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Abstract: Organic light‑emitting diodes (OLEDs) have outperformed conventional display technolo‑
gies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a siz‑
able fraction of the solid‑state lighting industry. Blue emission is a crucial chromatic component for
realizing high‑quality red, green, blue, and yellow (RGBY) and RGB white display technologies and
solid‑state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue
emissions with much higher power efficiency and operation time are necessary prerequisites. This
article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for
full‑color displays and solid‑state lighting, the performance status of blue OLEDs, and the system‑
atic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue
emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches
to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.

Keywords: organic light‑emitting diode (OLED); blue and deep‑blue OLEDs; high‑efficiency; lifetime;
chemical structure

1. Introduction
1.1. World Revenues and Forecasts for Lighting and Display

Organic light‑emitting diodes (OLEDs) have attracted great attention due to their ap‑
plications in high‑contrast, innately thin, easily adaptable, full‑color, flat‑panel displays
and solid‑state lighting [1–8]. Nowadays, OLEDs are almost unanimously leading the
portable display market and strongly contesting the market for large‑area displays with
reasonably sound efficiency and operational stability. Particularly, all leading smartphone
and smartwatch companies, including Samsung, Apple, LG, Sony, Nokia, Huawei, Xiaomi,
OPPO, OnePlus, and Vivo, are marketing their flagship devices with high‑quality OLED
displays. OLED revenues are currently driven by high‑quality display applications. In ad‑
dition, the lighting market is also gradually emerging. Due to their numerous inherently
disruptive advantages, including a plane light form, a very high color rendering index, tun‑
able color temperature, diffused emission, flexibility, transparency, being fully dimmable,
human‑friendliness, a wide viewing angle, being made with mercury‑free, sustainable raw
materials, being ultra‑thin and light‑weight, an ultimate high contrast, fast response time,
and energy‑saving, etc., flat panel displays and solid‑state lighting panels will, sooner or
later, take up a major portion of revenue and eventually disrupt conventional technolo‑
gies [5,9–14].

Figure 1 compares the global revenue of OLED displays with that of LCD displays
reported by DSCC’s Quarterly Display Capex and Equipment Market Share Report [15].
Overall, the revenue of LCDs experienced a catastrophic fall, as it dropped from 12.4 bil‑
lion in 2016 to 5.6 billion in 2020. It is expected to drop further to less than 1 billion in
2024. In contrast, the revenue of OLED displays peaked at 13.9 billion in 2017. Since then,
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it has slightly oscillated around 10 billion and is projected continue to do so going into
2024. OLED is a disruptive technology in the display market, especially since its revenue
surpassed that of LCD displays. Undoubtedly, OLED is and will remain the mainstream
display technology for a few more decades.
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A recent report from Statista depicted global annual revenue for LED lighting and
estimated it to be 70 billion in 2019. An increment of 41% is expected until 2023, with
a forecasted amount of 99 billion annually. However, on closer analysis, there was an
approximate annual increase in value of less than 10 billion from 2019–2023 (Figure 2) [16].
This reduction in market size can be attributed to the rise of OLEDs, which are expected to
overcome the LED market.
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On the other hand, ElectroniCast, a US‑based company, says that the estimated global
revenue for the OLED lightings is set to grow speedily from 0.14 billion in markets in 2015
to nearly 7 billion by 2023, representing a compound annual growth rate (CAGR) of 7%
in the next ten years (Figure 3). According to the above statics, OLED lighting revenue is
expected to grow rapidly from 2015–2025. The forecast also displays a slight decline in
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the annual revenue around 2025, with an estimated value of 5.5 billion [17]; however, on
studying the market size, OLEDs for lighting applications show a significant rise and are
expected to hold the entire global market.
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1.2. OLED—The Ultimate Display Technology
Twenty‑five years ago, the first OLED product, a monochromatic display in car stereos,

was launched by Pioneer [18]. Since then, researchers have made tremendous efforts in
developing high‑quality OLED displays. Nowadays, OLEDs are extensively applied in
portable display devices, such as laptops, smartphones, mp3/mp4 players, digital cameras,
smart watches, electric razors, and PDAs [19]. After years of struggle, large‑size OLED dis‑
plays are reaching the verge of a commercial breakthrough. In 2007, Sony developed the
world’s first 11‑inch OLED TV (XEL‑1); in 2019, Sony developed the largest screen avail‑
able on the market, i.e., the 77‑inch A9G [20]. Other large companies, such as LG, Samsung,
Panasonic, Sharp, AU Optronics, and BOE, have also launched ultra‑high definition (UHD)
full‑color OLED TVs with various display sizes. A few years back, AU Optronics was set to
demonstrate a 17.3‑inch display with a 4K (225 PPI) resolution fabricated using inkjet tech‑
nology. Additionally, AUO will be showcasing a 5.6‑inch foldable active‑matrix organic
light‑emitting diode (AMOLED) [21]. Meanwhile, BOE also fabricated an inkjet printed
55‑inch OLED display TV with an 8K resolution and a claimed maximum brightness of
400 nits with a color gamut of 95% [22]. The global enterprise trends of OLED displays are
rapidly growing, and it is clear that OLED displays will dominate the flat panel display
industry in the coming years. In 2016, LG began producing their flat panel display units
after long use of curved displays. This panel design has been adopted by some other major
companies for applications in TVs, laptops, and desktops [23].

1.3. OLED—The Best Lighting Technology
There is a strong demand for energy‑efficient and optimal next‑generation lighting

because approximately 20% of total global electricity is consumed for general lighting [24].
Researchers have extensively accepted that the OLEDs must become a mainstream technol‑
ogy for next‑generation illumination sources within a few years because of their numer‑
ous distinctive features, e.g., lightweight, uniform, cold‑light, human‑eye friendly, and
soft surface emission, feasible to form on conformable substrates, free from ultraviolet
(UV) and near‑infrared (NIR) emission, glare‑free, environmentally friendly, high CRI,
and extremely energy efficient [10,13,14,25,26]. Conventional light sources cannot provide
these advantages, such as incandescent bulbs, fluorescent tubes, and light‑emitting diodes

https://www.oled-info.com/electronicast-sees-fast-growing-oled-lighting-market-starting-2015
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(LEDs). Therefore, due to high demand for a human‑friendly light source, intensive re‑
search is ongoing for better OLED lighting.

Kido et al. discovered the first white OLED in 1993 [27]. Since then, there has been
rapid progress in both academic and industrial OLED research and development. In 2009,
Leo et al. reported a white OLED structure showing a fluorescent tube efficacy of 90 lm/W
with a CRI of 80 at 1000 cd/m2 [28]. Panasonic introduced a 4 mm2 OLED with 128 lm/W
and 1 cm2 white OLED panels with an efficacy of 114 lm/W at 1000 cd/m2 [29]. Panasonic
also developed a 25 cm2 white OLED panel with 110 lm/W efficacy and a lifetime of over
100,000 h (L50) at 1000 cd/m2 by employing all phosphorescent materials [30]. In 2014, Kon‑
ica Minolta demonstrated an OLED with a record high efficacy of 139 lm/W at 1000 cd/m2

using all phosphorescent materials [31].
Commercially, Osram introduced the first OLED‑based functional table lamp in

2008 [32,33]. In 2009, Philips started selling its OLED lighting panel under the trade name
of Lumiblade [34,35]. Lumiotech introduced a high CRI of 90 for natural white lighting
panels with an efficacy of 45 lm/W and a lifetime of 40,000 h (L50) at 3000 cd/m2 [36]. LG
Chem. developed white OLED panels with an efficacy of 60 lm/W and a lifetime of 40,000 h
(L70) at 3000 cd/m2 [34] (Table 1). Other companies such as UDC, Idemitsu, Mitsubishi
Chemical, Verbatim, Fraunhofer COMEDD, and Konica Minolta have followed the same
path to enhance product viability in the consumer market [37].

Table 1. Commercial OLED lighting panels.

Company Dimensions (mm) ηp
(lm/W)

Luminance
(cd/m2)

Lifetime
(h) Reference

Philips 124 × 124.5 × 3.3 16.7 4000 10,000 @ L50 [32]

Osram Φ75 mm 35.0 2000 10,000 @ L50 [33]

Lumiotech 145 × 145 45.0 3000 40,000 @ L70 [36]

Konica Minolta 21.4 × 25.9 ‑ 500 ‑ [38]

Mitsubishi Chem. 55 × 55 × 1.08 ‑ 2000 ‑ [39]

Kaneka 80 × 80 × 1.05 ‑ 3000 50,000 @ ‑ [40]

LG Chem. 200 × 50 × 0.88 60.0 3000 40,000 @ L70 [34]

Furthermore, high‑efficiency, tunable color‑temperature, high‑CRI, and low‑MSI OLED
panels are being fabricated, and few are exclusively available in the market. The time is not
far when OLED panels will light every household, workplace, library, and even hospital,
and human health will no longer be at risk.

2. The Crucial Roles of Blue Emitters
To realize high‑quality OLED displays and solid‑state lighting, extensively energy‑

efficient and long‑lifetime red, green, and blue (RGB) primary emitters are indispensable.
Many high‑potential red and green emitters have been developed, and they are extensively
accepted for commercial OLED products [41,42]. High‑quality blue emitters are still a ma‑
jor challenge, and the development of blue‑light emitting materials exhibiting high effi‑
ciency and long lifetimes is an issue of current interest.

2.1. Importance of Blue Emission
Red and green lights have been used for over a century. The need for blue light

has risen to fabricate energy‑efficient white light to revolutionize the lighting industry.
Red, green, and blue light can provide a continuous spectrum, emitting white light. Blue
emission is the color of light between violet and green, which can be classified in four
different chromaticity variables representing different CIEy value ranges: ultra‑deep blue
(CIEy < 0.05), deep blue (CIEy < 0.10), blue (CIEy < 0.25), and sky‑blue (CIEy < 0.35). The
development of a deep blue emitter is an essential requirement to realize high‑quality
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displays and solid‑state lighting. In addition, promising deep‑blue emitters must also
match the National Television System Committee (NTSC) standard with Commission In‑
ternationale de L’Eclairage (CIE) coordinates of (0.14, 0.08) for full‑color display applica‑
tions [41].

In the 1990s, Shuji Nakamura and his co‑workers, Akasaki and Anamo, invented the
blue light‑emitting diode (LED) using high‑quality crystals of GaN. The main purpose of
this invention was to produce energy‑ and resource‑efficient lighting that consumes com‑
paratively less power for illumination and is cheap enough to light every household. They
were awarded a Nobel prize for this esteemed invention that consumes much less energy
than other available lighting resources. These LEDs hold a long operating lifetime of over
100,000 h, which is 110 times higher than incandescent bulbs and white filament lamps,
respectively [43–45].

2.2. To Enable a White Light
Typically, white electroluminescence in OLED devices has been produced through

three major strategies: (i) mixing of primary red, green, and blue (RGB) emissions, (ii) de‑
velopment of a white emitter that consists of multiple spectral peaks covering the entire
visible range, and (iii) utilization of complementary emitters, such as orange and blue or
yellow and blue emitters. Consequently, blue emitters are crucial primary emission com‑
ponents for producing white emission chromaticity.

2.3. To Enable a High Color Gamut
The color gamut refers to the range of colors that any display can potentially display.

There are two types of color gamut, additive and subtractive. An additive color gamut
refers to color generated by mixing two or more color lights to generate a desired color.
Subtractive color is generated by mixing more than one dye that absorbs certain wave‑
lengths of light and reflects others to produce a color; it is used in color printing [46–48].
Considering a display’s high color gamut range, the organic emitters used in an OLED
display should exhibit color purity in RGB emission [49,50]. Researchers have broadly ac‑
cepted that extremely deep‑blue emitters can play a considerable role in developing an
incredibly high color gamut. The color gamut of NTSC can be exceptionally enhanced by
replacing the sky‑blue emitter with an extremely deep blue counterpart in displays [51–53].

2.4. To Enable a High Color Rendering Index
The color rendering index (CRI) is a significant indicator representing the quality

of illumination. High CRI is a noteworthy indicator of light quality for applications in
art galleries and exhibition centers because it can reveal the true color of paintings and
artworks faithfully under artificial lighting. Additionally, it has been extensively con‑
firmed that deep‑blue emission plays a crucial role in achieving a high CRI. Leo’s group
reported a hybrid white OLED that used phosphorescent red and green emitters with flu‑
orescent deep‑blue counterparts, which exhibited a CRI of 86 with an efficacy of 22 lm/W
at 1000 cd/m2 [54]. Yang et al. developed a CRI of 91 using a triple emissive layer device
architecture [55]. In 2011, Jou et al. fabricated a double emissive layer white OLED with a
record high CRI of 96 and 5.2 lm/W efficacy [56]. In the industrial sector, LG Chem. and Lu‑
miotech achieved over 90 CRI for OLED lighting panels with a power efficacy of 60 lm/W
and 28 lm/W, respectively, at 3000 cd/m2 [57,58].

3. Papers
For nearly a decade, the research communities and industry have worked on high‑

performance long‑lifetime deep blue‑emitting OLED devices. OLEDs are divided into three
groups based on their luminescent organic materials: fluorescent (Generation 1, Gen‑1),
phosphorescent (Generation 2, Gen‑2), and thermally activated delayed fluorescence (TADF)
(Generation 3, Gen‑3). Blue fluorescent OLEDs have a good operating lifespan and emit
a deep‑blue light, but they are less effective at emitting light per unit area than phospho‑
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rescent OLEDs. Phosphorescent blue emitters are commonly used to achieve high per‑
formance. Nevertheless, owing to their short operating life and low color coordination,
the extensive use of the phosphorescent emitters in OLEDs is limited. The trends and the
developments of previously recorded blue OLED journals have been listed in this section.

Trends and Development
The trend and development of the number of journal papers on fluorescent‑based blue

OLEDs are illustrated in the bar graph in Figure 4. Adachi and his team reported the first
blue OLED device in 1990 in Applied Physics Letters [59]. In 1992, around six fluorescent
material‑based blue OLED papers were reported. From 1993 to 1996, there were only two
papers reported per year. However, the average number of papers per year was recorded
as eight from 1997–2000. In 2001 and 2002, the number of publications decreased to one
paper per year, but gradually increased in the following years. The average number of
papers per year was determined to be around sixteen from 2006–2012. Furthermore, after
2012, we found a drastic enhancement in the publications, and more than 30 publications
were counted per year. The highest number of journal papers per year was counted as 68;
these were published over 2021.
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Figure 5 displays the number of publications on phosphorescent‑based blue OLEDs
(PHOLED) per year. In 2001, Adachi et al. exhibited a phosphorescent blue emitter, FIrpic,
and published an article in Applied Physics Letters [60]. In the succeeding year, Kawamura
et al. published an article in the same journal on blue PHOLED devices fabricated using
PVK as a host and Ir (III) complex as a dopant [61]. Moreover, we noticed that from 2002,
the number of journal papers gradually increased, with around ten papers published each
year till 2007. Furthermore, a rise in publication was observed till 2015, however, there still
were fewer than fifteen papers per year. In contrast, there was a drastic increment from
2015–2019, with an average of 36 papers per year. The highest count reached eighty in
2018. On average, 66 articles were published on blue PHOLED from 2016 to 2021.

Figure 6 illustrates yearly publication on thermally activated delayed fluorescent (TADF)‑
based blue OLEDs. The bar graph shows that the number of publications rapidly increased
since the first TADF‑based blue OLED paper was reported and peaked to 71 in 8 years. In
2012, Lee et al. reported a blue TADF emitter CC2TA comprising a bicarbazole donor and
phenyltriazine acceptor units in the Applied Physics Letter [62]. In 2013, Adachi and his
team published three papers [63–65]. In 2015, a report from Mallesham et al. demonstrated
pyrene excimer‑based blue emission [66]. Subsequently, in the same year, Liu et al. also
published an article based on designing and synthesizing blue TADF emitters for OLED
devices [67]. In addition, Adachi et al. reported a sky‑blue OLED device in the same year



Nanomaterials 2023, 13, 2521 7 of 67

and published an article. They studied a sky‑blue OLED based on a TADF molecule, 1,2‑
bis(carbazol‑9‑yl)‑4,5‑dicyanobenzene (2CzPN) [68]. A total of 16 articles were published
in 2015. For the following years, the number of reports continuously rose, with the publi‑
cation peaking in 2020 and slightly decreasing in 2021.
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Figure 7 depicts the rise of blue OLED papers using fluorescent (Gen‑1), phospho‑
rescent (Gen‑2) and TADF (Gen‑3) emitters. The yearly paper amount for Gen‑2 emitter‑
composed devices surpassed that of Gen‑1 counterparts in 2008 (after the first paper was
published in 2001), while the yearly paper amount of Gen‑3‑based devices surpassed that
of Gen‑2 in 2021 (after the first paper was published in 2012).
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devices surpassed that of Gen‑1 counterparts in 2008 (after the first paper was published in 2001),
while the yearly paper amount for Gen‑3‑based devices surpassed that of Gen‑2 in 2020 (after the
first paper was published in 2012). Keywords: Blue organic light‑emitting device. Source: Web
of science.

4. Patent
Figure 8 depicts the number of granted patents for blue OLEDs from 1995–2020. Blue

OLEDs were seemingly quite challenging to devise, since there was just one patent in 1998,
after the first patent in 1995. The first patent was filed by Hosokawa et al. from Idemitsu
Kosan Co. Ltd. (Tokyo, Japan) [69], demonstrating the feasibility of fabricating a blue
OLED on the basis of a polycarbonate containing a styryl‑amine or diarylvinylene ary‑
lene skeleton.

In 1998, the first small molecule‑based blue OLED patent was granted to Antoniadis
et al. from Agilent Technologies Inc., wherein oxadiazole‑, thiadiazole‑, or triazole‑based
blue emitters were used [70]. There were no blue OLED patents issued in 1999 or 2000.
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Figure 8. Blue OLEDs were seemingly quite challenging to devise since there was only one patent
filed in 1998 after the first patent appeared in 1995. There were no blue OLED patents issued in 1999
or 2000. After that, blue OLED patents were continuously granted, peaking to 23 in the year 2017.
The overall increasing trend over the past 20 and some years indicates that blue OLEDs are critically
crucial. Keyword: Blue organic light‑emitting diodes. Source: patentscope.wipo.int [71].
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In 2001, Adachi et al. from Princeton University received a patent based on transition
metals, wherein zinc‑based derivatives exhibited both blue fluorescence and phosphores‑
cence, the beginning of the phosphorescent mechanism [71].

After that, blue OLED patents were continuously granted, peaking to 23 in 2017. The
overall increasing trend over the past 20 and some years indicates that blue OLEDs are
critically crucial.

5. Performance Status
Nearly two decades ago, both academia and industries started making efforts to de‑

velop high‑efficiency and long‑lifetime OLED devices with deep‑blue emission. Based on
luminescent organic materials, OLEDs are generally classified into three main categories:
fluorescent, phosphorescent, and thermally activated delayed fluorescence (TADF).

Blue fluorescent OLEDs possess a fair operational lifetime and deep‑blue emission,
but they are typically less efficient at emitting light per unit area than their phosphores‑
cent counterparts.

To realize high efficiency, phosphorescent blue emitters are extensively used. How‑
ever, the widespread use of phosphorescent emitters is limited due to the absence of deep‑
blue emission. Further, to resolve the limitation, TADF materials were developed and
many more are under development. In this section, we describe the efficiency and lifetime
records for previously reported blue OLEDs.

5.1. Fluorescent Blue OLEDs
5.1.1. EQE vs. CIEy

Figure 9 shows the EQE performance vs. CIEy of fluorescent blue OLEDs with dry
and wet processes. The horizontal black dashed lines represent the theoretical 5% upper
limit. The vertical dark and light blue dashed lines represent the region for deep blue and
greenish blue, respectively.
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vices were reported with a greater than 5% EQE at 1000 cd/m2 with a CIEy less than 0.1 by using the 
dry process. 

5.1.2. Power Efficacy vs. CIEy 

Figure 9. EQE performance vs. CIEy of fluorescent blue OLEDs with dry and wet processes. The
horizontal black dashed lines represent the theoretical 5% upper limit. The vertical dark and light
blue dashed lines represent the region for deep blue and greenish blue, respectively. Some deep‑blue
devices were reported with a greater than 5% EQE at 1000 cd/m2 with a CIEy less than 0.1 by using
the dry process.
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Some deep‑blue device efficiencies were reported with a greater than 5% EQE at
1000 cd/m2 with a CIEy less than 0.1 by using the dry process. Among these, Yamazaki
et al. reported a highest EQE of 11% at 1000 cd/m2 with CIE coordinates of (0.14, 0.09)
using a BD‑06 deep‑blue emitter. The same report published a 12% EQE blue emission
with coordinates of (0.14, 0.12) using a BD‑05 emitter [72]. Liu et al. reported, at 100 cd/m2,
a deep‑blue emitter BBPA (at 5 wt%) with an 8.7% EQE at (0.15, 0.05) [73].

For wet‑processed deep‑blue fluorescent OLEDs, Wu et al. reported a 6.8% EQE at
100 cd/m2 with CIE coordinates of (0.16, 0.08) by using a host‑free emitter T3 [74], while
at 1000 cd/m2, Ma et al. reported a 6.2% EQE at (0.15, 0.08) by using a host‑free emitter
(G0) [75].

For emission with a greater than 0.1 CIEy, the maximum reported EQE is 10% with
coordinates of (0.15, 0.28), which displays a bluish‑green emission using DSA‑Ph emitter
doped in an MADN (host) [76]. At 100 cd/m2, the EQE achieved is 5.1% at (0.14, 0.19) by
employing a host‑free Blu2 blue emitter [77].

5.1.2. Power Efficacy vs. CIEy

Figure 10 shows the power efficacy (PE) performance vs. CIEy of fluorescent blue
OLEDs with dry and wet processes. The vertical dark and light blue dashed lines repre‑
sent the region for deep blue and greenish blue, respectively. None of the deep‑blue de‑
vices show a greater than 10 lm/W power efficacy at any reported luminance, regardless
of whether dry or wet processes were used.
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Figure 10. Power efficacy (PE) performance vs. CIEy of fluorescent blue OLEDs with dry and wet
processes. The vertical dark and light blue dashed lines represent the region for deep blue and
greenish blue, respectively. None of the deep‑blue devices shows a greater than 10 lm/W power
efficacy at any reported luminance, regardless of whether dry or wet processes were used.

Among the dry‑processed deep‑blue devices, Liu et al. published a PE of 6.1 lm/W
at 100 cd/m2 with CIE coordinates of (0.14, 0.1) by using an emitter NI‑2‑PhTPA [78]. Li
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et al. reported a PE of 17 lm/W for a greenish‑blue emission with coordinates (0.15, 0.26)
by utilizing a DSAph emitter doped in an MBA (host) [79].

For wet‑processed deep‑blue devices, Ma et al. reported a maximum PE (PEmax) of
3 lm/W with CIExy of (0.15, 0.08) using a host‑free emitter (G0); the same device showed
a 2.4 lm/W PE at 1000 cd/m2 [75]. Li et al. reported a PE of 13 lm/W at 100 cd/m2 for a
bluish‑green emission with CIE coordinates of (0.15, 0.28) by using a DSA‑Ph emitter [76].
Moreover, Zhen et al. reported a PE of 8.5 lm/W at 1000 cd/m2 with coordinates (0.14, 0.29)
by utilizing a host‑free Blu2 emitter [77].

5.1.3. Current Efficacy vs. CIEy

Figure 11 illustrates the current efficacy (CE) vs. CIEy for dry‑ and wet‑processed flu‑
orescent blue OLEDs. From the display application perspective, commercially viable prod‑
ucts are those with a CIEy lying on or above the dashed line with a CE equal to 70*CIEy [80].
The vertical dark and light blue dashed lines represent the region for deep blue and green‑
ish blue, respectively.

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 54 
 

 

Among the dry-processed devices, Kin and Hong et al. reported a maximum CE (CE-
max) of 5.1 cd/A for deep-blue emission with CIExy (0.15, 0.08) by using a T1b emitter [81]. 
Meanwhile, Liu et al. reported a 3.6 cd/A CE at 100 cd/m2 with coordinates (0.14, 0.08) by 
using an NI-2-TPA emitter [78]. 

Takita et al. reported one commercially viable deep-blue emitter showing a 9.2 cd/A 
CE at 1000 cd/m2 at (0.14, 0.09) by using (at 1 wt%) a BD-06 emitter. The other commercially 
viable emitter reported by the same group showed a CE of 11.6 cd/A at the same luminance 
for blue emission with coordinates (0.14, 0.12) by using (at 1 wt%) a BD-05 emitter [72].  

For the wet-processed devices, Li et al. reported a highest CE of 14.7 cd/A for a green-
ish-blue emission with coordinates (0.15, 0.28) by employing a DSAph emitter [76].  

Zou et al. published two commercially viable deep-blue emitters with a CEmax of 5.4 
cd/A at (0.16, 0.07) by using a T3 host-free emitter. Moreover, the same device showed a 5.1 
cd/A CE at 100 cd/m2 with the same CIEy [74]. However, no commercially viable device has 
been obtained with a 1000 cd/m2 yet. 

 
Figure 11. Current efficacy (CE) vs. CIEy for dry- and wet-processed fluorescent blue OLEDs. From 
display application perspective, commercially viable ones are those with a CIEy lying on or above the 
dashed line with a CE equal to 70*CIEy. The vertical dark and light blue dashed lines represent the 
region for deep blue and greenish blue, respectively. 
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Figure 12 shows the lifetime and current efficacy vs. CIEy for fluorescent blue OLEDs. 

The shaded area represents a CE ≥ 70*CIEy [30,37,41–43]. As shown, one deep-blue fluores-
cent device met the commercially viable criteria. Takita et al. reported a device with a life-
time of 125 h and a CEmax of 9.2 cd/A corresponding to a CIEy of 0.09 by using a BD-06 emitter 
[72]. Moreover, Jeon et al. reported a device closest to the criteria showing a lifetime of 168 
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Figure 11. Current efficacy (CE) vs. CIEy for dry‑ and wet‑processed fluorescent blue OLEDs. From
display application perspective, commercially viable ones are those with a CIEy lying on or above
the dashed line with a CE equal to 70*CIEy. The vertical dark and light blue dashed lines represent
the region for deep blue and greenish blue, respectively.

Among the dry‑processed devices, Kin and Hong et al. reported a maximum CE
(CEmax) of 5.1 cd/A for deep‑blue emission with CIExy (0.15, 0.08) by using a T1b emit‑
ter [81]. Meanwhile, Liu et al. reported a 3.6 cd/A CE at 100 cd/m2 with coordinates (0.14,
0.08) by using an NI‑2‑TPA emitter [78].

Takita et al. reported one commercially viable deep‑blue emitter showing a 9.2 cd/A
CE at 1000 cd/m2 at (0.14, 0.09) by using (at 1 wt%) a BD‑06 emitter. The other commercially
viable emitter reported by the same group showed a CE of 11.6 cd/A at the same luminance
for blue emission with coordinates (0.14, 0.12) by using (at 1 wt%) a BD‑05 emitter [72].
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For the wet‑processed devices, Li et al. reported a highest CE of 14.7 cd/A for a
greenish‑blue emission with coordinates (0.15, 0.28) by employing a DSAph emitter [76].

Zou et al. published two commercially viable deep‑blue emitters with a CEmax of
5.4 cd/A at (0.16, 0.07) by using a T3 host‑free emitter. Moreover, the same device showed
a 5.1 cd/A CE at 100 cd/m2 with the same CIEy [74]. However, no commercially viable
device has been obtained with a 1000 cd/m2 yet.

5.1.4. Lifetime and Current Efficacy vs. CIEy

Figure 12 shows the lifetime and current efficacy vs. CIEy for fluorescent blue OLEDs.
The shaded area represents a CE ≥ 70*CIEy [30,37,41–43]. As shown, one deep‑blue flu‑
orescent device met the commercially viable criteria. Takita et al. reported a device with
a lifetime of 125 h and a CEmax of 9.2 cd/A corresponding to a CIEy of 0.09 by using a
BD‑06 emitter [72]. Moreover, Jeon et al. reported a device closest to the criteria showing
a lifetime of 168 h and a CEmax of 9.1 cd/A corresponding to a CIEy of 0.15 by using a
BD‑6MDPA emitter [82].
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Wei et al. reported a device close to the criteria with a lifetime of 110 h and a 4.9 cd/A
CEmax corresponding to a CIEy 0.11 by using a 5 wt% BN1 emitter [83].

Table 2 shows the efficiency and lifetime performance of dry‑processed fluorescent
blue OLEDs. All the lifetime data have also been converted to the same 1000 nits for easy
comparison. Takita et al. reported a lifetime of 125 h at a 10% lifetime decay (LT90) and
a maximum EQE (EQEmax) of 11.8% at 1000 nits for a deep‑blue emission with a CIEy of
0.09 by using a BD‑06 emitter [72]. Wei et al. reported a lifetime of 110 h at a half lifetime
decay (LT50) at 1176 cd/m2 and an EQEmax of 8.6% for a blue emission with a CIEy of 0.11.
A lifetime of 121 h estimated as the initial brightness is converted to 1000 cd/m2 [83].

S.W. Wen et al. reported a highest lifetime of 7000 h (at LT50) at 100 cd/m2 and a 9.7 CEmax
and 11.5% EQEmax for a bluish‑green emission with a CIEy of 0.32 by using a 3 wt% DSA‑
Ph emitter in an MADN host. At 1000 cd/m2

, the same device is estimated to have a 1662 h
(LT50) of lifetime [84].
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Table 2. Efficiency and lifetime performance of dry‑processed fluorescent blue OLEDs. All the life‑
time data have been converted to the same 1000 nits for easy comparison.

CIEy EQEmax
(%) L0 (cd/m2) Lifetime (h)

Lifetime (h)
@L0:1000
(cd/m2)

CEmax
(cd/A) Year Reference

0.09 11.8 1000 125 (LT90) 125 (LT90) 9.2 2018 [72]
0.11 8.6 1176 110 (LT50) 121 (LT50) 4.9 2010 [83]
0.15 8.2 5000 168 (LT50) 458 (LT50) 9.1 2010 [82]
0.17 3.0 100 5600 (LT50) 1330 (LT50) 4.0 2005 [84]
0.22 4.9 1000 78 (LT80) 78 (LT80) 7.1 2020 [85]
0.32 1.5 100 7000 (LT50) 1662 (LT50) 9.7 2005 [84]

L0: Initial luminance.

Table S1 shows a comprehensive list of dry‑processed blue fluorescent OLED devices,
including the publication year, device structure, employed host, key dopant, doping con‑
centration, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The years span
from 2006 to 2020. A complete set of efficiencies at 100 and/or 1000 cd/m2 and/or the max‑
imum efficiency are reported for deep‑blue and blue emission.

Table S2 shows a comprehensive list of wet‑processed blue fluorescent OLED devices,
including the publication year, device structure, employed host, key dopant, doping con‑
centration, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The years span
from 2006 to 2020. A complete set of efficiencies at 100 and/or 1000 cd/m2 and/or the max‑
imum efficiency are reported for deep‑blue and blue emission.

5.2. Phosphorescent Blue OLEDs
5.2.1. EQE vs. CIEy

Figure 13 shows the EQE performance vs. CIEy of phosphorescent blue OLEDs with
dry and wet processes. The horizontal black dashed lines represent the 20% theoretical
upper limit. The vertical dark and light blue dashed lines represent the region for deep
blue and greenish blue, respectively.

Some deep‑blue devices were reported with a greater than 20% EQE at a maximum
luminance dimmer than 100 nits with a CIEy less than 0.1 by using dry‑process. Park et al.
reported an EQEmax of 25% for a deep‑blue emission with coordinates of (0.14, 0.08) using
a TSP01 emitter doped in a mer‑Ir1 host. The same report published a 17 and 13% EQE at
100 and 1000 cd/m2, respectively [86].

Sarma et al. reported a highest EQEmax of 31% for a blue emission with CIE coordi‑
nates of (0.15, 0.3) using an 8 wt% MCPCN emitter. The same report published a 31 and
28% EQE at 100 and 1000 cd/m2, respectively [87].

For wet processes, none of the deep‑blue devices shows an EQE greater than 20%. Li
et al. published a highest EQEmax of 25% for a bluish‑green emission at CIE coordinates of
(0.15, 0.35) using a 5 wt% FIrpic doped in an m‑CzPyPz host [88].

At 100 nits, no device shows a deep‑blue emission or an EQE greater than 20%. How‑
ever, Kim et al. reported a device close to the theoretical limit with an EQE of 18% at
100 cd/m2 for a bluish‑green emission at CIE coordinates of (0.18, 0.34) using a 3 wt% fac‑
tris(2,3‑dimethylimidazo[1,2‑f]phenanthridinato‑k2 C, N)iridium(III)] emitter [89].

At 1000 cd/m2, none of the devices shows a deep‑blue emission. Nevertheless, Seok
Oh et al. published a 24% EQE for a bluish‑green emission with coordinates of (0.19, 0.41)
using a 10 wt% Ir(dbi)3 doped in an mCBP‑CN host [90].
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Figure 13. EQE performance vs. CIEy of phosphorescent blue OLEDs with dry and wet processes.
Some deep‑blue devices were reported with a greater than 20% EQE at a maximum luminance dim‑
mer than 100 nits with a CIEy less than 0.1 by using dry processes. The horizontal black dashed
lines represent the theoretical upper limit. The vertical dark and light blue dashed lines represent
the region for deep blue and greenish blue, respectively.

5.2.2. Power Efficacy vs. CIEy

Figure 14 shows the power efficacy performance vs. CIEy of fluorescent blue OLEDs
with dry and wet processes. No deep‑blue devices show a power efficacy greater than 10 lu‑
mens per watt at 100 or 1000 nits. The vertical dark and light blue dashed lines represent
the region for deep blue and greenish blue, respectively.

For dry‑processed devices, Park et al. reported a 17 lm/W PEmax for a deep‑blue emis‑
sion with CIExy (0.14, 0.08) using a TSP01 emitter doped in a mer‑Ir1 host. The same de‑
vice showed a 9.1 and 5.5 lm/W PE at 100 and 1000 cd/m2, respectively [86]. Ying et al.
reported a highest PEmax of 60 lm/W for a bluish‑green emission with CIExy (0.14, 0.32)
using a 10 wt% FIrpic doped in an mCBP:PO‑T2T (host:co‑host) [91].

Meanwhile, Sarma et al. reported a PE of 51 lm/W at 100 cd/m2 for a bluish‑green
emission with CIE coordinates of (0.15, 0.3) by using an 8 wt% mCPCN emitter doped in
an MS19 host [87]. Furthermore, Son et al. reported a 42 lm/W PE at 1000 cd/m2 for a
bluish‑green emission with CIExy (0.16, 0.34) by using a 6 wt% FIrpic doped in a TATA
host [92].

Among the wet‑processed devices, none shows a deep‑blue emission. However, Feng
et al. reported a device close to a deep‑blue region with a PEmax of 11 lm/W at CIE coor‑
dinates of (0.14, 0.11) by using a 10 wt% Ir2 doped in a t‑BuCPO host. The same device
showed a PE of 8.8 and 5 lm/W at 100 and 1000 cd/m2, respectively [93].

Meanwhile, Seok Oh et al. reported a highest PEmax of 57 lm/W for a bluish‑green
emission with coordinates of (0.19, 0.41) using an Ir(dbi)3 emitter doped in an mCBP‑CN
host. The same device showed a 37 lm/W PE at 1000 cd/m2 [90]. Moreover, Jou et al.
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reported a PE of 26 lm/W at 100 cd/m2 for a bluish‑green emission with coordinates of
(0.18, 0.34) using an FIrpic emitter doped in a CBP host [94].
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Figure 14. Power efficacy performance vs. CIEy of phosphorescent blue OLEDs with dry and wet
processes. No deep‑blue devices show a power efficacy greater than 10 lumens per watt at 100 or
1000 nits. The vertical dark and light blue dashed lines represent the region for deep blue and green‑
ish blue, respectively.

5.2.3. Current Efficacy vs. CIEy

Figure 15 shows the current efficacy (CE) performance vs. CIEy for dry‑ and wet‑
processed phosphorescent blue OLEDs. The black dashed lines represent the minimum
CE requirement for display. The vertical dark and light blue dashed lines represent the
region for deep blue and greenish blue, respectively.

Many dry‑processed devices exhibit a CE much greater than 70*CIEy in the typical
blue region, while only a few exhibit deep‑blue emission. Among these, Park et al. re‑
ported a commercially viable device with a CEmax of 21 cd/A for a deep‑blue emission at
(0.14, 0.08) by using a mer‑Ir1 emitter doped in a TSP01 host. The same device showed a
14 and 11 cd/A CE at 100 and 1000 cd/m2, respectively [86].

Wu et al. also reported a commercially viable device with a CEmax of 59 cd/A for a
bluish‑green emission with CIExy (0.13, 0.37) by using a 10 wt% DPP‑2 emitter doped in a
26DCzPPy host [95]. Sarma et al. also reported a commercially viable device with a 56 cd/A
CE at 100 cd/m2 for a bluish‑green emission at (0.15, 0.30) by using an 8 wt% MS19 emitter
doped in an mCPCN host. The same device showed a 54 cd/A CE at 1000 cd/m2 [87].

For wet‑processes, no devices met the criteria to be commercially viable in the deep‑
blue region. However, in the typical blue region, many wet‑processed devices met the
criteria. Among these, Li et al. reported a CEmax of 49 cd/A for a bluish‑green emission
with coordinates of (0.15, 0.35) by using a 5 wt% FIrpic emitter doped in an m‑CzPyPz host.
The same device showed a 41 cd/A CE at 1000 cd/m2 [88]. Moreover, Wee et al. reported a
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31 cd/A CE at 100 cd/m2 for a greenish‑blue emission at CIExy (0.15, 0.23) by using a 10 wt%
FIr6 emitter doped in an Opt‑MCBP host [96].

Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 54 
 

 

For dry-processed devices, Park et al. reported a 17 lm/W PEmax for a deep-blue emis-
sion with CIExy (0.14, 0.08) using a TSP01 emitter doped in a mer-Ir1 host. The same device 
showed a 9.1 and 5.5 lm/W PE at 100 and 1000 cd/m2, respectively [86]. Ying et al. reported 
a highest PEmax of 60 lm/W for a bluish-green emission with CIExy (0.14, 0.32) using a 10 wt% 
FIrpic doped in an mCBP:PO-T2T (host:co-host) [91]. 

Meanwhile, Sarma et al. reported a PE of 51 lm/W at 100 cd/m2 for a bluish-green emis-
sion with CIE coordinates of (0.15, 0.3) by using an 8 wt% mCPCN emitter doped in an MS19 
host [87]. Furthermore, Son et al. reported a 42 lm/W PE at 1000 cd/m2 for a bluish-green 
emission with CIExy (0.16, 0.34) by using a 6 wt% FIrpic doped in a TATA host [92]. 

Among the wet-processed devices, none shows a deep-blue emission. However, Feng 
et al. reported a device close to a deep-blue region with a PEmax of 11 lm/W at CIE coordinates 
of (0.14, 0.11) by using a 10 wt% Ir2 doped in a t-BuCPO host. The same device showed a PE 
of 8.8 and 5 lm/W at 100 and 1000 cd/m2, respectively [93]. 

Meanwhile, Seok Oh et al. reported a highest PEmax of 57 lm/W for a bluish-green emis-
sion with coordinates of (0.19, 0.41) using an Ir(dbi)3 emitter doped in an mCBP-CN host. 
The same device showed a 37 lm/W PE at 1000 cd/m2 [90]. Moreover, Jou et al. reported a 
PE of 26 lm/W at 100 cd/m2 for a bluish-green emission with coordinates of (0.18, 0.34) using 
an FIrpic emitter doped in a CBP host [94]. 

5.2.3. Current Efficacy vs. CIEy 
Figure 15 shows the current efficacy (CE) performance vs. CIEy for dry- and wet-pro-

cessed phosphorescent blue OLEDs. The black dashed lines represent the minimum CE re-
quirement for display. The vertical dark and light blue dashed lines represent the region for 
deep blue and greenish blue, respectively. 

 
Figure 15. Current efficacy (CE) performance vs. CIEy for dry‑ and wet‑processed phosphorescent
blue OLEDs. Many dry‑processed devices exhibit a CE much greater than 70*CIE= in the typical blue
region, while only a few exhibits deep‑blue emission. The black dashed lines represent the minimum
CE requirement for display. The vertical dark and light blue dashed lines represent the region for
deep blue and greenish blue, respectively.

5.2.4. Lifetime and CE vs. CIEy

Figure 16 shows the lifetime and current efficacy vs. CIEy for phosphorescent blue
OLEDs. Those that fall on the grey area are plausibly commercially viable. The shaded
area represents a CE ≥ 70*CIEy.

None of the deep‑blue fluorescent devices met the commercially viable criteria. How‑
ever, Sarma et al. reported a commercially viable device close to the deep‑blue region with
a lifetime of 2200 h and a CEmax of 43 cd/A corresponding to a CIEy of 0.16 by using an
8 wt% mCPCN emitter doped in an MS19 host [87].

Some phosphorescent OLEDs show relatively high current efficacy and a compara‑
tively long lifetime in the sky‑blue region. Among these, Weaver et al. reported a highest
lifetime of 100,000 h and a CEmax of 32 cd/A corresponding to a CIEy of 0.38 by using
a 6 wt% FIrpic doped in a CBP host [97]. Meanwhile, Konidena et al. reported a high‑
est CEmax of 52 cd/A and a lifetime of 20 h corresponding to a CIEy of 0.32 by using a
3CNCzBN emitter [98].

Table 3 shows the efficiency and lifetime performance of dry‑processed phosphores‑
cent blue OLEDs. All the lifetime data have also been converted to the same 1000 nits for
easy comparison.
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Table 3. Efficiency and lifetime performance of dry‑processed phosphorescent blue OLEDs. All the
lifetime data have been converted to the same 1000 nits for easy comparison.

CIEy EQEmax
(%) L0 (cd/m2) Lifetime (h)

Lifetime (h)
@L0:1000
(cd/m2)

CEmax
(cd/A) Year Reference

0.13 27.6 100 10,000 (LT50) 2375 (LT50) ‑ 2020 [99]

0.16 25 327 2203 (LT50) 1095 (LT50) 42.6 2017 [87]

0.23 5.5 200 2.9 (LT75) 1 (LT75) 6.3 2019

[100]0.23 5.9 200 2.6 (LT75) 0.9 (LT75) 9.1 2019

0.24 9.7 200 4 (LT75) 1.4 (LT75) ‑ 2019

0.24 12.1 ‑ 0.8 (LT95) ‑ ‑ 2019

[101]0.24 17.1 ‑ 1.3 (LT95) ‑ ‑ 2019

0.24 16.1 ‑ 13.8 (LT95) ‑ ‑ 2019

0.25 16.9 20 46 (LT70) 4 (LT70) 14.5 2019
[102]

0.25 16.9 1000 602 (LT70) 602 (LT70) ‑ 2019

0.28 11.6 1000 553 (LT50) 553 (LT50) 20.7 2020 [103]

0.28 17.6 20 43 (LT70) 3.7 (LT70) ‑ 2019
[102]

0.28 17.6 1000 709 (LT70) 709 (LT70) ‑ 2019

0.28 14.7 ‑ 2.1 (LT95) ‑ ‑ 2019 [101]

0.29 11 200 17,500 (LT50) 6410 (LT50) 21 2006 [97]

0.29 18 20 39.5 (LT70) 3.4 (LT70) ‑ 2019
[102]

0.29 18 1000 761 (LT70) 761 (LT70) ‑ 2019

0.32 25.6 1000 20 (LT70) 20 (LT70) 52.1 2020 [98]

0.38 14 200 100,000 (LT50) 36,630 (LT50) 32 2006 [97]

0.38 12.6 20 37.8 (LT70) 3.2 (LT70) ‑ 2019
[102]

0.38 12.6 1000 466 (LT70) 466 (LT70) ‑ 2019
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No devices show a deep‑blue emission. However, Jung et al. reported a device close
to deep‑blue emission with a highest EQEmax of 28% and a lifetime of 10,000 h (LT50) at
100 cd/m2 corresponding to a CIEy of 0.13. A lifetime of 2400 h, estimated as the initial
brightness, is converted to 1000 cd/m2 [99].

Weaver et al. reported a highest lifetime 100,000 h (LT50) at 200 cd/m2, an EQEmax
of 14%, and a CEmax of 32 cd/A corresponding to a CIEy of 0.38. At 1000 cd/m2

, the same
device is estimated to have a 37,000 h (LT50) of lifetime [97].

Table S3 shows a comprehensive list of dry‑processed blue phosphorescence OLED
devices, including the publication year, device structure, key dopant, doping concentra‑
tion, employed host, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The
years span from 2001 to 2020. A complete set of reported efficiencies (maximum at 100 and
1000 cd/m2) corresponding to the device composition are displayed for deep‑blue and
blue emission.

Table S4 shows a comprehensive list of dry‑processed blue phosphorescence OLED
devices, including the publication year, device structure, key dopant, doping concentra‑
tion, employed host, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The
years span from 2001 to 2020. A complete set of reported efficiencies (maximum at 100 and
1000 cd/m2) corresponding to the device composition are displayed for deep‑blue and
blue emission.

5.3. TADF‑Based Blue OLEDs
5.3.1. EQE vs. CIEy

Figure 17 shows the EQE performance vs. CIEy of TADF blue OLEDs with dry and
wet processes. The shaded area represents the upper and lower limits expected for a TADF‑
based device. The vertical dark and light blue dashed lines represent the region for deep
blue and greenish blue, respectively.
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Figure 17. EQE performance vs. CIEy of TADF blue OLEDs with dry and wet processes. Some deep‑
blue devices were successfully fabricated with an EQE greater than 20% via dry‑process. The shaded
area represents the upper and lower limits expected for a TADF‑based device. The vertical dark and
light blue dashed lines represent the region for deep blue and greenish blue, respectively.
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Some deep‑blue devices were successfully fabricated with an EQE greater than 20%
via a dry process. Among these, Liang et al. reported an EQEmax of 20% with CIE coordi‑
nates of (0.16, 0.03) by using an NTN‑PCZ host‑free emitter [104]. Meanwhile, Lim et al.
reported a highest EQEmax of 28%, exceeding the 20% theoretical limit, with a CIExy (0.14,
0.09) by using a 20 wt% TDBA‑SAF emitter doped in a DPEPO host. The same device
showed a 24 and 18% EQE at 100 and 1000 cd/m2, respectively [105].

Moreover, some blue devices achieved an EQE much greater than 20%. Among these,
Li et al. reported a highest EQEmax of 33% for a bluish‑green emission at (0.17, 0.33) by
using a 30 wt% TspiroS‑TRZ emitter doped in a DPEPO host. The same device showed
a 31 and 24% EQE at 100 and 1000 cd/m2, respectively [106]. Furthermore, Miwa et al.
reported a 33% EQEmax for a greenish‑blue emission with CIExy (0.16, 0.22) by using a
CCX‑I‑6B‑OC emitter doped in a PPF host [107].

For wet‑processed devices, Kim et al. reported an EQEmax of 9.2% for a deep‑blue
emission at (0.17, 0.07) by using a TB‑3Cz host‑free emitter [108]. None of the devices
show a deep‑blue emission at 100 or 1000 cd/m2. Meanwhile, Xie et al. reported a 25%
EQEmax for a greenish‑blue emission with coordinates of (0.16, 0.24) by using a 2tCz2CzBn
host‑free emitter. The same device showed a 12 and 4.5% EQE at 100 and 1000 cd/m2,
respectively [109].

5.3.2. PE vs. CIEy
Figure 18 shows the power efficacy performance vs. CIEy of TADF blue OLEDs with

dry and wet processes. The vertical dark and light blue dashed lines represent the region
for deep blue and greenish blue, respectively.
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Figure 18. Power efficacy performance vs. CIEy of TADF blue OLEDs with dry and wet processes.
One device shows an around 20 lm/W power efficacy at 100 nits with deep blue emission. The vertical
dark and light blue dashed lines represent the region for deep blue and greenish blue, respectively.
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One device shows around 20 lm/W power efficacy at 100 nits with deep‑blue emission
via dry‑processing. Lim et al. reported a highest PEmax of 20 lm/W with coordinates of
(0.14, 0.09) by using a 20 wt% TDBA‑SAF emitter doped in a DPEPO host. The same device
showed a 14 and 7.4 lm/W PE at 100 and 1000 cd/m2, respectively [105].

Meanwhile, Ganesan et al. reported a highest PEmax of 68 lm/W for a bluish‑green
emission with CIExy (0.18, 0.34) by using a 22 wt% 2NPMAF emitter doped in a DPEPO
host. The same device showed a 46 lm/W PE at 100 nits [110]. Moreover, Oh et al. reported
a PE of 44 lm/W at 1000 cd/m2 for a bluish‑green emission at (0.17, 0.33) by using a 30 wt%
23CT emitter doped in a DPEPO host [111].

For wet‑processed devices, Kim et al. reported a PEmax of 4.1 lm/W for a deep‑blue
emission with CIExy (0.15, 0.08) by using a TB‑P3Cz host‑free emitter [108]. None of the
devices shows a deep‑blue emission at 100 and 1000 nits.

Meanwhile, Ban et al. reported a PEmax of 36 lm/W for a bluish‑green emission at (0.17,
0.35) by using a MeCz‑4CzCN host‑free emitter [112]. Furthermore, Xie et al. reported a
PE of 24 lm/W at 100 cd/m2 for a bluish‑green emission with CIExy (0.18, 0.35) by using a
2PhCz2tCzBn host‑free emitter. The same device showed an 8.1 lm/W PE at 1000 nits [109].

5.3.3. CE vs. CIEy

Figure 19 shows the current efficacy (CE) performance vs. CIEy for dry‑ and wet‑
processed TADF blue OLEDs. The black dashed lines represent the minimum CE require‑
ment for display. The vertical dark and light blue dashed lines represent the region for
deep blue and greenish blue, respectively.
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One dry‑processed device exhibits a near 25 cd/A CEmax with relatively deep‑blue
emission. Greater than 20 cd/A is also reported at 100 nits. Lim et al. reported a commer‑
cially viable device with a CEmax of 24 cd/A for a deep‑blue emission at (0.14, 0.09) by using
a 20 wt% TDBA‑SAF emitter doped in a DPEPO host. The same device showed a 21 and
15 cd/A CE at 100 and 1000 cd/m2, respectively [105].

Meanwhile, Li et al. reported two commercially viable devices with a CEmax of 71 cd/A
for a bluish‑green emission at (0.17, 0.33) by using a 30 wt% TspiroS‑TRZ emitter doped
in a DPEPO host. The same device showed a 70 cd/A CE at 100 cd/m2. Another device
showed a 56 cd/A CE at 1000 cd/m2 for a bluish‑green emission at (0.19, 0.39) by using a
30 wt% TspiroF‑TRZ emitter doped in a DPEPO host [106].

For wet‑processed devices, none of the deep‑blue devices met the criteria to be com‑
mercially viable. However, Kim et al. reported a device close to the criteria with a CEmax
of 4.6 cd/A at (0.15, 0.08) by using a TB‑P3Cz host‑free emitter [108]. None of the devices
show a deep‑blue emission at 100 or 1000 nits.

Nonetheless, Xie et al. reported two commercially viable devices with a CEmax of
44 cd/A for a bluish‑green emission at (0.19, 0.38) by using a 2tCz2PhCzBn host‑free emitter.
The same device showed an 18 cd/A CE at 1000 nits. Moreover, another device showed a
CE of 38 cd/A at 100 nits for a bluish‑green emission at (0.18, 0.35) by using a 2PhCz2tCzBn
host‑free emitter [109].

5.3.4. Lifetime and CE vs. CIEy

Figure 20 shows the lifetime and current efficacy (CEs) vs. CIEy for TADF blue OLEDs.
The shaded area represents a CE ≥ 70*CIEy. None of the devices show a lifetime even
close to a deep‑blue region. However, a couple TADF‑based OLEDs show a fair lifetime
with high current efficacy in the sky‑blue region. Yoon et al. reported a lifetime of 24 h
and CEmax of 42 cd/A corresponding to a CIEy of 0.35 by using a 30 wt% DBA‑BI emitter
doped in a pCzPybCz host [113].
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None of the devices shows a lifetime in the deep‑blue region. However, Su et al. re‑
ported a device close to the deep‑blue region with a lifetime of 95 h (LT50) at 1000 nits and
an EQEmax of 12% corresponding to a CIEy of 0.19 by using a BCz‑TRZ emitter doped in
an ICz‑TRZ host. The same report showed a highest lifetime of 495 h (LT50) at 1000 nits
and an EQEmax of 20% corresponding to a CIEy of 0.3 by using a BCz‑TRZ emitter doped
in a PYD2 host [114].

Table 4. Efficiency and lifetime performance of dry‑processed TADF blue OLEDs. All the lifetime
data have been converted to the same 1000 nits for easy comparison.

CIEy EQEmax
(%) L0 (cd/m2) Lifetime (h)

Lifetime (h)
@L0:1000
(cd/m2)

CEmax
(cd/A) Year Reference

0.19 11.8 1000 95 (LT50) 95 (LT50) ‑ 2020

[17,115,116]

0.2 10 1000 45 (LT50) 45 (LT50) ‑ 2020

0.23 18.1 1000 174 (LT50) 174 (LT50) ‑ 2020

0.24 17.3 1000 72 (LT50) 72 (LT50) ‑ 2020

0.26 13.6 500 21 (LT80) 13.6 (LT80) ‑ 2017

0.3 24 1000 5 (LT95) 5 (LT95) 40.7 2020
[6,113]

0.3 24 1000 12 (LT90) 12 (LT90) 40.7 2020

0.3 19.6 1000 495 (LT50) 495 (LT50) ‑ 2020
[115]

0.34 17.1 500 0.28 (LT80) 0.18 (LT80) ‑ 2017

0.35 22.7 1000 11 (LT95) 11 (LT95) 42.2 2020
[113]

0.35 22.7 1000 24 (LT90) 24 (LT90) 42.2 2020

0.35 17.3 500 3 (LT90) 1.9 (LT90) ‑ 2020

[45,117]

0.35 17.3 500 19.1 (LT75) 12.4 (LT75) ‑ 2020

0.35 14.8 500 2.4 (LT90) 1.5 (LT90) ‑ 2020

0.35 14.8 500 14.1 (LT75) 9.1 (LT75) ‑ 2020

0.35 12.9 500 2.8 (LT90) 1.8 (LT90) ‑ 2020

0.35 12.9 500 19.9 (LT75) 12.9 (LT75) ‑ 2020

0.35 12.2 500 1.7 (LT90) 1.1 (LT90) ‑ 2020

0.35 12.2 500 9.9 (LT75) 6.4 (LT75) ‑ 2020

Table S5 shows a comprehensive list of dry‑processed blue TADF OLED devices, in‑
cluding the publication year, device structure, key dopant, doping concentration, employed
host, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The years span from
2015 to 2020. A complete set of reported efficiencies (maximum at 100 and 1000 cd/m2)
corresponding to the device composition are displayed for deep‑blue and blue emission.

Table S6 shows a comprehensive list of wet‑processed blue TADF OLED devices, in‑
cluding the publication year, device structure, key dopant, doping concentration, employed
host, HOMO, LUMO, EQE, PE, CE, CIE (X), CIE (Y), and reference. The years span from
2016 to 2020. A complete set of reported efficiencies (maximum at 100 and 1000 cd/m2)
corresponding to the device composition are displayed for deep‑blue and blue emission.

6. Chemical Structures and Characteristics of Blue Emitters
As mentioned earlier, the materials can be classified into three categories; fluores‑

cent, phosphorescent, and TADF, which can be further sub‑categorized according to their
derivatives. This section describes the historical development and current advancement of
fluorescent, phosphorescent, and TADF blue emitters based on their structural importance,
color purity, and efficiency.
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6.1. Fluorescent Type
Over the past two decades, researchers have developed various kinds of blue‑fluorescent

emitters, such as distyrylarylene (DSA), spiro‑shaped, biaryl, silane, and polycyclic aro‑
matic hydrocarbon (e.g., pyrene, anthracene, carbazole, fluorene, etc.) derivatives to en‑
hance the performance of blue OLEDs. Among them, polycyclic aromatic hydrocarbon
(PAH)‑based small molecules, oligomers, starburst, tetrahedral, dendrimer derivatives,
and long‑chain polymers are extensively applicable as emitters and/or host materials in
OLED devices. In this section, we comprehensively review nine series of fluorescent‑type
blue‑light emitting materials (Figure 21).
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In 1992, Hamada et al. reported a multi-layer blue OLED device employing an oxadia-
zole derivative, 1,3-bis(N,N-dimethylaminophenyl)-1,3,4-oxadiazole (OXD-8), as an emitter 
for the first time (Figure 22). It showed a maximum luminance of over 1000 cd/m2 and an 
emission peaking at 470 to 480 nm [118,119]. In the same year, Leising et al. reported an EQE 
of 0.05% for a single-layer blue OLED device using poly(p-phenylene) (PPP) (Figure 14) 
[120,121]. 

Hosokawa et al. also observed a blue emission for a non-conjugated polymer-based 
emitter with an electron donor polycarbonate-containing styrylamine repeating unit (SA-
PC) (see Figure 14) in a multilayered device. The power efficacy was 0.05 lm/W with a peak 
emission at 460 nm [122]. 

 

 

Figure 21. Numerous series of fluorescent blue emitters based on different core structure units.

In 1992, Hamada et al. reported a multi‑layer blue OLED device employing an oxadia‑
zole derivative, 1,3‑bis(N,N‑dimethylaminophenyl)‑1,3,4‑oxadiazole (OXD‑8), as an emit‑
ter for the first time (Figure 22). It showed a maximum luminance of over 1000 cd/m2

and an emission peaking at 470 to 480 nm [118,119]. In the same year, Leising et al. re‑
ported an EQE of 0.05% for a single‑layer blue OLED device using poly(p‑phenylene) (PPP)
(Figure 14) [120,121].
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Figure 22. Chemical structures of some typical blue emitters, OXD‑8, PPP, and SA‑PC, for OLED devices.

Hosokawa et al. also observed a blue emission for a non‑conjugated polymer‑based
emitter with an electron donor polycarbonate‑containing styrylamine repeating unit (SA‑
PC) (see Figure 14) in a multilayered device. The power efficacy was 0.05 lm/W with a peak
emission at 460 nm [122].
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6.1.1. Distyrylarylene (DSA)
Over the last twenty years, researchers have extensively investigated the electrolu‑

minescent characteristics of DSA, DSA‑ph, and their numerous derivatives as blue‑light
emitting materials in blue OLED devices [122–126]. In 1990, Hosokawa et al. measured
light‑emitting characteristics of DSA derivatives and reported that the exciplex formation
or charge transfer complex with a hole‑transporting layer drastically influenced device
performance [123].

Researchers at Idemitsu Kosan Co. Ltd. reported that the formation of exciplex or
charge transfer complexes can be avoided by introducing electron donor groups, such as
ethyl, methoxy, diethylamine, phenylamine, and N‑ethyl‑carbazole, in DSA derivatives
(Figure 23).
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Later in 1993, Tokailin et al. reported a series of nonplanar DSA derivatives with
different DSA cores (Figure 24), namely, DTVB and DTVX, and different alkyl group sub‑
stituents at the end of the molecule, namely, DPVBi, DTVBi, and DTBPVBi, as blue emitters.
They also investigated the electroluminescence characteristics of these emitters in a multi‑
layer OLED device (ITO as anode; TDP as HTL; DPVBi or DTVBi or DTBPVBi as EML;
Alq as ETL; Mg:Ag as cathode). The OLED device fabricated with a DPVBi emitter exhib‑
ited, at 1000 cd/m2, a power efficacy of 0.6 lm/W and maximum luminance of 2280 cd/m2,
with blue emission peaking at 475 nm. The EL spectra did not exhibit any emission in the
longer wavelength region, supporting that both DPVBi and DTVBi had entirely avoided
the formation of exciplex or charge transfer complexes [127].
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High device efficiencies and long operation lifetimes were realized in 1995 by doping
a fluorescent styrylamine‑based guest, BCzVB, into a DSA derivative, DPVBi, host material.
Hosokawa et al., in 1995, utilized a DDPVBi as a blue host material and styrylamine (known
as BCzVB) as a dopant [126]. Further improvement of this system was later published, in
which the current efficacy reached 10.2 cd/A at 1.89 mA/cm2 with 1931 CIE coordinates
of (0.17, 0.33) and a half‑life of 20,000 h at an initial brightness (Lo) of 100 cd/m2. When
oligoamine was used as a hole‑injection layer for this device, the operational lifetime was
further improved to 10,000 h with Lo = 500 cd/m2 [84]. It appears that the sky‑blue emission
was specifically designed by Idemitsu Kosan for the application of color‑changing media
(CCM) technology for full‑color organic EL devices [128].

For a 3 wt% DSA‑ph emitter doped with a 2‑methyl‑9,10‑di(2‑napthyl)anthracene
(MADN) host, the device exhibited a half‑decay lifetime of 46,000 h (LT50) at an initial
brightness of 100 cd/m2. The resultant OLED also showed a much higher power efficacy
of 5.5 lm/W and a current efficacy of 9.7 cd/A at 20 mA/cm2 with a sky‑blue emission (0.16,
0.32) [84].

In 2007, Ho et al. reported a new series of emitters based on a seven‑membered N‑
hetero‑cyclic core structure of iminodibenzyl‑distyrylarylene (IDB). In the distyrylarylene
structure, a replacement of the amino group by an iminodibenzyl group improved the ther‑
mal properties (Tg varying between 119 and 137 ◦C) and slightly blue‑shifted the emission
with increasing phenyl units. The emission wavelength for DSA‑ph is 458 nm, while it was
449, 447, and 443 nm for IDB‑ph, IDB‑diph, and IDB‑triph, respectively [129].

In 2018, Wanshu Li et al. reported a wet‑processed simple structure and high effi‑
ciency OLED using a DSA‑Ph emitter doped in an MADN host. In this work, MADN is
also used as a hole‑transporting material (HTL). At 3 wt% dopant concentration, a 10%
EQEmax was reported at CIE coordinates of (0.15, 0.28). Moreover, a high CE of 15 cd/A
and 13 lm/W PE was obtained [76].

6.1.2. Pyrenes
In the last fifteen years, numerous pyrene derivatives and hybrid‑based blue‑emitters

were investigated in OLED devices due to their rigid planar structure [130,131], high ther‑
mal stability [70,132,133], high fluorescence quantum yield [134–138], long fluorescent life‑
time [139,140], and effective carrier mobility [141,142].

However, the utilization of pyrene‑based blue emitters was limited, owing to their strong
tendency to form excimers and π‑aggregates, which would cause red shifts and quenching
of fluorescence, resulting in a lower solid‑state PL quantum yield and quantum efficiency.
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Numerous efforts in the structural alteration of pyrene‑based compounds have hence been
made to enhance the PL quantum yield and diminish the aggregation characteristics.

In recent years, pyrene derivatives were extensively employed in efficient blue OLEDs,
including polypyrenes [134,143,144], dipyrenylbenzene [145], alkynylpyrene [146,147], pyrene‑
functionalized calix[4]arenes [148], aryl‑functionalized pyrenes [116,136,149–151], as well as
oligothiophenes with pyrenyl side groups [152], pyrene‑carbazole [132,135,146,153,154], pyrene‑
fluorene [155–163], pyrene‑triphenylamine [142,164,165], and pyrene‑anthracene [166] hybrids,
due to their good emissive characteristics and hole mobility.

In 2011, Figueira‑Duarte and Müllen comprehensively reviewed the synthesis tech‑
niques for numerous types of small molecular pyrene, oligo‑pyrene, pyrene‑dendrimer,
and polypyrenes. They also reviewed the thermal, electrochemical, photophysical, and
optical characteristics of all pyrene‑based emitters and their electroluminescence charac‑
teristics in OLED devices [167].

In this part, we have only covered the pyrene derivatives that were reported in the
past few years. The Sonogashira, Sonogashira‑Hogihara, Suzuki, Suzuki‑Miyaura, Heck,
and Yamamoto‑coupling reactions have been extensively used to synthesize pyrene hybrid
derivatives. The sky‑blue emitter, 1‑((9,9‑diethyl‑9H‑fluorene‑2yl)ethynyl)pyrene (PA‑1)
(Figure 25), was synthesized by the Sonogashira method via a cross‑coupling reaction of
1‑bromopyrene with 9,9‑diethyl‑2ethynyl‑9H‑fluorene by using a Pd(PPh3)2Cl2/PPh3/CuI
catalytic system. The PA‑1 exhibited a purplish‑blue emission with CIE coordinates of
(0.15, 0.06), a power efficacy of 1.2 lm/W, a current efficacy of 1.9 cd/A, and EQE of 3.5% at
100 cd/m2 as a 3 wt% sky‑blue emitter doped into the polarity matching the CBP host [162].
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6.1.3. Anthracenes 
Adachi et al. reported a 9,10-diphenyl-anthracene (DPA) emitter with a 100% photolu-

minescence quantum yield (PLQY) [59]. The other major blue-doped emitter was developed 
by Shi et al. at Kodak in 2002 and utilized diphenylanthracene derivative 9,10-di(2-naph-
thyl)anthracene (ADN) (Figure 26) as a host and 2,5,8,11-tetra(t-butyl)-perylene (TBP) as a 
dopant to generate a blue emission of CIE (0.15, 0.23). The blue device showed a current 
efficacy of around 3.5 cd/A with a half-life of 4000 h at an initial light output of 700 cd/m2 
[171]. 

In 2007, Shih et al. developed a blue-emitting material 2-tert-butyl-9,10-bis[4-(1,2,2-tri-
phenylvinyl)phenyl]anthracene (TPVAn) (Figure 26) that contained an anthracene core and 
two tetraphenylethylene end-capped groups. The material possessed a high Tg of 155 °C and 
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A series of pyrenoimidazole‑based emitters that possess markedly high thermal char‑
acteristics were synthesized in three simple steps. Firstly, pyrene‑4,5‑dione was prepared
via the oxidation of pyrene in the presence of ruthenium trichloride and sodium perio‑
date. Subsequently, the pyrene‑4,5‑dione was reacted with the corresponding aldehyde in
the presence of ammonium acetate to form sparingly soluble pyrenoimidazoles. Finally,
the alkylation reaction was either executed under phase transfer catalysis to synthesize
mono‑pyrenoimidazoles or by employing the potassium carbonate/dimethylformamide
(K2CO3/DMF) to synthesize bis‑pyrenoimidazoles. These rigid pyrenoimidazole moiety‑
based hybrid compounds offered a very high thermal stability with decomposition tem‑
peratures from 462 to 512 ◦C.

With a CBP host doped with a 3 wt% mono‑pyrenoimidazole, 9‑butyl‑10‑(pyrene‑1‑
yl)‑9H‑pyreno[4,5‑d]imidazole (Figure 25), the resultant multi‑layer OLED device showed,
at 100 cd/m2, for example, a power efficacy of 1.2 lm/W, a current efficacy of 2.4 cd/A, and
an external quantum efficiency (EQE) of 2.2% with CIE coordinates of (0.15, 0.32). The
resultant device also exhibited a maximum luminance of 2740 cd/m2 [168].

It is well established that pyrene‑based emitters, either molecular or polymeric, pos‑
sess a planar or partial planar molecular structure, which tends to show excimer emissions
and lower quantum efficiencies, resulting in an extensive bathochromic shift in emission
spectra owing to the π–π stacking of pyrene chromophore units in the solid state.

In 2012, Hu and Yamato et al. synthesized a series of pyrene‑based Y‑shaped blue
emitters using the Suzuki cross‑coupling reaction of 7‑tert‑butyl‑1,3‑dibromopyrene with
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p‑substituted phenylboronic acids. These emitters realized a low degree of π‑stacking due
to the steric effect of the tert‑butyl group in the pyrene ring at the 7‑position [134,169].

In the search for new light‑emitting compounds, Promarak et al. synthesized a series of
solution‑processable pyrene‑functionalized carbazole derivatives, N‑dodecyl‑3,6‑di(pyren‑1‑
yl)carbazole (CP2), N‑dodecyl‑1,3,6‑tri(pyren‑1‑yl)carbazole (CP3) and N‑dodecyl‑1,3,6,8‑tetra
(pyren‑1‑yl)carbazole (CP4) (Figure 25), by using the Suzuki‑coupling reaction [170].

These pyrene‑carbazole hybrids showed a glass‑transition temperature and decompo‑
sition temperature ranging from 70 to 170 ◦C and 375 to 407 ◦C, respectively. Among the
four pyrene‑moieties containing carbazole compounds, CP4, showed the highest thermal
stability (Tg = 170 ◦C and Td = 407 ◦C).

However, these materials showed an undesirable donor‑acceptor (DA) behavior be‑
cause the carbazole central unit acts as a donor and the pyrene functional group acts as
an acceptor. It is known in the literature that the DA molecular systems tend to extend
π‑conjugation and generate an intramolecular charge transfer (ICT) state, inducing an un‑
wanted bathochromic shift in the search for a deep‑blue emission.

An OLED device based on non‑doped CP4 showed, by thermal evaporation deposi‑
tion, for example, a maximum current efficacy of 6.7 cd/A and maximum luminance of
25,000 cd/m2 with CIE coordinates of (0.14, 0.26), and 2.5 cd/A and 9700 cd/m2 with CIE
coordinates of (0.21, 0.28) via spin‑coating [170].

6.1.3. Anthracenes
Adachi et al. reported a 9,10‑diphenyl‑anthracene (DPA) emitter with a 100% pho‑

toluminescence quantum yield (PLQY) [59]. The other major blue‑doped emitter was de‑
veloped by Shi et al. at Kodak in 2002 and utilized diphenylanthracene derivative 9,10‑
di(2‑naphthyl)anthracene (ADN) (Figure 26) as a host and 2,5,8,11‑tetra(t‑butyl)‑perylene
(TBP) as a dopant to generate a blue emission of CIE (0.15, 0.23). The blue device showed
a current efficacy of around 3.5 cd/A with a half‑life of 4000 h at an initial light output of
700 cd/m2 [171].
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In 2007, Shih et al. developed a blue‑emitting material 2‑tert‑butyl‑9,10‑bis[4‑(1,2,2‑
triphenylvinyl)phenyl]anthracene (TPVAn) (Figure 26) that contained an anthracene core
and two tetraphenylethylene end‑capped groups. The material possessed a high Tg of
155 ◦C and was morphologically stable due to the presence of the sterically congested ter‑
minal groups. A bright saturated‑blue emission with CIE coordinates (0.14, 0.12) along
with a 5.3% EQE crossing the theoretical limit of fluorescent materials was reported, the
best performance among the non‑doped blue devices [172].

In 2008, three materials 9,10‑Bis(3′,5′‑diphenylphenyl)anthracene [MAM], 9‑(3′,5′‑dip
henylphenyl)‑10‑(3
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The Tg for TAT is twice as high as the commonly used host material DPVBi (64 ◦C) and
slightly higher than MADN (120 ◦C). The CIE coordinates were (0.15, 0.08) with an EQE
of 7.2% [173].

In 2010, Zheng et al. reported a series of non‑doped devices with three newly de‑
signed emitters, 2‑tert‑butyl‑9,10‑bis(9,9‑dimethylfluorenyl) anthracene (TBMFA), 2‑tert‑
butyl‑9,10‑bis[4‑(2‑naphthyl)phenyl] anthracene (TBDNPA), and 2‑tert‑butyl‑9,10‑bis[4‑
(9,9‑dimethylfluorenyl)phenyl] anthracene (TBMFPA) (Figure 26), using naphthalene or
9,9‑dimethylfluorene side units. Due to the anthracene unit, the resultant devices showed
a deep‑blue emission. These materials also showed a high Tg ≥ 133 ◦C, due to the pres‑
ence of sterically congested terminal groups. The TBDNPA‑based device outperformed
the others by showing a low turn‑on voltage of 3.0 V with an initial brightness of 1 cd/m2.
The device displayed an EQE of 5.2% at 8.4 mA/cm2 with CIEy < 0.1 [174].

In 2011, Kim et al. synthesized four molecules displaying blue emission using anthracene
moieties. The material, 3‑(anthracen‑9‑yl)‑9‑ethyl‑9H‑carbazole (AC), 3,6‑di(anthracen‑9‑yl)‑
9‑ethyl‑9H‑carbazole (DAC), 3‑(anthracen‑9‑yl‑)‑9‑phenyl‑9H‑carbazole (P‑AC), and 3,6‑
di(anthracen‑9‑yl)‑9‑phenyl‑9H‑carbazole (P‑DAC) (Figure 26), was also comprised of co‑
valent carbazole units. Among these, the undoped device with P‑DAC showed a near
deep‑blue emission at (0.16, 0.13) with a luminance efficacy of 3.1 cd/A and EQE of 2.8%.
Moreover, P‑DAC as a host material doped with a BDAVBi emitter displayed a 7.7 cd/A CE
and 4.7% EQE with CIE coordinates of (0.15, 0.21) at 100 mA/cm2. A negligible efficiency
roll‑off is observed over a broad range of current density [175].

In 2012, Zhuang et al. reported a series of non‑doped devices using emitters 2‑(4‑
(anthracen‑9‑yl)phenyl)‑1‑phenyl‑1H‑phenanthro[9,10‑d]imidazole (ACPI), 2‑(4‑(10‑(naph
thalen‑1‑yl)anthracen‑9‑yl)phenyl)‑1‑p‑henyl‑1H‑phenanthro[9,10‑d]imidazole (1‑NaCPI),
and 2‑(4‑(10‑(naphthalen‑2‑yl)anthracen‑9‑yl)phenyl)‑1‑phenyl‑1H‑phenanthro[9,10‑d]im
idazole (2‑NaCPI) (Figure 26). The materials possess good film‑forming capability and a
high Td (290–354 ◦C). Among them, ACPI displayed the highest CEmax, at 1.6 cd/A at a low
turn‑on voltage of 3.0 V corresponding to CIExy (0.16, 0.17). A negligible efficiency roll‑off
is observed at high current densities [176].

In 2019, a material (4‑(diphenylamino)phenyl)anthracen‑9‑yl)pyren‑1‑yl)‑N,N‑diphen yla
niline (p‑TPA‑AP‑TPA) (Figure 26) was synthesized with a dual‑core moiety of anthracene
and pyrene with a triphenylamine (TPA) side group attached at a para position to control
the emission in the blue region. Moreover, the bulky molecule yielded a twisted molecular
structure that prevents intermolecular interactions. The PL emission was around 473 nm
in the film with a high Tg of 194 ◦C. The device showed a low turn‑on of 3.1 V with an EQE
of 8.4% and a maximum luminance of 7100 cd/m2 at CIE of (0.14, 0.15) [177].

6.1.4. Fluorenes
Fluorenes were first reported in 2006 by Lai et al. for OLED applications. They de‑

signed oligofluorenes with a certain length to obtain a high quantum yield (
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for a pure‑blue emission. The PL emission was observed around 400 nm. An emissive layer
of 130 nm was spin‑casted and displayed a peak brightness of 1300 cd/m2 at a turn‑on volt‑
age of 5.3 V with a low current density of 90 mA/cm2. The CIE coordinates of (0.15, 0.09)
displayed a deep‑blue emission with an EQE of 2.0% and CE of 2.1 cd/A. These hindered
six‑arm architectures (highly branched and dendritic structures) suppress aggregation and
self‑quenching while the triazatruxene core facilitates charge injection, transport, and com‑
bination. Moreover, the powerful microwave‑enhanced synthesis diminished impurities
and chain defects that may result in quenching or keto‑defects [178].

In 2007, Lai et al. reported a kinked star‑shaped fluorene/triazatruxene co‑oligomer
(C1, C2 and C3) (Figure 27) that can effectively suppress aggregation and crystallization.
The HOMO level was well matched to that of the anode’s work function that significantly
improved the carrier transportation. The single‑layer EL showed almost no change in color
even at a higher voltage. The device displayed a low turn‑on voltage of 3.3 V, EQE of 2.2%,
and maximum luminance of 2400 cd/m2 [179].
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In 2008, Jou et al. reported 2,7‑bis{2[phenyl(m‑tolyl)amino]‑9,9‑dimethyl‑fluorene‑7‑
yl}‑9,9‑dimethyl—fluorene (MDP3FL) (Figure 27) blue emitter doped in a low‑polarity host,
4,4′‑bis(9‑carbazolyl)‑biphenyl (CBP). The neat film of MDP3FL exhibits an EQE of 1.9% at
100 cd/m2 displaying a CIE of (0.15, 0.12). When doped with a 10 wt% in CBP, a 5.1% EQE
was observed for a deep‑blue emission at CIE (0.14, 0.08) [180].

In 2009, Wang et al. reported a solution‑processable fluorescent π‑conjugated den‑
drimer G0 (Figure 27). The material displayed a CEmax of 5.3 cd/A with a deep‑blue emis‑
sion at (0.15, 0.09). The EQEmax was 4.2% while 3.6% at 1000 cd/m2 [75].

Figure 27 shows the fluorene derivatives extensively utilized in efficient blue OLEDs,
such as fluorene‑bridged anthracene, [181] oligofluorenes, [74,77,182–184] p‑difluoropheny
lene [185], bis(4‑diphenylaminophenyl)carbazole end‑capped fluorene [186], phosphine ox‑
ide [187,188], perfluorinated polymer [189], poly(3,6‑Dimethoxy‑9,9‑dialkylsilafluorene)s [190],
and polycyclic [191].

In 2020, Liu et al. reported a blue dye TPA‑DFCP with a twisted D–π–A configura‑
tion where triphenylamine (TPA), benzonitrile (CP), and 9,9‑dioctylfluorene served as D,
A, and π‑conjugation units, respectively. TPA is a strong electron donor group and has
a high HOMO level. Moreover, a certain twist angle is present in the molecular space
of TPA to avoid molecular accumulation. The non‑doped device showed a high EQE of
7.7% with CIE coordinates of (0.15, 0.07) displaying a deep‑blue emission. Meanwhile, the
doped device showed an EQEmax of 8.3% and a radiative exciton utilization energy (ηr) of
58% [192].

6.1.5. Biaryl
In 2005, Fisher et al. reported two materials: N,N′‑diethyl‑3,3′‑bicarbazyl (DEC) and

1,4,5,8‑N‑pentamethylcarbazole (PMC) (Figure 28). Both the materials can be used as a
hole‑blocking layer and blue emitter. The device based on a DEC emitter doped in a DPVBi
host displayed an EQE of 3.3%, CE of 4.7 cd/A, and PE of 1.3 lm/W at CIE coordinates of
(0.15, 0.10) [193].
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In 2006, Tseng demonstrated a device based on a 7,8,10‑triphenylfluoranthene (TPF)
emitter doped in a dipyrenylfluorene (DPF) host. With a 6 wt% of the TPF dopant, the
device displayed a 3.3 lm/W PE and a 2.5% EQE at CIE coordinates of (0.16, 0.18) [194].

In 2007, Jou et al. reported three emitting materials, namely, trans‑1,2‑bis(6‑(N,N‑di‑p‑
tolylamino)‑naphthalene‑2‑yl)ethene (BNE), 2‑(N,N‑diphenylamino)‑6‑[4‑(N,N‑diphenyla
mino)styryl]naphthalene (DPASN), and di(triphenyl‑amine)‑1,4‑divinylnaphthalene (DPVP)
(Figure 28). Among them, BNE displayed the highest EQE, at 6.0%, and a PE of 12.5 lm/W
at a low turn‑on voltage of 3 V for a pan‑blue emission at (0.19, 0.31) [195].

6.1.6. Spiro‑Shaped
In 2010, Jeon et al. reported a series of spiro‑based emitters, namely, N,N,N′,N′‑

tetraphenylspiro[fluorene‑7,9′‑benzofluorene] (SFBF)‑5,9‑diamine (BD‑6DPA), N,N′‑di‑(2‑
naphthyl)‑N,N′‑diphenyl‑SFBF‑5,9‑diamine (BD‑6NPA), N,N′‑diphenyl‑N,N′‑di‑m‑tolyl‑S
FBF‑5,9‑diamine (BD‑6MDPA), and N,N′‑diphenyl‑N,N′‑bis(4‑(trimethylsilyl)phenyl)‑SFB
F‑5,9‑diamine (BD‑6TMSA) (Figure 29), synthesized using an animation reaction. Among
them, BD‑6MDPA displayed the highest CE, at 9.1 cd/A at 6.5 V, and an EQE of 8.2% with
coordinates of (0.13, 0.15). The device showed a full width at half maxima of 48 nm and an
emission peaking at 463 nm [82].
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In 2013, Hou’s group designed and synthesized a series of fluorinated 9,9′‑spirobifluorene
derivatives (SFs). The photophysical properties, energy levels, and thermal properties can
be tuned using different substitutional groups of electron‑withdrawing moieties, such as F
and CF3. Among the series, a 2,2′,7,7′‑tetrakis(3‑fluorophenyl)spiro‑9,9′‑bifluorene (Spiro‑
(3)‑F) (Figure 29) blue emitter displayed the best result in a non‑doped stage with an emis‑
sion at CIE (0.16, 0.12) peaking at 408 nm. These SFs also served as a host for blue‑emitting
dopants, especially Spiro‑(3)‑F, with a low turn‑on voltage of 3.4 V showing a CE of 6.7 cd/A
and an EQE of 5.0% [196].

6.1.7. Silanes
In 2001, Yu et al. reported for the first time a silane group as a blue emitter, tris(2,3‑

methyl‑8‑hydroxyquinoline) aluminum (III) (Alm23q3). The presence of two electron‑donating
methyl groups widened the HOMO/LUMO gap and blue‑shifted the EL peaks to 470 nm.
The resultant device showed a power efficacy of 0.6 lm/W at 300 cd/m2 [197].

In 2002, Chan et al. reported a molecular glass material (4‑(5‑(4‑(diphenylamino)phenyl)‑
2‑oxadiazolyl)phenyl)triphenylsilane (Ph3Si(PhTPAOXD)) (Figure 30) as a blue emitter.
The material possessed a Tg of 85 ◦C, making it less vulnerable to heat and hence more
stable. The device showed a maximum luminance of 19,000 cd/m2 with an EQE of 2.4% at
CIE coordinates of (0.16, 0.18) [198].
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In 2015, Liu et al. reported an organosilane compound, bis(4‑(1‑phenylphenanthro[9,
10‑d]imidazol‑2‑yl)phenyl)diphenylsilane (Si(PPI)2) (Figure 30), as a bipolar host. The in‑
corporation of one tetraphenylsilane and two PPI groups made the compound thermally
stable with a high Td of 528 ◦C and a Tg of 178 ◦C. Moreover, when doped with a 10 wt%
An(PPI)2 emitter, the device showed a PE of 8.0 lm/W and an EQE of 6.1% at CIExy (0.18,
0.17) [199].

6.1.8. Carbazole
In 2018, Jou et al. reported a carbazole‑based deep‑blue fluorescent emitter, 6‑((9,9‑

dibutyl‑7‑((7‑cyano‑9‑(2‑ethylhexyl)‑9H‑carbazol‑2‑yl)ethynyl)‑9H‑fluoren‑2‑yl)ethynyl)‑9‑(2‑
ethylhexyl)‑9H‑carbazole‑2‑carbonitrile (JV55) (Figure 31), that showed a maximum EQE
of 6.5% at CIE coordinates of (0.16, 0.06). The deep‑blue emission realized a 101% color sat‑
uration according to the NTSC standard. The very high PLQY of 91%, effective host‑guest
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energy transfer, efficient triplet energy utilization, and low doping concentration realized
a low roll‑off [200].
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biphenyl]-4-yl)-1, 3, 4-oxadiazole (Oxd-bCz) (Figure 32), by incorporating electron-donor 
and electron-withdrawal moieties. The material emitted a purple-blue fluorescence at 431 
nm when diluted in dichloromethane. From a device perspective, the device turned on at 
3.6 V and displayed a maximum EQE of 5.6% at CIEy ~ 0.07 [203]. 

 
Figure 32. Molecular structures of oxadiazole-based blue emitters. 

Figure 31. Molecular structures of carbazole‑based blue emitters.

In 2020, Yang et al. reported a blue fluorescent material with a twisted A–π–D–π–A
configuration, namely, CzPA‑F‑PD (Figure 31). This material exhibited dual fluorescent
properties that emitted blue and red emissions under PL and EL processes when triggered
by trifluoroacetic acid (TFA). The property had been reversed to its initial state on neutral‑
izing TFA with triethylamine (TEA). It was observed that hydrogen protonation of TFA
amplified the lone pair electrons around the nitrogen atoms in pyridine, enhancing the elec‑
tron acceptor ability. This scheme also played a significant role during the dual fluorescent
process. The material possessed a good exciton utilization efficiency of 67%, exceeding the
upper limit of spin‑statics for fluorescent materials [201].

6.1.9. Oxidiazole
In 2018, Wu et al. reported that triazine, oxadiazole, triazole, cyno‑substituted ben‑

zene, and benzothiadiazole worked as acceptor units while carbazole, arylamine, phenoth‑
iazine, and their derivatives were utilized as donor moieties for a bipolar structure. Con‑
sequently, they utilized phenothiazine and 9,9‑diphenyl‑9,10‑dihydroacridine as a donor
unit and oxadiazole derivatives, 2,5‑bis(4‑bromophenyl)‑1,3,4‑oxadiazole and 2‑(4‑bromop
henyl)‑5‑phenyl‑1,3,4‑oxadiazole, as acceptor units to synthesize a series of bipolar emit‑
ters, namely, 2DPAc‑OXD, DPAc‑OXD, 2PTZ‑OXD, and PTZ‑OXD (Figure 32). All the
materials possessed a high decomposition temperature above 358 ◦C, with emissions in
the PL range of 435–512 nm. For OLED applications, these materials showed a moderate
turn‑on voltage of around 4.2 V along with a highest EQE of 4.0% when using the material
2PTZ‑OXD [202].
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Later that year, Wang et al. reported a bipolar molecule, bis(4’‑(9H‑carbazol‑9‑yl)‑
[1,1‑biphenyl]‑4‑yl)‑1, 3, 4‑oxadiazole (Oxd‑bCz) (Figure 32), by incorporating electron‑
donor and electron‑withdrawal moieties. The material emitted a purple‑blue fluorescence
at 431 nm when diluted in dichloromethane. From a device perspective, the device turned
on at 3.6 V and displayed a maximum EQE of 5.6% at CIEy ~ 0.07 [203].

6.2. Phosphorescent Type
Developing phosphorescent emitters is essential as they have the potential to realize a

high‑efficiency OLED. In 1998, Forrest and Thompson et al. discovered a phosphorescent
emitter to develop a nearly 100% internal quantum efficiency because of their ability to effi‑
ciently harvest both singlet and triplet excitons [204–208]. Since then, very high‑efficiency
phosphorescent green and red emitters have emerged. However, it was a great challenge
to synthesize a highly energy‑efficient phosphorescent blue emitter that exhibits a long life‑
time with high color purity. Deep blue emitters should have a high triplet energy (~3 eV),
a high photoluminance quantum yield (PLQY), and a short excited‑state lifetime. To real‑
ize the above‑mentioned features, considerable efforts have been made to develop a high
performance deep‑blue emitter.

On the basis of previous investigations, it is well established that complexes of heavy
metals such as iridium (III), platinum (II), and ruthenium (II) have been utilized to synthesize
promising blue emitters [209–211]. Among them, iridium complex‑based phosphors have
shown enormous potential to realize high‑efficiency blue OLEDs. Moreover, to achieve a
deep‑blue emission, thermally and electrochemically stable fluorine‑free cyclometalating lig‑
ands [210,212,213] were introduced either by using electron‑withdrawing groups [214,215] or
electron‑deficient heterocycles [215,216]. Furthermore, to stabilize HOMO, ancillary ligands
with strong ligand field strength, such as isocyanide or phosphine, were utilized [215,217].

6.2.1. Iridium (III) Complexes
In 2001, Adachi et al. reported a sky‑blue phosphorescent emitter, FIrpic (Figure 33), with

an EQE of 5.7% and CIE coordinates of (0.16, 0.29) [60]. In 2003, Holmes et al. synthesized
a blue emitter, iridium(III) bis(2,4‑difluorophenylpyridinato)tetrakis(1‑pyrazolyl)borate (FIr6)
(Figure 33), with an EQE of 12% at (0.16, 0.26) [218]. In the same year, Bazan’s group
reported a series of anthracene‑containing binaphthol emitters with CIE coordinates of
(0.18, 0.21) without revealing device performance [209].

In 2005, Holmes reported fac‑ and mer‑isomers of fluorine‑free emitters tris(phenyl‑
methyl‑benzimidazole)iridium(III) (f‑Ir(pmb)3) and (m‑Ir(pmb)3), respectively (Figure 33).
When f‑Ir(pmb)3 was doped into a p‑bis(triphenylsilyly)benzene (UGH2) host, the device
showed an EQE of 5.8% for a deep‑blue emission with CIE coordinates of (0.17, 0.06) [210].

Moreover, other fluorine‑free Ir complexes which resulted in a blue emission were
also reported. They were mer‑tris(Ndibenzofuranyl‑N‑methylimidazole) iridium(III) [Ir‑
(dbfmi)] (Figure 33) [212] and tris(1‑cyanophenyl‑3‑methylimidazolin‑2‑ylidene‑C,C2′) irid‑
ium(III) [Ir(cnpmic)] [213].

In 2009, Kang et al. introduced a blue emitter based on an iridium(III) complex of
2′,6′‑difluoro‑2,3′‑bipyridine (fac‑Ir(dfpypy)3) (Figure 33) with CIE coordinates of (0.14,
0.12) [219]. Meanwhile, the same group reported a comparatively more efficient device
with an EQE of 10% at 1000 cd/m2 at (0.15, 0.24) by employing its modified complex,
(dfpypy)2Ir(µ‑Cl)2) [220].

In 2010, Kido et al. reported a halogen‑free blue emitter, mer‑tris(N‑dibenzofuranyl‑
N′‑methylimidazole)iridium(III) (Ir(dbfmi)) (Figure 33). By doping a 10 wt% Ir(dbfmi) into
a 3,6‑bis(diphenylphosphoryl)‑9‑phenylcarbazole (PO9) host, the resultant device showed
a maximum EQE of 19% with CIExy (0.15, 0.19) [212]. In 2011, Hsieh et al. reported blue
emitters of iridium bis(carbene) complexes, namely, Ir(mpmi)2(pypz), Ir(fpmi)2‑(pypz),
and Ir(fpmi)2(tfpypz) (Figure 33), that showed an EQE of 15, 14, and 7.6% and CIExy of
(0.14, 0.27), (0.14, 0.18), and (0.14, 0.10), respectively [221].
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In 2012, Fan et al. reported two phosphoryl/sulfonyl‑substituted iridium complexes,
POFIrpic and SOFIrpic (Figure 33), by introducing phosphoyl/sulfonyl moieties into the
5′‑position of a phenyl ring in the structural frame of FIrpic. By doping a POFIrpic emitter
into PVK:OXD‑7 hosts, the solution‑processable blue device showed CIE coordinates of
(0.16, 0.29) and an EQE of 3.5% at 1000 cd/m2 [222]. In 2013, Fan et al. modified the FIrpic
by introducing fluorine, chlorine, and bromine atoms to the 4‑position of a pyridine ring.
The 4‑F‑FIrpic‑based device showed an EQE of 15% for a blue emission with CIExy (0.15,
0.28) [223]. Meanwhile, Kessler et al. synthesized a heteroleptic iridium complex based
on a 4‑(tert‑butyl)‑2′,6′‑difluoro‑2,3′‑bipyridine ligand (FK306) (Figure 33) that showed an
EQE of 13% at 1000 cd/m2 for a greenish‑blue emission at (0.16, 0.25) [224]. In the same year,
Yoon et al. reported a series of Ir(III) complexes using (4′‑substituted‑2′‑pyridyl)‑1,2,4‑
triazole ancillary ligands. By doping a 10 wt% of iridium complex of 5‑(4′‑methylpyridine‑
2′‑yl)‑3‑trifluoromethyl‑1,2,4‑triazolate ancillary ligand (Ir5) (Figure 33) into a 4,4′‑bis(9‑
carbazolyl)‑2,2′‑dimethylbiphenyl (CDBP) host, the resultant device showed a blue emis‑
sion with CIE coordinates of (0.15, 0.18) [225].

Moreover, Lee et al. reported a series of near deep‑blue iridium(III) complexes, (TF)2Ir(pic),
(TF)2Ir(fptz), (HF)2Ir(pic), and (HF)2Ir(fptz) (Figure 33). They consisted of 2′,4″‑difluororphenyl‑
3‑methylpyridine with a trifluoromethyl carbonyl or heptafluoropropyl carbonyl group as the
main ligand and a picolinate or a trifluoromethylated triazole as the ancillary ligand. Among
them, (TF)2Ir(fptz) achieved an EQE of 7.4% at 100 cd/m2 for a blue emission with CIE coordi‑
nates of (0.14, 0.11) [226].
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In 2014, Liu et al. reported a host molecule, 3,6‑bis(diphenylphosphoryl)‑9‑(4′‑(diphen
ylphosphoryl) phenyl)‑carbazole (TPCz) (Figure 33). The solvent effect was studied by dis‑
solving a mixture of TPCz and FIrpic (emitter) in various polar solvents. They thought
that the higher polar halogen‑free solvent isopropanol provided good solubility, helping
resist the aggregation of FIrpic and hence render a more densely packed emissive layer.
The efficiencies of 22 cd/A and 16 lm/W at (0.15, 0.32) were also reported [227].

In 2015, Sun et al. reported a series of 3,3′‑bicarbazole (mCP)‑functionalized tetraphenyl‑
silane derivatives (SimCPx) (Figure 33). On changing the number of mCP subunits on the
central Si atom, four molecules, namely, bis(3,5‑di(9H‑carbazol‑9‑yl)phenyl)diphenylsilane
(SimCP2), tris(3,5‑di(9H‑carbazol‑9‑yl)phenyl)methylsilane (SimCP3‑CH3), tris(3,5‑di(9H‑
carbazol‑9‑yl)phenyl)phenylsilane (SimCP3‑Ph), and tetrakis(3,5‑di(9H‑carbazol‑9‑yl)phe
nyl)silane (SimCP4), were synthesized as bipolar hosts. The derivatives possessed a wide
bandgap and good solubility. Moreover, a high thermal and morphological stability was ben‑
eficial for the formation of amorphous and homogeneous film via wet processing. Among
them, SimCP4 showed the best electron‑transporting ability and hence, at a low driving
voltage of 4.8 eV, achieved an EQEmax of 14%, CEmax of 28 cd/A, and PEmax of 14 lm/W
corresponding to a CIExy (0.15, 0.35) by using a FIrpic emitter [228].

In 2016, Byeong et al. reported meta‑linked diphenylether‑based materials, 9‑(3‑(3‑
(9H‑carbazol‑9‑yl)phenoxy)phenyl)‑9H‑pyrido[2,3‑b]indole (CzDPEPI) and 9,90‑(oxybis(3,
1‑phenylene))bis(9H‑carbazole) (CzDPECz) (Figure 33). The presence of a pyridoindole
moiety assisted in getting a better electron injection and hence a lower driving voltage.
The CzDPEPI host possessed a high triplet energy and therefore was suitable for an Ir
complex (Ir(dbi)3) emitter. The resultant device showed an EQEmax of 24% and PEmax of
39 lm/W at CIExy (0.19, 0.37) [229].

In 2017, Park et al. reported a series of bipolar host materials, namely, N‑(3‑(9H‑
carbazol‑9‑yl)phenyl)‑N‑(pyridin‑2‑yl)pyridin‑2‑amine (mCPPy), 5‑(9H‑carbazol‑9‑yl)‑N1,
N1,N3,N3‑tetra(pyridin2‑yl)benzene‑1,3‑diamine (CPDPy), and N‑(3,5‑di(9H‑carbazol‑9‑
yl)phenyl)‑N‑(pyridin2‑yl)pyridin‑2‑amine (DCPPy) (Figure 33). The materials possessed
a high bandgap (>3.5 eV) and a high triplet energy (>2.9 eV). The device composing CPDPy
doped with FIrpic (emitter) showed a highest EQEmax of 22% and PEmax of 24 lm/W at CIE
coordinates of (0.16, 0.31) [230].

In 2018, Kim et al. reported an emitter material, fac‑tris(2,3‑dimethylimidazo[1,2‑f]phe
nanthridinato‑k2C,N)iridium(III) (Figure 33), that had a facial (fac) geometry around the irid‑
ium atom. A multilayered device composed of 1,3‑bis(N‑carbazolyl)benzene as a host/hole‑
transporting layer with a 5 wt% emitter displayed a high EQEmax of 20% and PEmax of
32 lm/W with coordinates of (0.18, 0.34) [89].

In 2020, Yuan et al. reported a host material, 9,9‑bis(9‑phenyl‑9H‑carbazol‑3‑yl)‑9H‑
thioxanthene,10,10‑dioxide (BPhCz‑ThX) (Figure 33), based on an insulating C(sp3) bridge‑
linked thioxanthone via a facile Friedel–Crafts‑type substitution reaction. The material
possessed a high thermal stability, good film‑forming ability, a high triplet energy (3.05 eV),
and a total yield of 63%. On using a FIrpic emitter, the device showed an EQEmax of 9.6%,
CEmax of 21 cd/A, and PEmax of 8.5 lm/W at (0.19, 0.36) [231].

6.2.2. Platinum Complexes
Platinum (Pt) complexes are the second most appreciated organic dopants to realize a

highly efficient deep‑blue emitter. Pt‑based phosphors appear to have the highest potential
for EL applications due to their higher triplet quantum yield, relatively short triplet state
lifetime, and tunable emission color [211,213,232]. Based on their structural features, these
phosphors are classified into three main categories: (i) tetradentate ligands, (ii) tridentate
ligands, and (iii) bidentate ligands.

We have described a few platinum complexes based on the above three categories. In
2008, Yang et al. reported a blue device by utilizing a platinum(II) 1,3‑difluoro‑4,6‑di(2‑
pyridinyl)benzene chloride (Pt‑4) (Figure 34) emitter, and the resultant device exhibited
CIE coordinates of (0.15, 0.26) with a maximum EQE of 16% [211].
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In 2013, Turner et al. synthesized emitters based on cyclometalated tetradentate plat‑
inum complexes, a blue PtOO1, and a blue‑green PtOO2 emitter (Figure 34). The device us‑
ing PtOO2 exhibited an EQE of 8.7% with CIE coordinates of (0.21, 0.38) at 1000 cd/m2 [232].
In the same year, Hang et al. reported Pt complexes with tetradentate ligands. These
complexes have a conventional cyclometalated fragment bridged with oxygen to an an‑
cillary chelate, such as phenoxyl pyridine (POPy) or carbazolyl pyridine (CbPy). Doping
6 wt% emitters, Pt[pmi‑O‑POPy] (PtOO7), Pt[pmi‑O‑CbPy] (PtON7) and Pt[ppz‑O‑CbPy]
(PtON1), into a 2,6‑bis(N‑carbazolyl)pyridine (26mCPy) host resulted in CIE coordinates
of (0.15, 0.10), (0.15, 0.14), and (0.15, 0.13) and an EQE of 0.5, 15, and 21%, respectively, at
1000 cd/m2 [213].

In 2015, Liao et al. reported a series of Pt(II) metal complexes [Pt(Ln)], n = 1–5 based
on tetradentate bis(pyridyl azolate) chelates. Among them, L5 (Figure 34) showed a high
EQEmax of 15%, CEmax of 36 cd/A, and PEmax of 38 lm/W at CIE coordinates of (0.19,
0.34) [233].

In 2019, Klimes et al. reported a step‑wise graded doping of platinum(II) 9‑(pyridin‑2‑
yl)‑2‑(9‑(pyridin‑2‑yl)‑9H‑carbazol‑2‑yloxy)‑9H‑carbazole (PtNON) (Figure 34). The emis‑
sive layer was composed of a 20% PtNON:mCBP (10 nm)/10% PtNON:mCBP (4 nm)/2%
TBPe:mCBP (2 nm)/10% PtNON:mCBP (4 nm)/6% PtNON:mCBP (10 nm). Consequently,
the device showed an EQEmax of 18% and a lifetime of 709 h [LT70] at 1000 cd/m2 with
CIExy (0.16, 0.28) [102].

6.2.3. Other Metal Complexes
Due to limited availability and high cost, some research efforts have been made to sub‑

stitute heavy metal complexes with comparatively low‑cost metals such as zinc (Zn), copper
(Cu), etc. In 2004, Wang et al. synthesized a Zn(II) metal complex‑based phosphorescent blue
emitter using 4,4′‑diphenyl‑6,6′‑dimethyl‑2,2′‑bipyrimidine ligands, [(Zn(pmbp)2(ClO4)2 and
Zn(pmbp)Cl2]. However, no efficiencies or color coordinates were reported [234].

In 2008, Xu et al. reported a deep‑blue emitting Zn(II) complex, Zn(Lc)2 (Lc− = 2‑(1‑
(6‑(9H‑carbazol‑9‑yl)hexyl)‑1H‑benzo[d]imidazol‑2‑yl)phenolate) (Figure 35), based on a
carbazole‑functionalized N^O ligand. The material possessed a Td of 427 ◦C and an emis‑
sion peak at 422 nm [235]. In 2013, Lee et al. synthesized two Zn complexes, bis(2‑(oxazol‑2‑
yl)phenolate)zinc (ZnOx2) and bis(2‑(1‑methyl‑1h‑imidazole‑2‑yl)phenolate)zinc (ZnIm2)
host materials. The blue device based on a 3 wt% FIrpic (emitter) doped in ZnIm2 reached
an EQE of 20% at 100 cd/m2 and 18% at 1000 nits [236].
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Suitable host materials were presented to aid the emission of phosphorescent‑based
blue emitters as reported by Chaskar et al [1] and Yook et al [237].

6.3. Thermally Activated Delayed Fluorescence (TADF) Type
High price and rare availability of heavy metals have limited the low‑cost and long‑

term mass production of phosphorescent blue emitters. To resolve these problems, the
search for a highly efficient deep‑blue fluorescent emitter is still a subject of current interest,
as they have a greatest possibility of a longer operational lifetime and a deep‑blue emission
at low cost with highly sustainable purely organic luminescent molecules [238].

In 2009, Adachi et al. designed and synthesized the first heavy metal‑free TADF emit‑
ter [239]. Since then, numerous efforts have been made to realize efficient TADF‑based
blue emitters, especially with a smaller singlet‑triplet energy difference (∆EST) [239–245].
Presently, aromatic‑ and metal (such as Li, Al, Mg, Cu, and Zn)‑based blue emitters have
been found useful in achieving a small ∆EST .

6.3.1. Aromatic‑based
Over the past few years, researchers have extensively designed and synthesized aromatic‑

based efficient TADF emitters by using abundant elements, such as carbon, hydrogen, oxy‑
gen, nitrogen, sulphur, etc. So far, a few molecular design strategies have been reported to
achieve smaller ∆EST (<0.1 eV) values with a high PLQY (~100%). Most importantly, the de‑
localization of frontier molecular orbitals (highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energy levels) in a donor–acceptor (D–A)
type TADF emitter with a well‑separated HOMO and LUMO levels can effectively real‑
ize a smaller ∆EST and a nearly 100% PLQY [246]. Moreover, increasing a steric hindrance
between D–A units can also lead to the spatial separation of the frontier molecular orbitals.

In aromatic‑based TADF emitters, the spatial overlap between the frontier molecular
orbitals can be successfully controlled by choosing a suitable D–A pair. Moreover, it has
been found that the donor–acceptor–donor (D–A–D) type emitters are more effective than
those of the D–A type in achieving a higher PLQY and a strong spatial separation of HOMO
LUMO levels [65,247]. Since 2009, several D–A‑ and D–A–D‑type bipolar emitters have
been reported. Among them, a few emitters demonstrated a nearly 100% internal quantum
efficiency (IQE) and a 20% EQE in blue devices [246,248,249].

On the basis of D–A pairs, aromatic‑based TADF blue emitters can be classified into
seven sub‑categories (Figure 36), which comprise diphenylamine, acridine, carbazole, and
phenoxazines as electron‑donor units and diphenylsulfone, thioxanthone, benzophenone,
triazine, oxadiazole, triazole, and phthalonitrile as electron‑acceptor units (Figure 37).
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Diphenylamine and Diphenylsulfone (DPA‑DPS) Derivatives
Diphenylamine moiety‑containing aromatic compounds are well‑established hole‑tra

nsporting materials in OLED devices. In contrast, diphenylsulfone moiety‑comprising ma‑
terials are well studied as electron transporting materials. These moieties have also been
used to design bipolar hosts [250–253]. In accordance with the molecular design strategy,
in 2012, Adachi et al. synthesized a series of bipolar TADF emitters, bis[4‑(diphenylamino)p
henyl] sulfone (DPA‑DPS) and bis{4‑[bis(4‑tert‑butylphenyl)amine]ph enyl} sulfone (DTPA‑
DPS) (Figure 38), using diphenylamine donor and diphenylsulfone acceptor moieties [254].
The DPA‑DPS and DTPA‑DPS emitters possessed a ∆EST of 0.54 and 0.45 eV and a PLQY of
57 and 65%, respectively. In a doped device with a bis[2‑(diphenylphosphino)phenyl]ether
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oxide (DPEPO) host, the DPA‑DPS‑based device exhibited an EQEmax of 2.9%, while the
DTPA‑DPS‑based device showed an almost double EQEmax of 5.9%. The higher EQE of
the DTPA‑DPS emitter is attributed to a low ∆EST, which possessed an effective triplet to
singlet‑exciton upconversion.
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Acridine and Diphenylsulfone (ACR‑DPS) Derivatives
Acridine derivatives were utilized as hole‑transporting and bipolar host materials in

OLEDs [255–262]. Combinations of acridine‑based electron‑donor and diphenylsulfone‑based
electron‑acceptor units have been widely studied for TADF type emitters. In 2014, Adachi’s
group designed and synthesized an acridine donor and diphenylsulfone acceptor moiety‑
based 9,9‑(dimethyl‑9,10‑dihydroacridin)diphenyl sulfone (DMAC‑DPS) (Figure 39) emitter.
The emitter possessed a ∆EST of 0.08 eV with an 80% PLQY and a 1.7 to 3 µs TADF decay
time. By doping into a DPEPO host, the DMAC‑DPS‑based device exhibited an EQEmax
of 20% for a greenish‑blue emission at (0.16, 0.20). The resultant device performance was
almost independent of the emitter doping concentration [248]. Moreover, the same group
reported an EQEmax of 20% for a sky‑blue emission with (0.16, 0.29) by using a non‑doped
DMAC‑DPS emitter [249].
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In 2014, Nakanotani et al. achieved an EQEmax of 13% for a bluish‑green emission with
coordinates (0.17, 0.30) by using a 1 wt% fluorescent emitter, 2,5,8,11‑tetra‑tert‑butylperylene,
along with a 15 wt% of TADF emitter, 10‑phenyl‑10H, 10′H‑spiro[acridine‑9, 9′‑anthracen]‑
10′‑one (ACRSA), in a bis‑(2‑(diphenylphosphino)phenyl)ether oxide (DPEPO) host [263].

In 2017, Nakao reported three emitters, namely, Ac‑46DPPM, Ac‑26DPPM, and CzAc‑
26DPPM (Figure 39), with 2,4,6‑triphenylpyrimidine as an acceptor and tri‑ or penta‑substituted
acridine as a donor unit. Among them, CzAc‑26DPPM displayed an EQE of 15% and CE of
35 cd/A at 100 cd/m2 for a bluish‑green emission with coordinates (0.21, 0.38) [264].

Carbazole and Diphenylsulfone (Cz‑DPS) Derivatives
Carbazole‑based polycylic aromatic hydrocarbon compounds are extensively studied

in OLED devices due to their numerous superlative characteristics, such as a strong hole‑
transporting ability, high thermal stability, large optical band gap, high triplet energy, ra‑
tional PLQY, and easy functionalization [265,266]. On the other hand, diphenyl sulfone
derivatives are robust electron‑transporting materials for OLED devices [254].
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In 2012, Zhang et al. reported an EQEmax of 10% for a deep‑blue emission with CIE co‑
ordinates of (0.15, 0.07) by doping a TADF blue emitter, bis[4‑(3,6‑di‑tert‑butylcarbazole)ph
enyl] sulfone (DTC‑DPS) (Figure 40), into a DPEPO host. The resultant device realized an
EQE over three times higher than that of a diphenylamine‑based DPA‑DPS and nearly two
times higher than that of a tert‑butyl diphenylamine‑derivative DTPA‑DPS. The DTC‑DPS
exhibiting a high EQE may be attributed to a relatively small ∆EST value of 0.32 eV and
a high PLQY of 69% because of a considerably strong electron donating characteristic of
carbazole units [254].
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In order to further decrease the ∆EST value, in 2014, Wu et al. designed a blue emit‑
ter, bis [4‑(3,6‑dimethoxycarbazole)phenyl]sulfone (DMOC‑DPS) (Figure 40), by using a
methoxy substituted carbazole with an electron‑acceptor sulfone. The emitter realized a
∆EST of 0.21 eV with a 93 µs TADF decay time and a 56% PLQY. In a doped blue device
with a DPEPO host, the DMOC‑DPS exhibited an EQEmax of 15% with (0.16, 0.16) coordi‑
nates [267]. The reason why the DMOC‑DPS resulted in an EQE much higher than that of
the DTC‑DPS may be attributed to a comparatively smaller ∆EST.

Furthermore, in 2016, Lee et al. reported a TADF emitter, TMC‑DPS (Figure 40), with
diphenyl sulfone (DPS) as an electron acceptor and 3,6‑dimethoxycarbazole (DMOC) and
1,3,6,8‑Tetramethyl‑9H‑carbazole (TMC) as electron donor units. The material possessed
a low ∆EST of 0.09 eV, much lower than that of DMOC‑DPS, due to a large dihedral angle
that creates a small spatial overlap between the frontier molecular orbitals [268].

Carbazole and Triazine (Cz‑TRZ) Derivatives
Nitrogen‑containing heterocyclic compounds, such as triazine and 1,3,4‑triazole, have

been widely used as electron‑accepting units in the molecular scaffold of electron‑transporting
materials because of their electron‑deficient nature. To design a bipolar TADF emitter,
strong hole‑transporting carbazole moieties have been added onto transporting triazine
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moieties. Both moieties are extensively utilized to design an efficient bipolar host and blue
light‑emitting materials.

In 2013, Serevičius et al. reported a 6% EQEmax for a greenish‑blue OLED with (0.23,
0.40) by using a 9‑(4,6‑diphenyl‑1,3,5‑triazin‑2‑yl)‑9′‑phenyl‑3,3′‑bicarbazole (CzT) (Figure 41)
emitter [269]. In 2014, Hirata and co‑workers reported a series of bipolar blue light‑emitting
materials (2a, 2b, and 2c) (Figure 41) by employing indolocarbazole and triazine moieties.
The resultant device employing a 2a emitter doped in a DPEPO host realized a highest
EQE of 21% for a sky‑blue device with (0.19, 0.35) [246].
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In 2015, Lee et al. reported a pair of bipolar TADF type blue emitters (DCzTRz and DD‑
CzTRz) (Figure 41) with dicarbazolylbenzene donor and triazine acceptor moieties [270].
Both DCzTRz and DDCzTRz exhibited a ∆EST of 0.25 and 0.27 eV and a solid state PLQY
of 43 and 66%, respectively. As both emitters were doped into a DPEPO host, the DCzTRz
emitter‑based device exhibited a maximum EQE of 18% with (0.15, 0.15), while a 19% EQE
with (0.16, 0.22) was reported for the DDCzTRz‑based device. Furthermore, owing to high
thermal and electrical stability, the DDCzTRz‑based device also demonstrated an opera‑
tional lifetime (T80 = 52 h at an initial luminance of 500 cd/m2).
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In 2020, Su et al. reported a 3,3′‑bicarbazole/triphenyltriazine‑derivative (BCz‑TRZ)
(Figure 41) emitter with a ∆EST of 0.37 eV by controlling the length of donor and acceptor
moieties and increasing the D–A distance. The BCz‑TRZ‑based device exhibited a lifetime
(LT50) of 495 h and an EQEmax of 20% at an emission wavelength of 486 nm [114].

Carbazole and Phthalonitrile (Cz‑PN) Derivatives
Phthalonitrile‑derivative compounds have attracted considerable attention because

of their strong electron‑withdrawing nature. Phthalonitrile‑functionalized aromatic com‑
pounds are widely used as electron‑transporting, charge‑generation, and light‑emitting
materials in OLEDs. To achieve bipolarity in the molecular design of phthalonitrile‑based
aromatic compounds, such as bipolar hosts and TADF emitters, strong electron donor car‑
bazole units are appended onto the strong electron donor phthalonitrile unit [271,272].

In 2012, Uoyama et al. designed a series of carbazole and phthalonitrile materials.
Among them, 4,5‑di(9H‑carbazol‑9‑yl) phthalonitrile (CzTPN) (Figure 42) realized a sky‑
blue emission. The CzTPN exhibited a ∆EST of 0.29 eV with a 47% PLQY. In a doped
device with a CBP host, the CzTPN emitter exhibited a maximum EQE of 8% for a sky‑
blue emission with an emission wavelength at 473 nm [271]. Furthermore, in 2013, Masui
et al. achieved a maximum EQE of 13% with (0.17, 0.30) by doping the CzTPN emitter into
an mCP host [64].
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In 2015, Lee et al. reported a maximum EQE of 16% for a blue device with (0.17, 0.19)
by doping a 15 wt% 4,6‑di(9H‑carbazol‑9‑yl)isophthalonitrile (DCzIPN) (Figure 42) in a mCP
host [273]. In the same year, Lee et al. designed and synthesized two blue emitters, 4,5‑
bis(benzofuro[3,2‑c]carbazol‑5‑yl)phthalonitrile (BTCz‑2CN) and 4,5‑bis(benzo[4,5]thieno [3,2‑
c]carbazol‑5‑yl)phthalonitrile (BFCz‑2CN) (Figure 42), by employing benzofuro‑ and benzo
thieno‑functionalized carbazole units with a phthalonitrile unit. BTCz‑2CN and BFCz‑
2CN exhibited a ∆EST value of 0.13 and 0.17 eV with a 95 and 94% PLQY, respectively.
The BTCz‑2CN showed a decay lifetime of 2.6 µs, which is larger than that of the BFCz‑
2CN counterpart (1.98 µs). The short decay time of the BTCz‑2CN and BFCz‑2CN may be
attributed to their small ∆EST. Moreover, BTCz‑2CN and BFCz‑2CN also showed a high
Tg of 204 and 219 ◦C and Td of 397 and 434 ◦C, respectively. In doped devices with an
mCP host, the BTCz‑2CN‑ and BFCz‑2CN‑based devices resulted in a maximum EQE of
12.1 and 11.8% with a similar EL emission peaking at 486 nm [274].

In 2020, Yi et al. reported three molecules, namely, 4CzIPN‑CF3, 3CzIPN‑H‑CF3, and
3CzIPN‑CF3 (Figure 42). They were synthesized by lowering the electron‑withdrawing
ability of the acceptor group or by reducing the number of carbazole donors of the base
molecule, 1,2,3,5‑tetrakis(carbazol‑9‑yl)‑4,6‑dicyanobenzene (4CzIPN). Among them, the
4CzIPN‑CF3‑ and 3CzIPN‑H‑CF3‑based devices with a SimCP:oCF3‑T2T co‑host system
displayed a blue‑shifted emission with coordinates (0.21, 0.41) and (0.16, 0.19), respectively,
as compared with a 4CzIPN emission (0.22, 0.48). The devices showed an EQEmax of 23 and
17%, and 21 and 15% at 1000 nits, respectively [275].
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Acridine and Phenoxaborin (Cz‑PXB) Derivatives
In 2015, Numata et al. synthesized a series of D–A‑type emitters (1‑4) (Figure 43)

with acridine derivatives as donor units and a 10H‑phenoxaborin‑type acceptor [276]. The
resultant maximum EQE ranged from 20 to 13%, while chromaticity coordinates for a sky‑
blue emission ranged from (0.14, 0.23) to deep‑blue (0.15, 0.08) by doping a 20 wt% of
1–4 emitters into an 8‑bis(diphenylphosphine oxide) dibenzofuran (PPF) host. Moreover,
the resulting sky‑blue device also demonstrated a maximum EQE of 22% when the doping
concentration of emitter 1 was further increased to 50 wt% in the same PPF host. The high
efficiencies may be attributed to three key factors. First, the ACR‑PXB series emitters pos‑
sessed a higher PLQY value ranging from 56 to 100%, a shorter decay time ranging from
1.6 to 4.02 µs, and a smaller ∆EST value ranging from 0 to 0.16 eV. Second, rational bipolar
characteristics of the emitters may help to achieve an effective charge carrier injection bal‑
ance in the emissive layer. Third, the high triplet energy (3.21 eV)‑host material restricted
any backward energy transfer and facilitated an effective host‑to‑guest energy transfer.
As reported, the device performance was greatly influenced by the ∆EST and PLQY of the
emitters. The PLQY increased from 56 to 100% for emitter 1 as ∆EST decreased from 0.16 to
0 eV [276].
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Phenoxazines and Triazole (PXZ‑TAZ) Derivatives
Bipolar compounds based on phenoxazine electron‑donor and triazole electron‑acceptor

moieties have been widely investigated to design the bipolar host materials for OLEDs [refs].
In 2013, Adachi et al. reported two TADF blue emitters, 10‑(4‑(4,5‑diphenyl‑4H‑1,2,4‑triazol‑3‑
yl)phenyl)‑10H‑phenoxazine (PXZ‑TAZ) and 10,10′‑((4‑phenyl‑4H‑1,2,4‑triazole‑3,5‑diyl)bis
(4,1‑phenylene))‑2‑bis(10H‑phenoxazine) (2PXZ‑TAZ) (Figure 44), by using 1,2,4‑triazole
core‑based emitters with a 10H‑phenoxazine group. The PXZ‑TAZ and 2PXZ‑TAZ emitters
exhibited a PLQY of 13 and 15% in neat films. The PLQY was greatly enhanced from 15 to 52%
as a 6 wt% 2PXZ‑TAZ emitter was doped into a DPEPO host. The 2PXZ‑TAZ also showed a
maximum EQE of 6.4% with (0.16, 0.15) and an EL emission peaking at 456 nm [65].
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Acridine and Triazine (ACR‑TRZ) Derivatives
As described in prior sections, both phenoxazine and triazine moieties have been ex‑

tensively utilized to design bipolar hosts and TADF emitters for OLEDs. In 2015, Tsai
et al. designed and synthesized a DMAC‑TRZ (Figure 45) emitter based on 9,9‑dimethyl‑
9,10‑dihydroacridine as a donor unit and 2,4,6‑triphenyl‑1,3,5‑triazine as an acceptor unit.
The DMAC‑TRZ emitter showed a ∆EST of 0.05 eV and a delay lifetime of 3.6 µs with
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an 83% PLQY. Furthermore, the ∆EST and the delay lifetime were decreased to 0.046 eV
and 1.9 µs, respectively, while the PLQY was increased to 90% as the DMAC‑TRZ emit‑
ter was doped into a 9‑(3‑(9H‑carbazol‑9‑yl)phenyl)‑9H‑carbazole‑3‑carbonitrile (mCPCN)
host. At 100 nits, the resultant non‑doped DMAC‑TRZ‑based device exhibited a maxi‑
mum EQE of 20% with a bluish‑green emission, while a doped emissive layer (at 8 wt%
DMAC‑TRZ and mCPCN)‑based device showed a maximum EQE of 27% with a slightly
blue shifted emission. These devices also exhibited relatively high power efficacy, at 46 and
66 lm/W, and current efficacy of 61 and 67 cd/A at 100 cd/m2, respectively, for non‑doped
and doped emissive layer‑based devices [277].
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In 2020, Li et al. reported an emitter, DspiroAc‑TRZ (Figure 45), with a tight and regu‑
lar intermolecular packing composed of X‑ or L‑shaped J‑aggregates. PLQYs of 79 and 84%
were obtained for the DspiroAc‑TRZ crystal and nondoped film, respectively, due to the
synergistic effect of the intermolecular packing mode and monomolecular structure. Thus,
a very high EQEmax of 26% and CEmax of 56 cd/A were realized for a sky‑blue emission
with (0.17, 0.35) by using a host‑free emissive layer [278].

6.3.2. Metal‑Based TADF Emitters
Metal‑based TADF blue emitters had also been reported to realize a very small ∆EST,

which can effectively up‑convert the entire fraction of triplet excitons (75%) into singlet
excitons via ultra‑fast reverse intersystem crossing (RISC) [279–282]. This prudent combi‑
nation of ultra‑fast RISC and a very small ∆EST would result in a 100% delayed fluores‑
cence yield, [282–285] and significantly diminish the efficiency roll‑off, especially at high
luminance or current density [286].

The metal‑based TADF emitters also exhibited a higher thermal stability than that of pure
aromatic‑based counterparts [286–289]. By virtue of these advantages, a considerable number
of blue TADF emitters based on non‑precious and abundant metals, such as lithium (Li), mag‑
nesium (Mg), copper (Cu), zinc (Zn), and tin (Sn), were reported (Figure 46) [290]. However,
only a few of them were investigated in OLEDs [239,291–297].

Cu Complexes
Copper (Cu) is one of the highly abundant coinage metals which has been investigated

in the design of high‑electroluminescence (EL) active complexes for low‑cost OLEDs. In
order to realize a sustainable way out, Ma et al. designed and synthesized the first Cu
complex‑based emitter in 1999 [298,299]. Later, many Cu complex‑based phosphorescent
emitters were reported because of their ability to realize a high rate of intersystem crossing
(ISC) (S1→T1) and triplet radiative decay (T1→S0) [282,300].

Due to a small ∆EST, a few Cu complexes showed effective RISC (T1→S1) and singlet
radiative decay (S1→S0) rates [294,301]. These complexes exhibited a small ∆EST and a
fast RISC because of low‑lying metal‑ligand charge transfer (MLCT) excited states, which
played a crucial role in realizing an effective triplet up‑conversion [291–297].
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Over the past few years, several Cu‑based TADF emitters have been utilized in
OLEDs [302–310]. Among them, only a few emitters demonstrated a blue emission. In
2011, Yersin et al. designed and synthesized a series of Cu (I) complexes (Cu‑4 to Cu‑6)
(Figure 47) [298]. The ∆EST and PLQY of these compounds ranged from 0.09 to 0.16 eV
and 45 to 90%, respectively, in solid state films. The chromaticity coordinates of the Cu‑4
to Cu‑6 emitters ranged from (0.14, 0.11) to (0.16, 0.22). In the same year, Leitl et al. re‑
ported a design strategy to realize a strong TADF emission in another Cu complex [311].
They observed that a small ∆EST value can be obtained by selecting heteroleptic ligands
with a low torsion angle. A Cu complex (Cu‑7) with two N‑heterocyclic ligands, 1,3‑bis(2,6‑
diisopropylphenyl)imidazol‑2‑ylidene and di(2‑pyridyl)dimethylborate), showed a blue
emission peaking at 475 nm. The Cu‑7 exhibited a solid state PLQY of 70% and a ∆EST
of 0.09 eV, resulting in a TADF decay fraction of 62% with a weak phosphorescence decay
fraction of 38% [311].

In 2013, Chen et al. reported a series of Cu complex (Cu‑1 to Cu‑3) (Figure 47)‑based
emitters [312]. These complexes showed a constant ∆EST of 0.17 ± 0.01 eV with a PLQY
ranging from 56 to 87%. Via wet‑processing, the resultant maximum EQE ranged from
8.5 to 1.5%, with chromaticity coordinates ranging from greenish‑blue (0.24, 0.36) to sky‑
blue (0.20, 0.30) as a 20 wt% of the emitters was doped into a hole‑transporting host 26mCPy.
The Cu‑3 complex‑based device also exhibited a maximum current efficiency of 24 cd/A.

In 2014, Yersin et al. reported a series of Cu complex‑based emitters. Their structures
were similar to the phosphorescent emitters reported earlier [311,313].

In 2015, Kang et al. reported a series of binuclear Cu halide complexes (Cu‑8–Cu‑
10) (Figure 47) with different halogen molecules (Cl, Br, and I) [291]. These complexes
exhibited a ∆EST value from 0.05 to 0.04 eV, a PLQY from 42 to 95%, and a decay time
ranging from 4.9 to 5.9 µs with an emission wavelength ranging from blue (482 nm) to
greenish blue (490 nm).

Zn Complexes
Over the past few years, several Zn complexes have been employed as EL‑active emitters,

hosts, and electron transporting materials in OLEDs [235,314–322]. However, Zn complexes
exhibited a poorer device performance than that of Cu complex‑based counterparts while dis‑
playing a higher stability against atmospheric moisture and air. Therefore, numerous efforts
have been devoted to design Zn complex‑based TADF emitters [296,323,324].
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In order to devise a highly stable metal complex‑based emitter, in 2015, Adachi’s
group reported two different Zn complexes (Zn‑1 and Zn‑2) (Figure 48) with blue emis‑
sion [286]. The Zn‑1 and Zn‑2 complexes demonstrated a PLQY of 78 and 58% and a ∆EST
of 0.06 and 0.18 eV, respectively. In addition, the Zn‑1 emitter also realized a low TADF
decay time of 38 µs. In an mCBP host‑based doped device, the Zn‑1 complex showed a
maximum EQE of 20% with a greenish‑blue emission.

Moreover, Cheng et al. designed and synthesized a series of tetranuclear zinc(II) com‑
plexes of substituted 7‑azaindoles. The decay time and PLQY of these complexes ranged
from 0.015 to 0.008 µs and 96 to 71%, respectively, as a 5 wt% emitter was doped into a
PMMA host. The PLQY values of these compounds were measured in solid state film.
The resultant maximum EQE ranged from 5.6 to 3.3%, with chromaticity coordinates rang‑
ing from (0.16, 0.19) to (0.18, 0.26) as an 8 wt% of the emitters was doped into a mixture of
PVK and OXD‑7 hosts [325].
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Other Metal Complexes
In 2015, Adachi et al. studied other metal (Li, Mg, Al, and Sn) complexes for OLED

device applications [286]. The lithium (Li) complex‑based TADF emitter (Li‑1) exhibited a
∆EST of 0.08 eV with a total PLQY of 70%. In a doped device with an mCBP host, the Li‑1
(Figure 49) realized a maximum EQE of 13% with a greenish‑blue emission. Moreover, a
magnesium‑based (Mg‑1) (Figure 49) complex achieved a ∆EST of 0.08 eV and a PLQY of
71%, including a 58% delayed quantum yield. In a device doped with an mCBP host, the
Mg‑1 complex‑based device exhibited a maximum EQE of 17% for a greenish‑blue emission.
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7. Challenges and Approaches
As seen, high efficiency and long lifetime had been reported for devices of light‑blue

emission, i.e., CIEy > 0.1, using phosphorescent and TADF‑based emitters. Even still, a host‑
free device displayed a much higher efficiency (EQEmax: 25%) for a greenish‑blue emission
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with (0.16, 0.24) coordinates [109]. Moreover, a very high EQEmax of 33% was reported for
two different devices, one with a greenish‑blue emission at CIExy (0.16, 0.22) [107] and the
other with a bluish‑green emission at (0.17, 0.33) [106]. The longest lifetime of 100,000 h
(LT50) at 200 nits was reported for a bluish‑green emission with a CIEy of 0.38 [97]. How‑
ever, obtainina high efficiency and a long lifetime in the deep‑blue region (CIEy < 0.1) re‑
mains challenging.

7.1. Challenges for Deep‑Blue Emission
Researchers have focused on designing and synthesizing suitable emitters for both

blue and deep‑blue OLEDs. Employment of various ligands/subunits in a molecule helps
to achieve a comparatively high efficiency and long lifetime for blue emission. However,
only a few displayed a moderate efficiency or lifetime in the deep‑blue region.

7.1.1. High‑Efficiency Deep‑Blue Emission
As discussed earlier, phosphorescent and TADF‑based devices displayed EQE > 20%

for a deep‑blue emission. For example, an EQE of 25% with a CIEy of 0.08, but at a lumi‑
nance below 100 nits, was reported by using a phosphorescent emitter, TSP01 [86]. More‑
over, an EQE of 20% with a CIEy of 0.03, but also at a luminance below 100 nits, was re‑
ported by using a host‑free TADF emitter, NTN‑PCZ [104]. However, Lim et al. reported
an EQEmax of 28% with a CIEy of 0.09 crossing the upper theoretical limit for TADF emit‑
ters by using a TDBA‑SAF TADF emitter. Most importantly, an EQE of 24% was reported
at 100 nits and 18% at 1000 nits [105]. Realizing a high EQE with a CIEy much less than
0.1 at applicable high luminance remains challenging.

7.1.2. Long‑Lifetime Deep‑Blue Emission
A deep‑blue fluorescent device with a CIEy of 0.09 was created by Takita et al. with

a lifetime of 125 h (LT90) at 1000 nits [72]. Before 2021, no phosphorescent or TADF‑based
devices had displayed any lifetime data in the deep‑blue region. In 2021, there were two
articles reporting deep‑blue devices with a CIEy of 0.09. Nam et al. reported a deep‑blue
device with a CIEy of 0.09 and a lifetime of 254 h (LT50) at 1000 nits by using a phospho‑
rescent sensitizer with a fluorescent emitter [326]. Jeon et al. reported another deep‑blue
device with a CIEy of 0.09 and a lifetime of 151 ± 3 h (LT50) at 1000 nits by using a TADF
emitter [327]. However, achieving a long lifetime is still required.

7.1.3. High Efficiency and Long Lifetime
As shown above, the deep‑blue fluorescent device reported by Takita et al. also dis‑

played an EQEmax of 12%, beyond the theoretical limit for fluorescent emitters [72]. Since
then, no devices were reported with a high efficiency and long lifetime for a deep‑blue
emission until 2020. In 2021, Jeon et al. reported a deep‑blue device with a CIEy of 0.09,
displaying a higher EQEmax of 34% and a lifetime of 151 ± 3 h (LT50) at 1000 nits by using
a TADF emitter [327]. However, realizing a deep‑blue device with a long lifetime along
with high efficiency is still essential.

7.2. Approaches for Generating Deep‑Blue Emission
In the past decades, a few approaches were reported for realizing a deep‑blue emis‑

sion in OLEDs. They include but are not limited to the following: (i) reducing dopant
concentration in the emissive layer, (ii) using a polarity‑matching host, (iii) rational emit‑
ter designs, (iv) thermally activated delayed fluorescence, (v) hybrid local charge transfer,
and (vi) triplet–triplet annihilation.

7.2.1. Reducing Dopant Concentration in the Emissive Layer
Reports have confirmed that an undesirable, red‑shifted emission, which is induced

due to self‑aggregation of emitter molecules, can be greatly suppressed by dispersing into
a host material [51]. Unlike rational molecular design, the self‑aggregation effect in the
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emitter molecules can be effectively diminished by decreasing their concentration in the
host [168]. Jou et al. reported a blue emission peaking at 448 nm when a pure cyano fluo‑
rene acetylene‑conjugate C3FLA‑2 was employed as an emissive layer. The resultant blue
emission peak exhibited a strong hypsochromic‑shift from 448 to 428 nm when a 7 wt%
C3FLA‑2 emitter was doped into a CBP host [51]. The employed host can be utilized to
disperse the dopant to prevent the bathochromic shift caused by emitter aggregation. The
dispersion is more effective when the dopant is more diluted [328], as indicated by the
main emission peak, which was blue‑shifted from 428 to 416 nm as the C3FLA‑2 concen‑
tration was decreased from 7 to 1 wt% [51]. The same group reported triphenylamine and
carbazole‑based emitters. Compared with the devices based on the neat films of these emit‑
ters, the EL shifted towards blue as they were dispersed in a CBP host. Deep‑blue emission
with high efficiency was obtained with no observable red shift for doping concentration
up to 9 wt% [168].

Chen et al. reported three blue emitters, TPIBCz, TPINCz, and TPIBNCz, with an EL
emission ranging between 435 and 448 nm for undoped devices. When a 30 wt% of these
emitters was doped into a CBP host, a hypsochromic shift was observed with emission
ranging between 428 and 440 nm. Furthermore, on reducing the dopant concentration to
10 wt%, their main emission peaks further blue‑shifted to between 424 and 436 nm [329].

7.2.2. Employing a Polarity Matching Host
Researchers found that a deep blue emission can also be obtained from sky‑blue and/or

blue emitters by employing a polarity matching host for the desirable emitters. Jou et al.
achieved a deep‑blue emission as a sky‑blue emitter 1‑((9,9‑diethyl‑9H‑fluoren‑2‑yl)ethynyl)
pyrene (PA‑1) was doped into a polarity matching host CBP. The emitter PA‑1 showed
a relatively low polarity of 0.8 D, whilst CBP showed almost no polarity with a dipole
moment of 0.0 D. Therefore, the high similarity between the low polarities of CBP and
PA‑1 could enhance emitter solubility. The resultant device showed a CIEy of 0.06 [162].

Chen et al. reported three blue emitters, TPIBCz, TPINCz, and TPIBNCz, with an EL
emission at 435, 448, and 436 nm and a low polarity of 8.2, 13, and 9.6 D, respectively. When
doped into a non‑polar host CBP, the three emitters exhibited a blue‑shifted emission at
428, 436, and 424 nm, respectively. As said, the host decreased the overall polarity of the
medium and hence resulted in a blue shift [329].

7.2.3. Rational Emitter Designs
We have reviewed herein two rational designs for synthesizing deep‑blue emitters.

The two basic principles are to minimize the undesired intramolecular charge transfer (ICT)
and shorten π‑conjugation or resonance length, which may cause a red‑shift in the emis‑
sion under electrical excitation. The extent of the ICT effect can be minimized with the
introduction of a weak D–A pair [330].

Incorporating carbazole moieties in a molecule is another way to achieve a deeper‑
blue emission due to their properties such as good hole‑transporting, large bandgap, and
weaker π‑donating ability [331–334]. Jou’s group reported a deep‑blue fluorescent emitter,
JV234, and the composing device displayed a CIEy of 0.06 [335]. The same group reported
another deep‑blue fluorescent emitter, JV55, and the device showed an EQEmax of 6.5%
with a CIEy of 0.06 [200].

In addition to the carbazole moieties, incorporating oxadiazole as electron‑withdrawing
moiety builds a bipolar molecule. The carbazole moiety helps reduce the ICT effect and
blue shifts the emission. Wang et al. reported such a molecule, namely, Oxd‑bCz, and the
composing device showed a CIEy of 0.07 [203]. Meanwhile, Huang et al. reported that
a benzofuro [2,3‑b]pyrazine unit (BFPz) as a withdrawing moiety along with a carbazole
moiety can help achieve a CIEy of 0.05 [336].

Furthermore, Pal et al. reported two homoleptic charge‑neutral meridional (mer‑)
complexes (1 and 2). These complexes contain a CF3 group as an electron‑withdrawing
group on the cyclometalating aryl group. The only difference in their structures was that
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in complex 1, the CF3 substitution was in a more electron‑withdrawing para position with
respect to the C‑Ir bond. Both complexes showed a deep‑blue emission. Complex 2 as an
emission layer showed a CIEy of 0.05 and a high PLQY of 72% [337]. Wang et al. reported
that a limited π‑conjugation length was required for achieving a deep‑blue emission. They
hence used a spiro‑diphenylsulfone‑based TADF emitter that had a short π‑conjugation
length to acheive a deep‑blue emission with a CIEy of 0.04 for an inverted OLED [338].

Such a design strategy thus offers a formulated platform to generate functional lumi‑
nescent materials with efficient deep blue emissions. These rational design features are
necessary, especially for devices with a non‑doped emissive layer.

7.2.4. Thermally Activated Delayed Fluorescence
Weissenseel et al. reported two deep‑blue emitters composed of two donor and two

acceptor units. The central core consisted of two acridine units linked with a spiro‑bridge.
The perpendicular conformation between the donor and acceptor moieties reduced the
HOMO LUMO gap which resulted in a small singlet‑triplet gap. The device with a 10 wt%
SBABz4 doped in a DPEPO host showed a CIEy of 0.09 [339].

Chan et al. reported four blue emitters, DCzBN1‑4, based on 3,6‑substituted carbazole
donor and benzonitrile acceptor units. The ∆EST was tuned by modifying the substituent
on the donor moieties. The emitters exhibited an emission ranging between 404 and 470 nm.
Among them, the device based on DCzBN3 that had a di‑tert‑butylcarbazole donor unit
displayed an EQEmax of 10% and a CIEy of 0.06 [340].

Wang et al. reported a spiro‑diphenylsulphone‑based TADF emitter that emitted in a
deep‑blue region. The non‑doped device showed a low efficiency roll‑off and achieved an
EQEmax of 5.0 and 2.1% at 1000 nits with a CIEy of 0.04 [338].

Liang et al. reported four trifluoromethyl‑based compounds, namely, TN3T‑PCZ,
TN4T‑PCZ, DTF‑PCZ, and NTN‑PCZ. Among them, the device based on the TN4T‑PCZ
emitter displayed an EQEmax of 20% and a CIEy of 0.03 [104].

Lim et al. reported a deep‑blue emitter, TDBA‑SAF, based on a spiro‑acridine fluorene
donor and an oxygen‑bridged boron acceptor unit. The composed device displayed an
EQEmax of 28% and a CIEy of 0.09 [105].

Luo et al. reported a UV‑emissive TADF compound, CZ‑MPS, by interlocking a diphenyl‑
sulfone acceptor unit with a dimethylmethylene bridge. The composed device exhibited
an EL emission at 389 nm and an EQEmax of 9.3% [341].

Gudeika et al. reported a deep‑blue TADF compound, di‑tert‑butyl‑dimethylacridinyl
disubstituted oxygafluorene, dispersed in an inert polymer under a nitrogen atmosphere.
The composed device displayed an EQEmax of 9.9% with a CIEy of 0.08 [342].

Kim et al. reported three color tunable emitters, 9′‑(2,12‑di‑tert‑butyl‑5,9‑dioxa‑13b‑bora
naphtho[3,2,1‑de]anthracen‑7‑yl)‑9′H‑9,3′:6′,9″‑tercarbazole (TB‑3Cz), 9′‑(2,12‑di‑tert‑butyl‑5,
9‑dioxa‑13b‑boranaphtho[3,2,1‑de]anthracen‑7‑yl)‑9,9″‑diphenyl‑9H,9′H,9″H‑3,3′:6′,3″‑tercarb
azole (TB‑P3Cz), and 9‑(2,12‑di‑tert‑butyl‑5,9‑dioxa‑13b‑boranaphtho[3,2,1‑de]anthra cen‑7‑yl)‑
N3,N3,N6,N6‑tetraphenyl‑9H‑carbazole‑3,6‑diamine (TB‑DACz). The devices based on TP‑
3Cz and TB‑P3Cz emitters exhibited a deep‑blue emission with a CIEy of 0.07 and 0.08, re‑
spectively. An EQEmax of 9.9% for TP‑3Cz and 6.0% for TB‑P3Cz were also observed [108].

7.2.5. Hybrid Local Charge Transfer
Yang et al. reported a deep‑blue HLCT luminogen Cz‑TPB, based on triphenylben‑

zene. The material possessed an exciton‑utilization efficiency (EUE) of 86%. The non‑
doped device based on this emitter displayed an EQEmax of 4.3% and a CIEy of 0.09. As
reported by the authors, the additional triplet excitons were effectively utilized due to the
small ∆ES1‑T2 of the emitter [343].

Fu et al. reported an HLCT emitter based on a pyrene structure. The composed device
displayed an EUE of nearly 100%, an EQE of 11%, and a CIEy of 0.06 [344].
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Yu et al. reported three emitters, TPA‑1PI, TPA‑2PI, and TPA‑3PI, based on a phenan
thro[9,10‑d]imidazole (PI) chromophore. All the three emitters displayed HLCT charac‑
teristics. Among them, the device based on TPA‑2PI displayed a CIEy of 0.08 [345].

Usta et al. reported a deep‑blue HLCT emitter, 1,4‑bis((2‑cyanophenyl)ethynyl)‑2,5‑
bis(2‑ethylhexyloxy)benzene (2EHO–CNPE), based on an oligo(p‑phenyleneethynylene)
small molecule. The material possessed a wide bandgap of 2.9 eV. The composed device
displayed an EQEmax of 7.1% and a CIEy of 0.09 [346].

Chen et al. reported deep‑blue HLCT emitters, TPINCz and TPIBNCz, based on naph‑
thyl group(s) as a weak n‑type π space in a donor–π–acceptor (D‑π‑A) system. The device
based on TPINCz displayed an EQEmax of 6.6% with a CIEy of 0.05 [329].

Most recently, Zhang et al. reported an HLCT compound, 2TA‑PPI, by grafting tripheny‑
lamine moieties at ‑C5 and ‑C10 positions of a 1,2‑diphenyl‑1H‑phenanthro[9,10‑d]imidazole
(PPI) unit. The composed device displayed an EQEmax of 11% and a CIEy of 0.09 [347].

7.2.6. Triplet–Triplet Annihilation
As postulated/reported by Kondakov et al., TTA might occur when two excited elec‑

trons in the triplet state interact with each other, coupling with the occurrence of an up‑
conversion mechanism [348]. With that, one low‑level and one high‑level triplet‑exciton
are produced. The low‑level triplet exciton returns to the ground state (S0) of the emitter
while the other is excited to the higher‑level singlet state, S2. After fast intermolecular re‑
laxation (S2 − S1), the S1 state is re‑populated, which is beneficial for the high efficiency of
fluorescent emitters (Figure 50) [349].
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Hu et al. reported three compounds, 1,4‑bis(10‑phenylanthracene‑9‑yl)benzene (BD1), 1‑
(10‑phenylanthracen‑9‑yl)‑4‑(10‑(4‑cyanophenyl)anthracen‑9‑yl)‑benzene (BD2), and 1‑(10‑(4‑
methoxyphenyl)anthracen‑9‑yl)‑4‑(10‑(4‑cyanophenyl)anthracen‑9‑yl)benzene (BD3). Among
them, the doped device based on a BD3 emitter and CBP host displayed an EQEmax of 12%
and a CIEy of 0.06. The enhanced EQE is attributed to the occurrence of the TTA mecha‑
nism [350].

Chen et al. reported an approach to developing TTA materials for high‑efficiency
fluorescence via a styrylpyrene core and an electron‑donating group. The device with a
PCzSP emitter doped in CBP host displayed a 9.1% EQEmax and a CIEy of 0.09 [351].

Zeng et al. reported two quaterphenyl derivatives with a PLQY of nearly 80%. The
nondoped device based on a 4PS emitter displayed an EQEmax of 5.9% and CIEy of 0.06.
The doped device displayed an EQEmax of 6.6% corresponding to a CIEy of 0.05. As said
by the authors, the TTA enabled the slow roll‑off in the device [352].
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Peng et al. reported dianthracenylphenylene‑based emitters. The non‑doped devices
based on these emitters displayed an EQEmax of 4.6 to 5.9% corresponding to a CIEy from
0.07 to 0.08. They have attributed the good device performance to TTA occurrence [353].

Recently, Wu et al. reported two anthracene‑based molecules, 4‑(10‑(3‑(9H‑carbazol‑9‑
yl)phenyl)‑2,6‑di‑tert‑butylanthracen‑9‑yl)benzonitrile (mCz‑TAn‑CN) and 4‑(2,6‑di‑tert‑butyl‑
10‑(3,5‑di(9H‑carbazol‑9‑yl)phenyl)anthracen‑9‑yl)benzonitrile (m2Cz‑TAn‑CN). Among them,
the doped device based on the m2Cz‑TAn‑CN emitter showed an EQEmax of 7.3% and CIEy
of 0.09. They also attributed the efficiency improvement to TTA occurrence [354].

8. Cautions
Although high‑efficiency and long‑lifetime deep blue emitters have some advantages,

such as reducing the pixel size/number of pixels in a display or fabricating a high‑quality
light for lighting, they might have some drawbacks if used inappropriately. Intense blue
light tends to disrupt ecosystems, pollute night skies, suppress melatonin secretion, dis‑
color artifacts, and cause numerous eye diseases as well as cancers.

Professor Jou, also the corresponding author of this review article, from National Ts‑
ing Hua University has recommended several precautions regarding how to avoid blue‑
light hazards and safeguard the health of eyes and physiologies in the popular science
speeches he has delivered over 100 times in the past 10 years and the book entitled “Em‑
bracing Darkness” [355]. He has mentioned five important points to be kept in mind and
followed seriously. These are:
(i) Turn off or dim the light after dusk or at least 2 h before going to bed.
(ii) Change indoor illumination to a blue light‑free candlelight style lighting for nighttime.
(iii) Avoid the use of 3C products before going to bed. Audio activities are preferred over

video ones.
(iv) Embrace darkness. The bedroom should be completely dark during sleep.
(v) Consult physicians for melatonin supplements for sleep improvement, especially for

older persons.
Precautions are always better than cures. Now is the right time to develop a good

habit of “staying in darkness at night”.

9. Conclusions
In summary, this review depicts the global revenue and forecast for lighting and display

technologies. Since 2018, OLED display revenues have surpassed those of LCD displays,
proving which truly is a disruptive display technology. However, OLED lighting is not yet
successful as compared against LED lighting, although its revenue is rising gradually. Until
2023, an increment of 41%, i.e., a forecasted amount of 99 billion, is expected annually.

Overall, the number of papers published and patents filed for blue OLEDs have in‑
creased significantly over the past years, especially those based on Gen‑3 materials, con‑
firming the need for blue OLEDs. It is also surprising to see that publications based on
Gen‑1 materials rose significantly in 2021, indicating the importance of deep‑blue emit‑
ters. Some progress was seen in the development of deep‑blue OLEDs with high efficiency
and/or long lifetime, increasing the possibility of mass production of displays with a higher
resolution that are also more energy‑saving and reliable.

Having high efficiency along with a long lifetime still remains challenging, although
there are several approaches available for realizing deep‑blue emission.

Furthermore, while the marked progress on deep‑blue OLEDs is delightful, it is strongly
suggested that we keep one eye on the plausible negative impacts that might result from the
same, and embracing darkness is always essential after dusk to safeguard human health
and ecosystems.
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