison queries with

qi = (si1, si2) and yi ∈ {−1, 1}. The candidate queries Qc either

consist of all states or all pairs of states. We use GP-based IDRL,

with a kernel that encodes distance between states in the Chain and

Junction and the similarity of different squares in the Gridworld which

objects are the same and which are different.

results . Figure 3.3 shows the regret of a policy trained on the

reward model after certain numbers of queries. IDRL finds better

policies than the baselines with a limited number of queries because

it focuses on regions of the state space relevant for finding the optimal

policy. As shown in Figure 3.1, this improves sample efficiency over
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methods that uniformly reduce uncertainty, such as IGR and EIR.

IDRL also outperforms EPD because EPD’s goal of selecting queries

that maximally change the current policy differs from the goal of

finding an optimal policy. We investigate EPD’s specific failure modes

in Appendix A.3.2.

3.7.3 Can IDRL Learn From Comparisons?

Most prior work studies reward learning from comparisons of trajec-

tories. To evaluate IDRL in this setting, we consider the 2-dimensional,

continuous Driver environment by Sadigh et al. [22].

setup. In the Driver environment, the agent controls a car on

a highway with another car driving on a fixed trajectory (cf. Fig-

ure 3.4a). We randomly sample an underlying (linear) reward func-

tion for each experiment to describe the desired driving behavior. We

use code by Sadigh et al. [22] to simulate and solve the environment

but adapt it to our setting. In contrast to Sadigh et al. [22], we do

not synthesize queries. Instead, we sample a fixed set of 200 reward

functions from a Gaussian prior distribution. We then optimize a

policy for each reward function and, similarly to Wilde et al. [61], con-

sider all pairs of policies as potential queries. Moreover, we assume a

linear observation model, whereas Sadigh et al. [22] and Wilde et al.

[61] choose different non-linear observation models. Each experiment

runs for less than 24 hours on a single CPU.

results . Figure 3.4a shows the regret curves for the learned

policy and the cosine similarity for the learned reward function

weights. IDRL outperforms the baselines and finds a better policy

with fewer queries. However, the difference to pure information gain

is small in this simple environment.
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Figure 3.2: Illustration of the Chain and Junction MDPs. In the Chain MDP
(a), the agent moves right with probability 1 from state s1 to
sM, and the agent can move deterministically left and right
from state sM to state sN with N > M. The reward function is
sampled from the GP prior with a square-exponential kernel.
We choose M = 10 and N = 20. In the Junction MDP (b), the
agent moves right with probability 1 from state s1 to sN . In
sN , the agent can take the upper or lower path, denoted with
A and B, respectively. The agent moves left or right along
both paths with probability 0.5. In the lower path, the reward
of all states is 0.8. In the upper path, the highest reward is
greater than 0.8, but the average reward is less than 0.8. We
choose N = 15 and M = 5. For both environments, the initial
state distribution is uniform over the state space.
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Figure 3.3: Learning curves for the Chain, Junction, and Gridworld envi-
ronments for two query types: the reward of individual states
and comparisons of states. For each setting, one plot shows
the regret of a policy trained using the reward model, and
a second plot shows the mean squared error (MSE) of the
reward model over the whole state space. The plots show
mean and standard error across 30 random seeds. Across all
environments, IDRL learns a better policy with fewer queries.
However, the MSE measured on the entire state space is usu-
ally worse because IDRL focuses on regions of the state space
that are informative about the optimal policy.
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(b) Swimmer-Corridor (evaluation of trajectory clips)

Figure 3.4: Results in the (a) Driver and (b) Swimmer-Corridor environ-
ments (shown on the left). We show the regret of a policy
trained on the reward model compared to a policy trained
on the true reward function as a function of the number of
queries (middle plot). We report the cosine similarity between
the learned and the true reward function (right plot). The
plots show mean and standard error over 30 random seeds.
IDRL finds significantly better policies while not necessarily
learning an overall more accurate model of the reward func-
tion. Appendix A.3.2 contains a similar plot for Ant-Corridor.
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Swimmer-Corridor Ant-Corridor

Uniform Sampling 11.8± 0.9 15± 1

IGR 13.3± 0.6 17.2± 0.5

EIR 12.0± 0.8 17.5± 0.8

IDRL (20 updates) 2.4 ± 0.8 2.2 ± 0.8

IDRL (4 updates) 2.8± 0.7 5± 1

IDRL (2 updates) 5.1± 0.6 8± 1

IDRL (1 update) 7.6± 0.8 12± 1

Table 3.2: Results comparing IDRL for different update frequencies of
the candidate policies in the Corridor environments. The table
shows the estimated regret of a policy trained using 20 queries
about the reward function.

3.7.4 Does IDRL Scale to Bigger Environments?

To demonstrate that GP-based IDRL scales to larger environments,

we use the MuJoCo simulator [69], which provides challenging en-

vironments commonly used as benchmarks for RL. However, its

standard locomotion tasks are very easy to learn for a GP model

because the reward is directly proportional to the agent’s velocity in

the x-direction. Instead, we propose a task where the reward function

is harder to learn.

setup. In our Corridor environments (Figure 3.4b), a robot (Swim-

mer, or Ant) has to move forward and stop at a goal position. The

simulated expert provides ratings for trajectory clips according to

a reward function proportional to the velocity in the direction of

the goal. This reward function is linear in a set of state features, as

described in Appendix A.3.1. We use augmented random search [70] as

an RL algorithm. For the Swimmer-Corridor, we learn a linear policy;

for the Ant-Corridor, we learn a hierarchical policy on top of pre-
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trained policies moving in four different directions. We use a fixed,

noisy exploration policy that moves along the corridor to generate

candidate queries. Unfortunately, EPD is too expensive to evaluate

in this environment, and MR is not suited to numerical evaluation

queries, so that our baselines are limited.

results . Figure 3.4b shows that IDRL needs significantly fewer

queries to find a good policy than any of the baselines. IDRL adapts

its queries to the policies that the current reward model induces: it

initially samples clips in which the robot moves close to its starting

position and shifts its focus to other regions as the reward model

improves, and the learned policy starts to move. In contrast, the

baselines make queries in the whole reachable space similarly often

and, therefore, waste queries in regions that are not directly relevant

to improving the policy.

The computationally most expensive part of this implementation

of IDRL is updating the candidate policies in each iteration. Updating

them less often reduces the computational cost at the expense of

potentially reducing the sample efficiency. Table 3.2 studies this

trade-off and shows that IDRL outperforms the baselines even when

the policies are updated only once at the beginning of training. In

this extreme case, we reduce IDRL’s total runtime from about 40

hours to about 20 hours in Swimmer-Corridor, and from about 40

hours to about 10 hours in Ant-Corridor. The benefits are larger

when solving the RL problem is more expensive. Nonetheless, the

baseline algorithms are still faster and run for only 2 − 3 hours.

This is because they do not require the additional inference steps

necessary to optimize Equation (3.2). These results indicate that IDRL

using full Thompson sampling to generate candidate policies can

trade off computational cost and sample efficiency, which allows it

to be applied to large environments.
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Figure 3.5: The normalized score of policies learned from 1400 (synthetic)
comparisons of clips of the agent’s behavior, averaged over all
MuJoCo environments (higher is better). We show the mean
and standard error of the score averaged over 5 random seeds
per environment. The plot compares IDRL ( ) to IGR ( )
and uniform sampling ( ), as well as an ablation of IDRL
that does not use the candidate policies to generate additional
candidate queries ( ). EPD is too expensive, and MR is
unsuitable for queries consisting of clips of trajectories.

3.7.5 Does IDRL Scale to Deep RL?

Finally, we consider the Deep RL implementation of IDRL from Sec-

tion 3.6, using the Soft Actor-Critic algorithm (SAC; [68]). We test

it on standard MuJoCo locomotion tasks, which are harder to learn

with a DNN than a GP model because the former encodes less prior

information.

setup. We consider a suite of standard tasks in MuJoCo imple-

mented in OpenAI Gym [71]: HalfCheetah-v3, Walker2d-v3, Hopper-v3,

Ant-v3, Swimmer-v3, InvertedPendulum-v2, InvertedDoublePendulum-v2,

Reacher-v2. Similar to Christiano et al. [12], we modify some envi-

ronments to remove the termination conditions. Our environments

differ slightly from Christiano et al. [12]; see Appendix A.2.2 for

details. Our evaluation metric is a normalized score averaged over
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all environments. A score of 0 corresponds to a random policy, and

a score of 100 is the performance of a policy trained on the true re-

ward function. We provide results for the individual environments in

Appendix A.3.2. Since IDRL tracks the candidate policies, it generates

the candidate queries rolling out the currently optimal policy and the

candidate policies. However, the baselines cannot access the candi-

date policies and therefore consider a smaller set of potential queries.

For a fair comparison, we perform an ablation where IDRL does not

consider the candidate policies to generate candidate queries. Since

IDRL maintains 3 (additional) candidate policies, it is roughly 4 times

slower (about 80 hours on a single GPU) than the baselines (about

20 hours on a single GPU).

results . Figure 3.5 shows that, on average, IDRL learns good

policies significantly faster than the baselines. The individual re-

sults in each environment (in Appendix A.3.2) are more nuanced.

IDRL outperforms the baselines in some environments (e.g., Hopper-

v3), performs comparable in other environments (e.g., Walker2d-v3),

and performs worse than uniform sampling in a few environments

(e.g., HalfCheetah-v3). Also, while mostly using the candidate pol-

icy rollouts improves the performance of IDRL, this is not always

the case (e.g., in Swimmer-v3 the ablation performs better). This

indicates that much of the variance might be caused by the candi-

date queries, which we could improve by using other exploration

strategies than rolling out the candidate policies. Crucially, these

experiments demonstrate that IDRL is scalable to high-dimensional,

complex tasks and improves sample efficiency over existing methods.

3.8 conclusion

In this chapter, we studied the problem of actively learning reward

function models using as few expert queries as possible. We intro-

duced Information Directed Reward Learning (IDRL), a novel information-

theoretic algorithm that focuses on learning a good policy rather than
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attaining a low approximation error of the reward. We show that

it needs significantly fewer queries than prior methods and that it

scales to complex environments.

The main practical limitation of IDRL is its computational cost. We

demonstrated how to scale IDRL to complex environments, increas-

ing the runtime by only a constant factor. While IDRL is still more

demanding than simpler algorithms, it is preferable when better

sample efficiency is more important than low computational cost.

Our problem setup also has conceptual limitations. We assume that

interactions with the environment are cheap, which is not always

the case. We partially address this problem in Chapter 4 where we

focus on exploration. Moreover, we assume that the goal of RL is to

learn a good policy in a single environment, which does not consider

generalizing to other environments. To address this, future versions

of IDRL could aim to learn a reward model that leads to good policies

over a distribution of environments instead of a single environment.

While IDRL provides a principled method for choosing which re-

ward queries to make from a fixed set of candidate queries Qc, it does

not address choosing the set of candidate queries. Commonly the

candidate queries will be states or trajectories obtained by exploring

the environment. The next chapter studies actively exploring the

environment to learn a reward model efficiently.
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A C T I V E E X P L O R AT I O N F O R I N V E R S E

R E I N F O R C E M E N T L E A R N I N G

In this chapter, we turn to study the problem of efficiently exploring

the environment to learn a reward model. Instead of studying prefer-

ence learning with a general feedback type, in this chapter, we focus

on Inverse Reinforcement Learning (IRL), i.e., observing actions from

an expert policy. This restriction allows us to provide a more formal

problem setup and to develop an algorithm with explicit sample

complexity guarantees. Nevertheless, the key principles are the same

as in Chapter 3, and the analysis in the present chapter could also be

extended to other types of feedback than expert demonstrations.

Most existing and well-studied IRL algorithms assume that the

transition model, and in some cases, the expert’s policy, are known. In

many real-world applications, this is not true, and the agent needs to

estimate the transition dynamics and the expert policy from samples.

Figure 4.1 shows an illustrative example where the agent can choose

between different paths that have different properties, e.g., walking

speeds, and lead to different goals.

Hence, we consider IRL with unknown transition dynamics and

expert policy and focus on exploring the environment in order to

recover the expert’s reward function efficiently. To the best of our

knowledge, we present the first sample complexity guarantees for

the active IRL problem without access to a generative model. In

particular, this chapter presents the following key contributions:

• We propose the active IRL problem in a finite-horizon, undis-

counted Markov Decision Process (MDP) and characterize nec-

essary and sufficient conditions for solving it (Section 4.2.1).

• We analyze how the estimation errors of the transition model

and the expert policy contribute to the estimation error of

63
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the reward function and a policy that optimizes the recovered

reward function (Section 4.2.2).

• We propose Active Exploration for Inverse Reinforcement Learn-

ing (AceIRL), a novel algorithm that actively explores the en-

vironment and the expert policy to infer a reward function.

AceIRL constructs exploration policies based on the estimation

error of the recovered reward function (Section 4.4).

• We consider two different exploration strategies for AceIRL.

The first, more straightforward strategy provides a sample

complexity similar to the algorithm proposed by Metelli et al.

[72], which has access to a generative model (Section 4.4.1). The

second strategy takes the expected reduction in uncertainty

into account (Section 4.4.2), which yields a tighter, problem-

dependent sample complexity bound (Section 4.4.3).

• We evaluate AceIRL empirically in simulated environments and

demonstrate that it performs significantly better than more

naive exploration strategies (Section 6.3).

The contents of this chapter are based on:

D. Lindner, A. Krause, and G. Ramponi, “Active exploration for

inverse reinforcement learning”, in Conference on Neural Information

Processing Systems (NeurIPS), 2022.

4.1 related work

Most IRL algorithms assume that the underlying transition model is

known [47, 73–75]. However, the transition model usually needs to

be estimated from samples, which induces an error in the recovered

reward function that most papers do not study. Metelli et al. [72]

analyze this error and the sample complexity of IRL in a tabular

setting with a generative model. They propose an algorithm called

TRAVEL designed to transfer the learned reward function to a fully
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𝜋𝐸 𝑠0 =

Figure 4.1: Illustration of active IRL. The agent can choose between four
paths that lead to different objects. It can get action recom-
mendations from an expert but does not know about the
properties of the different paths (the transition dynamics) or
the value of different items (the reward function). The agent’s
goal is to infer which reward functions explain the expert’s
recommendations. Only observing the expert actions is not
enough to do that. Instead, the agent has to explore the en-
vironment and learn about the dynamics. The human might
prefer to find the treasure over the carrot but still recommend
the yellow path because the treasure is very difficult to reach.
To explore efficiently, the agent has to combine its uncertainty
about the expert policy with its uncertainty about the envi-
ronment to choose where to explore. AceIRL implements an
exploration strategy that aims to infer which reward func-
tions are consistent with the expert’s recommendations as
quickly as possible. We present experiments on a version of
this environment in Section 6.3.
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known target environment. TRAVEL selects which queries to make

to the expert, assuming access to a generative model of the source

environment and a fully known target environment. Dexter et al. [76]

provides a similar analysis in continuous state spaces and discrete

action spaces, but they still require a generative model of the envi-

ronment. Their algorithm also requires a generative model of the

environment, but in contrast to Metelli et al. [72] it does not consider

transferring the reward function to a new environment. In contrast

to both works, we do not assume access to a generative model and

thus need to tackle the exploration problem in IRL.

Some prior work studies active learning algorithms for IRL in a

Bayesian framework but without providing theoretical guarantees.

Lopes et al. [77] propose an active learning algorithm for IRL that

estimates a posterior distribution over reward functions from demon-

strations, requiring a prior distribution and full knowledge of the

environment dynamics. Relatedly, Cohn et al. [78] consider a Bayesian

IRL setting with a semi-autonomous agent that asks an expert for

advice if it is uncertain about the reward. Cohn et al. [78] consider

an agent who acts autonomously when confident and asks a human

expert for advice otherwise. They consider a Bayesian IRL setting to

define these acquisition functions and assume full knowledge of the

environment dynamics, similar to Lopes et al. [77]. Brown et al. [79]

empirically study active IRL in several safety-critical environments,

selecting queries using value at risk. Kulick et al. [57] consider active

learning for a robotic manipulation task, asking a human expert for

advice in situations with the highest predictive uncertainty. Similarly,

Losey and O’Malley [80] propose a method to learn uncertainty esti-

mates from human corrections in robotics. All these papers assume a

Bayesian framework and do not provide theoretical guarantees. In

contrast, our setup does not require a prior over reward functions,

and we provide sample complexity guarantees for our algorithm.

A separate line of work studies sample complexity in imitation

learning where the goal is to imitate an expert policy rather than infer

a reward function [81, 82]. In particular, Abbeel and Ng [83] also

focus on exploration and propose to use the expert policy to explore
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relevant regions, whereas Shani et al. [84] use an upper-confidence

approach to exploration. Our setting is different because we focus on

IRL instead of imitation learning, and we aim to explore to infer a

reward function as efficiently as possible.

4.2 active learning for irl

In this section, we first introduce the active Inverse Reinforcement

Learning problem with and without a generative model (Section 4.2.1).

Then, we define the feasible reward set for finite-horizon MDPs (Sec-

tion 4.2.2) and characterize the error propagation on the reward

function and the value function (Section 4.2.3), extending results by

Metelli et al. [72] to the finite-horizon setting.

4.2.1 Problem Definition

Our goal is to design an exploration strategy to construct a dataset of

demonstrations D such that an arbitrary IRL algorithm can recover

a good reward function from it. To be agnostic to the choice of IRL

algorithm, we consider the set of all feasible reward functions for a

specific expert policy. Formally, we consider IRL problems (M, πE)

consisting of an MDP \R and an expert policy πE, and we define the

feasible reward set as follows.

Definition 4.2.1 (Feasible Reward Set). A reward function r is feasible

for an IRL problem (M, πE), if and only if the expert policy πE is

optimal in M∪ r. We call the set of all feasible reward functions

RM∪πE the feasible reward set. If we estimate the transition model

and expert policy from samples, we refer to the recovered feasible set

R
B̂
= RM̂∪π̂E in contrast to the exact feasible set RB = RM∪πE .

Now, we can formalize the goal of Active IRL as finding an explo-

ration strategy that satisfies the following PAC optimality criterion.
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Definition 4.2.2 (Optimality Criterion). Let RB be the exact feasible

set and R
B̂

be the feasible set recovered after observing n ≥ 0

samples collected from M and πE. We say that an algorithm for

Active IRL is (ϵ, δ, n)-correct if after n iterations with probability at

least 1− δ it holds that:

inf
r̂∈R

B̂

sup
π̂∗∈Π∗M̂∪r̂

max
a

∣∣∣Qπ∗,0
M∪r(s0, a)−Qπ̂∗,0

M∪r(s0, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗M∪r

max
a

∣∣∣Qπ∗,0
M∪r(s0, a)−Qπ̂∗,0

M∪r(s0, a)
∣∣∣ ≤ ϵ for each r̂ ∈ R

B̂
,

where π∗ is an optimal policy inM∪ r and π̂∗ is an optimal policy

in M̂ ∪ r̂.

The first condition states that for each reward in the exact feasible

set, the best reward we could estimate in the recovered feasible set

has a low error everywhere. This condition is a type of “recall”: every

possible true reward function must be captured by the recovered

feasible set. The second condition ensures that there is a possible

true reward function with a low error for every possible recovered

reward function. This avoids an unnecessarily large recovered feasible

set. This condition is a type of “precision”: if we recover a reward

function, it has to be close to a possible true reward function. Note

that Metelli et al. [72] consider a similar optimality criterion in their

Definition 5.1. However, they consider a known target environment;

hence, our Definition 4.2.2 is a stronger requirement.

4.2.2 Feasible Rewards in Finite-Horizon MDPs

Ng and Russell [46] characterize the feasible reward set implicitly in

the infinite-horizon setting, whereas Metelli et al. [72] characterize

it explicitly. In this section, we provide similar results for a finite

horizon. Appendix B.1 contains full proofs of all results.

Lemma 4.2.1 (Feasible Reward Set Implicit). A reward function r

is feasible if and only if for all s, a, h it holds that: Aπ,h
M∪r(s, a) = 0
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if πE
h (a|s) ≥ 0 and Aπ,h

M∪r(s, a) ≤ 0 if πE
h (a|s) = 0. Moreover, if the

second inequality is strict, πE is uniquely optimal, i.e., Π∗M∪r = {πE}.

Lemma 4.2.2 (Feasible Reward Set Explicit). A reward function r

is feasible if and only if there exists an {Ah ∈ R
|S|×|A|
≥0 }h∈[H] and

{Vh ∈ R
|S|}h∈[H] such that for all s, a, h it holds that:

rh(s, a) = −Ah(s, a)✶{πE
h (a|s)=0} + Vh(s) + ∑

s′
P(s′|s, a)Vh+1(s

′)

Here, the first term ensures there is an advantage function for

πE, and it is 0 for actions the expert takes and Ah(s, a) for actions

the expert does not take. The second term corresponds to reward-

shaping by the value function.

4.2.3 Error Propagation

Next, we study the error propagation of estimating the transition

model P with P̂ and the expert policy πE with π̂E. In particular,

we bound the estimation error on the reward as a function of the

estimation errors of P̂ and π̂E, extending a result by Metelli et al. [72]

to the finite-horizon setting.

Theorem 4.2.1 (Error Propagation). Let (M, πE) and (M̂, π̂E) be two

IRL problems. Then, for any r ∈ R(M,πE) there exists r̂ ∈ R̂(M̂,π̂E)
such that:

|rh(s, a)− r̂h(s, a)| ≤Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|
+∑

s′
Vh+1(s

′)|P(s′|s, a)− P̂(s′|s, a)|

and we can bound Vh ≤ (H − h)rmax and Ah ≤ (H − h)rmax.

It provides a bound on the distance between each reward function

in the real feasible reward set RB to the closest one in the estimated

one R
B̂

. The error depends on the two estimated components and
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this is reflected as the sum of two terms, one depending on the

estimation of the expert policy and the other of the transition model.

In IRL, we cannot hope to recover the expert’s reward function

perfectly. Instead, we aim to estimate a reward function that leads to

an optimal policy with performance close to the expert’s policy under

the (unknown) true reward function. For example, suppose a specific

state s is difficult to reach in the environment. In that case, the error

on the reward function r(s, ·) will not impact the performance of

the induced policy much. Formally, we are interested in studying

the error propagation to the optimal value function. The following

lemma will be crucial for analyzing this.

Lemma 4.2.3. LetM be an MDP \ R, r, r̂ two reward functions with

optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)

≤
H

∑
h′=h

∑
s′,a′

(
µh,h′
M,π∗(s

′, a′|s, a)− µh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s
′, a′)− r̂h′(s

′, a′)
)

By combining this with Theorem 4.2.1, we can decompose the error

in the value function and Q-function into the error in estimating the

transition model and the error in estimating the expert policy.

4.3 uniform sampling with a generative model

As a warmup, let us first study the sample complexity of a simple

uniform sampling strategy with access to the generative model ofM.

We assume we can query a generative model about a state-action

pair (s, a) to receive a next state s′ ∼ P(·|s, a) and an expert action

aE ∼ πE(·|s). This setting allows us to introduce key ideas and serves

as a baseline to compare later results to. We adapt the infinite-horizon

results by Metelli et al. [72] to the finite-horizon setting and our

stronger PAC requirement in Definition 4.2.2. We first discuss how

we can estimate the transition model and the policy (Section 4.3.1)
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before analyzing the sample complexity of the uniform sampling

strategy (Section 4.3.2).

4.3.1 Estimating Transition Model and Expert Policy

In each iteration k, let nh
k(s, a, s′) be the number of times we ob-

served the transitions (s, a, s) at time h up to iteration k. Also, we

define nh
k(s, a) = ∑s′ n

h
k(s, a, s′), and nh

k(s) = ∑a nh
k(s, a). Then we can

estimate the transition model and expert policy by

P̂k(s
′|s, a) =

∑
H
h=1 nh

k(s, a, s′)

max(1, ∑
H
h=1 nh

k(s, a))
π̂E

k,h(a|s) = nh
k(s, a)

max(1, nh
k(s))

.

In Appendix B.1.3, we derive Hoeffding’s confidence intervals for

the transition model and the expert policy. Combining these with

Theorem 4.2.1, we can compute the uncertainty on the recovered

reward as:

Ch
k (s, a) = (H − h)rmax min

(
1, 2

√
2ℓh

k(s, a)

nh
k(s, a)

)
,

where ℓh
k(s, a) = log

(
24|S||A|H(nh

k(s, a))2/δ
)
. We can show that for

any pair of reward functions r ∈ RB and r̂ ∈ R
B̂

, the difference

|rh(s, a)− r̂k,h(s, a)| ≤ Ch
k (s, a) (see Appendix B.1). This uncertainty

estimate will be a key component of our theoretical analysis.

4.3.2 Uniform Sampling Strategy

In each iteration k, the uniform sampling strategy allocates nmax sam-

ples uniformly over [H]×S ×A. It estimates the reward uncertainty

and stops as soon as H maxh,s,a Ch
k (s, a) ≤ ϵ. The following theorem

characterizes the sample complexity of uniform sampling with a

generative model.
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Theorem 4.3.1 (Sample Complexity of Uniform Sampling IRL). The

uniform sampling strategy fulfills Definition 4.2.2 with a number of

samples upper bounded by:

n ≤ Õ
(

H5r2
max|S||A|/ϵ2

)
,

where Õ suppresses logarithmic terms.

This sample complexity bound appears slightly worse than the

one in Metelli et al. [72], who find (1− γ)−4 which would translate

to H4 in our finite-horizon setting. The discrepancy, however, is due

to us considering reward functions that can depend on the timestep

h. If we assume the reward function does not depend on h, we gain

a factor of H, obtaining the same result as Metelli et al. [72].

4.4 active exploration for irl

Let us now turn to our original problem: recovering the expert’s

reward function in an unknown environment without a generative

model. This problem is more challenging since we need to create

an exploration strategy to acquire the desired information about the

environment. We now propose a novel sample-efficient exploration

algorithm for IRL that we call Active Exploration for Inverse Reinforce-

ment Learning (AceIRL). The algorithm takes inspiration from recent

works on (reward-free) exploration in RL [85, 86]. We divide the

explanation of the algorithm into two parts. First, we introduce a

simplified version of the algorithm, which comes with a problem

independent sample complexity result (Section 4.4.1). Next, we intro-

duce the full algorithm, which considers the expected reduction of

uncertainty in the next iteration to improve exploration and main-

tains a confidence set of plausibly optimal policies to focus on the

most relevant regions (Section 4.4.2). The full algorithm provides a

tighter, problem-dependent sample complexity bound (Section 4.4.3).

Algorithm 3 contains pseudo-code for AceIRL, and Appendix B.1 con-

tains the detailed theoretical analysis, including proofs of all results

discussed here.
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4.4.1 Uncertainty-Based Exploration for IRL

The first idea of AceIRL is similar to reward-free UCRL [85]. Our

goal is to fulfill the PAC requirement in Definition 4.2.2. Hence,

we start from an upper bound on the estimation error between the

performance of the optimal policy π̂∗ for a reward r̂ ∈ R
B̂

in the

recovered feasible set and the optimal policy π∗ for a reward function

r ∈ RB in the true MDPM. We will then use this upper bound to

drive the exploration. For each timestep h and iteration k, we define

the error:

êh
k(s, a; π∗, π̂∗) =

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣. (4.1)

We can define an upper bound on these errors recursively with

CH
k (s, a) = 0 and

Eh
k (s, a) = min

(
(H− h)rmax, Ch

k (s, a) +∑
s′

P̂(s′|s, a)max
a′∈A

Eh+1
k (s′, a′)

)
.

(EB1)

It is straightforward to show that êh
k(s, a; π∗, π̂∗) ≤ Eh

k (s, a) for any

two policies π∗, π̂∗. Using this error bound, we can introduce a

simplified version of AceIRL that explores greedily w.r.t. Eh
k (s, a). We

call this algorithm “AceIRL Greedy”. Note that this is equivalent to

solving the RL problem defined byM∪ Ch
k ; hence, we can use any

RL solver to find the exploration policy in practice. If we explore

with this greedy policy, we can stop if:

4 max
a

E0
k(s0, a) ≤ ϵ. (SP1)

We can show that when this stopping condition holds, the solution

fulfills the PAC requirement 4.2.2. Furthermore, we show in Ap-

pendix B.1.4 that AceIRL Greedy achieves a sample complexity on

order Õ
(

H5r2
max|S||A|/ϵ2

)
, which matches the sample complexity

of uniform sampling with a generative model. This is already a strong

result implying that we do not need a generative model to achieve

a good sample complexity for IRL. However, we can improve the

algorithm further.
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Algorithm 3 AceIRL algorithm for IRL in an unknown environment.

Require: significance δ ∈ (0, 1), target accuracy ϵ,

1: IRL algorithm A , number of episodes NE

2: Initialize k← 0, ϵ0 ← H/10

3: while ϵk > ϵ/4 do

4: Solve (convex) optimization problem (ACE) to obtain πk

5: Explore with policy πk for NE episodes

6: During exploration, observe transitions and expert actions

7: k← k + 1

8: Update P̂k, π̂k, Ch
k , and r̂k ← A (R

B̂
)

9: Update accuracy ϵk ← maxa Ê0
k(s0, a)

10: return estimated reward function r̂k

4.4.2 Adaptive Exploration

AceIRL Greedy is limited in two ways: (i) it explores states that

have high uncertainty so far, whereas our goal is to reduce future

uncertainty, and (ii) it explores to reduce the uncertainty about all

policies, whereas our goal is to reduce the uncertainty primarily

about plausibly optimal policies. To address these limitations, we

propose two modifications that yield the full AceIRL algorithm.

reducing future uncertainty. The greedy policy w.r.t. Eh
k

explores states where the estimation error on the Q-functions is large.

However, note that this is not exactly what we want, namely, to

reduce the uncertainty the most. In particular, if we explore for more

than one episode before updating the exploration policy, we should

choose an exploration policy that considers how the uncertainty will

reduce during exploration. Ideally, we would explore with a policy

that minimizes Eh
k+1. However, we cannot compute this quantity

exactly. Instead, we can approximate it using our current estimate of
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the transition model. Concretely, if we have an exploration policy π,

we can estimate the reward uncertainty at the next iteration as:

Ĉh
k+1(s, a) = (H − h)rmax min

(
1, 2

√
2ℓh

k(s, a)

nh
k(s, a) + n̂h

π(s, a)

)
,

where n̂h
π(s, a) = NE · µ0,h

M,π(s, a|s0) is the expected number of times

π visits (s, a) at time h and NE is the number of episodes we will

explore with π. We can use this estimate to find a policy that mini-

mizes our estimate of Eh+1
k . While our original approach was akin

to “uncertainty sampling”, we now have a better way to measure

the “informativeness” of choosing an exploration policy. This is a

common pattern when designing query strategies in active learning

[21]. Note that this argument does not rely on the IRL problem and

can be used to independently improve algorithms for reward-free

exploration (cf. Section 4.6).

focusing on plausibly optimal policies . By exploring

greedily w.r.t. Eh
k , we reduce the estimation error of all policies.

However, we are primarily interested in estimating the distance

between policies π∗ ∈ Π∗M∪r and π̂∗ ∈ Π∗M∪r̂ with r ∈ RB and

r̂ ∈ R
B̂

. Of course, we do not know these sets, so we cannot use them

directly to target the exploration. Instead, assume we can construct a

set of plausibly optimal policies Π̂k that contains all π∗ and π̂∗k with

high probability. Then, we can redefine our upper bounds recursively

as ÊH
k (s, a) = 0 and:

Êh
k (s, a) = min

(
(H − h)rmax,

Ch
k (s, a) + ∑

s′
P̂(s′|s, a) max

π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)
,

(EB2)

In contrast to (EB1), we maximize over policies in Π̂k rather than

all actions. Acting greedily w.r.t. Êh
k (s, a) is equivalent to finding

the optimal policy πk ∈ Π̂k for the RL problem defined by M∪
Ch

k . We use an arbitrary IRL algorithm A to construct the set of
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plausibly optimal policies. We only assume that A will return a

reward function r̂k ∈ RB̂
. Then, we can construct a set of plausibly

optimal policies as Π̂k = {π|V∗,M̂∪r̂k
(s0) − Vπ,

M̂∪r̂k
(s0) ≤ 10ϵk}. We

show in Appendix B.1.5 that Π̂k contains both π∗ and π̂∗k with high

probability. This choice is based on ideas by Zanette et al. [87].

We can define a stopping condition analogously to (SP1):

4 max
a

Ê0
k(s0, a) ≤ ϵ. (SP2)

Again, we can prove that if the algorithms stops due to (SP2), then

R
B̂

respects Definition 4.2.2.

implementing aceirl . To implement the full algorithm, we

need to solve an optimization problem:

πk ∈ argmin
π

max
π̂∈Π̂k−1

Ê0
k+1(s0, π̂(s0)) (ACE)

The solution to this problem is the exploration policy that minimizes

the uncertainty at the next iteration about plausibly optimal policies.

This combines both modifications we just discussed. This problem

might seem difficult to solve at first, but, perhaps surprisingly, it

can be formulated as a convex optimization problem solvable with

standard techniques (cf. Appendix B.1.6).

4.4.3 Sample Complexity of AceIRL

In this section, we present our main result about the sample com-

plexity of AceIRL. The result is problem-dependent and, in particular,

depends on the advantage function A∗,hM∪r(s, a), where r is the reward

function in the exact feasible set RB closest to the reward function

r̂k which belongs to the estimated feasible set R
B̂

. The advantage

function A∗,hM∪r(s, a) acts similarly to a suboptimality gap: the closer

the value of the second best action is to the best action, the harder it

is to identify the best action and infer the correct reward function.
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Theorem 4.4.1. [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ,

n)-correct solution with

n ≤ Õ
(

min

[
H5r2

max|S||A|
ϵ2

,
H4r2

max|S||A|ϵ2
τ−1

mins,a,h(A∗,hM∪r(s, a))2ϵ2

])

where ϵτ−1 depends on the choice of NE, the number of episodes of

exploration in each iteration. A∗,hM∪r(s, a) is the advantage function

of r ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)), the reward function

from the feasible set RB closest to the estimated reward function r̂k.

This result is a minimum of two terms. The first term is problem

independent, and it is achieved both by AceIRL Greedy and the full

AceIRL. This bound matches the bound we saw previously with a

generative model. Hence, AceIRL achieves the same results without

access to the generative model. Using (ACE) can yield a better sample

complexity, represented by the second term in the minimum. This

bound depends on two main components: the ratio ϵτ−1/ϵ and the

advantage function A∗,hM∪r(s, a). The ratio depends on the choice of

NE, the number of exploration episodes per iteration. If NE is small,

then the ϵ-ratio will also be small. If NE is large, the algorithm will

perform similarly to a uniform sampling strategy. Appendix B.1.5

provides the full proof of this theorem.

4.5 experiments

We perform a series of simulation experiments to evaluate AceIRL.

We simulate a (deterministic) expert policy using an underlying true

reward function and compare it to the recovered reward functions.

Our main evaluation metric is the normalized regret:

Vπ∗,0
M∪r(s0)−Vπ̂∗,0

M∪r(s0)

Vπ∗,0
M∪r(s0)−Vπ̄∗,0

M∪r(s0)
,

where π∗ is the optimal policy for M∪ r, π̂∗ is the optimal policy

for M̂ ∪ r̂, and π̄∗ is the worst possible policy for r, i.e., the optimal

policy forM∪ (−r).
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Figure 4.2: Normalized regret (lower is better) of the policy optimized for
the inferred reward in the estimated MDP as a function of the
number of samples. The plots show mean and 95% confidence
intervals computed using 50 random seeds (NE = 50).

We introduce the Four Paths environment shown in Figure 4.1,

which consists of four chains of states with different randomly sam-

pled transition probabilities. One path has a goal with reward 1;

all other rewards are 0. We also evaluate on Random MDPs with

uniformly sampled transition dynamics and reward functions, the

Double Chain environment proposed by Kaufmann et al. [85], and the

Chain and Gridworld environments proposed by Metelli et al. [72]. Ap-

pendix B.2.1 provides details on the transition dynamics and rewards

of all environments.

We compare AceIRL and AceIRL Greedy to a uniformly random ex-

ploration policy as a naive exploration strategy. Further, we consider

uniform sampling with a generative model and TRAVEL [72], which

can be more sample efficient because they do not need to explore

the environment. Note that TRAVEL is designed to learn a reward

to be transferred to a known target environment. Instead, we use a

modified version that uses the estimated MDP as a target.
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Table 4.1 shows the sample efficiency of all algorithms in all envi-

ronments, measured as the number of samples needed to achieve a

regret threshold of 0.4 (different thresholds yield similar conclusions;

see Appendix B.2). AceIRL is the most sample efficient exploration

strategy without access to a generative model, but the relative dif-

ferences between the methods depend on the environment. In some

cases, AceIRL even performs comparably to methods using a genera-

tive model, as the theory predicts.

In the Four Paths and Double Chain environments, we also vary the

NE parameter. AceIRL performs better for small values at the compu-

tational cost of updating the exploration policy more often. If NE is

too large, using AceIRL can be as bad as a uniformly random explo-

ration policy. Increasing NE hurts the performance of AceIRL Greedy

more severely, which does not consider NE explicitly. Figure 4.2

shows the normalized regret as a function of the number of samples

in Four Paths and Double Chain. In both cases AceIRL performs best.

However, AceIRL Greedy is worse than random exploration in the

Four Paths environment. Hence, we find that the problem dependent

exploration strategy of the full algorithm significantly improves the

sample efficiency.

4.6 connection to reward-free exploration

In the reward-free exploration problem, introduced by Jin et al. [88],

the agent explores an MDP \ R to learn a transition model. In each

iteration, the agent chooses a new exploration policy based on pre-

vious data. The goal is to ensure that if the agent is given a reward

function r after the exploration phase, it can find a good policy using

its transition model. Jin et al. [88] formalize this goal as reducing the

error:

Vπ∗,0
M∪r(s0)−Vπ̂∗,0

M∪r,

where π̂∗ is the optimal policy in the estimated MDP M̂∪ r. Note the

striking similarity between this problem and our active IRL problem.

In active IRL we want to reduce a similar error (Definition 4.2.2), but
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Four Paths (Figure 4.1) 1900± 71 17840± 1886

– NE = 50 1560± 76 24180± 1747 10780 ± 1369

– NE = 100 2000± 0 32760± 2172 14080± 1603

– NE = 200 4000± 0 52000± 4057 16160± 2033

Double Chain

[85]
1980± 66 23640± 2195

– NE = 50 1120± 46 16240± 842 11580 ± 870

– NE = 100 2000± 0 22200± 1329 15440± 1031

– NE = 200 4000± 0 37200± 1664 20400± 1629

Metelli et al. [72]:

Random MDPs (NE = 1) 22± 1 27± 1 22 ± 1 23± 1 21 ± 1

Chain (NE = 1) 78± 2 76± 4 161± 8 153± 8 142 ± 9

Gridworld (NE = 1) 43± 2 35± 2 45 ± 2 46 ± 3 48 ± 2

Table 4.1: Sample complexity of AceIRL compared to random exploration and methods that use a generative
model. We show the number of samples necessary to find a policy with normalized regret of less
than 0.4. We report the means and standard errors computed over 50 random seeds each. For each
environment, we highlight in bold the method that achieves the best performance without access to
a generative model. If multiple methods are within one standard error distance, we highlight all
of them. Overall, AceIRL is the most sample efficient method without a generative model if NE is
chosen small enough. In Appendix B.2.2, we show learning curves for all individual experiments.
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we have additional information about the reward in the form of the

expert policy.

The Reward-free UCRL algorithm, proposed by Kaufmann et al.

[85], is similar to AceIRL Greedy (Section 4.4.1). Reward-free UCRL

explores greedily w.r.t. an upper bound on the value function error.

However, the exploration policy needs to be updated after each

episode to adapt to the new uncertainty estimates. This might be

expensive or not possible in practice. Instead, we could consider a

batched version of reward-free exploration, where the agent explores

for NE episodes in each iteration, similar to our active IRL problem. In

this setting, a greedy policy w.r.t. uncertainty is suboptimal because

it does not adapt to the reduced uncertainty over the NE episodes.

Instead, we can consider reducing the expected uncertainty at the

next iteration, similar to our discussion in Section 4.4.2. If our error

estimate is denoted by Ek(s, a), we no longer act greedily w.r.t. Ek.

Instead, we try to estimate the error at the next iteration Êk+1(s, a|π)

as a function of the policy and try to select the policy that reduces

this error. In the tabular case, we can formulate this as a convex

optimization problem, analogous to Appendix B.1.6. We call this

adaptation of AceIRL to the reward-free exploration problem Ace-RF.

Figure 4.3 shows illustrative results of this algorithm in the batched

reward-free exploration setting in the Double Chain environment.

We find that choosing an exploration policy that reduces future

uncertainty is significantly better for larger batch sizes than reward-

free UCRL.

4.7 conclusion

We considered active Inverse Reinforcement Learning (IRL) with

unknown transition dynamics and expert policy and introduced

AceIRL, an efficient exploration strategy to learn about both the

dynamics and the expert policy with the goal of inferring the reward

function as efficiently as possible.
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Figure 4.3: Illustrative experiments for reward-free exploration in the
Double Chain environment proposed by Kaufmann et al. [85].
The difference to our active IRL setting is that the agent does
not have access to the expert policy during exploration but
still tries to learn a good model of the environment. During
testing, it then gets access to the reward function, and the
regret measures the suboptimality of the policy trained in
the agent’s transition model. We find that the ideas used in
AceIRL are also useful for batched reward-free exploration
with large NE.
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Our approach is a crucial step towards IRL algorithms with the-

oretical guarantees, but future work is needed to move to more

practical settings. In particular, it would be interesting to extend the

approach to continuous state and action spaces (e.g., using function

approximation) and to obtain an efficient algorithm that does not

require solving convex optimization problems. From a theoretical

perspective, it would be useful to derive a lower bound on the sample

complexity of the IRL problem to understand if the IRL problem is

inherently more difficult than usual RL.

While this chapter focused on IRL and formal analysis of the

sample complexity, the ideas we used when designing AceIRL are

similar to those we encountered in Chapter 3. Both IDRL and AceIRL

determine a set of plausibly optimal policies and then try to reduce

the uncertainty about the difference in policy returns. This suggests

that future work could use similar ideas to scale up AceIRL to more

practical settings or even combine both approaches to develop an

active learning algorithm that explores the environment first and then

selects the most informative experiences to ask for human feedback.
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5
L E A R N I N G C O N S T R A I N T S F R O M

D E M O N S T R AT I O N S W I T H O U T R E WA R D S

So far, we studied learning reward models from human feedback.

In the second part of this dissertation, we propose constraints as an

alternative representation of human preferences.

Constrained Markov Decision Problems (CMDPs; [37]) integrate

safety constraints with Reinforcement Learning (RL). However, simi-

lar to reward functions, it can be difficult to specify constraint func-

tions manually. To tackle this issue, recent work proposes learning

models of the constraints (e.g., [89, 90]) analogously to reward mod-

els [44]. However, existing approaches to constraint inference rely on

demonstrations with known reward functions, which is often unrealistic

in real-world applications.

For instance, consider the domain of autonomous driving (Fig-

ure 5.1), where specifying rewards/constraints is particularly dif-

ficult [11]. We can gather diverse human driving trajectories that

satisfy shared constraints, such as keeping an appropriate distance

to other cars and avoiding crashes. But the trajectories will usually

have different (unknown) routes or driving style preferences, which

we can model as different reward functions. In such scenarios, we

aim to infer constraints from demonstrations with shared constraints

but unknown rewards.

This example motivates the problem setting we study in this chap-

ter. In particular:

• We introduce the problem of inferring constraints in CMDPs

from demonstrations with unknown rewards (Section 5.2.1).

• We introduce Convex Constraint Learning for Reinforcement Learn-

ing (CoCoRL), to address this problem (Section 5.3)

87
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Figure 5.1: Illustrative example of constraint learning for autonomous
driving. CoCoRL can learn safe driving behavior from diverse
driving trajectories with different unknown goals. It infers
constraints c1, c2, c3 describing desirable driving behavior
from demonstrations without knowledge of the specific re-
ward functions r1, r2. These inferred constraints allow to opti-
mize for a new reward function reval, ensuring safe driving
behavior even in new situations without demonstrations.

• We prove that CoCoRL guarantees safety (Section 5.3.1), and,

for (approximately) optimal demonstrations, also guarantees

asymptotic optimality (Section 5.3.2), while IRL provably can-

not guarantee safety (Section 5.2.2).

• We conduct a comprehensive empirical evaluation of CoCoRL

in tabular environments and a continuous driving task with

multiple constraints (Section 6.3). We find that CoCoRL learns

constraints that lead to safe driving behavior and that can be

transferred across different tasks and environments, whereas

IRL-based methods often perform poorly.

The contents of this chapter are based on:

D. Lindner, X. Chen, S. Tschiatschek, K. Hofmann, and A. Krause,

“Learning safety constraints from demonstrations with unknown

rewards”, arXiv preprint arXiv:2305.16147, 2023.
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5.1 related work

constraint learning in rl . Previous work on safe RL typ-

ically assumes fully known safety constraints (e.g., see the review

by Garcıa and Fernández [91]). Recently, there has been a line of

research on constraint learning to address this limitation. Scobee

and Sastry [89] and Stocking et al. [92] use maximum likelihood

estimation to learn constraints from demonstrations with known

rewards in tabular and continuous environments, respectively. Malik

et al. [90] propose a scalable algorithm based on maximum entropy

IRL, and extensions to using maximum causal entropy have been

explored [93–95]. Papadimitriou et al. [96] adapt Bayesian IRL to

learning constraints via a Lagrangian formulation. However, all of

these approaches assume knowledge of the demonstrations’ reward

functions. Chou et al. [97] use a mixed-integer linear program based

on the Karush–Kuhn–Tucker (KKT) conditions to infer constraints

from safe demonstrations. Their method allows for parametric un-

certainty on the rewards, but it requires fully known environment

dynamics and is not applicable to general CMDPs.

multi-task irl . Multi-task IRL addresses the problem of learn-

ing from demonstrations in different but related tasks. Some methods

reduce multi-task IRL to multiple single-task IRL problems [98, 99],

but they do not fully leverage the similarity between demonstrations.

Others treat multi-task IRL as a meta-learning problem, focusing

on quickly adapting to new tasks [100–103]. However, IRL-based

methods are difficult to adapt to CMDPs where safety is crucial.

learning constraints for driving behavior . In the do-

main of autonomous driving, inferring constraints from demonstra-

tions has attracted significant attention due to safety concerns. Rezaee

and Yadmellat [104] extend the method by Scobee and Sastry [89]

with a VAE-based gradient descent optimization to learn driving con-

straints. Liu et al. [105] propose a benchmark for constraint inference

with known rewards based on the highD dataset, which provides
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highway driving trajectories [106]. Gaurav et al. [107] also evaluate

their method for learning constraints on the highD dataset. However,

these approaches, again, assume known reward functions, which is

often unrealistic beyond basic highway driving scenarios.

bandits & learning theory. Our approach draws inspiration

from constraint inference in other fields. For instance, learning safety

constraints has been studied in best-arm identification in linear ban-

dits [108]. Our problem is also related to one-class classification (e.g.,

[109]), the study of random polytopes (e.g., [110]), and PAC-learning

of convex polytopes (e.g., [111]). However, none of these methods

are directly applicable to the structure of our problem.

5.2 inferring constraints with unknown rewards

In this section, we introduce the problem of inferring constraints from

demonstrations in a CMDP. Then, we discuss why naive solutions

based on IRL cannot solve this problem.

5.2.1 Problem Setup

We consider an infinite-horizon discounted CMDP without reward

function and cost functions, denoted by (S ,A, P, µ0, γ). We have ac-

cess to demonstrations from k safe policies D = {π∗1 , . . . , π∗k}, that

have k unknown reward functions r1, . . . , rk, but share the same con-

straints defined by unknown cost functions c1, . . . , cn and thresholds

ξ1, . . . , ξn. We assume policy π∗i is safe in the CMDP (S ,A, P, µ0, γ, ri,

{cj}n
j=1, {ξ j}n

j=1). Generally, we assume policy π∗i belongs to reward

ri, but it does not need to be optimal.

In our driving example (Figure 5.1), the rewards of the demon-

strations can correspond to different routes and driver preferences,

whereas the shared constraints describe driving rules and safety-

critical behaviors, such as maintaining an appropriate distance to

other cars or staying in the correct lane.
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We assume that reward and cost functions are defined on a d-

dimensional feature space, represented by f : S × A → [0, 1]d. In-

stead of having full policies, we have access to their discounted fea-

ture expectations (slightly overloading notation) defined as f(π) =

EP,π[∑
∞
t=0 γtf(st, at)]. The reward and cost functions linear in the

feature space, given by ri(s, a) = θT
i f(s, a) and cj(s, a) = ϕT

j f(s, a),

where θi ∈ R
d and ϕj ∈ R

d are the respective parameter vectors.

For now, we assume we know the exact feature expectations of the

demonstrations. In Section 5.3.3, we discuss sample-based estimation.

Importantly, in the case of a finite state and action space, assum-

ing a feature space is w.l.o.g., because we can use the state-action

occupancy measure µπ(s, a) as features (as we did in Chapter 3).

Specifically, we can define f(s, a) = (✶{s=s1,a1},✶{s=s1,a2}, . . . ) as an

indicator vector with dimension d = |S||A|. Then, f(π) ∈ R
|S||A| is

a vector that contains the state-action occupancy values µπ, and we

have Gr(π) = θTf(π) = ∑s,a r(s, a)µπ(s, a), i.e., the reward parame-

ter θ is a vector of the state-action rewards. Similarly, the constraint

parameters ϕj are vectors of state-action costs cj.

For evaluation, we receive a new reward function reval and aim

to find an optimal policy for the CMDP (S ,A, P, µ0, γ, reval, {cj}n
j=1,

{ξ j}n
j=1) where the constraints are unknown. Our goal is to ensure

safety while achieving a good reward under reval.

5.2.2 Limitation of IRL in CMDPs

Initially, we might disregard the CMDP nature of the problem and

try to apply standard IRL methods to infer a reward from demonstra-

tions. This approach poses at least two key problems: (1) IRL cannot

guarantee safety, and (2) it is unclear how to learn a transferable

representation of the constraints.

To elaborate, let us first assume we have a single expert demon-

stration from a CMDP and apply IRL to infer a reward function,

assuming no constraints. Unfortunately, we can show that, in some
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CMDPs, all reward functions obtained through IRL can yield unsafe

optimal policies.

Proposition 5.2.1 (IRL can be unsafe). There are CMDPs C = (S ,A, P,

µ0, γ, r, {cj}n
j=1, {ξ j}n

j=1) such that for any optimal policy π∗ in C and

any reward function rIRL that could be returned by an IRL algorithm,

the resulting MDP (S ,A, P, µ0, γ, rIRL) has optimal policies that are

unsafe in C.

This follows because CMDPs can have only stochastic optimal

policies, whereas MDPs always have a deterministic optimal policy

[33, 37]. See Appendix C.1 for a full proof of this and other theoretical

results in this chapter.

Furthermore, even if we manage to learn a reward function that

represents the constraints, it remains unclear how to transfer it to

a new task represented by the reward function reval. One potential

approach is to model the constraints as a shared reward penalty.

Unfortunately, it turns out that learning this shared penalty can be

infeasible, even when the rewards are known.

Proposition 5.2.2. Let C = (S ,A, P, µ0, γ, {cj}n
j=1, {ξ j}n

j=1) be a CMDP

without reward. Let r1, r2 be two reward functions and π∗1 and

π∗2 corresponding optimal policies in C ∪ {r1} and C ∪ {r2}. Let

M = (S ,A, P, µ0, γ) be the corresponding MDP without reward.

Without additional assumptions, we cannot guarantee the existence

of a function ĉ : S × A → R such that π∗1 is optimal in the MDP

M∪{r1 + ĉ} and π∗2 is optimal in the MDPM∪{r2 + ĉ}.

Similar to Proposition 5.2.1, this result stems from the fundamental

difference between MDPs and CMDPs. The main challenge is to ap-

propriately scale the reward penalty ĉ for a specific reward function.

While it is always possible to find a suitable ĉ to describe a single

expert policy with a single known reward function, the situation

becomes more complex when dealing with multiple expert policies

π∗1 , π∗2 and reward functions r1, r2. In such cases, differently scaled

penalties may be required, and the problem of learning a shared ĉ
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can be infeasible. These findings strongly suggest that IRL is not suit-

able for learning from demonstrations from a CMDP. Our empirical

findings in Section 6.3 confirm this.

5.3 convex constraint learning for rl

We are now ready to introduce the CoCoRL algorithm. We construct

the full algorithm step-by-step: (1) we introduce the key idea of using

convexity to construct provably conservative safe set (Section 5.3.1);

(2) we establish convergence results under (approximately) optimal

demonstrations (Section 5.3.2); (3) we introduce approaches for using

estimated feature expectations (Section 5.3.3); and, (4), we discuss

practical considerations for implementing CoCoRL (Section 5.3.4).

Importantly, when constructing the conservative safe set, we only

require access to safe demonstrations. For convergence, we make

certain optimality assumptions, either exact optimality or Boltzmann-

rationality. Appendix C.1 contains all omitted proofs.

5.3.1 Constructing a Convex Safe Set

Let the true safe set F = {π|∀j : Jj(π) ≤ ξ j} be the set of all policies

that satisfy the constraints. CoCoRL is based on the key observation

that F is convex.

Lemma 5.3.1. For any CMDP, suppose π1, π2 ∈ F = {π|∀j : Jj(π) ≤
ξ j}, and let π̄12 be a policy such that f(π̄12) = λf(π1) + (1− λ)f(π2)

with λ ∈ [0, 1]. Then π̄12 ∈ F .

Proof. π1, π2 ∈ F means for any j, we have Jj(π1) ≤ ξ j and Jj(π2) ≤
ξ j. Then, also for any j, we have Jj(π̄12) = ϕT

j f(π̄12) = λϕT
j f(π1) +

(1− λ)ϕT
j f(π2) ≤ ξ j. Thus, π̄12 ∈ F .

We know that all demonstrations are safe in the original CMDP

and convex combinations of their feature expectations are safe. This

insight leads us to a natural approach for constructing a conservative
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safe set: create the convex hull of the feature expectations of the

demonstrations, i.e.,

S = conv(D) := {x =
k

∑
i=1

λif(π
∗
i )|λi ≥ 0 and ∑

i

λi = 1}.

To simplify notation, we will sometimes write π ∈ S to mean f(π) ∈
S. As f is fixed, this notation is unambiguous. Thanks to the convexity

of F , we can now guarantee safety for all policies π ∈ S.

Theorem 5.3.1 (Estimated safe set). Any policy π ∈ S is safe, i.e., we

have π ∈ F .

Proof. Our demonstrations π∗1 , . . . , π∗k are all in the true safe set F ,

and any π ∈ S is a convex combination of them. Given that F is

convex (Lemma 5.3.1), we have S ⊆ F .

During evaluation, we are given a new reward reval, and we want

to find π∗ ∈ argmaxπ∈S Greval
(π). Conveniently, we can reduce this

problem to solving a new CMDP with identical dynamics. Specifically,

we can find a set of linear cost functions parameterized by ϕ̂1, . . . , ϕ̂m

and thresholds ξ̂1, . . . , ξ̂m, such that S = {x|ϕ̂T
j x ≤ ξ̂ j for all j}. This

result follows from standard convex analysis: S is a convex polyhe-

dron, which is the solution to a set of linear equations. Constructing a

convex hull from a set of points and identifying the linear equations

is a well-studied problem in polyhedral combinatorics (e.g., [112]).

Consequently, we can optimize within our safe set S by identifying

and solving an “inferred” CMDP.

Theorem 5.3.2 (Inferred CMDP). We can find cost functions and

thresholds such that for any reward function reval, solving the inferred

CMDP (S ,A, P, µ0, γ, reval, {ĉj}m
j=1, {ξ̂ j}m

j=1) is equivalent to solving

π∗ ∈ argmaxπ∈S Greval
(π). Consequently, if an optimal policy for the

true CMDP is in S, solving the inferred CMDP will find an optimal

policy for the true CMDP.

Note that the number of inferred constraints m is not necessarily

equal to the number of true constraints n, but we do not assume to
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know n. It immediately follows from Theorem 5.3.2 that our safe set

is worst-case optimal because, without additional assumptions, we

cannot dismiss the possibility that the true CMDP coincides with our

inferred CMDP.

Corollary 5.3.1 (S is maximal). If π /∈ S, there exist r1, . . . , rk and

c1, . . . , cn, such that the expert policies π∗1 , . . . , π∗k are optimal in the

CMDPs (S ,A, P, µ0, γ, ri, {cj}n
j=1, {ξ j}n

j=1), but π /∈ F .

In essence, S is the largest set we can choose while ensuring safety.

5.3.2 Convergence Under (Approximate) Optimality

So far, we studied the safety of CoCoRL. In this section, we establish

its convergence to optimality under two conditions: (1) when the

safe demonstrations are exactly optimal, and (2) when they are

approximately optimal according to a Boltzmann model.

Given a new reward function reval, we focus on comparing our safe

solution maxπ∈S Gr(π) to the optimal safe solution maxπ∈F Gr(π).

In particular, we define the policy regret

R(r, S) = max
π∈F

Gr(π)−max
π∈S

Gr(π).

Let us assume the reward functions of the demonstrations and the

reward functions during evaluation follow the same distribution P(r).

After observing k demonstrations, we construct the safe set Sk, and

consider the expectation Er[R(r, Sk)] under the reward distribution.

To begin with, let us consider exactly optimal demonstrations.

Assumption 5.3.1 (Exact optimality). Each demonstration π∗i is opti-

mal in the CMDP (S ,A, P, µ0, γ, ri, {cj}j, {ξ j}j).

Theorem 5.3.3 (Convergence, exact optimality). Under Assump-

tion 5.3.1, for any δ > 0, after k ≥ log(δ/ fv(d, n))/ log(1− δ/ fv(d, n)),

we have P(R(r, Sk) > 0) ≤ δ, where fv(d, n) is an upper bound on

the number of vertices of the true safe set. In particular,

lim
k→∞

Er [R(r, Sk)] = 0.
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Due to both the true safe set and the estimated safe set being

convex polyhedra, we have a finite hypothesis class consisting of all

convex polyhedra with vertices that are a subset of the true safe set’s

vertices. The proof builds on the insight that all vertices supported by

the distribution induced by P(r) will eventually be observed, while

unsupported vertices do not contribute to the regret. The number

of vertices is typically on the order fv(d, n) ∈ O(n⌊d/2⌋). A tighter

bound is given by the McMullen upper bound theorem [113].

In practical settings, it is unrealistic to assume perfectly optimal

demonstrations. Thus, we relax this assumption and consider the

case where demonstrations are only approximately optimal.

Assumption 5.3.2 (Boltzmann-rationality). We observe demonstra-

tions following a Boltzmann policy distribution

π∗i ∼ exp (βGri
(π))✶{J1(π)≤ξ1,...,Jn(π)≤ξn}/Zi,

where Gri
(π) is the expected return computed w.r.t. the reward

function ri, and Zi is a normalization constant.

Note that Theorem 5.3.1 and Corollary 5.3.1 still hold under As-

sumption 5.3.2, as they only depend on all demonstrations being safe.

Also, we can still establish asymptotic optimality.

Theorem 5.3.4 (Convergence, Boltzmann-rationality). Under As-

sumption 5.3.2, for any δ > 0, after k ≥ log(δ/ fv(d, n))/ log(1 −
exp(−βd/(1− γ))), we have P(R(r, Sk) > 0) ≤ δ, where fv(d, n) is

an upper bound on the number of vertices of the true safe set. In

particular,

lim
k→∞

Er [R(r, Sk)] = 0.

This result relies on the Boltzmann distribution having a fixed

lower bound over the bounded set of policy features. By enumerating

the vertices of the true safe set, we can establish an upper bound on

the probability of the “bad event” where a vertex is not adequately

covered by the set of k demonstrations. This shows how the regret

must decrease as k increases.
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5.3.3 Estimating Feature Expectations

So far, we assumed access to the true feature expectations of the

demonstrations f(π∗i ). However, in practice, we often rely on sam-

ples from the environment to estimate the feature expectations. Given

ntraj samples from policy π∗i , a natural way to estimate the feature

expectations is by taking the sample mean: f̂(π∗i ) =
1

ntraj
∑

ntraj

j=1 f(τi
j ),

where f(τi
j ) = ∑

∞
t=0 γtf(st, at) and τi

j = (s0, a0, s1, a1, . . . ) represents

a trajectory from rolling out π∗i in the environment. This estimate

is unbiased, i.e., E[f̂(π∗i )] = f(π∗i ), and we can use standard con-

centration inequalities to measure its confidence. For instance, by

using McDiarmid’s inequality, we can ensure ϵ-safety when using

the estimated feature expectations.

Theorem 5.3.5 (ϵ-safety with estimated feature expectations). Sup-

pose we estimate the feature expectations of each policy π∗i using

at least ntraj > d log(nk/δ)/(2ϵ2(1 − γ)) samples, and construct

the estimated safe set Ŝ = conv(f̂(π∗1), . . . , f̂(π∗k )). Then, we have

P(maxj(Jj(π)− ξ j) > ϵ|π ∈ Ŝ) < δ.

We can extend our analysis to derive convergence bounds for

exactly optimal or Boltzmann-rational demonstrations, similar to

Theorem 5.3.3 and Theorem 5.3.4. The exact bounds are provided in

Appendix C.1.4. Importantly, we have no regret asymptotically:

lim
min(k,ntraj)→∞

Er[R(r, Sk)] = 0,

in both cases.

If we need to ensure exact safety, we can, alternatively, use confi-

dence intervals around estimated feature expectations to construct a

conservative safe set, i.e., a set Ŝ ⊂ S that still guarantees exact safety

with high probability (w.h.p.).

Suppose we have k confidence sets Ci ⊆ R
d, such that we know

f(π∗i ) ∈ Ci (w.h.p.). Now we want to construct a conservative convex

hull, i.e., a set of points in which any point certainly in the convex
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Figure 5.2: Illustration of the guaranteed hull in 2 dimensions. The gray
areas depict confidence sets C1, C2, C3, and the green area is
the conservative safe set Ŝ constructed using the guaranteed
hull. For large confidence sets, the guaranteed hull can be
empty (left); for small confidence sets, it approaches the safe
set constructed using the exact feature expectations (right).

hull of f(π∗1), . . . , f(π∗k ). In other words, we want to construct the

intersection of all possible convex hulls with points from C1, . . . , Ck:

Ŝ =
⋂

x1,...,xk∈C1×···×Ck

conv(x1, . . . , xk).

This set is sometimes called the guaranteed hull [114], or the interior

convex hull [115]. Efficient algorithms are known to construct guar-

anteed hulls in 2 or 3 dimensions if C has a simple shape, such as

a cube or a disk (e.g., see [114]). However, we need to construct a

guaranteed hull in d dimensions.

Edalat et al. [116] propose to reduce constructing a guaranteed

hull when Ci are (hyper-)rectangles to computing the intersection

of convex hulls constructed from combinations of the corners of

the rectangle. In d ≤ 3 dimensions, this is possible with O(k log k)

complexity, but in higher dimensions is requires O(k⌊d/2⌋). If we

use a concentration inequality for each coordinate independently,

e.g., by using Lemma C.1.3 with unit basis vectors, then the Ci’s are

rectangles, and we can use this approach. However, because we have

to construct many convex hulls, it can get expensive as k and d grow.

Figure 5.2 illustrates the guaranteed hull growing as the confidence

regions shrink. The guaranteed hull is a conservative estimate and

can be empty if the Ci’s are large. Hence, Ŝ might sometimes be too
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conservative, especially if we only observe a single trajectory from

each policy. In such cases, we need additional assumptions about

the environment (e.g., it is deterministic) or the demonstrations (e.g.,

every trajectory is safe) to guarantee safety in practice. Still, using a

guaranteed hull as a conservative safe set is a promising alternative

to relying on point estimates of the feature expectations.

Crucially, CoCoRL can be applied in environments with continuous

state and action spaces and nonlinear policy classes, as long as the

feature expectations can be computed or estimated.

5.3.4 Practical Implementation of CoCoRL

We can implement CoCoRL, using existing CMDP solvers and algo-

rithms for constructing convex hulls. First, we compute or estimate

the demonstrations’ feature expectations f(π∗i ). Then, we use the

Quickhull algorithm [117] to construct a convex hull. Finally, we

solve the inferred CMDP from Theorem 5.3.2 using a constrained RL

algorithm, the choice depending on the environment. We make two

further extensions to enhance the robustness of this algorithm.

handling degenerate safe sets . The demonstrations might

lie in a lower-dimensional subspace of R
d (i.e., have a rank less than

d). In that case, we project them onto this lower-dimensional subspace,

construct the convex hull in that space, and then project back the

resulting convex hull to R
d. This is beneficial because Quickhull is

not specifically designed to handle degenerate convex hulls.

incrementally expanding the safe set. If we construct

S from all demonstrations, we will have many redundant points,

which can incur numerical instabilities at the boundary of S. Instead,

we incrementally add points from D to S. In each iteration, we add

the point furthest away from S, until the distance of the furthest

point is less than a specified threshold ε. In addition to mitigating
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numerical issues, this approach reduces the number of constraints in

the inferred CMDP, making it easier to solve.

Appendix C.2 discusses both practical modifications in more detail.

Importantly, if we choose a small enough ε, these modifications do

not lose any theoretical guarantees.

5.4 experiments

We present experiments in two domains: (1) tabular environments,

where we can solve MDPs and CMDPs exactly (Section 5.4.3); and

(2) a driving simulation, where we investigate the scalability of

CoCoRL in a more complex, continuous, environment (Section 5.4.4).

Our experiments assess the safety and performance of CoCoRL and

compare it to IRL-based baselines (Section 5.4.1). In Appendix C.3,

we provide additional details about the experimental setup.

5.4.1 IRL-Based Constraint Learning Baselines

To the best of our knowledge, CoCoRL is the first algorithm that learns

constraints from demonstrations with unknown rewards. Thus it is

not immediately clear which baselines to compare it to. Neverthe-

less, we explore several IRL-based approaches that could serve as

natural starting points for solving the constraint inference problem.

Specifically, we consider the following three ways of applying IRL:

• Average IRL infers a separate reward function r̂i for each demon-

stration π∗i and averages the inferred rewards before combining

them with an evaluation reward reval + ∑i r̂i/k.

• Shared Reward IRL parameterizes the inferred rewards as r̂i + ĉ,

where ĉ is shared among all demonstrations. The parameters

for both the inferred rewards and the shared constraint penalty

are learned simultaneously.

• Known Reward IRL parameterizes the inferred reward as ri + ĉ,

where ri is known, and only a shared constraint penalty is
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learned. Note that Known Reward IRL has full access to the

demonstrations’ rewards that the other methods do not need.

Each of these approaches can be implemented with any standard

IRL algorithm. We primarily use Maximum Entropy IRL [47], but we

also test Maximum Margin IRL [46] in tabular environments, which

yields similar results.

To adapt Maximum Entropy IRL (Section 2.4.1) to our setting, we

parameterizing the reward function as r̂(s, a) = θ̂T
i f(s, a) + ϕ̂Tf(s, a).

Here θ̂i parameterizes the “reward” component for each expert policy,

and ϕ̂ parameterizes the shared “constraint” component.

Algorithm 4 shows the modified maximum entropy IRL algorithm.

Instead of doing gradient updates on a single parameter, we do

gradient updates for both θ̂i and ϕ̂ with two different learning rates

αθ and αϕ. Depending on initialization and learning rate, Algorithm 4

implements all of our IRL-based baselines:

• Average IRL: αθ > 0, αϕ = 0, θ̂0 = 0, ϕ̂0 = 0

• Shared Reward IRL: αθ > 0, αϕ > 0, θ̂0 = 0, ϕ̂0 = 0

• Known Reward IRL: αθ = 0, αϕ > 0, θ̂i = θknown
i , ϕ̂0 = 0

For Known Reward IRL and Shared Reward IRL, we can apply

the learned ϕ̂ to a new reward function by computing reval(s, a) +

ϕ̂Tf(s, a). For Average IRL, we use reval(s, a) + 1
k ∑i θ̂T

i f(s, a).

5.4.2 Single-State CMDPs

As a first simple test-bed, we consider a single state CMDP, where

S = {s} and A = R
d. We remove the complexity of the transition

dynamics by having P(s|s, a) = 1 for all actions. Also, we choose

γ = 0, and the feature vectors are simply f(s, a) = a. Given a reward

function parameterized by θ ∈ R
d and constraints parameterized by
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Algorithm 4 Maximum Entropy IRL, adapted to constraint learning.

Require: Expert policies π∗1 , . . . , π∗k , learning rates αθ , αϕ

1: Initialize: θ̂i ← θ̂0 for i = 1, . . . , k, ϕ̂← ϕ̂0, i← 0

2: while not converged do

3: i← mod(i + 1, k + 1)

4: Update policy π̂ for r̂(s, a) = θ̂T
i f(s, a) + ϕ̂Tf(s, a)

5: Compute the gradient: ∇ = f(π∗i )− f(π̂)

6: Update weights: θ̂i ← θ̂i + αθ∇, ϕ̂← ϕ̂ + αϕ∇
7: return θ̂1, . . . , θ̂k, ϕ̂

ϕ1, . . . , ϕn ∈ R
d and thresholds ξ1, . . . , ξn, we can find the best action

by solving the linear program

a∗ ∈ argmax
ϕT

1 a≤ξ1,...,ϕT
n a≤ξn

θTa.

To generate demonstrations, we sample both the rewards θ1, . . . , θk

and the constraints ϕ1, . . . , n from the unit sphere. We set all thresh-

olds to ξ j = 1. The constraints are shared between all demonstrations.

Our results confirm that CoCoRL guarantees safety. We never get an

unsafe solution when optimizing over the inferred safe set. Figure 5.3

shows the reward we achieve as a function of the number of demon-

strations for different dimensions d and different numbers of true

constraints n. CoCoRL achieves good performance with a small num-

ber of samples and eventually approaches optimality. The number of

samples depends on the dimensionality, as Theorem 5.3.3 suggests.

Empirically, the sample complexity depends less on the number of

constraints in the true environment, consistent with Theorem 5.3.3.

5.4.3 Tabular Environments

Next, we consider tabular CMDPs which we can still solve using lin-

ear programming (see Section 2.3.3). We construct a set of Gridworld

environments that are structured as a 2D grid of cells. Each cell rep-

resents a state, and the agent can move left, right, up, down, or stay
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Figure 5.3: Return achieved by CoCoRL in single-state CMDPs for differ-
ent dimensions d and numbers of constraints n. We plot the
mean and standard errors over 100 random seeds, although
the standard errors are nearly 0 everywhere. As expected, we
need more demonstrations to approximate the true safe set
well in higher dimensional feature spaces. There is no notice-
able difference in sample complexity for different numbers
of constraints. All solutions returned by CoCoRL are safe.

in the same cell. The environments have goal cells and limited cells.

When the agent reaches a goal cell, it receives a reward; however, the

constraints restrict how often the agent can visit the limited cells.

To introduce stochasticity, there is a fixed probability p that the

agent executes a random action instead of the intended one. The

positions of the goal and limited cells are sampled uniformly at

random. The reward and cost values are sampled uniformly from

the interval [0, 1]. The thresholds are also sampled uniformly, while

we ensure feasibility via rejection sampling.

We perform three experiments to evaluate the transfer of learned

constraints. First, we evaluate the learned constraints in the same

environment and with the same reward distribution that they were

learned from. Second, we change the reward distribution by sampling

a new set of potential goals while keeping the constraints fixed. Third,

we use a deterministic Gridworld (p = 0) during training and a

stochastic one (p = 0.2) during evaluation.
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Figure 5.4: Experimental results in Gridworld environments. We con-
sider three settings: (a) no constraint transfer, (b) transferring
constraints to new goals in the same grid, and (c) transfer-
ring constraints to a new Gridworld with the same structure
but different transition dynamics. For each setting, we mea-
sure the normalized policy return (higher is better), and the
constraint violation (lower is better). CoCoRL consistently re-
turns safe solutions, outperforming the IRL-based methods
that generally perform worse and are unsafe. The plots show
mean and standard errors over 100 random seeds. A return
greater than 1 indicates a solution that surpasses the best
safe policy, implying a violation of safety constraints. The IRL
methods use maximum entropy IRL.



5.4 experiments 105

-0.3 0.5
0.9

1.03

R
e
w
a
r
d

Constraint

Figure 5.5: Illustration of safety and reward of CoCoRL, Average IRL,
Shared Reward IRL, and Known Reward IRL in the Grid-
world without constraint transfer. We show the 95th per-
centile of the constraint and the corresponding reward. The
lines are colored from light to dark to indicate increasing
number of demonstrations. The green region is safe, the red
region is unsafe, and the grey region would be safe but is
unattainable. CoCoRL quickly reaches a safe and near-optimal
solution. Known Reward IRL achieves a high reward but is
unsafe. Shared Reward IRL and Average IRL are first unsafe
and then safe but suboptimal.

Figure 5.4 shows results of our experiments in 3× 3 Gridworlds.

CoCoRL consistently returns safe policies and converges to the best

safe solution as more demonstrations are provided. In contrast, none

of the IRL-based methods learns safe policies. In the on-distribution

evaluation (Figure 5.4a), the IRL methods come closest to the desired

safe policy but still cause constraint violations.

Figure 5.5 provides an illustration of how the different methods

trade off reward and safety. While CoCoRL always remains safe, the

IRL baselines only achieve higher rewards by violating constraints.
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5.4.4 Driving Environment

To explore a more practical and interesting environment, we consider

highway-env, a 2D driving simulator [118]. We focus on a four-way

intersection, as depicted in Figure 5.1. The agent drives towards the

intersection and can turn left, right, or go straight. The environment

is continuous, but it has a discrete high-level action space: the agent

can accelerate, decelerate, and make turns at the intersection. There

are three possible goals for the agent: turning left, turning right, or

going straight. Additionally, the reward functions contain different

driving preferences related to velocity and heading angle. Rewards

and constraints are defined as a linear function of a state feature

vector including goal indicators, vehicle position, velocity, heading,

and indicators for unsafe events including crashing, leaving the street,

and violating the speed limit.

For constrained policy optimization, we use a constrained cross-

entropy method (CEM) to optimize a parametric driving controller

(see Appendix C.3.2 and [119]). We collect synthetic demonstrations

that are optimized for different reward functions under fixed con-

straints.

Similar to the previous experiments, we evaluate the learned con-

straints in three settings: (1) evaluation on the same task distribution

and environment; (2) transfer to a new task; and (3) transfer to a

modified environment. To transfer to a new task, we learn the con-

straints from trajectories only involving left and right turns at the

intersection, but evaluate them on a reward function that rewards

going straight (the situation illustrated in Figure 5.1). For the transfer

to a modified environment, we infer constraints in an environment

with very defensive drivers and evaluate them with very aggressive

drivers. Additional details on the parameterization of other drivers

can be found in Appendix C.3.

Empirically, we observe that the CEM occasionally fails to find

a feasible policy when the safe set S is small. This is likely due

to the CEM relying heavily on random exploration to discover an

initial feasible solution. In situations where we cannot find a solution
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Figure 5.6: Experimental results in the highway-env intersection environ-
ment, depicted in the form of return and constraint violation
plots, similar to Figure 5.4. All plots show mean and stan-
dard error over 5 random seeds with a fixed set of evaluation
rewards for each setting. In all settings, CoCoRL consistently
returns safe policies, as indicated by the low constraint vi-
olation values. However, there are instances where CoCoRL

falls back to providing a default safe solution when the policy
optimizer fails to find a feasible solution within the safe set S.
The frequency of falling back to the default solution is shown
by the bars in the constraint violation plots ( ). All baselines
fail to return safe solutions and only outperform CoCoRL by
violating constraints. Average IRL performs much worse than
the other two methods, likely because it assumes that we can
average the inferred rewards to remove the reward’s goal
component, which is not true in this environment.
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in S, we return a “default” safe controller that remains safe but

achieves a return of 0 because it just stands still before the intersection.

Importantly, we empirically confirm that whenever we find a solution

in S, it is truly safe (i.e., in F ).

Figure 5.6 presents results from the driving experiments. CoCoRL

consistently guarantees safety, and with a larger enough number

of demonstrations (∼ 200), CoCoRL returns high return policies. In

contrast, Maximum Entropy IRL produces policies with decent per-

formance in terms of return but they tend to be unsafe. Although the

IRL solutions usually avoid crashes (which also have low rewards),

they disregard constraints in conflict with the reward function, such

as the speed limits and keeping distance to other vehicles. IRL results

in substantially more frequent constraint violations when transfer-

ring the learned constraint penalty to a new reward. This is likely

because the magnitude of the constraint penalty is no longer correct.

CoCoRL does not suffer from this issue, and transferring the inferred

constraints still results in safe and well-performing policies.

5.5 conclusion

In this chapter, we introduced CoCoRL, a novel algorithm for inferring

shared constraints from demonstrations with unknown rewards.

Theoretical and empirical results show that CoCoRL guarantees safety

and achieves strong performance, even when transferring constraints

to new tasks or environments.

CoCoRL can use unlabeled demonstrations, which are often easier

to obtain, particularly in domains such as robotics or autonomous

driving. By learning safety constraints, CoCoRL offers a more sample-

efficient and safer alternative to pure reward learning.

However, our setup has some limitations. We assume that all

demonstrations are safe, which may not always be practical. Learning

from potentially unsafe demonstrations requires improved models

of human demonstrations or additional (safety) labels. Our second

assumption is access to a feature representation in non-tabular en-
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vironments. As we scale CoCoRL to more complex applications, the

ability to learn features that capture crucial safety aspects will become

increasingly important.

In contrast to Chapters 3 and 4, we did not focus on active learning

in the present chapter. Rather, CoCoRL infers constraints from a fixed

set of safe demonstrations. Clearly, active learning would also be

useful for learning constraint models efficiently. Therefore, the next

chapter develops an active learning algorithm for learning constraints

from trajectories labelled as safe or unsafe.





6
I N T E R A C T I V E LY L E A R N I N G C O N S T R A I N T S

In the previous chapter, we argued that constraints can be a natural

representation of human preferences in many situations. This chapter

explores this idea further and develops an algorithm for actively

learning about unknown constraints.

Often, it is natural to decompose a task into a goal and a set of

constraints, where the goal is easy to specify, and the constraints are

difficult to specify. For example, a car manufacturer might have a set

of possible controllers for a car to choose from that perform a specific

task, such as reaching a target destination as quickly as possible.

The ideal controller achieves this task well and drives safely and

comfortably. Whereas the objective – travel time – is easy to specify

as a reward function, the constraints – perceived safety and comfort –

may require feedback from human drivers and passengers. The man-

ufacturer aims to find the best, safe controller with as little human

feedback as possible. If the controllers are evaluated in a simula-

tion, it is acceptable to evaluate an unsafe controller during training;

however, the constraints have to be satisfied during deployment.

We focus on similar situations where the decision-making problem

is naturally characterized by an easy-to-evaluate part (the reward)

and an expensive-to-evaluate part (the constraint). Hence, in this

chapter, we study learning about unknown, expensive-to-evaluate con-

straints. Similar to the setup for reward learning in Chapter 3, we

propose a two-phase approach to learning unknown constraints.

In the first phase, we learn to estimate the expensive-to-evaluate

constraint function well enough to solve the constraint optimization

problem. In the second phase, we recommend a solution which might

involve running a constrained RL algorithm. Constraint violations

are allowed in the first phase, but the final recommendation has to

satisfy the constraints.

111
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Concretely, in this chapter:

• We formalize learning about unknown constraints to find the

best constrained solution as a novel linear bandit problem, we

call constrained linear best-arm identification (CBAI; Section 6.2).

• We derive an instance-dependent sample complexity lower

bound for the CBAI problem (Section 6.2.1).

• We propose Adaptive Constraint Learning (ACOL) to solve the

CBAI problem and show that ACOL’s sample complexity almost

matches the instance-dependent lower bound (Section 6.2.3).

• We test ACOL in synthetic CBAI instance and find that ACOL gets

close to the performance of an oracle solution that has access

to the true constraint function while outperforming a range of

baselines (Section 6.3.1).

• As a concrete application, we again consider learning driving

behavior in a simulation, where the constraints represent hu-

man preferences about driving behavior (Section 6.3.3). We

demonstrate empirically that ACOL can learn these constraints

and propose heuristic variants of the algorithm that empirically

improve sample efficiency.

Beyond this, we further compare learning constraints to learning

rewards. We observe that constraints are more robust to changes in

the environment and can be transferred to selecting controllers for

different goals, in contrast to encoding the constraints as a penalty in

the reward function (see Figure 6.1 for an illustration and Section 6.3.3

for quantitative results).

The contents of this chapter are based on:

D. Lindner, S. Tschiatschek, K. Hofmann, and A. Krause, “Interac-

tively learning preference constraints in linear bandits”, in Interna-

tional Conference on Machine Learning (ICML), 2022.
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Base
Scenario

Different
Reward

Different
Environment

(a) Reward Penalty

Base
Scenario

Different
Reward

Different
Environment

(b) Constraint

Figure 6.1: Illustration of the added robustness when using constraints.
In the “base” scenario, the orange car should drive at velocity
v, which we encode as a reward. We model other rules, like
“usually drive inside a lane” or “don’t get too close to other
cars”, either as a reward penalty (a) or as a constraint (b). In
the “different reward” scenario, the reward is to pull over to
the right of the road instead of maintaining v. If we keep the
same reward penalty, the agent fails, whereas the constrained
agent completes the new task safely without any tuning. In
the “different environment” scenario, the goal of driving
at velocity v remains, but the road is now blocked. Here,
the penalized agent trades off the penalty with achieving a
high reward and tries to pass through the cars blocking the
road. The constraint formulation does not allow violating a
constraint such as “don’t get too close to other cars,” and the
constraint agent stops before crashing into other cars.
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6.1 related work

Our problem formalization as a linear multi-armed bandit (MAB)

best-arm identification problem [120] is similar to Soare et al. [121] in the

unconstrained setting, but focused on learning constraints. Learning

constraints is similar to actively classifying arms as “feasible” or

“infeasible”; but, in contrast to typical active learning [21], we do

not need to classify all arms. Instead, we only want to find the best

feasible arm, which requires fewer samples than classifying all arms.

Much prior work on constraints in MABs considers other notions

of constraints than we do. For example, constraints holding in expec-

tation rather than with high probability [122], or constraints in the

form of a lower bound (threshold) on the reward [123–126].

Amani et al. [127] and Moradipari et al. [128] consider a linear

bandit with a separate (linear) constraint function. Both differ from

our work in three important ways: (1) they assume an unknown

reward function, whereas we assume the reward to be known; (2)

they focus on cumulative regret minimization, whereas we focus

on best-arm identification; and, (3) they require the constraints to

be satisfied during exploration whereas we only require them to be

satisfied for the final recommendation. These works adapt bandit

algorithms based on upper confidence bounds [127] or Thompson

sampling [128] to minimize regret in the constraint setting. To enable

safe exploration, they need a convex and compact set of arms; we do

not require this assumption.

Wang et al. [129] also study best-arm identification with linear

constraints. In contrast to our work, they assume unknown rewards

and focus on safety constraints that must be satisfied during explo-

ration. To make this possible, they need to make more assumptions

about the structure of the set of arms. In particular, they assume that

the agent can only query in each dimension independently. Because

of this, their algorithm cannot be applied to our setting without

significant changes.

Our algorithm is conceptually similar to other bandit algorithms

based on the principle of eliminating sub-optimal arms step-by-step.
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Our theoretical analysis employs similar tools as those used for

best-arm-identification in unconstrained linear bandits [66, 121].

Some works in Bayesian optimization (BO) also study the problem

of exploring to find the best constrained solution to a problem with

an expensive-to-evaluate constraint function. Common approaches

heuristically extend BO methods to incorporate an unknown con-

straint function [130–132]. In contrast to this line of work, we ob-

tain sample complexity guarantees by focusing on linear constraint

functions. Similar to the bandit literature, most work on BO with

constraints focuses on the setting where safety constraints must hold

during exploration (e.g., [133]).

6.2 linear constrained best-arm identification

We seek to find the best constrained solution from a discrete set

of arms represented by feature vectors x ∈ X ⊂ R
d. We assume

that both the known reward function and the unknown constraint

function are linear in x.

Definition 6.2.1. A constrained linear best-arm identification (CBAI)

problem ν = (X , θ, ϕ, τ) consists of a finite set of arms X ⊂ R
d,

a reward parameter θ ∈ R
d, a constraint parameter ϕ ∈ R

d, and

threshold τ ∈ R. The agent knows X and θ, but not ϕ and τ. In

each iteration, the agent selects an arm x ∈ X and observes ϕTx + ηx,

where ηx is sub-Gaussian noise. The agent’s goal is to identify a

constrained optimal arm

x∗ ∈ argmax
x∈X ,ϕT x≤τ

θTx

within as few iterations as possible.

In our initial example, X contains all potential driving controllers.

θTx encodes the time controller x needs to the destination, which

the agent knows and wants to minimize. ϕTx encodes the unknown

driving preferences, which the agent must infer from as few exper-

iments as possible. In the following, we assume w.l.o.g. τ = 0 but
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generalization to τ ̸= 0 is straightforward. If τ is unknown, we can

model it as a constant shift in the constraint. To simplify notation,

we omit τ and talk about a CBAI problem ν = (X , θ, ϕ).

6.2.1 Lower Bounds

We first provide a lower bound on the sample complexity of solving

a given CBAI problem. The following theorem states how many

samples are necessary to distinguish a given CBAI instance from the

closest instance with a different solution, which is necessary to solve

an instance.

Theorem 6.2.1 (CBAI lower bound). Assume ηx ∼ N (0, 1) for all

x ∈ X . For any CBAI problem ν = (X , θ, ϕ), there exists another

CBAI problem ν′ = (X , θ, ϕ′) with the same set of actions X and

reward parameter θ but a different constraint parameter and opti-

mal arm, such that the expected number of iterations τ needed by

any allocation strategy that can distinguish between ν and ν′ with

probability at least 1− δ is lower bounded as

E[τ] ≥ 2 log

(
1

2.4δ

)
max

x∈X≥θ (x∗ν)

∥x∥2
A−1

λ

(ϕTx)2
,

where λ is a probability distribution over arms of the allocation strat-

egy, i.e., λ(x) is the probability that it pulls arm x, Aλ = ∑x λ(x)xxT

is the design matrix, and X≥θ (x∗ν) = {x′ ∈ X |θTx′ ≥ θTx∗ν} is the set

of all arms with reward no less than x∗ν , the optimal arm for ν.

The proof in Appendix D.1.1 uses a strategy similar to that for

lower bounds for standard linear bandits [66, 121, 134]. We consider

the log-likelihood ratio of making a series of observations in instance

ν compared to ν′ and consider how we can choose ν′ to have a

different solution but a small log-likelihood ratio, i.e., the agent makes

similar observations as if it was in ν. In contrast to the standard linear

bandit case, we need to carefully reason about the constraints when

ensuring that ν′ has a different solution than ν. We distinguish the
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case that the solution of ν is infeasible in ν′ and the case that an arm

with larger reward is feasible in ν′ but not ν. Reasoning about these

two cases yields the result.

Our lower bound has a similar form as those for best-arm iden-

tification in linear bandits [121]. In particular, we have the same

uncertainty term in the numerator. Instead of a suboptimality gap

in the denominator, we get the distance to the constraint boundary:

the problem is harder if arms are closer to the constraint boundary.

However, our maximization is over individual arms instead of direc-

tions, i.e., pairs of arms, and the set X≥θ (x∗ν) does not appear in the

standard linear bandit case.

We want to characterize the sample complexity of different al-

gorithms for solving the CBAI problem. To this end, let us define

the sample complexity of a given problem instance using the lower

bound we just derived.

Definition 6.2.2 (CBAI sample complexity). We define the sample

complexity of a CBAI problem ν as

HCLB(ν) := min
λ

max
x∈X≥θ (x∗ν)

∥x∥2
A−1

λ

(ϕTx)2

This describes the best sample complexity that any algorithm can

achieve on CBAI problem ν. It will also be helpful to have a worst-

case upper bound on HCLB(ν) as a point of comparison, which the

next proposition provides.

Proposition 6.2.1. For any CBAI problem ν, we have HCLB(ν) ≤
d/(C+

min)
2, where C+

min = minx∈X |ϕTx|. This bound is tight, i.e, there

is an instance ν, such that we have HCLB(ν) = d/(C+
min)

2.

This results indicates that a CBAI problem is harder if it has a

larger dimension d, or if the distance of the arm that is closest to

the constraint boundary (C+
min) is smaller. This worst case bound

corresponds to situations where all arms are linearly independent

and pulling one arm does not provide any information about any

other arm.
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oracle solution. We can make the definition of sample com-

plexity more concrete by considering an oracle solution that has

access to the true constraint value to select which arms to query. The

oracle selects arms by explicitly minimizing HCLB:

λ⋆ ∈ argmin
λ

max
x∈X≥θ (x∗ν)

∥x∥2
A−1

λ

(ϕTx)2
.

The oracle prefers arms with high uncertainty (large ∥x∥2
A−1

λ

) and

arms close to the constraint boundary (small (ϕTx)2). Moreover, it

focuses on reducing the uncertainty about arms that have higher

reward than the true optimal arm (arms in X≥θ (x∗ν)). As expected,

this algorithm matches the sample complexity lower bound, i.e., it is

instance-optimal apart from logarithmic factors.

Theorem 6.2.2 (Oracle sample complexity). The oracle algorithm

finds the optimal solution to a constrained linear best-arm identifica-

tion problem ν = (X , θ, ϕ) within N ∝ HCLB(ν) with probability at

least 1− δ.

6.2.2 Confidence Intervals for Linear Regression

Our algorithms rely on high probability confidence intervals on the

linear constraints constructed from observations. Hence, let us briefly

review how to construct such confidence intervals from observations

with sub-Gaussian noise.

Suppose, an algorithm queried a sequence of arms xt = (x1, . . . , xt).

For a given xi, it observed ỹi = ϕTxi + ηxi
, where ϕ is the true

constraint parameter, and ηxi
is sub-Gaussian noise. We now aim

to find confidence intervals such that ϕTx ∈ [lt
ϕ(x), ut

ϕ(x)] with

probability at least 1 − δ, where lt
ϕ(x) = ϕ̂Tx −

√
βt∥x∥A−1

xt
and

ut
ϕ(x) = ϕ̂Tx +

√
βt∥x∥A−1

xt
. Based on these confidence intervals, we

can decide whether a given arm is likely feasible or not.
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If the queries follow a distribution that does not depend on the

observations, it is straightforward to derive confidence intervals (e.g.,

see Chapter 20 in Lattimore and Szepesvári [24]).

Proposition 6.2.2. Let xt = (x1, . . . , xt) be a sequence of arms from a

fixed allocation for which we have observed ϕTxi + ηxi
where ηxi

is

independent sub-Gaussian noise. If we estimate ϕ̂ from the observa-

tions using least-squares regression and choose βt =
√

2 log(|X |/δ)

then we have P(∃x ∈ X : ϕTx /∈ [lt
ϕ(x), ut

ϕ(x)]) ≤ δ.

However, in sequential decision-making we usually want to adapt

our strategy to previous observations. In this case, we need to be

more careful in constructing confidence intervals, as observed by

Abbasi-Yadkori et al. [135]. Unfortunately, the resulting confidence

intervals are weaker than those for static allocations by a factor of√
d.

Proposition 6.2.3 (Theorem 2 by Abbasi-Yadkori et al. [135]). Let

xt = (x1, . . . , xt) be a sequence of points selected with a possibly

adaptive strategy for which we have observed ϕTxi + ηxi
where ηxi

is

independent sub-Gaussian noise. Assume ∥ϕ∥2 ≤ S and ∥x∥2 ≤ L for

all x ∈ X . If we estimate ϕ̂ from the observations using least-squares

regression, then for every x ∈ R
d and for all t ≥ 0: P(∃x ∈ X : ϕTx /∈

[lt
ϕ(x), ut

ϕ(x)]) ≤ δ with βt =
√

d log ((1 + tL2/λ)/δ) +
√

λS.

6.2.3 Algorithms With Static Confidence Intervals

To design an algorithm for solving CBAI problems, we need to decide

(1) which arms to pull during exploration and (2) when we can stop

the algorithm and return the correct arm with high probability. First,

let us address the second question and then get back to the first one.

stopping condition. Using the past observations, we can de-

fine confidence intervals for the constraint value of each arm. Let

lt
ϕ(x) and ut

ϕ(x) be such that we know with high probability (w.h.p.)

ϕTx ∈ [lt
ϕ(x), ut

ϕ(x)]. Now we can also determine w.h.p. that all arms
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with lt
ϕ(x) > 0 are infeasible, and all arms with ut

ϕ(x) ≤ 0 are fea-

sible. Moreover, we can identify suboptimal arms by considering

r̄ = maxut
ϕ(x)≤0 θTx. The solution to this optimization problem are

the highest-reward arms that are feasible w.h.p. Therefore, all arms

with reward less than r̄ are clearly suboptimal. Combining these

observations, we can define a set of arms that we are uncertain about,

i.e., that could still be optimal:

Ut = {x ∈ X |lt
ϕ(x) ≤ 0 and ut

ϕ(x) > 0 and θTx > r̄}

Note, that if Ut is empty, we can stop and return an arm

x∗ ∈ argmax
ut

ϕ(x)≤0

θTx.

This arm will be optimal w.h.p.

arm selection criterion. In each iteration, we have to de-

cide which arm to pull. We could, e.g., combine the above stopping

condition with querying uniformly random arms. This algorithm

would return the correct optimal arm with high probability. How-

ever, random querying will usually not be the most sample efficient

approach. Another natural approach is to select the arms that we are

most uncertain about, which is sometimes called uncertainty sampling.

We could, e.g., choose a fixed allocation

λG ∈ argmin
λ

max
x∈X
∥x∥A−1

λ
.

This approach is also called G-Allocation in the experimental design

literature. The following theorem shows that G-Allocation achieves

sample complexity on order d/C+
min

2
, so it matches the worst-case

lower bound in Proposition 6.2.1.

Theorem 6.2.3 (G-Allocation sample complexity). G-Allocation finds

the optimal arm within N ∝ d/C+
min

2
iterations with probability at

least 1− δ.
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However, we can do better by focusing on arms that we cannot yet

exclude as being certainly feasible, infeasible, or suboptimal. Concretely,

we modify G-Allocation to reduce uncertainty only about arms in Ut:

λACOL ∈ argmin
λ

max
x∈Ut

∥x∥A−1
λ

rounding . All algorithms implementing a static allocation re-

quire a rounding procedure to translate an allocation λ into a finite

sequence of arms x1, . . . , xn. The experimental design literature pro-

vides various efficient, ε-approximate rounding procedures. We use

a standard procedure described in Chapter 12 of Friedrich [136].

adaptive constraint learning (acol). Algorithm 5 shows

the full algorithm we call Adaptive Constraint Learning (ACOL). In each

round t, the algorithm selects arms to reduce the uncertainty about

arms in Ut, then updates Ut, and decides if it can stop and return a

recommendation. The round length Nt is chosen carefully to allow us

to provide a tight sample complexity result. The following theorem

– the main theoretical result of this chapter – establishes that ACOL

returns the correct solution to any CBAI problem and provides an

upper bound on the number of samples necessary.

Theorem 6.2.4 (ACOL sample complexity). Assume Algorithm 5 is

implemented with an ε-approximate rounding strategy. Then, after

N iterations the algorithm returns an optimal arm with probability

at least 1− δ, and we have:

N ≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

min
λ

max
x∈Ut

∥x∥2
A−1

λ

(ϕTx)2
+ t̄

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄

where

H̄CLB(ν) = min
λ

max
x∈X
∥x∥2

A−1
λ

/(ϕTx)2,

t̄ =
⌈
− log2 C+

min

⌉
.



122 interactively learning constraints

Algorithm 5 Adaptive Constraint Learning (ACOL).

Require: significance δ

1: U1 ← X (uncertain arms)

2: S1 ← {} (feasible arms)

3: t← 1 (round)

4: while Ut ̸= {} do

5: δt ← δ2/t2

6: λ∗t ← argminλ maxx∈Ut
∥x∥2

A−1
λ

7: ρ∗t ← minλ maxx∈Ut
∥x∥2

A−1
λ

8: Nt ← max
{⌈

22t+3 log
(
|X |
δt

)
(1 + ε)ρ∗t

⌉
, r(ε)

}

9: xNt ← Round(λ∗t , Nt)

10: Pull arms x1, . . . , xNt and observe constraint values

11: t← t + 1

12: Update ϕ̂t and A based on new data

13: lt
ϕ(x)← ϕ̂T

t x−
√

βt∥x∥A−1 for all arms x

14: ut
ϕ(x)← ϕ̂T

t x +
√

βt∥x∥A−1 for all arms x

15: St ← St−1 ∪ {x|ut
ϕ(x) ≤ 0}

16: r̄ ← maxx∈St
θTx

17: Ut ← Ut−1 \ {x|lt
ϕ(x) > 0} \ {x|ut

ϕ(x) ≤ 0} \ {x|θTx < r̄}
18: return x∗ ∈ argmaxx∈St

θTx

Moreover, H̄CLB(ν) ≤ d/(C+
min)

2.

We prove the theorem in Appendix D.1. The key step uses Proposi-

tion 6.2.2 to show that the confidence intervals shrink exponentially.

This implies that in a logarithmic number of rounds, the largest con-

fidence interval will be less than C+
min; and once this is the case, Ut

is empty and the algorithm returns the correct solution. Combining

this with the round lengths of Nt allows us to prove the result.

The sample complexity of ACOL is of order H̄CLB(ν), except for

logarithmic factors. Also, we show that H̄CLB ≤ d/(C+
min)

2, so the
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bound matches the lower bound of Proposition 6.2.1 for worst-case

instances, but it is much tighter for benign instances. In particular,

the bound in Theorem 6.2.4 contains the same min-max problem as

the instance dependent sample complexity HCLB(ν), only with the

maximization being over different sets, namely Ut instead of X≥θ (x∗ν).
Note, that we cannot expect a practical algorithm to only explore

arms in X≥θ (x∗ν) because we do not know x∗ν a priori. Instead, ACOL

explores in Ut, a conservative estimate of X≥θ (x∗ν) that shrinks over

time given the knowledge so far. Theorem 6.2.4 does not exactly

match the instance dependent lower bound, but the difference only

depends on how well Ut approximates the set of relevant arms.

6.2.4 Algorithms With Adaptive Confidence Intervals

While the algorithm we just introduced comes with a strong sample

complexity guarantee, it is impractical in various ways, primarily

because of the round-based structure. In particular, the algorithm

requires a rounding procedure to determine a sequence of arms; it

then follows this sequence for a predefined round length and can not

stop before finishing a round. Also, in between rounds, the algorithm

discards all previously made observations, which is necessary to

apply Proposition 6.2.2.

Next, we present an alternative version of this algorithm that

uses the adaptive confidence intervals of Proposition 6.2.3. This

allows us to remove the round-based structure in favor of a greedy

algorithm that does not have the same limitation. This algorithm,

which we call Greedy Adaptive Constraint Learning (G-ACOL), is shown

in Algorithm 6. Unfortunately, for G-ACOL, we can only provide

significantly weaker sample complexity guarantees; but we find it

performs well empirically.

Since the adaptive confidence intervals hold for all t > 0 simulta-

neously, we can now check the stopping condition after each sample.

Instead of determining a static allocation that reduces uncertainty

about the uncertain arms, we now greedily select the arm to pull that
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Algorithm 6 Greedy Adaptive Constraint Learning (G-ACOL).

Require: βt, λ

1: initialize Ŝ1(ϕ̂), U1 ← X , S1 ← {}, A← λI, t← 1

2: while Ut ̸= {} do

3: x∗ ← maxx∈Ut
∥x∥2

A−1

4: Pull arm x∗ and observe constraint value

5: t← t + 1, A← A + xxT

6: lt
ϕ(x)← ϕ̂T

t x−
√

βt∥x∥A−1 for all arms x

7: ut
ϕ(x)← ϕ̂T

t x +
√

βt∥x∥A−1 for all arms x

8: St ← St−1 ∪ {x|ut
ϕ(x) ≤ 0}

9: r̄ ← maxx∈St
θTx

10: Ut ← Ut−1 \ {x|lt
ϕ(x) > 0} \ {x|ut

ϕ(x) ≤ 0}
11: \{x|θTx < r̄}
12: return x∗ ∈ argmaxx∈St

θTx

reduces uncertainty within Ut the most. Thanks to Proposition 6.2.3,

this algorithm still stops and returns the correct solution. However,

it achieves worse sample complexity due to the additional factor of√
d in Proposition 6.2.3.

heuristic modifications . There is a variety of heuristic mod-

ifications that we can make to G-ACOL to improve its practical per-

formance at the cost of losing some theoretical guarantees. First, we

could use a different query rule within the set of uncertain arms,

such as uniformly random querying, which reduces computational

cost. Second, the βt resulting from Proposition 6.2.3 tends to be very

large. In practice, we can tune βt to get good confidence intervals

that are much smaller than the ones suggested by the theory. Third,

we can turn the algorithm into an “anytime” algorithm by defining

a recommendation rule, such as recommending the best arm that is

certainly feasible. Then, we can stop the algorithm after an a priori

unknown budget of queries and receive a best guess for the optimal

arm.
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6.3 experiments

We perform three experiments. First, in Section 6.3.1, we consider

synthetic CBAI instances to evaluate ACOL and compare it to natural

baselines. Additionally, we investigate the effect of various heuristic

modifications to the algorithm. Second, in Section 6.3.2, we com-

pare ACOL to algorithms that safely minimize regret. And, third, in

Section 6.3.3, we consider learning constraints that represent hu-

man preferences in a simulated driving scenario. This experiment

illustrates how to model preference learning problems as CBAI prob-

lems. In the driving simulation, we also demonstrate the benefits of

learning constraints in terms of robustness and transferability.

We provide more details on the experiments in Appendix D.2. For

all experiments we use a significance of δ = 0.05 and, if not stated

differently, observations have Gaussian noise with σ = 0.05.

6.3.1 Synthetic Experiments

We consider two synthetic CBAI instances and a range of baselines

and multiple variants of ACOL/ G-ACOL.

instance 1 – irrelevant dimensions . First, we consider

CBAI instances which contain a number of dimensions that are irrele-

vant for learning the correct constraint boundary. The problems have

dimension d, and d + 1 arms: x1, . . . , xd+1. For each i = 1, . . . , d− 1,

we have xi = ei, whereas xd = (1− ε)ed, and xd+1 = (1 + ε)ed, for

some ε > 0. ei denotes the i-th unit vector. The reward and constraint

parameter are both θ = ϕ = ed. We define a threshold τ = 1; hence,

x1, . . . , xd−1 are feasible but suboptimal, xd is optimal and xd+1 is

infeasible. Importantly, the arms x1, . . . , xd−1 are “irrelevant” to find-

ing the correct constraint boundary between xd and xd+1. An ideal

algorithm would focus its queries primarily on xd and xd+1. We can

vary the problem difficulty by changing ε (more difficult for small

values), and d (more difficult for large values).
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instance 2 – unit sphere . To create CBAI instances with

a range of different reward and constraint functions, we sample

arms x1, . . . , xn uniformly from a d-dimensional unit sphere. We also

sample the reward parameter θ from the unit sphere. As constraint

parameter, we choose ϕ = xi − xj where xi and xj are the two clos-

est arms in ℓ2-distance. We can increase the problem difficulty by

increasing the dimension d and the number of arms n.

baselines . We compare ACOL and G-ACOL to various baselines.

The Oracle solution uses knowledge of the true constraint parameter

to choose the best possible static allocation. In practice, we cannot

implement the oracle because we do not know the constraint pa-

rameter; but, it yields a performance upper bound to which we can

compare other algorithms. G-Allocation uses a static allocation that

uniformly reduces uncertainty, whereas Uniform pulls all arms with

equal probability. We also consider variants of these algorithms that

use the adaptive confidence interval in Proposition 6.2.3. We call the

adaptive version of G-Allocation Greedy MaxVar because it greedily

selects arms with the highest uncertainty estimate from Ut. We call

uniform sampling with the adaptive confidence intervals Adaptive

Uniform respectively. For all algorithms that use adaptive confidence

intervals, in addition to the version using Proposition 6.2.3, we test

a “tuned” version that considers βt as a numeric hyperparameter

instead (indicated by the name of the algorithms followed by (tuned)).

We chose βt =
1
4 , for all experiments, which we determined from min-

imal tuning on the “irrelevant dimensions” instance for the Greedy

MaxVar algorithm. For clarity, we omit a few of the baselines that

perform poorly in our plots. Appendix D.2.2 provides the full results.

results . Figure 6.2 shows our results in the synthetic CBAI in-

stances. All algorithms find the correct solution, but their sample

efficiency varies widely. From all algorithms with theoretical guar-

antees, the (unrealistic) oracle solution needs the fewest number of

iterations, as expected. But ACOL can get close to the oracle perfor-

mance and outperforms G-Allocation and uniform sampling in all
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Legend:

Uniform G-Allocation ACOL (ours)

Oracle Adaptive Uniform (tuned) G-ACOL (tuned)

G-ACOL (theory) Greedy MaxVar (tuned)

Figure 6.2: We plot the median number of iterations for finding the
constrained optimal solution as a function of different pa-
rameters of the problem instance. All methods return the
correct constrained optimal solution. For “irrelevant dimen-
sions”, we vary ε for fixed d = 10, and d for fixed ε = 0.05.
For “unit sphere”, we vary n for fixed d = 30, and d for
fixed n = 30. Note that for “unit sphere”, the instances are
randomly sampled for each random seed, whereas the “ir-
relevant dimensions” instance stays the same. Overall, ACOL
is the most sample efficient approach of all algorithms that
provide theoretical guarantees. By “tuning” βt, we can gain
several orders of magnitude in sample efficiency at the cost
of theoretical guarantees. G-ACOL remains the most sample
efficient among these tuned approaches.
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cases. For example, if we increase the number of irrelevant dimen-

sions in the first experiment, G-Allocation and uniform sampling

need more samples to determine which dimension is relevant. In

contrast, both ACOL quickly focuses on the relevant dimension. There-

fore, the number of iterations it needs does not increase when adding

irrelevant dimensions to the problem, similar to the oracle solution.

Methods that use adaptive confidence intervals with βt suggested

by Proposition 6.2.3 turn out to be less sample efficient than their

round-based counterparts using static confidence intervals, including

G-ACOL performing worse than ACOL. The reason for this is that the

confidence interval in Proposition 6.2.3 is quite loose. We can heuristi-

cally choose smaller confidence intervals and consider βt as a tunable

hyperparameter. We find that we can achieve orders of magnitude

better sample complexity without much tuning and still always find

the correct solution. Even though this approach loses the theoretical

guarantees, it could be very valuable in practical applications.

6.3.2 Comparing ACOL to Regret Minimization

To highlight the difference of our constrained linear best-arm identi-

fication setting to regret minimization with constraints, we perform

an experiment to compare G-ACOL to the approaches by Amani et al.

[127] and Moradipari et al. [128]. The algorithm by Amani et al. [127]

performs UCB and the algorithm by Moradipari et al. [128] performs

Thompson sampling, both within the set of certainly feasible arms.

We can translate both approaches to our setting with known re-

wards by greedily selecting arms from St w.r.t. their reward. Because

we do not start with a known safe arm, we add an additional phase

in which we select arms randomly until St is not empty. Let us call

this approach MaxRew-S. As a hybrid of this approach and ACOL, we

can design an algorithm that greedily select arms from Ut w.r.t. their

reward. Let us call this algorithm MaxRew-U .

Unfortunately, MaxRew-S gets stuck in our synthetic instances

because we do not make any assumptions on the safe set such
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Figure 6.3: We compare G-ACOL to MaxRew-S and MaxRew-U , that
adapt regret minimization approaches to the CBAI setting.
We focus on a simple 1-dimensional problem, where we
ensure the set of feasible arms is connected. We find that
MaxRew-S is particularly sample inefficient because it only
selects arms that are certainly feasible. MaxRew-U is less
sample efficient than G-ACOL because it selects arms with
high reward over more informative arms.

as convexity and compactness. To evaluate these algorithms, we,

therefore, consider a third synthetic instance in which the safe set

is connected. We consider 10 arms in d = 1 that are equally spaced

between 0 and 1. The reward and constraint vectors are θ = ϕ = 1,

and the threshold is τ = 0.25. Here the safe set is connected, but we

can learn the constraint boundary more efficiently if we are allowed

to violate the constraint during exploration.

We compare G-ACOL to MaxRew-S and MaxRew-U in Figure 6.3. We

find that G-ACOL explores much more efficiently than both of the other

approaches. MaxRew-S is particularly sample inefficient, because it

ensures feasibility during exploration, which is not necessary in our

case. In Appendix D.2.2, we provide results for MaxRew-U in all of

our environments. We cannot provide these results for MaxRew-S

because it gets stuck in all other environments.
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6.3.3 Preference Learning Experiments

We now consider the application that initially motivated us to define

the CBAI problem. As discussed in Chapter 4, we are interested in

situations where the reward parameter θ describes an easy-to-specify

goal or metric, and the constraint parameter ϕ describes expensive-

to-evaluate human preferences.

As an example of this, we consider a driving simulator, which

Sadigh et al. [22] originally introduced to study learning reward

functions to represent human preferences about driving behavior.

Instead, we change the setting to have the reward θ represent an

easy-to-specify goal such as “drive at velocity v”, and the constraint

ϕ represent other driving rules such as “usually drive in a lane”

or “don’t get too close to other cars”, as shown in Figure 6.1. Ap-

pendix D.2 provides more details on the environment.

The agent has to select a controller to drive the car from a set

of precomputed controllers X , i.e., the set of “arms”. The optimal

controller x∗ maximizes θTx∗ and satisfies ϕTx∗ ≤ τ. The agent can

try out individual controllers to get feedback on whether they are

feasible. In contrast to our previous experiments, the feedback is

binary. However, we can still model it via a sub-Gaussian noise

model by ensuring the constraint values are in [0, 1] and interpreting

them as probabilities. Therefore, this is a CBAI problem, and we can

apply the same algorithms we applied to our synthetic problems.

robustness of learning constraints . First, we want to

quantify the observation of Figure 6.1 that constraints can be a par-

ticularly robust representation of human preferences. Specifically,

using constraints to represent human preferences can increase ro-

bustness to changes in the environment and allow to transfer the

constraints to different reward functions. Constraints are more ro-

bust than modeling the same preferences as a penalty on the reward

function. Figure 6.4 quantifies this by directly comparing the two

options in terms of the reward and constraint values they achieve. In

particular, we find that the magnitude of the reward penalty often
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has to be updated if the environment changes, whereas the constraint

formulation is robust to such changes.

results of learning constraints . We consider the driving

scenario as a CBAI problem and study learning the constraint func-

tion. Here, we only report results for the base scenario in Figure 6.1.

Appendix D.2.2 contains similar results for the other two scenarios

which are qualitatively similar. In Figure 6.5, we compare the per-

formance of ACOL and other algorithms with theoretical correctness

guarantees to versions of these algorithms with heuristic confidence

intervals. In both cases ACOL or G-ACOL is the most sample efficient

algorithm. By choosing the heuristic confidence intervals, we can

reduce the number of samples necessary by two orders of magnitude

from ∼ 105 to ∼ 103, at the cost of theoretical guarantees. In all cases,

using ACOL is preferable over alternatives because it finds the correct

solution with fewer queries about the constraint function.

6.4 conclusion

It is natural to formalize sequential decision-making problems in

many practical situations as optimizing a known reward function

subject to unknown, expensive-to-evaluate constraints. In this chapter,

we studied constrained linear best-arm identification (CBAI), a linear

bandit setting to learn about constraints efficiently, and proposed

Adaptive Constraint Learning (ACOL) to solve this problem efficiently.

There are some limitations of the setup we studied in this chapter.

Specifically, our theoretical analysis is limited to a single constraint

function, which might not be appropriate for applications where

the constraints are non-additive. It should be possible to extend

the same theoretical ideas to multiple linear constraints that all

have to be satisfied, which would allow us to apply ACOL to such

situations. From the empirical perspective, we found that modeling

human preferences as constraints rather than rewards can be more
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Figure 6.4: These plots quantify our finding that learning constraints is
more robust to changes in the environment than learning a pe-
nalized reward function. We consider the three scenarios from
Figure 6.1: the base scenario ( ), a scenario with a different
goal ( ), and a scenario with a change in the environment
( ). We find a policy that optimizes the reward function
θTx − λϕTx and plot the reward and the constraint of the
solution for different values of λ. In particular, we need to
choose a different value of λ for each environment to find the
best solution with a constraint value below 1. The dashed hor-
izontal lines in the reward plot show the reward a constrained
solution obtains on the corresponding instance, which does
not require any tuning. For each scenario, the smallest λ we
find to yield a feasible solution still gives a worse solution in
terms of reward than the constrained solution.
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Figure 6.5: The left chart shows the number of iterations that all algo-
rithms with theoretical guarantees need to find the correct
solution in the driving scenario. ACOL is the fastest, but it
still needs ∼ 105 samples. Instead, we can use heuristic con-
fidence intervals where we consider βt as a hyperparameter
instead of choosing the values suggested by theory. The two
right plots shows the number of iterations and the percentage
of the times the methods return a correct solution as a func-
tion of βt. None of these algorithms is guaranteed to return
the correct solution. But, empirically, we find that for

√
βt

beyond the vertical line, the algorithms always return the cor-
rect solution. This again shows that tuning βt can drastically
improve the sample efficiency while still returning the correct
solution empirically.
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robust. Future work should study using constraints to model human

preferences in more practical applications.

ACOL extends our analysis of active learning in the first part of this

dissertation to the setting of learning constraint models for CMDPs.

While we focused on the bandit setting in this chapter, studying

exploration, similar to Chapter 4, would be a valuable extension.

When learning reward models, it is common to learn an initial

model from demonstrations using IRL and then improve it using

other forms of feedback and potentially active learning (e.g., [57, 58]).

A similar approach could be useful for learning constraint models.

Future work could, for example, combine CoCoRL (Chapter 5) with

ACOL to learn a constraint model from demonstrations and then

improve it using active learning.



7
C O N C L U S I O N

The primary focus of this dissertation was to develop algorithmic

foundations for Reinforcement Learning from Human Feedback

(RLHF), focusing on sample efficiency and learning safe policies.

In particular, in Chapter 1 we asked two questions:

• How can we make RLHF more sample efficient?

• How can we learn constraints from human feedback?

To address the first question, we developed algorithms to improve

the sample efficiency of learning reward models in Chapters 3 and 4.

To address the second question, we developed novel methods for

learning constraints from human feedback in Chapters 5 and 6.

We studied the proposed algorithms from a theoretical perspective,

proving sample complexity guarantees, and an empirical perspective,

testing them in simulations of practical RL applications.

Our research is relevant to many application areas where defining

a reward function is challenging, such as robotics and autonomous

driving. Importantly, improving the efficiency and robustness of

RLHF promises to make RL more widely applicable. We did not

focus on large language models (LLMs), where RLHF has unlocked

many capabilities. Nonetheless, applying our ideas and algorithms

to that setting and using them to improve the sample complexity of

RLHF in LLMs is an exciting direction for future work.

The central gap to bridge between our work and real-world ap-

plications is the need for extended studies with humans. RLHF is

inherently human-centered and critically depends on interaction

design [18]. Practitioners find that collecting high-quality human

feedback is a crucial factor for RLHF to work well (e.g., [13]), and by

focusing on the algorithmic foundations of RLHF, we risk neglecting

the human-centered aspects. While studying these aspects was not

135
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the focus of this dissertation, they will be critical to ensure that RLHF

systems are effective and safe.

On a technical level, our research raises many open questions, two

important ones being uncertainty quantification and trading off sample

efficiency and computational cost. First, all algorithms we presented

require well-calibrated uncertainty estimates on the reward or con-

straint model, which can be difficult to provide when using complex

model architectures. For example, in LLMs, the reward model is

usually a large transformer model, and training an ensemble of re-

ward models can be difficult [137]. Second, we primarily focused on

improving sample efficiency in terms of human data. Sometimes, this

can come at a higher computational cost or require more interactions

with the environment. In practice, we must carefully balance the

trade-off between sample efficiency for human data, environment

interactions, and computational cost. Doing this well will likely re-

quire a better understanding of the trade-off in the quality of human

feedback and the cognitive demand on the human.

In summary, we focused on building solid algorithmic foundations

for RLHF and shedding light on potential applications. Making RLHF

more efficient and robust paves the way for applying RL to a wider

array of applications. The road ahead is long and exciting – as we

continue to develop more capable and general systems, systematic

study of RLHF built on solid foundations will be critical in steering

AI systems to be effective and aligned with human needs.
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A
I N F O R M AT I O N D I R E C T E D R E WA R D L E A R N I N G

This appendix provides additional information about Chapter 3. In

particular, we provide proofs for the propositions (Appendix A.1),

details about the implementation of IDRL (Appendix A.2), and details

about the experiments (Appendix A.3).

a.1 proofs

In this section, we provide proofs of all results mentioned in the main

chapter. The results generally follow from well-known facts about

Gaussian distributions and information theory.

Proposition 3.5.2. Assume we estimate θ̂ with Bayesian linear regres-

sion with noise variance σ2, and prior θ̂ ∼ N (0, α−1 I) after collecting

data

D = ((φ(qi1), yi1), . . . , (φ(qit−1
), yit−1

)).

Also, assume an infinitely wide prior α−1 → ∞.

We can then write the maximization in the first step of IDRL as

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

∥f(π)ϕ − f(π′)ϕ∥2
AD−1

where AD = ∑qi∈Qc
Niφ(qi)φ(qi)

T.

Furthermore, for a given pair of policies, π1 and π2, we can write

the maximization in the second step of IDRL as

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

= argmin
q∈Qc

∥f(π1)ϕ − f(π2)ϕ∥2
AD,q

−1

where AD,q = φ(q)φ(q)T + ∑qi∈Qc
Niφ(qi)φ(qi)

T and Ni is the num-

ber of times qi occurs in D.

139
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Proof. In the Bayesian linear regression setting (cf. Chapter 3 in [138])

with prior weight distribution w ∼ N (0, α−1), the posterior weight

distribution is a Gaussian with covariance matrix

Σθ =

(
αI + σ−2 ∑

q∈D
φ(q)φ(q)T

)−1

=
(
αI + σ−2AD

)−1

AD = ∑
q∈D

φ(q)φ(q)T = ∑
qi∈Qc

Niφ(qi)φ(qi)
T

For an infinitely wide prior (α−1 → ∞): Σθ → σ2AD
−1.

Using the linear mapping from θ̂ to the expected return of a policy

Ĝ(π), the posterior variance of the difference in return between two

policies is

Var[Ĝ(π1)− Ĝ(π2)|D] = σ2(v(π1, π2)
ϕ)T AD

−1v(π1, π2)
ϕ (A.1)

where v(π1, π2)ϕ = f(π1)ϕ − f(π2)ϕ

The first part of the statement follows using Proposition 3.4.1:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D)

= argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D] ( Proposition 3.4.1)

= argmax
π,π′∈Πc

σ2(v(π, π′)ϕ)T AD
−1v(π, π′)ϕ ( Equation (A.1))

= argmax
π,π′∈Πc

(v(π, π′)ϕ)T AD
−1v(π, π′)ϕ

= argmax
π,π′∈Πc

∥v(π, π′)ϕ∥AD−1

= argmax
π,π′∈Πc

∥f(π)ϕ − f(π′)ϕ∥AD−1

After defining

AD,q = AD∪{(q,y)}

= φ(q)φ(q)T + ∑
qi∈Qc

Niφ(qi)φ(qi)
T,
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the second part of the statement follows analogously to the first one

after applying Proposition 3.4.1:

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

= argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {q, y}] (Prop. 3.4.1)

= argmin
q∈Qc

σ2(v(π1, π2)
ϕ)T AD,q

−1v(π1, π2)
ϕ (Equation (A.1))

= argmin
q∈Qc

(v(π1, π2)
ϕ)T AD,q

−1v(π1, π2)
ϕ

= argmin
q∈Qc

∥v(π1, π2)
ϕ∥AD,q

−1

= argmin
q∈Qc

∥f(π1)ϕ − f(π2)ϕ∥AD,q
−1

Proposition A.1.1. If r̂(s) is a GP, the difference in expected return

between two fixed policies π, π′ follows a Gaussian distribution

N (µ, σ2) with

µ = E[Ĝ(π)− Ĝ(π′)] = v(π, π′)T
µr̂

σ2 = Var[Ĝ(π)− Ĝ(π′)] = v(π, π′)T · Σr̂ · v(π, π′)

where v(π, π′) = f(π)− f(π′) is the difference between expected

state-visitation frequencies of π and π′ respectively, and µr̂ and Σr̂

are the mean and covariance of the joint Gaussian distribution of the

reward of all states π or π′ visit.

Proof. If a random variable X is Gaussian distributed X ∼ N (µ, Σ),

µ ∈ R
n, Σ ∈ R

n×n, then for a ∈ R
n, aTX is also Gaussian distributed

aTX ∼ N (aTµ, aTΣa) (Theorem 14.2 in [139]).

We can directly apply this fact to r̂ ∼ N (µr̂, Σr̂) and Ĝ(π) −
Ĝ(π′) = v(π, π′)T

r̂, resulting in

Ĝ(π)− Ĝ(π′) ∼ N (v(π, π′)T
µr̂, v(π, π′)TΣr̂v(π, π′)).
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Proposition 3.4.1. If r̂(s)|D is a GP, then P(Ĝ(π)− Ĝ(π′)|D) is Gaus-

sian and:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D]

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D) = argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {(q, ŷ)}]

Proof. If a random variable X is Gaussian distributed X ∼ N (µ, σ2),

then the entropy H(X) is given by (Theorem 8.4.1 in [140])

H(X) =
1

2
log(2πeσ2). (A.2)

Proposition A.1.1 shows that the conditional distribution of Ĝ(π)−
Ĝ(π′)|D is Gaussian, which implies both statements.

For the first statement, observe that the entropy of Ĝ(π)− Ĝ(π′)|D
is

H(Ĝ(π)− Ĝ(π′)|D) = 1

2
log(2πeVar[Ĝ(π)− Ĝ(π′)|D]), (A.3)

and that two policies that maximize the variance on the r.h.s. also

maximize the entropy, because the logarithm is a monotonic function.

To see the second statement, let ∆̂π1,π2 = Ĝ(π1)− Ĝ(π2). Then

argmax
q∈Qc

I(∆̂π1,π2 ; (q, ŷ)|D)

= argmax
q∈Qc

(
H(∆̂π1,π2 |D)− H(∆̂π1,π2 |D ∪ {(q, ŷ)})

)

= argmin
q∈Qc

H(∆̂π1,π2 |D ∪ {(q, ŷ)})

= argmin
q∈Qc

1

2
log
(
2πeVar[∆̂π1,π2 |D ∪ {(q, ŷ)}]

)

= argmin
q∈Qc

Var[∆̂π1,π2 |D ∪ {(q, ŷ)}].

Here we wrote the information gain in terms of conditional entropies

(Theorem 2.4.1 in [140]), and used that only one of the terms depends
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on q. This turns the maximization of information gain into a mini-

mization of a conditional entropy. As before, we can further simplify

this to minimizing conditional variance by using the entropy of a

Gaussian and the fact that the logarithm is a monotonic function.

Proposition 3.4.2. Let q be a linear reward query. If the prior belief

about the reward r̂(s) is a GP, then the posterior belief about the

reward r̂(s)|(q, y) is also a GP.

Proof. Let q = (X, C) be a linear reward query, i.e., X = {s1, . . . , sN} ⊆
S is a set of states and C = {c1, . . . , cN} a set of linear weights, and

y = ∑
N
j=1 cjr(sj) the corresponding observation.

Let S∗ = {s∗1 , . . . , s∗n} ⊆ S be a set of states for which we want to

compute the posterior belief. We show that

P(r̂(s∗1), . . . , r̂(s∗n)|(q, y)) ∼ N (µ∗q , Σ∗q)

for some µ∗q and Σ∗q . Because this holds for any set of states S∗, it

shows that the posterior reward model is a GP.

We define the following vector notation:

c = (c1, . . . , cN)
T ∈ R

N

r̂ = (r̂(s1), . . . , r̂(sN))
T ∈ R

N

r̂∗ = (r̂(s∗1), . . . , r̂(s∗n))
T ∈ R

n

such that y = cT r̂.

The prior distribution of r̂ is Gaussian, i.e.,

P(r̂|X) ∼ N (µ, Σ),

with mean µ and covariance Σ.

Because ŷ is a linear function of r̂ plus Gaussian noise, the prior

distribution of ŷ is also Gaussian (Theorem 14.2 in [139]):

P(ŷ|X, C) ∼ N (cTµ, cTΣc + σ2
n I).

Further, r̂ and r̂∗ are jointly Gaussian distributed:

P
([

r̂
r̂∗
]
|X, S∗

)
∼ N

([
µ
µ∗
]

,
[

Σ Σ∗
(Σ∗)T Σ∗∗

])
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where µ∗ is the mean of r̂∗, and Σ∗ = Cov[r̂, r̂∗] and Σ∗∗ = Cov[r̂∗, r̂∗]
denote the components of the joint covariance matrix.

Hence, r̂∗ and ŷ are also jointly Gaussian distributed:

P
([

r̂∗
ŷ

]
|X, C, S∗

)
∼ N

([ µ∗

cTµ

]
,
[

Σ∗∗ (Σ∗)Tc

cTΣ∗ cTΣc+σ2
n I

])

where we used the linearity of the covariance function to find the

covariance matrix:

Cov[ŷ, r̂∗] = Cov[cT r̂, r̂∗]

= cTCov[r̂, r̂∗] = cTΣ∗

Cov[r̂∗, ŷ] = (Σ∗)Tc

Finally, we can use standard results on conditioning Gaussian

distributions (cf. Chapter A.2 in [30]) to find that the conditional

distribution is still Gaussian:

P(r̂∗|(q, y)) = P(r̂∗|y, X, C, S∗) ∼ N (µ∗q , Σ∗q)

with

µ∗q = µ∗ + ((Σ∗)Tc)(cTΣc + σ2
n I)
−1
(y− cTµ)

Σ∗q = Σ∗∗ − ((Σ∗)Tc)(cTΣc + σ2
n I)
−1
(cTΣ∗).

When conditioning the distribution, we replaced our belief about

the observation ŷ with its actual realization y.

a.2 implementation details

a.2.1 Baselines

Algorithm 7 shows pseudocode for the general reward learning

algorithm that all of our baselines implement. They only differ in the

choice of acquisition function in line 5.

uniform sampling . The uniform sampling baseline runs Algo-

rithm 7 with q∗ sampled uniformly from Qc instead of line 5.
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Algorithm 7 Generic reward learning algorithm using an acquisition

function u(q,D). Our baselines use information gain and expected

improvement for u. Uniform sampling samples q∗ uniformly from

Qc instead of line 5.

1: D ← {}
2: Initialize reward model with prior distribution P(r̂)

3: while not converged do

4: Select a query:

5: q∗ ∈ argmaxq∈Qc
u(q,D)

6: Query q∗ and update reward model:

7: y∗ ← Response to query q∗

8: P(r̂|D ∪ {(q∗, y∗)}) ∝ P(y∗|r̂,D, q∗)P(r̂|D)
9: D ← D ∪ {(q∗, y∗)}

10: r̄ ← mean estimate of the reward model

11: π̄∗ ← RL(r̄)

12: return π̄∗

information gain on the reward. We can write the informa-

tion gain on the reward in terms of conditional entropies (Theorem

2.4.1 in [140]):

u(s,D) = I((q, ŷ); r̂|D) = H(ŷ|D, q)− H(ŷ|r̂,D, q). (A.4)

For linear reward query, the second term of equation (A.4) is constant

and P(ŷ|D, q) is Gaussian. Hence, its entropy is (Theorem 8.4.1 in

[140]):

H(ŷ|D, q) =
1

2
log (2πeVar[ŷ|D, q]) .

And because the logarithm is a monotonic function, we simply have

argmax
q∈Qc

I((q, ŷ); r̂|D) = argmax
q∈Qc

Var[ŷ|D, q].

Hence, for a GP reward model with linear reward queries, we use

u(s,D) = Var[ŷ|D, q] in practice.
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expected improvement. We define EI as:

u(s,D) = L ·Φ(M) + Var[ŷ|D, q] · ρ(M),

M =
L

Var[ŷ|D, q]
, L = E[ŷ|D, q]− ymax − ξ,

where ρ is the p.d.f and Φ is the c.d.f of the standard normal distribu-

tion. ymax is the best observation made so far. ξ is a hyperparameter,

that we set to 0.001. EI quantifies how much larger a new observa-

tion is expected to be than the larges observation made so far. In

our setting, EI is only applicable if observations are numerical. In

particular, we cannot use EI if the queries are comparisons of states

or trajectories.

expected policy divergence . Expected policy divergence

(EPD; [52]) compares two policies: π̃ trained from a reward model

conditioned on the current dataset D, and π∗ estimates a policy

trained from a reward model conditioned on D ∪ {(q, y)}. EPD aims

to quantify the effect of making a query q and observing response y

on the currently optimal policy. For each potential query it assumes

an observation at an upper confidence bound conditioned on the

current model, and then selects observations that maximize some

distance measure between policies d(π̃, π∗). Daniel et al. [52] intro-

duce EPD using the KL divergence DKL(π̃∥π∗) as distance measure

d(π̃, π∗). However, in most of our experiments, the policies are de-

terministic, in which case the KL divergence is not well-defined. For

tabular environments, we define d to count the number of states

in which the policies differ. For the Driver environment we use an

ℓ2-distance between the policy representations.

maximum regret. Maximum Regret (MR; [61]) assumes a set of

candidate reward functions Rc = {r1, . . . , rn} to be given and then

considers a set of candidate policies Πc = {π1, . . . , πn}, where each

policy πi is optimal for one of the reward functions ri. MR can queries

comparison queries of the form q = (πi, πj). In practice, we use MR

for queries that compare trajectories sampled from πi and πj.
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MR aims to compare policies πi and πj that perform poorly when

evaluated under each other’s reward function rj and ri respectively.

If Gri
(πj) is the return of policy πj evaluated using reward function

ri, MR is defined as

u((πi, πj),D) = P(ri|D) · P(rj|D) ·
(

R(ri, rj) + R(rj, ri)
)

where R(ri, rj) is a measure of regret of a policy optimized for

reward function ri when evaluated under reward function rj. Wilde

et al. [61] use a regret measure based on a ratio of returns: R(ri, rj) =

1− Grj
(πi)/G(πj). However, this measure is only meaningful if all

rewards are positive, which is not the case in our experiments. There-

fore, we instead use a regret measure based on differences of returns:

R(ri, rj) = G(πj)− Grj
(πi).

1

For computing the probabilities P(ri|D), Wilde et al. [61] use a

simple Bayesian model that assumes a uniform prior and a likelihood

of making an observation of the form

P(y = +1|q = (πi, πj)) =





p if G(πi) > G(πj)

1− p else
(A.5)

with 0.5 < p ≤ 1. In the main chapter we report results for MR

using a GP reward model. We tested the simple Bayesian model in

equation (A.5) in preliminary experiments, and found it to result

in comparable results to the GP model with observations simulated

using a linear observation model.

a.2.2 IDRL for Deep RL

This section provides some additional implementation details for our

Deep RL implementation of IDRL, and compares it to the implemen-

tation of Christiano et al. [12].

1 This change was suggested by the authors of Wilde et al. [61] in personal communi-

cation to deal with negative rewards.
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a.2.2.1 Hyperparameter Choices

neural network model . We use the same network architec-

ture as Christiano et al. [12]: a two-layer neural network with 64

hidden units each and leaky-ReLU activation functions (α = 0.01).

For training we use ℓ2-regularization with λ = 0.5.

policy training . We use the stable-baselines3 implementa-

tion of SAC [141], with default hyperparameters. For training the

policy, we append a feature to the observations that measure the

remaining time within an episode, ft = (tmax − t)/tmax, where t is

the current time step in an episode and tmax is the episode length.

Adding this feature tends to speed up training significantly in the

MuJoCo environments. We do not add this feature for learning the

reward function. Policies are trained for 107 timesteps in total.

sampling rate . We provide 25% of samples to the reward model

before starting to train the policy, and during training provide sam-

ples at a sampling rate proportional to 1/T. Concretely, if Ns samples

are provided in Nb batches over the course of training, the i-th batch

will contain Ns
HNb
· 1

T samples, where Hn is the n-th harmonic number.

candidate policies . We maintain a set of 3 candidate policies,

that are each updated 107 timesteps, as the main policy. The candidate

policies are updated in regular intervals, which are controled by

a hyperparameter Np. Over the course of training, the candidate

policies will be updated Np times using 107/Np timesteps each time.

hyperparameter tuning . We only tuned two hyperparame-

ters explicitly: Nb, the number of batches of training samples the

model gets during training, and Np the number of times the can-

didate policies are updated during training. We selected all other

hyperparameters after preliminary experiments and to be as similar

as possible to Christiano et al. [12]. We first tuned Nb using a ran-

dom acquisition function and values in {10, 100, 1000, 10000}, and
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chose Nb = 1000 which gave the best performance evaluated over 5

random seeds. We choose the same Nb for all acquisition functions.

Then, we tuned Np for the IDRL acquisition function and values in

{10, 100, 200, 400, 600, 800, 1000}. We chose Np = 100 which lead to

best performance evaluated over 5 random seeds. All hyperparame-

ters were only tuned on the HalfCheetah environment.

a.2.2.2 Comparison to Christiano et al.

In this section we point out differences in our Deep RL setup com-

pared to Christiano et al. [12]. Some of the modifications are necessary

for applying IDRL. Other differences result from us not being able

to reproduce the exact environments and hyperparameters because

Christiano et al. [12] do not provide code of their experiments.

reward model . Christiano et al. [12] model the reward function

with an ensemble of DNNs. We learn a feature representation using

a single DNN, and combine this with a Bayesian linear model which

makes computing the IDRL objective more straightforward.

policy learning . We use SAC while Christiano et al. [12] use

TRPO for learning the policy. We chose SAC because it is significantly

more sample efficient in MuJoCo environments.

sampling rate . Christiano et al. [12] provide 25% of total sam-

ples to the model intially, and provide the rest of the samples at

an adaptive sampling rate which they choose to be “roughly pro-

portional to 2 · 106/(T + 2 ∗ 106)” (App. A.1 in [12]), where T is the

number of environment interactions so far. Unfortunately, they do

not provide enough information to exactly reproduce their sampling

schedule. Instead, we simplify the schedule to be proportional to

1/T.

clip length . Christiano et al. [12] query comparisons between

clips that “last 1.5 seconds, which varies from 15 to 60 timesteps
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depending on the task” (App. A.1 in [12]). Unfortunately, they do not

specify the framerate used for each task, so we can not reproduce the

exact clip lengths. Instead, we simply choose a length of 40 timesteps

for each environment which is roughly in the middle of the range

they provide.

observations . From their paper it is unclear whether Christiano

et al. [12] include the agents position in the observation in locomotion

environments such as the HalfCheetah. Note, that including the

observation makes the reward learning task much easier because

the reward function is linear in the change of the agent’s x-position.

Therefore, we do not include the position in the observation which

we use to predict the reward function.

penalties for termination. Most of the standard MuJoCo

environments have termination conditions, that, e.g., terminate an

episode when the robot falls over. Such termination can leak in-

formation about the reward, i.e., longer episodes are better. There-

fore, Christiano et al. [12] replace “these termination conditions by

a penalty which encourages the parameters to remain in the range”

(App. A in [12]). Unfortunately, they do not specify the exact penal-

ties they use. We also remove the termination condition, but replace

it with a bonus for “being alive” which is implemented in the version

3 environments of OpenAI Gym.

a.3 experiment details

a.3.1 Environments

This section provides more details on the environments used in the

experiments in Section 6.3.
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a.3.1.1 Chain

The Chain environment has a discrete state space with N states,

and a discrete action space with 2 actions ar and al . In the first M

states of the chain both actions moves the agent right, whereas in

the last N −M states al moves the agent left and ar moves the agent

right. The dynamics are deterministic. The initial state distribution is

uniform over the state space.

For the GP model of the reward, we choose a squared-exponential

(SE) kernel

k(s, s′) = σ2 exp

(
−d(s, s′)2

2l2

)

with variance σ = 2 and lengthscale l = 3. The distance d counts the

number of states between s and s′ on the chain.

a.3.1.2 Junction

The Junction environment has a discrete state space with N + 2M

states, and a discrete action space with 2 actions a1 and a2. In the first

N states either action moves the agent right. From state sN action

a1 moves the agent to sA1
and action a2 moves the agent to sB1

. In

either of the two paths the agent moves to one of the adjacent states

with probability 0.5, independent of the action it took. The reward of

states s1, . . . , sN is 0, the reward of states sB1
, . . . , sBM

is 0.8, and the

reward of state sAi
is

r(sAi
) = 1−

(
0.7 · i

M
− 1

)2

This reward function ensures that the average reward in the upper

chain is smaller than 0.8 but the maximum reward is bigger than 0.8.

The initial state distribution is uniform over the state space.

For the GP model of the reward, we choose a SE kernel with

variance σ = 2 and lengthscale l = 3. The distance d measures the

shortest path between s and s′ on graph that defines the Junction

(disregarding the transition function).
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a.3.1.3 Gridworld

The Gridworld environment consists of a 10 × 10 grid in which 2

objects of each of 10 different types are placed, so 20 objects in total.

Each object type gives a reward uniformly sampled from [−1, 1]

when standing on it, while floor tiles give 0 reward. Between each

two cells, with probability 0.3 there is a wall. The environment has

a discrete states space with 100 states and a discrete action space

with 5 actions: north, east, south, west, and stay. The dynamics are

deterministic. The initial position of the agent is randomly selected

but fixed for one instance of the environment.

For the GP model of the reward we choose a kernel

k(s, s′) =





1
if in s and s′ the agent is standing

on the same object type

0 else

so that the model learns a reward for each of the object types inde-

pendently.

a.3.1.4 Driver

We implement the Driver environment based on code provided by

Sadigh et al. [22] and Bıyık et al. [59]. The environment uses point-

mass dynamics with a continuous state and action space. The state

s = (x, y, θ, v) consists of the agent’s position (x, y), its heading θ,

and its velocity v. The actions a = (a1, a2) consist of a steering input

and an acceleration. The environment dynamics are defined as

st+1 = (xt+1, yt+1, θt+1, vt+1)

= (xt + ∆x, yt + ∆y, θt + ∆θ, clip(vt + ∆v,−1, 1))

(∆x, ∆y, ∆θ, ∆v) = (v cos θ, v sin θ, va1, a2 − αv)

where α = 1 is a friction parameter, and the velocity is clipped to

[−1, 1] at each timestep.
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The environment contains a highway with three lanes. In addition

to the agent, the environment contains a second car that changes

from the right to the middle lane, moving on a predefined trajectory.

The reward function is linear in a set of features

f (s) = ( f1(s), f2(s), f3(s), f4(s), 1)

where f1(s) ∝ exp(d2
1), d1 is the distance to the closest lane center,

f2(s) ∝ (v− 1)2, f3(s) ∝ sin(θ), and f4(s) ∝ exp
(
−d2

2 − cd2
3

)
where

d2 and d3 are the distance between the agent’s car and the other car

along the x and y directions respectively, and c is a constant. Reward

functions for the environment are sampled from a Gaussian with

zero mean and unit covariance. The first 4 features are normalized

before the constant is appended.

We use a fixed time horizon T = 50, and policies are parameterized

by 5 actions that are each applied for 10 time steps. For solving the

environment we optimize over these policies using an L-BFGS-B

solver as proposed by Sadigh et al. [22]. We additionally use the set

of candidate policies Πc as a lookup table to reduce the variance of

this solver. In particular, if Πc contains a policy that is better for a

given reward function than the one returned by the solver, we choose

this one instead. This was first proposed by Wilde et al. [61].

a.3.1.5 MuJoCo Corridor

Our MuJoCo Corridor environments are based on code of the maze

environments by Duan et al. [142]. Our “maze” is a corridor of 13

cells. The robot starts in the leftmost cell and one of the cells is a

fixed goal cell. The true reward function, that is not directly available

to the agent, rewards the agent proportional to its velocity in positive

x-direction if the agent is before the goal, and rewards the agent

proportionally to its velocity in negative x-direction if the agent is

past the goal. This provides a reward function that is harder to learn

than just moving in one direction. We encode this reward function as

a linear function of a set of features

f (s) = (vx I1, vy I1, I1, . . . , vx I13, vy I13, I13)
T ∈ R

39
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Figure A.1: Regret and cosine similarity in the Ant-Corridor environment,
comparing IDRL ( ) to IGR ( ), EI ( ), and uniform
sampling ( ). The experimental setup is exactly the same
to the results shown in Figure 3.4b in the main chapter.
The Ant-Corridor environment is the same as the Swimmer-
Corridor, only with a different robot.

where Ik are indicator features that are 1 if the agent is in cell k and

0 otherwise, and vx and vy are the x- and y-velocity of the center of

mass of the Swimmer.

We use augmented random search [70] with linear policies to solve

the environment for a given reward function. The policy is linear in a

seperate set of features than the reward function. The features for the

policy are based on the standard features provided by the Swimmer

environment, extended by an indicator feature for the Swimmer

being in each of the cells.

a.3.2 Additional Results

a.3.2.1 Ant Corridor

Figure A.1 shows results in the Ant-Corridor, using the same experi-

mental setup as the results in Figure 3.4b in the main chapter, which

shows results in the Swimmer-Corridor.
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Figure A.2: Return of policies trained using a model trained from 1400
comparison for each of the MuJoCo environments, corre-
sponding the the average shown in Figure 3.5.

a.3.2.2 Individual Deep RL Experiments

In Figure A.2 we provide learning curves for the individual MuJoCo

environments that were aggregated to create Figure 3.5 in the main

chapter. To aggregate the results we normalized the return in each

environment:

Gnorm(π) = 100 · G(π)− G(πrand)

G(π∗)− G(πrand)
,

where πrand is a policy that samples action uniformly at random, and

π∗ is an expert policy trained using SAC on the true reward. This

results in a score that is 0 for a policy that performs as well as a ran-

dom policy, and 100 for a policy that matches an expert performance.

In Figure 3.5 this score is averaged over all environments.
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This appendix provides additional details about Chapter 4. In partic-

ular, we provide proofs of the theoretical results (Appendix B.1), and

more details about the experiments (Appendix B.2).

b.1 proofs

b.1.1 Simulation Lemmas

In this section, we establish several simulation lemmas that we will

use throughout our analysis. Some of the results were already derived

in prior work for the infinite-horizon setting, e.g., by Zanette et al.

[87] and Metelli et al. [72]. For completeness, we provide proofs for

all results in the finite-horizon setting.

Definition B.1.1 (Occupancy measures). We define µh,h′
M,π(s|s0) as the

probability of being in state s at timestep h′ ≥ h following a policy π

in MDP \ RM starting in state s0 at timestep h. We can compute it

recursively as:

µh,h
M,π(s

′|s) := ✶{s′=s}

µh,h′+1
M,π (s′|s) := ∑

s′′,ã
P(s′|s′′, ã)πh′(ã|s′′)µh,h′

M,π(s
′′|s)

We define the same probability for state-action pairs analogously:

µh,h′
M,π(s

′, a′|s, a) := ✶{s′=s,a′=a}

µh,h′+1
M,π (s′, a′|s, a) := ∑

s̃,ã

πh′(a′|s′)P(s′|s̃, ã)µh,h′
M,π(s̃, ã|s, a)

157
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as well as

µh,h
M,π(s

′, a′|s) := πh(a′|s′)✶{s′=s}

µh,h′+1
M,π (s′, a′|s) := ∑

s̃,ã

πh′(a′|s′)P(s′|s̃, ã)µh,h′
M,π(s̃, ã|s)

Because the environment is Markovian, it also holds for h′ > h that

µh,h′
M,π(s

′|s) = ∑
s̃,a

µh+1,h′
M,π (s′|s̃)P(s̃|s, a)πh(a|s)

and equivalently for state-action pairs.

Lemma B.1.1. The value function and Q-function of a policy π in an

MDPM∪ r at timestep h can be expressed as:

Vπ,h
M∪r(s) =

H

∑
h′=h

∑
s′,a′

µh,h′
M,π(s

′, a′|s)rh′(s
′, a′)

Qπ,h
M∪r(s, a) =

H

∑
h′=h

∑
s′,a′

µh,h′
M,π(s

′, a′|s, a)rh′(s
′, a′)

Proof. We show the result for the value function; the derivation for

the Q-function is analogous.

Note that for h = H the statement holds because Vπ,H
M∪r(s) = 0.

The general result follows by induction. Assume that for h + 1 the

statement holds. Then:

Vπ,h
M∪r(s)

(a)
= ∑

a

πh(a|s)
(

rh(s, a) + ∑
s′

P(s′|s, a)Vπ,h+1
M∪r (s′)

)

(b)
= ∑

a

πh(a|s)
(

rh(s, a) + ∑
s′

P(s′|s, a)
(

H

∑
h′=h+1

∑
s′′,a′′

µh+1,h′
M,π (s′′, a′′|s′)rh′(s

′′, a′′)
))

(c)
= ∑

a

πh(a|s)rh(s, a) +
H

∑
h′=h+1

∑
s′,a′

µh,h′
M,π(s

′|s)πh′(a′|s′)rh′(s
′, a′)

(d)
=

H

∑
h′=h

∑
s′,a′

µh,h′
M,π(s

′|s)πh′(a′|s′)rh′(s
′, a′)
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where (a) uses the Bellman equation, (b) the induction step, (c)

uses Definition B.1.1 and relabels s′′ → s′, a′′ → a′, and (d) uses

Definition B.1.1 again and relabels a→ a′.

Lemma B.1.2 (Simulation lemma 1 by Metelli et al. [72]). LetM be an

MDP \ R, and r, r̂ two reward functions with corresponding optimal

policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤
H

∑
h′=h

∑
s′,a′

µh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s

′, a′)− r̂h′(s
′, a′)

)

Vπ∗,h
M∪r(s)−Vπ̂∗,h

M∪r̂(s) ≤
H

∑
h′=h

∑
s′,a′

µh,h′
M,π∗(s

′, a′|s)
(
rh′(s

′, a′)− r̂h′(s
′, a′)

)

Proof. Note that Qπ̂∗,h
M∪r̂(s, a) ≥ Qπ∗,h

M∪r̂(s, a) for all s, a because π̂∗ is

optimal for r̂. Hence

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤ Qπ∗,h
M∪r(s, a)−Qπ∗,h

M∪r̂(s, a)

(a)
=

H

∑
h′=h

∑
s′,a′

µh,h′
M,π∗(s

′, a′|s, a)(rh′(s
′, a′)− r̂h′(s

′, a′))

where (a) uses Lemma B.1.1. After observing Vπ̂∗,h
M∪r̂(s) ≥ Vπ∗,h

M∪r̂(s),

the second result follows analogously.

Lemma 4.2.3. LetM be an MDP \ R, r, r̂ two reward functions with

optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)

≤
H

∑
h′=h

∑
s′,a′

(
µh,h′
M,π∗(s

′, a′|s, a)− µh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s
′, a′)− r̂h′(s

′, a′)
)

Proof.
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Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)

= (Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a)) + (Qπ̂∗,h
M∪r̂(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤
H

∑
h′=h

∑
s′,a′

µh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s

′, a′)− r̂h′(s
′, a′)

)
+ (Qπ̂∗,h

M∪r̂(s, a)−Qπ̂∗,h
M∪r(s, a))

(b)
=

H

∑
h′=h

∑
s′,a′

µh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s

′, a′)− r̂h′(s
′, a′)

)

+
H

∑
h′=h

∑
s′,a′

µh,h′
M,π̂∗(s

′, a′|s, a)
(
r̂h′(s

′, a′)− rh′(s
′, a′)

)

=
H

∑
h′=h

∑
s′,a′

(
µh,h′
M,π∗(s

′, a′|s, a)− µh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s
′, a′)− r̂h′(s

′, a′)
)

where (a) uses Lemma B.1.2 and (b) uses Lemma B.1.1.

Lemma B.1.3. LetM1,M2 be two MDP \R with transition dynamics

P1, P2 respectively, r a reward function and π a policy. Then, for any

state s and timestep h:

Vπ,h
M2∪r(s)−Vπ,h

M1∪r(s)

=
H

∑
h′=h

∑
s′,a′,s′′

µh,h′
M2,π(s

′; s)πh′(a′|s′)(P2(s
′′|s′, a′)− P1(s

′′|s′, a′))Vπ,h′+1
M1∪r (s′′)

and

Vπ,h
M1∪r(s)−Vπ,h

M2∪r(s)

=
H

∑
h′=h

∑
s′,a′,s′′

µh,h′
M2,π(s

′; s)πh′(a′|s′)(P1(s
′′|s′, a′)− P2(s

′′|s′, a′))Vπ,h′+1
M1∪r (s′′)

Moreover,

∣∣∣Vπ,h
M2∪r(s)−Vπ,h

M1∪r(s)
∣∣∣

≤
H

∑
h′=h

∑
s′,a′,s′′

µh,h′
M2,π(s

′; s)πh′(a′|s′)
∣∣∣P2(s

′′|s′, a′)− P1(s
′′|s′, a′)

∣∣∣Vπ,h′+1
M1∪r (s′′)

Proof. We start by writing explicitly the value-functions:
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Vπ,h
M2∪r(s)−Vπ,h

M1∪r(s)

= ∑
a,s′

πh(a|s)
(

P2(s
′|s, a)Vπ,h+1

M2∪r (s
′)− P1(s

′|s, a)Vπ,h+1
M1∪r (s

′)± P2(s
′|s, a)Vπ,h+1

M1∪r (s
′)
)

= ∑
a,s′

πh(a|s)
(
(P2(s

′|s, a)− P1(s
′|s, a))Vπ,h+1

M1∪r (s
′) + P2(s

′|s, a)(Vπ,h+1
M2∪r (s

′)−Vπ,h+1
M1∪r (s

′))
)

Unrolling the recursion gives the first result; the second result

follows similarly:

Vπ,h
M1∪r(s)−Vπ,h

M2∪r(s)

= ∑
a,s′

πh(a|s)
(

P1(s
′|s, a)Vπ,h+1

M1∪r (s
′)− P2(s

′|s, a)Vπ,h+1
M2∪r (s

′)± P2(s
′|s, a)Vπ,h+1

M1∪r (s
′)
)

= ∑
a,s′

πh(a|s)
(
(P1(s

′|s, a)− P2(s
′|s, a))Vπ,h+1

M1∪r (s
′) + P2(s

′|s, a)(Vπ,h+1
M1∪r (s

′)−Vπ,h+1
M2∪r (s

′))
)

Together, the first two results imply the third one because all terms

in the sums are non-negative.

Lemma B.1.4. LetM1,M2 be two MDP \R with transition dynamics

P1, P2 respectively, r a reward function, and π∗1 , π∗2 optimal policy in

M1 ∪ r andM2 ∪ r, respectively. Then, for any state s and time h:

V∗,hM1∪r(s)−V∗,hM2∪r(s)

≤ ∑
h′=h

∑
s′,a′,s′′

µh,h′
M2,π∗1

(s′; s)π∗1,h(a′|s′)(P1(s
′′|s′, a′)− P2(s

′′|s′, a′))V∗,hM1∪r(s
′′)

and

V∗,hM2∪r(s)−V∗,hM1∪r(s)

≤ ∑
h′=h

∑
s′,a′,s′′

µh,h′
M2,π∗2

(s′; s)π∗2,h(a′|s′)(P2(s
′′|s′, a′)− P1(s

′′|s′, a′))V∗,hM2∪r(s
′′)

Proof.
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V∗,hM1∪r(s)−V∗,hM2∪r(s)

=∑
a,s′

(
π∗1,h(a|s)P1(s

′|s, a)V
π∗1 ,h+1
M1∪r (s′)− π∗2,h(a|s)P2(s

′|s, a)V
π∗2 ,h+1
M2∪r (s′)

± π∗1,h(a|s)P2(s
′|s, a)V

π∗1 ,h+1
M1∪r (s′)± π∗1,h(a|s)P2(s

′|s, a)V
π∗2 ,h+1
M2∪r (s′)

)

=∑
a,s′

(
π∗1,h(a|s)P2(s

′|s, a)(V
π∗1 ,h+1
M1∪r (s′)−V

π∗2 ,h+1
M2∪r (s′))

+ π∗1,h(a|s)(P1(s
′|s, a)− P2(s

′|s, a))V
π∗1 ,h+1
M1∪r (s′)

+ (π∗1,h(a|s)− π∗2,h(a|s))P2(s
′|s, a)V

π∗2 ,h+1
M2∪r (s′)

)

≤∑
a,s′

(
π∗1,h(a|s)P2(s

′|s, a)(V
π∗1 ,h+1
M1∪r (s′)−V

π∗2 ,h+1
M2∪r (s′))

+ π∗1,h(a|s)(P1(s
′|s, a)− P2(s

′|s, a))V
π∗1 ,h+1
M1∪r (s′)

)

where the last inequality uses that π∗ is optimal forM2 ∪ r. Un-

rolling the recursion gives the first result. A similar argument yields

the second results:

V∗,hM2∪r(s)−V∗,hM1∪r(s)

=∑
a,s′

(
π∗2,h(a|s)P2(s

′|s, a)V
π∗2 ,h+1
M2∪r (s′)− π∗1,h(a|s)P1(s

′|s, a)V
π∗1 ,h+1
M1∪r (s′)

± π∗2,h(a|s)P2(s
′|s, a)V

π∗1 ,h+1
M1∪r (s′)

)

=∑
a,s′

(
π∗2,h(a|s)P2(s

′|s, a)(V
π∗2 ,h+1
M2∪r (s′)−V

π∗1 ,h+1
M1∪r (s′))

+ π∗2,h(a|s)P2(s
′|s, a)V

π∗1 ,h+1
M1∪r (s′)− π∗1,h(a|s)P1(s

′|s, a)V
π∗1 ,h+1
M1∪r (s′)

≤∑
a,s′

(
π∗2,h(a|s)P2(s

′|s, a)(V
π∗2 ,h+1
M2∪r (s′)−V

π∗1 ,h+1
M1∪r (s′))

+ π∗2,h(a|s)(P2(s
′|s, a)− P1(s

′|s, a))V
π∗1 ,h+1
M1∪r (s′)
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b.1.2 Feasible Reward Set

In this section, we characterize the feasible reward set first implicitly,

then explicitly, and prove a result about error propagation. [72]

provide a similar analysis in the infinite-horizon setting.

Lemma 4.2.1 (Feasible Reward Set Implicit). A reward function r

is feasible if and only if for all s, a, h it holds that: Aπ,h
M∪r(s, a) = 0

if πE
h (a|s) ≥ 0 and Aπ,h

M∪r(s, a) ≤ 0 if πE
h (a|s) = 0. Moreover, if the

second inequality is strict, πE is uniquely optimal, i.e., Π∗M∪r = {πE}.
Proof. The result follows directly from Definition 4.2.1.

Lemma B.1.5. A Q-function satisfies the conditions of Lemma 4.2.1 if

and only if there exists an {Ah ∈ R
|S|×A
≥0 }h∈H and {Vh ∈ R

|S|} such

that for every h, s, a ∈ [H]× S ×A:

QπE,h
M∪r(s, a) = −Ah(s, a)✶{πE

h (a|s)=0} + Vh(s)

Proof. We first show that if QπE,h
M∪r(s, a) has this form, the condi-

tions of Lemma 4.2.1 are satisfied, and then the converse. Assume

QπE,h
M∪r(s, a) = −Ah(s, a)✶{πE

h (a|s)=0} + Vh(s). Then,

VπE,h
M∪r(s) = ∑

a

πE
h (a|s)QπE,h

M∪r(s, a) = Vh(s).

If πE
h (a|s) > 0, then QπE,h

M∪r(s, a) = VπE,h
M∪r(s), which is the first con-

dition of Lemma 4.2.1. If πE
h (a|s) = 0, QπE,h

M∪r(s, a) = VπE,h
M∪r(s) −

Ah(s, a) ≤ VπE,h
M∪r(s), which is the second condition of Lemma 4.2.1.

For the converse, assume that the conditions of Lemma 4.2.1 hold,

and let Vh(s) = VπE,h
M∪r(s) and Ah(s, a) = VπE,h

M∪r(s)−QπE,h
M∪r(s, a).

Lemma 4.2.2 (Feasible Reward Set Explicit). A reward function r

is feasible if and only if there exists an {Ah ∈ R
|S|×|A|
≥0 }h∈[H] and

{Vh ∈ R
|S|}h∈[H] such that for all s, a, h it holds that:

rh(s, a) = −Ah(s, a)✶{πE
h (a|s)=0} + Vh(s) + ∑

s′
P(s′|s, a)Vh+1(s

′)
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Proof.

Since QπE,h
M∪r(s, a) = rh(s, a) + ∑s′ P(s

′|s, a)Vh+1(s
′), we can use

Lemma B.1.5 to see:

rh(s, a) = QπE,h
M∪r(s, a)−∑

s′
P(s′|s, a)Vh+1(s

′)

= −Ah(s, a)✶{πE
h (a|s)=0} + Vh(s) + ∑

s′
P(s′|s, a)Vh+1(s

′)

Theorem 4.2.1 (Error Propagation). Let (M, πE) and (M̂, π̂E) be two

IRL problems. Then, for any r ∈ R(M,πE) there exists r̂ ∈ R̂(M̂,π̂E)
such that:

|rh(s, a)− r̂h(s, a)| ≤Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|
+∑

s′
Vh+1(s

′)|P(s′|s, a)− P̂(s′|s, a)|

and we can bound Vh ≤ (H − h)rmax and Ah ≤ (H − h)rmax.

Proof. We start by rewriting r and r̂ using Lemma 4.2.2:

rh(s, a) = −Ah(s, a)✶{πE
h (a|s)=0} + Vh(s) + ∑

s′
P(s′|s, a)Vh+1(s

′)

r̂h(s, a) = −Âh(s, a)✶{π̂E
h (a|s)=0} + V̂h(s) + ∑

s′
P̂(s′|s, a)V̂h+1(s

′)

We can choose (w.l.o.g.) Vh = V̂h and Âh = Ah:

rh(s, a)− r̂h(s, a) = −Ah(s, a)✶{πE
h (a|s)=0} + Vh(s) + ∑

s′
P(s′|s, a)Vh+1(s

′)

+ Ah(s, a)✶{π̂E
h (a|s)=0} −Vh(s)−∑

s′
P̂(s′|s, a)Vh+1(s

′)

=− Ah(s, a)(✶{πE
h (a|s)=0} − ✶{π̂E

h (a|s)=0}) + ∑
s′

Vh+1(s
′)(P(s′|s, a)− P̂(s′|s, a))

Note that ✶{πE
h (a|s)=0} ≤ 1−πE

h (a|s) and ✶{π̂E
h (a|s)=0} ≤ 1− π̂E

h (a|s),
which can be easily checked for both cases of the indicator. Using

this, we get
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Algorithm 8 Uniform sampling IRL with a generative model.

Require: significance δ, target accuracy ϵ, samples per round nmax

1: Initialize k← 0, ϵ0 ← H

2: while ϵk > ϵ/2 do

3: Uniformly sample ⌈ nmax

|S||A|H ⌉ samples from all s, a, h

4: For each sample, observe transition and expert action

5: k← k + 1

6: Update P̂k, π̂k, and Ch
k

7: Update accuracy ϵk ← H maxs,a,h Ch
k (s, a)

rh(s, a)− r̂h(s, a) ≤Ah(s, a)(πE
h (a|s)− π̂E

h (a|s))
+ ∑

s′
Vh+1(s

′)(P(s′|s, a)− P̂(s′|s, a))

The result follows by taking the absolute value and applying the

triangle inequality.

b.1.3 Uniform Sampling IRL With Generative Model

In this section, we derive sample complexity results for uniform sam-

pling with a generative model (Algorithm 8). Metelli et al. [72] proved

an analogous result for the infinite-horizon setting focusing on trans-

ferable rewards. In contrast, our focus is on the finite-horizon setting.

Moreover, [72] considers to learn a reward that is transferable to a

known target environment. In our setting, instead, we suppose to use

the recovered reward function in the unknown source environment.

Definition 4.2.2 (Optimality Criterion). Let RB be the exact feasible

set and R
B̂

be the feasible set recovered after observing n ≥ 0

samples collected from M and πE. We say that an algorithm for
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Active IRL is (ϵ, δ, n)-correct if after n iterations with probability at

least 1− δ it holds that:

inf
r̂∈R

B̂

sup
π̂∗∈Π∗M̂∪r̂

max
a

∣∣∣Qπ∗,0
M∪r(s0, a)−Qπ̂∗,0

M∪r(s0, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗M∪r

max
a

∣∣∣Qπ∗,0
M∪r(s0, a)−Qπ̂∗,0

M∪r(s0, a)
∣∣∣ ≤ ϵ for each r̂ ∈ R

B̂
,

where π∗ is an optimal policy inM∪ r and π̂∗ is an optimal policy

in M̂ ∪ r̂.

Lemma B.1.6 (Good Event). Let πE be a (possibly stochastic) expert

policy. We estimate the expert policy with π̂E and the transition

model P with an estimate P̂k from k episodic interactions. Let nh
k(s, a)

and nh
k(s) be the number of times state action pairs and states have

been observed at time h within the first k episodes, and nh+
k (s, a) =

max{1, nh
k(s, a)}. Then,

|πE
h (a|s)− π̂E

h (a|s)Ah(s, a)| ≤ (H − h)rmax

√√√√ ℓh
k(s, a)

nh
k

+
(s, a)

|πE
h (a|s)− π̂E

h (a|s)Âh(s, a)| ≤ (H − h)rmax

√√√√ ℓh
k(s, a)

nh
k

+
(s, a)

∑
s′
|(P(s′|s, a)− P̂k(s

′|s, a))Vπ,h
r (s′)| ≤ (H − h)rmax

√√√√ 2ℓh
k(s, a)

nh
k

+
(s, a)

∑
s′
|(P(s′|s, a)− P̂k(s

′|s, a))V̂π,h
r (s′)| ≤ (H − h)rmax

√√√√ 2ℓh
k(s, a)

nh
k

+
(s, a)

where ℓh
k(s, a) = log

(
24|S||A|H(nh

k

+
(s, a))2/δ

)
, holds simultane-

ously for all (s, a, h) ∈ S × A × [H] and k ≥ 1 with probability at

least 1− δ. We call the event that these equations hold the good event

E and write P(E ) ≥ 1− δ.
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Proof. We show that each statement individually does not hold with

probability less than δ/4, which implies the result via a union bound.

Let us denote β1(s, a, h) := (H − h)rmax

√
2ℓh

k (s,a)

nh
k

+
(s,a)

. First, consider the

last two inequalities. The probability that either of them does not

hold is:

Pr

(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] : ∑

s′
|(P(s′|s, a)− P̂k(s

′|s, a))Vπ,h
r (s′)| > β1(s, a, h)

)

(a)

≤Pr

(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] : ∑

s′
|(P(s′|s, a)− P̂k(s

′|s, a))Vπ,h
r (s′)| > β1(s, a, h)

)

(b)

≤ ∑
m≥0

∑
s,a

H

∑
h=0

Pr

(
∑
s′
|(P(s′|s, a)− P̂k(s

′|s, a))Vπ,h
r (s′)| > β1(s, a, h)

)

(c)

≤ ∑
m≥0

∑
s,a

H

∑
h=0

2 exp

(
− 2β1(s, a, h)2m2

4m(H − h)2r2
max

)
≤ ∑

m≥0
∑
s,a

H

∑
h=0

2 exp (−ℓk(s, a))

= ∑
m≥0

∑
s,a

H

∑
h=0

2δ

24|S||A|H(m+)2
=

δ

12

(
1 + ∑

m≥0

1

m2

)
=

δ

12

(
1 +

π2

6

)
≤ δ

4

Step (a) assumes that we visit a state action pair m times, and

focuses on these m times the transition model for the given state-

action pair is updated. Step (b) uses a union bound over m and (s, a).

Step (c) applies Hoeffding’s inequality using that we estimate P with

an average of samples, and Vπ,h
r ≤ (H − h)rmax. The factor m2 in the

numerator results from dividing by 1/m to average over samples,

and the factor 4m in the denominator results from the sum over m in

the denominator of Hoeffding’s bound.

We show the first two inequalities similarly, with

β2(s, a, h) := (H − h)rmax

√√√√ ℓh
k(s, a)

nh
k

+
(s, a)



168 active exploration for irl

Pr
(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))Ah(s, a)| > β2(s, a, h)

)

(a)

≤Pr
(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))Ah(s, a)| > β2(s, a, h)

)

(b)

≤ ∑
m≥0

∑
s,a

H

∑
h=0

Pr
(
|(πE

k (a|s)− π̂E
k (a|s))Ah(s, a)| > β2(s, a, h)

)

(c)

≤ ∑
m≥0

∑
s,a

H

∑
h=0

2 exp

(
− 2β2(s, a, h)2m2

4m(H − h)2r2
max

)
≤ ∑

m≥0
∑
s,a

H

∑
h=0

2 exp (−ℓk(s, a))

= ∑
m≥0

∑
s,a

H

∑
h=0

2δ

24|S||A|H(m+)2
=

δ

12

(
1 + ∑

m≥0

1

m2

)
=

δ

12

(
1 +

π2

6

)
≤ δ

4

A union bound over all equations results in P(E ) ≥ 1− δ.

Definition B.1.2. We define the reward uncertainty as

Ch
k (s, a) = (H − h)rmax min

(
1, 2

√
2ℓh

k(s, a)

nh
k(s, a)

)

Corollary B.1.1. Under the good event E , in each iteration k it holds

for all (s, a, h) ∈ S ×A× [H] that:

|rh(s, a)− r̂k
h(s, a)| ≤ Ch

k (s, a)

Proof.

|rh(s, a)− r̂k
h(s, a)|

(a)

≤ Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|+ ∑
s′

Vh+1(s
′)|P(s′|s, a)− P̂(s′|s, a)|

(b)

≤ (H − h)rmax


2

√√√√ 2ℓh
k(s, a)

nh
k

+
(s, a)


 = Ch

k (s, a)

where (a) uses Theorem 4.2.1 and (b) uses Lemma B.1.6.

Corollary B.1.2. Let S be a sampling strategy. Let RB be the exact

feasible set and R
B̂k

be the feasible set recovered after k iterations. If

H max
s,a,h

Ch
k (s, a) ≤ ϵ

2
,

then the conditions of Definition 4.2.2 are satisfied.
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Proof. For the first condition of Definition 4.2.2, observe:

inf
r̂∈R

B̂k

sup
π̂∗∈Π∗M̂∪r̂

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤ inf
r̂∈R

B̂k

sup
π̂∗∈Π∗M̂∪r̂

max
s,a,h

H

∑
h′=h

∑
s′,a′

(
µh,h′
M,π∗(s

′, a′|s, a)− µh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s
′, a′)− r̂h′(s

′, a′)
)

(b)

≤ inf
r̂∈R

B̂k

sup
π̂∗∈Π∗M̂∪r̂

max
s,a,h

∣∣∣
H

∑
h′=h

∑
s′,a′

(
µh,h′
M,π∗(s

′, a′|s, a)− µh,h′
M,π̂∗(s

′, a′|s, a)
)

Ch′
k (s

′, a′)
∣∣∣

≤2H max
s,a,h

Ch
k (s, a)

where (a) uses Lemma 4.2.3 and (b) uses Corollary B.1.1.

For the second condition of Definition 4.2.2, it follows similarly

that:

inf
r∈RB

sup
π∗∈Π∗M∪r

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)) ≤ 2H max
s,a,h

Ch
k (s, a)

Hence, if H maxs,a,h Ch
k (s, a) ≤ ϵ/2, both conditions of Definition 4.2.2

are satisfied.

Theorem B.1.1 (Sample Complexity of Uniform Sampling IRL). With

probability at least 1− δ, Algorithm 8 stops at iteration τ fulfilling

Definition 4.2.2 with a number of samples upper bounded by:

n ≤ Õ
(

H5r2
max|S||A|

ϵ2

)

Proof. First, note

H max
s,a,h

Ch
k (s, a) = H2rmax max

s,a,h


2

√√√√ 2ℓh
k(s, a)

nh
k

+
(s, a)




After τ iterations, we have collected τ · nmax samples and for each

s, a, h, we have: nh
τ
+
(s, a) ≥ τnmax

|S||A|H ≥ 1

To terminate at iteration τ, we need to have for all s, a, h:

2H2rmax

√
2ℓh

τ(s, a)

nh
τ(s, a)

≤ ϵ

2
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which implies

nh
τ(s, a) ≥ 32H4r2

maxℓ
h
τ(s, a)

ϵ2

By using Lemma B.8 by [72], we can conclude that the number of

samples necessary to ensure accuracy ε is:

n ≤ Õ
(

H5r2
max|S||A|

ϵ2

)

Corollary B.1.3. If the true reward function does not depend on the

timestep h, i.e., rh(s, a) = r(s, a), then we can modify Algorithm 8 to

only need n ≤ Õ
(

H4r2
max|S||A|

ϵ2

)
samples.

Proof. If we know that the reward function does not depend on h

we can choose Ck(s, a) = minh Ch
k (s, a) as a confidence interval of the

reward. Consequently, we can sample all states for a fixed h.

We still need for all s, a:

2H2rmax

√
2ℓh

τ(s, a)

nh
τ(s, a)

≤ ϵ

2
⇒ nh

τ(s, a) ≥ 32H4r2
maxℓ

h
τ(s, a)

ϵ2

Again, we use Lemma B.8 by [72], but we can eliminate one sum

over H, ending up with:

n ≤ Õ
(

H4r2
max|S||A|

ϵ2

)

b.1.4 AceIRL: Problem Independent Analysis

We are now ready to analyze the sample complexity of AceIRL (Al-

gorithm 3). We first consider the simple version of the algorithm:

AceIRL Greedy. Then, we consider the full version of the algorithm
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after introducing a few additional lemma about the policy confidence

set. We start by defining the error upper bound and deriving two

lemmas that will help us to show that it is indeed an upper bound

on the error we want to reduce.

Definition B.1.3. We define recursively:

EH
k (s, a) = 0

Eh
k (s, a) = min

(
(H − h)rmax, Ch

k (s, a) + ∑
s′

P̂(s′|s, a)max
a′∈A

Eh+1
k (s′, a′)

)

where P̂ is the estimated transition model of the environment.

The first lemma shows that the error upper bound can upper

bound the error due to estimating the transition model.

Lemma B.1.7. Under the good event E , for all policies π and reward

functions r and all s, a, h:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Eh
k (s, a)

Proof.

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| =
∣∣∣∑

s′
P̂(s′|s, a)∑

a′
π(a′|s′)Qπ,h+1

M̂∪r
(s′, a′)

−∑
s′

P(s′|s, a)∑
a′

π(a′|s′)Qπ,h+1
M∪r (s

′, a′)±∑
s′

P̂(s′|s, a)∑
a′

π(a′|s′)Qπ,h+1
M∪r (s

′, a′)
∣∣∣

≤
∣∣∣∑

s′

(
P̂(s′|s, a)− P(s′|s, a)

)
∑
a′

π(a′|s′)Qπ,h+1
M∪r (s

′, a′)
∣∣∣

+ ∑
s′

P̂(s′|s, a)∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) + ∑

s′
P̂(s′|s, a)∑

a′
π(a′|s′)

∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

For h = H the result holds trivially. Now assuming it holds for

h + 1, we consider step h:
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|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)|

≤ Ch
k (s, a) + ∑

s′
P̂(s′|s, a)∑

a′
π(a′|s′)

∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) + ∑

s′
P̂(s′|s, a)max

a′

∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) + ∑

s′
P̂(s′|s, a)max

a′
Eh+1

k (s′, a′) = Eh
k (s, a)

The next lemma shows that the error upper bound can also upper

bound the error in estimating the reward function, which is due to

estimating the transition model and the expert policy.

Lemma B.1.8. Under the good event E , for all reward function r, all

policies π, and all s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Eh

k (s, a)

Proof. For h = H the result holds trivially. Now assuming it holds

for h + 1, we consider step h:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)|

≤|r̂(s, a)− r(s, a)|+ ∑
s′

P̂(s′|s, a)∑
a′

π(a′|s′)|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+ ∑
s′

P̂(s′|s, a)max
a′
|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+ ∑
s′

P̂(s′|s, a)max
a′

Eh+1
k (s′, a′) = Eh

k (s, a)

We can now combine the previous two lemmas to show that E is

indeed an upper bound on the error we want to reduce. This implies

correctness of AceIRL Greedy, which the following lemma formalizes.

Lemma B.1.9 (Correctness of AceIRL Greedy). If AceIRL Greedy stops

in episode k, after sampling n samples, i.e., E0
k(s0, πk+1(s0)) ≤ ϵ

4 , then

it fulfills Definition 4.2.2.
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Proof. Let us define the error

eh
k(s, a) := |Qπ∗,h

M∪r(s, a)−Qπ̂∗,h
M∪r(s, a)|

where π∗ is the true optimal policy inM∪ r, and π̂∗ is the optimal

policy in M̂ ∪ r̂, i.e., in the estimated MDP using the inferred reward

function. Then,

eh
k(s, a) = |Qπ∗,h

M∪r(s, a)−Qπ̂∗,h
M∪r(s, a)±Qπ∗,h

M̂∪r
(s, a)±Qπ̂∗,h

M̂∪r
(s, a)|

≤ |Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)|

︸ ︷︷ ︸
≤Eh

k (s,a)

+|Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)|+ |Qπ̂∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M∪r(s, a)|

︸ ︷︷ ︸
≤Eh

k (s,a)

≤ 2Eh
k (s, a) + |Qπ∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)|

where, we used Lemma B.1.7.

Let us consider the remaining term |Qπ∗,h
M̂∪r

(s, a)− Qπ̂∗,h
M̂∪r

(s, a)| in

two steps. First, we have:

Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a) ≤Qπ∗,h
M̂∪r

(s, a)−Qπ∗,h
M̂∪r̂

(s, a)
︸ ︷︷ ︸

≤Eh
k (s,a)

+ Qπ∗,h
M̂∪r̂

(s, a)−Qπ̂∗,h
M̂∪r̂

(s, a)
︸ ︷︷ ︸

≤0

+

+ Qπ̂∗,h
M̂∪r̂

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)
︸ ︷︷ ︸

≤Eh
k (s,a)

≤ 2Eh
k (s, a),

where we used Lemma B.1.8 and the fact that π̂∗ is optimal in the

MDP M̂ ∪ r̂. Second, we have:

Qπ̂∗,h
M̂∪r

(s, a)−Qπ∗,h
M̂∪r

(s, a) ≤Qπ̂∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M∪r(s, a)

︸ ︷︷ ︸
≤Eh

k (s,a)

+ Qπ̂∗,h
M∪r(s, a)−Qπ∗,h

M∪r(s, a)︸ ︷︷ ︸
≤0

+

+ Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)

︸ ︷︷ ︸
≤Eh

k (s,a)

≤ 2Eh
k (s, a),

where we used Lemma B.1.7 and the fact that π∗ is optimal in the

MDPM∪ r. Overall, we find that

|Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)| ≤ 2Eh
k (s, a),

and consequently,

eh
k(s, a) ≤ 4Eh

k (s, a).

Hence, if E0
k(s0, πk+1(s0)) ≤ ϵ

4 , we have for all a ∈ A:

e0
k(s0, a) ≤ ϵ
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which implies correctness according to Definition 4.2.2.

Next, we will analyze the sample complexity of AceIRL Greedy.

Let us first define pseudo-counts that will be crucial to deal with the

uncertainty of the transition dynamics in our analysis. This is similar

to the analysis of UCRL for reward-free exploration by Kaufmann et

al. [85].

Definition B.1.4. We define the pseudo-counts of visiting a specific

state action pair at timestep h within the first k iterations as

n̄h
k(s, a) :=

k

∑
i=1

µ0,h
M,πi

(s, a|s0),

where πi is the exploration policy in episode i.

The following lemma allows us to introduce the pseudo-counts

when considering the contraction of the reward confidence intervals.

Lemma B.1.10. With probability at least 1− δ
2 for all s, a, h, k ∈ S ×

A× [H]×N
+, we have:

min

(
2ℓh

k(s, a)

nh
k(s, a)

, 1

)
≤ 8ℓ̄h

k(s, a)

max
(
n̄h

k(s, a), 1
)

where ℓ̄h
k(s, a) = log

(
24|S||A|H(n̄h

k(s, a))2/δ
)
.

Proof. This result adapts Lemma 7 by Kaufmann et al. [85] to our

setting.

By Lemma 10 in Kaufmann et al. [85], we have with probability at

least 1− δ
2 :

nh
k(s, a) ≥ 1

2
n̄h

k(s, a)− βcnt(δ),

where βcnt(δ) = log(2|S||A|H/δ).

We distinguish two cases. First let βcnt(δ) ≤ 1
4 n̄h

k(s, a). Then nh
k(s, a) ≥

1
4 n̄h

k(s, a), and
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min

(
2ℓh

k(s, a)

nh
k(s, a)

, 1

)
≤ 2ℓh

k(s, a)

max(nh
k(s, a), 1)

=
2 log(24|S||A|H(nh

k(s, a))2/δ)

max(nh
k(s, a), 1)

≤ 2 log(24|S||A|H(n̄h
k(s, a)/4)2/δ)

(n̄h
k(s, a)/4)

≤ 8ℓ̄h
k(s, a)

max(n̄h
k(s, a), 1)

where we use that log(24|S||A|Hx2/δ)/x is non-increasing for

x > 1, and log(24|S||A|Hx2/δ) is non-decreasing and βcnt(δ) ≥ 1.

Now consider let βcnt(δ) >
1
4 n̄h

k(s, a). Then,

min

(
2ℓh

k(s, a)

nh
k(s, a)

, 1

)
≤ 1 < 4

βcnt(δ)

max(n̄h
k(s, a), 1)

≤ 4ℓ̄h
k(s, a)

max(n̄h
k(s, a), 1)

where we used that ℓh
k(s, a) = log

(
24|S||A|H(nh

k(s, a))2/δ
)
= βcnt(δ)+

log
(
6nh

k(s, a))2
)
≥ βcnt(δ).

The final lemma we need shows relates the error upper bound

which is defined using our estimated transition model to a similar

quantity defined using the (unknown) real transitions.

Lemma B.1.11. Under the good event E , we have for any s, a, h :

Eh
k (s, a) ≤ 2Ch

k (s, a) + ∑
s′

P(s′|s, a)max
a′

Eh+1
k (s′, a′)

where P is the true transition model that we do not know.

Proof. First note that Eh
k (s, a) ≤ H by definition. Now, consider:

Eh
k (s, a) ≤ Ch

k (s, a) + ∑
s′

P̂(s′|s, a)max
a′

Eh+1
k (s′, a′)

= Ch
k (s, a) + ∑

s′
(P̂(s′|s, a)− P(s′|s, a) + P(s′|s, a))max

a′
Eh+1

k (s′, a′)

= Ch
k (s, a) + ∑

s′
(P̂(s′|s, a)− P(s′|s, a))max

a′
Eh+1

k (s′, a′)
︸ ︷︷ ︸

≤Ch
k (s,a)

+∑
s′

P(s′|s, a))max
a′

Eh+1
k (s′, a′)

≤ 2Ch
k (s, a) + ∑

s′
P(s′|s, a)max

a′
Eh+1

k (s′, a′)

where we used the good event and the fact that Ch
k can only shrink

over episodes.

Finally, we can analyze the sample complexity of AceIRL Greedy.
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Theorem B.1.2 (AceIRL Greedy Sample Complexity (problem inde-

pendent)). AceIRL Greedy terminates with an (ϵ, δ, n)-correct solu-

tion, with

n ≤ Õ
(

H5r2
max|S||A|

ϵ2

)
.

Proof. Lemma B.1.9 shows that if AceIRL Greedy terminates, then

it returns a (ϵ, δ, n)-correct solution. So, we need to show that it

terminates within τ iterations and bound τ.

Let us consider the average error, defined by

qh
k := ∑

s,a

µ0,h
M,πk+1

(s, a|s0)Eh
k (s, a)

(a)

≤ ∑
s,a

µ0,h
M,πk+1

(s, a|s0)
(
2Ch

k (s, a) + ∑
s′

P(s′|s, a)max
a′

Eh+1
k (s′, a′)

)

= ∑
s,a

µ0,h
M,πk+1

(s, a|s0)
(
2Ch

k (s, a) + ∑
s′

P(s′|s, a)∑
a′

πk+1(a′|s′)Eh+1
k (s′, a′)

)

= 2 ∑
s,a

µ0,h
M,πk+1

(s, a|s0)C
h
k (s, a) + qh+1

k

where we used Lemma B.1.11 in step (a). Unrolling the recursion,

results in:

qh
k ≤ 2

H

∑
h′=h

∑
s,a

µ0,h′
M,πk+1

(s, a|s0)C
h′
k (s, a)

If the algorithm terminates at τ, we have for each k < τ, and

s, a, h ∈ S ×A× [H]: ϵ < 4E0
k(s0, πk+1(s0)).

We have q0
k = E0

k(s0, πk+1(s0)); therefore, as long we haven’t stopped,

we have ϵ ≤ 4q0
k . Writing out this inequality, yields:

ϵ ≤ 4q0
k ≤ 8

H

∑
h=0

∑
s,a

µ0,h
M,πk+1

(s, a|s0)C
h
k (s, a) ≤ 4Hrmax

H

∑
h=0

∑
s,a

µ0,h
M,πk+1

(s, a|s0)

√
8 log(12|S||A|H(nh

k(s, a))2/δ)

max(nh
k(s, a), 1)

Using Lemma B.1.10, we can relate this to the pseudo-counts

ϵ < 4Hrmax

H

∑
h=0

∑
s,a

µ0,h
M,πk+1

(s, a|s0)

√
8 log(12|S||A|H(n̄h

k(s, a))2/δ)

max(n̄h
k(s, a), 1)

≤ 4Hrmax

H

∑
h=0

∑
s,a

µ0,h
M,πk+1

(s, a|s0)

√
8 log(12|S||A|Hk2/δ)

max(n̄h
k(s, a), 1)
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Summing the inequality over k = 0, . . . T with T < τ, we obtain

ϵ(T + 1) ≤ 4Hrmax

√
8 log(12|S||A|HT2/δ)

H

∑
h=0

∑
s,a

T

∑
k=1

µ0,h
M,πk+1

(s, a|s0)
1√

max(n̄h
k(s, a), 1)

= 4Hrmax

√
8 log(12|S||A|HT2/δ)

H

∑
h=0

∑
s,a

T

∑
k=1

n̄k+1
h (s, a)− n̄k

h(s, a)√
max(n̄h

k(s, a), 1)

where we used the definition of the pseudo-counts in the last

equality. Using Lemma 19 by [143], we can further bound the sum in

k:

ϵ(T + 1) = 4Hrmax

√
8 log(12|S||A|HT2/δ)

H

∑
h=0

∑
s,a

√
n̄T+1

h (s, a)

≤ 4Hrmax

√
8 log(12|S||A|HT2/δ)

√
|S||A|

H

∑
h=0

√
∑
s,a

n̄T+1
h (s, a)

= 4H2rmax

√
8 log(12|S||A|HT2/δ)

√
|S||A|

√
T + 1

It follows that

ϵ
√

T + 1 ≤ 4H2rmax

√
8|S||A| log(12|S||A|HT2/δ)

ϵ2τ ≤ 128H4r2
max|S||A| log(12|S||A|H(τ − 1)2/δ)

setting τ = T + 1.

For large enough τ, this inequality cannot hold because
√

T + 1

on the l.h.s grows faster than log(τ) on the r.h.s. Hence, the stopping

time τ is finite. Further, we can apply Lemma 15 by [85], and follow

that

τ ≤ Õ
(

H4r2
max|S||A|

ϵ2

)

If we observe H samples in each iteration, i.e., NE = 1, we get a

sample complexity of

n ≤ Õ
(

H5r2
max|S||A|

ϵ2

)
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b.1.5 AceIRL: Problem Dependent Analysis

For the problem dependent analysis, we will need this additional

lemma also used by Kakade and Langford [144].

Lemma B.1.12 (Lemma 6.1 by Kakade and Langford [144]). For any

policy π:

Vπ∗,h
M∪r(s)−Vπ,h

M∪r(s) = −∑
s′,a′

H

∑
h′=h

µh,h′
M,π(s

′, a′; s)A∗,h
′

M∪r(s
′, a′)

Proof.

V∗,hM∪r(s)−Vπ,h
M∪r(s) = ∑

a

π∗h(a|s)
(

rh(s, a) + ∑
s′

P(s′|s, a)V∗,h+1
M∪r (s′)

)

−∑
a

πh(a|s)
(

rh(s, a) + ∑
s′

P(s′|s, a)Vπ,h+1
M∪r (s′)

)

±∑
a,s′

πh(a|s)P(s′|s, a)V∗,h+1
M∪r (s′)

=∑
a

(π∗h(a|s)− πh(a|s))r(s, a)

+ ∑
a,s′

(π∗h(a|s)− πh(a|s))P(s′|s, a)V∗,h+1
M∪r (s′)

+ ∑
a,s′

πh(a|s)P(s′|s, a)(V∗,h+1
M∪r (s)−Vπ,h+1

M∪r (s))

=−∑
a

π(a|s)A∗,hM∪r(s, a) + ∑
a,s′

πh(a|s)P(s′|s, a)(V∗,h+1
M∪r (s)−Vπ,h+1

M∪r (s))

Unrolling the recursion yields the result.

We can now start with the analysis. First, we define the policy

confidence set, and show that it indeed contains the relevant policies

under the good event.

Definition B.1.5. We define the policy confidence set as

Π̂k = {π|V∗,M̂∪r̂
(s0)−Vπ,

M̂∪r̂
(s0) ≤ 10ϵk}



B.1 proofs 179

where r̂ = A (R
B̂
) is the reward estimated using an IRL algorithm

A . We choose ϵk recursively by solving the optimization problem

ϵk = max
π∈Π̂k−1

H

∑
h=0

∑
s′,a′

µ0,h

M̂,π
(s′, a′; s0)C

h
k (s
′, a′)

starting with ϵ0 = 1
10 H.

The following lemma will help us to deal with uncertainty about

the transition dynamics.

Lemma B.1.13. Under the good event E , if π ∈ Π̂k, then:

|Vπ,h

M̂∪r̂
(s)−Vπ,h

M∪r̂(s)| ≤ ϵk

|V∗,hM∪r̂(s)−V∗,hM̂∪r̂
(s)| ≤ ϵk

Proof. First by Lemma B.1.3:

|Vπ,h

M̂∪r
(s)−Vπ,h

M∪r(s)|

≤
H

∑
h′=h

∑
s′,a′,s′′

µh,h′

M̂,π
(s′; s)πh′(a′|s′)|P̂(s′′|s′, a′)− P(s′′|s′, a′)|Vπ,h′+1

M∪r (s′′)

≤
H

∑
h′=h

∑
s′,a′

µh,h′

M̂,π
(s′; s)πh′(a′|s′)Ck(s

′, a′) ≤ ϵk

Then, by Lemma B.1.4:

V∗,hM∪r(s)−V∗,hM̂∪r
(s)

≤ ∑
h′=h

∑
s′,a′,s′′

µh,h′

M̂,π∗
(s′; s)π∗h′(a′|s′)(P(s′′|s′, a′)− P̂(s′′|s′, a′))V∗,hM∪r(s

′′)

≤ ∑
h′=h

∑
s′,a′

µh,h′

M̂,π∗
(s′; s)π∗h′(a′|s′)Ck(s

′, a′) ≤ ϵk

And, similarly
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V∗,hM̂∪r
(s)−V∗,hM∪r(s)

≤ ∑
h′=h

∑
s′,a′,s′′

µh,h′

M̂,π̂∗
(s′; s)π̂∗h′(a′|s′)(P̂(s′′|s′, a′)− P(s′′|s′, a′))V∗,hM̂∪r

(s′′)

≤ ∑
h′=h

∑
s′,a′

µh,h′

M̂,π̂∗
(s′; s)π̂∗h′(a′|s′)Ck(s

′, a′) ≤ ϵk

Now we show that the relevant policies are always in the policy

confidence set, conditioned on the good event.

Lemma B.1.14. Conditioned the good event E , if π∗, π̂∗ ∈ Π̂k−1, then

π∗ ∈ Π̂k.

Proof. Let r ∈ RB. Then

V∗,hM̂∪r̂k
(s)−Vπ∗,h

M̂∪r̂k
(s) = V∗,hM̂∪r̂k

(s)−V∗,hM̂∪r
(s) + V∗,hM̂∪r

(s)−Vπ∗,h
M̂∪r̂k

(s)

(a)

≤
H

∑
h′=h

∑
s′,a′

µh,h′

M̂,π∗
(s′, a′|s)Ch′

k (s
′, a′) +

H

∑
h′=h

∑
s′,a′

µh,h′

M̂,π∗
(s′, a′|s)Ch′

k (s
′, a′)

(b)

≤ 2ϵk

where (a) uses Lemma B.1.1, Lemma B.1.2 and Corollary B.1.1, (b)

uses that π∗ ∈ Π̂k−1 and the definition of ϵk. Hence,

max
s

(
V∗,hM̂∪r̂k

(s)−Vπ∗,h
M̂∪r̂k

(s)
)
≤ 2ϵk ≤ 10ϵk

and therefore π∗ ∈ Π̂k.

Lemma B.1.15. Conditioned on the good event E , for every policy π

and episodes k′ > k, there exists r̂k′ ∈ RB̂k′ , such that:

max
s

(
Vπ,h
M∪r̂k′

(s)−Vπ,h
M∪r̂k

(s)
)
≤ 4ϵk

Proof. Similarly to the proof of the previous lemma, we have

Vπ,h

M̂∪r̂k′
(s)−Vπ,h

M̂∪r̂k
(s) = Vπ,h

M̂∪r̂k′
(s)−Vπ,h

M̂∪r
(s) + Vπ,h

M̂∪r
(s)−Vπ,h

M̂∪r̂k
(s)

≤
H

∑
h′=h

∑
s′,a′

µh,h′

M̂,π
(s′, a′|s)Ch′

k′ (s
′, a′) +

H

∑
h′=h

∑
s′,a′

µh,h′

M̂,π
(s′, a′|s)Ch′

k (s
′, a′) ≤ 2ϵk
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where we use that the confidence intervals are shrinking with

increasing episode number, i.e., ϵk′ ≤ ϵk.

By combining this with Lemma B.1.13, we get the result:

max
s

(
Vπ,h
M∪r̂k′

(s)−Vπ,h
M∪r̂k

(s)
)

=max
s

(
Vπ,h
M∪r̂k′

(s)−Vπ,h

M̂∪r̂k′
(s)

︸ ︷︷ ︸
≤ϵk

+Vπ,h

M̂∪r̂k′
(s)−Vπ,h

M̂∪r̂k
(s)

︸ ︷︷ ︸
≤2ϵk

+Vπ,h

M̂∪r̂k
(s)−Vπ,h

M∪r̂k
(s)

︸ ︷︷ ︸
≤ϵk

)
≤ 4ϵk

Lemma B.1.16. Under the good event E , if π̂∗k , π ∈ Π̂k−1 and π /∈ Π̂k,

then the policy π is suboptimal for some reward r̂k′ ∈ RB̂k′
for all

k′ ≥ k.

Proof. We can observe that

Vπ,h
M∪r̂k′

(s0)−V∗,hM∪r̂k′
(s0) = Vπ,h

M∪r̂k′
(s0)−V

π̂∗k ,h

M∪r̂k′
(s0)

=Vπ,h
M∪r̂k′

(s0)−Vπ,h
M∪r̂k

(s0)
︸ ︷︷ ︸

(a)
≤4ϵk

+Vπ,h
M∪r̂k

(s0)−Vπ,h

M̂∪r̂k
(s0)

︸ ︷︷ ︸
(b)
≤ϵk

+ Vπ,h

M̂∪r̂k
(s0)−V

π̂∗k ,h

M̂∪r̂k
(s0)

︸ ︷︷ ︸
(c)
>10ϵk

+V
π̂∗k ,h

M̂∪r̂k
(s0)−V

π̂∗k ,h

M∪r̂k
(s0)

︸ ︷︷ ︸
(b)
≤ϵk

+ V
π̂∗k ,h

M∪r̂k
(s0)−V

π̂∗k ,h

M∪r̂k′
(s0)

︸ ︷︷ ︸
(a)
≤4ϵk

> 0

where we applied (a) Lemma B.1.13, (b) Lemma B.1.15, and (c) the

definition of Π̂k and the fact that π /∈ Π̂k. Consequently, π is subop-

timal for at least some reward function r̂k′ ∈ RB̂k′
.

Corollary B.1.4. For ϵ0 = H
10 , for every k ≥ 0 it holds that both

π∗, π̂∗k+1 ∈ Π̂k.

Proof. We show the statement by induction over k. For k = 0, we

have 10ϵ0 = H and therefore Π̂0 contains all policies. Assume that
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for k − 1 the statement holds, i.e., π∗, π̂∗k ∈ Π̂k−1, and consider k.

By Lemma B.1.14, π∗ ∈ Π̂k. Note, that π̂∗k+1 ∈ Π̂k−1. Hence, by

Lemma B.1.15, it follows that π̂∗k+1 ∈ Π̂k because it would be subop-

timal otherwise which is a contradiction.

The last result we need, is quantifying the size of the policy confi-

dence set.

Lemma B.1.17. Under the good event E , let

r̃ ∈ argmin
r∈RB

max
s,a

(r(s, a)− r̂k(s, a)),

where r̂k = A (R
B̂k
). If π ∈ Π̂k, then

max
s

(V∗,hM̂∪r̃
(s)−Vπ,h

M̂∪r̃
(s)) ≤ 12ϵk.

Proof.

V∗,hM̂∪r̃
(s)−Vπ,h

M̂∪r̃
(s)

= V∗,hM̂∪r̃
(s)−V∗,hM̂∪r̂k

(s)
︸ ︷︷ ︸

≤ϵk

+V∗,hM̂∪r̂k
(s)−Vπ,h

M̂∪r̂k
(s)

︸ ︷︷ ︸
≤10ϵk

+ Vπ,h

M̂∪r̂k
(s)−Vπ,h

M̂∪r̃
(s)

︸ ︷︷ ︸
≤ϵk

ϵk ≤ 14ϵk

Next, we define the error upper bound based on the policy confi-

dence set.

Definition B.1.6. Using Π̂k, we define recursively:

ÊH
k (s, a) = 0

Êh
k (s, a) = min

(
(H − h)rmax, Ch

k (s, a) + ∑
s′

P̂(s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)

where P̂ is the estimated transition model of the environment. In

contrast to Definition B.1.3, the maximization is over policies in Π̂k

rather than all actions.
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This definition allows us to derive results that are analogous to the

problem independent case.

Lemma B.1.18. Under the good event E , for all policies π ∈ Π̂k and

reward functions r and all s, a ∈ S ×A:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Êh
k (s, a)

Proof. The proof is the same as for Lemma B.1.7, restricting the set

of policies to Π̂k.

Lemma B.1.19. Under the good event E , for all reward function r, all

policies π ∈ Π̂k, and all s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Êh

k (s, a)

Proof. The proof is the same as for Lemma B.1.8, restricting the set

of policies to Π̂k.

Lemma B.1.20. Under the good event E , we have for any s, a, h :

Êh
k (s, a) ≤ 2Ch

k (s, a) + ∑
s′

P(s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

Proof. The proof is the same as for Lemma B.1.20.

Finally, we can combine these results to analyze the algorithm’s

sample complexity.

Theorem 4.4.1. [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ,

n)-correct solution with

n ≤ Õ
(

min

[
H5r2

max|S||A|
ϵ2

,
H4r2

max|S||A|ϵ2
τ−1

mins,a,h(A∗,hM∪r(s, a))2ϵ2

])

where ϵτ−1 depends on the choice of NE, the number of episodes of

exploration in each iteration. A∗,hM∪r(s, a) is the advantage function

of r ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)), the reward function

from the feasible set RB closest to the estimated reward function r̂k.
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Proof. First note that the analysis of Theorem B.1.2 still applies; so, in

the worst case we get the same sample complexity. The key difference

is that we no longer use the overall greedy policy w.r.t Eh
k , but restrict

ourselves to policies in Π̂k.

Again, we consider the error

eπ,h
k (s, a) := |Qπ∗,h

M∪r(s, a)−Qπ̂∗,h
M∪r(s, a)|

where π∗ is the true optimal policy inM∪ r, and π̂∗ is the optimal

policy in M̂ ∪ r̂, i.e., in the estimated MDP using the inferred reward

function.

Similar, to the proof of Lemma B.1.9, we can use Lemma B.1.18

and Lemma B.1.19 to show for all policies π ∈ Π̂h
k , that:

eπ,h
k (s, a) ≤ 4Êh

k (s, a)

which implies the correctness of the algorithm according to Corol-

lary B.1.2 when stopping at

Ê0
k(s0, πk+1(s0)) ≤

ϵ

4
(B.1)

Now, consider the following condition for all s, a, h:

Ch
k (s, a) ≤ −A∗,hM∪r̃(s, a)

ϵ

48ϵk−1
, (B.2)

where r̃ ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)). We will (a) show

that when this condition holds the previous stopping condition also

holds, and (b) analyze after how many iterations this condition will

certainly hold. Together this will yield the result.

To show that Equation (B.2) implies Equation (B.1), we assume

that Equation (B.2) holds. Then, we get by applying Lemma B.1.20

recursively:
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Ê0
k(s0, πk+1(s0))

≤ 2 max
π∈Π̂k−1

max
a

H

∑
h=0

∑
s′,a′

µ0,h
M,π(s

′, a′; s0, a)Ch
k (s
′, a′)

≤ 2 max
π∈Π̂k−1

max
a

H

∑
h=0

∑
s′,a′

µ0,h
M,π(s

′, a′; s0, a)

(
−A∗,hM∪r̃(s

′, a′)
ϵ

48ϵk−1

)

(a)

≤ 2 max
π∈Π̂k−1

(V∗,0M∪r(s0)−Vπ,0
M∪r(s0))

ϵ

48ϵk−1

(b)

≤ ϵ

4

where (a) uses Lemma B.1.12 and (b) uses Lemma B.1.17.

Next, we analyze after how many iterations Equation (B.2) holds,

which will give a lower bound on the sample complexity result. The

argument proceeds similar to the proof of Theorem B.1.2.

Before the algorithm terminates at τ, we have for all k < τ:

min
s,a,h

(−A∗,hM̂∪r̃
(s, a))

ϵ

48ϵk−1
< max

s,a,h
Ch

k (s, a) ≤ Hrmax

√
2ℓh

k(s, a)

max(Nh
k (s, a), )

Using similar argument to the proof of Theorem B.1.2, using the

same pseudo-counts, we arrive at:

min
s,a,h

(−A∗,hM∪r̃(s, a))
ϵ

48ϵτ−1

√
τ + 1 ≤ Hrmax

√
8|S||A| log(12|S||A|Hτ2/δ)

Again, we can use Lemma 15 by [85] to find that

τ ≤ Õ
(

H3r2
max|S||A|ϵ2

τ−1

mins,a,h(A∗,hM∪r̃(s, a))2ϵ2

)

b.1.6 Computing the Exploration Policy

To run AceIRL, we need to solve the optimization problem:

πh
k = min

π
max

π̂∈Π̂k−1

H

∑
h=0

∑
s′,a′

µ0,h

M̂,π̂
(s′, a′; s0)Ĉ

h
k (s
′, a′|π)
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For simplicity let us denote the state visitation frequencies by

µh(s, a) := µ0,h

M̂,π
(s, a; s0)

µ̂h(s, a) := µ0,h

M̂,π̂
(s, a; s0)

Let us introduce the following matrix notation

Ã =




I 0 0 0 . . . 0

P̂ −I 0 0 . . . 0

0 P̂ −I 0 . . . 0

. . .

0 0 . . . 0 P̂ −I

1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . .

0 0 0 . . . 1 0

0 0 0 . . . 0 1




, a =




r̂0
k−1

r̂1
k−1

. . .

r̂H
k−1




, A =

[
A 0

aT −1

]
,

x =




µ0

µ1

. . .

µH

t




, x̂ =




µ̂0

µ̂1

. . .

µ̂H




, b =




µ̄0

0

. . .

0

1

. . .

1

−10ϵk−1




, c =




C0

C1

. . .

CH

1




,

where µ̄0 is the actual initial state distribution of the environment

(which we assume to know). We can now write the inner maximiza-

tion problem above as a linear program:

max
x

cTx s.t. Ax = b, x ≥ 0
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The corresponding dual problem is:

min
y

bTy s.t. ATy ≥ c

Using this we can write the full min-max problem as:

min
x̂,y

bTy s.t. ATy ≥ c(x), Ãx = b, x ≥ 0

which is a convex optimization problem, if we use:

Ch(s, a) = 2(H − h)rmax

√
2 log

(
24|S||A|H(max(1, nh

k(s, a)))2/δ
)

max(1, n̂h
k+1(s, a)

where n̂h
k+1(s, a) = nh

k(s, a) + µh(s, a) ∗ NE is the number of times

we expect h, s, a to be visited at the next iteration.

Solving this optimization problem yields the state-visitation fre-

quencies µ̂k(s, a). We can then find the exploration policy that induces

these state-visitations simply as:

πk,h(a|s) :=
µ̂h

k(s, a)

∑a′ µ̂
h
k(s, a′)

.

b.2 experiment details

In this section, we provide more details on our experiments. In

particular, we discuss the environments in detail (Appendix B.2.1),

and we provide additional plots of all experiments we discussed in

the main chapter (Appendix B.2.2).

b.2.1 Environments

four paths . The four paths environment has 41 states and 4

actions:
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S = {c, l1, . . . , l10, u1, . . . , u10, r1, . . . , r10, d1, . . . , d10},
A = {a1, a2, a3, a4},

and a time horizon of H = 20. The agent starts in the center state

c, from which can move in four directions: left (a1), up (a2), right

(a3), or down (a4). Each action ai has a probability pi of failing. If an

action fails it moves in the opposite direction. p1, . . . , p4 are sampled

uniformly from (0, 0.3). One of the states (l10, u10, r10, d10) is chosen

as the goal state at random. The reward in the goal state is 1, all other

rewards are 0.

double chain. The Double Chain MDP, proposed by Kaufmann

et al. [85], consists of L states S = {s0, . . . , sL−1}, and two actions

A = {left, right}, which correspond to a transition to the left or to

the right. When the agent takes an action, there is a 0.1 probability of

moving to the other direction. The state sL−1 has reward 1, all other

states have reward 0, and the agent starts in the center of the chain

at s(L−1)/2. We choose L = 31, similar to Kaufmann et al. [85]. The

environment has horizon H = 20.

chain. The Chain MDP, proposed by Metelli et al. [72] has 6 states

S = {s1, s2, s3, s4, s5, su} and 10 actions A = {a1, . . . , a10}. The agent

starts in a random initial state. Taking action a10 moves it right along

the chain with probability 0.7 and to state su with probability 0.3. Any

other action moves the agent right with probability 0.3 and to state

su with probability 0.7. If the agent is in state su, action a10 moves

it back to state s1 with probability 0.05. Any other action moves it

to s1 with probability 0.01. The reward is 1 in all states except su

where the reward is 0. Metelli et al. [72] provide an illustration of the

environment in Figure 3. We choose H = 10 for the chain.

gridworld. The Gridworld, proposed by Metelli et al. [72], is a

3× 3 Gridworld with an obstacle in the center cell (2, 2) and a goal
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cell at the right center cell (2, 1). The agent starts in a random non-

goal cell, and it has 4 action one to move in each direction. If the agent

takes an action with probability 0.3 the action fails and the agent

moves in a random direction instead. If the agent is in the center

cell (2, 2) which has the obstacle, if the agent would move right it

instead stays in the center cell with probability 0.8. The reward in

the goal cell is 1, all other rewards are 0. Metelli et al. [72] provide an

illustration of the Gridworld in Figure 6. We choose H = 10 for the

Gridworld.

random mdps . We generate random MDPs by uniformly sam-

pling an initial state distribution and transition matrix and normaliz-

ing them. The rewards are sampled uniformly between 0 and 1. Our

random MDPs have 9 states, 4 actions and horizon 10.

b.2.2 Additional Results

We provide full learning curves for all experiments discussed in the

main chapter in Figure B.1.
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Figure B.1: Full learning curves for all experiments shown in Table 4.1.
Similar to Figure 4.2, we show the mean and 95% confidence
intervals computed over 50 random seeds. In addition to the
exploration algorithms, we also show uniform sampling and
TRAVEL which are much faster in most cases because they
have access to a generative model.
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This appendix provides additional information about Chapter 5. We

provide proofs of theoretical results (Appendix C.1), more details

about our implementation of CoCoRL (Appendix C.2), and more de-

tails about the experimental setup (Appendix C.3).

c.1 proofs

This section provides all proofs omitted in the main chapter, as well

as a few additional results related to estimating feature expectations

(Appendix C.1.4).

c.1.1 Limitations of IRL in CMDPs

Proposition 5.2.1 (IRL can be unsafe). There are CMDPs C = (S ,A, P,

µ0, γ, r, {cj}n
j=1, {ξ j}n

j=1) such that for any optimal policy π∗ in C and

any reward function rIRL that could be returned by an IRL algorithm,

the resulting MDP (S ,A, P, µ0, γ, rIRL) has optimal policies that are

unsafe in C.

Proof. This follows from the fact that there are CMDPs for which all

feasible policies are stochastic. Every MDP, on the other hand, has a

deterministic policy that is optimal [33].

For example, consider a CMDP with a single state S = {s1} and

two actions A = {a1, a2} with P(s1|s1, a1) = P(s1, |s1, a2) = 1. We

have two cost functions c1(s1, a1) = 1, c1(s1, a2) = 0 and c2(s1, a1) =

0, c2(s1, a2) = 1, with thresholds ξ1 = ξ2 = 1
2 , and discount factor

γ = 0. To be feasible, a policy needs to have an occupancy measure

µπ such that ∑s,a µ(s, a)c1(s, a) ≤ ξ1 and ∑s,a µπ(s, a)c2(s, a) ≤ ξ2.

191
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In our case with a single state and γ = 0, this simply means that a

feasible policy π needs to satisfy π(a1|s1) ≤ 1
2 and π(a2|s1) ≤ 1

2 . But

this implies that only a uniformly random policy is feasible.

Any IRL algorithm infers a reward function that matches the occu-

pancy measure of the expert policy [45]. Consequently, the inferred

reward rIRL needs to give both actions the same reward, because

otherwise π∗ would not be optimal for the MDP with rIRL. However,

that MDP also has a deterministic optimal policy (like any MDP),

which is not feasible in the original CMDP.

Proposition 5.2.2. Let C = (S ,A, P, µ0, γ, {cj}n
j=1, {ξ j}n

j=1) be a CMDP

without reward. Let r1, r2 be two reward functions and π∗1 and

π∗2 corresponding optimal policies in C ∪ {r1} and C ∪ {r2}. Let

M = (S ,A, P, µ0, γ) be the corresponding MDP without reward.

Without additional assumptions, we cannot guarantee the existence

of a function ĉ : S × A → R such that π∗1 is optimal in the MDP

M∪{r1 + ĉ} and π∗2 is optimal in the MDPM∪{r2 + ĉ}.

Proof. As in the proof of Proposition 5.2.1, we consider a single-

state CMDP with S = {s1} and A = {a1, a2}, where a1. We have

c1(s1, a1) = 1, c1(s1, a2) = 0 and c2(s1, a1) = 0, c2(s1, a2) = 1, ξ1 =

ξ2 = 1
2 , and γ = 0. Again, the only feasible policy uniformly random-

izes between a1 and a2.

Let r1(a1) = 1, r1(a2) = 1, r2(a1) = 0, r2(a2) = 1, i.e., the first

reward function gives equal reward to both actions and the second

reward function gives inequal rewards (for simplicity we write r(a) =

r(s, a)). To make the uniformly random policy optimal inM∪{r1 +

ĉ} andM∪{r2 + ĉ}, both inferred reward functions r1 + ĉ and r2 + ĉ

need to give both actions equal rewards. However this is clearly

impossible.

c.1.2 Safety Guarantees

Theorem 5.3.2 (Inferred CMDP). We can find cost functions and

thresholds such that for any reward function reval, solving the inferred
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CMDP (S ,A, P, µ0, γ, reval, {ĉj}m
j=1, {ξ̂ j}m

j=1) is equivalent to solving

π∗ ∈ argmaxπ∈S Greval
(π). Consequently, if an optimal policy for the

true CMDP is in S, solving the inferred CMDP will find an optimal

policy for the true CMDP.

Proof. The convex hull of a set of points is a convex polyhedron, i.e.,

it is the solution of a set of linear equations (see, e.g., Theorem 2.9 in

[112]).

Hence, S is a convex polyhedron in the feature space defined by f,

i.e., we can find A ∈ R
p×d, b ∈ R

p such that

S = {x ∈ R
d|Ax ≤ b}.

To construct A and b, we need to find the facets of S, the convex

hull of a set of points D. This is a standard problem in polyhedral

combinatorics (e.g., see [112]).

We can now define p linear constraint functions ĉj(s, a) = Ajf(s, a)

and thresholds ξ̂ j = bj, where Aj is the j-th row of A and bj is

the j-th component of b (for j = 1, . . . , p. Then, solving the CMDP

(S ,A, P, µ0, γ, reval, {ĉj}p
j=1{ξ̂ j}p

j=1) corresponds to solving

π∗ ∈ argmax
Ĵ1(π)≤ξ̂1,..., Ĵp(π)≤ξ̂p

Greval
(π).

For these linear cost functions, we can rewrite the constraints using

the discounted feature expectations as Ji(π) = Aif(π). Hence, π

satisfying the constraints Ĵ1(π) ≤ ξ̂1, . . . , Ĵp(π) ≤ ξ̂p is equivalent to

π ∈ S.

Corollary 5.3.1 (S is maximal). If π /∈ S, there exist r1, . . . , rk and

c1, . . . , cn, such that the expert policies π∗1 , . . . , π∗k are optimal in the

CMDPs (S ,A, P, µ0, γ, ri, {cj}n
j=1, {ξ j}n

j=1), but π /∈ F .

Proof. Using Theorem 5.3.2, we can construct a set of cost func-

tions {cj}n
j=1 and thresholds {ξ j}n

j=1 for which π ∈ S is equivalent

to J1(π) ≤ ξ1, . . . , Jn(π) ≤ ξn. Hence, in a CMDP with these cost

functions and thresholds, any policy π /∈ S is not feasible. Because

π∗1 , . . . , π∗k ∈ S by construction, each π∗i is optimal in the CMDP

(S ,A, P, µ0, γ, ri, {cj}n
j=1, {ξ j}n

j=1).



194 convex constraint learning for rl

c.1.3 Optimality Guarantees

Lemma C.1.1. For any policy π, if r : S ×A → [0, 1] and f : S ×A →
[0, 1]d, we can bound

∀i : f(π)i ≤
1

1− γ
∥f(π)∥2 ≤

√
d

1− γ

Gr(π) ≤ d

1− γ
R(π, S) ≤ 2d

1− γ

Proof. First, we have for any component of the feature expectations

fi(π) = E[
∞

∑
t=0

γtf(st, at)] ≤
∞

∑
t=0

γt =
1

1− γ
,

using the limit of the geometric series. This immediately gives

∥f(π)∥2 =

√√√√ d

∑
i=1

f(π)2
i ≤

√
d

1− γ
.

Similarly bounded rewards r(s, a) ≤ 1 imply ∥θ∥2 ≤
√

d. Together,

we can bound the returns using the Cauchy-Schwartz inequality

Gr(π) = ∥θTf(π)∥2 ≤ ∥θ∥2 · ∥f(π)∥2 ≤
d

1− γ
.

Further, for any two policies π1, π2, we have Gr(π1)− Gr(π2) ≤
2d

1−γ , which implies the same for the regret R(r, S) ≤ 2d
1−γ .

Theorem 5.3.3 (Convergence, exact optimality). Under Assump-

tion 5.3.1, for any δ > 0, after k ≥ log(δ/ fv(d, n))/ log(1− δ/ fv(d, n)),

we have P(R(r, Sk) > 0) ≤ δ, where fv(d, n) is an upper bound on

the number of vertices of the true safe set. In particular,

lim
k→∞

Er [R(r, Sk)] = 0.
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Proof. Consider the distribution over optimal policies P(f(π∗)) in-

duced by P(r). For each reward r, there is a vertex of the true safe

set that is optimal and thus is in the support of P(f(π∗)). 1

We can distinguish two cases.

• Case 1: we have seen a vertex corresponding to an optimal

policy for r in the first k demonstrations.

• Case 2: we have not.

In Case 1, we incur 0 regret, and only in Case 2 we can incur regret

greater than 0.

So, we can bound the probability of incurring regret by the proba-

bility of Case 2:

P(R(r, Sk) > 0) ≤ ∑
vertex v

(1− P(v))kP(v).

To ensure P(R(r, Sk) > 0) ≤ δ, it is sufficient to ensure that each

term of the sum satisfies (1− P(v))kP(v) ≤ δ/Nv where Nv is the

number of vertices. For terms with P(v) ≤ δ/Nv this is true for all k.

For the remaining terms with P(v) > δ/Nv, we can write

(1− P(v))kP(v) ≤ (1− δ/Nv)
k.

So, it is sufficient to ensure (1− δ/Nv)k ≤ δ/Nv, which is satisfied

once

k >
log(δ/Nv)

log(1− δ/Nv)
.

By replacing Nv with a suitable upper bound on the number of

vertices, we arrive at the first result.

1 Technically, there are degenerate cases where P(r) is only supported on reward

functions that are orthogonal to the constraint boundaries and we never see demon-

strations at the vertices of the true safe set. This is an artifact of the relatively

unnatural assumption of noise-free demonstrations. We can avoid such degenerate

cases by mild assumptions: either assuming some minimal noise in P(r) or assum-

ing the algorithm generating the demonstrations has non-zero probability for all

policies optimal for a given reward.
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By Lemma C.1.1, the maximum regret is upper-bounded by 2d
1−γ ,

and, we can decompose the regret as

Er[R(r, Sk)] ≤ 2d
1−γ ∑vertex v(1− P(v))kP(v) ≤ 2d

1−γ ∑v:P(v)>0(1− P(v))k.

Because P(v) is a fixed distribution induced by P(r), the r.h.s. con-

verges to 0 as k→ ∞.

Lemma C.1.2. Under Assumption 5.3.2, we have for any reward

function r and any feasible policy π ∈ F

P(π) ≥ exp(−βd/(1− γ)).

Proof. We have β > 0 and Gr(π) ≥ 0, which implies exp(βGr(π)) ≥
1, and

P(π|r) = exp(βGr(π)

Z(θ)
≥ 1

Z(θ)
.

By Lemma C.1.1, we have Gr(π) ≤ d/(1− γ). Therefore,

Z(θ) =
∫

π∈F
exp(βθTf(π))d π ≤ exp(βd/(1− γ)),

and

P(π|r) ≥ exp(−βd2/(1− γ)).

Theorem 5.3.4 (Convergence, Boltzmann-rationality). Under As-

sumption 5.3.2, for any δ > 0, after k ≥ log(δ/ fv(d, n))/ log(1 −
exp(−βd/(1− γ))), we have P(R(r, Sk) > 0) ≤ δ, where fv(d, n) is

an upper bound on the number of vertices of the true safe set. In

particular,

lim
k→∞

Er [R(r, Sk)] = 0.

Proof. We can upper-bound the probability of having non-zero regret

similar to the noise free case by

P(R(r, Sk) > 0) ≤ ∑
vertex v

(1− P(v))kP(v).
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Under Assumption 5.3.2, we can use Lemma C.1.2, to obtain

P(v) ≥ exp(−βd/(1− γ)) := ∆.

Importantly, 0 < ∆ < 1 is a constant, and we have

P(R(r, Sk) > 0) ≤ ∑
vertex v

(1− ∆)k.

To ensure P(R(r, Sk) > 0) ≤ δ, it is sufficient to ensure (1− ∆)k ≤
δ/Nv, where Nv is the number of vertices of the true safe set. This is

true once

k ≥ log(δ/Nv)

log(1− exp(−βd/(1− γ)))
,

where we can again replace Nv by a suitable upper bound.

Bounding the maximum regret via Lemma C.1.1, we get

Er[R(r, Sk)] ≤
2d

1− γ ∑
vertex v

(1− ∆)k,

which converges to 0 as k→ ∞.

c.1.4 Estimating Feature Expectations

Lemma C.1.3. Let π be a policy with true feature expectation f(π).

We estimate the feature expectation using ntraj trajectories τi collected

by rolling out π in the environment: f̂(π) = 1
ntraj

∑
ntraj

i=1 f(τi). This

estimate is unbiased, i.e., E[f̂(π)] = f(π). Further let ϕ ∈ R
d be a

vector, such that, 0 ≤ ϕTf(s, a) ≤ 1 for any state s and action a. Then,

we have for any ϵ > 0

P(ϕT f̂(π)− ϕTf(π) ≥ ϵ) ≤ exp(−2ϵ2ntraj(1− γ)/d),

P(ϕTf(π)− ϕT f̂(π) ≥ ϵ) ≤ exp(−2ϵ2ntraj(1− γ)/d).

Proof. Because the expectation is linear, the estimate is unbiased, and,

E[ϕT f̂(π)] = ϕTf(π).
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For any trajectory τ and any 1 ≤ i ≤ d, we have 0 ≤ fi(τ) ≤
1/(1− γ), and, consequently, 0 ≤ ϕTf(τ) ≤ d/(1− γ), analogously

to Lemma C.1.1). Thus, ϕT f̂(π) satisfies the bounded difference prop-

erty. In particular, by changing one of the observed trajectories, the

value of ϕT f̂(π) can change at most by d/(ntraj(1− γ)). Hence, by

McDiarmid’s inequality, we have for any ϵ > 0

P(θT f̂(π)−E[θT f̂(π)] ≥ ϵ) ≤ exp

(
− 2ϵ2

d/(ntraj(1− γ))

)
,

and

P(θT f̂(π)− θTf(π) ≥ ϵ) ≤ exp

(
−2ϵ2ntraj(1− γ)

d

)
.

We can bound P(ϕTf(π)− ϕT f̂(π) ≥ ϵ) analogously.

Theorem 5.3.5 (ϵ-safety with estimated feature expectations). Sup-

pose we estimate the feature expectations of each policy π∗i using

at least ntraj > d log(nk/δ)/(2ϵ2(1 − γ)) samples, and construct

the estimated safe set Ŝ = conv(f̂(π∗1), . . . , f̂(π∗k )). Then, we have

P(maxj(Jj(π)− ξ j) > ϵ|π ∈ Ŝ) < δ.

Proof. Let us define the “good” event that for policy π∗i we accurately

estimate the value of the cost function cj and denote it by Eij =

{ϕT
j f̂(π∗i )− ϕT

j f(π∗i ) ≤ ϵ}, where ϕj parameterizes cj. Conditioned

on Eij for all i and j, we have

P(max
j

(Jj(π)− ξ j) > ϵ|π ∈ Ŝ, {Eij})

≤∑
j

P((Jj(π)− ξ j) > ϵ|π ∈ Ŝ, {Eij})

=∑
j

P(ϕT
j ∑

l

λl f̂(π
∗
l ) > ξ j + ϵ|{Eij}) = 0.
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Hence, we can bound the probability of having an unsafe policy

by the probability of the “bad” event, which we can bound by

Lemma C.1.3 to obtain

P(max
j

(Jj(π)− ξ j) > ϵ|π ∈ Ŝ)

≤∑
ij

P(not Eij) ≤ n · k · exp(−2ϵ2ntraj(1− γ)/d).

So, to ensure P(maxj(Jj(π)− ξ j) > ϵ|π ∈ Ŝ}) ≤ δ, it is sufficient to

ensure

exp(−2ϵ2ntraj(1− γ)/d) ≤ δ

nk
,

which is true if we collect at least

ntraj >
d log(nk/δ)

2ϵ2(1− γ)

trajectories for each policy.

Theorem C.1.1 (Convergence, noise-free, estimated feature expecta-

tions). Under Assumption 5.3.1, if we estimate the feature expecta-

tions of at least k > log(δ/(2 fv(d, n)))/ log(1− δ/(2 fv(d, n))) expert

policies using at least ntraj > d log(2 fv(d, n)/δ)/(2ϵ2(1−γ)) samples

each, we have P(R(r, Sk) > ϵ) ≤ δ, where fv(d, n) is an upper bound

on the number of vertices of the true safe set. In particular, we have

limmin(k,ntraj)→∞ Er [R(r, Sk)] = 0.

Proof. To reason about the possibility of a large estimation error for

the feature expectations, we use Lemma C.1.3 to lower bound the

probability of the good event Ev = {θTv− θT f̂(π∗i ) ≤ ϵ}, for each

vertex v of the true safe set.

We can then extend the argument we used to prove Theorem 5.3.3

to incorporate possible estimation error. In particular, for an evalua-

tion reward reval, we can incur regret in one of three cases:

• Case 1: we have not seen a vertex corresponding to an optimal

policy for reval.
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• Case 2: we have seen an optimal vertex but our estimation of

that vertex is bad.

• Case 3: we have seen an optimal vertex and our estimation of

that vertex is good.

We show that the probability of Case 1 shrinks as we increase k,

the probability of Case 2 shrinks as we increase ntraj, and the regret

that we can incur in Case 3 is small.

Case 1: This case is independent of the estimated feature expecta-

tions. Similar to Theorem 5.3.3, we can bound its probability for each

vertex v by (1− P(v))kP(v).

Case 2: In case of the bad event, i.e., the complement of Ev, we

can upper-bound the probability of incurring high regret using

Lemma C.1.3, to obtain

P(θTv− θT f̂(π∗i ) > ϵ|not Ev)P(not Ev)

≤P(not Ev)

≤ exp(−2ϵ2ntraj(1− γ)/d).

Case 3: Under the good event Ev, we automatically have regret less

than ϵ, i.e.,

P(θTv− θT f̂(π∗i ) > ϵ|Ev)P(Ev) = 0.

Using these three cases, we can now bound the probability of

having regret greater than ϵ as

P(R(r, Sk) > ϵ)

≤ ∑
vertex v

(
(1− P(v))kP(v)︸ ︷︷ ︸

Case 1

+ exp(−2ϵ2ntraj(1− γ)/d)
︸ ︷︷ ︸

Case 2

+ 0︸︷︷︸
Case 3

)
.

To ensure that P(R(r, Sk) > ϵ) ≤ δ, it is sufficient to ensure each

term of the sum is less than δ/Nv where Nv is the number of vertices.

We have two terms inside the sum, so it is sufficient to ensure either

term is less than δ/(2Nv).
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Case 1: We argue analogously to Theorem 5.3.3. For terms with

P(v) ≤ δ/(2Nv) it is true for all k. For the remaining terms with

P(v) > δ/(2Nv), we can use

(1− P(v))kP(v) ≤ (1− δ/(2Nv))
k

so it is sufficient to ensure

(1− δ/(2Nv))
k ≤ δ/(2Nv)

which is satisfied once

k >
log(δ/(2Nv))

log(1− δ/(2Nv))
.

This is our first condition.

Case 2: To ensure exp(−2ϵ2ntraj(1− γ)/d) ≤ δ/(2Nv), we need

ntraj >
d log(2Nv/δ)

2ϵ2(1− γ)
.

This is our second condition.

If both conditions hold simultaneously, we have P(R(r, Sk) > ϵ) ≤
δ.

To analyse the regret, let us consider how ϵ shrinks as a function

of ntraj. The analysis above holds for any ϵ. So, for a given k and ntraj,

we need to chose

ϵ2 ≥ d log(2nkNv/δ)

2ntraj(1− γ)

to guarantee P(R(r, Sk) > ϵ) ≤ δ. Hence, the smallest ϵ we can

choose is

ϵmin =

√
d log(2nkNv/δ)

2ntraj(1− γ)
.

Using Lemma C.1.1 to upper-bound the maximum regret by 2d2

1−γ ,

we can upper-bound the expected regret by



202 convex constraint learning for rl

Er[R(r, Sk)] ≤
2d2

1− γ
P(R(r, Sk) > ϵmin) + ϵminP(R(r, Sk) ≤ ϵmin)

≤ 2d

1− γ ∑
v:P(v)>0

(1− P(v))k +
2dNv

1− γ
exp(−2ϵ2

min(1− γ)/d)
k

exp(ntraj)

+

√
d log(2nkNv/δ)

2ntraj(1− γ)
.

For each term individually, we can see that it converges to 0 as

min(k, ntraj)→ ∞:

lim
min(k,ntraj)→∞

∑
v:P(v)>0

(1− P(v))k = lim
k→∞

∑
v:P(v)>0

(1− P(v))k = 0,

lim
min(k,ntraj)→∞

exp(−2ϵ2
min(1− γ)/d)︸ ︷︷ ︸
≤1

k

exp(ntraj)

≤ lim
min(k,ntraj)→∞

k

exp(ntraj)
= 0,

lim
min(k,ntraj)→∞

√
d log(2nkNv/δ)

2ntraj(1− γ)
= 0.

Hence, limmin(k,ntraj)→∞ Er[R(r, Sk)] = 0.

Theorem C.1.2 (Convergence under Boltzmann noise, estimated fea-

ture expectations). Under Assumption 5.3.2, if we estimate the feature

expectations of at least

k > log(δ/(2 fv(d, n)))/(log(1− exp(−βd/(1− γ))))

expert policies using at least

ntraj > d log(2 fv(d, n)/δ)/(2ϵ2(1− γ))

samples each, we have P(R(r, Sk) > ϵ) ≤ δ, where fv(d, n) is an up-

per bound on the number of vertices of the true safe set. In particular,

we have

lim
min(k,ntraj)→∞

Er [R(r, Sk)] = 0.
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Proof. We can decompose the probability of incurring regret greater

than ϵ into the same three cases discussed in the proof of Theo-

rem C.1.1 to get the upper-bound

P(R(r, Sk) > ϵ)

≤ ∑
vertex v

(
(1− P(v))kP(v)︸ ︷︷ ︸

Case 1

+ exp(−2ϵ2ntraj(1− γ)/d)
︸ ︷︷ ︸

Case 2

+ 0︸︷︷︸
Case 3

)
.

Under Assumption 5.3.2, we can use Lemma C.1.2, to get

P(v) ≥ exp(−βd/(1− γ)) := ∆.

Combining both bounds, we get

P(R(r, Sk) > ϵ) ≤ ∑
vertex v

(
(1− ∆)k + exp(−2ϵ2ntraj(1− γ)/d)

)
.

To ensure P(R(r, Sk) > ϵ) ≤ δ it is sufficient to ensure both

(1− ∆)k ≤ δ/(2Nv) and exp(−2ϵ2ntraj(1− γ)/d ≤ δ/(2Nv) where

Nv is the number of vertices of the true safe set. This is true once

k >
log(δ/(2Nv))

log(1− ∆)
=

log(δ/(2Nv))

log(1− exp(−βd/(1− γ)))
,

and

ntraj >
d log(2Nv/δ)

2ϵ2(1− γ)
,

where can again replace Nv by a suitable upper bound.

For the regret, we get asymptotic optimality with the same ar-

gument from the proof of Theorem C.1.1, replacing P(v) with the

constant ∆.

c.2 implementation details

This section discusses a few details of our implementation of CoCoRL.

In particular, we highlight practical modifications related to construct-

ing the convex hull S: how we handle degenerate sets of demonstra-

tions and how we greedily select which points to use to construct the
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convex hull. Algorithm 9 shows full pseudocode for our implemen-

tation of CoCoRL.

c.2.1 Constructing the Convex Hull

Algorithm 9 Convex Constraint Learning for Reinforcement Learning

1: function constraint_learning(D, npoints, dstop)

2: (i, dnext)← (0, ∞)

3: xnext ← random starting point from D
4: while i ≤ npoints and |D| > 0 and dnext > dstop do

5: D̄ ← D̄ ∪ {xnext}, D ← D \ {xnext}, i← i + 1

6: S← convex_hull(D̄)
7: (xnext, dnext)← furthest_point(D, S)

8: U ← unsafe_set(S)

9: return S, U

10: function furthest_point(X ,P)

11: dmax = −∞

12: for x ∈ X do

13: Solve QP to find d ∈ argminp∈P (x− p)2

14: if d > dmax then dmax ← d, xmax ← x

15: return (xmax, dmax)

16: function convex_hull(X )

17: if |X | < 3 then return special case solution A, b

18: Determine effective dimension of X
19: Xproj ← project X to lower dimensional space

20: Hproj ← call Qhull to obtain convex hull of Xproj

21: Aproj, bproj ← call Qhull to obtain linear equations for Hproj

22: A, b← project Aproj, bproj back to R
d

23: return A, b



C.2 implementation details 205

We use the Quickhull algorithm [117] to construct convex hulls. In

particular, we use a standard implementation, called Qhull, which

can construct the convex hull from a set of points and determine the

linear equations. However, it assumes at least 3 input points, and non-

degenerate inputs, i.e., it assumes that rank(f(π∗1), . . . , f(π∗k )) = d.

To avoid these limiting cases, we make two practical modifications.

special-case solutions for 1 and 2 inputs . For less than 3

input points it is easy to construct the linear equations describing the

convex hull manually. If we only see a single demonstration π∗1 , the

convex hull is simply, conv(f(π∗1)) = {f(π∗1)} = {x|Ax ≤ b} with

A = [Id,−Id]
T

b = [f(π∗1)
T, f(π∗1)

T]T.

If we observe 2 demonstrations π∗1 , π∗2 , the convex hull is given by

conv(f(π∗1), f(π∗2))

={f(π∗1) + λ(f(π∗2)− f(π∗1))|0 ≤ λ ≤ 1} = {x|Ax ≤ b},

where

A = [W,−W, vT,−vT]T

b = [Wf(π∗1),−Wf(π∗1), vTf(π∗2),−vTf(π∗1)]
T.

Here, v = f(π∗2)− f(π∗1), and W = [w1, . . . , wd−1] spans the space

orthogonal to v, i.e., wT
i v = 0.

handling degenerate safe sets . If rank(f(π∗1), . . . , f(π∗k )) <
d, we first project the demonstrations to a lower-dimensional sub-

space in which they are full rank, then we call Qhull to construct the

convex hull in this space. Finally, we project back the linear equations

describing the convex hull to R
d. To determine the correct projection,

let us define the matrix D = [f(π∗1)
T, . . . , f(π∗k )

T]T ∈ R
k×d. Now,

we can do the singular value decomposition (SVD): D = UTΣV,

where U = [u1, . . . , uk] ∈ R
k×k, V = [v1, . . . , vd] ∈ R

d×d, and
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Σ = diag(σ1, . . . , σd) ∈ R
k×d. Assuming the singular values are or-

dered in decreasing order by magnitude., we can determine the

effective dimension d̃ of the demonstrations such that σd̃ > 0 and

σd̃+1 = 0 (for numerical stability, we use a small positive number

instead of 0). Now, we can define projection matrices

Xef = [u1, . . . , ud̃]
T ∈ R

d̃×d,

Xorth = [ud̃+1, . . . , ud]
T ∈ R

(d−d̃)×d,

where Xef projects to the span of the demonstrations, and Xorth

projects to the complement. Using Xef, we can project the demon-

strations to their span and construct the convex hull in that pro-

jection, conv(XefD) = {x|Aprojx ≤ bproj}. To project the convex

hull back to R
d, we construct linear equations in R

d, such that

conv(D) = {x|Ax ≤ b}:

A = [(XT
ef Aproj)

T, Xorth,−Xorth]
T

b = [bproj, Xorthf(π∗1),−Xorthf(π∗1)],

where XT
ef Aproj projects the linear equations back to R

d, and the other

two components ensure that Xorthx = Xorthf(π∗1), i.e., restricts the

orthogonal components to the convex hull. In practice, we change this

constraint to −Xorthf(π∗1) − ϵ ≤ Xorthx ≤ Xorthf(π∗1) + ϵ for some

small ϵ > 0.

c.2.2 Iteratively Adding Points

Constructing the safe set from all demonstrations can sometimes be

problematic, especially if it results in too many inferred constraints.

This scenario is more likely to occur when demonstrations are clus-

tered closely together in feature space, which occurs, e.g., if they

are not exactly optimal. To mitigate such problems, we adopt an

iterative approach for adding points to the safe set. We start with a

random point from the set of demonstrations, and subsequently, we

iteratively add the point farthest away from the existing safe set. We
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can determine the distance of a given demonstration π by solving

the quadratic program

d ∈ argmin
x∈S

(x− f(π))2.

We solve this problem for each remaining demonstration from the

safe set to determine which point to add next. We stop adding points

once the distance of the next point we would add gets too small. By

changing the stopping distance as a hyperparameter, we can trade-off

between adding all points important for expanding the safe set and

regularizing the safe set.

c.3 experiment details

In this section, we provide more details about our experimental setup

in the Gridworld environments (Appendix C.3.1) and the driving

environment (Appendix C.3.2). In particular, we provide details

on the environments, how we solve them, and the computational

resources used.

c.3.1 Gridworld Experiments

environment details . An N × N Gridworld has N2 discrete

states and a discrete action space with 5 actions: left, right, up, down,

and stay. Each action corresponds to a movement of the agent in

the grid. Given an action, the agent moves in the intended direction

except for two cases: (1) if the agent would leave the grid, it instead

stays in its current cell, and (2) with probability p, the agent takes a

random action instead of the intended one.

In the Gridworld environments, we use the state-action occupan-

cies as features and define rewards and costs independently per state.

We uniformly sample ngoal and nlimited goal tiles and limited tiles,

respectively. Each goal cell has an average reward of 1; other tiles

have an average reward of 0. Constraints are associated with limited

tiles, which the agent must avoid. We uniformly sample the threshold
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Figure C.1: highway-env intersection environment.

for each constraint. We ensure feasibility using rejection sampling,

i.e., we resample the thresholds if there is no feasible policy. In our

experiments, we use N = 3, ngoal = 2, nlimited = 3, and we have

n = 2 different constraints. We choose discount factor γ = 0.9.

While the constraints are fixed and shared for one Gridworld

instance, we sample different reward functions from a Gaussian with

standard deviation 0.1 and mean 1 for goal tiles and 0 for non-goal

tiles. To test reward transfer, we sample a different set of goal tiles

from the grid for evaluation.

For the experiment without constraint transfer, we choose p = 0,

i.e., a deterministic environment. To test transfer to a new environ-

ment, we use p = 0 during training and p = 0.2 during evaluation.

c.3.2 Driving Experiments

environment details . We use the intersection environment

provided by highway-env [118] shown in Figure C.1. The agent con-

trols the green car, while the environment controls the blue cars.

The action space has high-level actions for speeding up and slowing

down and three actions for choosing one of three trajectories: turning

left, turning right, and going straight. The observation space for the

policy contains the position and velocity of the agent and other cars.
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The default environment has a well-tuned reward function with

positive terms for reaching a goal and high velocity and negative

terms to avoid crashes and staying on the road. We change the

environment to have a reward function that rewards reaching the

goal and includes driver preferences on velocity and heading angle

and multiple cost functions that limit bad events, such as driving

too fast or off the road. To define the reward and cost functions, we

define a set of features:

f(s, a) =




fleft(s, a)

fstraight(s, a)

fright(s, a)

fvel(s, a)

fheading(s, a)

ftoofast(s, a)

ftooclose(s, a)

fcollision(s, a)

foffroad(s, a)




∈ R
9

where fleft, fstraight, fright are 1 if the agent reached the goal after

turning left, straight, or right respectively, and 0 else. fvel is the

agents velocity and fheading is its heading angle.

The last four features are indicators of undesired events. ftoofast

is 1 if the agent exceeds the speed limit, ftooclose is 1 if the agent is

too close to another car, fcollision is 1 if the agent has collided with

another car, and foffroad is 1 if the agent is not on the road.

The ground truth constraint in all of our experiments is defined

by:

ϕ1 = (0, 0, 0, 0, 0, 1, 0, 0, 0)T

ϕ2 = (0, 0, 0, 0, 0, 0, 1, 0, 0)T

ϕ3 = (0, 0, 0, 0, 0, 0, 0, 1, 0)T

ϕ4 = (0, 0, 0, 0, 0, 0, 0, 0, 1)T
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and thresholds

ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.05, ξ4 = 0.1,

i.e., we have one constraint for each of the last four features, and each

constraint restricts how often this feature can occur. For example,

collisions should occur in fewer than 5% of steps and speed limit

violations in fewer than 20% of steps.

The driver preferences are a function of the first five features. Each

driver wants to reach one of the three goals (sampled uniformly) and

has a preference about velocity and heading angle sampled from

θvel ∼ N (0.1, 0.1), and θheading ∼ N (−0.2, 0.1). These preferences

simulate variety between the demonstrations from different drivers.

When inferring constraints, for simplicity, we restrict the feature

space to ( ftoofast, ftooclose, fcollision, foffroad). Our approach also works

for all features but needs more (and more diverse) samples to learn

that the other features are safe.

To test constraint transfer to a new reward function, we sample

goals in demonstrations to be either fleft or fright, while during evalu-

ation the goal is always fstraight.

To test constraint transfer to a modified environment, we collect

demonstrations with more defensive drivers (that keep larger dis-

tances to other vehicles) and evaluate the learned constraints with

more aggressive drivers (that keep smaller distances to other vehi-

cles).

driving controllers . We use a family of parameterized driv-

ing controllers for two purposes: (1) to optimize over driving policies,

and (2) to control other vehicles in the environment. The controllers

greedily decide which trajectory to choose, i.e., choose the goal with

the highest reward, and they control acceleration via a linear equa-

tion with parameter vector ω ∈ R
5. As the vehicles generally follow

a fixed trajectory, these controllers behave similarly to an intelligent

driver model (IDM). Specifically, we use linearized controllers pro-

posed by in Leurent et al. [145]; see their Appendix B for details

about the parameterization.
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constrained cross-entropy method solver . We solve the

driving environment by optimizing over the parametric controllers,

using a constrained cross-entropy method (CEM; [119, 146]). The

constrained CEM ranks candidate solutions first by constraint vio-

lations and then ranks feasible solutions by reward. It aims first to

find a feasible solution and then improve upon it within the feasible

set. We extend the algorithm by Wen and Topcu [119] to handle

multiple constraints by ranking first by the number of violated con-

straints, then the magnitude of the violation, and only then by reward.

Algorithm 10 shows the pseudocode for this algorithm.

computational resources . The computational cost of our

experiments is dominated by optimizing policies using the CEM. The

IRL baselines are significantly more expensive because they need to

do so in the inner loop. To combat this, we parallelize evaluating

candidate policies in the CEM, performing 50 roll-outs in parallel.

We run experiments on AMD EPYC 64-Core processors. Any single

experiment using CoCoRL finishes in approximately 5 hours, while

any experiment using the IRL baselines finishes in approximately 20

hours. For each of the 3 constraint transfer setups, we run 5 random

seeds for 30 different numbers of demonstrations k, i.e., we run 450

experiments in total for each method we test.
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Algorithm 10 Cross-entropy method for (constrained) RL, based on

Wen and Topcu [119].

Require: niter, nsamp, nelite

1: Initialize policy parameters µ ∈ R
d, σ ∈ R

d.

2: for iteration = 1, 2, . . . , niter do

3: Sample nsamp samples of ωi ∼ N (µ, diag(σ))

4: Evaluate policies ω1, . . . , ωnsamp in the environment

5: if constrained problem then

6: Compute number of violations Nviol(ωi) = ∑j ✶{Jj(ωi)>0}
7: Compute total violation Tviol(ωi) = ∑j max(Jj(ωi), 0))

8: Sort ωi in descending order first by Nviol, then by Tviol

9: Let E be the first nelite policies

10: if Nviol(ωnelite
) = 0 then

11: Sort {ωi|Nviol(ωi) = 0} in descending order of G(ωi)

12: Let E be the first nelite policies

13: else

14: Sort ωi in descending order of return G(ωi)

15: Let E be the first nelite policies

16: Fit Gaussian with mean µ and diagonal covariance σ to E

17: return µ
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A D A P T I V E C O N S T R A I N T L E A R N I N G

This appendix provides additional details about Chapter 6. We pro-

vide proofs of all theoretical results (Appendix D.1), and more details

about the experimental setup (Appendix D.2).

d.1 proofs

This section provides the full proofs of our key results of Chap-

ter 6: the sample complexity lower bound for CBAI problems (Ap-

pendix D.1.1) and the sample complexity of ACOL (Appendix D.1.2).

d.1.1 Lower Bounds

Theorem 6.2.1 (CBAI lower bound). Assume ηx ∼ N (0, 1) for all

x ∈ X . For any CBAI problem ν = (X , θ, ϕ), there exists another

CBAI problem ν′ = (X , θ, ϕ′) with the same set of actions X and

reward parameter θ but a different constraint parameter and opti-

mal arm, such that the expected number of iterations τ needed by

any allocation strategy that can distinguish between ν and ν′ with

probability at least 1− δ is lower bounded as

E[τ] ≥ 2 log

(
1

2.4δ

)
max

x∈X≥θ (x∗ν)

∥x∥2
A−1

λ

(ϕTx)2
,

where λ is a probability distribution over arms of the allocation strat-

egy, i.e., λ(x) is the probability that it pulls arm x, Aλ = ∑x λ(x)xxT

is the design matrix, and X≥θ (x∗ν) = {x′ ∈ X |θTx′ ≥ θTx∗ν} is the set

of all arms with reward no less than x∗ν , the optimal arm for ν.

Proof. Our proof has a similar structure to the proof of Theorem 3.1

by Soare [134]. Let us denote the optimal arm of problem ν with

213
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x∗ν and the optimal arm of ν′ with x∗ν′ . Let A be a δ-PAC algorithm

to solve constrained linear bandit problems, and let A be the event

that A recommends x∗ν as the optimal arm. If we denote by Pν(A)

the probability of A happening for instance ν, and by Pν′(A) the

probability for instance ν′, we have Pν(A) ≥ 1− δ and Pν′(A) ≤ δ.

Let ε̃ = ϕ′ − ϕ, and let τ be the stopping time of A. Let (x1, . . . , xτ)

be the sequence of arms A pulls and (z1, . . . , zt) the corresponding

observed noisy constraint values zi = xT
i ϕ + ηxi

with ηxi
∼ N (0, 1)

being independent Gaussian noise.

Now, consider the log-likelihood ratio of these observations under

algorithm A:

Lτ = log

(
τ

∏
s=1

Pν(zs|xs)

Pν′(zs|xs)

)
=

τ

∑
s=1

log

(
Pν(zs|xs)

Pν′(zs|xs)

)

=
τ

∑
s=1

log

(
Pν(ηs)

Pν′(η′s)

)
=

τ

∑
s=1

log

(
exp(−η2

s /2)

exp(−η′2s /2)

)

=
τ

∑
s=1

1

2
((zs − xT

s ϕ′)2 − (zs − xT
s ϕ)2)

=
τ

∑
s=1

1

2
(z2

s − 2zsxT
s ϕ′ + (xT

s ϕ′)2 − z2
s + 2zsxT

s ϕ− (xT
s ϕ)2)

=
τ

∑
s=1

1

2
(2zsxT

s (ϕ− ϕ′) + (xT
s ϕ′ − xT

s ϕ)(xT
s ϕ′ + xT

s ϕ))

=
τ

∑
s=1

1

2
(−2zsxT

s ε̃ + xT
s ε̃(xT

s ϕ + xT
s ε̃ + xT

s ϕ))

=
τ

∑
s=1

(xT
s ε̃)
−2zs + 2xT

s ϕ + xT
s ε̃

2
=

τ

∑
s=1

(xT
s ε̃)

(
xT

s ε̃

2
− ηs

)
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Taking the expectation of this log-likelihood ratio gives:

Eν[Lτ] = Eν

[
τ

∑
s=1

(xT
s ε̃)

(
xT

s ε̃

2
− ηs

)]
=

1

2
Eν

[
τ

∑
s=1

(xT
s ε̃)2

]
−Eν [ηs]︸ ︷︷ ︸

=0

=
1

2
Eν

[
τ

∑
s=1

ε̃TxsxT
s ε̃

]
=

1

2
Eν

[
∑

x∈X
Eν[τ]λ(x)ε̃TxxT ε̃

]

=
1

2
Eν[τ]Eν

[
∑

x∈X
λ(x)ε̃TxxT ε̃

]
=

1

2
Eν[τ]ε̃

T Aλ ε̃

Next, we can apply Lemma 19 from Kaufmann et al. [147]:

Eν[Lτ] =
1

2
Eν[τ]ε̃

T Aλ ε̃ ≥ DKL((∥P)ν(A), Pν′(A)) ≥ log
1

2.4δ

Eν[τ] ≥ 2 log

(
1

2.4δ

)
1

ε̃T Aλ ε̃
(D.1)

To obtain a lower bound, we now aim to find the smallest ε̃ such

that ν and ν′ have different constrained optimal arms.

Let X≥θ (x) = {x′ ∈ X |θTx′ ≥ θTx} be the set of arms with higher

reward than x. There are two ways we can modify ν to change its

optimal arm. We can change ϕ to ϕ′ such that either, Case (i), the

previous optimum x∗ν becomes infeasible in ν′, or, Case (ii), a solution

x∗ν ∈ X≥θ (x∗ν) that was infeasible in ν is now feasible in ν′. We will

consider both cases separately, and aim to find an ε̃ for each case that

minimizes ε̃T Aλ ε̃.

case (i). We want to find ε̃ that minimizes 1
2 εT Aλε such that

ϕ′Tx∗ν > 0, i.e., the previously optimal arm becomes infeasible. We

can write this constraint equivalently as

ϕ′Tx∗ν > 0⇔ ϕTx∗ν − ϕ′Tx∗ν < ϕTx∗ν
⇔ εTx∗ν < ϕTx∗ν ⇔ εTx∗ν − ϕTx∗ν < 0



216 adaptive constraint learning

Which results in the following optimization problem:

min
ε

1

2
εT Aλε s.t. εTx∗ν − ϕTx∗ν + α ≤ 0,

where α > 0. The Lagrangian is L(ε, γ) = 1
2 εT Aλε− γ(εTx∗ν − ϕTx∗ν +

α), and requiring ∂L
∂ε = ∂L

∂γ = 0 yields:

∂L

∂ε
= Aλε− γx∗ν = 0⇔ Aλε = γx∗ν ⇔ A

1
2
λε = γA

− 1
2

λ x∗ν

∂L

∂γ
= εTx∗ν − ϕTx∗ν + α = 0⇔ εTx∗ν = ϕTx∗ν − α

From the first equation, it follows that

x∗ν
Tε = x∗ν

T A
− 1

2
λ A

1
2
λε = γx∗ν

T A−1
λ x∗ν = γ∥x∗ν∥2

A−1
λ

x∗ν
Tε = x∗ν

T A
− 1

2
λ A

1
2
λε =

1

γ
εT Aλε =

1

γ
∥ε∥2

Aλ

and therefore

x∗ν
Tε = ∥x∗ν∥A−1

λ
∥ε∥Aλ

= ϕTx∗ν − α

∥ε∥Aλ
=

ϕTx∗ν − α

∥x∗ν∥A−1
λ

>
ϕTx∗ν
∥x∗ν∥A−1

λ

where the last inequality follows because α > 0 and Aλ is positive

definite.

case (ii). We want to find ε̃ that minimizes 1
2 εT Aλε such that

there exists an x ∈ X for which θTx > θTx∗ν and ϕ′Tx ≤ 0, i.e., x has

higher reward than x∗ν and it is feasible in ν′. We can write these

constraints as

θTx > θTx∗ν ⇔ θT(x∗ν − x) + α ≤ 0

ϕ′Tx ≤ 0⇔ εTx + ϕTx ≤ 0



D.1 proofs 217

with α > 0. This results in the following optimization problem:

min
ε

1

2
εT Aλε

s.t. ∃x : θT(x∗ν − x) + α ≤ 0

εTx + ϕTx ≤ 0

The Lagrangian of this problem is

L(ε, γ, δ) =
1

2
εT Aλε− γ(θT(x∗ν − x) + α)− δ(εTx + ϕTx)

Requiring ∂L
∂ε = ∂L

∂δ = 0 results in

∂L

∂ε
= Aλε− δx = 0⇔ Aλε = δx ⇔ A

1
2
λε = δA

− 1
2

λ x

∂L

∂δ
= εTx + ϕTx = 0⇔ εTx = −ϕTx

It follows that

xTε = xT A
− 1

2
λ A

1
2
λε = δxT A−1

λ x = δ∥x∥2
A−1

λ

xTε = xT A
− 1

2
λ A

1
2
λε =

1

δ
εT Aλε =

1

δ
∥ε∥2

Aλ

and therefore

xTε = ∥x∥A−1
λ
∥ε∥Aλ

= ϕTx ⇒ ∥ε∥Aλ
=

ϕTx

∥x∥A−1
λ

Combining this result with the remaining constraint θTx > θTx∗ν
which implies x ∈ X≥θ (x∗ν), we can conclude

∥ε∥Aλ
≥ min

x∈X≥θ (x∗ν)

ϕTx

∥x∥A−1
λ
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combining cases (i) and (ii). We can conclude that the ε that

minimizes ∥ε∥2
Aλ

while still ensuring that ν′ has a different solution

than ν, satisfies:

∥ε∥Aλ
≥ min

[ ϕTx∗ν
∥x∗ν∥A−1

λ︸ ︷︷ ︸
Case (i)

, min
x∈X≥θ (x∗ν)

ϕTx

∥x∥A−1
λ︸ ︷︷ ︸

Case (ii)

]

But because x∗ν ∈ X≥θ (x∗ν), it is simply

∥ε∥Aλ
≥ min

x∈X≥θ (x∗ν)

ϕTx

∥x∥A−1
λ

Combining this result with equation (D.1), gives the final bound:

Eν[τ] ≥ 2 log

(
1

2.4δ

)
1

(
minx∈X≥θ (x∗ν)

ϕT x
∥x∥

A−1
λ

)2

= 2 log

(
1

2.4δ

)
max

x∈X≥θ (x∗ν)

∥x∥2
A−1

λ

(ϕTx)2

Next, we derive the worst case bound on the quantity making up

the CBAI lower bound.

Proposition 6.2.1. For any CBAI problem ν, we have HCLB(ν) ≤
d/(C+

min)
2, where C+

min = minx∈X |ϕTx|. This bound is tight, i.e, there

is an instance ν, such that we have HCLB(ν) = d/(C+
min)

2.

Proof.

HCLB(ν) = min
λ

max
x∈X≥θ (x∗ν)

∥x∥2
A−1

λ∗

(ϕTx)2

≤ 1

C+
min

2
min

λ
max

x∈X≥θ (x∗ν)
∥x∥2

A−1
λ∗
≤ d

C+
min

2

where the last inequality uses the well-known result by Kiefer and

Wolfowitz [148]. Equality holds, for example, if all x ∈ X are linearly

independent and have the same constraint value C+
min.
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d.1.2 Adaptive Constraint Learning

In this section, we analyse the sample complexity of ACOL and prove

our main result.

Theorem 6.2.4 (ACOL sample complexity). Assume Algorithm 5 is

implemented with an ε-approximate rounding strategy. Then, after

N iterations the algorithm returns an optimal arm with probability

at least 1− δ, and we have:

N ≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

min
λ

max
x∈Ut

∥x∥2
A−1

λ

(ϕTx)2
+ t̄

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄

where

H̄CLB(ν) = min
λ

max
x∈X
∥x∥2

A−1
λ

/(ϕTx)2,

t̄ =
⌈
− log2 C+

min

⌉
.

Moreover, H̄CLB(ν) ≤ d/(C+
min)

2.

Proof. Let Et := {Ut ⊆ Ft} where Ft := {x ∈ X |ut
ϕ(x) − lt

ϕ(x) ≤
2−t}. So, Et is the event that all arms in Ut have confidence inter-

val smaller than 2−t. We will first show that P(E1) ≥ 1 − δ1 and

P(Et|Et−1) ≥ 1− δt, which ensures that the set of arms we are uncer-

tain about shrinks exponentially in the rounds t.

Let x ∈ Ut. Then, using Proposition 6.2.2, and the ε-approximate

rounding strategy, it holds with probability at least 1− δt that:

ut
ϕ(x)− lt

ϕ(x) ≤ 2

√
2 log

( |X |
δt

)
1 + ε

Nt
∥x∥A−1

λ∗t
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Using the length of a round Nt =
⌈

22t+3 log
(
|X |
δt

)
(1 + ε)ρ∗t

⌉
, and

that we select arms to reduce uncertainty in Ut, we get

ut
ϕ(x)− lt

ϕ(x) ≤ 2−t

√(
min

λ
max
x̃∈Ut

∥x̃∥2
A−1

λ

)−1

∥x∥A−1
λ∗t

≤2−t

√(
min

λ
max
x̃∈Ut

∥x̃∥2
A−1

λ

)−1 (
min

λ
max
x̃∈Ut

∥x̃∥A−1
λ

)
≤ 2−t

Note, that x can only be in Ut if ut
ϕ(x) > 0 and lt

ϕ(x) ≤ 0. It follows

that P(Et|Et−1) ≥ 1− δt.

Now consider round t̄ :=
⌈

log2
1

C+
min

⌉
. We show P(Ut̄ = {}|Et̄) = 1.

Assume Et̄, i.e., Ut ⊆ Ft. Let x ∈ Ut̄, then:

|ϕTx| ≤ 2−t̄ ≤ 2− log2 1/C+
min = C+

min

which is a contradiction because otherwise x would have a smaller

constraint value than C+
min. Consequently, the set of uncertain arms

Ut̄ is empty and the algorithm returns the correct solution given

Et̄. Lemma D.1.1 shows that the unconditional probability of the

algorithm returning the correct solution after round t̄ is at least 1− δ.
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Finally, we can compute the total number of samples the algorithm

needs to return the correct solution:

N =
t̄

∑
t=1

⌈22t+3 log

( |X |
δt

)
(1 + ε)ρ∗t ⌉

≤
t̄

∑
t=1

22t+3 log

( |X |
δt

)
(1 + ε)ρ∗t + t̄

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

(2t)2ρ∗t + t̄

= 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

(2t)2 min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ
+ t̄

= 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

(2−t)2
+ t̄

(a)

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

(ϕT x̃)2
+ t̄

(b)

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)

t̄

∑
t=1

min
λ

max
x̃∈X

∥x̃∥2
A−1

λ

(ϕT x̃)2
+ t̄

≤ 8 log

( |X |t̄2

δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄

where (a) follows because we showed that |ϕTx| ≤ 2−t w.h.p. for

x ∈ Ut, and (b) follows simply because Ut ⊆ X . In the last step, we

defined H̄CLB(ν) = minλ maxx̃∈X
∥x̃∥2

A−1
λ

(ϕT x̃)2

Moreover,

H̄CLB(ν) = min
λ

max
x∈X

∥x∥2
A−1

λ

(ϕTx)2
≤ 1

C+
min

2
min

λ
max
x∈X
∥x∥2

A−1
λ

≤ 1

C+
min

2
min

λ
max
x∈Rd
∥x∥2

A−1
λ
≤ d

C+
min

2

using the result by Kiefer and Wolfowitz [148].
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Lemma D.1.1. Let E1, . . . , ET be a Markovian sequence of events

such that P(E1) ≥ 1− δ1 and P(Et|Et−1) ≥ 1− δt for all t = 2, . . . , T,

where δt = δ2/t2 and δ ∈ (0, 1). Et is independent of other events

conditioned on Et−1. Then P(ET) ≥ 1− δ.

Proof.

P(ET) =

(
T

∏
t=2

P(Et|Et−1)

)
P(E1) ≥

(
t̄

∏
t=2

(1− δt)

)
(1− δ1)

≥
∞

∏
t=1

(
1− δ2

t2

)
=

sin(πδ)

πδ
≥ 1− δ

where the last inequality holds for 0 ≤ δ ≤ 1.

d.1.3 Oracle and G-Allocation

Given any static design λ∗, we can consider different round-based al-

gorithms using the static confidence intervals from Proposition 6.2.2.

Algorithm 11 shows the general algorithm. It uses the same stopping

condition as ACOL but uses a more straightforward round length of

vt log(|X |/δt) with v a hyperparameter, and a fixed static alloca-

tion. We analyze two versions of this generic algorithm that are of

particular interest: the oracle solution and G-Allocation.

Theorem 6.2.2 (Oracle sample complexity). The oracle algorithm

finds the optimal solution to a constrained linear best-arm identifica-

tion problem ν = (X , θ, ϕ) within N ∝ HCLB(ν) with probability at

least 1− δ.

Proof. Assuming a (1+ ε)-approximate rounding procedure, in round

t we have: ∥x∥2
A−1

x∗
Nt

≤ 1+ε
Nt
∥x∥2

A−1
λ∗

. It follows, similar to the proof of

Theorem 6.2.4, that in round t, for each x ∈ X≥θ if ϕTx > ϕTx∗ν :

ϕTx− lt
ϕ(x) ≤

√
2 log(|X |/δt)∥x∥A−1

x∗n

≤
√

2(1 + ε) log(|X |/δt)/Nt∥x∥A−1
λ∗
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Algorithm 11 Round based algorithm with a generic al-

location λ∗ with hyperparamater v ∈ (1, 2). For λ∗ ∈
argminλ maxx∈X≥θ (x∗ν)

∥x∥A−1
λ

/|ϕTx| this algorithm becomes the oracle

solution. For λ∗ ∈ argminλ maxx∈X ∥x∥A−1
λ

it becomes G-Allocation.

Require: static design λ∗, significance δ

1: U1 ← X (uncertain arms)

2: S1 ← {} (feasible arms)

3: t← 1 (round)

4: while Ut ̸= {} do

5: δt ← δ2/t2

6: Nt ← ⌈vt log(|X |/δt)⌉
7: xNt ← Round(λ∗, Nt)

8: Pull arms x1, . . . , xNt and observe constraint values

9: t← t + 1

10: Update ϕ̂t and A based on new data

11: lt
ϕ(x)← ϕ̂T

t x−
√

βt∥x∥A−1 for all arms x ∈ X
12: ut

ϕ(x)← ϕ̂T
t x +

√
βt∥x∥A−1 for all arms x ∈ X

13: St ← St−1 ∪ {x|ut
ϕ(x) ≤ 0}

14: r̄ ← maxx∈St
θTx

15: Ut ← Ut−1 \ {x|lt
ϕ(x) > 0} \ {x|ut

ϕ(x) ≤ 0} \ {x|θTx < r̄}
16: return x∗ ∈ argmaxx∈St

θTx

A similar argument gives for x∗ν :

ut
ϕ(x∗ν)− ϕTx∗ν ≤

√
2 log(|X |/δt)∥x∗ν∥A−1

x∗n

≤
√

2(1 + ε) log(|X |/δt)/Nt∥x∗ν∥A−1
λ∗

Let us call the event that these confidence bounds hold Et. We have

P(Et|Et−1) ≥ 1− δt. Now, consider round t̄ = ⌈logv (2(1 + ε)HCLB(ν))⌉
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with length Nt̄ = ⌈2(1 + ε) log(|X |/δt)HCLB(ν)⌉. For all x ∈ X≥θ if

ϕTx > ϕTx∗ν :

ϕTx− l t̄
ϕ(x) ≤

√
1

HCLB(ν)
∥x∥A−1

λ∗
≤
√√√√ (ϕTx)2

∥x∥2
A−1

λ∗

∥x∥A−1
λ∗
≤ |ϕTx|

Note that x is infeasible and ϕTx, which implies l t̄
ϕ(x) ≥ 0 and in

turn x /∈ Ut̄. Similarly, ut̄
ϕ(x∗ν) − ϕTx∗ν ≤ |ϕTx∗ν |. x∗ν is feasible and

ϕTx∗ν ≤ 0. Hence, ut̄
ϕ(x∗ν) ≤ 0 and x∗ν /∈ Ut̄. This implies that Ut̄ = {}

and, conditioned on Et̄, the oracle algorithm solves the problem in

round t̄ with probability 1. We can apply Lemma D.1.1 to conclude

that, unconditionally, the algorithm solves the problem in round t̄

with a probability of at least 1− δ.

Let us compute the total iterations necessary:

N =
t̄

∑
t=1

⌈2(1 + ε) log(|X |/δt)HCLB(ν)⌉

≤ t̄(1 + 2(1 + ε) log(|X |t̄2/δ2)HCLB(ν)) ∝ HCLB(ν)

So, N is on order HCLB(ν) except for logarithmic factors, concluding

the proof.

Theorem 6.2.3 (G-Allocation sample complexity). G-Allocation finds

the optimal arm within N ∝ d/C+
min

2
iterations with probability at

least 1− δ.

Proof. As in the proof of Theorem 6.2.2, we have in round t, for each

x ∈ X≥θ if ϕTx > ϕTx∗ν :

ut
ϕ(x)− lt

ϕ(x) ≤ 2
√

2 log(|X |/δt)∥x∥A−1
x∗n

≤ 2
√

2(1 + ε) log(|X |/δt)/Nt∥x∥A−1
λ∗
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Again, we call the event that these confidence bounds hold Et, and

have P(Et|Et−1) ≥ 1− δt. Now, consider round

t̄ = logv

(
8(1 + ε) argmin

λ

max
x∈X
∥x∥A−1

λ
/C+

min
2
)

Nt̄ =

⌈
8(1 + ε) log(|X |/δt) argmin

λ

max
x∈X
∥x∥A−1

λ
/C+

min
2
⌉

For all x ∈ Ut it follows that:

ut̄
ϕ(x)− l t̄

ϕ(x) ≤

√√√√ C+
min

2

∥x∥A−1
λ∗

∥x∥A−1
λ∗
≤ C+

min

This implies that G-Allocation solves the problem in round t̄ with

probability 1, similar to the proof of Theorem 6.2.4. We can apply

Lemma D.1.1 to conclude that, unconditionally, the algorithm solves

the problem in round t̄ with a probability of at least 1− δ.

Let us compute the total iterations necessary:

N =
t̄

∑
t=1

⌈
8(1 + ε) log(|X |/δt) argmin

λ

max
x∈X
∥x∥A−1

λ
/C+

min
2
⌉

≤ t̄

(
1 + 8(1 + ε) log(|X |/δt) argmin

λ

max
x∈X
∥x∥A−1

λ
/C+

min
2
)

≤ t̄
(

1 + 8(1 + ε) log(|X |/δt)d/C+
min

2
)

∝ d/C+
min

2

where the last inequality uses the result by Kiefer and Wolfowitz

[148].

d.2 experiment details

d.2.1 Driving Environment

The driving environment we use in Section 6.3.3 is the same as

described in Appendix A.3.1; however, here we have rewards and

constraints that are linear in a set of features

f (s) = ( f1(s), f2(s), f3(s), f4(s), f5(s), f6(s), f7(s), f8(s), 1)
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that are described in detail in Table D.1.

In the experiments from Section 6.3.3, we use a fixed time horizon

T = 20, and policies are represented simply as sequences of 20

actions because the environment is deterministic.

We find policies in the Driver environment with a given reward

function using the constrained cross-entropy method, discussed in

Appendix C.3.2 and shown in Algorithm 10.

binary feedback . So far, we considered numerical observations

of the constraint value ϕTx + η where η is sub-Gaussian noise. In

the driving environment, we (more realistic) binary observations in

{−1, 1}.
If we assume that all true constraint values are in [−1, 1], we can

define the observation model P(y = 1|ϕ, x) = (ϕTx + 1)/2. We can

consider this as bounded, sub-Gaussian noise on the constraint value,

and so all our analysis still applies.

setup. To translate learning the unknown constraint function in

the Driver environment into a constrained linear best arm identifica-

tion problem, we consider a set of pre-computed policies Π. This set

of policies corresponds to the arms of a linear bandit problem, and

both the return G(π) of a policy and the constraint function J(π) are

linear in the expected feature counts of the policy: G(π) = f(π) · r
and J(π) = f(π) · c.

For binary observations, we normalize the features of all policies

such that all constraint values are between −1 and 1.

d.2.2 Additional Results

Here, we provide the additional results for the experiments in Chap-

ter 6. Full results are shown in Figure D.1 for the bandit results and

Figure D.2 for the driving scenario. Table D.2 contains an overview

of all algorithms and baselines that we evaluated.
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Feature Description Type Definition θ1 θ2 θ3 ϕ

f1(s) Target velocity Numerical −(v− 0.4)2 1 0 1 0

f2(s) Target location Numerical
−(x− xr)2

xr center of right lane
0 1 0 0

f3(s) Stay on street Binary 1 iff off street 0 0 0 0.3

f4(s) Stay in lane Numeric

1
1+exp(−bd+a)

,

d distance to closest lane center,

b = 10000, a = 10

0 0 0 0.05

f5(s)
Stay aligned

with street
Numeric | cos(θ)| 0 0 0 0.02

f6(s)
Don’t drive

backwards
Binary 1 iff v < 0 0 0 0 0.5

f7(s)
Stay within

speed limit
Binary 1 iff v > 0.6 0 0 0 0.3

f8(s)
Don’t get too close

to other cars
Numeric

exp(−b(c1d2
x + c2d2

y) + ba),

a = 0.01, b = 30,

c1 = 4, c2 = 1

0 0 0 0.8

Table D.1: Features for representing the reward and constraint function in the Driver environment. The last
four columns contain the reward weights for the three scenarios and the shared constraint weight.
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Name
Confidence

Intervals

Selection

Criterion

Select From

Arms

Plot

Color

Oracle static Oracle All

G-Allocation static MaxVar All

Uniform static Uniform All

ACOL static MaxVar Uncertain

Greedy MaxVar adaptive MaxVar All

Adaptive Uniform adaptive Uniform All

MaxRew-U adaptive Max Rew Uncertain

MaxRew-S adaptive Max Rew Feasible -

G-ACOL adaptive MaxVar Uncertain

G-ACOL Uniform adaptive Uniform Uncertain

Greedy MaxVar (tuned) adaptive tuned MaxVar All

Adaptive Uniform (tuned) adaptive tuned Uniform All

G-ACOL (tuned) adaptive tuned MaxVar Uncertain

G-ACOL Uniform (tuned) adaptive tuned Uniform Uncertain

MaxRew-U (tuned) adaptive tuned Max Rew Uncertain

MaxRew-S (tuned) adaptive tuned Max Rew Feasible -

Table D.2: Overview of all algorithms we evaluate.

We find that methods that select arms from U randomly (G-ACOL

Uniform) or by maximizing the reward (MaxRew-U ) can perform

quite well in some cases with tuned confidence intervals. Indeed,

MaxRew-U outperforms G-ACOL in the unit sphere experiment. This

is not consistent across environments, and G-ACOL performs compa-

rable or better in all other environments. Still, in some cases, when

theoretical guarantees are not required, these heuristic approaches

might be valuable alternatives.
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Uniform Adaptive Uniform Adaptive Uniform (tuned)

G-Allocation Greedy MaxVar Greedy MaxVar (tuned)

ACOL (ours) G-ACOL G-ACOL (tuned)

Oracle G-ACOL Uniform G-ACOL Uniform (tuned)

MaxRew-U MaxRew-U (tuned)

Figure D.1: Similar plots to Figure 6.2, including some additional algo-
rithms: the “non-tuned” versions of algorithms use the con-
fidence interval from Proposition 6.2.3, and G-ACOL Uniform
is G-ACOL with uniform sampling instead of the maximum
variance objective. Table D.2 provides an overview of all
baselines. Moreover, the plots here show the 25th and 75th
percentiles over 30 random seeds. For “irrelevant dimen-
sions”, these are close to the median, but for “unit sphere”,
there is much more randomness because the instances are
randomly generated.
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(b) “Different reward”
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(c) “Different environment”

Adaptive Uniform Greedy MaxVar G-ACOL

MaxRew-U G-ACOL Uniform

Figure D.2: Similar plots as Figure 6.5 for all three driving scenarios
from Figure 6.1, showing G-ACOL Uniform as an additional
baseline.



B I B L I O G R A P H Y

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An intro-

duction, 2nd edition. MIT press, 2018.

[2] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L.

Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel,

et al., “Mastering Atari, Go, Chess and Shogi by planning with

a learned model”, Nature, vol. 588, no. 7839, 604, 2020.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van

den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-

vam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-

brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis, “Mastering the game of Go

with deep neural networks and tree search”, Nature, vol. 529,

no. 7587, 484, 2016.

[4] J. Perolat, B. De Vylder, D. Hennes, E. Tarassov, F. Strub, V.

de Boer, P. Muller, J. T. Connor, N. Burch, T. Anthony, et al.,

“Mastering the game of Stratego with model-free multiagent

reinforcement learning”, Science, vol. 378, no. 6623, 990, 2022.

[5] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C.
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