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Abstract

Artificial intelligence has started to permeate the entire technological
fabric of our interconnected world and has long found its way to the
network edge. Be it as part of novel biomedical devices that constantly
monitor patient health, smart sensors in industrial settings where they
drive the transformation from reactive- to pro-active maintenance in
industry 4.0 or integrated into the next evolution of human-machine
interfaces like extended reality (XR), ML-enacting near-sensor circuits
are omnipresent. The tight power and latency constraints of these
applications fuel a paradigm shift in the hardware architecture domain,
away from conventional von-Neumann-based computing, which is
bound by the memory bandwidth bottleneck of the data- and control
path. The “new golden age of computer architecture”, as the famous
computer pioneer David Patterson calls it, is marked by innovative
Near- and In-memory architectures around conventional CMOS as well
as novel “beyond-CMOS” technologies like PCM or ReRAM. However,
many of these techniques are explored with an isolated, device-level-
focused view, whereas advances at the system-level demand a holistic
multi-objective optimization approach that involves hardware-software
co-design and the exploration of new computing paradigms.

This thesis investigates energy-efficient digital hardware architec-
tures at both the circuit- and the system level and develops adequate
strategies to enable energy-proportionality for general-purpose near-
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sensor analytics, i.e. the proportionality of energy consumption
to vastly varying dynamic changes in workload compute intensity.
We follow a multi-stage architectural approach where highly energy-
efficient circuits based on the compute framework of Vector-Symbolic
Architectures make up the first, always-on stage of our architecture
“stack”. In the second part of this thesis, we shift focus to the next,
more computationally performant stage around heterogeneous compute
cluster architectures, with an emphasis on the memory hierarchy. Here
we propose a novel architectural design pattern to tightly couple
non-volatile memory to the hardware accelerator. Both aspects are
demonstrated and evaluated in several silicon realizations in 65 nm
bulk, 22 nm FDSOI and 16 nm FinFET technology.



Zusammenfassung

Künstliche Intelligenz hat begonnen, das gesamte technologische
Gefüge unserer vernetzten Welt zu durchdringen und hat längst
den Weg zum Netzwerkrand gefunden. Sei es als Teil neuartiger
biomedizinischer Geräte, die ständig die Gesundheit von Patienten
überwachen, intelligente Sensoren in industriellen Umgebungen, wo
sie die Transformation von reaktiver zu proaktiver Wartung in der
Industrie 4.0 vorantreiben, oder integriert in die nächste Evolution
von Mensch-Maschine-Schnittstellen wie erweiterter Realität (XR),
ML-gesteuerte Near-Sensor-Schaltkreise sind allgegenwärtig. Die engen
Leistungs- und Latenzbeschränkungen dieser Anwendungen treiben
einen Paradigmenwechsel im Bereich der Hardware-Architektur voran,
weg von der herkömmlichen von-Neumann-basierten Rechenarchitektur,
die durch das Speicherbandbreitenlimit des Daten- und Kontrollpfads
begrenzt ist. Das neue ”goldene Zeitalter” der Computerarchitektur,
wie der berühmte Computer-Pionier David Patterson es nennt,
ist geprägt von innovativen Near- und In-Memory-Architekturen
rund um konventionelle CMOS-Technologie sowie auch neuartigen
”beyond-CMOS”-Technologien wie PCM oder ReRAM. Viele dieser
Techniken werden jedoch mit einem isolierten, auf Geräteebene
fokussierten Ansatz erforscht, während Fortschritte auf Systemebene
eine ganzheitliche, mehrzieloptimierte Entwurfsstrategie erfordern,
die Hardware-Software-Co-Design und die Erforschung neuer Re-

vii



viii

chenparadigmen umfasst. Diese Arbeit untersucht energieeffiziente
digitale Hardware-Architekturen sowohl auf Schaltkreis- als auch auf
Systemebene und entwickelt geeignete Strategien, um Energiepro-
portionalität für allgemeine Near-Sensor-Analytik zu ermöglichen,
d.h. die Proportionalität des Energieverbrauchs zu stark variierenden
dynamischen Änderungen in der Rechenintensität der Workload.
Wir folgen einem mehrstufigen architektonischen Ansatz, bei dem
hochenergieeffiziente Schaltkreise, die auf dem Rechenframework von
Vector-Symbolic Architectures basieren, die erste, immer aktive Stufe
unseres Architektur- ”Stacks” bilden. Im zweiten Teil dieser Arbeit
konzentrieren wir uns dann auf die nächste, rechenleistungsfähigere
Stufe rund um heterogene Rechencluster-Architekturen, wobei der
Schwerpunkt auf der Speicherhierarchie liegt. Hier schlagen wir ein
neuartiges architektonisches Designmuster vor, um nichtflüchtigen
Speicher eng an den Hardware-Beschleuniger zu koppeln. Beide
Aspekte werden in mehreren Silizium-Realisierungen in 65 nm Bulk-
, 22 nm FDSOI- und 16 nm FinFET-Technologie demonstriert und
evaluiert. german
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Chapter 1

Introduction

1.1 Motivation

“What is the energy cost of computation?” This a question for which
we have already had an answer for quite a while. In 1961, Rolf
Landauer tied the fundamental limits on energy dissipation of non-
reversible computing, the basis of most modern signal processing
algorithms, to the preservation of entropy i.e. the second law of
thermodynamics [1]. While the switching energy of transistors in
every new technology node is getting closer and closer to this so-called
Landauer limit of conventional computing, system-level computer
architecture has comparably remained rather static. More than 70
years after Landauer’s findings, energy efficiency at the system level
today is thus largely determined by architectural design choices rather
than the efficiency of the compute fabric itself and there is still a
gap of many orders of magnitudes ahead of us [2]. Yet at the same
time, the transformation of society across the globe towards the post-
digital age is rapidly accelerating and affects more and more aspects
of our environment.
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2 CHAPTER 1. INTRODUCTION

Sensor systems play a crucial role in this cyber-physical landscape.
Being at the boundary between the realm of physical entities and
abstract information, they make up the majority of electronic devices
worldwide. In the past, sensors were part of simple measurement
devices that operated in isolation from each other. With the recent
advances in MEMS (Micro-Electro-Mechanical-Systems) technology
[3], CMOS technology scaling as well as the resulting cost reduction
of sensor nodes, they can now be deployed as parts of much larger
networks of interconnected sensors, a trend commonly summarized
as the Internet of Things (IoT) [4].

Applications for such systems are ubiquitous; wearable or even
digestible sensors find tremendous interest in the medical domain, the
next evolution in human-machine interfaces like augmented reality
requires the seamless interplay from a multitude of camera sensors
for visual feedback, and industry is in the midst of a paradigm shift
from reactive machine maintenance towards sensor-network-enabled
proactive maintenance as part of industry 4.0 [5].

With most of these applications requiring untethered, battery-
powered or even energy autarkic operation, we can not solely rely on
the stagnating progress in battery and energy harvesting technology,
but the devices must drastically improve energy efficiency to keep up
with the market expectations. As wired transmission is hardly an
option for the massive deployment of low-maintenance sensor nodes,
wireless transmission is the only viable option for data aggregation from
sensor networks. As a result, the majority of today’s wireless sensor
device’s energy consumption lies in data transmission [6]. Furthermore,
applications like augmented reality (AR) have very tight constraints
with respect to latency in the order of 2 ms to 20 ms [7]–[10] which
is very challenging to achieve over-the-air.

The natural way to cope with these problems is to reduce the
amount of data that needs to be sent by moving data processing closer
to the sensor, thus tightening the sense-to-feedback loop. Instead of
raw data transmission and centralized processing in the cloud, the
data is processed directly on these so-called smart sensor devices
[11], and only the relevant portion of information is transmitted
(think of transmission of a single imminent machine failure message
instead of the raw vibration and temperature data). At the heart of
most of these application domains are machine learning (ML)-based
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algorithms that gradually replaced domain-specific data processing
and interpretation pipelines. The most predominantly used forms of
these ML algorithms, i.e. Deep Neural Network are characterized by
a very regular compute-heavy dataflow. Research and development
efforts on Artificial Inteligence (AI) hardware acceleration for server-
class devices and mobile devices has been fueled tremendously by
the spotlight of public interest in AI technology, e.g. in the form of
products like Dall-E and ChatGPT that have unfathomable compute
demands for training. This so-called ”new golden age of computer
architecture” [12] has already progressed enough for mass-deployment
of AI hardware in high-performance computing (HPC) and the mobile
system on chip (SoC) market [13], [14]. However, solutions for battery-
powered sensor nodes in the sub 10 mW range are still an open research
topic and impose a departure from traditional von-Neumann compute
architecture towards the near- and in-memory computing paradigm.

In this thesis, I analyze the key requirements and characteristics of
integrated circuits for near-sensor processing and present a number
of novel circuit architectures based on alternative ML paradigms and
the concepts of in-memory computing. As part of several taped-out
SoCs in modern technology nodes, I demonstrate these building blocks’
capabilities to adequately address the challenges of compute-intensity-
to-energy proportionality and limited IO and memory bandwidth
advancing ultra-low power (ULP) smart sensing one step further
on the very long way towards the fundamental limits of compute
energy-efficiency.
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1.2 Key Components of a Smart Sensing
System

MIPI
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Figure 1.1 – Key components of an interent of things (IoT) Smart Sensing
System

There are several key aspects in ULP sensor nodes, each of them
significantly affecting overall energy efficiency as well as throughput
and latency characteristics of the system. Figure 1.1 illustrates the
interplay of these essential building blocks; They can roughly be
categorized into:

1. Data Acquisition
2. Data Processing
3. Connectivity

Data Acquisition At the source of the processing pipeline, we
have the Data Acquisition system, responsible of capturing physical
properties of the environment and exposing the data in a processable
format to the compute resources. Besides the actual sensor to be used
for a particular physical quantity, a major design consideration lies
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in the choice of the interface between the sensor and the compute
resources. We can differentiate by two key aspects of the sensor
interface: Sensor proximity to the compute resources and the mode of
data exchange. In most current ULP sensor node architectures, sensor
and compute resources are still physically separated devices requiring
off-chip communication. The implied inter-chip communication has
strong implications on the IO energy and the interface’s minimal
bandwidth. Even considering modern 3D integration techniques like
hybrid bonding, the energy cost per bit of data leaving the monolithic
silicon die is still in the order of ~200 fJ [15], two orders of magnitude
above the average metal interconnect transmission energy per mm
even in older technologies (e.g. ~4.1 fJ mm−1 to 38.4 fJ mm−1 in 65 nm
technology [16]). It is thus to no surprise that the recent industry trend
is to transition towards integrated smart sensing systems that combine
Data Acquisition and the compute resources for data processing in
a single system-in-package (SiP) or even a monolithic silicon die.
Regarding data exchange modes, we can taxonomize the design space
into four quadrants along the time and value representation domains.
While completely analogous sensors operating in the continuous-time,
continuous-data regime are still relatively common, the majority
of modern sensors exchange data in the discrete-time discrete-data
domain. That is, each sensor contains dedicated Analog-to-digital
converters (ADCs), custom-tailored to the dynamic range of the analog
sensor and exchange data using digital off-chip protocols like Inter-
Integrated Circuit (I2C) or Serial Peripheral Interface (SPI). However,
the current research focuses on a new category of so-called event-driven
sensor interfaces that exchange data in discrete value and continuous
time, thus saving power during low activity intervals [17]–[19].

Data Processing The next step in the processing pipeline after
data acquisition is data processing. The first generations of sensor
networks almost entirely offloaded the data processing to the cloud.
However, this compute-offloading approach’s energy consumption and
latency are prohibitively high for applications with hard real-time
constraints like, e.g. augmented reality applications[20]. Thus the
current trend is to bring data processing closer to the sensor creating
so-called near-sensor computing systems[21]–[23]. In contrast to cloud-
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compute infrastructure with virtually unbounded power envelopes,
near-sensor systems require orders of magnitude higher energy efficiency
to enable reasonable battery lifetime or even fully energy-self-sufficient
deployment in the field. An essential requirement for energy-efficient
edge computing is hardware-software co-design. The choice of the
right processing algorithm for a given application is closely tied to the
target compute resource architecture during deployment. The design
space of these architectures is very vast; Important dimensions in this
design space are the choice of compute units, the memory hierarchy
and the computing paradigm, i.e. the interaction between hardware
accelerators and conventional software used, e.g. for post-processing.

Connectivity The final design aspect of an ULP sensor system
is node connectivity. While near-sensor processing can drastically
reduce bandwidth requirements, at some point data still needs to be
exchanged with the environment. Here the design choice dimensions
are just as vast as the processing architecture’s and range from network
topology (e.g. centralized start-topology in the form of classical cloud
computing versus partially or fully decentralized mesh topologies like
mobile edge or fog computing [23], [24]) to the choice of the wireless
communication protocol and the design of the RF transceivers.

This thesis mainly focuses on the data processing aspect of near-
sensor computing systems. Still, designing such an architecture
requires awareness of the design space dimensions across the entire data
processing pipeline from the sensor interface to the communication
scheme with other network entities as well as an overview of the delicate
interdependencies of algorithm development, hardware mappability
and scalability.
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1.3 Objective Metrics of Near Sensor
System Design

Before diving deeper into the different macroscopic design options,
we must define the objective and performance metrics. After all, a
“narrow-eyed” focus on optimization towards just a single performance
metric is most likely bound to fail the test of reality.

In the remainder of this introductory chapter, we provide an
overview of the most important technological advances under the
light of five key objectives:

• Throughput

• Latency

• Energy Efficiency

• Reliability

• Cost

Each of these abstract design objectives can be characterized by
different concrete performance metrics. In the following subsections, we
quickly introduce these five dimensions of the optimization target space
and motivate their relevance in the context of ULP sensor architectures.

1.3.1 Throughput
Compute throughput is a key objective for near-sensor computing
systems. In contrast to HPC environments, the objective for edge
compute devices is often not “the more, the better” but a question
about meeting the minimal requirements of the target applications.
After all, higher throughput is almost always bought at the expense
of one of the other design objectives outlined in this section.

There are various, at times incomparable, performance metrics
commonly used to indicate a system’s compute throughput. Table 1.1
outlines some of the most commonly used metrics. They can be roughly
categorized into two kinds: unit-operation-referenced and benchmark-
referenced throughput metrics. The first kind of metric measures
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the number of reference operations executed per time interval. The
choice of reference operation is highly target application dependent.
E.g. while DNNs accelerator throughput in the AI domain is usually
expressed in “multiply-accumulate operations per second” (MAC/s),
a commonly used metric in HPC is “floating point operations per
second” (FLOP/s). These kinds of metrics capture only a very small
aspect of a system’s capability, and relying on these mono-dimensional
indicators as a performance predictor for real-world applications can
be very dangerous. E.g. Carrington et al. expose very poor correlation
of various synthetic performance metrics in the HPC domain with
predicted runtime errors as high as 68% [28].

The other kind of compute throughput metric expresses system
performance in terms of the runtime to complete a given reference
benchmark. As indicated in Table 1.1, there is a vast number of these
benchmarks, with, at times, very different correlation characteristics to
real-life performance. While benchmark-referenced throughput metrics
are able to capture more than a single performance indicative system
aspect, generalization of the results to any given target application for
architecture selection needs to be done with care [28], [29].

A second very substantial issue with common performance metrics
is the lack of distinction between peak throughput and sustained
performance, a problem especially pronounced in the HPC domain.
For example, Kramer shows more than an order of magnitude difference
between peak and sustained performance for the TOP500 system [30].
The sustained versus peak performance gap is less severe for von-
Neumann based compute resources in smart sensing fabrics due to
less pronounced cache hierarchy effects. Still, it is highly relevant
when comparing ML workload targeted accelerators due to their
vastly different and, e.g for many non-volatile in-memory compute
technologies, imbalanced read/write characteristics at the accelerator
boundary.

A rigorous restriction to one objective metric for throughput in
the context of this thesis is not practical, nor is the assessment of
different performance metrics within its scope. In the remainder of
this work, we will put emphasis on providing a holistic, system-level
view on sustained throughput performance under real-life workloads.
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1.3.2 Latency
Latency indicates a system’s promptness to react to its inputs, i.e.
in the context of ULP sensor systems, the time delta between sensor
data availability and the completion of the corresponding output
calculation. It must not be confused with the almost orthogonal
throughput objective. Different application domains for ULP sensor
nodes have vastly different requirements for system latency. While
some edge computing applications like predictive maintenance [31] can
have extremely relaxed latency requirements, many key applications in
Healthcare, next-generation Human-Computer Interfaces, and smart
mobility have way more stringent demands on maximum latency. E.g.
for the application of myoelectric prosthetics control, Farrell and Weir
show that maximum control delays above 125ms result in a clinically
observable decrease in the subject’s prosthetics handling performance
[32]. Tracking algorithms in augmented reality environments require
even lower latency in the orders of 2-20ms to avoid human perceivable
lag or even motion sickness [7]–[10].

Table 1.2 puts those latency requirements into perspective with
achievable round-trip latencies with various commonly used wireless
protocols for mobile edge computing (MEC)-based sense-control
loops; Except for BLE 51 and Wi-Fi 62, which has very high power
consumption, none of those protocols comes close to achieving sub
10 ms of round-trip latency required for the most latency demanding
IoT applications. This comparison further motivates the need
for autonomous near-sensor computing from a latency point of
view and demonstrates the importance of latency besides the usual
throughput and energy-efficiency-oriented comparison of competing
system architectures.

1.3.3 Energy Efficiency and Power Envelope
Naturally, energy efficiency is of utmost importance for any energy-
constrained device and has been in the research focus within the
circuit design community for more than two decades[33]. Yet
there are countless different metrics to measure energy efficiency;

1Bluetooth Low Energy Version 5
2IEEE 802.11ax standard
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Protocol Latency Bandwidth Range

BLE 5 15ms – 100ms 0.5MBit/s – 2MBit/s 50m – 1 km
Wi-Fi 6 5ms – 20ms 0.5GBit/s – 1GBit/s 10m – 100m
LoRa 80ms – 2 s 0.3KBit/s – 50KBit/s 5 km – 15 km
5G mmWave 5ms – 20ms 1GBit/s – 1.5GBit/s 500m – 1 km
eMTC 50ms – 100ms 0.5MBit/s – 1MBit/s 5 km – 10 km
NB-IoT 1.6 s – 10 s 50KBit/s – 200KBit/s 5 km – 15 km

Table 1.2 – Typical round-trip latencies, maximum bandwidth and range of
common wireless protocols for IoT devices.

One metric often compared in literature within the neural network
accelerator domain is the Energy per Operation or its inverse, the
Number of operations per unit energy, often expressed in unit “tera
operations/s/W”, (TOP/s/W or TOPS/W). This metric is often
misleading due to incompatible definitions of the reference operation
or different scopes for energy measurement; I.e. we frequently observe
energy efficiency reports in the literature with either arbitrarily limited,
if at all reported scope of the power measurement or unprecise
formulation of the unit operation by which the energy is normalized
to the performance [34]. When comparing competing architectural
design choices with figures of merit reported for different technology
nodes or at different design stages, we must be careful not to mix
up architectural energy efficiency gains with technology advantage or
the bias resulting from inaccurate energy modelling at the various
design stages. I.e. post-synthesis power figures usually are significantly
lower than at the post-layout due to the lack of interconnect parasitics
and glitching activity modelling.

For a fair comparison, the total energy cost at the system level
is essential since different circuit styles have different support circuit
requirements. E.g. while the energy efficiency of some Analog mixed
signal (AMS) circuits might look very favourable at first, the power
consumption of possibly required voltage biases, ADCs or temperature
compensated clock sources might impact the real word energy efficiency
quite significantly.

Another problematic aspect of the Energy per Operation metric in
real-world applications can be the lack of significance to predict the
average system power envelope, the metric that ultimately determines
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the runtime of battery-operated systems or the overall feasibility in
self-sustainable energy harvesting systems. Especially in the context
of smart sensing systems, workloads are usually very far from fully
utilizing the available compute resources all the time. Compute-
intensive execution periods with some form of hard-realtime constraints
regarding maximum latency take turns with periods of low compute
demand. If we model such a sensor system with a power state machine
that transitions between a Full Performance state an Active Idle State
and potentially various Low Power States, we not only require the
power under full utilization but also,

a) Knowledge of all Power States of the System including power
consumption and state transition times.

b) the probability distribution of long enough “idle-time”
intervals, that is, time intervals of little to no compute
requirements that are long enough to outweigh the energy
cost of power state transitions

in order to assess the average system power consumption [35].
A fair comparison of competing design alternatives thus requires

full knowledge of all power states and must not be limited to the energy
efficiency at their respective peak performance points alone.

1.3.4 Error Resiliency and Reliability
Another crucial system objective is error resiliency and reliability.
The requirements on this particular aspect of an ULP sensor node
architecture are extremely diverse and range from quasi-non-existent
(e.g. in smart dust applications [36], [37]) to extremely high for mission-
critical deployment in the health, automotive and aerospace sector.

The objective of reliability can be captured in the form of e.g. bit-
error rate (BER), mean time between failures (MTBF) or availability
in the case of spurious system failures, mean time to failure (MTTF)
or its inverse the failure rate for capturing the long-term reliability of
a given system or operating temperature range and thermal budget for
temperature dependent reliability and manufacturability.

While these metrics are mostly influenced by the physical aspect of
an ULP sensor architecture, the choice of algorithm for data processing
can considerably impact overall error resiliency. As we will see in
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chapter 2, certain data processing algorithms like e.g. DNNs or hyper-
dimensional computing (HDC) have inherent resiliency with respect
to noise in input- or intermediate data. Careful hardware software
codesign can thus be essential to counterbalance reliability detrimental
characteristics of a technology choice [38], [39].

In the end, reliability requirements are one of the most crucial
objectives for a lower power system to meet; After all, many industry
sectors know hard constraints on the minimum figure of merit regarding
system reliability (e.g. AEC-Q100 for the automotive sector), which
can render entire areas within the hardware-software design space
infeasible.

1.3.5 Cost
Finally, we have the cost objective, which once again comes with
a plethora of different metrics that ultimately influence the total
procurement and the operating costs of the product. The following
(non-exhaustive) list indicates some of the most important influencing
factors on recurring and non-recurring procurement as well as the
operating costs of a very large-scale integration (VLSI) product:

Technology Cost Impacts This includes the recurring and non-
recurring costs of the technology node itself in the case
of conventional CMOS technology as well as the CMOS
compatibility or SiP packaging requirements for any non-
conventional integrated circuit manufacturing technology. Also,
technology maturity needs to be taken into consideration since
yield and time to market can have impacts at a business strategic
scale, as companies like, e.g. Intel demonstrate time and again
[40].

Design & Verification Efforts and EDA Support Labor costs
are a very significant portion of the overall non-recurring
engineering cost (NRE) costs. Design and verification as well as
Electronic Design Automation (EDA) software licensing cost
make up more than half of the overall NRE investment and
experienced an increase of 4x moving from the 22nm to the 7nm
node [41]–[43]. The engineering cost factor is however not only
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dictated by the technology but also substantially determined by
the choice of circuit style (e.g. digital CMOS or AMS).

External Support Circuitry While seemingly not as significant as
the engineering or recurring and non-recurring cost of the silicon
manufacturing process, the requirement of additional off-chip
circuitry can still be quite relevant for assembly and packaging
considerations. Although the trend clearly goes towards SiP
integration [44] to reduce the bill of material (BOM) count
of printed circuit boards (PCBs) to the bare minimum, off-
chip components like temperature-compensated oscillators and
inductors for voltage regulation remain hard to integrate.

Cost of External Infrastructure and Maintenance Looking at
the overall cost breakdown up to the system deployment
level, differences in terms of maintenance and infrastructure
requirements become major cost factors of the operating costs
of a particular ULP sensing solution and, e.g. in the context
of IoT sensor network deployment can reach as high as 80%
of the overall system deployment cost[45]. The need for higher
bandwidth wireless communication infrastructure, cloud compute
infrastructure or edge servers (in the context of MEC [46])
and the difference between fully self-sufficient systems and
systems requiring regular battery replacement are all essential
for integrative analysis of a given solutions operating costs.
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1.4 A Systematic Breakdown of the
Ultra-Low Power Design Space

After motivating and introducing the different objective metrics of
a ULP near sensor processing system, we use this section to outline
some of the macroscopic design space dimensions of ULP system.
Furthermore, we are going to provide some overview of the current state
of the art in the respective design dimensions. The aim is to establish
the framework and current state of research at a larger scope to assess
better the further contributions of the thesis outlined in section 1.5.

Memory-Compute Proximity

Von-Neumann
Architecture

Analog Bitline
In-memory
Computing

Digital Near-Memory
Computing

SIMD/
Vector  Processor

closer to Memory

further away from Memory

Memory Technology

SRAM SCM PCM MRAM

DRAM Flash ReRAMeDRAM

Non-VolatileVolatile

Physical Data Representation

Fixed-Point Floating-Point Voltage Time-domain

Charge CurrentSymbolic

AnalogDigital

Dataflow-Synchronization

Fully-Synchronous

Fully-Asynchronous
Event-Driven

GALS
(with asynchronous Links)

GALS
(with synchronous Links)

Figure 1.2 – Illustration of macroscopic ULP system architecture design
space.

Given the vastness of the design space, we try to project it along
the following four major dimensions illustrated in figure 1.2:

• On-chip Memory-To-Compute Proximity

• Memory Technology

• Physical Data Representation

• Dataflow Coordination Disciplines

1.4.1 On-chip Memory-to-Compute Proximity
The increasing gap between memory and traditional CPU core
performance has severely hindered progress in addressing the challenges
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of the big-data compute era[47]. This so-called memory wall or von-
Neumann bottleneck is innate to the intrinsic separation of compute
logic and memory in general-purpose cores that results in bandwidth
limitations and increased energy consumption for the data transfers
from and to the processing units [48], [49]. Whereas traditionally,
the terms were used to symbolize the challenges of matching of-chip
memory bandwidth with CPUs, the problem is deeper-rooted and
fundamental to any form of data processing that separates information
storage and processing [50]. With the increasing difficulty to gain
grounds in terms of throughput and energy efficiency by means of
technological advantage, one way to address this challenge is to
depart from classical von-Neumann compute architectures and move
computation closer to the memory or actually within the memory
structures themselves, an architectural paradigm commonly denoted
as in-memory computing. Yet, the term in-memory loosely denotes
various degrees of data-compute proximity.

A very subtle form of increasing data-compute proximity is to
have conventional instruction driven compute units operate on more
than one data at a time, a class of computer architectures commonly
labelled as single instruction multiple data (SIMD) [51]. I.e. the
compute core has more internal, i.e. closer memory to operate on
and processes several data items at a time. Vector processors are
one subcategory of SIMD architectures that have recently experienced
a reemergence of interest not only in the HPC domain for neural
network training but also for more energy-constrained applications. For
example ARM introduced the latest Armv9 instruction-set architecture
(ISA) together with the second generation of their Scalable Vector
Extension (SVE)[52] which finds application in e.g. their Neoverse N2
platform targeting edge learning applications but is also powering the
currently second-most powerful supercomputer fugaku[53]–[55]. Also,
the open-source RISC-V ISA is currently in the process of ratifying
the new “V-extension”, an ISA extension for vector processing which
has already found adoption in open-source hardware research efforts
like ARA and SPATZ [56]–[59].

An even closer interweaving of memory and compute fabric is
achieved in so-called systolic-arrays, a computing architecture where
data flows organically through an array of compute units. The units
are spatially organized in a regular pattern and process data much like
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a two- or multi-dimensional pipeline architecture; each processing unit
contains internal memory and accepts inputs from its direct neighbours,
updating its internal state and forwarding the results or input data
to its neighbours. Systolic arrays can be extremely performant, as
becomes evident when looking at commercial incarnations for ML
workloads like e.g. Google’s Tensor Processing Unit (TPU) [60], [61].
E.g. Wang et al. found that the Google TPU platform achieves
throughput increases between 3×and 6.8×depending on the benchmark
network when compared to the NVIDIA T100 GPU platform, an
example of a vector processor architecture. Also, the platform achieves
a 2.2×improvement in FPU utilization on average, a loose indicator of
energy efficiency[62]. However, Systolic Arrays require an extremely
regular data flow and not all algorithms can be mapped efficiently
to a particular systolic array architecture.

While vector processors aim to increase the memory-to-compute
proximity, their approach of interweaving small storage elements with
compute logic is quite detrimental to area efficiency and cost. A
completely different approach is to enhance a memory circuit with
computing capabilities. Thus one form of in-memory computing that
is currently in research focus is computational memories that execute
GEMM kernels and other multiply-accumulate dominated operations
directly on the bit lines. Figure 1.3 illustrates the concept; a classical
volatile memory structure like static random access memory (SRAM)
or dynamic random access memory (DRAM) is complemented with
enhanced read-out and word-line activation circuitry to activate several
memory rows at once and perform analog accumulation by means
of Kirchhoff’s current law [63] or in a bit serial manner3. In this
particular case, the SRAM macro is able to compute a vector matrix
multiplication in a single read operation in the analog domain. However,
sticking to traditional 6T-SRAM bit cell architecture (as illustrated in
figure 1.4) to maintain area efficiency comes with several key-challenges:

a) Even more so than in the regular memory-only mode of
SRAM operation, dealing with the read-upset issue, i.e. the
accidental overwrite of the bit-cell content during the read-
process, becomes a major concern that mostly demands for

3See section 1.4.3 for a more detailed summary on the different realizations of
computational memories.



18 CHAPTER 1. INTRODUCTION

the use of more complex bit-cell architectures.
b) Although the vector x can be represented with multi-bit

precision, e.g. using pulse-width or pulse-count modulation,
the matrix weights are essentially still single-bit. This can be
dealt with by combining multiple bit-cells with logarithmically
scaled pulse widths or by combining analog accumulation with
sequential digital accumulation in a bit-serial manner.

An alternative approach to SRAM-based in-memory computing
is thus to use novel non-volatile memory technology (as introduced
in section 1.4.2) that is able to represent multiple bits in a single
storage cell. However, these technologies come with their own share of
problematic aspects in the form of noise and device reliability concerns.

1.4.2 Memory Technology
Not entirely orthogonal to the closeness of compute fabric and memory
is the consideration of an architecture’s memory technology. Even
summarizing the entire technology stack around storage technology
is completely out of the scope of this overview section. We thus limit
ourselves to on-chip memory technologies only. Yet still, there are a
plethora of different alternatives, each with its own strengths and
weaknesses;

The memory technology landscape can be taxonomized into a
number of different categories. However, the distinction between non-
volatile and volatile memory technologies has the strongest implications
for edge-compute node systems. Non-volatile memories (NVMs) have
the fundamental, eponymous advantage of not requiring constant
energy to “remember” their stored data. A characteristic that is of
utmost importance for duty cycling and idle power considerations.

Volatile On-Chip Memory

SRAM The most common density-oriented on-chip memory technol-
ogy belonging to the volatile category is SRAM. SRAM memories
come in many different shapes and forms. Still, most SRAM
macros used today are based on 6-T bit cells organized in a
bit-cell array with horizontally shared word lines and vertically
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shared differential bit lines, as indicated in figure 1.4. A row
decoder is responsible for selecting the word of interest within
the memory, enabling access transistors to propagate the voltage
differential stored in the 4T feedback look onto the bit lines.
Finally, a sense amplifier amplifies this voltage differential and
measures its polarity to determine the stored binary value.
SRAM are readily available in almost any CMOS technology node
in the form of memory macro generators that generate memories
of the desired word width and word count. SRAM is highly
optimized towards memory density, usually even benefiting from
pushed foundry geometry rules due to their extremely regular
structure.

eDRAM Another volatile on-chip memory technology that pushes
even further with respect to the area efficiency metric is embedded
dynamic random access memory (eDRAM). eDRAM applies
traditional DRAM working principles to reduce the bit cell area
by storing the value in a capacitor as opposed to a 4-T feedback
loop. Yet, in contrast to conventional DRAM, the much smaller
capacitor in eDRAM is manufacturable in regular digital CMOS
technology. The most significant challenge of eDRAM is the need
to counteract the loss of information due to the leakage-induced
discharge of the bit cell capacitor. This results in the need for
regular refresh cycles whose impact on energy efficiency and
availability increases exponentially with respect to temperature
due to an increase in leakage current [64], [65].

SCM The final volatile on-chip memory style we want to highlight
are so-called standard cell memories (SCMs). As the name
implies, they consist of sequential cells from normal standard
cell libraries and can be synthesized in regular digital design flow
tightly interwoven with the digital compute logic. SCMs excel in
flexibility by supporting very unbalanced memory aspect ratios
and maintain their area density even if scaled to very granular
small-sized memory macros, a characteristic SRAMs struggle
a lot more with[66]. Besides their inherent two-port access
characteristic, which is quite beneficial for many accelerator
architectures, SCM allow for more aggressive voltage scaling than
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traditional SRAM macros [66]. I.e. Andersson et al. have shown
that below capacities of 16 KiB SCM are highly competitive
even in area density compared to specialized sub-Vth designs
due to their fundamental area penalty for the sense-amplifier[67].
Techniques to achieve this competitive memory density involve
the usage of latch-based memory architectures with clock gate
controlled write-access logic, as illustrated in figure 1.5, and
controlled regular cell placement techniques during the physical
design flow as outlined by Teman et al. [68].

Non-Volatile On-Chip Memory

Even broader than the volatile memory landscape are the choices
for non-volatile on-chip memory. Figure 1.6 illustrates a selection of
the most important technologies for near- and in-memory computing
applications. In this subsection, we will briefly introduce their working
principles and their respective strengths and weaknesses.

Flash One of the most common non-volatile memory technology is
flash. The traditional working principle of flash memory is
modulating the threshold voltage in a floating-gate metal-oxide-
semiconductor field-effect transistor (MOSFET) by injecting or
removing electrons on an electrically isolated gate sandwiched
between the control gate and the channel. The charge is
deposited or removed via hot-electron injection, Fowler-Nordheim
tunnelling or hot-hole injection. Traditionally, the floating
gate was manufactured using conductive polysilicon material.
However, more recent flash memories replaced the conductive
floating gate with a thin layer of electrically insulating material
like nitride. This so-called charge-trap flash bit cell architecture
displays superior write-erase cycle endurance and allows for
very area-efficient vertical integration in so-called 3D-V-NAND
memories. During read-operation, the difference in trapped
charge-dependent threshold voltage is measured and converted
to a single (single-level cell (SLC)) or even multiple bits (multi-
level cell (MLC) )[69]. Due to the insulation of the floating
gate/nitride layer, the electrical charge stays trapped for many
years, which makes flash a non-volatile memory technology.
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Flash memory technology is very mature and widely used
in industry in two major flavours; NAND-flash is used for
high-capacity/density applications due to its amenability for
cost-effective 3D integration [70]. It features high sequential
read/write bandwidth and currently is the most widely adopted
technology for high-capacity memories like solid-state drives
(SSDs)[71], [72]. NOR-flash, on the other hand, requires larger
bit cells but exhibits, in comparison to NAND-flash, much higher
random access read throughput, which makes it the predominant
technology for embedded NVMs in microcontroller units (MCUs)
for direct code execution of device firmware [73]. Besides the
usage for data storage only, there are also numerous research
projects to use flash memory as a computational memory [63],
[74]–[78]. E.g. Guo et al. propose an embedded NOR-flash
based neuromorphic classification circuit and Bavandpour et al.
even leverage commercial 3D-NAND flash in their 3D-aCortex
architecture for highly integrated inference acceleration. However,
especially embedded NOR-flash faces numerous challenges in
keeping up with the pace of CMOS technology scaling. At nodes
below 28nm, flash memory becomes extremely costly to fabricate
[79], and novel, non-charge-deposit-based technologies seem to
be the future of embedded NVM[71], [80].

MRAM As an emerging alternative to flash memory for embed-
ded NVM at advanced process nodes, spin-transfer-torque
magnetoresistive RAM (STT-MRAM) and recently spin-orbit-
torque magnetoresistive RAM (SOT-MRAM) promise superior
geometry-size and improved write speed that rivals SRAM. The
basis of magnetoresistive random access memory (MRAM) is
to store information as magnetic polarization in a so-called
magnetic tunnel junction (mtj), a device consisting of two
ferromagnetic layers separated by an electrical insulator. During
write operations, the magnetic polarization of one of the
layers is altered by driving either a positive or negative write
current through the layers. For read operations, the tunnel
magnetoresistance (TMR) effect is leveraged which causes a
difference in read current depending on the polar or anti-polar
magnetization of the two layers [81], [82]. MRAM are used
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widely for embedded memories at advanced process nodes and
are sometimes even used as a direct non-volatile alternative to
on-chip SRAM[83]–[85]. Like flash, MRAM-based computational
memories are explored in various technology nodes and, due
to their superior scalability, would allow interleaving of NVM
and computation circuitry on the same die even below the 22nm
node[86]. But in contrast to flash, STT-MRAM traditionally only
allows for one bit per storage cell, which makes this technology
less suitable for multi-bit computations in the analog domain.
Furthermore, MRAM faces severe retention issues at elevated
temperatures, which makes the adoption in mission-critical
devices, e.g. in the automotive industry or for reflow soldering of
pre-programmed devices, a challenge[71], [82] albeit there have
been promising technological advances on that aspect with e.g.
Gallagher et al. presenting an STT-MRAM at a 22nm technology
node capable of 10+ years of data retention at 150 °C[87].

PCM Even more temperature sensitive is another type of emerging
non-volatile memory called phase-change memory (PCM). Its
working principle actually relies on very localized temperature
changes to modify the resistivity of chalcogenide glass by
switching between its crystalline and amorphous state [82], [88],
[89]. In contrast to MRAM, PCM natively supports multi-
bit storage using iterative programming and with projected
cell topologies as introduced by Koelmans et al. to counteract
strong drift, PCM has become a prime candidate for NVM-
based neuromorphic computing[91]. However, besides the
aforementioned averse temperature characteristics, the high
programming current needed for resetting and the vastly
asymmetric SET-RESET current-to-resistance characteristic
makes it challenging to leverage PCM for online learning
applications[63]. PCM has been commercialized more than a
decade ago for embedded NVM applications and lately found
adoption in the mass storage market in a 3D-integrated variant
from Intel and Micron called 3D XPoint available under the brand
Optane Memory [92]. However, with Intel only recently shutting
down its Optane product line, the future of the technology, at
least in the mass-storage market, is uncertain [93].
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ReRAM Another memristor based memory technology is resistive
random-access memory (ReRAM) sometimes also abbreviated
with RRAM. In this technology, information is once again stored
in the form of electrical resistance of a two-terminal device. By
applying electrical pulses to the originally insulating resistive
layer, low-resistance paths, so-called conductive filaments (CFs),
are formed. The exact mechanism of CF formation and charge
transport depends a lot on the particular material used as the
insulating layer. One of the most popular and widely used
materials for ReRAM based memories is hafnia (HfO2), a high-k
dielectric that already finds common use as a gate dielectric
in the CMOS front-end-of-line (FEOL). HfO2-based ReRAM
is highly scalable down to the minimum metal feature size
and very well compatible with existing CMOS back-end-of-line
(BEOL) [88], [94]. Like PCM, the adoption of ReRAM for
storage class memory at this time is wavering due to the largely
improved scalability of charge-based 3D flash NAND memory
[88]. Yet due to the excellent CMOS-compatibility and its high
resolution of programmable resistance values, numerous ReRAM-
based computational crossbars can be found in literature[95]–[99].
Although ReRAM requires way smaller write currents and is less
susceptible to drift than PCM, ReRAM devices suffer from large
device-to-device variability and random-telegraph noise [100],
[101] which requires noise-aware training and network modelling
strategies [102].

1.4.3 Physical Data Representation
The key characteristic of the digital era is the representation of
information in the digital domain. This style of data representation
for storage and computation maps information to a discrete value
range and is predominantly implemented using binary logic. Today’s
implementation landscape of digital logic realization is less convoluted
than it used to be a couple of years ago; the predominant logic style used
in modern Integrated Circuits (ICs) is once again static-CMOS after a
transient shift towards dynamic-CMOS variants like domino logic or
differential cascode voltage switch logic (DVCSL) [103]. Nevertheless,
there is a growing interest in non-digital compute styles. This interest is
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mostly driven by the high demand for extremely-regular, linear algebra-
dominated computing in matrix-matrix multiplication dominated AI
training and inference applications since they map well to crossbar-
style analog compute fabrics. The idea of performing computation in
the analog domain is not new at all, and the first electrical analog
computers date back to the 1930s [104]. However, its challenges in the
form of non-linearity and scalability issues due to signal-to-noise ratio
(SNR) decrease remain. The basis for most modern forms of analog-
computing crossbars is to perform summation in the analog domain
using either Kirchhoff’s current law or capacitive charge accumulation
and/or to use Ohm’s voltage law for multiplication.

For the context of analog, NVM-based AI acceleration Xiao et al.
provides a very comprehensive overview [63]; The weights are mostly
encoded in the memory as analog resistance values, a digital multi-bit
value or mixture of the two. The activations, on the other hand,
can be encoded as voltage amplitude in the time domain using pulse-
width encoding, using pulse-count modulation or bit-sequentially in the
digital domain. Multiplication of activations with the weights happens
implicitly by applying the encoded activations to the crossbar as
indicated in figure 1.7. The resulting sum of currents on the crossbar’s
column lines is then converted to a voltage by means of either a trans-
impedance amplifier or a capacitor acting as a charge integrator before
it is converted back into the digital domain using an ADC. In the
case of bit-serial activation encodings, the required sequential shift
and accumulation can be implemented digitally using shift registers
and digital accumulators or in the analog domain using switched
capacitance network to perform divide-by-two operations by means of
charge sharing between powers-of-two-sized capacitors. Although the
computation in the analog domain can be very efficient, the conversion
between the digital and analog domains is very costly. In fact, the
overall energy consumption in analog in-memory compute crossbars is
dominated by the ADCs [63], [105]. The choice of ADC is thus crucial
for the overall performance in the throughput, latency and energy
efficiency objective. Flash-ADCs have the benefit that they are fast
enough to allow time-multiplexed operation, sharing one flash-ADC
among multiple column lines, but they become prohibitively expensive
for higher bit widths which limit the scalability of the crossbar’s vertical
dimension due to the limited output activation resolution. Delta-sigma
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ADCs, on the other hand, provide very high resolution at the cost of
speed, which limits their usage in time-multiplexed architectures, while
the slightly faster successive-approximation-register (SAR)-ADCs are
fairly large. A popular pattern for crossbars to balance throughput and
energy/area cost is thus to use ramp ADCs, which is also illustrated
in figure 1.7. A single ramp generator provides a voltage ramp to
one comparator per crossbar column. A digital counter per column
then counts the number of cycles it takes for the voltage ramp to
exceed the latched column voltages, thus digitizing it. This approach
scales linearly with the number of columns, but exponentially with
the required bit-resolution, i.e. for many rows, the approach can
become rather slow.

1.4.4 Dataflow/Compute Coordination Paradigms
The final design space dimension we want to highlight is the
various paradigms on coordinating dataflow and computing within a
system. This aspect is sometimes denoted as the systems’ clocking
discipline[106]. The most predominantly used form of compute
coordination is clock synchronous edge-triggered clocking. In such a
system, one or several central clock sources coordinate the individual
processing steps and data exchange in discrete time units, the clock
period. Computation and data exchange is triggered only by the
clock signal’s rising- and/or falling edge. The resulting combinational
propagation of signal changes is constrained to settle within one clock
period not to cause any setup violations. This processing scheme is
very well supported by modern EDA tools. Given a set of reasonable
timing constraints, so-called static timing analyzers built into the
various frontend and backend tools can automatically synthesize, place
and route a design to comply with the constraints. However, clock
synchronous design also has its demerits:

• The clock period of the design always has to adapt to the most
critical, that is, the longest/slowest combinational path within
the system. This limits the performance of less critical parts of
the system that theoretically could operate at a higher frequency.
This aspect impacts the throughput and energy efficiency because,
for a given operating voltage, a circuit always operates most
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energy efficiently at its maximum frequency.

• Since the clock signal has to reach all sequential elements within
the circuit with as little as possible skew, the clock distribution
is usually handled by a high-fanout network, the so-called clock-
tree 4. The clock tree, usually synthesized by a dedicated clock
tree synthesizer, aims to balance the arrival time of the rising
edges between its leave nodes, the sequential cells, by inserting
buffers in a tree-like fashion. However, this balancing comes at a
significant cost; since the clock signal has to toggle twice in every
period regardless of the circuit’s current activity, it consumes a
very large amount of power. Although there are techniques to
reduce the clock-tree activity like fine-grained and coarse-grained
clock gating, it still is not uncommon for the clock tree to be
responsible for more than 40% of the overall power consumption
[107], [108].

For larger, scaled-out SoCs where the on-chip wire delays start
to exceed the clock period, the first point can become the limiting
factor for performance. Another point on our compute coordination
paradigm axis is thus to compute clock-synchronously at the local scale
but exchange data asynchronously between larger subblocks of the
system. In this approach, also known as globally-asynchronous locally-
synchronous (GALS), each subblock forms its own clock-domain with
clock synchronous intra-block data exchange. At the macroscopic level
however, data needs to be exchanged using clock-domain-crossing safe
strategies like handshaking or dual-clock FIFOs which incurs overhead
in terms of latency, area and energy [109], [110].

If we move even further away from fully synchronous designs, we
get to the realm of asynchronous event-driven computing. In purely
asynchronous systems, the circuit is designed to be robust under certain
delay assumptions, like the commonly used quasi-delay insensitivity
(QDI). This is achieved by introducing various forms of handshaking
between isochronous circuit islands in the QDI system and the encoding
of data validity within the data itself (e.g. by using differential signal

4There are alternative clock distribution schemes like the clock-mesh strategy.
They share the same issues regarding high power consumption and difficulties in
distributing the clock across larger spatial distances.
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lines, invalid data is detected on the equality of both lines). The selling
point of asynchronous computing is its built-in adaptability to process
variations, its characteristic that the throughput naturally adapts to
the maximum circuit speed achievable for a given subblock and that it
consumes no dynamic power in the absence of data to process, hence the
name event-driven computing. However, enforcing proper sequencing of
the handshaking protocols involves heavy usage of non-standard circuits
like muller-c elements [111] and sometimes even resorting to the use of
dynamic logic in asynchronous pipeline primitives like the commonly
used precharged half-buffer (PCHB). Providing an introduction on
asynchronous computing principles is outside the scope of this thesis,
and we refer the reader to the works from Martin and Nystrom for a
good introduction to the topic [112], [113]. After all, asynchronous
computing is not at all a new computing paradigm. The first computer
based on asynchronous circuitry (ILLIAC) dates back more than 70
years, and complete asynchronous processors like the MiniMIPS [114]
have been around for quite a while. But so far, the reasons mentioned
above, coupled with very limited EDA tool support, have pushed
asynchronous computing to lead a niche existence. However, recently
asynchronous computing has been rediscovered for GALS-networks-on-
chp (NoCs) [115], [116] and neuromorphic computing systems like Intels
Loihi and Loihi2 [117], [118] platform or IBMs TrueNorth neuromorphic
chip [119] developed as part of DARPAs SyNAPSE program [120].
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1.5 Outline

As should have become clear with the introduction sections so far,
the design space for energy-efficient systems is extremely vast and
impossible to cover in its entirety with due diligence. For the remainder
of this thesis, we thus disregard two out of the four defined design
space dimensions and limit ourselves to research on energy-efficient
digital circuits with mostly clock synchronous dataflow. Figure 1.8
illustrates the thesis outline; it is structured into three main parts:

Chapter 1

Motivation
Background on ULP Design 

Chapter 2
Algorithms 

for 
Smart Sensing

Theoretical Background

Main Contributions

Chapter 3

Energy-Efficient 
Circuits

Chapter 4

ULP Sensing Systems

Chapter 5
Summary

and
Conclusion

provides algorithmic
background

outlines ULP
HW design space

introdcuces
novel building blocks
for system integration

summarize

Figure 1.8 – Thesis structure and dependencies between chapters

Chapter 2 introduces the reader to the current low-power signal
processing landscape like quantized neural network and the novel
compute paradigm of hyper-dimensional computing with an
emphasis on the latter.

Chapter 3 In Chapter 3, we shift the focus from applications and
algorithms to their physical implementation in the form of energy-
efficient circuits. We introduce some novel elementary building
blocks for energy efficient HDC, before we shift focus to the
next higher hierarchical level by presenting Hypnos, a highly
efficient hardware accelerator for HDC, along with some first
silicon results of the aforementioned circuitry as part of the
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Rosetta prototype chip. Furthermore, we present lightweight data
preprocessing units for energy-proportional wake-up circuitry.

Chapter 4 presents two SoC designs taped out in GF 22nm and
TSMC 16nm that reuse the concepts and circuitry introduced in
Chapter 3. This chapter focuses on the system-level architecture
for dataflow bandwidth management, dataflow orchestration and
the software development paradigm within those systems.

Chapter 5 concludes the thesis with a summary of our findings,
drawing conclusions and providing the author’s perspective on
the future challenges and potential developments towards ever
more energy-efficient circuitry at the edge.
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1.6 Contributions

The contributions of this thesis within the scope of open-hardware
energy-efficient circuit design are summarized in figure 1.9. For the sake
of completeness, a quick summary of all contributions is provided below:

Algorithm 
Development

HDC Based Anomaly 
Detection

1

Circuits
Design

Energy Efficient HW
Implementations of HDC

2

Programmable 
IO Interface for 
Wake-Up Circuits

3

Hypnos HDC Accelerator4

SoC Design,
IP Integration & Evaluation

Tightly-Coupled NVM
Subsystem5

Vega IoT�SoC 
in GF 22nm

6

Siracusa AI�SoC 
in TSMC 16nm

7

Figure 1.9 – Summary of this thesis’ contributions categorized by topic.

1. Design and feasibility analysis of a novel HDC based algorithm
for ball bearing anomaly detection. (Section 3.4.6)

2. Design and Verification of energy-efficient circuits for HDC
operators. (Section 3.3)

3. Development of a lightweight SPI-based sensor data pre-
processing unit with micro-codeable transaction flow and
configurable multi-channel filter pipelines. (Section 3.6)

4. Design and silicon realization of Hypnos, an all-digital SCM
based hyperdimensional computing accelerator taped-out in
TSMC 65nm. (Section 3.4)

5. Integration of an energy-proportional smart wake-up pipeline
in Vega an ULP IoT SoC taped out in 22 nm technology.
(Section 4.2)

6. Development and Verification of an energy-efficient hybrid
memory interconnect for digital hardware accelerators with
support for hardware-assisted software-managed virtual
memory. (Section 4.3.2)

7. Design, verification and implementation of Siracusa, a 16 nm
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finFET heterogenous smart sensing SoC with an MRAM
NVM-based first-level weight memory subsystem coupled with
an ultra-low-latency high bandwidth interconnect. (Section
4.3)

While the topics covered in chapter 1 and 2 are the sole work of
myself, the SoC architectures introduced in chapters 3 and 4 are a
joint effort of many people. Thus unless I was the only contributor
to the material covered in a section, I declare the exact degree of my
own involvement in each relevant section’s introduction.

1.6.1 List of Publications
The results and findings of this thesis have been published in a number
of peer-reviewed publications. The following publications cover the
above-specified key-contributions:
[121] M. Eggimann, A. Rahimi, L. Benini, “A 5 µW Standard

Cell Memory-based Configurable Hyperdimensional Computing
Accelerator for Always-on Smart Sensing”, IEEE Trans.
Circuits and Systems I: Regular Papers (TCAS I), 2021.

[64] O. Harel, E. Casarrubias, M. Eggimann, F. Gurkaynak, L.
Benini, “64-kB 65-nm GC-eDRAM With Half-Select Support
and Parallel Refresh Technique”, IEEE Solid-State Circuits
Letters (SSC-L), 2022.

[122] D. Rossi, F. Conti, M. Eggimann, S. Mach, A. Di Mauro, M.
Guermandi, G. Tagliavini, A. Pullini, I. Loi, E. Flammand, L.
Benini, “A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core
SoC for IoT End-Nodes with 1.7µW Cognitive Wake-Up From
MRAM-Based State-Retentive Sleep Mode”, in Proc. IEEE
ISSCC, 2021.

[84] D. Rossi, F. Conti, M. Eggimann, S. Mach, A. Di Mauro, M.
Guermandi, G. Tagliavini, A. Pullini, I. Loi, E. Flammand,
L. Benini, “Vega: A Ten-Core SoC for IoT Endnodes With
DNN Acceleration and Cognitive Wake-Up From MRAM-
Based State-Retentive Sleep Mode”, IEEE Journal of Solid
State Circuits (JSSC), 2022.

The following publications are not directly included in the
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thesis because they were outside the focus of this thesis research
topic or because the contributions were limited to smaller technical
contributions, ideas or project advisory.

[123] M. Eggimann, S. Mach, M. Magno, L. Benini, “A RISC-
V Based Open Hardware Platform for Always-On Wearable
Smart Sensing”, in Proc. IEEE IWASI, 2019. Best Paper
Award

[124] F. Conti, D. Rossi, G. Paulin, A. Garofalo, A. Di Mauro, G.
Rutishauser, G. Ottavi, M. Eggimann, H. Okuhara, V. Huard,
O. Montfort, L. Jure, N. Exibard, P. Gouedo, M. Louvat,
E. Botte, L. Benini, “A 12.4TOPS/W @ 136GOPS AI-IoT
System-on-Chip with 16 RISC-V, 2-to-8b Precision-Scalable
DNN Acceleration and 30%-Boost Adaptive Body Biasing”,
in Proc. IEEE ISSCC, 2023.

[125] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, L.
Benini, “TinyRadarNN: Combining Spatial and Temporal
Convolutional Neural Networks for Embedded Gesture Recog-
nition With Short Range Radars”, IEEE Internet of Things
Journal (IoT-J), 2021.

[126] M. Osta, A. Ibrahim, M. Magno, M. Eggimann, A. Pullini, P.
Gastaldo, M. Valle, “An Energy Efficient System for Touch
Modality Classification in Electronic Skin Applications”, in
Proc. IEEE ISCAS, 2019.

[127] X. Wang, L. Cavigelli, M. Eggimann, M. Magno, L. Benini,
“HR-SAR-Net: A Deep Neural Network for Urban Scene
Segmentation from High-Resolution SAR Data”, in Proc.
IEEE SAS, 2020.

[128] M. Magno, X. Wang, M. Eggimann, L. Cavigelli, L. Benini,
“InfiniWolf: Energy Efficient Smart Bracelet for Edge
Computing with Dual Source Energy Harvesting”, in Proc.
IEEE DATE, 2020.

[129] M. Eggimann, J. Erb, P. Mayer, M. Magno, L. Benini, “Low
Power Embedded Gesture Recognition Using Novel Short-
Range Radar Sensors”, in Proc. IEEE SENSORS, 2019.

[130] K. Dheman, P. Mayer, M. Eggimann, S. Schuerle, M
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Magno, “ImpediSense:A Long Lasting Wireless Wearable
Bio-Impedance Sensor Node”, Sustainable Computing:
Informatics and Systems Journal, 2021.

[131] M. Eggimann, C. Gloor, L. Cavigelli, M. Schaffner, A. Smolic,
L. Benini, “Hydra: An Accelerator for Real-Time Edge-Aware
Permeability Filtering in 65nm CMOS”, in Proc. IEEE
ISCAS, 2018.
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“Towards Artefact-Free Bio-Impedance Measurements: Evalu-
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Frequencies”, IEEE Sensors Journal, 2022.



Chapter 2

Hardware friendly Algorithms
for Smart Sensing
Applications

2.1 Introduction

Having introduced the design space of ULP architectures, this chapter
focuses on the algorithm domain of smart sensing systems. After
all, optimal energy efficiency is not achieved with general-purpose
compute cores designed oblivious to the workload, but it rather is
a matter of hardware-software co-optimization. In the light of this
thesis, we exercise the developed circuits and systems with sample
algorithms from the three application domains predictive maintenance,
smart-prostetics and augmented reality applications. Like most edge
computing applications, all of these workloads heavily rely on machine
learning algorithms which in many domains replaced traditional signal
processing algorithms based on expert knowledge models. Using
machine learning even on energy-constrained embedded devices, an

39
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approach often summarized under the term TinyML, has become an
extremely effective general-purpose design pattern for all sorts of signal
processing tasks [133]. Ultimately, all signal processing problems can
be expressed as the task of letting a system execute a particular, most
often non-linear mapping that, given some form of input data, so-
called features in ML jargon, yields the desired output. E.g. being
presented with human speech in the form of audio waves captured by a
microphone produce the spoken words in text form corresponding to it.
For applications like flight controllers for drones where the interaction
between input and the desired output is well understood, this function
can be expressed in terms of e.g. physics formulas based on our
modelling approach to nature itself (in this case, classic control system
theory). For other problems like the speech recognition example above,
the mechanism of these interactions are either not obvious or very hard
to express explicitly in a hand-crafted algorithm. What now contrasts
machine learning methods from traditional experts-knowledge-based
systems is that instead of encoding the non-linear function ourselves
directly in the form of an algorithm custom-tailored to the problem,
we let a machine learn the function by itself. All machine learning
algorithms thus have in common that they aim to approximately
represent arbitrary high-dimensional non-linear functions in the form
of an algorithmic template that contains tunable components in the
widest sense to steer the template towards the desired function. Where
the various ML frameworks differ is in the algorithmic template they
use as the basis to represent the non-linear target function and in
the mechanism of how the template ”tuneables” are derived by the
machine. We thus start this chapter with a brief introduction to
two ML frameworks in the TinyML software ecosystem that will play
a role in the remainder of this thesis. These are Quantized Neural
Networks and Hyperdimensional Computing, with a strong emphasis
on the latter since many of the circuits introduced in chapter 3 will
rely on the fundamental concepts of HDC.
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2.2 Quantized Neural Networks

The majority of machine learning algorithms deployed on ULP edge
devices fall under the quite general category of quantized neural
networks (QNNs). In this section, we aim to provide a birdseye
view on the topic to put this approach into context with competing
ML paradigms. Given the vastness and pace of research in this domain,
an in-depth introduction to the topic is entirely outside the scope of
this thesis. For a more thorough introduction to neural networks, we
warmly refer to the overview article published in nature by LeCun et al.
[134], the books Deep Learning [135], Python Machine Learning [136]
and Probabilistic Machine Learning [137] for a deep-dive into the topic.

With this disclaimer aside, let us jump onto the main subject; to
understand how QNNs works, we first have to introduce the working
principles of Neural Networks (NNs) in general.

X0

X1

X2

X3

�W
00

�W
01

�W
02

�
W

03

�W10

�W
11

�
W

12
�

W
13

�
W

14

�W
20

�W21

�W
22

�W
23

�
W

24

y00

y10

y01

y02

y03

y04

y10

y11

y12

y13

y14

Pclass0

Pclass1

Pclass2

Pclass3

Pclass4

Input Layer Hidden Layer Output Layer
Convert to probability 

density function 
using softmax

Figure 2.1 – Working principle of neural networks illustrated on a multi-layer
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A neural network is an algorithm often visualized in the form of
a compute graph as depicted in figure 2.1. In such a compute graph,
the inputs, usually called the features or activations, pass through the
compute graph forward (here from left to right) to finally produce the
desired output value. The basic building block in this compute graph
is the neuron, a function unit that multiplies each of its inputs x with
an input specific weight w (illustrated as edge labels), adds a scalar
bias value b to it and passes this sum of the weighted inputs through
a non-linear function σ. These neurons, inspired in their working
principle by the human brain, are usually structured in several layers
of neurons that process the preceding layer’s outputs to produce the
inputs of the following layer. The operation of weighted summation of
inputs, basically a dot-product between the input vector and a weight
vector, can be expressed as a single vector-matrix multiplication to
represent an entire layer 1:

Ŷ = σ(W T X + B) (2.1)

If we now stack many of these layers to approximate more
complicated target mappings, we arrive at what is called a DNN.
Of course, any linear combination of inputs, regardless of the used
weights and the degree of layer stacking, can ultimately only lead
to a linear function. This is where the aforementioned non-linear
function σ of the neuron output, the activation function of the neuron
itself, comes into the picture. Its purpose is to remove the linearity
of the system at the layer boundary, which allows the NN to act as
a universal function approximator [138]. There are many options of
activation functions to choose from, and the choice influences the
learning performance, the computational cost of inference as well as
numerical stability [139], [140]. In practice, however, most network
architectures settle for variants derived from the so-called Rectified
Linear Unit (ReLU) function defined as follows:

σReLU (x) =
{︄

x if x >= 0
0 else

(2.2)

1If we consider 1D inputs. For multiple input dimensions, the concept extends
to the multiplication of multiple weight tensors with activation tensors, so-called
feature maps.
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The structure of the NN, the choice of activation function, loss function
and other parameters affecting the network topology, also known as
the hyperparameters, are chosen at the beginning of the training
process, either by an experienced human or by dedicated network
architecture search (NAS) algorithms. On the other hand, the weights
are learned during the network training phase, where the initially
random neuron weights are modified iteratively to approximate the
desired mapping. The training process can be thought of as a multi-
dimensional optimization problem where the aim is to minimize some
form of a loss function derived from intrinsic2 or extrinsic 3 feedback.
During a training epoch, a mini-batch of sample inputs B is passed
forward through the network, and for each sample i in the batch the
resulting, initially very high, loss Qi(W ) is calculated. In a second
step, the network is traversed backwards to calculate the loss average4

function gradient ∇QB(W ) at each layer (leveraging the chain rule).
I.e. we calculate the vector towards the closest local minimum of the
loss function. Finally, the weights are updated by moving one step
along the gradient’s direction with (dynamic) stepsize η(k):

Wk+1 = Wk − η(k) · ∇QB(Wk) (2.3)
This process, known as mini-batch gradient descent, an improved

variant of the traditional gradient descent algorithm, is repeated in
each epoch using a different minibatch B until the network’s accuracy
converges. The result is a trained model that can be used for inference
on previously unseen input. The number of epochs required for
convergence depends largely on the learning rate η(k) but is also
a function of many other parameters. A standard technique to reduce
the training time is batch-normalization, a technique to mitigate the
so-called internal covariate shift of the network. Internal covariate
shift describes the effect of ever-changing statistical distributions of
the feature maps between the layers during the training process, which
forces the following layers to adapt constantly. Batch normalization
counteracts this effect by inserting an additional normalization step

2In the case of self-supervised training like e.g.generative adversarial networks
(GANs) [141]

3Usually in the form of a training set of correct sample-label pairs for supervised
learning scenarios.

4Averaged over the samples of the batch
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between each layer; For every mini-batch of training data, the output
feature maps of a layer are normalized to zero mean and standard
deviation of 1 followed by a linear transformation with the per-layer
learned scaling vector γ and offset vector β [142].

The illustrated network in figure 2.1, a so-called “multilayer
perceptron” consists only of fully-connected layers; that is, every
neuron is connected to every neuron output of its preceding layer.
Especially in the image processing domain, a very successful alternative
to fully connected layers is the use of convolutional kernels. Instead of
multiplying the feature maps with weight tensors, we fold the feature
maps with sets of convolutional kernels. These convolutional layers
are combined with dimensionality reducing pooling layers5 to form a
convolutional neural network (CNN). The combination of convolutional
and pooling layers significantly reduces the network size and makes
CNN robust towards spatial translation and scaling of the inputs, an
important characteristic for e.g. object detection tasks.

Besides CNNs, there are many other flavours of Neural Networks
with different network topologies. Some NN topology variants aim to
improve the network’s ability to learn in general 6 like skip-connections
in residual neural networks (ResNets) while other variants are custom
tailored for certain problem classes, e.g. recurrent neural network
(RNN), long short-term memory (LSTM) or recently tranformer
networks for natural language processing applications. For a reasonably
up-to-date overview of the various NN topologies, we refer to [143].

Traditionally, NN used to be trained and executed in floating point
representation on general-purpose compute hardware using graphics
processing unit (GPU) accelerated kernels. Yet, to enable deployment
on energy-constrained edge devices, the computational throughput and
memory requirements constraints have to be scaled down by several
orders of magnitude to meet the hardware specifications. Training
a shallower and thus smaller network is an obvious approach for
model size reduction, but this usually implies sacrificing accuracy.
Two commonly used techniques for model reduction that yield way
less drastic decreases in classification accuracy are sparsification and

5These layers combine spatially correlated values in a feature map by keeping
only the average value of the sub-tile (average pooling) or the maximum of all
encountered values (max-pooling) in a tile.

6Counteracting an effect known as vanishing gradients
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quantization. The weights in a neural network exhibit a lot of inherent
sparsity; common techniques to counteract overfitting7, like drop-
out layers and other weight pruning techniques usually result in
60% to 90% of the weights in CNN and fully-connected layers to
be zero. While sparsity can be leveraged rather easily for memory
reduction by using sparsity weight encoding formats, reduction in
compute requirements are harder to obtain since skipping of obsolete
computations usually implies departing from the regular data-flow
NN hardware are designed for [144].

Conversely, Quantization directly translates not only to model
size reduction but also a reduction of the energy cost per operation.
Instead of computing at full floating point precision, the weights and/or
the activations of the network are converted to integer representation
using (usually) a step-wise approximation of linear mapping. The
effect of quantization is significant; A bit-width reduction from 32-bit
to 8-bit representation decreases the memory footprint of the model
by a factor of 4 whereas the computational energy is quadratically
scaled down by a factor of 16 [145] without any significant loss of
accuracy. E.g. Nagel et al. report less than 1% accuracy loss on
common image processing CNNs like MobilenetV2 or ResNet18 [146].
Their quantization technique belongs to the category of post-training
quantization where quantization of full-precision model takes place after
the training procedure. This approach works well with modest degrees
of quantization. But with increasing quantization noise when reducing
the data representation resolution, the network can no longer maintain
the accuracy. The alternative category of quantization technique
is quantization-aware training where quantization noise is already
modelled and introduced during the training process or, alternatively,
the post-quantized network is retrained in order to recover the accuracy
drop [147]. This technique has been demonstrated quite successfully
for very aggressive quantization regimes down to 3-bit ternary or even
binary NNs [145]. Quantization not only finds application for inference
deployment on ULP systems but is also regularly used during network
training. Yet the dynamic range required to ensure numerical stability
of the back-propagation algorithm disqualifies low-resolution integer

7The undesirable effect of a network memorizing the correct answers rather than
actually ”learning the concept”
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computation. While the majority of the networks are still trained
using traditional 32-bit floating point representation the current trend
for AI-training accelerators is to use 16- or even 8-bit floating-point
with various exponent/mantissa partitionings [148]. A famous example
is Google’s TPU SoCs that uses the 16-bit bfloat format [60], [61].



2.3. HYPER-DIMENSIONAL COMPUTING 47

2.3 Hyper-Dimensional Computing

The drastically increased demand for computational throughput at
high energy efficiency led to what we currently call the new golden age
of compute hardware and architecture research. A plethora of novel
circuits has emerged that is situated on a completely different corner of
the efficiency/reliability-pareto curve. As we saw in chapter 1, many of
these technologies trade improved energy efficiency for circuit reliability
and accuracy. Deploying the traditional binary representation compute
paradigm on these kinds of systems faces increasing challenges to keep
up with their inherent error rates. The error resiliency of NN based
algorithms can deal with this inherent noise to some degree. However,
error rates of novel compute hardware like PCM-based in-memory
computing can be orders of magnitude higher than on traditional
systems. Furthermore, NN are not a silver bullet for all kinds of
computation and e.g. struggles to be leveraged for symbolic reasoning
or in the explainability of inference.

So-called vector symbolic architectures (VSAs), are a relatively new
compute paradigm that have promising characteristics well matched
for these emerging technologies [149], [150]; VSA also referred to as
hyper-dimensional computing is a mathematical framework whose key
characteristic is to operate with entities in a very high dimensional
representation space [151]. It is well suited to operate both on symbolic
and numerical data and has very favourable error resiliency properties
making it an ideal candidate for deployment in both highly distributed
computing environments or as the basis for approximate computing
applications. Although the research on VSAs dates back to the 1990s
with the work from Hinton on connectionist network mapping [152],
the approach only recently gained more traction in terms of research
efforts, notably with the work from IBM on PCM based hardware
realization [153]. Today, besides other neuro-inspired systems like
spiking neural networks HDC is listed as one of the most promising
novel compute paradigms for the post-CMOS era in the 2022 IEEE
International Roadmap for Devices and Systems [154].

Given the relevance for the circuits that will be introduced in
chapter 3 this section introduces the concepts and mathematical
foundation of HDC, compares its traits with the traditional digital
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numeric and symbolic representation/computation framework and
aims to instil an intuition about the primitive operations and data
structures of VSAs.

2.3.1 Hollistic Symbol Representation as Hyper
Vectors

At the heart of any computational framework we have:
(a) A mapping of conceptional entities like e.g. numbers or

symbols like characters to patterns represented within a
physical medium,

(b) A set of rules on how to manipulate, combine and interact
with those patterns i.e. algorithms to form new patterns/rep-
resentations like compound data structures.

For example, the conventional digital compute framework maps nu-
merical values to representation formats like binary two’s complement
representation with a fixed number of bits or floating point formats like
the ones defined in IEEE 754 [155]. These patterns are manipulated
using familiar arithmetic and boolean operators to execute algorithms.
Compound data structures are often represented as a collection of
several primitive values where the spatial position in memory has
semantic meaning e.g. consider an array data structure where the
position in memory implies the ordering of values.

VSAs are different in two main aspects illustrated in figure 2.2:
1. The cardinality ratio between symbolic state space and

representation space
2. The spatial concentration of information along the pattern

dimensions
The traditional compute framework for symbolic reasoning and

numeric calculations mostly use low- if not minimal pattern di-
mensionality to represent entities. E.g. the digital patterns for
the representation of numbers like two’s complement or ASCII for
characters use just as many bits as necessary to represent every
possible element of the abstract entity space (numbers or letters).
These patterns are then manipulated using basic arithmetic or logic
operations like addition, multiplication or bitwise operations. VSAs
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instead draw random vectors, so-called item vectors from a very high-
dimensional pattern space to represent a single entity. Commonly
used are vectors between 1000 and 10,000 dimensions. Obviously, this
results in the space of possible patterns being much larger than will
ever be required to represent the possible entities in our compute
framework. Therefore, the cardinality of the representation space in
VSAs is much higher than necessary. This yields some interesting
characteristics as we will see later.

The second aforementioned difference revolves around the sig-
nificance of the individual pattern dimensions for determining the
conceptual entity it represents. An example should make this
characteristic easier to understand; Consider the individual dimensions,
in this case the bits, of numerical values represented in two’s
complement format. In this compute framework the information
is concentrated on the MSBs of the binary pattern. Expressed in a
more abstract way, the similarity of a noisy value representation in the
pattern space (e.g. measured in the hamming distance in this case)
does not translate linearly to the similarity in the symbol space (the
absolute error) and is not independent of the bit position.
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Te

Figure 2.3 – The average relative amplitude error of 32-bit binary two’s
complement values under varying bit error rates.

This aspect of data representation can be quite problematic if
we deal with high bit error rates. Figure 2.3 illustrates the problem.
While the average amplitude error increases linearly with the relative
amplitude error being about one order of magnitude higher than the
corresponding bit error rate, the variance of the experienced errors
is three orders of magnitudes higher and increases with the square
root of the BER. The reason for this large variance of the errors is
the exponentially larger impact if we flip an MSB which results in a
relative error of 100%. This is under i.i.d. bit error distribution which
is a rather conservative assumption. Many technologies exhibit a quite
strong spatial correlation of bit errors due to on-chip variation which
can result in even less favourable error statistics.

HDC on the other hand is much more error resilient. In stark
contrast to traditional value representations HDC uses a holistic,
i.e. dimension independent mapping of information to patterns.
Since entities are mapped to random vectors, no particular bit of
representation has more significance to information content than any
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other bit. Also, the fact that we are dealing with very large dimensions
results in some interesting properties regarding the probability of
similarity and orthogonality in the vector space of a VSA; Given
two HD vectors independently and randomly drawn from the vector
space of dimensionality D, the probability of the two vectors having a
hamming similarity of k follows the binomial distribution which can
be approximated with the normal distribution for large N:

lim
D→∞

P (k) =
(︁

D
k

)︁
2D

= 1√
2π

e
−k2
D/4 (2.4)

0

20

40

60

80

p
d

f

0.0 0.2 0.4 0.6 0.8 1.0
Relative Distance

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

D
10
100
1000
10000

Figure 2.4 – Hamming Distance probability density function (top) and
cumultative probability density function (bottom) for two randomly drawn
vectors of various dimensionalities.

The expected value of their hamming similarity will always be D/2
regardless of D. However, as illustrated in figure 2.4 the probability
of coincidental similarity, in other words, the relative variance of the
similarity decreases with higher dimensions converging towards the
normal distribution following the central limit theorem. E.g. the
probability of two random vectors with D = 10000 having a similarity
deviation from D/2 by only 2%, i.e. a similarity outside the range
of 4800 to 5200 is only 60.5 × 10−6. There are two important effects
of this probability distribution:
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1. We can generate a virtually unlimited amount of quasi-
orthogonal, that is almost orthogonal vectors just by random
sampling of the representation space.

2. Given a noisy version of any item vector, we can recover
the original entity with high probability by looking up the
most similar pristine entity vector in a so-called associative
memory.

There are numerous flavors of VSAs with prominent examples being
the holographic reduced representation (HRR) [156], multiply-add-
permute (MAP) [157], binary spatter code (BSC) [158] or sparse binary
distributed represenation (SBDR) [159]. These cognitive codes mainly
differ in the format used for the individual vector dimensions, the
sparsity of the vector entries, the distance metric used to asses pattern
similarity and the vector manipulation operations. Yet they all share
similar structural and statistical properties in the context of similarity
preservation and the ability to represent compound data structures
using the same atomic entities/vectors (we will highlight this property
more thoroughly in subsection 2.3.3). For a comprehensive comparison
of these VSAs we refer to the excellent work of Schlegel et al. [160].
In the remainder of this thesis we restrict ourselves to one particular,
CMOS-friendly VSA named binary spatter code which operates on
binary vectors of length D with i.i.d. probability of ones and zeroes.

2.3.2 Fundamental Operations of Binary Spatter
Codes

The mathematical framework of binary spatter code is characterized by
the nature of the vector constituents, the similarity metric to compare
vectors with each other and the elementary operations to manipulate
and transform vectors. In this section, we provide the mathematical
fundament of BSCs. Given the thoroughness of Kleyko et al.’s survey
on the mathematical constructs within the HDC framework [151], we
intentionally stay close in notation style to their work. As already
mentioned before, binary spatter codes operate on vectors consisting
of binary values. Thus the hamming distance, the number of vector
components where two vectors disagree whith each other, is a quite
natural choice for the similarity metric. Throughout the remainder



54 CHAPTER 2. APPLICATIONS AND ALGORITHMS

of the thesis we use the notation ⟨X, Y ⟩ to refer to the hamming
distance between the two vectors X and Y and whenever we use the
approximate equals sign as in e.g. X ≈ Y we thus mean, the two
vectors X and Y have a small hamming distance that is statistically
extremely unlikely to occur by chance i.e. ⟨X, Y ⟩ ≪ D/2.

Like most VSA, BSC defines four elementary operations, bundling,
binding, permutation and associative lookup. We start by defining those
three operators and highlighting their key properties. However, we will
postpone the discussion of the applicability of these properties to
section 2.3.3.

Bundling The bundling-, also referred to as the superposition-
operator denoted with “+” is defined as the element-wise sum of
the operand vectors followed by a normalization step.

S = (s1, s2, ..., sD)

= [
∑︂

k

X(k)]

= ([
∑︂

k

x
(k)
1 ], [

∑︂
k

x
(k)
2 ], ..., [

∑︂
k

x
(k)
D ])

(2.5)

The normalization step, in the previous equation denoted with [],
is necessary in order to map the integer-valued output domain of
the vector sum back to binary values. The thresholding function
is defined as follows:

[x] :=

⎧⎪⎨⎪⎩
1 if x > 0
0 if x < 0
0 or 1 with iid. probability else

(2.6)

In other words, for each dimension of the operand vectors, the
bundling operator assigns a 1 to the output vector if the majority
of the operand vectors had a 1 at this particular vector entry. It
assigns a 0 if there are strictly more 0’s at this vector dimension
and ties (which are only possible if we bundle an even number of
operand vectors) are broken at random. Breaking ties at random
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is important to avoid any bias, i.e. similarity, towards the all
“zeroes” or the all “ones” vector.
The bundling operation has the important property that it
preserves the similarity of the input vectors. I.e. the output
vectors will be very similar to every input vector and the
operation is holistic since there is no flow of information between
different vector dimensions.

Binding The binding operation, denoted with ⊙, is defined as
component-wise exclusive or (XOR) operation of each vector
component. The operation has the property of producing an
output vector that is dissimilar to both its input vectors, yet is
an invertible function (in this case even self-invertible). Binding
thus maps hypervectors to an entirely different vector space that
is almost orthogonal to both operands. Like superposition the
bundling operator is holistic.

Permuation Just as the name implies, permutation is the operation
of applying an arbitrary D-dimensional permutation ρ to the
elements xi of the operand vector X,

ρ ∈ SD, ρ(X) := (ρ(x1), ρ(x2), ..., ρ(xD)) (2.7)

where SD denotes the symmetric group of size D. In contrast
to the previous two operators, permutation given a static
permutation matrix ρ is a unary operation which yields another
hypervector. Similar to the binding operation, permutation maps
its operand to a quasi-orthogonal subspace i.e. produces very
dissimilar output vectors.

Associative Lookup As we will see in the next section, an extremely
crucial operation of HDC is the so-called associative lookup
operation. Given a set of so-called item vectors Hi ∈ H and a
similarity threshold Θ the associative lookup operation on vector
X, denoted with HΘX determines the most similar vector Hi

with threshold larger than Θ. I.e.,
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HΘX :=
{︄

argmax (⟨X, Hi⟩), ∀Hi ∈ H if max (⟨X,H⟩) > Θ
None else

(2.8)
H is usually called the item memory of the HDC algorithm
because it needs to keep a hold of all atomic entity vectors.
An entity performing the above-defined operation of associative
lookup is also known as an auto-associative memory.

Mathematical Properties

Given the previous definition of BSC the operations define a
mathematical construct with almost field-like properties:

(1) Commutativity:
X + Y = Y + X and X ⊙ Y = Y ⊙ X

(2) (approximate) Associativity8:
X +(Y +Z) ≈ (X +Y )+Z and X ⊙(Y ⊙Z) = (X ⊙Y )⊙Z

(3) Self-inversion property of binding:
X ⊙ (X ⊙ Y ) = Y

(4) Similarity preservation of binding:
⟨Y , Z⟩ = ⟨X ⊙ Y , X ⊙ Z⟩

(5) Similaritiy preservation of permutation:
⟨X, Y ⟩ = ⟨ρX, ρY ⟩

(6) Distributivity of binding over superposition:
X ⊙ (Y + Z) = X ⊙ Y + X ⊙ Z

(7) Distributivity of permuation of binding and superposition:
ρ(X + Y ) = ρX + ρY and ρ(X ⊙ Y ) = ρX ⊙ ρY

2.3.3 Compound HDC Data Structures
By now we already know that the conceptual entities of our symbol
set, be it numbers, characters etc. are represented by vectors randomly

8The fact that we threshold the sum vectors during the superposition operation
leads to the associativity being only approximate
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drawn from the D-dimensional vector space. However, most algorithms
require the use of more complex, compound data structures e.g. lists,
sets and key-value pairs. Surprisingly, in HDC many of these compound
data structures can still be represented with single vectors. This is in
stark contrast to conventional compute frameworks where we usually
combine multiple atomic patterns to a data record and thus assign
semantic meaning not only to the content of each datum but also its
spatial location within the entire record. E.g. in the case of a list
stored in the form of an array in memory, the index of each entry
is determined by the physical location of the corresponding binary
pattern in memory.

In this section, we summarize the most commonly used holistic
compound data structures in HDC: sets, sequences and key-value
records. The literature on HDC also contains techniques to represent
more advanced data structures like stacks or graphs [151]. But for
the sake of providing sufficient background knowledge to understand
the circuits introduced in chapter 3 of this thesis, sticking to the
aforementioned basic data structures is quite sufficient.

Sets

Sets of hypervectors can easily be represented using the superposi-
tion/bundling operator. I.e. the set U with elements S0, S1, ..., SN−1

can be approximately represented with
∑︁N−1

k=0 Sk. We leverage the
property of the bundling operation to produce vectors that are similar
to each operand. Thus given a set vector U representing the set of
elements S ∈ H, we can iteratively recover each set element using the
associative lookup operation. In each step, the lookup operation yields
us the most similar item vector Sk. In order to retrieve the other set
elements, we add the inverse of the recovered set element Sk to the
set vector to shift the set vector further away from the just retrieved
element. That way, the next lookup will yield us another, different set
element until we have recovered all n elements. Being able to recover
every item vector that constituents the set allows us to perform all
the common set operations. Yet for many operations, there are faster
approximate approaches; E.g. we can easily test set membership by
calculating the similarity of a vector X and the set vector U . Other
common operations on sets like intersection and union can also be
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mapped to the hyperdimensional domain using different thresholding
levels during the associative lookup [151].

Of course, the capacity of a hypervector in storing a set is not
limitless. Each element added to the set behaves like random noise
added to the similarity lookup of all the other elements already in the
set. In other words, the more vectors we add to the set, the more
dissimilar each item vector within the set becomes to the set vector
itself to the degree that eventually the similarities are no longer above
the threshold level Θ. The storage capacity of a single vector is thus
mostly determined by its dimensionality. For a more elaborate analysis
of the bundling capacity, we refer to Schmuck et al. [161].

Sequences

Since the bundling operator is commutative, it cannot be directly used
to encode the ordering of information required to represent sequences
of items. One way of encoding the index information into a hypervector
is to mark each element with repeated permutation. I.e. we store our
sequence of vectors X0, X1, ..., XN−1 in a sequence vector S,

S :=
N∑︂

k=0
ρkXk (2.9)

where ρk denotes the repeated application of the same permutation
ρ. Given the distributive property of the permutation operation,
appending to the list is as easy as calculating S′ = ρS + Xn. Random
access to a list element at index k is also straightforward due to the
similarity preservation of permutation:

Xk ≈ ρ−kS =⇒ Xk = H(ρ−kS) (2.10)

Once again, the same limitations regarding bundling capacity also
apply to sequences.

Dictionaries/Data Records

The third commonly used data structure we want to introduce at this
point is key-value pairs, commonly referred to as dictionaries. For
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a single key-value pair compound hypervector we have the following
structural requirements:

• Querying the vector should be easy; i.e. given one of the two
vectors, it has to be easy to recover the other.

• The compound hypervector must be disimilar to both, the key
and the value item vector.

The reasoning behind the first property is obvious, given that querying
is one of the fundamental operations performed on key-value pair
structures. The need for the second property arises from the
necessity to clearly distinguish data records using the same value
but different keys. E.g. consider the two data records (K1, V1) and
(K2, V1) represented by the compound record vectors RK1 and RK2
respectively. If V1 ≈ RK1 and V1 ≈ RK2 it would follow that
RK1 ≈ RK2. This would lead to ambiguity in recovering the correct
record vector given a noisy version of either RK1 or RK2, which
would defeat the purpose.9

The binding operation fulfils both of the above requirements. The
record vector R := K ⊙ V is dissimilar to both the key and the value
vector. Yet leveraging the self-inverse property of binding, we can
easily unbind i.e. recover the value item vector:

K ⊙ R = K ⊙ (K ⊙ V ) = V (2.11)

A dictionary obviously consists of more than a single key-value
pair. Now that we have the means to represent single data records,
we can represent dictionaries simply as sets of key-value pairs. That
is, we construct our dictionary vector D as follows:

D =
N−1∑︂
i=0

Ri =
N−1∑︂
i=0

Ki ⊙ Vi (2.12)

Looking up a value from this data structure can be accomplished
once again by unbinding with the key vector Kx of interest which

9The similarity between the two record vectors would be lower than the similarity
between each record vector and V1, but the ambiguity would still remain.



60 CHAPTER 2. APPLICATIONS AND ALGORITHMS

yields us a noisy version ˜︂Vx of the value vector which we feed into
our associative memory (AM) for clean up.

An interesting property of this construction can be seen when we
add another value Vy to our dictionary for a key Kx that already is
present (bound to Vx) in our dictionary. Since binding distributes over
addition and addition is approximately associative, it holds that

D′ = D + (Kx, Vy)
= D + Kx ⊙ Vy

≈ (D′′ + Kx ⊙ Vx) + Kx ⊙ Vy

≈ D′′ + Kx ⊙ (Vx + Vy)

Simply speaking, our dictionary implicitly stored the set of Vx

and Vy as the value bound to Kx. This property of our compound
hypervector makes it behave very similar to what software engineers
would call a hash table.

2.3.4 Applications
Having introduced the mathematical framework of BSC it is time to
discuss how these concepts are applied in practice. HDC has a wide
range of applications ranging from classical inference tasks [162]–[166],
self-supervised learning applications [167], over cognitive modelling
[168], [169] to holistic execution of classical finite state machines [170],
[171]. For the purpose of energy-efficient edge computing, we limit
this introduction to inference applications yet similar concepts are
used for self-supervised learning tasks.

Figure 2.5 illustrates the basic template of most VSA based
inference algorithms found in the literature; At the beginning of our
data processing pipeline, we start with low-dimensional input data, i.e.,
raw sensor data or preprocessed features thereof. The atomic elements,
values, of this input data stream are mapped to item vectors in our
D-dimensional BSC. The mapping to the high dimensional space of the
input data should capture the desired relational properties of our input
data. There are two main approaches to this mapping procedure:

Random Labeling Each possible input entity is assigned a random
hyper vector. This is the approach we introduced in section
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Figure 2.5 – Illustration of a VSA based inference pipeline.

2.3.1 and is mostly used to encode data labels. E.g. consider
an application where we perform some form of inference on,
among other features, the eye colour of people. In this case,
we would assign each of the defined eye colour labels “blue”,
“green”, “brown” and “grey” one random item vector. The
same eye colour label is always mapped to the same item vector
but vectors representing different eye colours do not share any
similarities. In other words, the only relational property we are
interested to capture in this example is discrimination, i.e. the
ability to clearly distinguish between the eye colours.

Continuous Mapping Each possible number our sample could
assume is assigned a random item vector. However, the
magnitude of the difference between any two numbers in the
input space correlates with the similarity of the corresponding
item vectors in the high dimensional space. One way to achieve
this property are so-called thermometer codes [165]. The idea
is to first encode input values in the range [min, max] to a
thermometer-coded vector. That is, a vector with the number
of ’1’s being proportional to the value ranging from all-zeroes to
D/2 ones. E.g. consider the input being a 8-bit unsigned integer
values that are supposed to be mapped to 1024-dimensional
BSC. The corresponding thermometer code vectors would look
as follows:
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T0 =
1024⏟ ⏞⏞ ⏟

0000000000...0

T1 = 11
1022⏟ ⏞⏞ ⏟

00000000...0

T2 = 1111
1020⏟ ⏞⏞ ⏟

000000...0
...

T255 =
512⏟ ⏞⏞ ⏟

111...1
512⏟ ⏞⏞ ⏟

000...0

We then bind these thermometer codes with a random label
vector L and scramble the bit locations with a static random
permuation, meaning we initially choose a random permutation
but once we have one, we keep using the same permutation for
every encoding:

Vx := ρ(LTx) (2.13)

The results are seemingly random item vectors but similar values
in the input space are mapped to similar vectors in HD-space.
The two ends of the value range are mapped to maximally
uncorrelated vectors. There are techniques to extend this idea to
circular data to encode e.g. angles, seasons of a year, positions or
time of day where we want the two ends of our range to coincide
in terms of similarity [172]. However the sample applications
we will introduce in this work rely on random labelling and
continuous mapping only.

The next step after item memory mapping is to combine several
input items belonging to the same event of interest into a compound
hyper-dimensional (HD)-data structure. Such an event of interest could
be a time-window within a time series associated with a certain class
e.g. vibration a pattern of a machine associated with mechanical failure.
The crucial part of this step is to capture the essential characteristics
like causality, time-translation invariance etc. in the compound vector.
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This process is commonly called hyperdimensional encoding and relies
on the experience and expertise of the algorithm designer to come
up with a suitable encoding scheme. The result is a single HD-vector
per labelled event.

During the training phase of the VSA-based classification algorithm,
all compound vectors belonging to the same class are bundled together
to create a so-called prototype vector that represents the set of the entire
HD-encoded training data of that particular class. These prototype
vectors are stored in an AM.

For inference, the same item mapping and encoding steps are
repeated on the unseen input data. However, in contrast to the
training phase, the compound vector is not used to update but to
lookup the corresponding prototype vector in the AM.

Although quite simple, this basic HDC inference template achieves
a quite competitive classification performance on small to moderately-
sized problems like electromyography (EMG) gesture recognition,
user activity recognition or language identification [173]. Three
characteristics of the above algorithmic template are worth noting;

1. The classification algorithm depends crucially on the hyper-
dimensional encoding algorithm used.

2. Training and Inference are almost symmetrical in terms of
algorithm and computational complexity. The only difference
is the very last step where we update the prototype vector
during training using the bundling operation compared to an
associative lookup operation used for inference

3. A single pass over the training data set is usually enough to
achieve competitive results. This is in stark contrast to NN
based algorithms that require numerous energy-consuming
iterations over the dataset to converge to a local minimum in
the loss function’s gradient.
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2.4 Summary

In this chapter, we introduced two alternative AI-driven data processing
frameworks that are both suited for ultra-low power edge computing
applications. QNN is the more established framework that sees more
and more applications on energy-constrained devices in the wild.
HDCs on the other hand has very interesting error resiliency and
data parallelism properties which present it as a prime candidate
for the next generation of stochastic computing platforms based on
novel non-volatile memory technologies. However, we must emphasize
once again that the problem classes which HDC is able to tackle with
competitive performance are currently limited to smaller problems and
the generalization capabilities of NN-based algorithms in scaled-up
network topologies can still not be competed with. That being said it
is worth noting that the research interest in HDC has only recently
gained significant traction in the scientific community. There is still a
lot of ground to cover whereas research on artificial neural networks
is currently at an all-time peak with an orders of magnitude larger
research community to fuel advancements.



Chapter 3

Energy Efficient Circuits for
ULP Near-Sensor Processing

3.1 Introduction

After establishing the background on the hardware and software side
for ULP always-on systems, this chapter introduces novel key building
blocks for energy-proportional SoC architectures tailored to near-sensor
computation that will be covered in chapter 4.

In section 3.2, we briefly introduce the common methodology
used for our power, performance and area (PPA) analysis of the
circuit blocks in isolation. We will then proceed with section 3.3 that
proposes the elementary building blocks for energy-efficient hyper-
dimensional computing using binary spatter code. In section 3.4, these
building blocks are combined to form Hypnos, an all-digital ultra-low
power autonomous HDC accelerator. After showcasing and comparing
Hypnos’ capabilities on a number of real-life benchmark applications,
we culminate this section by introducing the silicon test vehicle Rosetta
that combines Hypnos, a conventional microcontroller SoC architecture
and various on-chip memory flavours on a single die.

65
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Chapter 3 then proceeds with a lightweight data pre-processing
circuit matched to Hypnos’ low-dimensional data interface to enable
truly autnomous end-to-end data processing. The circuit combines
a micro-code configurable independent SPI sensor interface with a
multi-channel data preprocessing pipeline.

Sections 3.3 and 3.4 have been published in IEEE Transactions
on Circuits and Systems I [121]1, however subsection 3.3.2 has been
extended significantly to contain a mathematical justification of the
novel item vector mapping approach presented in the paper. Section
3.5 and 3.6 presents additional details and results on material that has
been published in IEEE Solid-State Circuits and Letters [64] and the
IEEE Journal of Solid-State Circuits respectively [84].

1 ©2021 IEEE. Reprinted with permission, from M. Eggimann, „A 5
µW Standard Cell Memory-Based Configurable Hyperdimensional Computing
Accelerator for Always-on Smart Sensing“, IEEE Transactions on Circuits and
Systems I: Regular Papers, Bd. 68, Nr. 10, S. 4116–4128, Okt. 2021, doi:
10.1109/TCSI.2021.3100266.
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3.2 Methodology

For the area and power analysis conducted on the basic circuit
blocks in sections 3.3 to 3.6, unless otherwise indicated, we followed
the subsequent methodology; the purely digital design written in
SystemVerilog RTL was first synthesized with Synopsys Design
Compiler using default settings for mapping effort. We evaluate the
design’s performance in two different target technologies: The first
one is a 65 nm Low-Leakage Low-K process node using a high Vth
(HVT) standard cell library to minimize cell leakage at low operating
frequencies. If not denoted otherwise, all numbers were obtained with
the typical case library characterization at 1.0 V, 25 °C. The second
technology we targeted is a 22nm FDSOI node using a UHVT and
SLVT library. The library characterization at 0.8 V, 25 °C without
body biasing at the typical-typical corner was used. Using Cadence
Innovus, we performed place and route with an eight-layer metal
stack for the 65 nm node targeting a core area utilization of 80%.
For the 22 nm node, a ten-layer metal stack with a target core area
utilization of 70% was used. Post-layout power numbers were obtained
with Cadence Voltus using switching activity for all internal nodes
extracted from a timing back-annotated post-layout simulation of the
benchmark algorithms using Siemens Questasim.
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3.3 Building Blocks for Energy-Efficient
HDC

3.3.1 Fully-Synthesizable Associative Memory
For a given search vector, the AM looks up the most similar vector
currently stored within the memory. However, the obvious approach of
combining traditional SRAMs to store the HD-vectors with digital logic
yields suboptimal results. Although SRAMs are the go-to solution for
fast and area-efficient volatile on-chip memory, conventional SRAM
macro generators are not optimized for the extremely wide memory
aspect ratios needed for parallel access to HD-vectors. Also, they
are less energy-efficient under low VDD conditions for low bandwidth
applications [68], [174]. The nature of hyperdimensional computing
with lots of simple, component-wise operations demands a non-von
Neumann scheme of computation with computational logic intermixed
with memory cells.

Using Latch Cells as Memory Primitives

Figure 3.1 shows the structure of the AM in our design; latch cells
are used as primitive memory elements instead of flip-flops due to
their lower area ( -10%) and energy ( -20%) footprint [174]. Each
row of the memory consists of D/K latch cells and a single glitch-
free clock gate. These row clock gates are activated by the one-hot
encoded write address. A two-port design allows fetching a new HD-
Vector from AM into the HD-encoder while simultaneously writing
back the previous result without any stalls or energy-costly pipeline
registers in the wide datapath. In addition, to read and write access
of complete rows for normal HDC algorithm operation, each row is
further divided into subwords of 32-bit to allow sequential read-out
and programming of prototype vectors by an external device through
a 32-bit APB configuration interface.

In most HDC-based classification schemes, the AM only keeps
hold of the prototype vectors representing the individual classes. The
proposed architecture differs in that regard by using rows of the AM
to store the iterative encoding process’s intermediate results. The AM
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Figure 3.1 – Architecture of the latch-cell based all-digital AM. Vectors can
be read and written simultaneously in sub rows of length D/K. The last vector
within the memory acts as the search vector for the associative lookup logic. All
memory rows share the D/K-bit adder tree for the pop count operation. The
distance of the most similar entry is compared with a configurable threshold
and conditionally raises an interrupt line to an external peripheral (e.g. power
management unit in an SoC)
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thus serves the double purpose of a register file for entire HD-vectors
(or vector subparts in case vector fold K > 1).

Although latch cells drastically reduce the impact on area footprint
compared to flip-flops, their usage can complicate static timing analysis
(STA). Due to their transparent nature during write access, one must
take care not to introduce combinational loops. While Teman et al.
suggest decoupling the memory by using flip-flops at the IO boundary
of the memory [68], we repurposed the output register in the encoder
stage to break combinational loops. This approach, coupled with
multi-cycle path constraints for STA [68], allows treating the AM like
a regular flip-flop-based synchronous design during synthesis.

Associative Lookup Logic

There are several possibilities on how to design the digital logic for
associative lookup. One option we considered was to have a fully
parallel architecture with XOR-gates between the search vector and
each memory row, combinational adder trees, and comparators to
combinationally determine the entry of minimum Hamming distance.
However, as we will see in Section 3.3.1, the overhead in area and
leakage power ultimately lead us to go for an iterative approach. As
shown in figure 3.1, the HD-vector slot acts as the search vector in the
proposed architecture. The lookup logic iterates over each memory row,
calculating the Hamming distance between one subpart of the search
vector and a subpart of one of the stored HD vectors at a time. The
control logic accumulates the Hamming distance between the subparts
and iteratively determines the most similar entry’s index and distance.

Energy and Area overhead Analysis of SCM-based AMs

Table 3.1 provides an evaluation of the area overhead and energy effi-
ciency for a fully combinational and the row-sequential AM architecture
described in Section 3.3.1. To get an accurate estimate of the delay and
power consumption at sub-nominal voltages, the complete standard
cell library was recharacterized with spice simulations using Cadence
Liberate for a VDD corner of 0.6 V. At this voltage, all standard cells
within the library are still operational in spice simulation.

6T-bit cell-based SRAMs that are readily available in all commercial
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Area [kGE] Throughput [MOPS/s] Energy Efficiency [pJ/lookup] Leakage Power [µW]

@1.2V @0.6V @1.2V @0.6V @1.2V @0.6V

SRAM + Digital AM 17 2.56 — 3280 — 1.5 —
Sequential SCM AM 101 1.29 0.23 2353 556 7.5 1.7
Full parallel SCM AM 265 13.80 1.54 921 188 81.0 15.1

Table 3.1 – Area and Energy Efficiency comparison of SCM-based 128 by 128
bit AM- and SRAM-based AM-Architecture in 65nm technology using all three
available VT flavors. The most energy efficient SRAM configuration generated
by the available SRAM macro generator collection for the target technology
was chosen.

technology nodes are no longer operational at such low voltages[174],
[175]. Although there are specialized low-voltage SRAMs for sub-
threshold operation [176], they are custom-tailored for a particular
technology and not readily available for all technology nodes. Fur-
thermore, experiments by Andersson et al. indicate that customized
SCMs can still have an energy advantage over sub-threshold SRAMs
for small memory sizes [67].

At the 0.6V operating corner, we see a 4× improvement in energy
efficiency for the sequential architecture and almost 5× for the fully
parallel version compared to operation at nominal voltage. The full-
parallel implementation is 2.6x more energy efficient than the sequential
one. However, for most HDC algorithms, the vast majority of the
proposed HDC accelerator’s compute time is spent on vector encoding,
during which the AM lookup logic stays idle. For this reason, we
focus on the row-sequential SCM AM architecture, which has a better
trade-off between energy efficiency during lookup operation and static
leakage power in the subsequent analysis.

3.3.2 HDC Encoder Units and Item
Materialization

The first step of every HDC classification algorithm is mapping a
dense input space to a high-dimensional holistic representation. Most
algorithms encode the input data into a single high-dimensional
search vector. The search vector is then compared with prototype
vectors stored in the AM representing the different classes. The
differences between the various HDC algorithms mainly lay in the
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particular encoding algorithms. They are crafted to capture relevant
characteristics from the raw data, e.g., amplitude distribution, spatial
or temporal features, and are highly application dependent.

Figure 3.2 illustrates our proposed encoder architecture. It consists
of three main components connected in a combinational pipeline.
The input stage of the encoder multiplexes between 4 different input
sources; the all-zeros vectors, a hardwired random seed vector, a
vector addressed from AM, or the HD-encoder’s own output. The IM
materialization stage maps input data to item vectors using either
quasi-orthogonal vectors (IM) or continuous item mapping (CIM). The
encoder’s bitwise encoder units perform binary or unary operations
on the individual bits of the vectors.

There are no pipeline registers in the very wide datapath between
the encoder stages. Although this design choice reduces throughput,
it increases the energy efficiency of our architecture.

Encoder Units

The Encoder Unit processes one dimension of the input vector. Besides
the combinational logic for the binary and unary bitwise operations,
each unit contains an output Flip-Flop that stores the result after
each encoding cycle.

Additionally, one saturating bidirectional 5-bit counter per unit
performs the bundling operations. Analyses in [161] showed that for
dimensions up to 10000, a 5-bit saturating counter implementation
still achieves the same bundling capacity as a full precision model. To
avoid any unintended similarity between the bundled vectors of disjunct
input sets, ties during the bundling operation, i.e., the same number
of ones and zeros were counted for the given vector component, must
be broken without introducing a bias towards a constant HD-vector.
Our architecture achieves this by always bundling an odd number of
HD-vectors, if necessary adding one additional vector crafted from
the xor-combination of the inputs.

A noteworthy detail of the saturating counter is its possibility to
evict the current counter value to the AM in a bit-serial manner (i.e.,
one cycle for each of the five counter bits). Eviction and loading of
the counter state allow the proposed design to execute multi-stage
encoding algorithms with nested bundling operations.
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Mixing Stage

The Mixer submodule visualized in figure 3.2 generates quasi-
orthogonal pseudo-random HD vectors. The rematerialization, i.e.,
on-the-fly regeneration, of such vectors is an area-efficient alternative
to explicit storage of large numbers of item vectors required for input
to HD space mapping.

The mixer stage feeds the input vector selected by the encoder
input stage through one of two hardwired random permutations π0
and π1. The encoder maps a given low-dimensional binary input
datum w from the input domain D to the pseudo-random HD-vector
Vw by iteratively applying one of the two permutations π0 and π1
to a hardwired seed vector S:

Vw =
n∏︂

k=0
πiS, for i =

{︄
0 , if wk = 0
1 , if wk = 1

(3.1)

where wk denotes the kth bit position in the input word w’s binary
representation and n = log2 |D|.

Iteratively applying two random permutations as an alternative
to storing actually random item vectors obviously requires some
mathematical analysis of the quality of randomness produced by this
approach. Let us assume for a moment that we are using a different
random permutation πw for every possible input value w. Intuitively,
if we assume the seed vector S to be random with hamming weight
WH , a truly random permutation could yield us any possible D-bit
vector with the same hamming weight HS . Given the fact that we
aim for i.i.d. distributed vector dimensions, in other words, vectors
with a hamming weight of HS ≈ D/2 we are not too much concerned
about the fact that the hamming weight cannot change. The target
space V our truly random permutations can produce given our seed
vector is still very vast with cardinality,

|V| =
(︃

D

HS

)︃
(3.2)

However, our proposed mixing stage does not use a different
random permutation for every w (the hardware overhead of this would
be enormous) but instead uses two very cheap hardwired random
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permutations iteratively. The mathematical question we are thus
trying to answer is:

Given two random permutations π0 and π1 and a random input word
w, how well does the algorithm outlined in equation (3.1) approximate
the use of unique random permutation per item w?

To answer this question, it is useful to look at our problem from a
different angle. We will thus conduct a brief excursion to the realm
of abstract algebra:

A mathematical group is defined as a set of elements for which
there is a binary operation, let’s denote it with “·”, that fullfils the
following properties, also known as the group axioms:

• The group is closed under the group operation:

∀x, y ∈ G : x · y ∈ G (3.3)

• The group operation is associative i.e.

∀x, y, z ∈ G : x · (y · z) = (x · y) · z (3.4)

• The group contains an identity element:

∀x ∈ G, ∃e ∈ G such that e · x = x (3.5)

• There is a unique inverse element e for every group member:

∀x ∈ G, ∃x−1 ∈ G such that x · x−1 = e (3.6)

The set of all possible n-element permutation forms a mathematical
group with the group operation being composition, i.e. chaining of
permutations. This particular group is commonly called the finite
symmetric group of size n, denoted Sn and is fundamental to numerous
mathematics areas. An important aspect of any group is its so-called
generators. A generator of a group G is any set of elements in G that,
by arbitrarily combining its elements using the group operation, can
form the entirety of G. In other words, given just the elements of
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the generating set, we can form any possible element of G using only
generator elements and the group operation.

Now that we are equipped with the bare minimum of the basic
terminology around group theory for our cause let us reformulate the
previous question in group theoretical terms:

Given two random elements π0 and π1 of the finite symmetric group
Sn, what is the likelihood of them forming a generating set of Sn?

For this question, there is an answer known as Dixon’s theorem
from 1969, which states that for large n, this probability approaches
1, given we use at least one permutation with odd parity [177]. The
parity of a given permutation is defined as the parity of the number
of transpositions, i.e. swap operations. Although there are numerous
possibilities to decompose a permutation into transpositions, the parity
will always be the same. Babai provides us with a lower bound on
this probability, improving on Dixon’s work:

Theorem 1 (Babai [178]) The probability that a pair of random
permutations generate a primitive subgroup other than the alternating
set An or the group Sn is less than n

√
n/n! for large n.

If we choose one of the two permutations to have odd parity, we
are guaranteed not to obtain the alternating set (the set of all even
permutations in Sn). Therefore, our approach of approximating an
arbitrary random permutation by iterative application of two fixed
random permutations has a very high probability of producing the
same quality of results2

The mixing stage not only serves the purpose of enabling random
labelling item vector mapping but also provides the hardware primitive
to perform the permutation operation of BSC.

The resulting HD-vectors Vw are all quasi-orthogonal with very
high probability, given that π0 and π1 do not commute.

For algorithms that require random access to the item memory,
the scheme presented in equation (3.1) rematerializes the item vector
with time complexity O(log2 |D|). However, many algorithms use

2Already for n = 100, the probability of this not being the case is less than
10−138.
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IM-mapping to bind a value vector Vvalue to a channel label Vchn[k].
In these scenarios, the channel label vectors are used with a fixed
ordering assuming the raw data is fed to the accelerator using a fixed
channel ordering. We can therefore reduce the time complexity to
O(1) with the mapping:

Vchn[k] =
{︄

S if k = 0
π0Vchn[k−1] if k > 0

(3.7)

where we store the channel label from the previous iteration in
an unused row of the associative memory.

Our proposed IM-mapping approach is more area-efficient than
storing random vectors in a large ROM and scales well to large input
domains whose cardinality is unknown in advance. From a hardware
perspective, the mixer stage translates to N 4-input and N 2-input
multiplexers, where N denotes the datapath width and some moderate
wiring overhead caused by the random permutations.

Vector Folding

With default parameters, the proposed HD-Accelerator contains a
datapath width equal to the size of a whole HD-Vector. However,
as will be analyzed in more detail in section 3.4.5, going for a more
parallel architecture does not always yield the most energy-efficient
design for a given target technology. Thus, in addition to other design
parameters, the RTL exposes the Vector Fold parameter; it allows
tuning the design for the optimal amount of parallelism to improve
energy efficiency. Increasing the value of the vector fold splits a single
D-dimensional vector into K smaller subparts of equal size. The
datapath of the accelerator shrinks accordingly and only processes one
subpart at a time. While the throughput of the accelerator at constant
frequency decreases by K, the area of the HD-Encoder, dominated by
the saturating counters, reduces similarly by a factor of K.

An important detail is that by decreasing the datapath width,
we also reduce the permutations’ operand size within the similarity
manipulator and the mixing stage. If we stick with the same IM-
Mapping scheme described above, all subparts of a vector would be
identical since they all pass through the same hardwired permutations
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π0 and π1 of size D
K . The IM mapping scheme in equation (3.1) is

thus modified as follows:

V ∗w = πidxVW (3.8)

with,

πidx =
log2(j)∏︂

k=0
πi, for i =

{︄
0 , if hk = 0
1 , if hk = 1

(3.9)

where h is the value of the dedicated part index counter, which holds
the index of the current vector subpart. This yields a unique set
of permutations π∗o , π∗1 per vector part at the expense of O(log((K))
additional mixing cycles.
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Figure 3.3 – Structure of the Similarity Manipulator stage

The Similarity Manipulator stage transforms the mixing stage’s
output vector by flipping a configurable number of its bits. This
operation is a fundamental building block of various high-level
operations like binarized B2B bundling [161], CIM mapping [165]
and exponential forgetting. Figure 3.3 shows its internal structure; the
7-bit input word w is first mapped to a 128-bit unary representation
wunary. This unary representation is spread to the target HD-vector
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dimensionality D/K by repeating each bit of wunary
D

K×128 times. The
resulting vector passes through a hard-wired random permutation
to distribute the ’ones’ over all the vector dimensions. The result is
XOR-ed with the input vector. A limitation of the proposed solution
is that a uniform distribution of the input words does not yield equal
distribution of the probabilities for a bit to be set across the HD-
Vector’s input dimensions. A multi-cycle approach can be used for
operations where equal bit-flipping probability is a hard requirement;
first, a bitmask with the desired bit-density is generated by passing
the all-zero vector through the manipulator stage with the input word
w. This mask is subsequently mixed in the Mixing stage using the
same input word w to randomize the position of the ’ones’ in the
bitmask. The resulting bitmask is ultimately XOR-ed with the input
HD-vector within the encoder units.



80 CHAPTER 3. ENERGY EFFICIENT CIRCUITS

3.4 Hypnos: An Energy Proportional
Standard Cell Memory based HDC
Accelerator

3.4.1 Introduction
Energy boundedness is the key design metric and constraint in the
development of internet-of-things (IoT) devices [179]–[181]. With
more and more sensor modalities integrated into IoT end nodes,
the amount of data to process and the complexity of the processing
pipeline increases. Aiming for uninterrupted operation for years or
even indefinitely within the tight power envelope of small batteries
or environmental energy harvesting urges to drastically reduce the
average power consumption of the sensor nodes themselves.

Among applications in the development of new consumer electronic
devices in the form of wearable fitness trackers or Smart Home Systems,
a considerable interest in the development of highly energy-efficient
sensor nodes is seen in industry as part of the shift towards industry
4.0 e.g. in the form of asset tracking systems and machine performance
and condition monitoring systems [5].

The demand for increasing functionality in small form-factor
battery-operated, or even fully self-sustainable devices leads to a
multitude of design challenges for engineers to tackle. Probably
the most apparent one in that regard is the need for significant
improvements in the energy efficiency of said devices. Observing
that the majority of power consumption in today’s wireless sensor
devices is spent in data transmission [6] promotes moving data
processing closer to the sensor. Instead of raw data transmission and
centralized processing in the cloud, the data is processed continuously
on these so-called smart sensor devices [11]. Only the analyzed
portion of the information is transmitted (e.g., transmission of a single
imminent machine failure message instead of the raw vibration and
temperature data). This may not be easily achieved by application-
specific integrated circuit (ASIC) designs because general-purpose
always-on smart sensing systems operate in the µW range and also
demand a programmable fabric. Therefore, the next evolution step
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towards fully self-sustainable always-on smart sensors requires the
exploration of new avenues of hardware-software co-design and outside
the realm of traditional von Neumann-based computing [153], [182].

An energy proportional sensor data processing scheme, where a
wake-up circuit (WuC) detects patterns of interest and aggressively
duty cycles other circuitry, is a viable solution to drastically reduce
average power consumption [183], [184]. While there are numerous
WuCs, e.g., for biosignal anomaly detection, sound/keyword spotting,
incoming radio transmissions in the µW range, all of these solutions
are highly application-specific. Considering the cost of custom silicon
development and the rapidly widening range of application targets,
there is a need for configurable and application-agnostic WuCs with
more flexible pattern extraction capabilities than the simple threshold-
based solutions, which can suffer from high false-positive rate and thus
energy losses of unnecessary wake-ups.

In this section, we present Hypnos, a novel flexible and highly
energy-efficient all-digital HDC architecture for always-on smart
sensing applications achieving up to 3× higher energy efficiency
(191 nJ/inference) over the state-of-the-art (SoA). The architecture
relies on the hardware-friendly embodiments of common HDC
operators introduced in section 3.3 resulting in 3.3× technology scaled
area reduction. Using an all-digital approach enables us to publicly
release our architecture under the permissive Solderpad open-source
license3. The section continues with a case study on our approach
using three different HDC applications, including the first investigation
(to the best of our knowledge) on the feasibility of HDC for the task of
ball-bearing fault detection. Finally, we introduce Rosetta, a prototype
implementation of the concepts introduced in this section taped out
in TSMC 65nm technology.

3.4.2 Related Work
Tackling the power-consumption challenge of always-on sensing in a
hierarchical manner using WuCs to apply aggressive duty cycling on
more involved data processing modules is not a new idea. In the recent
past, there have been several publications on low-power always-on

3Available under https://github.com/pulp-platform/hypnos

https://github.com/pulp-platform/hypnos


82 CHAPTER 3. ENERGY EFFICIENT CIRCUITS

A
pplication

Specific
G

eneral-P
urpose

G
iraldo

et
al.[185]

Shan
et

al.[186]
Zhao

et
al.[187]

W
ang

et
al.[188]

M
iro-Panades

et
al.[183]

C
ho

et
al.[189]*

R
overe

et
al.[18]

T
his

W
ork

A
pplications

K
eyw

ord
Spott.

K
eyw

ord
Spott.

E
M
G

Slope
M
atching

W
ake-up

R
adio,Interrupts

G
eneral-P

urpose
G
eneral-P

urpose
G
eneral-P

urpose
Technology

65nm
28nm

180nm
180nm

28nm
180nm

130nm
65nm

/
22nm

C
ross

Tech.
M
edium

H
igh

Low
Low

Low
H
igh

Low
H
igh

Pow
er

E
nvelope

~10µW
~500nW

~13µW
~75nW

~33µW
~14µW

~2.2µW
m
ax.

~25µW
,typ.

~5µW
C
lassification

Schem
e

M
FC

C
,LST

M
D
SC

N
N

A
N
N

T
hreshold,Slope

-
N
N

T
hreshold

Sequence
H
D
C

C
onfigurability

A
pp.

Specific
A
pp.

Specific
A
pp.

Specific
Lim

ited
A
pp.

Specific
H
igh

M
edium

H
igh

A
rea

2.56m
m

2
0.23m

m
2

0.925m
m

2
2.5m

m
2

4.5m
m

2
15.6m

m
2

0.054m
m

2
1.43m

m
2
/
0.29m

m
2

T
ab

le
3.2

–
C

om
parison

of
state-of-the-art

W
uC

s
w

ith
our

proposed
H

D
C

-based
W

uC
.A

rea
num

bers
are

reported
65nm

and
22nm

technology
w

hile
pow

er
consum

ption
is

reported
in

22nm
for

a
com

pute-intensive
language

classification
algorithm

and
a

typical
alw

ays-on
classification

algorithm
for

E
M

G
data.

For
C

ho
et

al.
only

the
neural

netw
ork

processor
w

ithout
application

specific
VA

D
circuitry

is
considered.



3.4. HYPNOS ACCELERATOR 83

wake-up circuitry in various domains. Table 3.2 gives an exemplary
overview of current general-purpose wake-up circuitry research using
selected publications in the recent past. The architectures are labeled as
application-specific if they are designed to support only one particular
kind of smart-sensing application and as general-purpose if their
respective classification scheme is configurable to support various kinds
of classification problems within the limits of their classification scheme.

Keyword spotting and voice activity detection (VAD) is a very
actively researched target for always-on sensing; Giraldo et al. present
a low power WuC for speech detection, speaker identification, and
keyword spotting with integrated preprocessing blocks for MFCC
generation and LSTM accelerator for classification [185]. Shan et al.
proposed another implementation in the same application domain
with state-of-the-art energy efficiency on the task of two-word keyword
spotting using binarized depth-wise separable CNN’s operating at near-
threshold [186]. At the lower end of the power consumption spectrum
Cho et al. present a 142 nW VAD circuitry with integrated analog-
frontend that combines a configurable always-on time-interleaved mixer
architecture with a heavily duty-cycled neural-network processor [189].
Although their analog input stage is highly specific to VAD only, the
integrated 14 µW digital neural network processor could potentially
be repurposed for other applications and we thus assume it to be
general-purpose.

Monitoring life signals is another very active field; in the context of
cardiac arrhythmia detection, Zhao et al. combine a level-crossing ADC
with asynchronous QRS-complex detection circuitry with an artificial
neural network accelerator to benefit from the energy advantage of non-
Nyquist sampling [187]. Although these NN-based solutions achieve
high accuracy at outstanding energy efficiency in their particular
application domain, they are often hardwired for the respective task
and do not support online training.

More in line with the target of a flexible and configurable smart
sensing platform are Miro-Panades et al.; they present an asynchronous
RISC processor with an integrated wake-up radio receiver for efficient
low-latency wake-up from several external and internal triggers. While
their architecture achieves outstanding reaction time to interrupts
without the need for a high-frequency clock, the wake-up circuitry
lacks the interface and compute capability to perform actual data
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processing for data input pattern dependent wake-up [183]. Wang
et al. present a configurable WuC resembling the work in [187] that
combines an LC-ADC with a set of asynchronous detector blocks
to extract low-level signal properties like peak amplitude, slope, or
time interval between peaks. Each detector can be configured with a
threshold, and the individual detector output can be logically fused to a
single wake up signal. Although their architecture uses minimal power,
continuous detection of more complex patterns is entirely outside the
capabilities of a detector-set approach [188].

To the authors’ knowledge, the only low power WuC with slightly
more sophisticated pattern matching capabilities was introduced by
Rovere et al. Instead of analyzing the delta-encoded signal from the
LC-ADC with hardwired detectors, they continuously match the input
signal against a sequence of upper and lower amplitude thresholds
with up to 16 threshold segments. This scheme equates to matching
the input signal’s approximate amplitude slope against a configurable
pre-trained prototypical signal slope of interest [18]. Their approach
proved successful for pathological ECG classification and binary hand
gesture recognition (finger-snap or hand clapping). Still, detecting
more complex patterns in the spatial or time dimension remains outside
their proposed architecture’s scope.

Hyperdimensional computing (HDC) is an energy-efficient and flex-
ible computing paradigm for near-sensor classification that gracefully
degrades in the presence of bit errors, and noise [149], [165], [173].
Various works showcased HDC’s few-shot learning properties and
energy efficiency in multiple domains like biosignal processing [163],
language recognition [190], DNA sequencing [167], or vehicle type
classification [191].

In emerging hardware implementations, the HDC’s inherent error-
resiliency is leveraged for novel non-volatile memory (NVM) based
in-memory computing architectures [38], [153], [192]. Targeting
FPGAs, efficient mappings of binary and bipolar HDC operations
are proposed [161], [193], [194]. However, the only complete digital
CMOS-based HDC accelerator was recently introduced by Datta et al.
They propose a data processing unit (DPU) based encoder design that
interconnects with a ROM-based item memory, and a fully parallel
associative memory [195]. While their implementation indeed excels in
throughput, its’ configurability as well as area- and energy efficiency
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are limited; their encoder architecture is restricted to what they call
generic multi-stage HDC algorithms with a hardwired encoder depth
in feedforward configuration imposing hard limits on the supported
encoding schemes. From an energy efficiency and area standpoint,
their design suffers a lot from using a large read-only-memory (ROM)
for item memory (IM) and pipeline registers in the very wide datapath
of every encoding layer.

Our proposed architecture targets the sub 25µW power envelope
(resulting in a lifetime of about four years from a small lithium-thionyl
chloride coin cell battery). The always-on smart sensing circuitry
leverages the flexibility of HDC to perform energy-efficient end-to-
end classification on a diverse set of input signals. We achieve higher
configurability, a reduction of 3.1× in area and up to 3.3× improvement
in energy efficiency than the current SoA in HDC acceleration and
present a first-in-class flexible and technology agnostic digital CMOS
architecture for near sensor smart sensing wake-up circuitry.

3.4.3 Architecture Overview
Figure 3.4 illustrates the three major components of the accelerator,
which we describe in detail in the following subsections; the associative
memory (AM) stores the prototype vectors and performs the
associative lookup operations, the final step of most HDC algorithms.
The previously introduced hyperdimensional encoder (HD-Encoder,
section 3.3) is responsible for mapping low-dimensional input values
to HD-vectors. It operates on HD vectors from the AM or its own
output in an iterative manner. The AM and HD-encoder are managed
by a small controller circuit that sequentially consumes a stream
of compact microcode instructions and accordingly reconfigures the
datapath. A tiny user-programmable configuration memory supplies
this microcode stream.

3.4.4 An ISA for HD-Computing
Previously proposed HDC accelerator designs hardwired large portions
of their datapath to execute HD-algorithms of a particular structure
[165]. HD-algorithms that do not fit into this rigid algorithmic skeleton
can not be executed by existing accelerators like [153], [195]. On
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the other hand, the architecture we are proposing is not bound
to execute only one specific class of algorithms. A control unit
continuously reconfigures the datapath according to a stream of
microcode instructions fetched from a tiny embedded configuration
memory. This allows the accelerator to be reconfigured at runtime to
execute algorithms of a much larger variety by altering the microcode
stored in the configuration memory. After configuration, the algorithm
is executed autonomously without any further interaction with a host
processor. We propose a 26-bit instruction set architecture (ISA) with
the encoding space split into 25-bit low-level datapath configuration
instructions and 25-bit complex high-level instructions.

Although this structure bears some resemblance with a conventional
processor, there are some key differences: The amount of area and
energy overhead induced by the control path is less than 1% (16kBit
CAM, 65nm) and thus much lower compared to a conventional core.
Also, with only 18 available instructions in total, the microcode does not
aim to be Turing complete. We introduce just enough configurability
to support the execution of HDC operations in arbitrary order.

Low-level Instructions

The Low-level instructions directly encode the select signals of the
multiplexers within the HD-encoder and the address lines of the HD-
memory. They thus control the transformation and data flow within the
HD-encoder unit during input data encoding. Figure 3.5 summarizes
the function of the bitfields with a single 25-bit low-level instruction.
They provide fine-grained control over the datapath with the RIDX and
WIDX fields acting like source and destination register operands in a
conventional ISA. However, since the Encoder unit contains an output
Flip-Flop, many vector transformation operations can be performed
without AM access using feedback.

If we synthesize the architecture with a Vector Fold parameter
larger than 1, all instructions only process a smaller subpart of the
complete HD-vector. The control unit does not transparently iterate
over all subparts of the vector but leaves control to the user through
the part index counter. The counter’s value is automatically appended
to the read- and write-port address lines of the AM and thus controls
which subpart of the HD-vector is affected by the current instruction.
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The counter can be cleared, increased, and decreased with dedicated
instructions.

The rationale behind leaving control over the subpart iteration
scheme to the user is that we also want to support iteration over the
vector parts in the outermost loop of an HD-algorithm instead of only
iterating in the innermost loop. That is, instead of first applying a
transformation on all subparts of a vector before switching to the
next transformation, we want the possibility to apply all operations of
an HD-encoding algorithm on the first subpart and repeat the whole
algorithm for subsequent subparts. For the first iteration scheme, we
would have to swap the bundling counters’ state after every bundling
operation since we do not have individual counters for each vector
part. The second iteration scheme does not require state eviction but
requires multiple iterations over the input stream. The fine-grained
control over the accessing scheme exposed by the HDC ISA also allows
to adopt a hybrid accessing scheme; E.g., in an algorithm consuming
a time series of multi-channelled data, the channel values could be
iterated multiple times to improve the performance while complete
time samples are accessed a single time only to remove the requirement
for large external buffer memories.

High-level Instructions

The high-level instructions encode multi-cycle HDC operations and
instructions for code size reduction and host interaction.

High-level HDC Operations For several HDC transformations,
there are dedicated multi-cycle instructions; The AM_SEARCH
instruction starts the associative lookup procedure within the AM.
The vector currently stored at the highest index is used as the search
vector. As its only operand, the instruction takes an immediate that
limits the search space to a maximum index. Only vectors stored at
an index smaller than the given maximum are considered during the
lookup operation. The immediate value thus allows partitioning the
AM dynamically into scratchpad and prototype memory.

The MIX instruction applies multiple mixing cycles to the current
content of the encoder register and hence is the basis of IM-mapping.
The mixing value is either an immediate or externally supplied input
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0124567891012

ENCSEL SMEN SM-
SEL MXEN MX-

INV
MXSEL OP BN-

DEN
BN-

DRST

0561112

WBEN RIDX WIDX

ENCSEL Select between the all-zero vector, a vector from AM and the current
HD-encoder output as input for the encoder stage

SMEN Enable/Bypass Similarity Manipulator Stage
SMSEL Select between external input data and internal register as input for

similarity manipulator stage
MXEN Enable/Bypass Mixing Stage
MXINV Select Inverse Permutation set in Mixing Stage
MXSEL Select between permutation π0 and π1 or if MXINV is set between

π−1
0 and π−1

1 .
OP Select operations to be performed in Encoder Units.
BNDEN Enable bundle counter thus bundling the current encoder output.
BNDRST Reset the bundle counter to its initial value
WBEN Enable write back of the encoder output to AM at index WIDX. If

disabled HD-encoder is only stored in output buffer.
RIDX Read index in case vector from AM is used as encoder input.
WIDX Write index if the result of current iteration is written back to AM

(WBEN = 1).

Figure 3.5 – Low-level Instruction format
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data, e.g. from an external sensor. The instruction comes in three
flavours that use different input values for the mixing procedure (see
equation (3.1)).

• The input value can be supplied from the external 16-bit input
signal. In this case, the instruction accepts the desired number
of mixing rounds as immediate, starting with the LSB of the
input to select the permutation of the first round.

• Alternatively, the mixing value can also be supplied as a second
immediate operand. Again, the number of cycles a single MIX
operation requires to complete directly correlates to the number
of desired mixing rounds.

• The third possible source for the mixing value is the part index
counter. This solves the problem explained in Section 3.3.2.
Applying this instruction after every IM-mapping instruction
has the effect of producing different subpart vectors given the
same input value.

Host interaction and Code Size Reduction An autonomous
WuC requires to conditionally signal a target system about the result
of the classification algorithm. The proposed design uses a dedicated
interrupt instruction to conditionally (or unconditionally) assert an
interrupt signal line. The instruction has two operands:

• Similarity Threshold - The interrupt is not raised if the last
associative lookup operation yielded a result with a Hamming
distance higher than the given value.

• Index Threshold - The interrupt signal is not raised if the index
of the most similar vector found in the last associative lookup
operation is higher than the given threshold.

One use case of these thresholds is to wake up the target system only
if the HDC classification algorithm detects one particular class with
a certainty above a specific threshold.

For the architecture to be autonomous and energy-efficient, the
amount of memory required to map a given HD algorithm to the
proposed ISA must be kept small. Since most HDC algorithms only
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consist of nested loops of constant iteration count (e.g., iterating over
channels and time samples within a time window), a significant amount
of code size reduction can be achieved with the introduction of hardware
loops and unconditional jumps. Hardware loops, also known as “Zero-
overhead hardware loops” are a commonly encountered hardware
feature in digital signal processors (DSPs) that allow the execution
of a small loop body for a constant number of iterations without the
overhead of reevaluating the loop condition after every iteration.

As demonstrated by Gautschi et al., they provide a significant
performance boost with only a marginal increase in area given the
requirement that the instructions of the loop body can be fetched
in a single cycle [196]. This requirement is already fulfilled by the
instruction memory we use in the proposed architecture. Thus the
algorithm storage in our design supports up to 3 nested hardware
loops. Each loop is initiated with a single instruction containing a
10-bit immediate for the number of iterations and a 10-bit immediate
for the instruction address that marks the end of the loop body.

The combination of dedicated instructions for commonly used HDC
algorithmic primitives and code size-reducing features like hardware
loops results in a high expressiveness of the ISA. All examined HDC
algorithms (see Section 3.4.6) can be mapped with less than 64
instructions.

An Example Configuration for Language Recognition

Language Recognition is a commonly used example application in
the field of HDC [38], [153], [173], [190], [192], [197], [198]. The
task is to determine the language given a sentence in the form of a
character string. For a text corpus with 21 European languages, HDC
achieves accuracies of up to 96.7% [197]. The algorithm consists of
four main steps; in the preprocessing step, the test sentence is split
into so-called n-grams, substrings of the test sentence, obtained when
applying a sliding window of size n over the character string. In the
next step, the individual n-grams of the sentence are each mapped
to an HD-vector according to

Vn-gram = πn−1(Vn-1) ⊕ πn−2(Vn-2) ⊕ . . . ⊕ V0, with Vk denoting
the HD-vector corresponding to the character at index k within
the n-gram. This vector is obtained through IM mapping using 27
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random HD-vectors (26 characters in the Latin alphabet plus one for
whitespaces). πk denotes the repeated application of a bit permutation
(most commonly a binary shift operation), and ⊕ is the bind operator
(XOR for BSC). The n-gram vectors Vn-gram for the test sentence are
then bundled together to a single search vector Vsentence and in the
final step, compared with prototype vectors for each language in the
AM. The model of the described algorithm, thus the prototype vectors,
are obtained by bundling together all sentence vectors Vsentence of the
training dataset of a language.

In practice, an n-gram size of 4 proved to yield the best performance
in terms of accuracy [197].

Listing 3.1 shows the above algorithm for n=4 in Pseudocode:

1: i← 0
2: char_veci−[0,1,2,3] ← 2048′b0
3: ngrami−[0,1] ← 2048′b0
4: for char in sentence do
5: char_veci ← im_map(char)
6: ngrami ← π(ngrami−1)⊕ char_veci ⊕ π4(char_veci−4)
7: i← i + 1
8: end for
9:

10: search_vec← bundle(ngram0, ngram1, ...)
11: idx← 0
12: min_distance←∞
13: class_idx← 0
14: for p in prototype vectors do
15: distance← popcount(search_vec⊕ p)
16: if distance < min_distance then
17: min_distance← distance
18: class_idx← idx
19: end if
20: end for

Listing 3.1 – Pseudocode of an HDC algorithm for language recognition.

Instead of recalculating the same character vectors repeatedly when
sliding over the sentence, we recursively compute the n-gram using a
FIFO structure [190]. Mapping the above algorithm to the proposed
ISA with an AM size of 16 vectors and vector fold of one results in
the code in listing 3.2.

We omitted the initialization steps that would correspond to lines
1-3 in the pseudo-code listing for simplicity. The body of the algorithm
(lines 4-8, listing 3.1) maps to the 12 instructions (lines 1-22) in listing
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1 start:
2 hw.loop0 nr_characters_in_sentence, end_loop
3 # ENCSEL='output register', MXEN=1
4 enc_reg → mix → enc_reg
5 # ENCSEL='memory', RIDX=12, OP=bind, WBEN=1, WIDX=11
6 mem[12] → mix → bind → mem[11]
7 # ENCSEL='memory', RIDX=13, MXEN=1, WBEN=1, WIDX=12
8 mem[13] → mix → mem[12]
9 # ENCSEL='memory', RIDX=14, MXEN=1, WBEN=1, WIDX=13

10 mem[14] → mix → mem[13]
11 # ENCSEL='memory', RIDX=15, MXEN=1, WBEN=1, WIDX=14
12 mem[15] → mix → mem[14]
13 # Generate seed for char vector
14 # ENCSEL='zero', SMEN=1, SMSEL='50%', OP='passthrough'
15 zero_vec → man 50% → enc_reg
16 #IM-Map char represented with 5-bits
17 MIX_EXT 5 #5+2 cycles
18 # ENCSEL='output register', WBEN=1, WIDX=15
19 enc_reg → mem[15]
20 # ENCSEL='memory', RIDX=11, OP='bind', BNDEN=1
21 mem[11] → bind → bundle
22 end_loop:
23 # OP='threshold bundling counters', WBEN=1, WIDX=15
24 threshold_bndl_cntrs → mem[15]
25 am_search nr_classes #nr_classes+2 cycles
26 intr 400, 2
27 jmp start

Listing 3.2 – Microcode mapping of the language classification algorithm
in pseudo code. Arrows indicate that operations happen in a combinational
pipeline configured according to a low-level instruction (see figure 3.5). The
relevant config bitfields for these instructions are indicated in the comments
starting with ’#’ before the relevant line.

3.2. After the hardware loop (line 2 - 22) the search vector is extracted
from the MSBs of the bundling counter (line 24) and the search vector
is compared with the prototype vectors (line 25), which corresponds
to lines 10-20 in listing 3.1. The instruction on line 26 triggers an
interrupt if the processed sentence belongs to the classes represented
by prototype 1 or 2 with a Hamming distance of less or equal to 400
bits. The final unconditional jump causes the algorithm to start over
again, either immediately if the interrupt conditions are not met or
after the host processor clears the pending interrupt.
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3.4.5 Tuning for Maximum Energy Efficiency
As will be further elaborated in Section 3.4.6, the high amount of
parallelism in the datapath and the efficiency of the proposed ISA in
executing common HD-algorithms allows the architecture to be clocked
at fairly low frequencies while still achieving real-time processing
capabilities for many target applications. Figure 3.6 shows the power
breakdown of the proposed architecture synthesized with an AM size
of 16kBit (16x 1024 bits) while processing an EMG gesture recognition
classification algorithm for different degrees of vector folding. Since
higher vector fold values result in less datapath parallelism, we adjusted
the frequency for each different vector fold configuration to achieve
identical throughput for all configurations. In other words, although
the different configurations run at different frequencies, they perform
the same amount of useful work per time interval with different degrees
of sequentiality.

We see entirely orthogonal tendencies for the two different
technology nodes in energy efficiency versus Vector Fold. For 65 nm,
the overall energy efficiency increases with lower vector folds, thus a
higher degree of parallelism, while we see the opposite effect in 22 nm.

The reason behind this effect becomes evident when we have a
closer look at the area breakdown in figure 3.7. For a Vector Fold
value of one, almost 60% of the accelerator area is occupied by the
HD-Encoder. In a technology node like 22nm with SLVT cells, the
design is dominated by leakage power. Increasing the vector fold that
directly affects the encoder’s datapath width has a large effect on the
overall area and thus static current draw of the accelerator.

Although the fully synthesizable architecture’s technology indepen-
dence would make it easy to switch to a different technology node
with lower leakage, this is not always a possibility, especially when
the device is integrated into a larger system. For these situations, the
vector fold feature, in addition to its function as a control knob to
trade off area for maximum throughput, provides the means to tune
the design for maximum energy efficiency depending on the target
technologies’ leakage behaviour.
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Figure 3.6 – Post-layout-simulated power consumption of the HDC accelerator
(16 vectors, 1024 bits each) when executing a real-time HDC algorithm for
different vector folds in 65nm and 22nm technology.
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Figure 3.7 – Area breakdown of the HDC algorithm for a vector fold of 1,
placed and routed in a commercial 65 nm technology node.
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3.4.6 Applications and Use Cases
In this section, we take a closer look at the achieved accuracy of the
proposed architecture when configured to execute different classification
problems using state-of-the-art HDC algorithms. Both, to validate
the soundness of the algorithmic transformations and to compare the
energy efficiency with other fully digital HDC accelerators.

Training and accuracy evaluation was performed using a bit-true
model of the primitive accelerator operations written in python that
was verified against the hardware in RTL simulation. Energy numbers
were obtained from simulation of the algorithm on the post-layout
netlist using a representative subset of cycles.

Accuracy Analysis on Text classification and EMG Gesture
Recognition

As mentioned earlier, the language classification of textual data is
a prime example for classification with HDC. While this application
does not fit the context of always-on smart sensing, it serves the
purpose of validating the accuracy implications of the permutation-
based item memory materialization described in Section 3.3.2. We
tackle the same classification task to classify the text samples into
21 Indo-European languages [197]. We use the same HDC algorithm
described in Section 3.4.4 with an n-gram size of five, which is identical
to the algorithm used by Rahimi et al. Figure 3.8 indicates the achieved
accuracy using a vector fold factor of 1 for different dimensionalities; for
8192-bit HD vectors, the modified HDC operators achieve an accuracy
of 94.52%. This accuracy is almost identical to the results reported by
Datta et al. on their accelerator (95.2%) [195]. The algorithm maps
to only 14 HDC ISA instructions and has a memory requirement of
five vector slots in the AM, in addition to the 21 language prototype
vectors, for intermediate results during the encoding process. For a
vector fold of 1, the algorithm executes at 14 cycles per processed input
character, which results in 1400 cycles to classify a single sentence
in the dataset [197].

The second application we evaluate is hand gesture recognition
on electromyography (EMG) data recorded on the subject’s forearm.
We used the dataset and preprocessing pipeline from [163]; the data
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consists of recordings from the subject performing five different hand
gestures captured by a 64-channel EMG sensor array with a sampling
rate of 1kSPS. The actual HDC classification algorithm works as follows;
for each time sample, the 64 channel values are continuously mapped
to HD-vectors using the similarity manipulator module described in
Section 3.3.2 and bound to a per-channel label vector, generated in
the mixer stage. Bundling the resulting 64 channel vectors together
yields a single HD-vector that represents the state of all channels for a
given instance in time. Five of these vectors are combined to a 5-gram
analog to the language classification algorithm to form the search
vector for associative lookup against the prototype vector. Training
of the prototype vectors works like classification, but many search
vectors corresponding to the same gesture are bundled together to
form the prototype vector.

The whole algorithm maps very well to HDC ISA, requiring only
12 instructions and two memory slots for intermediate results. The
inner loop over the 64 channels in the algorithm is executed in only
two cycles for a folding factor of 1, which results in a total of 678
cycles to classify a single 500ms window of data. Consequently,
realtime classification of 64 EMG channels implies an accelerator clock
frequency of only 1356 Hz.

While the data preprocessing flow we used in our experiments
was identical to [163], the HDC algorithm, although identical in
general structure, differs in a few crucial aspects from the baseline
implementation. Moin et al. perform CIM mapping of the individual
samples to HDC vectors using scalar multiplication of the sample
value with a per-channel bipolar label vector, effectively leaving the
binary domain [163]. Moreover, the bundling operation to form a time
sample vector is implemented as a scalar addition of the integer-valued
vectors before thresholding the result back to a bipolar representation
with positive values mapped to +1 and negative values to -1. Even
though the proposed algorithm modification stays strictly in the binary
domain, there is only a small drop in accuracy; with 8192 dimensions,
the proposed architecture achieves 96.31% accuracy while Moin et al.
report an accuracy of 99.44% accuracy using 10’000-bit vectors and
arbitrary precision bundling [163].
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Figure 3.8 – Achieved accuracies for the target applications using different
HD-Vector sizes.

Ball Bearing anomaly detection

Predictive maintenance, also known as condition-based maintenance,
is a term for the process of estimating the current condition of in-
service equipment to anticipate component failure. The goal is to
switch to a maintenance scheme where components are replaced once
they approach their end-of-life instead of fixed maintenance intervals
based on preventive replacement according to the statistically expected
lifetime [199]. As part of our algorithmic investigations, we investigate
the feasibility of HDC for the task of ball bearing fault prediction
using vibration data from low power accelerometer sensors. However,
the process of estimating the condition of an in-operation piece of the
machine is not trivial; most of the time, we have to draw conclusions
from side-channel information like vibration, noise, or temperature
captured by sensors attached to the machinery. A considerable
amount of aggregate data needs to be analyzed, which, in the case of
wireless and energy constrained sensors makes centralized processing
infeasible due to the high energy cost of wireless communication. De-
centralized processing close to the sensor is thus the key to enable
energy autonomous sensors to be retrofitted on existing equipment.

However, the computational cost of preprocessing and actual
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classification for all of these features render them infeasible for
continuous surveillance on low power sensor nodes operating with a
power budget in the µW range. We thus present a simple end-to-end
HDC classification scheme that can be used as a first element to trigger
more involved analysis, e.g., on a cluster of general-purpose cores, in
an energy-proportional multistage classification system.

For our analysis, we use the IMS Bearing Dataset provided by
the University of Cincinnati [200]. They recorded vibration data at a
sampling rate of 20kHz from 4 different ball bearings on a loaded shaft
rotating at a constant 2000rpm. We concentrated on the first of the
three recording sets, which contains 1 second data records obtained
with an interval of 10 minutes in a run-to-failure experiment that
lasted 35 days with an accumulated operating time of about 15 days.

12.5ms
250 samples

500ms

125ms

Normalizer

Quantizer
128 levels

�12, 66, ...27� IM Map

250 values

+

V0
V1

V254

VW1
VM

+

VW2 VW3 VW4 VW5

VM*

Hamming
Distance

� Threshold?

Trigger further Analysis

Figure 3.9 – Illustration of the proposed HDC-based ball bearing anomaly
detection algorithm. VM∗ denotes the online trained calibration vector from
the first 24 operating hours of the ball bearing.

Figure 3.9 illustrates the basic classification procedure. The
algorithm requires an initial calibration phase where a prototype
vector representing the ball bearing’s normal operating condition is
generated. With the inherent feature of HDC that classification and
training are of almost equivalent computational complexity, online
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training with HDC imposes negligible additional energy costs. The
current control path of the proposed HDC accelerator allows for online
training algorithms to be encoded in the algorithm storage but requires
an external control entity, e.g., a general-purpose core that provides
the labels during algorithm execution.

The algorithm’s basis is the encoding of small time windows from
the raw vibration data to measurement vectors VM . Each time
window consists of 250 samples (12.5ms). The sample values are
first normalized using a pre-trained normalization factor and quantized
to 7 bits. Each sample value is then mapped to an HD-vector using IM
mapping, and the whole window of 250 samples is bundled together to
a window vector VW . Five of these window vectors with an interval
of 125ms are again bundled together to form a single measurement
vector VM . The resulting vector thus approximates the amplitude
distribution over a 0.5-second time frame.

The general idea behind the proposed analysis scheme is to generate
a prototype vector VM∗ using the first couple of measurement vectors
after commissioning. We then track the evolution of Hamming distance
over time for subsequent measurement vectors. We calibrated the
prototype vector using 100 random measurement vectors from the first
24 operating hours of the respective ball bearing in our experiments.
Similarly, the normalization factor is generated using the 99% quantile
of the amplitude within the same 24 hours after commissioning. The
proposed algorithm can be mapped to 9 HDC ISA instructions
and requires two vector slots, one for the calibration vector and one
for intermediate results.

Figure 3.10 shows the evolution of Hamming distance over time
with an exponential moving average filter with a halflife of five hours.
This feature can be computed very efficiently without the need for
a large ring buffer. The line color indicates the labels proposed by
experts on the manual analysis of the dataset [201].

By the end of the IMS ball bearing experiment, bearings 3 and 4
failed, while bearings 1 and 2 were severely worn down but did not
fail yet. We see a sharp increase in Hamming distance for all four
ball bearings several hours before the actual failure, in the case of ball
bearing 3, even several days before the actual inner race failure.

While the proposed algorithm certainly does not replace more
involved analysis on time and frequency domain features, the results
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Algorithm # of HDC instr. Vector Memory Cycles/classif. Realtime Freq. [kHz] Power [µW] Min. Energy/classif. [nJ] @100 kHz

65nm 22nm 65nm 22nm

LANG 14 5 + 21 1400 100 86.5 23.7 1205 332
EMG 12 2 + 5 678 1.4 10.7 2.9 703 191
BEARING 9 1 + 1 12513 25 29.1 7.9 10913 2966

Table 3.3 – Memory requirements and post-layout energy numbers of selected
HDC algorithm on the proposed architecture with an AM size of 32 x 2048 bit,
vector fold 1

suggest that it can act as a first filtering stage for aggressive duty
cycling of more power-intensive analysis schemes when combined with
simple thresholding. However, more experiments on larger datasets and
possibly with more complex HDC encoding schemes will be required
to quantify the benefits of an HDC-based ball bearing fault predictor.
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Figure 3.10 – Hamming distance evolution over time for ball bearings 3 in the
IMS dataset. The Hamming distance was post-processed with an exponential
moving average filter with a halflife of 5 hours. The other ball bearings in the
dataset show a similar behavior.
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Technology Area [kGE] Architecture Type IM / CIM resolution [bit] Energy eff.[nJ/inference]

LANG EMG

Datta et al. TSMC28 3618 generic 10 or 10 250 610
Our Work 22 nm-FDSOI 1094 general-purpose arbitrary and 7 332 191

Table 3.4 – Area and Energy efficiency comparison with the current state-of-
the-art HDC accelerator architecture. The terms generic and general-purpose
were introduced by Datta et al. in [195].

3.4.7 Energy Efficiency Analysis and Comparison
Table 3.3 summarizes the performance of the three introduced HDC
algorithms, language classification (LANG), EMG gesture recognition
(EMG), and ball bearing anomaly detection (BEARING). While EMG
and BEARING represent typical workloads for streaming wake-up
applications on life sensor data, we picked LANG for its common
use in HDC literature as a benchmark application.[38], [153], [173],
[190], [192], [197], [198] Columns 2 & 3 report the number of HDC
instructions and the total number of required HD vector memory
to map the algorithm to the architecture. Column 4 shows the
required minimum frequency for realtime execution of the algorithm
(not applicable for LANG since there is no realtime constraint for this
application). The last two columns indicate the power when operating
at the aforementioned minimum frequency and the corresponding
energy efficiency per classification. For LANG, we consider a single
classification to be the processing of a 100-character string, the average
sentence length in the Wortschatz corpora. For EMG and BEARING,
a single classification is defined as the analysis of a 500ms window as
described in the algorithm sections 3.4.6 and 3.4.6.

In Table 3.4 we compare the energy efficiency of our solution to
the current SoA HDC accelerator architecture from Datta et al. [195]
which differs in several aspects from our work; While we use the
rematerialization approach introduced in section 3.3.2 for IM and CIM
mapping, their design uses a large ROM to explicitly store the input to
HD vector mapping. Also, they combine a heavily pipelined encoder
with a fully combinational, flip-flop-based associative memory whereas
our architecture opts for a pipeline-free sequential encoder with a
vector sequential, latch-based AM design. Finally, the architecture
proposed by Datta et al. is only generic (a subset of general-purpose
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architectures) according to their taxonomy on HDC algorithm classes
established in [195]. This imposes a set of additional constraints on
the structure of HDC algorithms that can be executed. In contrast,
the microcode-based approach that our architecture follows allows for
arbitrary HDC algorithm computation (including the generic ones)
within the limits of the available AM and instruction memory resources.

Among other algorithms, Datta et al. report the energy numbers for
EMG and LANG executed on a 32 by 2048-bit accelerator in TSMC28.
We achieve a technology-scaled area reduction by 3.3×. This can
be explained by massive area reductions in all major components
of the accelerator. The most considerable effect has the on-the-fly
pseudo-random materialization of the item vectors used in our design,
which removes the necessity to incorporate a large ROM to store all
possible item vectors. In fact, 62% of the overall area in Datta et al.
is occupied by a large 1024 by 2048 bit ROM. Besides the area and
energy implications, the ROM-based solution has the added drawback
of having a hardwired partitioning of the memory; one for the item
memory, containing quasi-orthogonal vectors, and one for continuous
item memory vectors, where the pair-wise Hamming distance between
the vectors correlates to the difference of the corresponding input
values. Another large reduction in area is achieved in the AM, where
our solution uses latch cells and sequentially calculates the Hamming
distance in contrast to the baseline, which uses a flip-flop-based fully
parallel implementation.

In fairness, one has to notice that [195], with a maximum clock
frequency of 434MHz, has a much higher peak throughput than our
solution due to its parallel and heavily pipelined architecture. However,
the results in Table 3.3 suggest that algorithms used for always-on
sensing do not benefit from such a high throughput, and energy
efficiency is the key metric by which we should judge the performance
of the different approaches.

As we can see in Table 3.4, the energy efficiency differences between
the two architectures depend a lot on the algorithm at hand. For
LANG, the achieved energy efficiency is slightly worse (+31%) than
the baseline, which is still impressive considering the 3.3× reduction
in area. For EMG, on the other hand, we achieve a 3.1× improvement
in energy efficiency. This is in contrast to Datta et al.’s architecture,
where LANG exhibits a higher energy efficiency than EMG. This
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can be explained by the difference in the computational complexity
of orthogonal and continuous item mapping in our architecture. In
LANG, input values are mapped to quasi-orthogonal vectors using the
mixing stage (3.3.2), which requires log2(N) cycles, where N denotes
the cardinality of the input set. The overhead of this iterative approach
considerably lowers the energy advantage of not using a large ROM
for item memory generation. For EMG, on the other hand, the input
values are mapped continuously using the similarity manipulator, which
can be performed in a single cycle and can even be combined with a
bundling or bin operation in the subsequent encoder units. Hence, for
this algorithm, the effect of not requiring a ROM comes to display and
causes the EMG task to execute more efficiently than the LANG task.

In general, we can say that for very high input value resolutions,
the overhead of iterative item vector generation starts to dominate
the overall energy consumption of our architecture. Thus, for an
application-specific accelerator with a small fixed input resolution
using IM-based encoding, a ROM-based IM might be more energy
efficient than our approach. Still, the fact that the computational
complexity of the rematerialization approach grows with the logarithm
of the input space instead of linear ROM area scaling suggests an
advantage of our architecture for larger input space cardinality. In any
case, the proposed architecture excels in its energy proportionality to
the desired HDC algorithm. The ROM-based approach in [195] has an
almost fixed cost for item memory mapping with an upper limit on the
supported resolution. For example, in LANG, only 13% (27 out of 1024
item vectors) of all ROM entries are required to map the input values.
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3.5 Silicon Realization inside the TSMC
65nm Rosetta Testchip

In this section we are introducing Rosetta, a silicon test vehicle SoC
for near-memory processing circuit and on-chip memory evaluation
taped out in TSMC 65nm technology. The chip features the first proof
of concept silicon realization of Hypnos, a novel gain-cell eDRAM
macro as well as other IPs from other project partners4 In this section,
we will only provide a summary of the eDRAM characteristics and
instead focus on the macro architecture of the system and initial
on-silicon evaluation of Hypnos.

Contributions This project has been a joint effort with the
telecommunication circuits laboratory (TCL) at EPFL who developed
the analog GC-eDRAM IP and me with ideas and inputs from Luca
Benini and Andreas Burg. My responsibility within the project was
the initial design of the SoC, the system integration of Hypnos and the
other 3rd party IPs. The physical design and silicon measurements
were done by myself with significant support of Beat Muheim and
Frank Gurkaynak from the micro-electronics design centre at ETH.
The write-up of this chapter was done by myself with guidance and
feedback of Luca Benini. The results on the GC-eDRAM have been
published separately in IEEE Solid-State Circuits Letter [64] where
I contributed the SoC architecture section.

3.5.1 SoC Architecture
Figure 3.11 illustrates the SoC architecture; The system is based on
PULPissimo [202], a single-core microcontroller system built around
a 32-bit RISC-V core named RI5CY [196].

RI5CY is a 5-stage single-issue in-order 32-bit RISC-V core. The
processor is coupled with a 32-bit hardware floating point unit and
supports the standard RISC-V ISA extensions M, F and C thus
making it an RV32IMFC-compatible core. On top of the standard
ISA extensions, the RI5CY core in Rosetta supports several custom

4Not considered in detail within the scope of this thesis.
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instructions bundled in the custom ISA extension xPULPV3. Most
notable for runtime efficiency improvements is the support for hardware
loops, sometimes also referred to as zero-overhead loops and SIMD
instructions.

The cores instruction and data fetch ports connect to the tcdm,
a global system interconnect that enables high-bandwidth access
with single-cycle transaction latency to Rosetta’s various memory
components. This so-called logarithmic interconnect is based on a
forest of arbitration tree circuits that ensures fair, combinational
arbitration in the fully connected crossbar [203].

The interconnect branches into three memory regions; The
interleaved crossbar connects to the bulk of the system’s main memory
consisting of 4× 32 KiB SRAM banks each internally structured into
two 16 KiB memory cuts. These memory banks are word interleavingly
mapped to Rosetta’s global address space such that contiguous address
space access would evenly spread the transactions across the 4 banks.
This mapping scheme reduces the average bank-conflict-induced latency
for the common scenario where several bus masters simultaneously
try to access contiguous (in the address space) blocks of memory; E.g.
consider the scenario where two bus masters try to sequentially access
a different block of memory. If the start address of the blocks maps
to different memory banks, the two bus masters will never cause a
conflict assuming that they access the memory at the same rate. If
their blocks’ start address however is mapped to the same memory
bank, one of the two masters will be stalled by the arbitration tree
for one cycle. After that initial stall, their access pattern is out of
phase again and the remaining memory transaction will not interfere
with each other anymore.

The second branch of the interconnect is what we call the contiguous
crossbar. In contrast to the interleaved crossbar, the memory elements
of slaves attached to the contiguous crossbar are mapped to contiguous
address regions within the address space. Within Rosetta the following
memory entities are connected to it:

• The boot ROM (8 KiB)

• Two smaller SRAM banks with a size of 32 KiB each.

• A 4 KiB dual-port latch-based SCM
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• 64 KiB of GC-eDRAM

The boot ROM is a read-only memory storing the firmware to enable
different boot sequences. The two private banks serve the purpose
of providing conflict-free access to instructions and the core’s call
stack. Note however that these roles are only weakly enforced by
the linker script settings of the software toolchain. The core can
in fact access instruction and data from arbitrary memory locations
within the address space.

The 4 KiB SCM serves the dual purpose of acting as a low-voltage
tolerant general-purpose memory through its 32-bit read/write port.
The second 512-bit wide read/write port connects the SCM to Hypnos
to act as the memory backend for HD-vector storage and associative
lookup. That is the latch memory AM previously described in section
3.3.1 has been externalized from the HDC accelerator to make it usable
as a regular main memory. The HDC accelerator within Rosetta has
been parametrized for a maximum HD-vector width of 2048-bit folded
onto an internal datapath width of 512-bit with 5-bit bundling counters
per folded vector dimensions. For HDC algorithm storage an internal
64 by 24 bit SCM stores the uCode instructions.

Finally, Rosetta contains a 64 KiB 3T-1C gain-cell eDRAM,
internally split into 16× 4 KiB memory cuts with embedded refresh
controller to research the PPA trade-offs of eDRAM versus SRAM
based on-chip memory. The eDRAM in Rosetta is based on a 3T-1C
gain-cell structure as the fundamental storage element.

Besides the cores, the HDC accelerator and different memory
flavours, Rosetta contains various IO peripherals for off-chip communi-
cation with commercial sensors through an autonomous IO-DMA. This
so-called uDMA subsystem not only allows peripherals to directly read
and write to the system’s main memory but also provides them with a
stream of ucode instructions to encode the IO interactions. Therefore
once setup, the IO peripherals like SPI or I2C can operate without
any additional core intervention in an entirely autonomous manner.

The entire SoC is split into two clock domains sourced by
two bypassable frequency-locked loops (FLLs). One drives the IO
peripherals while the other one drives the rest of the system. Coupled
with a RISC-V debug specification-compliant JTAG debug unit that
exposes the entirety of the internal address space, this provides us
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with sufficient control over all internal aspects of the system for
benchmarking and functional tests.

3.5.2 Physical Implementation
The entire system’s digital frontend is described in RTL using the
SystemVerilog hardware description language (HDL). Using Synopsys
Design Compiler® 2019.3, the design was synthesized using 8 track
standard cells coming in three different Vth flavours (high, regular, low)
with all gate-length options enabled. The SRAM were generated using
a commercial memory macro generator tuned towards area efficiency,
while the eDRAM is a full-custom design developed at EPFL. During
synthesis the design was constrained with a target SoC clock frequency
of 200 MHz (1.2 V nominal VDD, TT, 25 °C) and a clock uncertainty
of 0.5 ns. The backend implementation of the physical design was
conducted using Cadence Innovus® 19.10 for place and route and
Siemens Calibre 2019.2 for signoff design rule check (DRC) and layout-
versus-schematic (LVS) targeting a 9-metal layer BEOL.

Figure 3.12a shows the physical layout of the chip. The chip
contains individual power domains for the IO pads, GC-eDRAM and
the digital logic (including the SRAM macros). It thus allows to
characterize the power consumption of the eDRAM in isolation.
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Figure 3.12 – (a) Full layout of the Rosetta SoC with annotated main
components and (b) chip specifications

.

3.5.3 Results
Figure 3.13 shows the area breakdown of the SoC. Almost 60% of the
overall die area is occupied by the various kinds of memories, with the
large 128 KiB taking up the majority of the area. With a total area of
492 000 µm2 Hypnos including its 4 KiB large latch-based SCM makes
up about 7% of the overall chip area. Besides the SCM area-dominated
associative memory (5%) the majority of Hypnos’ area is required for
the 512-bit wide hyperdimensional encoding unit (Hypnos in Rosetta
is parametrized to fold the 2048-bit hypervectors into 512-bit parts
to save area). Upon closer inspection of the area report, we see that
the encoder area is dominated by the 5-bit flip-flop based saturating
bundling counters instantiated for every folded dimension. The control
path including the 64 × 26 bit HDC-ISA instruction memory consumes
only 17 420 µm2 i.e. 3.5% of Hypnos’ area.
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Figure 3.13 – Post-layout area breakdown of the Rosetta prototype SoC

The main goal of the Rosetta prototype chip was to verify the
functionality of Hypnos in real silicon and to provide a test platform
for alternative memory technologies like the eDRAM. The version of
Hypnos in Rosetta has not been trimmed for energy efficiency during
physical design. Still, we assessed Rosetta’s overall energy efficiency
in order to validate the results obtained in post-layout simulation. We
thus executed the EMG benchmark application introduced in section
3.4.6 in an infinte loop while keeping the RISC-V core in a clock-gated
wait for interrupt state and measured the current draw on all power
domains. For this experiment, we aggressively lowered the supply
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voltage from a nominal 1.2 V to 0.76 V, the lowest measured voltage
where Rosetta remained operational. At a core frequency of 500 kHz
the entire chip consumes 813 µW while continuously running the
EMG inference algorithm with EMG dummy input data fetched from
the internal L2 SRAM. This amounts to an overall energy efficiency of
8.7 nJ/Inference at an inference rate of around 100 Hz. Given that we
measure system-level energy efficiency, including all support circuits
like FLL, SRAM leakage etc. and the fact that Hypnos in Rosetta is
parametrized with a vector fold of 4 rather than 1, which we showed
to be around 2× less energy efficient (see section 3.4.5), this number
is in the expected ballpark.
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3.6 A Lightweight Data Preprocessing
Sensor Interface for Hypnos

Although the power envelope of Hypnos is very competitive within
the setting of always-on smart sensing, it does not include the sensing
frontend and expects the digital input data in a particular format.
While the design of an analog frontend is outside the scope of this
thesis we propose a lightweight data preprocessing unit that combines a
flexible digital sensor interface based on the SPI protocol with an ultra-
small multi-channel digital processing block. The aim of this IP is to
bring the digital input data into a suitable format for further processing
in Hypnos. More involved digital signal processing algorithms like
FIR-filtering or filtering in the spectral domain were not considered
in this work due to their prohibitively high-power consumption in
comparison to Hypnos.

3.6.1 Architecture
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Figure 3.14 – Schematic overview of the proposed data preprocessing unit.
The IP consists of an autonomous SPI peripheral (left) and a multi-channel
preprocessing unit (right)
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Figure 3.14 illustrates the overall architecture of the IP; An autonomous
SPI peripheral communicates with conventional low-power off-chip
sensors. When integrated into a larger system-on-chip a configuration
interface enables setup and at-runtime configuration of the preprocessor
using regular memory transactions by conventional processor cores.

Autonomous SPI Peripheral The autonomous SPI peripheral
originally based on the work of Pullini et al. [204], most similar to
the control path of Hypnos, operates on a small stream of microcode
instructions that control the peripheral read from a small embedded
SCM.

The instructions encode SPI configuration like polarity and phase,
the operating sampling frequency, asserting one of the four available
chip-select signals as well as the SPI read and write transactions
themselves. The SPI peripheral executes the “io-programm” stored in
the SCM in an infinite loop thus enabling the module to autonomously
interact with one or several external sensors. Since write transactions
with literal values can also be encoded as microcode instructions, even
dynamic reconfiguration of a sensor’s settings is possible.

Multi-channel Preprocessing Unit The read data of the SPI
peripheral are forwarded to the preprocessing block using a simple
read-valid handshaking protocol. This module contains a parametric
number of parallel processing pipelines to provide support for multi-
channel data. The data received from the SPI peripheral is multiplexed
on the currently enabled channels in a round-robin fashion. Each of
the 16-bit channel processing pipelines consists of several bypassable
simple filtering blocks:

• A barrel shifter for shift alignment of the received SPI data

• An offset removal block for constant bias removal

• An exponential moving average (EMA) filter for dynamic offset
removal i.e. IIR-based high-pass filtering

• An IIR low-pass filter block, again based on an EMA filter

• A decimation block to downsample the input to the desired
output sampling rate at which to process the values in Hypnos
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Besides the outlined processing pipeline, as an alternative to the
first four processing stages a local binary pattern [205] filter block can
be selected. Local binary pattern is an effective input symbolization
technique that in combination with HDC showed promising results
in epileptic seizure detection on intracranial electroencephalography
[166], [206]. It operates according to the following formula:

LBP [n] :=
{︄

1 if x[n] > x[n − 1]
0 otherwise

(3.10)

Where x[n] denotes the digital input stream and LBP [n] is the
bit serial output stream. This bit stream is then grouped in symbols
of fixed length, in this particular case 6 bit.

3.6.2 Results
We synthesized the preprocessing sensor interface with 8 channels,
16-bit datapath and an SCM with 32 microcode instruction slots to
encode the SPI interaction in a commercial 22 nm technology. The
figures of merit for this parametrization are summarized in table 3.5;
The entire processing block occupies a total area of 6179 µm2 or about
31 kGE, which is only about 1.3% the size of the Hypnos configuration
we taped out in Rosetta.

To evaluate the preprocessor’s power characteristics, we ran a post-
layout simulation of the same EMG benchmark algorithm outlined in
section 3.4.6 at 1 kSP/s/Channel. We configured the Preprocessing
Sensor Interface to capture simulated SPI sensor data from multiple
channels with an SPI clock frequency of 200 kHz capturing 16-bit
values and enabled every preprocessing block for each channel of the 8-
channels. With an overall power consumption of only 1.12 µW for this
particular scenario, the preprocessing unit power consumption adds
very little energy overhead for always-on classification. Due to the serial
nature of the SPI protocol, only one channel is ever actively toggling
at a time. Therefore the power consumption when scaling to more
than 8 channels depends only on the clock frequency, which directly
correlates with the required sampling rate per channel. Leakage power
due to the very small size of the unit is mostly insignificant5.

5Around 3.5% of the total power consumption in this particular technology
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Technology 22 FDSOI, 8T-UHVT standard cell library
Corner 0.8V, 25 °C, typical-typical
Datawidth 16 bit
Num. Channels 8
Microcode SCM Size 32 × 32 bit
Area 6179 µm2

SPI Clock Freq. 200 kHz
Preprocessor Clock Freq. 200 kHz
Total Power 1.12 µW

Table 3.5 – Figures of Merit of the Preprocessing Unit in 22 nm FDSOI.
Numbers obtained in timing back-anotated post-layout simulation with all
preprocessing blocks active.
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3.7 Summary

In this chapter, we have introduced a number of building blocks for
energy-efficient near-sensor classification leveraging the ML paradigm
of hyperdimensional computing:

• We started this chapter by presenting a standard-cell memory-
based implementation of an all-digital associative memory.

• We then introduced Hypnos, an open-source, fully-configurable
hardware accelerator for binary spatter code based HDC and
demonstrated its 3.3× area density and up to 3× energy efficiency
advantage over the previous state of the art.

• These pre-silicon results are then put to the reality test in
the Rosetta SoC, a 65nm prototype chip that combines a
complete microcontroller architecture with embedded eDRAM
and Hypnos.

• Finally, we introduced an area-efficient digital sensor frontend
with lightweight filtering capabilities for the purpose of signal
conditioning external sensor data for subsequent processing by
Hypnos.

In summary, we showcased a number of circuits for highly energy-
efficient near-sensor processing without giving up on the intrinsic
scalability, reliability and cost advantages of fully-digital designs.



Chapter 4

Architectural Considerations
at the System Level

4.1 Introduction

In chapter 3 we have introduced a couple of building blocks for ultra-
low power on-device smart sensing. In this chapter, we combine
these circuits around hyper-dimensional computing with novel designs
around the QNN data processing paradigm to design a complete end-
to-end system able to withstand the reality-check of actual post-silicon
evaluation. As emphasized in chapter 1, the transition from individual
circuits to the system level in the form of a low-power SoC usually
comes with many challenges that are less apparent at the individual IP
level like synchronization, power distribution or cooling. However, in
the scope of this thesis, we put particular emphasis on two key aspects;

Energy-Proportionality Besides the pure ML aspect of edge-
computing algorithms, IoT applications usually contain various
additional abstract application components like interaction
with external sensors, signal conditioning, post-processing, user
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interaction and wireless communication with edge infrastructure.
Each of these abstract components comes with drastically varying
compute- and IO-intensity demands. Mapping these components
to an efficient hardware-software partitioning in the form of an
integrated system architecture that behaves energy-proportional
to the compute load of the current task is not straightforward
to realize.

Memory Bandwidth and IO-Energy In contrast to what the
name might imply, the so-called von-Neumann bottleneck is
far from being limited to conventional computing on general-
purpose cores only. A universal trait of all compute-intensive
NN based applications is a high demand in memory bandwidth
for fetching weights and storage of intermediate results (i.e.
feature maps). While dealing with this demand on memory
bandwidth in HPC is challenging enough, realizing systems
that meet the application requirements on real-time behaviour
under the way more stringent energy-efficiency constraints is even
harder. Communication with high-bandwidth off-chip memory
usually implies orders of magnitude higher power consumption
than on-chip memory access. Conventional SRAM-based on-chip
memory being volatile in nature, conversely faces the challenge
of maintaining energy proportionality in highly duty-cycled
applications due to their static current draw.

In this chapter, we introduce two taped-out systems that specifically
address those two points: The Vega SoC puts emphasis on the first
of the above challenges where we present an energy-proportional
approach to always-on sensing using a heterogenous architecture with
hierarchical wake-up.

In section 4.3 we present Siracusa that demonstrates an architecture
to cope with the Memory Bandwidth and IO-energy of tinyML
applications in the IoT domain. The SoC taped out in 16nm FinFET
technology incorporates non-volatile MRAM and tightly couples it to
a highly flexible digital QNN accelerator.

Contributions Section 4.2 on the Vega SoC has been first presented
at the International Solid-State Circuit Conference (ISSCC) in 2021
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[122] and subsequently published in the Journal of Solid-State Circuits
(JSSC) in 2022 [84]1. As is natural for such a large system, this was
not the work of a single person; My responsibility within this joint
project was the development of Hypnos, the preprocessing unit and the
autonomous SPI peripheral which is jointly referred to as the Cognitive
Wakeup Unit (CWU). I was also responsible for system-level integration
and verification of the CWU. Finally, I conducted the chip-bring-up
and circuit characterisation of the SoC domain, the CWU and the
IO-pads. The overall system architecture was developed by Davide
Rossi with help from Antonio Pullini, Igor Loi, Jie chen and Eric
Flammand. The QNN accelerator has been developed by Francesco
Conti, while the FPUs used in the cluster where designed by Stefan
Mach. On the software side, Giuseppe Tagliavini was responsible
for compiler optimization. The whole project was supervised and
advised by Luca Benini.

1 ©2022 IEEE. Reprinted with permission, from D. Rossi et al., „Vega: A
Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up
From MRAM-Based State-Retentive Sleep Mode“, IEEE Journal of Solid-State
Circuits, Bd. 57, Nr. 1, S. 127–139, Jan. 2022, doi: 10.1109/JSSC.2021.3114881.
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4.2 The Vega 10-Core SoC for IoT
End-Nodes

An increasing amount of near-sensor data analytics applications
require inexpensive battery-operated micro-systems able to sense the
environment and transmit meaningful, highly semantic compressed
data to the cloud wirelessly. The tight constraints in terms of low-power
in sleep mode, coupled with extreme performance and energy efficiency
in active mode, calls for a new class of ultra-low-power microcontrollers
(MCUs), namely, IoT processors. These devices require a large state-
retentive memory to autonomously wake up when always-on ultra-low-
power sensors detect a specific condition. Following wake-up events,
more capable sensors and computing units can be activated to perform
fully programmable complex near-sensor analytics, including modern
Deep Neural Networks (DNNs) models. This approach enables the
extraction of meaningful information from the sensor data locally
before transmitting it, avoiding data deluge in the cloud.

Recent research on ULP MCUs design focused on main building
blocks, such as memories [207], standard cells [208] and embedded
power management [209]. On the other hand, while more traditional
low-end IoT end-nodes are targeted to low-bandwidth sensors (e.g.,
temperature and pressure) and require limited compute capabilities,
an increasing number of applications rely on embedding much more
intelligence at the edge. Dedicated solutions explored in the last
few years deliver high performance and efficiency, mainly focusing
on inference [210], [211], and training [212] of DNNs, exploiting low-
precision and tunable-precision arithmetic to adapt to the requirements
of applications while minimizing energy consumption [213]. Although
the efficiency of dedicated hardware accelerators is orders of magnitude
larger than that of previously mentioned MCUs, the large variety and
fast evolution of near-sensor data analytics algorithms running on IoT
end-nodes cannot be satisfied by specialized and inflexible accelerators.

In this context, this work provides a significant step forward in
high-performance, Parallel Ultra-Low-Power (PULP) IoT processors,
presenting Vega. Vega introduces key contributions in two areas:
always-on cognitive operation augmented by non-volatile memory
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support and highly dynamic digital signal processing. First, the
proposed SoC features 4 MB of non-volatile MRAM coupled with
a fully programmable cognitive wake-up unit based on the Hyper
Dimensional Computing (HDC) paradigm [149]. This non-volatile
cognitive wake-up architecture enables the probing of ultra-low-power
sensor data with power consumption as low as 1.7 µW and wakes
up the system from a full memory retentive state. Second, Vega
enables the highly dynamic exploitation of multiple data formats, from
a few bit-width integer to full precision floating-point (FP). Thus,
application developers can seamlessly tune the precision and dynamic
range of portions of algorithms, matching them with the rich set of
data formats natively available on the hardware. We demonstrate the
capabilities of the Vega SoC on a wide range of Near-Sensor Analytic
Applications (NSAA) in the bio-signal, audio/vibration, and imaging
domains as well as inference of DNN, showing significant improvement
in flexibility, performance, and efficiency over the state of the art.

4.2.1 VEGA SoC Architecture
As shown in Fig. 4.1, Vega consists of four main switchable power
domains: the SoC domain includes a single-core MCU served by 1.7
MB of SRAM memory and several peripherals, the cluster domain
includes the programmable parallel accelerator, a domain including
4 MB of non-volatile MRAM, and a fourth domain including the
Cognitive Wake-Up (CWU) unit.

Non-Volatile SoC Subsystem

The SoC Domain is an advanced MCU featuring a RISCV processor
named Fabric Controller (FC), served by 1.7 MB of embedded
SRAM and several peripherals described in Fig. 4.1, including a
1.6 Gbit/s HyperBus/OCTA SPI/SDIO Double Data Rate (DDR)
interface supporting external DRAM and Flash memories. For
instance, the interface supports Cypress Semiconductor’s HyperRAM
and HyperFlash memories [214], APMemory IoT RAMs [215], and
external Secure Digital Input Output (SDIO) cards.

To allow peripherals to transfer data independently from FC, Vega
implements an I/O subsystem in which each peripheral has a dedicated
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DMA channel enabling direct, autonomous data transfer to/from the L2
memory [216]. A 4 MB non-volatile Magnetoresistive Random Access
Memory (MRAM) resides in an independent switchable power domain.
The MRAM is connected to the L2 memory through an auxiliary
IO DMA channel and managed just like a peripheral. A dedicated
controller manages the specific protocol conversion operations required
to access the MRAM in write and read mode, completely abstracting
to the end-user the complexity of the specific protocol. During the
read operation, the MRAM can operate at a frequency up to 40
MHz, delivering bandwidth of 2.5 Gbit/s through its 78-bit interface
(including 14-bit ECC). The two main applications of MRAM within
Vega SoC are the storage of read-only parameters of machine learning
applications and program code. Except for the I/O DMA, the master
resources of the SoC can only access MRAM data after being moved
to the L2 memory.

The L2 memory memory consists of 4 word-level interleaved banks
for a total of 1.5MB, plus 64 kB of private memory for the core. This
architecture provides an overall bandwidth of 6.7 GBytes/s to the
peripherals and accelerators in the system. To retain the SoC program
and data in sleeping mode, the physical SRAM banks can selectively be
configured in retentive mode, leading to retention power ranging from
1.2 to 112 µW for 16 kB to 1.6 MB of state-retentive L2 SRAM. Hence,
once the SoC is woken-up from sleep mode, a warm boot can either
be performed from L2 SRAM or from the MRAM. In the former case,
some power consumption is required for preserving state-retention of
SRAMs; in the latter case, sleep power for data retention is zero, but
the program must be restored into L2 after wake-up. Hence, depending
on the duty cycle and wake-up latency requirement of the target IoT
application, one or the other approach can be selected.

Cognitive Wake-Up Unit

While Vega provides highly energy-efficient compute performance in
active mode using its programmable cluster, the TinyML [186], [187],
[189] power envelope for self-sustainable always-on signal processing
applications cannot be met in full active mode. These applications
require aggressive duty cycling and intelligent wake-up logic to detect
events of interest. However, the threshold-based wake-up systems used
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by most applications do not provide a small enough false-positive rate
at an acceptable false-negative rate for effective power saving [18]. To
deal with those kinds of applications, Vega contains a programmable
cognitive wake-up unit (CWU) that performs end-to-end machine
learning on external sensor data and triggers the embedded power
management unit (PMU) to power up the cluster for more advanced
data analytics. The CWU is designed to operate entirely autonomously:
after its initial configuration, the CWU continuously processes and
classifies external sensor data without any further interaction of the
cores.

Figure 4.2 gives a hierarchical overview of the CWU. It consists of
three main components previously introduced in chapter 3:

• Programmable SPI master peripheral

• Low-power preprocessor module (Lightweight Data Preprocessing
Interface, section 3.6)

• Configurable HDC accelerator (Hypnos, section 3.4)

The dedicated SPI master peripheral acts as the IO interface to
interact with external sensors. It supports all four SPI phase and
polarity configurations and controls up to four chip-select signals.
Complex transaction patterns involving wait cycles and arbitrary
read and write transactions with multiple external devices can be
programmed utilizing an integrated micro-instruction memory that exe-
cutes the configured access pattern in an endless loop. The preprocessor
module optionally performs lightweight data preprocessing and data
format conversion of the digital sensor data on up to eight independent
channels. It supports data width conversion, offset removal, low-pass
filtering, subsampling, and local-binary-pattern (LBP) filtering [217].
The offset removal and low-pass filters are based on an exponential
moving average filter with a configurable decay rate to save area
and power.

The core of the CWU is Hypnos, a programmable hardware
accelerator for HDC. HDC is a brain-inspired computing paradigm
for machine learning that operates on high-dimensional holistic
representations of the input data [149]. HDC has been proven
to achieve competitive accuracy performance in various domains
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like biosignals processing [218], DNA sequencing [167], language
classification [190], and vehicle classification [191]. With its few-shot
learning capability [164] and inherent error-resiliency in the presence
of random bit flips [219] HDC is an ideal candidate for an online-
trainable wakeup circuit operating at low voltage.

In the context of Hypnos, HDC is used to encode a time series from
one or several digital sensor channels to a high-dimensional binary
search vector using a small set of bit-wise and thus well parallelizable
operations. Then, this search vector is compared with so-called
prototype vectors representing the individual classes of interest in
associative memory (AM).

In Vega, Hypnos operates on 512, 1024, 1536, or 2048-bit HD
vectors with a 512-bit wide datapath. The Vector Encoder module
is responsible for encoding low-dimensional input data to high-
dimensional vectors (HD-vectors). It performs so-called item memory
(IM) mapping and the operation primitives of HDC like bundling
and binding in an iterative manner [149]. Instead of employing a
ROM-based IM that stores the mapping from low-dimensional input
to pseudo-random HD-vectors, Hypnos uses IM ”rematerialization”
by using a set of four hardwired random permutations. Item
memory mapping is thus performed by iteratively applying random
permutations on a hardwired pseudo-random seed vector with the bits
from the serialized input word acting as select signals to switch between
the different permutations. In this manner, Hypnos can materialize
an IM HD-vector in D cycles, where D denotes the configurable
input data width from the pre-processor. While IM maps values
from the low-dimensional input space to quasi-orthogonal HD-vectors,
continuous item memory mapping (CIM) encodes input values so that
low euclidean distance in the input space is mapped to low hamming
distance in HD space [165]. In most HDC algorithms, IM mapping is
used to encode channel labels and CIM to encode the channel values
to preserve the similarity of the values. To support CIM mapping, the
vector encoder contains the similarity manipulator module that allows
the flipping of a configurable number of bits from an input HD-vector.

The bitwise HDC operations are realized in the Encoder Units
(EU), of which Hypnos contains 512 instances (one for each bit). Each
EU contains the logic for XOR/AND/NOT operation and a saturating
bidirectional 8-bit counter that counts the number of encountered
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ones and zeros for bundling. A 32 kbit standard-cell based associative
memory (AM) can hold up to 16 HD-vectors and acts as both a
scratchpad memory to store intermediate HD-vectors from the Vector
Encoder and store the final prototype- and search-vector during the
associative lookup operation. The vector encoder can fetch HD-vectors
from the AM and stores the result of each encoding round in a 512-bit
wide register that can be fed back as the source for the next encoding
cycle or written back to the AM.

The AM uses latches as storage primitives with a single integrated
clock gate (ICG) per ROW acting as a write-enable line. For associative
lookup (search for entry with minimal Hamming distance to the search
word), the AM sequentially compares each memory row with the search
vector and combinationally calculates the Hamming distance. This
operation is usually invoked last in most HDC based classification
algorithms to compare an encoded search vector against a set of
prototype vectors that represent the individual classes of interest [165].
Within our AM architecture, the index and Hamming distance of
the most similar item are compared against a configurable threshold
and target index. If the result of the lookup is of sufficient similarity
to the target index, an interrupt is raised to trigger the wake-up
sequence within Vega’s PMU.

Since the optimal HDC encoding algorithm, that is, the sequence
of encoding operations within the Vector Encoder, is application-
dependent, the CWU contains another 64×26-bit SCM to encode the
HDC algorithm in a sequence of compact micro-code instructions. The
lightweight controller fetches these instructions in an infinite loop and
reconfigures AM and Vector Encoder accordingly in each cycle. Thus,
the CWU can be configured to run classification algorithms on the
preprocessed sensor data and trigger wake-up sequences in Vega’s PMU
in a fully autonomous manner. The design is intended to operate at
very low frequencies in the order of dozens of kHz. Thus the module
was realized in UHVT logic to minimize leakage power. The design
occupies a total area of 0.147 mm2 and operates at 0.6V.

Table 4.1 summarizes the power consumption of the CWU within
Vega; we measured the CWU’s power operating at 32kHz when
performing a real-time inference HDC algorithm on data received
from 3 SPI peripherals (16 bit, 150 SPS/channel) and at 200 kHz (1
kSPS/channel). At 32 kHz the CWU consumes 2.97 µW of which
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fclk = 32 kHz fclk = 200 kHz

Max. Samp. Rate 150 SPS/Channel 1 kSPS/Channel
Pdynamic, datapath 0.99 µW 6.21 µW
Pdynamic, SPI pads 1.28 µW 8.00 µW
Pleakage, datapath 0.70 µW 0.70 µW

Ptotal 2.97 µW 14.9 µW

Table 4.1 – Implementation details and power consumption of the Cognitive
Wakeup Unit

Cho et al. [189] 2, 3 Giraldo et al. [185] 2, 3 Wang et al. [188] 2, 3 Rovere et al. [18] 3 Vega CWU1

Applications VAD Keyword Spott. Slope Matching General Purpose General Purpose
Technology 180nm 65nm 180nm 130nm 22nm
Power Envelope 14 µW 2µW 17nW 2.2 µW 2.97 µW
Classification Scheme NN LSTM, GMM Threshold, Slope Threshold Sequence HDC
Area ~3.7mm2 4 ~0.4mm2 4 ~1.8mm2 4 0.011mm2 0.147mm2

1 Power consumption is reported for a compute intensive language classification
algorithm and a typical always-on classification algorithm for EMG data.
2 Although these designs contain an application specific analog frontend (AFE) their
digital NN accelerators could potentially be used for other applications in a smart
wakeup scenario.
3 For fair comparison with our digital-only CWU, only the power consumption of
the included general-purpose classification logic is considered.
4 Exact area breakdown is not available thus we estimated the area of the classification
logic from the chip micrograph.

Table 4.2 – Comparison of state-of-the-art smart wake-up units
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77% is dynamic and 23% leakage. At 200 kHz, overall power
consumption increases to 14.9 µW. It is worth noticing that the
dynamic power consumption of the CWUs datapath (0.99 µW and
6.21 µW respectively) is about 20% lower than the dynamic power
of CWU’s SPI pads.

Table 4.2 provides an overview of recently published smart wake-up
units. Most of the state-of-the-art units implement application-specific
wake-up algorithms such as KWS, VAD, EMG, although the designs
mentioned in the table all contain classification circuitry that might be
used for other applications [185], [188], [189]. To the best of the author’s
knowledge, Hypnos is, among entirely general-purpose solutions, the
one providing the highest level of configurability thanks to its flexible
digital implementation together with the versatility of HDC and the
preprocessing chain, still featuring a similar power consumption with
respect to the only other general-purpose solution implementing a less
flexible threshold-sequence based wake-up [18].

Parallel Compute Cluster

The programmable parallel accelerator of the system resides in a
dedicated power and clock domain, communicating with the SoC
subsystems with two AXI 4 ports (one master and one slave) connected
to the SoC interconnect through dual-clock FIFOs. The cluster, built
around 9 70kGE 4-pipeline stages RISCV cores, is turned on and
adjusted to the required frequency when applications running on the
FC offload computation-intensive kernels. The cores share data on a
128 kB shared multi-banked L1 memory, implemented with 16 8kB
SRAM cuts, through a 1-cycle latency logarithmic interconnect [203].
Similar to the L2 SoC interconnect, the L1 interconnect implements
a word-level interleaving scheme to evenly distribute the requests,
minimizing access contentions towards the SRAM banks. The cluster
L1 memory can serve 16 parallel memory requests with less than
10% contention rate even on data-intensive kernels, delivering up to
28.8GB/s at 450MHz. The program cache, implemented with latch-
based SCM to improve energy efficiency over energy-expensive SRAM
cuts for high-intensity activity, is hierarchical and includes 8 512 B
private per-core plus 4 kB of 2-cycle latency shared cache to maximize
efficiency with data-parallel code. In the common usage scenario.
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Figure 4.3 – Architecture of the shared multi-precision FPU and its integration
in the 9-cores cluster.
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the ninth core manages DMA transfers leaving the computational
workloads to the other 8 cores. It also includes a larger 1 kB L1
instruction cache. The refill path from L1 to L1.5 can be bypassed
to avoid polluting the shared L1.5 cache. Fine-grain parallel thread
dispatching is accelerated by a dedicated hardware event unit, which
also manages clock gating of idle cores waiting for synchronization
and enables resuming execution in 2 cycles.

The RISCV cores used in Vega feature extensions (RVC32IMF-
Xpulp) for NSAAs [196], such as hardware loops, post-incremented
LD/ST, Single Instruction Multiple Data (SIMD) operations such as
dot products operating on narrow 16- and 8-bit data types. The cores
share 4 Floating-Point Units (FPUs) supporting FP32, FP16, and
bfloat operations (a.k.a. SmallFloat extensions), as well as conversion
operations among the different supported formats, including cast-
and-pack instructions required to efficiently support packed SIMD
vector operations [220]. Some of the key operations present in many
NSAA accumulating data in a higher-precision format to avoid loss of
precision, such as Multiplication and Fused-Multiply-Add (FMA) can
be performed as multi-format instruction, taking the product of two
16-bit operands and returning a 32-bit single-precision result. Division
and square root operations are also supported in a stand-alone shared
unit (DIV-SQRT).

The FPUs are shared through a low-latency interconnect managing
access contention in hardware, allowing to share one FPU among
multiple cores in a fully transparent way from a software perspective.
As opposed to [216], in Vega we employ a partial interconnect with
a static mapping of FPUs to cores, where units 0, 1, 2, 3 are shared
among cores 0 & 4, 1 & 5, 2 & 6, and 3 & 7 & 8 such that a core always
accesses the same physical FPU instance, as shown in Figure 4.3. This
choice limits the flexibility in sharing the FPUs across processors but
reduces the complexity of the interconnect towards the FPUs which are
on the critical path of the cluster, guaranteeing high compute efficiency
thanks to the single-cycle latency behaviour of FP instructions, as
demonstrated in section 4.2.3.

CNN inference efficiency is boosted by a cluster-coupled machine
learning hardware accelerator (HW Convolution Engine - HWCE)
for multi-precision (4b/8b/16b) 3×3 convolution, with 27 MACs in
total. The microarchitecture of the HWCE is shown in Figure 4.4.
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The HWCE accesses the shared L1 TCDM memory by means of four
32-bit ports on the TCDM logarithmic interconnect. The HWCE
load/store units, shown in Fig. 4 on the left side, convert between
the TCDM memory protocol and a lightweight streaming protocol
using ready/valid handshaking to manage stalls caused by memory
contention. Bubbles in the data streams result in additional latency,
but do not disrupt the functionality of the accelerator. The HWCE
can be programmed via a set of memory-mapped registers via the
peripheral interconnect. A register shadowing mechanism enables to
offload the next job without colliding with the currently running one.
In each accelerator job, the accelerator loads a set of up to three
3×3 filters in an internal weight buffer; then, it starts streaming a
continuous stream of input pixels from L1, which – using an embedded
line buffer – are used to build a sliding window.

The stationary weights and the input sliding windows are upscaled
to 16-bit and combined using three sum-of-product datapaths shared
between all precision combinations. In each sum-of-products unit,
16-bits inputs and weights are first split into 9-bits sub-words (adding
1 bit for sign extension). The 9-bit sub-words are first combined along
the 3×3 spatial filter dimension, using four carry-save array (CSA)
reduction trees. Then, they are combined using another CSA tree.
In this way, even if the original inputs were smaller than the 16-bits
upscaled version, fine-grain data and clock gating can be employed to
disable leaves and branches of the reduction tree, minimizing activity
and dynamic power. Similarly, the datapath can also be reconfigured to
implement 5×5 convolutions by combining the three sum-of-products
units and clock-gating unused units. To further generalize to layers
with partial or full input channel reuse, the accelerator includes a
partial results FIFO buffer to accumulate convolution outputs from
previous input channel contributions, either streamed-in from the L1
ports or from one of three internal partial sum buffers, acting as FIFOs.
Symmetrically, the output of the three dot-product units can be either
streamed out to L1 (possibly, after undergoing normalization and right-
shift) or saved into the partial sum buffers to be re-used in the future.
Focusing on filter reuse, this design is particularly effective on popular
VGG-style convolutional networks dominated by 3×3 Conv layers [221]
– achieving up to 19 MAC/cycle on a 3×3 convolutional layer.
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Technology CMOS 22nm FD-SOI
Chip Area 12mm2

SRAM Memory 1728 kB
MRAM Memory 4 MB

Equivalent Gates (NAND2) 1.8 Mgates
Voltage Range 0.6 V – 0.8 V

Frequency Range 32 kHz – 450 MHz
Power Range 1.2 µW – 49.4mW

Table 4.3 – Vega SoC Features.

4.2.2 Chip Implementation and Measurements

Figure 4.5 – Vega SoC Die Micrograph.

Fig. 4.5 shows the microphotograph of the Vega SoC, along with
its four main power domains described in Section 4.2.1. These power
domains are managed by an additional always-on power domain
operating from 0.6 V to 0.8 V, including commercial off-the-shelf



4.2. THE VEGA 10-CORE SoC FOR IoT END-NODES 137

Instance Area [mm2] Percentage [%]
MRAM 3.59 29.9

SoC Domain 2.69 22.4
Cluster Domain 1.48 12.3

CWU 0.14 1.2
CSI2 0.15 1.2

DCDC1 0.36 3.0
DCDC2 0.36 3.0
POR 0.14 1.1
QOSC 0.03 0.2
LDO 0.03 0.2

Table 4.4 – Vega SoC Area Breakdown.

components: two on-chip DC-DC converters, an LDOs operating at
3.6 V (VBAT), a power management unit used to switch on and off the
other domains, a real-time clock (RTC) clocked by 1 MHz oscillator.
The wake-up sources for the PMU are an external pad, the RTC, and
the Cognitive Wake-up Unit (CWU). Three Frequency Locked Loops
(FLLs) reside within the SoC domain and multiply the input clock
generated by a kHz crystal oscillator (QOSC) to adjust the cluster
domain and SoC domain frequency to the desired values. A third
FLL generates the peripheral clock, which is then further divided
and adjusted to serve the requirements of the different peripherals.
Tab. 4.3 summarizes the main features of the Vega SoC, while Tab. 4.4
summarizes the area breakdown of its main components. The largest
blocks in the design are the 4 MB MRAM, the 1.6 MB of L2 memory
within the SoC domain, and the power management IPs. On the
other hand, the two programmable accelerators occupy less than 15%
of the overall SoC area.

Fig. 4.7 shows the power consumption of the components of the
Vega SoC highlighted in Fig. 4.5 in the different power modes supported
by the SoC, while Fig. 4.6 shows the matrix multiplication performance
of the system in the active modes (FC active and cluster active) for
all the supported data formats, from 8-bit integer to single-precision
FP. In cognitive sleep mode, the CWU consumes from 1.7µW when
operating at 32 kHz to 20.9µW when considering 128 kB of L2
memory to be turned into state-retentive mode. Once the SoC is
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Figure 4.6 – Vega SoC Performance and Efficiency.
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Application Description FP intensity
MATMUL Matrix multiplication (ExG, audio, image) 57%
CONV Convolution kernel (ExG, audio, image) 55%
DWT Discrete Wavelet Transform (ExG) 28%
FFT Fast Fourier Transform (ExG, audio) 63%
FIR Finite impulse response filter (ExG) 64%
IIR Infinite impulse response filter (ExG) 46%

KMEANS Unsupervised algorithm for data clustering (audio, image) 83%
SVM Supervised algorithm for data classification (audio, image) 35%

Average 53%

Table 4.5 – Benchmark suite. For each kernel we report its description and
its FP intensity. Main application fields are listed in parentheses.

turned on after a wake-up event, its power consumption goes from
0.7 to 15 mW, delivering up to 0.95 GMAC/s with an efficiency up
to 100 GMAC/s/W (8-bit integer). Finally, the SoC can offload
highly compute-intensive tasks to the parallel cluster, delivering a
much higher performance up to 7.8 GMAC/s with an efficiency of
307 GMAC/s/W on general-purpose processors (8-bit integer), and a
performance of 16.1 GMAC/s with an efficiency up to 650 GMAC/s/W
on convolutional workloads when HWCE is activated to accelerate
the available software programmable processors, all within a power
envelope of 49.4 mW. All the experiments were performed running on
Vega an 8-bit matrix-multiplication kernel extracted from the PULP-
NN library [222] on the software-programmable cores and an 8-bit
3x3 convolution on the HWCE.

4.2.3 Benchmarking
This section presents an extensive benchmarking of the Vega SoC,
including both general-purpose NSAA exploiting 32-bit and 16-bit FP
arithmetic as well as DNN workloads.

Floating-Point NSAA Workloads

To assess the performance of diverse FP workloads, we considered a
benchmark set including digital signal processing, machine learning
algorithms, and basic linear algebra subroutines widely used in NSAA
fields such as audio, image and ExG processing. To fully exploit the
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multi-precision support provided by the shared FPUs, we have extended
the C/C++ frontend with two additional data types, namely float16
and bfloat16. The compiler backend lowers scalar operations involving
these additional types into the corresponding assembly instruction
introduced by the smallFloat extensions (Section 4.2.1). Packed-
SIMD operations can be expressed through standard C/C++ operators
on GCC vector types. Vectorization of 16-bit data types reduces
by a factor of two the execution time of the related FP operations.
In addition, there is also a beneficial effect on memory bandwidth
utilization since two 16-bit operands are read/written at the same
time for each 32-bit memory access.

Table 4.5 reports description and FP intensity each kernel. FP
intensity is the percentage of FP operations over the total number
of instructions, computed at ISA level (i.e., on the kernel assembly
code). Fig. 4.8 illustrates performance and efficiency of each kernel.
The performance metric reports how many millions of operations are
completed per time unit considering FP32 and FP16 arithmetic for
two operating points: 220 MHz, 0.6 V (LV) and 450 MHz, 0.8V (HV).
These results demonstrate that the design choice of exploiting shared
FPUs is not detrimental to the performance of FP workloads since
programs include a mix of FP, ALU, control, and memory operations.
The adoption of vectorial FP operations leads to an improvement of
1.46× over scalar ones. This value is lower than the theoretical speedup
for the same effect discussed before: FP and memory operations take
advantage of vectorization, while ALU and control operations are not
affected. Some kernels (MATMUL, FFT, and FIR) are characterized
by performance and efficiency gains higher than average values thanks
to the use of fused multiply and accumulate instruction allowing to
perform 2 FP operations per cycle. Thanks to the architecture design
mapping integer and FP registers on a single register file, this gain is
maintained for vectorial FP16 versions since programmers can manually
optimize the code, including intrinsics for data packing and shuffling
of vectors elements, with the final result to reduce the pressure on
memory and shared FPUs.
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Bandwidth [MB/s] Access Energy [pJ/B]
HyperRAM ↔ L2 300 20
MRAM ↔ L2 200 880
L2 ↔ L1 1900 1.4
L1 access 8000 0.9

Table 4.6 – Comparison between the various data transfer channels used
within a typical DNN execution in terms of available bandwidth and energy
per byte.

DNN NSAA Workloads and Data Flow

The architecture of the Vega SoC is designed to be able to deploy
realistically sized DNN for full on-chip inference, taking advantage
of the MRAM for weight storage. The general data flow for DNN
inference is shown in Fig. 4.9, focusing on a purely software execution
pipeline based on the PULP-NN library, using 8-bit integers for
all tensors (weights and activations). Weights for all layers in the
network are stored either in the on-chip MRAM (4 MB) or in an
off-chip HyperRAM module – both accessible via the I/O DMA, while
intermediate activation tensors are allocated in the L2 shared memory
(1.5 MB) and immediately deallocated after they are consumed by the
following layer. To enable computation on the cluster, both weights and
input activation have to be divided into tiles that fit within the 128 KB
of cluster L1 shared memory [223]; 8 cores of the cluster are employed
for actual computation, while the ninth is used as an orchestrator
core to manage data tiling and schedule data movement using the
cluster DMA. Computation is organized in a software pipeline with
four stages, as shown in Fig. 4.9:

1. copy weights MRAM/HyperRAM→L2: weights for a full layer
of the network are moved from MRAM/HyperRAM to L2
using the I/O DMA, programmed by the RISC-V FC core.

2. copy-in input activations, weight L2→L1: the cluster
orchestrator core schedules the copy of a weight and input
tile from L2 to L1 using the cluster DMA.

3. compute: the 8 cluster compute cores, working entirely on
1-cycle latency L1, consume an input tile and a weight tile
to produce a weight tile. We employ the PULP-NN library
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ImageNet Latency [ms] Energy [mJ] MMAC Parameters [KB] MRAM up to layerTop-1 Acc. [%] SW HWCE (speedup) SW HWCE (eff. gain)
RepVGG-A0 72.41 358 118 (3.03×) 8.5 4.4 (+93%) 1389 8116 stage 4, layer 12
RepVGG-A1 74.46 610 200 (3.05×) 13.0 7.4 (+76%) 2364 12484 stage 4, layer 6
RepVGG-A2 76.48 1320 433 (3.05×) 25.7 15.8 (+63%) 5117 24769 stage 4, layer 3

Table 4.7 – Vega performance and energy efficiency on RepVGG-A using SW
or HWCE-based acceleration

[222] capable of achieving up to 15.5 MAC/cycle on 8 cores.
3×3 convolutional layers can alternatively employ the HWCE
accelerator, achieving up to 27 MAC/cycle.

4. copy-out output activations L1→L2: the cluster orchestrator
core schedules the copy of the output tile from L1 to L2 using
the cluster DMA.

As shown in Fig. 4.9, these four stages employ double-buffering and are
fully overlapped so that throughput is dominated by the slowest stage.
DORY [223] is used both to calculate data tiling solutions fitting the
memory constraints at all stages and to generate the orchestrator code.

To provide further insight into the data tiling scheme, we measured
the bandwidth and the energy per byte for each of the data transfers
described above. MRAM and HyperRAM results are measured
on the silicon prototype, while L2/L1 accesses are estimated with
power analysis using the final silicon netlist. The results are shown
in Table 4.6, in the nominal operating point (V ddSOC = 0.8 V,
fSOC = 250 MHz, fCL = 250 MHz). MRAM and HyperRAM provide
similar bandwidth, but thanks to on-chip integration, MRAM provides
over 40× better energy efficiency. SRAMs (L2/L1) provide much
higher bandwidth at a very low energy/byte but at a steep area cost
and without state retention.

As a complete case study for DNN inference on the Vega SoC,
we selected MobileNetV2 [140]: a widely used network topology
for computer vision on mobile devices, used both for classification
and object detection. The MobileNetV2 template is very flexible,
and it is also often employed as a template for tasks unrelated
to vision [224]–[226]. The central block of MobileNetV2 is called
a BottleNeck and it consists of a sequence of three layers: a 1×1
Convolutional expansion layer, a 3×3 Depthwise Convolution layer,
and a 1×1 Convolutional projection layer. Additionally, the input of
the expansion layer may be connected to the output of the projection
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layer by means of an additive residual connection. For our experiments,
we employed the standard MobileNetV2 with depth multiplier 1.0 and
input size 224×224, which employes a total of 16 bottleneck layers with
7 different parameter combinations, plus 3 other layers at the front and
back end of the network. Fig. 4.10 reports the layer-wise execution time
in microseconds when running on Vega with the data flow explained
previously, without using the HWCE. Layers and BottleNecks in the
front of the network tend to have more intensive transfers for activations
(because their size is larger than the others), resulting in more L2↔L1
traffic. Conversely, in the back end of the network MRAM transfers,
caused by larger weight sizes, are more relevant. Nevertheless, all layers
except for the final one are compute-bound by a considerable margin.

In Fig. 4.11, we consider the full inference compute time and energy
for MobileNetV2, comparing fully on-chip execution with weights on
MRAM and the “legacy” flow using HyperRAM for weights. We
observe that the time per inference is essentially the same, and it is
compatible with real-time computation at more than 10 frames per
second. The small difference of 3 ms is related exclusively to the final
layer. This is because, as shown in Fig. 4.10, all layers apart from the
final 1 × 1 convolution are compute-bound by a significant margin: the
50% bandwidth improvement enabled by the MRAM, therefore, applies
only to this layer. The substantial difference, however, is related to the
much lower energy cost for memory access. Whereas in the legacy flow,
HyperRAM accesses account for almost 25% of the overall energy, the
capability to store full-network weights on MRAM reduces this cost by
a factor of 40×, making it almost negligible compared to computing
energy. As a consequence, the total energy per inference drops by
3.5× – from 4.16 mJ to 1.19 mJ.

The HWCE engine included in Vega is not designed to operate
efficiently on networks dominated by 1×1 convolutions, such as
MobileNet-V2, where the combined effect of parallel execution and
RI5CY extensions deliver very high software throughput. In that use
case, employing the HWCE on 3×3 depth-wise convolutions would
improve their speed by a factor of ∼3×, but lead to a modest ∼5%
speedup on the overall network. On the other hand, VGG-style
networks dominated by 3×3 Conv layers are ubiquitous in real-world
applications and are currently experiencing a resurgence of popularity
in the DL community [221]. On such networks, the HWCE can
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RISC-V VP
Schmidt et al.

ISSCC 2021 [227]

SleepRunner
Bol et al.

JSSC 2021 [228]

SamurAI
Miro-Panades et al.

VLSI 2020 [183]

Mr. Wolf
Pullini et al.

JSSC 2019 [216]

GAP8
Flamand et al.

ASAP 2018 [229]

Vega
(this work)

Technology FinFET 16nm CMOS 28nm
FD-SOI

CMOS 28nm
FD-SOI CMOS 40nm CMOS 55nm CMOS 22nm

FD-SOI
Die Area 24 mm2 0.68 mm2 4.5 mm2 10 mm2 10 mm2 12 mm2

Type Vector Processor MCU Heter. MCU Parallel MCU Parallel + Heter. MCU Parallel + Heter. MCU
Applications DSP IoT GP IoT GP + NSAA +DNN IoT GP + NSAA IoT GP + NSAA + DNN IoT GP + NSAA + DNN

CPU/ISA RV64GC CM0DS
Thumb-2 subset

1x RI5CY
RVC32IMFXpulp

9x RI5CY
RVC32IMFXpulp

9x RI5CY
RVC32IMXpulp

10x RI5CY
RVC32IMFXpulp + SF

Embedded SRAM
(State Retentive) 4.5 MB 64 kB s.r. 464 kB

40 kB s.r.
64 kB (L1)

512 kB s.r. (L2)
64 kB (L1)
512 kB (L2)

128 kB (L1)
1600 kB s.r. (L2)

Embedded NVM - - - - - 4 MB MRAM
Wake-up Sources - WiC WuR, RTC, Int, GPIO GPIO, RTC GPIO, RTC GPIO, RTC, Cognitive

Sleep Power
SRAM Ret. Slp.

Power
(St. Ret. SRAM)

-
5.4 µW
9.4 µW

(64 kB s.r.)

-
6.4 µW

(40 kB s.r.)

72 µW
76.5 - 108 µW

(32 kB - 512 kB s.r.)

3.6 µW
30 µW

(512 kB s.r.)

1.7 µW (CWU)
2.8 - 123.7 µW

(16 kB - 1.6 MB s.r.)

INT Precision
FP Precision

64
FP64, FP32, FP8

32
-

8, 16, 32
-

8, 16, 32
FP32

8, 16, 32
-

8, 16, 32
FP32, FP16, bfloat

Supply Voltage 0.55 - 1V 0.4 - 0.8V 0.45 - 0.9V 0.8 - 1.1V 1 - 1.2V 0.5 - 0.8V
Max Frequency 1.44 GHz 80 MHz 350 MHz 450 MHz 250 MHz 450 MHz
Power Range n.a. - 4 W 5.4 - 320 µW 6.4 µW - 96 mW 72 µ@ - 153 mW 3.6 µW 75 mW 1.7 µW - 49.4 mW

1,4Best Int Perf
1,4Best Int Eff

1,4@ Perf
-

31 MOPS (32b)
97 MOPS/mW (32b)
@ 18.6 MOPS (32b)

1.5 GOPS
230 GOPS/W
@ 110 MOPS

12.1 GOPS
190 GOPS/W
@ 3.8 GOPS

6 GOPS
79 GOPS/W
@ 3.5 GOPS

15.6 GOPS
614 GOPS/W
@ 7.6 GOPS

2,4Best FP32 Perf
2,4Best FP32 Eff

2,4@ Perf

n.a
92.3 GFLOPS/W

n.a
- -

1 GFLOPS
18 GFLOPS/W
@ 350 MFLOPS

-
2 GFLOPS

79 GFLOPS/W
@ 1 GFLOPS

2,4Best FP16 Perf
2,4Best FP16 Eff

2,4@ Perf

368.4 GFLOPS
209.5 GFLOPS/W
@ 73 GFLOPS

- - - -
3.3 GFLOPS

129 GFLOPS/W
@ 1.7 GFLOPS

3,4Best ML Perf
3,4Best ML Eff

3,4@ Perf
- -

36 GOPS
1.3 TOPS/W
@ 2.8 GOPS

-
12 GOPS

200 GOPS/W
@ 7 GOPS

32.2 GOPS
1.3 TOPS/W
@ 15.6 GOPS

1 2 OPs = 1 8-bit MAC on MatMul benchmark unless differently specified.
2 2 FLOPSs = 1 FMAC on MatMul benchmark unless differently specified.
3 8-bit ML Workloads.
4 Execution from SRAM.

Table 4.8 – Comparison With State Of The Art

provide a substantial performance boost with respect to software-
based execution, thanks to its exploitation of filter data reuse.

To better showcase this point, in Table 4.7 we present results in
terms of energy and latency for three networks of the recently presented
RepVGG-A0 [221] family, which have been demonstrated to be highly
competitive with the State-of-the-Art in terms of trainability, speed,
and accuracy. They are divided into 5 stages composed of 1, 2, 4,
14, and 1 layers, respectively – all implemented as 3×3 convolutions,
plus a final fully connected layer. All three networks are too big to fit
entirely within the on-chip MRAM, so we revert to greedy allocation –
we keep early layer weights in MRAM until they fit (as reported in the
rightmost column of Table 4.7), to exploit its higher energy efficiency,
and then we allocate back-end layers in HyperRAM.

The results are presented for both HWCE-based and SW-based
computation, using the same PULP-NN layers of the MobileNetV2
case study in the latter case. Almost all layers are compute-dominated,
except for the final fully connected layer. In such conditions, HWCE-
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based execution delivers a 3× speedup over SW-based; and a 60-90%
boost in system-level energy efficiency, depending on how much is the
energy impact of HyperRAM traffic.

4.2.4 Comparison With SoA
Table 4.8 shows a comparison with a wide range of programmable
embedded computing platforms, including RISC-V based vector
processors for transprecision FP computations [227] and low-power
IoT computing systems [228] exploiting either parallelism [216],
heterogeneity [183], or both [229] to address the high computing
requirements of emerging NSAA applications and DNNs.

The work presented in [227] proposes a RISC-V vector processor
composed of 8 clusters, each one including a 64-bit scalar core
coupled with a vector accelerator supporting double-, single-, and half-
precision FP operations, with a maximum of 8, 16, and 32 operations
per cycle, respectively. While the absolute performance of [227] is
much higher than Vega, thanks to the significantly larger area and
higher operating frequency, its peak energy efficiency on a matrix
multiplication benchmark is only 1.62x and 1.16 better than the one
of Vega for FP16 and FP32 operation, respectively, despite the more
scaled technology node. Moreover, the efficiency of a vector processor
is well known to significantly degrade when dealing with small datasets
and irregular patterns typical of NSAA. In this work, we demonstrate
leading-edge FP efficiency on a wide range of 32-bit and 16-bit FP
NSAA thanks to the flexibility of the proposed software-programmable
cluster, as shown in Section 4.5.

With respect to traditional fully programmable IoT endnodes such
as [228], which is representative for a wide range of MCUs based
on CortexM0 or similar low-cost processors, Vega delivers orders of
magnitude better performance and efficiency in active mode, enabling
the execution of complex NSAA not feasible on such tiny systems.
However, it should be noted that the main focus of most of research
work on IoT MCUs is on optimization of low-power states such as
state-retentive SRAMs or minimization of deep-sleep power and wake-
up time from deep sleep, addressed in Vega with commercial off the
shelf IPs exploiting standard techniques not being a key contribution
of this work.
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With respect to the more closely related works, namely multi-core
IoT end-nodes [216], [229], the proposed SoC delivers more than 1.3×
better peak performance and more than 3.2× better peak efficiency
on non-DNN NSAA workloads. The main improvements for these
workloads come, on top of the more scaled technology node, from
the more optimized integration between the prefetch buffer of the the
cores and the hierarchical instruction cache. This cuts the critical
path of the design with no loss in functional performance, lowering the
power consumption and improving energy efficiency. For what concerns
FP support, Vega is much more flexible and efficient than Mr.Wolf,
delivering 2× better peak performance 4.3x better peak efficiency on
32-bit single-precision FP workloads, thanks to the highly optimized,
shared FP unit offering support for single-cycle NSAA operations,
such as fused multiply and accumulate. Moreover, Vega offers more
flexibility in terms of support for low-precision FP formats (i.e., 16-bit
and bfloat) further gaining performance and efficiency. With respect
to the most efficient hardware-accelerated IoT end-nodes [183], Vega
achieves similar energy efficiency on DNN inference workloads at 5.5×
better performance. On non-DNN, NSAA workloads, Vega achieves
10× and 2.5× higher performance and energy-efficiency despite the 2
platforms employing the same RI5CY core [196]. This gain is achieved
thanks to the architectural efficiency of the parallel computing cluster
over sequential solutions, also demonstrated in Fig. 4.6.

Finally, to the best of the authors’ knowledge, the proposed SoC
is the only IoT end-node featuring a configurable 1.7 µW cognitive
wake-up unit capable of fully on-chip execution of state-of-the-art
mobile DNNs, such as MobileNetV2 and RepVGG, from non-volatile
memory support.

4.2.5 Conclusion
We presented Vega, an always-on IoT end-node SoC featuring
a 1.7 µW fully retentive cognitive wake-up unit coupled with a
power/performance/precision scalable SoC. The proposed SoC can
achieve up to 32.2 GOPS (@ 49.4 mW) peak performance on NSAAs,
including mobile DNN inference, exploiting 1.6 MB of state-retentive
SRAM, and 4 MB of non-volatile MRAM. To meet the performance and
flexibility requirements of NSAAs, the SoC features 10 RISC-V cores:
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one core for SoC and IO management and a 9-cores cluster supporting
multi-precision SIMD integer and FP computation. Two programmable
ML accelerators boost energy efficiency in sleep and active state,
respectively. The proposed SoC can deliver a peak performance of
32 GOPS with an efficiency up to 1.3TOPS/W. The proposed SoC
is capable of fully on-chip execution of state-of-the-art mobile DNNs
such as MobileNetV2 and RepVGG-A0 at 1.19 mJ/Inference and 4.4
mJ/Inference, respectively.
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4.3 A Non-Volatile First-Level Memory
Subsystem: The Siracusa SoC

4.3.1 Introduction
Extended Reality (XR) has become increasingly popular in recent years,
with applications in entertainment, education, healthcare, and more.
However, mass adoption of XR technology still faces several challenges
in meeting stringent latency and power consumption requirements.

On-sensor computing is a promising approach to overcome a key
challenge posed by modern XR devices: minimizing power consumption
for low-latency, human-in-the-loop processing of sensor streams and
feedback control [7]. In on-sensor computing, data acquired from
the sensor is processed on a tightly integrated compute layer rather
than being sent off-chip to a downstream computing device. For XR
applications, on-sensor data processing allows extracting semantically
richer information from raw sensor data using machine learning,
reducing the data transfer latency and energy while increasing user
privacy.

However, the amount of on-chip memory (up to a few MiB), limitied
by the area of constraints, and the tightly bound power envelope (a
few hundred mW) of on-sensor computing platforms impose severe
limitations on the machine learning-based workloads, and require
low/mixed-precision neural networks to ensure adequate quality of
results and optimal performance [230].

Moreover, while information extraction is nowadays primarily
achieved with machine-learning-based processing pipelines, conven-
tional signal processing algorithms, e.g., interpolation and compression,
remain crucial functional modules of visual processing pipelines. In XR
applications, such algorithms are often used to compute the ROIs that
are transmitted between the sensor and an external aggregator [231]:
their suboptimal execution limits the overall end-to-end application
performance.

In this work, we present Siracusa, a RISC-V SoC for on-sensor
visual processing targeting XR workloads fabricated in TSMC 16 nm
technology. Siracusa introduces a low-power heterogeneous architecture
for complex visual processing tightly coupled with the image sensor,
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to enable scalable multiple-smart sensors integration in XR glasses.
Siracusa overcomes the challenges posed by the requirements of XR
applications for on-sensor computing platforms by tightly integrating a
state-of-the-art fine-grained mixed-precision neural network accelerator,
N-EUREKA, with an octa-core RISC-V compute cluster optimized
for signal processing applications with extensive support for FP multi-
precision computation. As a key innovation, Siracusa integrates a
configurable weight memory subsystem with a virtual paging extension
that enables efficient prefetching of weight data and minimizes copy
overheads in low-latency DNN inference, as required for human-in-
the-loop XR applications.

In detail, the main contributions of this work are as follows:

• We present the integration of an 8-core 120 GOp/s @ 530 MHz
RISC-V cluster with instruction extensions enabling efficient
image and signal processing with N-EUREKA, a weight-precision-
tunable cooperative CNN accelerator achieving a peak energy
efficiency of 9.9 TOp/J @ 1280 GOp/s.

• We introduce a novel memory hierarchy that combines high-
bandwidth on-chip storage for neural network weights with a
configurable virtual paging system, enabling seamless prefetching
of weights for machine learning applications. We demonstrate
that this design enables efficient tiled processing of complex
neural networks, increasing inference efficiency of individual
weight-intensive layers by 3.2 × compared to a shared-bandwidth
configuration for weights and activations.

• We evaluate Siracusa in an on-sensor compute scenario by
deploying a state-of-the-art hand detection workload. We demon-
strate that leveraging the novel memory hierarchy increases the
average inference throughput and energy efficiency by 2.5× and
1.8×, compared with a baseline shared-bandwidth architecture,
achieving an 8-bit inference energy efficiency of 0.76 TOp/J.

Contributions The Siracusa SoC is a joint effort between ETH
Zurich, Meta Reality Labs and Numem Inc. As such many people have
been involved in the realization of this project. Project conception and
planning were led by Davide Rossi, Francesco Conti, Barbara de Salvo
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and Luca Benini. The N-Eureka hardware accelerator was developed by
Arpan Prassad and Francesco Conti based on the original IP developed
by Gianna Paulin. The STT-MRAM IP has been contributed by
NuMem Inc., while I performed the system integration and the design
of the tightly-coupled NVM subsystem around the memory macros.
The SoC architecture and system integration was jointly developed by
Alfio Di Mauro and me. The chip-bring up, firmware development and
silicon measurements were executed by myself. Evaluation and write-
up were done by myself, Moritz Scherrer, Francesco Conti, Arpan
Prassad and Luca Benini. At the time of submitting this thesis,
the content of this section has been accepted for presentation and
subsequent publication at the 49th IEEE European Solid-State Circuits
Conference 2023 in Lisbon2.

4.3.2 Architecture
The Siracusa SoC integrates two domains: I/O and Heterogeneous
Cluster, shown in Figure 4.12. The I/O domain consists of a 32-bit
RISC-V fabric controller (FC) core, responsible for management tasks,
alongside 2 MiB of L2 SRAM, and a rich set of standard peripherals
including QSPI, I3C, Hyperram, and UART, as well as a dedicated
camera interface with the image sensor to be co-packaged for in-
sensor computing [7], [232]. Located in its own power and clock
domain, the Heterogeneous Cluster domain consists of a 8-core RISC-
V cluster, the N-EUREKA accelerator, and the tightly-coupled Weight
Memory subsystem.

RISC-V Cluster

The cluster features eight RISC-V cores implementing the RV32IM-
CFXpulpnn ISA tightly coupled with a dedicated 256 kB L1 scratchpad
SRAM. The Xpulpnn ISA extensions include DSP instructions such
as multiply-accumulate and hardware loop instructions, as well as
SIMD operations such as dot-products with implicit load semantics
for power-of-two bit widths (2-bit, 4-bit, 8-bit, 16-bit). To accelerate
a wide range of visual processing applications beyond neural network
inference, the cores feature dedicated multi-precision FPUs with FP8,

2 ©2023 IEEE. Reprinted with permission.
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FP16, FP16Brain, and FP32 support. High instruction and data
memory energy efficiency are achieved thanks to a 2-level (4 KiB core-
private, 4 KiB shared) hierarchical instruction cache with integrated
prefetcher and a single-cycle latency interconnect towards tightly-
coupled data memory.

N-EUREKA

Besides its compute cluster, Siracusa features a highly flexible mixed-
precision ML accelerator called N-EUREKA. N-EUREKA is an 8-bit
activation, 2 – 8-bit weight precision-scalable accelerator targeted
at building blocks of modern CNNs, particularly 3×3, 1×1 and
depthwise 3×3 layers. The architecture of N-EUREKA, shown in
Fig. 1 (bottom), is built on a stationary double-buffered input buffer
and an array of 6×6 Processing Elements (PEs), each responsible
for the calculation of a distinct output activation. Each PE contains
32 columns, and each column combines 9 1×8-bit serial multipliers,
receiving inputs dispatched from the input buffer according to the
operating mode, and weights streamed from the system weight memory.
By decomposing each layer in a combination of 1×8-bit dot-products,
N-EUREKA maximizes performance and energy efficiency in each
mode. Contributions from each column are summed up (in 3×3 and
1×1 modes) into a single output-channel-wise 32-bit accumulator or
marshaled to separate accumulators (in depthwise 3×3 mode). N-
EUREKA also supports per-channel activation scaling, biasing and
8-bit requantization, and automatic reloading to combine multiple
jobs into a single complex task.

Thighly-coupled non-volatile memory

To sustain high-throughput computation in N-EUREKA, Siracusa
closely couples the accelerator directly to the L1 memory, thus avoiding
the need for superfluous memory transfers of activations between cluster
cores and the accelerator. For network weights, the SoC features a
large, power-optimized weight memory, consisting of 4 MiB of SRAM
as well as 4 MiB of NVM, which is not characterized in this work.
While networks weights may also be allocated in the L1 memory,
storing them in the weight memory subsystem increases bandwidth
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considerably, as N-EUREKA is tightly coupled to it with uncontended
parallel access to all 4×64-bit read-write ports of each domain, whereas
L1 bandwidth is used for activations and is shared with the RV32-
cores. To achieve a maximum sustained bandwidth of 128 Gbit/s from
either the non-volatile memory block or the SRAM, the data path has
been carefully pipelined with just enough stages to completely hide
any access latency towards the NVM given the regular weight access
pattern of N-EUREKA. Access from the cluster side and N-EUREKA is
arbitrated by an at-runtime configurable arbitration logic that provides
per-transaction exclusive access to either of the two memory domains
on either a hard priority policy or fair bandwidth arbitration.

Besides direct memory mapping of the combined 8 MiB address
space, the weight memory subsystem can operate in a lightweight
software-assisted virtual memory mode where N-EUREKA operates
on virtual 4 MiB pages. A small page handling circuitry maps N-
EUREKA’s transaction to either of the two physical memory pages
(residing in SRAM and non-volatile memory domain) by comparing
the address prefix with the two live page index registers that are
exposed via the weight memory subsystem’s configuration interface. In
virtual memory mode, if the page index associated with an accelerator
transaction matches either of those live page index registers, the
transaction is forwarded to the corresponding memory domain. In
case of a page miss, i.e. neither of the two-page index registers are
matching, the transaction is stalled and an interrupt is raised towards
the FC. Firmware running on the fabric controller can instrument
the IO-DMA to perform a page swap through the 32-bit AXI CDC
concurrent to the L2-L1 DMA transfers of activations via the separate
64-bit CDC port. Page swapping can thus be performed without
limiting the L2-L1 bandwidth required for tiling-based inference of large
networks. Once finished, the FC updates the page index register which
will unblock the stalled transaction, which is completely transparent
to N-EUREKA. The system also supports proactive page swapping
leveraging the typically deterministic weight access pattern in CNN
workloads; Apart from the page-miss interrupt, the fabric controller
is also asynchronously notified of page “switches”, when N-EUREKA
switches from accessing one live page to the other. Depending on
the compute intensity of the workload, this allows for partial or even
complete overlap of the page swap procedure with N-EUREKA’s



156 CHAPTER 4. SYSTEM-LEVEL CONSIDERATIONS

computation. The software-assisted virtual memory feature thus allows
for transparent network reconfiguration with negligible increase in
overall circuit area.

SRAM
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64 64
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64 64 64 64 64 64 64 64 64 64 64 64 64 64
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MRAM 
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Thightly-Coupled NVM

Figure 4.13 – Schematic of the tightly-coupled non-volatile memory (TC-
NVM) subsystem consisisting of 4 MiB of STT-MRAM and 4 MiB SRAM
exposed with a smart-arbitrated cluster- and accelerator acces port.

4.3.3 Results
Siracusa was taped out in 16 nm FinFET technology with a total die
area of 16 mm2, a micrograph of Siracusa is shown in Figure 4.14. At
a nominal voltage of 0.8 V, the chip operates at 360 MHz to 530 MHz.
At its most efficient operating point at 0.6 V, the cluster boasts a peak
energy efficiency of 1.46 TOp/J (2-bit SIMD) while N-EUREKA pushes
this number to 9.9 TOp/J (2×8-bit), as shown in Figures 4.15 and 4.16.

To quantify the performance improvements enabled by the
additional memory bandwidth afforded by the weight memory
subsystem, we deploy individual depthwise and dense convolution
layers and measure the gain in performance and energy efficiency.
The configurations used in these experiments are a 3×3 depthwise
convolution with 64 channels and a pointwise and 3×3 dense
convolution with 256 input and output channels. All convolutions
operate on a 6×6 input feature map. For each convolution, we
implemented three tiling strategies. In the reference strategy, we
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Figure 4.14 – Annotated chip micrograph of Siracusa.
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store the weights and activations of each layer in the L2 memory and
execute optimized code to tile and transfer the inputs and weights,
followed by N-EUREKA kernels. This corresponds to the expected
performance of a version of Siracusa without our paged weight memory
subsystem. The second implementation uses Siracusa’s weight memory
to store the weights of each test layer but still performs tiling to
transfer input and output activations between L2 and L1. Finally, we
implement a version of each layer that does not perform tiling and
accesses inputs directly from L1, a theoretical ideal implementation.

To evaluate the end-to-end neural network inference performance
of Siracusa, we deploy a complete hand detection backbone in 8-
bit precision consisting of a MobileNet-v2-inspired feature extraction
pipeline, introduced in Han et al. [233], shown in Figure 4.17. VGA
(640 × 480 grayscale) resolution camera frames are processed by a
CNN-based hand detection algorithm, which infers the position and
size of hands in the picture. We use a layer fusion implementation for
IRB layers and achieve an average throughput of 168.5 MAC/cycle,
at an energy cost per inference of 107.3 µJ and a latency of 692 µs,
equivalent to an average energy efficiency of 0.76 TOp/J.

640 � 480

90 FPS

Camera On-Camera Compute Aggregator

Crop & Resize

Hand Detection

Joint Location 
Prediction

96 � 96

90 FPS90 FPS

33x Bandwidth Reduction

Figure 4.17 – Overview of the hand tracking pipeline. This work implements
the hand detection algorithm on Siracusa.

As shown in Figure 4.18, leveraging the weight memory increases
energy efficiency by 1.1, 3.2, and 2.1 × for individual depthwise,
pointwise, and dense 3×3 convolutions, respectively, which pushes
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the performance of dense convolutional layers to within 22 % of their
theoretical maximum. Similarly, the throughput and energy efficiency
of the end-to-end network are improved by a factor of 2.5 × and 1.8 ×
compared to an implementation without our paged weight memory
subsystem.
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Figure 4.18 – Comparison of the energy efficiency of different tiling strategies
of individual layers and the full network. The data was measured at room
temperature at an operating voltage of 0.8 V and normalized to an ideal
implementation without tiling.

While the depthwise convolutions used in the backbone only make
up around 12.5 % of all operations, their relatively lower execution
performance limits the overall energy efficiency of Siracusa in a
layerwise execution schedule, achieving an energy cost of 159.9 µJ.

To address the bottleneck in the execution of single depthwise layers,
we propose fusing the execution of IRB layers for each tile. Layer fusion
avoids moving the inputs and outputs of depthwise layers between
L2 and L1, which eliminates the underutilization of N-EUREKA due
to stalling. We estimate the performance increase of applying layer
fusion, by measuring the execution latency of IRB tiles in a layer
fusion schedule. By boosting the throughput of depthwise operators by
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2.2 × without sacrificing pointwise operator performance, this schedule
increases the average throughput to 168.5 MAC/cycle and reduces
the energy cost per inference to 107.3 µJ, an improvement of 1.48 ×,
equivalent to an average energy efficiency of 0.76 TOp/J.
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4.4 Comparison with the State of the Art

A comparison of our design with similar edge computing and on-
sensor computing architectures is shown in Table 4.9. The peak
energy efficiency of 9.9 TOp/J for dense 3×3 convolutions achieved in
this work is 2 × higher than the result reported in [234], and 1.2 ×
higher than the result reported in [124]. Further, Siracusa meets the
stringent XR footprint requirements, while the design proposed in [234]
requires an area of 62 mm2. In terms of general compute performance,
Siracusa’s optimized RISC-V cores improve on the state-of-the-art by
25 % in terms of integer SIMD performance, and 9 % in terms of fp32
performance. Siracusa’s power consumption is below 250 mW, even in
the highest performance setting, fully compatible with the in-sensor
computing’s tight power budget within XRs’ glasses.
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4.5 Summary

In this chapter, we widened our focus from circuit-level design to entire
integrated systems with a focus on energy-proportionality, memory
bandwidth and IO power. With the design and post-silicon evaluation on
two different heterogenous multi-core SoC architectures in advanced
technology nodes, we showcased a couple of different strategies to
address those three focus points:

• In the Vega SoC we combined the circuits and findings from
chapter 3 to design a system that can scale from an always-
on 1.7 µW HDC-based cognitive wakeup to an 32.2 GOPS of
on-demand ML performance at a mere 49.4 mW.

• With the Siracusa system, we presented a novel approach to
tightly couple NVM to a bandwidth demanding QNN accelerator
to drastically reduce the off-chip memory access induced IO-
energy and bandwidth bottleneck with a peak-energy efficiency
of 9.9 TOp/J for dense 3×3 convolutions.



Chapter 5

Conclusions

Smart Sensing nodes will be at the epi-centre of a larger technological
paradigm shift in industry, transportation and human-computer
interaction. Key “enablers” on this path towards pervasive energy-
autonomous edge computation devices are continuous improvements
in energy efficiency, performance and latency while at the same time
balancing circuit reliability and cost. Energy-proportionality of the
compute fabric is a crucial characteristic for meeting those requirements
and demands to leave the beaten paths of von-Neumann-based
computing and explore novel compute- and hardware-architectural
concepts like near- and in-memory computing.

This thesis started with an outline of the current boundaries
of the ultra-low power hardware design space, emphasising those
near- and in-memory computing concepts. It continued with an
introduction to the principles of vector-symbolic computation on the
application side. We then proceeded with several concrete digital
circuit architectures to efficiently realize the HDC operators in a
hardware-friendly manner. We combined these building blocks to
form Hypnos, the first fully-configurable hyperdimensional computing
accelerator. The effectiveness of Hypnos was then demonstrated in

165
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a complete SoC, where Hypnos was complemented with additional
support circuitry to form a cognitive wake-up unit, the first stage of an
energy-proportional system. Finally, we proposed a novel architectural
template for the “second stage” of an energy-proportional system
based on the combination of NVM tightly coupled to a QNN hardware
accelerator in a heterogenous SoC.

In this final part of the thesis, we summarize the key results and
findings of these contributions and provide a researcher’s outlook on
the path forward.
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5.1 Main Results

Energy-Efficient Open-Source Implementation of
Common HDC Operators
Hyperdimensional Computing is a novel compute framework well
suited for stochastic computing on inherently noisy compute fabric.
We proposed energy-efficient implementations for the fundamental
operators of binary-spatter-code based HDC;

The presented HD-encoder unit allows for flexible implementations
of the binding, bundling and shift-permutation operation. Based on the
analysis of Schmuck et al., we developed an encoder architecture with
optimal saturating counter bit-width for full-precision bundling that
allows evicting the counter state to external memory. This provides the
flexibility to match the nested-loop iteration style to the problem at
hand rather than being compelled by the hardware design to perform
bundling operations in the innermost loop.

The similarity manipulator circuit is an elegant hardware-friendly
solution to implement continuous item memory mapping and binarized-
back-to-back bundling using a unary encoder (thermometer code) and
hardwired random permutation.

With the proposed mixing stage, we introduce a radically different
take on item memory mapping based on re-materialization. Contrary
to previous re-materialization techniques based on cellular automata,
our solution improves the time-complexity of random access to any
label vector from O(N) to O(log(N)) time steps. We furthermore
mathematically prove the equivalence of our iterative permutation
approach to using unique random permutations per label.

Finally, we present a latch-based auto-associative memory for vector
lookup and cleanup operations. We analyzed the energy-efficiency
behavior of this SCM-based AM under sub-nominal voltage conditions.
We found that for 65 nm scaling from 1.2 V nominal voltage down to
0.6 V, the circuit not only remains functional but also yields a 4× to
5× improvement in overall energy efficiency depending on the degree
of parallelization in the hamming distance computation logic.
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Hypnos: The first all-digital near-memory HDC
Accelerator
Although VSAs have interesting properties concerning error-resiliency,
their extremely wide datapath makes HDC a poor match for
conventional general-purpose cores. To fully leverage the potential
of high-dimensional symbolic representations, we thus combined the
HDC circuit building blocks to form Hypnos, the first fully configurable
all-digital SCM-based hardware accelerator for binary spatter code.
With its micro-codable datapath, Hypnos excels in configurability,
requiring less than 15 micro-code instruction slots for all analyzed HD
algorithms. At the same time, Hypnos’s circuit architecture improves
area- and energy-efficiency over the previous SoA by up to 3.1×
and 3.3× respectively. We showed that these improvements mainly
originate from the area advantage of our novel item memory mapping
scheme based on the mixing circuit and the ability to repurpose part of
the associative memory as a vector buffer during the HD-encoding step.
To tune the architecture for the leakage characteristics of the target
technology, the proposed architecture exposed the vector fold design
parameter. We demonstrated that proper tuning of this parameter
could reduce the average system power consumption by 40%-55%
depending on the target technology and Vth cell flavor mix. With a
target power envelope in the sub 25 µW range in 22 nm technology, we
clearly positioned the design as a candidate for ultra-low power sensing.

Feasability Analysis of HDC-based Anomaly
Detection for Predictive Maintenance Applications
As part of demonstrating Hypnos’ microcode expressibility, we
performed the first initial feasibility analysis of HDC for predictive
maintenance applications. Our algorithm performs online learning of
the prototypical healthy-system state HD-vector and, after the initial
calibration phase, tracks the hamming distance deviation of the 0.5 s
time windows from the calibration vector. We demonstrated a visually
evident correlation of the HD distance metric to the labeled healthiness
of the monitored ball bearings in our dataset and estimated Hypnos’
average power consumption below 8 µW when continuously executing
the proposed HD-algorithm.
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Silicon Realization of Hypnos as first-stage
Always-On Cognitive Wakeup Unit
A key requirement for optimal energy efficiency in flexible always-
on sensing platforms is their ability to adapt to rapid dynamic
changes in the compute intensity of the workload, a characteristic
we call energy-proportionality. As part of the full system silicon
realization in 22 nm FDSOI technology, called Vega, we demonstrate
the effectiveness of a multi-staged, heterogeneous architecture to deliver
on this particular aspect. The proposed cognitive wakeup unit, a
combination of Hypnos and an autonomous digital sensor interface
with lightweight preprocessing capabilities, forms the first stage in
this architecture, enabling the system power management unit to form
“smart” decisions on appropriate time instances to request additional
processing power by the RISC-V cluster or the hardware convolutional
engine. With a power consumption of as little as 1.7 µW, the CWU in
Vega is not only competitive to the current SoA of application-specific
full custom wake up designs but is also a significant step-up in terms
of configurability and application agnosticism. Our proposed CWU
thus forms, to the author’s knowledge, the very first ML-powered,
general-purpose wakeup circuit in the µW range. It thus enables Vega
to cover the entire range of sub 2 µW cognitive sensor analytics up
to 1.3 TOPS/W 8-bit DNN inference performance.

Design and Realization of novel NVM-centered
System Level Architectures for Energy-Efficient
DNN Execution
While VSAs are a powerful framework for highly error-resilient
computing, their prowess in tackling more complex sensor analytics
tasks like computer vision is still a heavily debated research question.
Without a doubt, the current SoA in this application domain is
dominated by energy-optimized QNN-architectures and are the way
to go for the most latency and efficiency-demanding applications like
e.g. eye- or hand-tracking algorithms deployed in extended reality.
In the final contribution of my thesis, I thus concentrated on how to
improve energy efficiency and the IO-bottleneck of the next compute
stage of an energy-proportional smart sensing system; the Siracusa
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SoC taped out in 16 nm Fin-FET technology, provides state-of-the-art
9.9 TOp/J (8-bit activations, 2-bit weight, dense-layers) peak energy-
efficiency by directly coupling STT-MRAM as first-level memory
to the multi-precision hardware accelerator N-EUREKA. We found
that the bandwidth-optimized memory-subsystem especially boosts
the efficiency of low-input reuse layers like pointwise layers, where
the thightly-coupled NVM improves energy-efficiency by 3.2×. The
optimized architecture of N-EUREKA combined with its aggregated
bandwidth of 272 Gbit/s, not only excels in peak performance but also
delivers solid 0.76 TOp/J sustained performance at 692 µs latency on
a MobileNetv2 derived hand-tracking algorithm. Similar to Vega, the
proposed architecture in Siracusa not only delivers ample raw tensor
multiplication performance for CNNs but also SoA 3.55 GOp/s (8-bit
integer operations) per general-purpose RISC-V core performance for
non-ML pre- and post-processing workloads in near-sensor analytics
pipelines.
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5.2 Outlook

This thesis brought a number of key insights on holistic ULP system
design to light; The multi-objective optimization problem faced by
circuit architects does not always favour the most performant or
the most energy-efficient novel technology. At the system level, the
well-balanced performance and cost metrics of digital CMOS make it
remain a very competitive solution for real-life near-sensor analytics
compute fabrics.

Having explored the challenge of energy-proportional computing
from various angles, we found that a multi-stage architecture template
with increasing degrees of compute performance is very well suited
for the task. With our contributions proposed throughout this thesis,
we aspired to advance the ULP research field one step stone further
on the very long path towards the natural limits of energy efficiency
and performance density. To continue this journey, we can think of
several possible future research directions:

Research Error-Resilient Control-Flow
Architectures for HDC
The current design of Hypnos exploits HDC’s data-path error-resiliency
by operating on vectors with large degrees of implicit redundancy.
However, in order to support even more aggressive voltage scaling,
not only the data path needs to be resilient to device failures, but
even more importantly, the control path, that is, the control logic that
orchestrates the order of primitive HD-computing operations needs to
be hardened. In the author’s view, this problem can be approached
from a number of different angles, of which classical redundant lockstep
computing is just one possibility. Potential other directions are the use
HDC based state machines or stochastic control flows, where the HDC
algorithm, i.e. the order of operations is vector dimension specific
and could thus share similar noise-resiliency properties as the data
contained in the vectors itself.
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HDC Algorithm Development and Deployment
Framework
The stellar growth of DNN in recent years can partially be explained
by the availability of the proper tools like PyTorch, TensorFlow and
the like for rapid prototyping and easy deployment of new network
architectures on complex accelerator hardware. The VSA research
community would most definitely profit from developing a framework in
that direction that would simplify the testing of novel HDC algorithm
ideas and the eventual deployment on systems like Hypnos.

Expand the Idea of Cognitive Wake-Up Unit to
ML-enhanced Voltage and Frequency Scaling
One possible way to push the energy-proportionality of heterogenous
SoCs or SiPs to the next level could be to extend the idea of “smart-
On/Off” control to smart workload deployment and performance
control. An extended version of the CWU could not only select
between discarding an event or offloading an event-of-interest to the
next processing stage but could also decide on the most suitable HW
unit for the offloading operation and the most appropriate operating
corner to meet the latency constraints.

Investigate Ideas for Energy-Proportional
Interconnect Fabric for the Memory Hierarchy
Finally, on the memory-hierarchy side, there might be an opportunity
to depart from the static-at-design time latency of the interconnect
fabric in SoCs. While pipeline stages are the go-to solution to improve
throughput at the expense of access latency, they are also well-known
to be detrimental to energy efficiency beyond a certain point, which
depends on the particular design. Thus another idea to increase the
energy-proportionality of the entire system would be to design an
interconnect that can be dynamically, meaning at runtime, tuned to
only use as much pipelining as necessary to meet the currently required
bandwidth demands. Possible ways to achieve such behaviour could be
NoC architectures with bypassable pipeline stages that tune the bypass
control signal to the current corner, i.e. criticality of the network edge
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at hand, the latency sensitivity of the deployed application or the
workload-dependent Pareto frontier in energy efficiency versus the
number of pipeline stages.





Appendix A

Chip Gallery

In this appendix we provide a summary of every fabricated IC with
involvment of the author in the design process. The chips are grouped
by relvance to the thesis topic. The complete up-to date list can be
found online at http://asic.ethz.ch/authors/Manuel_Eggimann.
html.
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A.1 Treated in this Thesis

Name Rosetta

Designers M. Eggimann, A. Di Mauro, R. Gitermann, O.
Harel, A. Burg, A. Levisse, S. William, M. Rios,
B. Muheim

Application / Publications PULP, HDC / Research Project [64]
Technology / Package TSMC 65nm / QFN64
Dimensions 4100 µm×3000 µm
Gates 6 MGE
Voltage 1.2 V
Clock 190 MHz

Rosetta is a PULPissimo based architecture which uses the RI5CY core with
the newest vector processing ISA extension and several accelerators for HDC and
Spiking Neural Network (SNN). In addition to the Integrated Circuits Laboratory,
the chip contains an a computational-SRAM contributed by the Embedded
Systems Laboratory and an eDRAM developed by the Telecommunication Circuits
Laboratory of EPFL our sister university from Lausanne.
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Name Vega

Designers D. Rossi, F. Conti, M. Eggimann, S. Mach, A. Di
Mauro, M. Guermandi, G. Tagliavini, A. Pullini,
I. Loi, J. Chen, E. Flamand

Application / Publications PULP, Always-on Sensing / Research Project [84],
[122]

Technology / Package GF 22nm / BGA169
Dimensions 4000 µm×3000 µm
Gates 100 MGE
Voltage 0.5 V to 0.8 V
Clock 32 kHz to 100 MHz

Vega is an always-on IoT end-node SoC capable of scaling from a 1.7 µW fully
retentive cognitive sleep mode up to 32.2 GOPS (@49.4 mW) peak performance on
NSAAs, including mobile DNN inference, exploiting 1.6 MiB of state- retentive
SRAM, and 4 MiB of non-volatile MRAM. To meet the performance and flexibility
requirements of NSAAs, the SoC features 10 RISC-V cores: one core for SoC and
IO management and a 9-core cluster supporting multi-precision SIMD integer and
floating- point computation. Two programmable machine-learning accelerators
boost energy efficiency in sleep and active state, respectively.
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Name Siracusa

Designers M. Eggimann, A. Di Mauro, A. Prasad, F. Conti,
D. Rossi

Application / Publications PULP, ML Smart Sensing / Research Project
Technology / Package TSMC 16nm / BGA225
Dimensions 0 µm×0 µm
Gates 0 MGE
Voltage 0.55 V to 0.9 V
Clock 530 MHz

Siracusa is a multicore PULP based ULP heterogenous digital signal processing
SoC for AR applications developed in collaboration with Meta Realitiy Labs.
Besides its 8+1 RISC-V core architecture with custo NN SIMD ISA extensions,
it features a high performance Neureka, a quantized neural network accelerator
coupled through a custom high-bandwidth low-latency hybrid interconnect with
4 MiB of SRAM and 4 MiB. The ASIC cluster runs at up to 530 MHz consuming
around 220 mW at its peak-performance operating mode.
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A.2 Other ASICs

Name Hydra

Designers M. Eggimann, C. Gloor, M. Schaffner, L.
Cavigelli

Application / Publications Video Processing / Semester Thesis [131]
Technology / Package UMC 65nm / QFN64
Dimensions 1875 µm×1875 µm
Gates 1400 kGE
Voltage 1.2 V
Clock 333 MHz

Edge aware filters are an important precursor to various graphics processing
algorithms. An algorithm which allows for an efficient hardware implementation of
a Permeability Filter has been developed in collaboration with Disney Research
Zurich recently. In this semester project we nished implementing one part of the
algorithm as proposed in the previous paper and developed a hardware architecture
which realizes it. The hardware was implemented on an ASIC prototype built in
umcL65 technology. It filters 30 frames per second in HD-resolution ( 1280 ×720
pixels) for a single colour channel. It operates with a floating point precision of
24 bits. An efficient design has been found in order to handle the large amounts
of data which need to be processed. The design is easily scalable for higher
resolutions or multiple channels.
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Name Kraken

Designers A. Di Mauro, M. Scherer, A. Prasad, T. Fischer,
O. Castaneda, M. Eggimann, M. Spallanzani, G.
Rutishauser

Application / Publications PULP, autonomous UAVs / Research Project
Technology / Package GF 22nm / QFN88
Dimensions 3000 µm×3000 µm
Gates 80 MGE
Voltage 0.8 V
Clock 400 MHz

Kraken is an IoT processor based around our OpenPULP architecture. Kraken
features one fabric controller (a 32-bit RI5CY/CV32E40P core) and a computing
cluster with eight further RISC-V cores accessing a 128 KiB scratchpad memory.
The cluster also has 16 instances of PULPO, an accelerator to solve 1st order
optimization problems. The system is further enhanced by an additional external
hardware processing engine block that hosts a spiking neural engine (SNE) and a
ternary inference engine (CUTIE) that focuses on minimizing non-computational
energy and switching activity. The chip also includes a rich set of I/O peripherals
to allow it to be connected to existing event driven camera systems
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Name Marsellus

Designers D. Rossi, A. Di Mauro, F. Conti, G. Paulin, A.
Garofalo, G. Ottavi, H. Okuhara, M. Eggimann

Application / Publications PULP, always-on sensing / Research Project
Technology / Package GF 22nm / BGA100
Dimensions 4950 µm×3780 µm
Gates 80 MGE
Voltage 0.8 V
Clock 420 MHz

Marsellus is an all-digital AI-IoT end-node heterogeneous SoC fabricated in
GlobalFoundries 22nm FDX that combines three key contributions to enable
aggressive scaling and fine tuning of performance and energy: a general-purpose
cluster of 16 RISC-V DSP cores supporting instruction extensions for a highly
diverse range of numerical precision requirements: from 2-bit and 4-bit integer
operands (Xpulpnn), combined with expanding, fused MAC & LOAD (M&L), to
32-bit floating-point; a 2-8 bit Reconfigurable Binary Engine to accelerate 3x3 and
1x1 (pointwise) convolutions in DNNs; a set of On-Chip Monitoring (OCM) blocks
connected to an Adaptive Body Bias (ABB) generator and a hardware control
loop, enabling on-the-fly adaptation of transistor threshold voltages.
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Name Occamy

Designers G. Paulin, F. Zaruba, S. Mach, M. Eggimann, M.
Cavalcante, P. Scheffler, Y. Zhang, T. Fischer, N.
Wistoff, L. Bertaccini, T. Benz, L. Colagrande,
A. Di Mauro, A. Kurth, S. Riedel, N. Huetter, G.
Ottavi, Z. Jiang, B. Muheim, F. Gurkaynak, D.
Rossie, L. Benini

Application / Publications Scale-out HPC / Research Project
Technology / Package GF 12nm / Custom 3D IC
Dimensions 10 500 µm×6950 µm
Gates 300 MGE
Voltage 0.8 V
Clock 1 GHz

Occamy is a 2.5D integrated dual-chiplet system with 16GB private high-
bandwidth memory (HBM) per chiplet. We have taped out the Occamy chiplet
in 12nm FINFET technology, and the interposer Hedwig in 65nm purely passive
silicon interposer technology. The entire project has been very generously sponsored
by Globalfoundries and Rambus as well as support from Synopsys and Micron.

The scalable and ultra-efficient many-core Occamy chiplet architecture,
designed to operate at 1GHz, is organized around Snitch, a lightweight, latency-
tolerant RISC-V core. Snitch is coupled with an FPU featuring SIMD, Minifloat
formats (8-bit, 16-bit) and fused expanding-sum-dot-product capabilities. Each
chiplet contains more than 200 Snitch cores organized in groups of four compute
clusters. Each cluster shares a tightly-coupled memory among eight compute
cores and a high-bandwidth (512-bit) DMA engine orchestrating the data flow.
A CVA6 Linux-capable RISC-V core manages all compute clusters and system
peripherals. Each chiplet has a private 16GB high-bandwidth memory (HBM)
and can communicate with each other over a 72GB/s source-synchronous DDR
serial die-to-die link.
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Notations and Acronyms

ADC . . . . . . Analog-To-Digital Converter

AI . . . . . . . Artificial Inteligence

AM . . . . . . Associative Memory

AMS . . . . . . Analog Mixed Signal

AR . . . . . . . Augmented Reality

BEOL . . . . . Back-End-Of-Line

BER . . . . . . Bit-Error Rate

BOM . . . . . . Bill of Material

BSC . . . . . . Binary Spatter Code

CF . . . . . . . Conductive Filament

CMOS . . . . . Complementary Metal-Oxide-Semiconductor
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CNN . . . . . . Convolutional Neural Network

CPU . . . . . . Central Processing Unit

CWU . . . . . Cognitive Wakeup Unit

DNN . . . . . . Deep Neural Network

DRAM . . . . . Dynamic Random Access Memory

DRC . . . . . . Design Rule Check

DSP . . . . . . Digital Signal Processing

DVCSL . . . . Differential Cascode Voltage Switch Logic

EDA . . . . . . Electronic Design Automation

eDRAM . . . . Embedded Dynamic Random Access Memory

EMA . . . . . . Exponential Moving Average

EMG . . . . . . Electromyography

FC . . . . . . . Fabric Controller

FEOL . . . . . Front-End-Of-Line

FLL . . . . . . Frequency-Locked Loop

FPU . . . . . . Floating Point Unit

GALS . . . . . Globally-Asynchronous Locally-Synchronous

GAN . . . . . . Generative Adversarial Network

GPU . . . . . . Graphics Processing Unit

HD . . . . . . . Hyper-Dimensional

HDC . . . . . . Hyper-Dimensional Computing

HDL . . . . . . Hardware Description Language
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HPC . . . . . . High-Performance Computing

HRR . . . . . . Holographic Reduced Representation

I2C . . . . . . . Inter-Integrated Circuit

IC . . . . . . . Integrated Circuit

IoT . . . . . . . Interent of Things

IRB . . . . . . Inverted Residual Bottleneck

ISA . . . . . . Instruction-Set Architecture

LSTM . . . . . Long Short-Term Memory

LVS . . . . . . Layout-Versus-Schematic

MAP . . . . . . Multiply-Add-Permute

MCU . . . . . . Microcontroller Unit

MEC . . . . . . Mobile Edge Computing

ML . . . . . . . Machine Learning

MLC . . . . . . Multi-Level Cell

MOSFET . . . Metal-Oxide-Semiconductor Field-Effect Transistor

MRAM . . . . Magnetoresistive Random Access Memory

MTBF . . . . . Mean Time Between Failures

mtj . . . . . . . Magnetic Tunnel Junction

MTTF . . . . . Mean Time To Failure

NAS . . . . . . Network Architecture Search

NN . . . . . . . Neural Network

NoC . . . . . . Network-On-Chip
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NRE . . . . . . Non-Recurring Engineering Cost

NVM . . . . . . Non-Volatile Memory

PCB . . . . . . Printed Circuit Board

PCHB . . . . . Precharged Half-Buffer

PCM . . . . . . Phase-Change Memory

PE . . . . . . . Processing Element

PPA . . . . . . Power, Performance and Area

QDI . . . . . . Quasi-Delay Insensitivity

QNN . . . . . . Quantized Neural Network

ReLU . . . . . Rectified Linear Unit

ReRAM . . . . Resistive Random-Access Memory

ResNet . . . . . Residual Neural Network

RNN . . . . . . Recurrent Neural Network

ROI . . . . . . Region-Of-Interest

SAR . . . . . . Successive-Approximation-Register

SBDR . . . . . Sparse Binary Distributed Represenation

SCM . . . . . . Standard Cell Memory

SIMD . . . . . Single Instruction Multiple Data

SiP . . . . . . . System-In-Package

SLC . . . . . . Single-Level Cell

SNN . . . . . . Spiking Neural Network

SNR . . . . . . Signal-To-Noise Ratio
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SoA . . . . . . State-Of-The-Art

SoC . . . . . . System on Chip

SOT-MRAM . . Spin-Orbit-Torque Magnetoresistive RAM

SPI . . . . . . . Serial Peripheral Interface

SRAM . . . . . Static Random Access Memory

SSD . . . . . . Solid-State Drive

STT-MRAM . . Spin-Transfer-Torque Magnetoresistive RAM

SVE . . . . . . Scalable Vector Extension

TC-NVM . . . Tightly-Coupled Non-Volatile Memory

TMR . . . . . . Tunnel Magnetoresistance

TPU . . . . . . Tensor Processing Unit

UAV . . . . . . Unmanned Aerial Vehicle

ULP . . . . . . Ultra-Low Power

VLSI . . . . . . Very Large-Scale Integration

VSA . . . . . . Vector Symbolic Architecture

XR . . . . . . . Extended Reality
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