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End-Effector Pose Estimation and Control for 3D Printing with Articulated Excavators

Grzegorz Malczyk, Marco Hutter

Abstract—We introduce a novel large-scale autonomous mo-
bile manipulator system based on an instrumented and au-
tomated construction machine for precise on-site sensing and
fabrication. The system is based on an automated hydraulic
walking excavator equipped with IMUs and LiDAR units. In
this work, we develop the technology to precisely map, localize,
and move the printhead in the environment. By fusing GNSS
localization with kinematic sensing of the mobile machine and
end-effector, we get a globally consistent and locally accurate
positioning for in situ robotic construction printing process.
Moreover, we present a control approach that enables the
excavator to move the end-effector precisely along predefined
trajectories. We evaluate the performance of the proposed system
in a variety of real-world tests in the field and analyze different
sensor modalities and arrangements. Finally, we discuss the
potential applications, including the fabrication of non-standard
architectural forms and increased safety.

Index Terms—pose estimation, precise control, 3D printing,
large-scale fabrication

I. INTRODUCTION

Construction shapes our modern world, and the application
of onsite 3D printing in construction has become a very
relevant construction technique. Primarily, it requires the
broad printhead reach of the 3D fabrication robotic process
and high local accuracy in positioning. However, so far, 3D
manufacturing, like concrete printing requires large infras-
tructure installations such as a gantry setup to move the
printhead precisely along predefined trajectories [1]. Due to
the size and complexity of the necessary gantry installation,
such fabrication processes are predominantly found in pre-
fabrication and rarely find their way into onsite or in-situ con-
struction [2]. Setting up the gantry-type printing infrastructure
on hillsides or in remote locations becomes even less feasible
and asks for new solutions. It makes such systems relatively
expensive to set up because of a temporary installation of a
manufacturing and assembly hall and allows their use only
in case of sufficient space and good accessibility [3]. To
overcome the limitations of current printing processes, we
want to build upon existing and commonly used mobile
construction machines paired with novel control technologies
for automation and high-precision printhead positioning. Such
a setup effectively extends the scale of printable structures and
even opens the potential to deploy such systems in locations
where expensive construction installations are unavailable.

A. Related Work

1) Printing onsite machines: Digital fabrication technolo-
gies, including robotic fabrication and 3D printing, promise
to empower the development of customized material systems
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Fig. 1. The autonomous walking excavator HEAP equipped with an assembly
gripper [4].

and building components within the domain of architecture
and construction, enabling entirely new approaches to the
design of architectural structures [5], [6]. One of the concepts
with a quasi-stationary man-lift and Kuka robot arm as the
end-effector was used in the work by Keating [7]. Due to
the higher complexity of machine positioning, only a few
solutions leverage the advantage of mobile systems in con-
struction, and most of them still use classical industrial robot
arms with limited payload, heavyweight, and low robustness.
As such, these systems typically also work in a quasi-static
and kinematically controlled manner, whereby the system base
is localized, and the arm is controlled in a purely kinematic
fashion. Those solutions have been realized in modern re-
search prototypes [8] or in commercial products [9], but they
all rely on very stiff kinematic arm control. Unfortunately,
such an approach does not work in construction machines:
imprecise kinematics, moving base, play and compliance in
joints make it almost impossible to apply pure kinematic
position control. To overcome these limitations, it is crucial
to localize the end-effector relative to the building structure
[10], [11] as done in classical visual servoing applications. In
this paper, we propose an innovative approach to onsite ad-
ditive manufacturing, which consists of an automated, highly
mobile construction machine HEAP equipped with a precisely
controllable material printing device (Fig. 1), as such it can
overcome the limitations of fixed installations while offering
almost unlimited reach.

2) Perception and end-effector localization: Most con-
struction machines on the market cannot track their poses
relative to some project coordinate frames of interest. There
are several methods employed so far to control and estimate
the pose of an articulated machine, especially the system end-



effector.
First are the 2D or stereo video-based methods, inspired

by the progress in computer vision on object recognition and
tracking. Static surveillance cameras were used to track the
motion of a tower crane in [12] for activity understanding.
This method generally requires no retrofitting on the machine
but suffers from both possibilities of false or missed detection
due to the complex visual appearance on job sites and the
relatively slow processing speed. Although real-time methods
exist as in [13], [14], they either cannot provide accurate
6D pose estimation, or require additional information such
as a detailed 3D model of the machine. In [15], the shovel’s
swing rotation was recovered using stereo vision SLAM, yet
the pose of its bucket was not estimated. This approach can
be infrastructure-independent, yet some problems, like the
sensitivity to lighting changes or texture-less regions of the
printed structures, remain to be resolved for more robust
robotic applications.

Next, instead of measuring all points in the visible envi-
ronment, an external measurement system, such as a robotic
total station, can be employed to measure the distance to
a reference point, e.g. a reflector prism. Several approaches
have been suggested involving the use of a total station for
the localization of mobile robots in construction. One such
approach involves placing the measurement device on the
mobile robot base [16], [17] or on the robot end-effector
[18], and the total station carries out sequential measurements
within an environment. Although the method ensures a high-
accuracy estimate of the end-effector position in the unstruc-
tured world environment, it comes with minor limitations.
Primary, requiring a clear line of sight from the reflector
prism to the measurement device. Moreover, such a system
lacks the perception component, which is essential for robotic
fabrication in the context of construction sites, but only targets
a precise pose estimation from point-to-point measurements.
Additionally, this approach is often employed for small robotic
arms and not with large-scale construction machines, like
excavators.

Finally, the laser-based methods [19]–[21]. These pipelines
can yield good pose estimation accuracy if highly accurate
dense 3D point clouds of the scene are observed using
expensive and heavy laser scanners and remove the need for
fixed reference points for the localization. Otherwise, with
low-quality 2D scanners, only decimeter-level accuracy was
achieved [20].

B. Contribution

In this work, we investigate a LiDAR-based solution for
end-effector pose estimation with heavy articulated machines.
The proposed setup scans the construction environment and
localizes the printhead with a sub-centimetre accuracy of
5.8mm in the generated map during the printing process.
We compare our method against a well-established kinematic
sensing approach for end-effector localization in real-world
experiments on the large-scale excavator. Furthermore, we
benchmark both methods against the ground truth obtained
with the robotic total station to examine various sensor

Fig. 2. Sensor and actuation setup of the customized Menzi Muck M545 [4].
Below, the experimental sensors module consists of the LiDAR and the
reflector prism mounted at the tip of the excavator’s arm.

arrangements. Lastly, we employ the LiDAR-based pose esti-
mation in the end-effector tracking control problem and report
a maximum global error of 4.4 cm.

II. HARDWARE SETUP

HEAP is a platform based on a commercially available
12 t Menzi Muck M545 walking excavator with a 4300 kg
lift capacity in the fully stretched arm position. The machine
has been highly customized with numerous adaptations and
additions (see Fig. 2). A Leica iCON with two GNSS an-
tennas is used for cabin localization. RTK corrections for the
GNSS signals are received over the internet from permanently
installed base stations. The IMUs, in both the cabin and the
chassis, complement these position sensors and allow for a full
6 degrees of freedom (DOF) pose estimation of the cabin. The
arm joint states are measured concurrently by drawing wire
encoders on the hydraulic cylinders and IMUs on the links.
A detailed description of the employed sensor setup, chassis
and arm actuation strategies can be found in [4].

In order to evaluate different methods for end-effector
localization in the construction environment, we designed a
mount which we attach at the manipulator tip, see Fig. 2.
A LiDAR and the reflector prism are used for localization and
ground truth measurement validation respectively. The LiDAR
is chosen because it outperforms camera-based sensors in
heavy dust environments and provides more accurate and
dense measurements compared to radar-based sensors [22].



III. METHODS

For localization of the end-effector, the straightforward
way is to use the existing localization of the base from
GNSS paired with kinematic sensing of the arm to get the
relative offset of the end-effector wrt base. We describe this
baseline method in the first part. Since onsite 3D printing
requires high accuracy to accomplish the desired architectural
design plan, we investigate various setups to provide highly
accurate localization of the end-effector in an unstructured
outdoor environment. Thus, to further enhance end-effector
pose estimate precision, one includes additional measurements
of the position of the end-effector wrt to the world using either
a total station prism or LiDAR mounted at the manipulator tip.
We present this improved method in the second part of this
section. Thereby, we highlight their advantages and drawbacks
and demonstrate how we can achieve sub-cm precision with
large-scale construction machines.

A. Kinematic sensing

To estimate the 6-DOF end-effector pose, we fuse IMUs
measurements of the cabin with GNSS sensing to get a precise
base pose estimation and combine this with a relative end-
effector to base pose using joint sensors (cabin and telescopic
joint) and link IMUs mounted on the arm [4]. The estimated
state contains the position and the orientation of the end-
effector. The error in the GNSS signal can vary in the range
between 1 up to 10 cm, and the forward kinematics of the
arm joints become significant if the load is applied at the tip
of the articulated arm. We use the pose estimator from [4] as
a baseline and compare our approach against it.

Cabin turn joint: The position measurement of the cabin
turn joint connecting the upper machine to the chassis is
realized with two inductive sensors that detect passing gear
teeth. An additional inductive sensor corrects potential errors
of this incremental measurement when passing zero. Due to
the low number of teeth in the large internal ring gear (98
teeth in total), an angular resolution of only 0.92 deg can
be achieved. Due to these measurements’ low resolution, we
estimate the absolute pose of the cabin from IMU and GNSS
and relative turn using a Kalman filter (KF). Thus, the joint
state (position ψ and velocity ψ′) is estimated in the cabin
frame, where the sensors are rigidly attached. The cabin turn
angular velocity is measured as the difference between the
angular velocities of the cabin IMU and the chassis IMU. The
state of the cabin joint is obtained using the discrete-time KF
to augment the noisy IMU angular velocity and low-quality
turn angle measurements. The position and velocity of the
joint are described by the linear state space:

xk = [ψ , ψ′]⊤ (1)

Under the assumption that velocity between the (k − 1) and
k timestep is constant, we conclude the prediction model

xk =

[
1 ∆t
0 1

]
xk−1 +wk (2)

Fig. 3. In blue, the complementary filter while the KF estimate in green. In
red, we indicate the reference joint position.

where wk ∈ R2 represents the process state noise. At each
time phase, noisy measurements of the joint position and
velocity are made. Thus, the observation model reads

zk =

[
1 0
0 1

]
xk + vk (3)

where vk ∈ R2 is the measurement noise.
Compared to [4], where one implements a complementary

filter for the cabin turn joint, we account for a low-resolution
joint position measurement and sensor noise while ensuring
a smooth estimate signal, as presented in Fig.3. The com-
plementary uses raw angular velocity data and computes the
turn angle estimate with the weighting factor for joint position
measurement. In the two consecutive experiments in Fig.3,
we command the same reference position for the joint while
once running the complementary filter and once using the KF
method. The average tracking error of the position is 0.002 rad
with the KF approach while 0.028 rad with complementary
filter. The Kalman filter approach considers sensor noise and
captures different update rates of incoming measurements
while enabling the precise rotational motion of the cabin at the
very-low velocities. This is becoming crucial while we aim to
improve the end-effector positioning for the highly accurate
following of the printhead trajectories.

B. Total station

Following [18], the localization of the mobile printer in
reference to the total station is investigated through the
positioning of a reflector prism attached to the robot’s end-
effector. The total station measures the prism position in an
environment in the frame defined by the human operator.
The total station used in the project is a Leica Nova MS50
MultiStation and a reflector prism Mini GRZ101 360°. The
MS50 offers an angular accuracy of 1′′ and an optical-distance
measurement system (EDM) based on waveform digitizing
technology with an accuracy of 1mm onto the prism and
a measurement range of around 1000m. The prism mount
provides flexibility in setting trajectories within the robot
workspace as reference points and a clear line of sight between
the end-effector and the total station. The calibration between
the robot and global (total station) frames considers arbitrary
point selection. For the point set registration problem, multiple



algorithms exist [23]. By moving the excavator arm in the
workspace to n various locations, the prism coordinates of n
points Pi ∈ R6×1 in the robot coordinate frame, and the n
prism measurements Mi ∈ R3×1 in the total station coordinate
frame are derived. Through orthogonal decomposition of the
points Pi in the total station coordinate frame and correspond-
ing measurements Mi, we compute a transformation matrix
TM,P , which maps the measurements into a robot reference
frame.

TM,P = [P1 P2 . . . Pn]× [M1 M2 . . . Mn]
† (4)

where n > 4 to obtain a unique solution.
The computed transformation matrix enables control of the

mobile 3D printer end-effector based on the total station read-
ings. Although the method ensures a high-accuracy estimate
of the end-effector position in the construction environment, it
comes with minor limitations. Primary, this approach requires
a direct line of sight from the reflector prism on the end-
effector to the total station at any time during fabrication.
As a result, avoiding the prism occlusion strongly limits the
printer workspace.

C. ICP Localization

To target the accuracy of global positioning with an
onboard-sensing system only, we employ a LiDAR at the end-
effector. This device is primarily used for running pure ICP
(Iterative Closest Point) with the environment and provides
an ultra-wide view. First, we scan the construction site with
the sensor attached to the tip of the articulated arm assuming
static features in the environment. In offline manner, we build
a map that serves as the reference for online localization of the
3D printer during construction tasks. For this, we make use
of the open-sourced package open3d slam [24], and obtain
the map of the construction site, as depicted in Fig. 4. The
package is implemented based on Open3D, a library for 3D
data processing. This method eliminates the requirement of
a clear line of sight, as different stationary features of the
environment are observed at any time. During deployment,
these specific features in the map are utilized to localize the
printhead in the global frame through scan matching using ICP
scan-to-map registration. We fine-tune the hyper-parameters of
the ICP algorithm to get high precision in the pose estimation
and achieve an error in accuracy below 1 cm.

D. Multi measurement fusion

The rate of the pose estimate based on the ICP pipeline is
constrained by the low-frequency update measurement of the
LiDAR (10Hz). To increase the smoothness of the estimated
signal and allow for fast and precise end-effector motions, we
fuse the ICP updates with kinematic measurements collected
at high frequency (100Hz). This sensor fusion is based on
an extended Kalman filter (EKF) to track the orientation
and position of the end-effector. The fusion framework is
essentially divided into two EKF steps: prediction and update.
The prediction step is preformed based on the system model
(assuming constant velocity) and kinematics readings [25].
In situations between subsequent LiDAR measurements, we

Fig. 4. The map is built on the construction site with the open3d slam library.
The barracks are on the left, and the bridge with columns is on the right.

interpolate the kinematics data to get the best possible end-
effector pose estimate. These kinematic measurements are
coming from IMUs mounted across the excavator’s arm and
joint position encoders (cabin and telescopic joint), as de-
scribed in Sec. III-A. For the EKF update step, we incorporate
data obtained with the ICP localization pipeline. Thus, by
fusing kinematics and LiDAR measurements, the printhead
positioning precision is improved, and the final end-effector
pose estimate remains consistent in the global reference frame
while being updated on 100Hz.

IV. EXPERIMENTAL RESULTS

Before implementing the pose estimation system pipeline,
we perform a set of experiments to test the feasibility of
LiDAR-based pose estimation in different indoor and outdoor
construction environments. In all the experiments, a Hesai
QT64 LiDAR is chosen with a 20m range and vertical
resolution of 104.2 deg. Instead of using the entire map for
localization, we restrict it to selected objects that remain
stationary throughout the fabrication process and provide clear
features for localization, such as bridge and barrack, see
Fig. 4.

Next, the accuracy of the ICP localization is a critical
factor affecting the performance of the fabrication process.
Thus, the LiDAR is tested in the indoor (office room ≈
30m2) and outdoor conditions to examine its robustness and
repeatability. After building the map of the environment, we
start the localization method while subsequently recording
the sensor pose obtained with the open3d slam library at
different times. In Tab I, we report an average error between
the ICP localization measurements obtained from the set of
recorded poses in indoor and outdoor experiments. In the
outdoor scenario, we encounter different light circumstances
as the runs are performed at different times of the day facing
various environmental conditions. On the other hand, to ensure
the precise localization required by the 3D printing process,
we examine the scenarios assuming that clear reference points
exist. This initial analysis validates the deployment of the
LiDAR-based localization method to obtain high-accuracy and
repeatable performance in pose estimation. As the sensor
remains stationary during this experiment, the error mostly
comes from the device noise. The deviation is higher out-
doors as the LiDAR experiences more demanding lighting



TABLE I
ERROR IN THE ICP POSE ESTIMATE

indoor outdoor

x 0.12 0.35
Position error [cm] y 0.08 0.47

z 0.02 0.19

roll 0.12 0.34
Orientation error [deg] pitch 0.23 0.61

yaw 0.19 0.45

conditions and a larger distance to the environmental features.
Nonetheless, the error lies below the precision requirements
for the 3D printing process, i.e. below 1 cm [26]. Once
the sensor achieves the distance of 20m from the reference
features, we obtain an error above the sub-centimetre level
accuracy. Thus, we require the environmental references to
lie within this radius from the end-effector. From now on,
all the experiments are performed with the real construction
machine [4].

A. End-effector localization

In this experiment, we manually steer the excavator arm
from inside the cabin with an arbitrary end-effector trajectory,
shown in Fig. 5. During this experiment, we analyze the state
estimation methods introduced above, namely the baseline
(kinematic sensing) method and ICP localization. We compare
them against the total station readings, as these measurements
provide the ground truth end-effector pose. We present the
performance of both state estimation methods in Fig. 6 against
the ground truth, both expressed in the world frame.

The root mean square error (RMSE) with the LiDAR
localization approach is 0.58 cm, while with the baseline
method, we report 2.23 cm. The error lies in the interval
within ±1 cm from the ground truth over 96% of time for
the ICP method and 49% in the case of the kinematic sensing
approach. The maximal positioning error for ICP is 1.87 cm
while 6.61mm with the baseline. The experiment outlines
the advantage of using the LiDAR-based pose estimation for
the excavator end-effector during the fabrication processes
when the highly accurate localization is a crucial factor while
following the predefined architectural plan.

B. Experimental 3D printing end-effector path

Each end-effector task is described as a predefined trajec-
tory composed of a time series of printhead poses according
to the architectural design plan. The task should be executed
as a continuous motion, while the 3D printer should smoothly
pass through each waypoint. We use cubic Hermite trajectory
interpolation1 to obtain smooth paths for the system between
the subsequent design poses. Then the polynomial trajectory
is sampled at 100Hz and passed to the controller as an array
of reference points.

1https://github.com/ethz-asl/curves

Fig. 5. The ground-truth trajectory of the excavator’s arm end-effector
depicted in the world frame obtained with the total station.

Fig. 6. Error plot between the two end-effector state estimators and total
station measurements. In orange, we depict the error recorded with the
baseline approach and in blue with the ICP localization pipeline, along x, y
and z in the world frame, respectively. Additionally, we indicate the 1 cm
error range from the ground-truth measurement in grey horizontal lines.

C. End-effector tracking performance

As a last experiment, we close the control loop with the
LiDAR-based localization approach. We provide the arm con-
troller with the end-effector pose estimate obtained from the
ICP pipeline. This showcases how accurately the machine can
track the desired trajectories during the 3D printing process
while the printhead pose estimation has been improved. The
trajectory, shown in Fig. 7, is defined in the map frame. We
report the tracking error performance during this process. The
maximum deviation from the reference path is 3.8 cm, and the
overall RMSE is equal to 0.9 cm.

With results from Sec. IV-A, we conclude that the average
global error during fabrication is 1.5 cm, which outperforms
the 3D printing with flying robots (precision of 10 cm) and is
comparable with mobile industrial robotic arms equipped with
a high-precision 3D motion capture system (average error of
1.0 cm) [26].

V. CONCLUSION

Excavator systems are ubiquitous on construction sites.
Equipped with the right sensing and control technology, they
offer the potential to serve as precise tool manipulators that



Fig. 7. End-effector 3D printing desired trajectory is depicted in green, while
in red, we show the measured printhead pose obtained with the ICP.

can be used for tasks like onsite 3D printing. In this paper,
we investigated different sensor arrangements and localization
solutions. Using IMUs at the moving links, GNSS at the
cabin and a LiDAR at the end-effectors, we are able to
achieve 5.8mm localization precision at the end-effector.
This paper focuses on a LiDAR-based pose estimation and
localization solution for articulated machines using ICP in
a known map. A sensor system consisting of LiDAR and
kinematic sensing across the articulated arm of the large-scale
machine offers a potential alternative to the solution with the
total station and eliminates the problem of a clear line of
sight for the prism. Moreover, the approach does not require
an external measurement system as the mobile industrial
robotic arms, which are equipped with a 3D motion capture
system for 3D printing. We validate the method with an error
analysis to assess the system position accuracy. The presented
experiments and a working prototype proved the proposed
solution’s feasibility and accuracy for real-world construction
applications. In addition, various fabrication methods using
a range of end-effectors, such as a 3D printer, an assembly
gripper, or a welding tool, can be implemented as part of the
fabrication process. Through these capabilities the system is
designed to complete the large-scale toolchain, providing real-
time digital sensing, on-the-fly performance-based design, and
onsite construction. By combining sensor data with material
deposition logic the designer will be able to respond to site-
specific terrain mapping in real time.

In future work, we investigate the feasibility of the measure-
ment system while making full use of the excavator manipula-
tor structural characteristics, i.e. by employing the motion of
the excavator chassis. Additionally, we aim to demonstrate the
use of large-scale mobile manipulators utilizing 3D printers
for the construction of complex architectural forms.
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