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A B S T R A C T

This doctoral thesis investigates the modeling and control of fish hydrodynam-
ics. The study consists of two main components: computational modeling of
flow fields and sensory cues, and understanding the optimality principles driv-
ing fish behavior. The thesis emphasizes the incorporation of hydrodynamic
interactions to accurately represent the fish’s environment. The research
utilizes reinforcement learning, Bayesian inference, and high-performance
computing to analyze natural behavior and flow fields. The insights gained
from this study have potential applications in autonomous robot swimmers
and may inspire new experiments in biology. Efficient and scalable implemen-
tations of computation fluid dynamics, reinforcement learning, and Bayesian
inference algorithms are developed to address the computational challenge
and pave the way for future advancements in the field.
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Z U S A M M E N FA S S U N G

Diese Doktorarbeit untersucht die Modellierung und Kontrolle der Hydrodyna-
mik von Fischen. Die Arbeit besteht aus zwei Teilen: der computergestützen
Modellierung von Strömungsfeldern und sensorischen Wahrnehmungen
sowie dem Verständnis der optimalen Prinzipien, die das Verhalten von
Fischen steuern. Die Arbeit legt besonderen Wert auf die Einbeziehung
hydrodynamischer Wechselwirkungen, um die Umgebung der Fische präzi-
se darzustellen. Die Forschung nutzt Reinforcement Learning, Bayes’sche
Inferenz und Hochleistungsrechnen, um das natürliche Verhalten und die
Strömungsfelder zu analysieren. Die gewonnenen Erkenntnisse aus dieser
Studie haben potenzielle Anwendungen in autonomen Roboter-Schwimmern
und können neue Experimente in der Biologie inspirieren. Effiziente und
skalierbare Implementierungen von rechengestützer Fluiddynamik, Rein-
forcement Learning, und Bayes’scher Inferenz werden entwickelt, um den
Herausforderungen der Berechnung gerecht zu werden und den Weg für
zukünftige Fortschritte in diesem Bereich zu ebnen.
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1
I N T R O D U C T I O N

If you can’t solve a problem, then there is an
easier problem you can solve: find it.

— George Pólia

This doctoral thesis presents a comprehensive exploration of computa-
tional methods, Bayesian statistics, and reinforcement learning (RL) tech-
niques, aiming to understand complex systems. The motivation behind this
research lies in the need for effective tools and methodologies to analyze and
comprehend intricate phenomena in the fluid dynamics of fish. By leverag-
ing computational methods and advanced statistical techniques, this thesis
seeks to provide novel insights and practical applications. The thesis is di-
vided into four chapters, each addressing different aspects and applications:

In the first chapter, the numerical method is introduced that enables the
simulation of incompressible flows around complex and self-deforming ob-
stacles, with a specific focus on artificial swimmers. This chapter outlines
the governing equations, describes the employed numerical method, and
presents the verification and validation of the implementation. By providing a
reliable computational framework, this research facilitates a detailed under-
standing of the fluid dynamics of fish.

In the second chapter, deep reinforcement learning (DRL) techniques take
center stage. The thesis extends the Remember and Forget for Experience
Replay (ReF-ER) algorithm to Multi-Agent RL (MARL) and benchmarks
its performance on collaborative environments, demonstrating superior re-
sults compared to state-of-the-art algorithms. Furthermore, the integration
of Bayesian inference with off-policy actor-critic DRL algorithms is explored,
and a rigorous evaluation of existing Bayesian deep learning methods for
DRL tasks is presented. These investigations provide valuable insights into
the application of DRL techniques to understand systems with multiple in-
teracting agents and the quantification of uncertainties in DRL by its fusion
with Bayesian inference.
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2 I N T R O D U C T I O N

The third chapter concentrates on Bayesian optimal experimental design
and its application to examine the optimal sensor distribution on an artificial
swimmer’s surface to identify a leading group of swimmers. It showcases
the efficacy of Bayesian experimental design in improving predictions and
decision-making processes. Furthermore, it provides guidance in the selec-
tion of the state for DRL of the hydrodynamics of fish.

The fourth chapter highlights two applications of DRL, focusing on algo-
rithmic understanding of natural behavior. The first application examines
energy harvesting by fish in wakes of bluff bodies, while the second investi-
gates the hydrodynamics of schooling fish. Through these studies, the thesis
offers new perspectives and a unified framework for analyzing natural behav-
ior, contributing to our understanding of complex systems in diverse domains.

In summary, this doctoral thesis makes contributions to the fields of com-
putational fluid dynamics, Bayesian optimal experimental design, and deep
reinforcement learning. By introducing novel methodologies and testing them
in computationally challenging applications, this research enables a deeper
understanding of complex systems and fosters advancements in various
domains. It shows how the combination of computational methods, Bayesian
inference, and DRL approaches offers a powerful toolkit for analyzing and
comprehending intricate phenomena across different domains.
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2
M O D E L I N G O F S W I M M E R S I N I N C O M P R E S S I B L E
F L O W S

Truth is much too complicated to allow anything
but approximations.

— John von Neumann

In the following we present the numerical method that is suitable to sim-
ulate the incompressible flow around complex, self-deforming obstacles
such as artificial swimmers. Besides the governing equation and numerical
method, we present verification and validation of the implementation.

AC K N OW L E D G M E N T S The software CUBISMUP is based on prior work
of Guido Novati, who provided important assistance during the early stages
of this thesis. Many improvements of the numerical method, and the addition
of adaptive mesh refinement was lead by Michalis Chatzimanolakis, who
thought the author many lessions on the art of numerical modelling. The
associated collaboration gave rise to two papers [1, 2], on which this chapter
is based. The computational resources for this work was provided by the
Swiss National Supercomputing Centre (CSCS) under project s929.
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6 M O D E L I N G O F S W I M M E R S I N I N C O M P R E S S I B L E F L OW S

2.1 Governing Equations

We model incompressible fluids with multiple deforming geometries using
the incompressible Navier-Stokes equations with Brinkman penalization
to enforce the no-slip, no-through boundary conditions on the surface of
deforming obstacles [3–5]

∂u
∂t

+ (u ·∇)u = −∇p
ρ

+ ν∆u + λ
Ns

∑
s=1

χ(s)(u(s) − u) ,

∇ · u = 0 .

(1)

Here, we denote the velocity field by u : Ω× [0, T ]→ R3, the pressure field
by p : Ω× [0, T ]→ R3, the kinematic viscosity by ν, and density of the fluid
by ρ. Brinkman penalization models the fluid-structure interaction by intro-
ducing a penalization-term, with coefficient λ. The obstacles s = 1, ... , Ns,
are modeled by the characteristic function χ(s), that is χ(s) = 1 inside the
obstacle Ω(s) and χ(s) = 0 outside the obstacle Ω \ Ω(s). The obstacle
velocity-field u(s) ∈ R3 consists of translation, rotation, and deformation

u(s) = u(s)
trans + u(s)

rot + u(s)
def . (2)

While the deformation velocity u(s)
def is prescribed, the translation and rotation

velocity is computed from the fluid linear momentum

u(s)
trans =

1
m

∫
Ω

χ(s)u dV , (3)

and angular momentum

u(s)
rot = ω(s) × r with ω(s) =

1
I

∫
Ω

χ(s)(r × u) dV , (4)

where r = x − x (s) is the displacement from the obstacle center of mass
x (s) and the mass m and moment of inertia I are computed as

m =
∫
Ω

χ(s) dV , I =
∫
Ω

∥r∥2χ(s) dV . (5)

This allows updating the location x (s) and angle ϕ(s) of the obstacle by
integrating the equations of motion

dx (s)

dt
= u(s) ,

dϕ(s)

dt
= ω(s) . (6)
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We note, that for non-deforming obstacles the penalization term acts as
a Lagrange multiplier enforcing the translation and rotation motion of the
obstacle on the fluid. For deforming obstacles it acts as an elastic response
propelling the fluid out of the obstacle.

2.2 Forces and Swimming Efficiency

The total force acting on a solid body is

F =
∫

∂Ωs

(2µD · n− pn)dS , (7)

where dS denotes the infinitesimal surface element with normal n, µ is the dy-
namic viscosity, ∂Ωs is the surface of the obstacle and D = 1

2
(
∇u + (∇u)⊤

)
the strain-rate tensor. The first term corresponds to viscous forces, and the
second to pressure-induced forces.

For the computation, the surface integral is expressed as a volume integral

F =
∫
Ω

(2µD · n− pn)δ(Sd) dΩ , (8)

where δ is the Dirac delta and Sd is the signed distance function from the
surface of the body to any point in Ω. Since χ(s) = H(Sd), where H is the
Heaviside function, we find that δ(Sd) = dχ

dn = ∇χ · n where the normal
vector is computed from the signed distance function as n = ∇Sd

|∇Sd |
∣∣
∂Ωs

.
Thus, the total force can be effectively computed from

F =
∫
Ω

(2µD · n− pn)(∇χ(s) · n) dΩ . (9)

When computing viscous forces the penalization method underestimates
velocity gradients near walls and it was suggested to compute the gradients
on a “lifted" surface [6]. We employ a similar approach: the necessary
gradients are computed two grid points away from the surface and are then
extrapolated back to it through a second-order Taylor expansion. In the
Taylor expansion, the derivatives are computed with second-order one-sided
differences, facing away from the wall. From the force the drag FD and drag
coefficient CD can be computed

FD = F · u(s)

|u(s)|
, CD =

2FD

ρ|u(s)|2A
, (10)

where A is a characteristic area and ρ = 1 is the fluid density.



8 M O D E L I N G O F S W I M M E R S I N I N C O M P R E S S I B L E F L OW S

2.3 Shapes and Swimmers

In the following we discuss the parametrization for the obstacles. The general
computational pipeline consists of computing the

B O U N D I N G B OX to avoid computing the characteristic function in regions
where there are no obstacles.

S I G N E D D I S TA N C E from the obstacle’s surface. Negative values corre-
spond to grid points outside and positive values to grid points inside
the obstacle.

C H A R AC T E R I S T I C F U N C T I O N which is obtained by applying the Heavi-
side function to the signed distance function.

Simple Shapes

The characteristic of the "simple shapes" describing in this subsection is that
they are non-deforming. As we will see in the following section, this difference
implies a vanishing right-hand side for the Poisson equation (eq. (22)), e.g.
that the computed velocity field is divergence free everywhere.

C Y L I N D E R For a cylinder with radius R the signed distance at (x , y) ∈ Ω
is computed as

d(x , y) = R2 − (x2 + y2) (11)

H A L F D I S K For a half-disk with radius R the signed distance at (x , y) ∈ Ω
is computed as

d(x , y) =

−x , if x > 0

R2 − (x2 + y2) , else
(12)

Artificial Swimmers

The shape of a swimmer of length L is parameterized according to the arc-
length s ∈ [0, L] along the centerline of the body. We distinguish two ways to
impose the motion with period T on the fish:

C A R L I N G F I S H The first follows Carling [7], which computes the y-coordinate
y(s, t) of the centerline via a sinusodial wave

y(s, t) =
4

33
(s + 0.03125L) sin

(
2πt
T
− 2πs

L

)
. (13)
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S T E F A N F I S H The second formulation follows Stefan Kern [8], where the
self-propelling motion is imposed via a sinusoidal variation of the
centerline curvature k(s, t) according to

k(s, t) = A(s) sin
(

2πt
T
− 2πs

L

)
. (14)

Here A(s) denotes the amplitude which linearly increases from A(0) =
0.82/L to A(L) = 5.7/L. The centerline coordinate is computed from
the curvature by integrating the Frenet equations [9].

During the computation of the midline, the deformation velocity [9] is com-
puted. This deformation velocity implies a non-divergence free velocity field
inside the obstacle.

From the midline we construct the shape of the swimmer using the width
given by

w(s) =


√

2whs− s2 , 0 ≤ s < sb

wh − (wh −wt)
(

s−st
st−sb

)
, sb ≤ s < st

wt
L−s
L−st

, st ≤ s ≤ L

, (15)

where wh = sb = 0.04L, st = 0.95L and wt = 0.01L. The same ideas
used for the fish can also be used to model other undulating bodies, like for
example a NACA hydrofoil, whose width would be parameterized via

w(s) = 5t
[
0.2969

√
s− 0.1260s− 0.3516s2

+ 0.2843s3 − 0.1015s4
]

,
(16)

where t is the maximum thickness as a fraction of the chord and gives the
last two digits in the NACA 4-digit denomination.



10 M O D E L I N G O F S W I M M E R S I N I N C O M P R E S S I B L E F L OW S

2.4 Numerical Method

The governing eq. (1) are solved using a modified pressure projection
method [1, 10]. In the following, the temporal discretization is made explicit
by denoting the field at timestep t using a superscript. Although everything
is written using a constant time-step ∆t , in practice the time-step is adopted
to satisfy the Courant–Friedrichs–Lewy (CFL) condition. Starting from the
initial flow configuration, the solver performs the following steps:

P U T O B J E C T S O N G R I D First, the characteristic function χ(s),t+1 and de-
formation velocity u(s),t+1

def for the obstacles is created:

1. The velocity ut
∞ of the frame of reference is computed

ut
∞ =

1
N ∑

s′
u(s′),t

lin . (17)

Where u(s′),t
lin are the linear velocities of N obstacles s′ ∈ {1, ... , N} ⊆

{1, ... , Ns} with which the frame of reference moves.

2. The obstacle center of mass x (s),t+1 and orientations θ(s),t+1

are updated using the linear u(s′),t
lin and angular ω(s),t velocity

computed from eq. (6). In order to compute the integrals, a second-
order accurate approximation of the characteristic function [11] is
used. The equation of motion for the swimmer are then integrated
using forward Euler

x (s),t+1 = x (s),t +∆t u(s),t
lin ,

θ(s),t+1 = θ(s),t +∆t ω(s),t .
(18)

3. Based on the new location and orientation the characteristic func-
tion χ(s),t+1 is computed from the signed distance function and
the result is put on the grid.

A DV E C T I O N A N D D I F F U S I O N After creating the shapes we perform ad-
vection and diffusion of the flow field in the whole domain using the
second-order midpoint rule

ut+1/2 = un +
1
2
∆t
(

ν∆ut − (ut · ∇)ut
)

,

u∗ = ut +∆t
(

ν∆ut+1/2 − (ut+1/2 · ∇)ut+1/2
)

.
(19)
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Here, the diffusion terms are discretised with centered second-order
finite differences and advection terms are handled with an upwind
fifth-order WENO scheme [12].

P E N A L I Z AT I O N We apply the penalization force by performing an implicit
time-step

u∗∗ = u∗ + λ∆t
Ns

∑
s=1

χ(s),t+1(u(s),t+1 − u∗∗) . (20)

Since the implicit time-stepping is stable for any λ > 0, this allows for
arbitrarily large values for the penalisation coefficient. As the penalisa-
tion coefficient tends to infinity, eq. (1) converge to the incompressible
Navier-Stokes equations with tangential and slip velocities on the sur-
face of the solid body in the order of λ−1/2 and λ−1 respectively [13]

P R E S S U R E P R O J E C T I O N Here we conclude the timestep with pressure-
projection

ut+1 = u∗∗ −∆t ∇pt+1 , (21)

where the pressure field is obtained by solving the Poisson equation

∇2pt+1 =
1
∆t
∇ · u∗∗ . (22)

The Poisson equation arises when taking the divergence of eq. (21)
and requiring that the deformation u(s),t+1

def of the obstacles impose

a non-divergence-free flow field ∇ · ut+1 = ∑Ns
s=1 χ(s),t+1∇ · u(s),t+1

def .
The poisson equation is discretised with a conservative, second-order
accurate discretisation of the divergence operator [14]. All unknown
values are concatenated in a vector. The arising linear system Aϕ = b
is solved by using the preconditioned biconjugate gradient stabilised
method [15], with a custom preconditioner [1].
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2.5 Adaptive Mesh Refinement

The discretization is done on an adaptive block-structured grids implemented
in the CUBISMAMR library [1]. CUBISMAMR is an adaptive version of the
CUBISM library [16–18], which partitions the simulation domain into cubes
of uniform resolution that are distributed to multiple compute nodes. These
cubes are further divided into blocks for cache-optimised parallelism. CU-
BISMAMR organizes these blocks in an octree data structure (for three-
dimensional simulations) or a quadtree data structure (for two-dimensional
simulations), which allows for grid refinement or compression in different
regions. In contrast to uniform grids or body fitted meshes, this allows to
dynamically adopting the grid to capture the emerging structures in a flow
field.

The grid is composed of square blocks, each with the same number of
cells. Each block has a locally uniform resolution that is defined by its level
of refinement ℓ = 0, ... , L− 1 as hℓ = 2−ℓh0, where h0 is the coarsest grid
spacing possible. At mesh refinement from level ℓ to level ℓ+ 1 a block is
divided into four blocks, whereas mesh compression from level ℓ to ℓ− 1 is
achieved by combining four blocks to one. Blocks that are adjacent are not
allowed to differ by more then one refinement level. This allows arranging the
blocks of the grid in a quadtree data structure. Whether a block should be
refined or compressed is determined every few timesteps. Our simulations
use the vicinity to solid body surfaces and the magnitude of vorticity as
criteria for mesh refinement or compression. Additional examples of such
criteria could be the magnitude of pressure gradients, or the magnitude
of Wavelet detail coefficients [19, 20]. Following the multiresolution frame-
work by [21, 22], restriction and prolongation operators are used to map
values between blocks of different resolutions. The restriction operator R
is used during mesh compression to replace four blocks at level ℓ+ 1 by
one block at level ℓ. Grid point values at level ℓ are computed by averaging.
The prolongation operator I of one block at level ℓ to four blocks at level
ℓ+ 1 is defined via a third-order Taylor expansion, where derivatives are
approximated with second-order central finite difference schemes. For the
approximation of spatial derivatives, we use finite difference schemes. This
is done by creating a frame of uniform resolution around each gridpoint [23]
through the interpolation of ghost cell values. At the interface between dif-
ferent refinement levels ℓ and ℓ+ 1, this requires the interpolation of ghost
cell values from the coarse to the fine level and vice-versa. From a fine to a
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a) b)

c)

FIGURE 1: Illustration of the AMR. Figure a) illustrates of how cells are refined or
compressed. b) shows the fluxes at coarse-fine-interface. In order to
ensure conservation, the sum of green fluxes is replacing the blue flux.
Figures c) illustrate load-balancing using diffusion of work. The black
line illustrates the Hilbert curve. The colour represents the process that
owns the block. The block in dark green got refined and thus the green
process has more work than the other three processes. After diffusion
of work the load is again equally distributed.
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coarse level this is done by averaging. For the ghost cells that need to be
interpolated from a coarse level to a finer one, we use third-order accurate
quadratic interpolation as proposed by [24] and [25]. When used with a
second-order finite difference scheme for approximation of first and second
derivatives, this guarantees second and first order accuracy respectively.
Whenever needed we follow [26] and [27] and use a second-order accurate
conservative discretisation of the divergence operator. Whenever a cell is
next to cells of different resolutions, missing values are interpolated. This
results in a non-conservative discretisation of the divergence operator at
the interface between two different refinement levels ℓ and ℓ+ 1, as the flux
computed for level ℓ need not be equal to the sum of the two fluxes at level
ℓ+ 1 that make up the same cell face. The situation is illustrated in fig. 1.
Conservation is achieved by replacing the flux at level ℓ by the sum of the
fluxes at level ℓ+ 1.

2.6 Parallelization

CUBISMAMR is parallelised with the Message Passing Interface (MPI) pro-
gramming model. The quadtree data structure is traversed by a space-filling
Hilbert curve [28], that assigns each block a unique index. Initially, blocks
are distributed to different MPI processes based on their index along the
Hilbert curve, the locality property of which guarantees that each process will
own blocks that are spatially close to each other. Load-imbalance between
different processes, introduced because of mesh compression or refinement,
is handled by redistributing work through a one-dimensional diffusion-based
scheme. As was first proposed by [29], the number of blocks N t

p of process
p at timestep t is updated as

N t+1
p = N t

p + c(N t
p+1 − 2N t

p + N t
p−1) . (23)

c is a user-defined constant, set to c = 0.25 in the present work. This load-
balancing scheme limits communication between consecutive processes
along the one-dimensional Hilbert curve while gradually redistributing work-
load. In fig. 1 (bottom) we illustrate the process in two-dimensions. Addi-
tionally, all blocks are evenly redistributed to all processes based on the
load-imbalance ratio (defined as the ratio between the maximum and the
minimum number of blocks any process has).
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2.7 Verification and Validation

We simulate the impulsively started flow around a cylinder, for Reynolds
numbers in the range [550, 9500]. All the simulations presented in this
section use a reference time unit T = D

2U , where D is the cylinder diameter
and U its velocity. They were performed in a [0, 40D]× [0, 20D] domain and
the cylinder was placed at (10D, 10D). The timestep was controlled by a
Courant number of 0.45, based on the minimal grid spacing and the maximal
velocity present in the domain. The coarsest grid possible had a resolution of
128× 64. The penalisation coefficient was set to λ = 107. Grid refinement
and compression were based on vorticity magnitude. The grid points within
0.1D vicinity to the cylinder surface were refined to the maximum resolution
allowed.

To verify consistency and convergence, we fix the Reynolds number at
Re= 1 000 and perform simulations with increasing resolution, by changing
the maximum levels of refinement allowed, denoted by L. The simulation with
the finest resolution (with L = L∗ = 9 levels) is used as a reference solution
for two quantities of interest: the instantaneous cylinder drag coefficient
CL

D(t) and the vorticity field ωL(τ) with τ = 10T . For the drag, the error is
defined as

εL
CD

=
1

tmax − tmin

∫ tmax

tmin

|CL
D(t)−CL∗

D (t)|dt , (24)

with tmin = 0.01T and tmax = 10T and for the vorticity field as

εL
ω = |ωL(τ)−ωL∗(τ)| , τ = 10T . (25)

Drag coefficient Vorticity

L N̂L εL
CD

Rate εL
ω Rate

4 89 0.167 1.01 0.524 1.78

5 119 0.124 1.97 0.313 2.26

6 166 0.0469 2.94 0.125 2.63

7 242 0.0154 2.23 0.0486 2.04

8 381 0.00779 1.51 0.0238 1.59

9 637 0 − 0 −

TABLE 1: Verification study errors and convergence rates, impulsively started
cylinder at Re= 1 000.
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FIGURE 2: Left: Convergence of vorticity field with increasing resolution at Re=
1 000. From top left to bottom right: 6,7,8 and 9 levels of refinement.
Right: Drag coefficient, validation results. Comparison of early drag
history with analytical solution by [30] (left) and with simulations by [31]
(right), for various Reynolds numbers.

Following [32] we also define the average number of gridpoints per dimension

N̂L =

(
1

tmax − tmin

∫ tmax

tmin

NL(t)
)1/2

, (26)

as a measure of the computational cost, where NL(t) is the instantaneous
number of grid points when L refinement levels are used. A summary of
the simulations performed for this verification study is shown in table 1.
Convergence of the vorticity field is visualised in the left of fig. 2, where it can
be seen that the solutions for 8 and 9 refinement levels are indistinguishable
from each other. To validate our method, we compare our results against
the drag coefficient of the impulsively started cylinder at early times as
computed analytically by [30] and against simulations by [31], for longer
times. As shown in the right of fig. 2, our results are in excellent agreement
with the references they are compared against.
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[..] to eliminate coercion: to apply controls by
changing the environment in such a way as to
reinforce the kind of behavior that benefits
everyone.

— B. F. Skinner

The following we present reinforcement learning (RL) and it’s application
to systems with multiple agents. Furthermore, we present a combination of
RL with Bayesian inference:

R E M E M B E R A N D F O R G E T E X P E R I E N C E R E P L AY F O R M U LT I - AG E N T

R E I N F O R C E M E N T L E A R N I N G We present the extension of the Re-
member and Forget for Experience Replay (ReF-ER) algorithm to
Multi-Agent Reinforcement Learning (MARL). ReF-ER was shown to
outperform state of the art algorithms for continuous control in prob-
lems ranging from the OpenAI Gym to complex fluid flows. In MARL,
the dependencies between the agents are included in the state-value
estimator and the environment dynamics are modeled via the impor-
tance weights used by ReF-ER. In collaborative environments, we find
the best performance when the value is estimated using individual
rewards and we ignore the effects of other actions on the transition
map. We benchmark the performance of ReF-ER MARL on the Stan-
ford Intelligent Systems Laboratory (SISL) environments. We find that
employing a single feed-forward neural network for the policy and the
value function in ReF-ER MARL, outperforms state of the art algorithms
that rely on complex neural network architectures.

A B AY E S I A N P E R S P E C T I V E O N U N C E RTA I N T I E S I N D E E P R E I N F O R C E -
M E N T L E A R N I N G Deep reinforcement learning promises new ways
for automated discoveries in science and engineering. For reliable
conclusions, the learned black-box controllers require an accurate es-
timation of the uncertainties. Most existing work focuses on testing
the robustness by sampling the initial condition of the environment,
while the aleatoric uncertainty addresses the exploration-exploitation
dilemma. On the other hand, the epistemic uncertainty is evaluated

19
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a-posteriori by doing multiple experiments with different random seeds,
an infeasible technique for computationally expensive applications.
Bayesian inference is considered the gold standard for uncertainty
quantification. However, there has yet to be a rigorous evaluation of
the existing Bayesian deep learning methods for off-policy deep rein-
forcement learning. We close the gap by describing the integration of
Bayesian inference with the remember and forget for experience replay
algorithm and discussing approximation techniques to generalize the
presented formalism to other algorithms. The following benchmarks
on the MuJoCo continuous control tasks of the OpenAI Gym show
that the discussed approach is applicable to assess the uncertainties
during training and testing.

AC K N OW L E D G M E N T S The presented methods extend V-RACER with
ReF-ER by Guido Novati as published in [33]. The code KORALI was initially
developed and published by Georgios Arampatzis, Sergio Martin, and Daniel
Wälchli for Bayesian Inference and Optimization [34]. The author joined the
development when it was extended to support deep reinforcement learning.
The author is thankful to the fruitful and very stimulating collaboration with
Sergio Martin and Daniel Wälchli. The work presented in this chapter is
based on [35, 36]. The computational resources were provided by the Swiss
National Supercomputing Centre (CSCS) under project s929.
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3.1 Remember and Forget for Experience Replay (ReF-ER)

Reinforcement Learning (RL) solves sequential decision making processes
formalized by Markov Decision Processes (MDPs). An MDP is defined by the
tuple (S , A, r , D), defining the state s ∈ S , the action a ∈ A, the reward
function r : S ×A → R, and transition map D : S ×A → S . Given an initial
state distribution p(s) and a stochastic policy π(a|s) we can define the Q-
and state-value function V

Qπ(s, a) = Eat∼π(·|st )

[
∞

∑
t=0

γt rt |s0 = s, a0 = a

]
,

V π(s) = Ea∼π [Qπ(s, a)] .

(27)

where γ ∈ [0, 1) is the discount factor and rt = r (st , at ). The optimal policy
π⋆ is defined as

π⋆ = arg max
π

V π(s) , ∀s ∈ S . (28)

In order to find the optimal policy, the agents interact with the environment at
discrete timesteps t . At every timestep, the agents take actions at based on
the observation of a states st . Thereby the environment transitions into new
states st+1 and returns rewards rt .

Off-policy methods are among the most sample efficient methods for RL.
They reuse past experience, which is tuples consisting of states, actions, and
rewards (st , at , rt ) to learn the optimal policy. The experiences are collected
as episodes Ek = {(st , at , rt )}Tk

t=1 and stored in a replay memory RM =

{Ek}K
k=1. A successful algorithm to find the optimal policy for computationally

demanding optimal control problems is V-RACER with ReF-ER [33]. Here, a
single neural network is trained to approximate the policy πω(a|s) and value
function V π

ϑ (s). We denote the respective weights by ω and ϑ. Note, that
the parameters ω and ϑ only differ in the output layer.

For the value function the weights ϑ of the neural network V π
ϑ (s) are

updated to minimize

L(ϑ) = Ed

[(
V π

ϑ (st )− V̂ tbc
t

)2
]

. (29)

Here, the target V̂ tbc
t is based on the on-policy returns estimator Retrace [37]

Q̂ret
t = rt + γV π(st ) + γρ̄t (Q̂ret

t+1 −Qπ(st , at )) . (30)
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Since V-RACER approximates Qπ(st , at ) ≈ V π(st ) the V-trace estima-
tor [38] becomes

V̂ tbc
t = V π(st ) + ρ̄t

[
rt + γV̂ tbc

t+1 − V π(st )
]

, (31)

and can be related to the on-policy returns estimator Retrace via

Q̂ret
t = rt + γV̂ tbc

t+1 . (32)

We learn the weights ω of the policy πω(s|a) by maximizing the expected
advantage

L(ω) = Ed

[
ρt (ω)

(
Q̂ret

t − V π(st )
)]

. (33)

Taking the gradient with respect to the weights ω yields the off-policy gradi-
ent [39]. The importance weight ρt (ω) is given by

ρt (ω) =
πω(at |st )

π(at |st )
. (34)

Here the denominator denotes the policy that was used when s was sam-
pled. The truncated importance weight ρ̄t = min(1, ρt ) is used for the value
estimate. In order to update the policy, a mini-batch of experiences is sam-
pled from the replay memory. For each of these experiences a gradient
ĝ(ω) is computed. ReF-ER avoids negative impact from off-policy data by
classifying experiences based on the importance weight ρ. The criterion

1
cmax

< ρ < cmax depends on the cut-off cmax that is annealed during training.
The gradient is then regularized via

ĝR(ω) =

{
βĝ(ω)− (1− β)ĝKL(ω) , on-policy

−(1− β)ĝKL(ω) , else.
(35)

The factor β is adjusted according to the fraction of off-policy samples
noff-policy in the replay memory

β←

(1− η)β if noff-policy > n⋆

(1− η)β + η, otherwise.
(36)

Here η denotes the learning rate used by Adam. This allows maintaining
a target fraction n⋆ of off-policy experiences in the replay memory. The
regularizer is the gradient of the Kullback-Leibler divergence between the
current and the past policy [40]

ĝKL(ω) = ∇ωDKL (πk∥πω) . (37)
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3.2 Remember and Forget Experience Replay for Multi-Agent Rein-
forcement Learning

State of the art deep reinforcement learning (RL) algorithms approximate the
optimal value function and policy using deep neural networks. This approach
has been showcased in the playing of Atari games [41], board games like
Shōgi, Chess, and Go [42]. More recently Multi-Agent Reinforcement Learn-
ing (MARL) has been applied to multiplayer games such as poker [43] and
prominent computer games such as Dota 2 and StarCraftII [44, 45]. Tasks
that require multiple agents to collaborate often rely on a generalization
of single agent RL algorithms and employ complex neural network archi-
tectures for the value estimation. Deep MARL presents several algorithmic
challenges. Learning individual policies is hard in environments with multiple
learning agents that can be non-stationary. Moreover, the inclusion of collab-
orative behaviour by an averaging of the rewards yields a credit assignment
problem, hindering the reinforcement of beneficial behaviour. Finally, most
games are restricted to a discrete action space. More recently the extension
of MARL to scientific computing and complex systems (scientific multi-agent
reinforcement learning (SciMARL) [46, 47]) has showcase the importance
of control in continuous, high-dimensional action spaces. To the best of our
knowledge, generalizations of well-established algorithms for continuous
action RL is limited [48, 49].

We address these challenges by revisiting the relationships and inter-
actions between multiple agents. We follow the centralized training with
decentralized execution paradigm [50, 51] (CTDE). Agents learn using the
experiences from all their peers, while at execution time, the learned policy
is used to make decisions based on a single agent’s state information. The
inclusion of the observations from all agents addresses the non-stationary
issues, and the adoption of ReF-ER handles effectively far-policy experi-
ences [33]. Furthermore, the learning rule can be modified to systematically
examine the credit assignment problem. Lastly, ReF-ER allows to model the
interaction strength between agents via the importance weight.

3.2.1 Formalism

Multi-Agent Reinforcement Learning (MARL) aims to find the optimal policy
in a Multi-Agent Markov Decision Process (MAMDP). A MAMDP is a tuple
(S ,A, r , N, D) consisting of the states s ∈ SN , actions a ∈ AN , and rewards
r ∈ RN observed by the N ∈ N+ agents in the environment. Here we
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states , rewards s′ r

action a ∼
N

∏
i=1

π(i)
t ( ⋅ |s(i))

s′ , r = D(s, a)

Replay Memory ℛℳ = {ℰk}K
k=0

behavioural policies {π(i)
t }N

i=1

Episode ℰ = {(st, at, rt, Vt, πt)}t=0,…,T

s(i) μ(i)

Σ(i)

Vπ,(i)

} π(i) = 𝒩(μ(i), Σ(i))

FIGURE 3: Schematic of the MARL loop.

consider a homogeneous setting, where all agents have the same state
space, action space, and reward function. The agents’ individual states,
actions, and rewards are denoted by s(i) ∈ S , a(i) ∈ A, and r (i) ∈ R for
i = 1, ... , N. The transition map is given by r , s′ = D(s, a), i.e. it depends
on the states and actions from all agents. This is contrary to environments
in which agents take actions sequentially and the state is updated after
each action. In MAMDP we specify the initial state distribution p(s) and
the stochastic policy π(a|s). The later is the probability distribution over the
actions of the agents given the states. We assume that the policy factorizes
as

π(a|s) =
N

∏
i=1

π(a(i)|s(i)) . (38)

This allows for decentralized execution, where the agent samples an action
solely based on its state. The vector-valued state-action-value Q function
and state-value V are defined as

Qπ(s, a) = Eπ

[
∞

∑
t=0

γt r t |s0 = s, a0 = a

]
, V π(s) = Eπ [Qπ(s, a)] .

(39)
where γ ∈ [0, 1) is the discount factor and r t = r(st , at ). Assuming equal
importance for all agents yields the scalar state-value that is expressed in
terms of the individual state value functions V π(s(i))

P [V π(s)] =
1
N

N

∑
i=1

V π(s(i)) . (40)

The optimal policy π⋆ in the MAMDP maximizes the average of the state-
values for all agents

π⋆ = arg max
π

1
N

N

∑
i=1

V π(s(i)) , ∀s ∈ SN . (41)
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In MARL the agents interact with the environment as depicted in fig. 3.
At timestep t , the agents take actions at based on the states st . Thereby
the environment transitions into new states st+1 and returns rewards r t .
An experience, consists of states, actions, and rewards (st , at , r t ). Upon
termination of the episode Ek = {(st , at , r t )}Tk

t=1 the experiences are stored
in the replay memory RM = {Ek}K

k=1. In the following d denotes the
distribution of the experiences in the replay memory.

We extend V-RACER with ReF-ER [33] for MARL, training a neural network
that approximates the state-value and the policy parameters. Using the
experiences in the replay memory, we train the neural network with Adam [52].
In the following, πω(a|s) and V π

ϑ (s) denote the policy and state-value
function with the respective weights ω and ϑ. Note, that the parameters ω
and ϑ only differ in the output layer.

3.2.1.1 Value Learning

The relationships between the agents is included in the learning process
by introducing a scalarization function f : RN → R in the on-policy returns
estimator Retrace [37]

Q̂ret
t ,f = f (r t ) + γV π

f (st ) + γρ̄t (Q̂ret
t+1,f −Qπ

f (st , at )) . (42)

V-RACER approximates Qπ
f (st , at ) ≈ V π

f (st ) and hence the V-trace estima-
tor [38] becomes

V̂ tbc
t ,f = V π

f (st ) + ρ̄t

[
f (r)t + γV̂ tbc

t+1,f − V π
f (st )

]
, (43)

and it can be related to the on-policy returns estimator Retrace via

Q̂ret
t ,f = f (r)t + γV̂ tbc

t+1,f . (44)

The truncated importance weight ρ̄t will be defined in the following section.
It balances the impact from off-policy data on the current estimator of the
state-value.

For the function f we distinguish two cases. The first case, which we refer
to as individual, assumes that the value estimate depends solely on the
reward observed by agent i

f (i)individual(r) = r (i) , V π
individual,(i)(s) = V π(s(i)) . (45)
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In the second case, referred to as cooperative, the reward and the state-
values are averaged

fcooporative(r) =
1
N

N

∑
i=1

r (i) , V π
cooporative(s) =

1
N

N

∑
i=1

V π(s(i)) . (46)

The weights ϑ of the neural network V π
ϑ (s) are updated to minimize the loss

L(ϑ) = Ed

[
1
N

N

∑
i=1

(
V π

ϑ (s(i)t )− V̂ tbc
t ,f

)2
]

. (47)

Note, that both variants reduce to the original loss proposed in [33] when
assuming a single agent.

3.2.1.2 Policy Gradient

Given the definition of Q̂ret
t ,f , we learn the weights ω of the policy πω(s|a) by

maximizing the expected advantage

L(ω) = Ed

[
1
N

N

∑
i=1

ρt (ω)
(

Q̂ret
t ,f − V π(s(i)t )

)]
. (48)

Taking the gradient with respect to the weights ω yields the off-policy gradi-
ent [39]. The importance weights ρt (ω) reflect the assumed dynamics of the
environment.

Adopting the full dynamics r t+1, st+1 = D(st , at ) and the factorization of
the policy from eq. (73) yields the importance weight

ρN
t (ω) =

N

∏
i=1

πω(a
(i)
t |s

(i)
t )

π(a(i)
t |s

(i)
t )

. (49)

Here the denominator denotes the policy that was used when s(i) was
sampled. When using this importance weight the value estimate and the
policy update depend on the probability of the action of all agents.

In cases where interactions between the agents are negligible, the value
estimate and the policy update should not be influenced by the probabilities
of the other agents. This is achieved by using the importance weight

ρt (ω) =
πω(a

(i)
t |s

(i)
t )

π(a(i)
t |s

(i)
t )

. (50)

We denote it as the local dynamics model.
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3.2.1.3 Remember and Forget for Experience Replay

In order to update the policy, a mini-batch of experiences is sampled from the
replay memory. For each of these experiences a gradient ĝ(ω) is computed.
ReF-ER avoids negative impact from off-policy data by classifying experi-
ences based on the importance weight ρ. The criterion 1

cmax
< ρ < cmax

depends on the cut-off cmax that is annealed during training. The gradient is
then regularized via

ĝR(ω) =

{
βĝ(ω)− (1− β)ĝKL(ω) , on-policy

−(1− β)ĝKL(ω) , else.
(51)

The factor β is adjusted according to the fraction of off-policy samples
noff-policy in the replay memory

β←

(1− η)β if noff-policy > n⋆

(1− η)β + η, otherwise.
(52)

Here η denotes the learning rate used by Adam. This allows maintaining
a target fraction n⋆ of off-policy experiences in the replay memory. The
regularizer is the gradient of the Kullback-Leibler divergence between the
current and the past policy [40]

ĝKL(ω) = ∇ωDKL (πk∥πω) . (53)

For details we refer to the publication of the ReF-ER algorithm [33].

3.2.2 SISL Environments

We benchmark the performance of our algorithms in the three cooperative
Stanford Intelligent Systems Laboratory Environments (SISL) implemented
in PettingZoo [48, 53] (see fig. 4).

In Multiwalker a package is located on top of three bipedal robots. The
reward for each walker depends on the distance the package has traveled
plus 130 times the change in the walker’s position. All agents receive -100
reward if any walker or the package falls. The walker that falls is further
penalized by -10 reward. Each walker exerts force on two joints in their
two legs, giving a continuous action space represented as a four element
vector Amultiwalker ⊆ R4. The state consists of 31 real values Smultiwalker ⊆
R31 consisting of simulated noisy linear data about the environment and
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b) c)a)

FIGURE 4: SISL environments: (a) Multiwalker, (b) Waterworld, and (c) Pursuit.

information about neighboring walkers. The environment ends after 500
steps or if the package or a walker falls.

In Waterworld five agents attempt to consume food while avoiding poison.
There are ten moving poison targets, which have a radius of 0.75 times the
radius of the agent. Furthermore there are five moving food targets with
radius two times the size of the agent radius. In the center of the domain
is a solid object. An agent obtains a shaping reward of 0.01 for touching
food. The food can be consumed if two agents touch it simultaneously, in
which case both participating agents obtain 10 reward. On the other hand,
touching a poison target and consuming it gives -1 reward. After consumption
both food and poison targets randomly reappear at another location in the
environment. The agents have a continuous action space represented by
two elements Awaterworld ⊆ R2, which corresponds to horizontal and vertical
thrust. In order to penalize unnecessary movement the agents obtain a
negative reward based on the absolute value of the applied thrust. Each
agents state results from 30 range-limited sensors, depicted by the black
lines, which detect neighboring entities and result in a 242 element vector
Swaterworld ⊆ R242. The environment terminates after 500 steps.

In Pursuit there are 30 blue evaders and eight red pursuer agents in a
16× 16 grid with an obstacle in the center, shown in white. Every time the
pursuers fully surround an evader, each agent receives a reward of 5 and
the evader is removed from the environment. In order to facilitate training,
pursuers receive a shaping reward of 0.01 every time they touch an evader.
The pursuers have a discrete action space, consisting of directions up, down,
left, right or stay Apursuit = {↑, ↓,←,→, ◦}. Each pursuer observes a 7 × 7
grid centered around itself, depicted by the orange boxes surrounding the
red pursuer agents. For each of the gridpoints it receives three signals, the
first signal indicates a wall, the second signal indicates the number of allies
and the third signal indicates the number of opponents. Thus the observation
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space can be represented by Spursuit ⊆ Z147. The environment terminates
after 500 steps or if all evaders are captured.

3.2.3 Evaluation

We benchmark the algorithms using five runs with 20 000 episodes each. For
each run we compute the moving median of the cumulative reward averaged
over all agents. The window size of the moving median is 100 episodes. In
fig. 5 we plot the median of the medians and the 95% confidence interval
of the five runs. Throughout this study, we apply the default parameters
suggested in Novati & Koumoutsakos [33]. We set the discount factor γ =
0.995, we use a replay memory of size 218 = 262 144 with initial random
exploration with a randomly initialized neural network for 217 = 131 072
experiences. The learning rate of the Adam optimizer is initialized to η =
0.0001 and the batchsize B = 256. For the approximation of the value
function and the policy we use a neural network with two hidden layers of
width 128. We initialize the ReF-ER factor β = 0.3, the target threshold
n⋆ = 0.1 and cut-off cmax = 4. In contrast to the original V-RACER, we use
the clipped normal distribution for continuous action domains and introduce
a discrete variant of V-RACER (see Supplementary Material). A pseudo
code is available in appendix B. The SISL experiments where executed on a
single CPU with 12 cores. The required training-times were approximately
48 hours per run. In total we performed 2x3x4x5=120 runs.

We distinguish the algorithms eq. (49) that calculate the importance
weights as V-RACER full dynamics individual-FDI and full dynamics co-
operative-FDCo, depending on the value estimator (eq. (45) and eq. (46)).
Accordingly, we name the algorithms V-RACER local dynamics individual-
LDI and local dynamics cooperative-LDCo, if we apply eq. (50) to calculate
the importance weight. Finally, we distinguish training a single shared policy
for all agents and one policy per agent. We sample a mini-batch for all vari-
ants and use the observations from all agents to train the neural networks
using eq. (47) and eq. (48).

In fig. 5 we show the results for the three SISL environments. We find
that the LDI algorithm results are superior to those of the other algorith-
mic variants. More specifically, while in the Multiwalker (a,d) environment
the improvement is minimal, the advantage is clearly noticeable in the Wa-
terworld (b,e) and Pursuit (c,f) environments. We argue that the FDI and
LDI algorithms dominate their cooperative counterparts (FDCo and LDCo)
because of the credit assignment problem: After averaging the rewards it
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d) e) f)

FIGURE 5: Median cumulative reward of 5 runs and 100 episodes, and averaged
over all agents. The shading shows the 95% confidence interval. The
results in the first row (a-c) are for a single shared policy, the second
row (d-f) for one individual policy per agent. The first column (a,d)
shows Multiwalker, the second (b,e) Waterworld, and the third (c,f)
Pursuit. The lines correspond to LDI ( ), FDI ( ), LDCo ( ), and
FDCo ( ).

TABLE 2: Maximum mean cumulative training reward, averaged over 5 runs and
100 episodes and state of the art by [49]. The number in the parenthesis
denotes the episode in which it was achieved..

Multiwalker Waterworld Pursuit

V-RACER (LDI, single policy) 19.80 (3.2k) 194.57 (19.2k) 124.22 (20.8k)

PPO, ApeX DDPG, ApeX DQN 13.67 (9.2k) 14.8 (6.3k) 77.63 (24k)

QMIX -5.65 (17.8k) 1.62 (45.3k) 45.41 (59.6k)

MADDPG -33.95(44.2k) -1.81 (41k) 4.04 (28.8k)
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is difficult to identify which actions contribute most to the success of the
agents. Furthermore, sharing the experiences among all agents in a single
policy is sufficient to resolve the non-stationary issue and using eq. (49)
does not produce valuable information. In contrast, we find that taking the
product of the individual importance weights harms the update. The relative
order in terms of performance for the employed algorithms is similar when
training multiple policies. Interestingly, the maximal performance of the LDI,
reached during training, is worse for multiple policies. During the evaluation,
however, the single policy variant is outperformed (see table 3). Another
important difference arises for the LDCo. For multiple policies experience
sharing does not remove the non-stationary issue. Together with the credit
assignment problem, it hinders the convergence of the LDCo method. The
FDCo alleviates this problem. By adding the information of the other agents
in the importance weight (eq. (49)), the destructive effect of non-stationary
and the credit assignment problem is resolved.

Additionally, we compare our results when training a single policy with the
results in Terry et al. [49], which, to the best of our knowledge, represent the
state of the art on the SISL environments. In Table 2 we show a comparison
between the best results in Terry et al. [49] and our best performing alter-
native (LDI). We find that on all environments LDI outperforms the existing
results by a margin.

In Multiwalker, we find that the LDI is the preferred algorithm. This can
be especially seen during the first 8k episodes. After that, the returns for
some runs drop significantly and yield a lower asymptotic median return.
This behaviour is often observed in Walker-like environments. In the failing
runs the agents start falling while trying to move faster and faster. In order
to avoid this catastrophic failure the algorithm converges to a safe, but sub-
optimal policy. Nonetheless, the models that consider the local dynamics
are the better performing alternatives. In the Multiwalker the LDI obtains
a final return of 4.09, which is comparable to the attained return with the
LDCo (3.73). The other variants do not achieve positive rewards (-31.68 for
FDI and -38.11 for FDCo). We observe that in LDI certain runs identify a
policy which consistently achieves a cumulative median return of around
20, however the algorithm does not learn the associated policy in every run.
Here, the state of the art [49] achieves the highest cumulative reward when
using a multi agent version of PPO [54]. From table 2 it can be seen, that
the LDI outperforms the multi agent version of PPO.

In the second continuous action environment Waterworld, we see clear
differences between the algorithms. The LDI outperforms the other variants
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TABLE 3: Testing the optimal policy for LDI on the SISL environments. The mean,
maximal, and minimal cumulative reward is computed over 50 episodes.
We highlight the better result.

Multiwalker Waterworld Pursuit

Mean Max Min Mean Max Min Mean Max Min

One Policy 1.0 1.9 0.4 202.3 271.8 140.6 56.8 84.7 11.6

N Policies -0.1 1.5 -2.2 236.4 303.4 191.0 130.3 146.6 112.8

significantly. We observe, that the FDI and the LDCo show similar perfor-
mance. In Waterworld, it seems that correlating gradient updates (FDI) and
rewards (LDCo) have similar negative effects. This effects seem to sum up
when considering both correlations (FDCo). In Waterworld the state of the
art is a MA version of ApeX DDPG [55]. The best variant of the proposed
algorithm outperforms the existing results by 13X.

Finally, we discuss the results on the Pursuit benchmark. The negative
effect arising from the credit assignment problem (LDCo) is larger than when
correlating the update (FDI), which is contrary to our findings in Waterworld.
Combining both assumptions (FDCo) still is the worst performing alternative.
As can be seen in table 2, the present best performing alternative outper-
forms the state of the art (a MA version of ApeX DQN [55]). Comparing the
maximal achieved mean returns shows that ReF-ER MARL provides 1.6X
higher return.

3.2.4 ReF-ER and Scientific Multi-Agent Reinforcement Learning

We test LDI with multiple policies in the problem of fish schooling in the
presence of strong hydrodynamic interactions, in high fidelity simulations
of the Navier-Stokes equations [56]. We consider 20 self-propelled swim-
mers (figure fig. 6) interacting through their vortex wakes. The non-linear
vortex interactions make this a challenging control problem [57]. Here, each
swimmer observes a 16-dimensional state, encoding the ability to sense the
environments via sight, flow sensing, and proprioception. Given the obser-
vation of the environment, the swimmers can control their motion via two
actions that allow steering and changing the swimming velocity. Their reward
is composed of the instantaneous swimming efficiency and a penalty term
for collisions. In fig. 6 we show the trajectories relative to the center of mass
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b)

a)

FIGURE 6: Structure of the school for 100 swimming periods. Figure (a) shows
the swimmers in gray, where the colors visualize the vorticity field (blue
negative and red positive). Figure (b) displays the trajectories of the
controlled (black) and uncontrolled (dashed, color) swimmers relative
to the center of mass of the school. An animation of both schools can
be found in the supplementary materials.

of the school. Controlled schooling behaviour is observed for 100 tail beat
periods whereas without control the swimmers collide at 1/5th of this time.
Control for high fidelity simulations has a high computational cost, which
requires asynchronous training and data collection. We use one compute
node to train the neural networks and 64 independent simulations with two
nodes for data collection. In total, the run took four days on 129 nodes of
a Cray XC50 system equipped with a 12 core Intel® Xeon® CPU and one
NVIDIA® Tesla® P100 GPU. This suggests the suitability of our method to
expensive scientific computing applications.
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3.3 A Bayesian Perspective on Uncertainties in Deep Reinforcement
Learning

Uncertainty quantification is essential for scientific and engineering appli-
cations. It can be used to calibrate model parameters using experimental
data, determine the sensitivity to the uncertainty of these parameters [58],
and better understand the source of errors. In recent years, deep learning
has proved successful in many domains of science and engineering [59, 60].
However, a rigorous assessment of the uncertainties in these models has
been mostly overlooked due to many model parameters and the vast amount
of data involved during the training process [61–63]. Efforts of Bayesian
uncertainty quantification for deep learning models have primarily been fo-
cused on supervised learning [64]. While supervised learning uses a fixed
dataset, in deep reinforcement learning (RL) the data is collected during
training [65, 66]. During the training process and evaluation of an RL model,
we need to clearly distinguish different sources of uncertainty: those coming
from the stochastic environment, the noise added to the agents’ actions to
balance the exploration-exploitation trade-off, as well as the uncertainties
from the stochastic training of the policy. An overview of the different sources
of uncertainty is shown in fig. 7. In the present work, we focus on the last
source of uncertainty, namely the stochastic training process.

The existing applications of Bayesian deep learning (BDL) to RL have
been restricted to deep ensembles, dropout, and variants thereof. The use
of ensembles has been focused on increasing the training performance and
reducing variance in the estimates of the value function [67–74]. In contrast
variance-enhancing methods, such as dropout are usually ignored as they

μ(s; ϑ) a
r

sσ(s; ϑ)
ϑ

ε

p

FIGURE 7: Sources of uncertainty in reinforcement learning. The circled elements
denote sources of uncertainty and the arrows indicate dependencies
between the variables. In gray, are the uncertainties that are targeted
with the proposed Bayesian methodology.
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can hinder training. However, they are established as cheap alternatives to
the computationally expensive ensemble methods [75–78]. Markov Chain
Monte Carlo (MCMC) methods, such as Langevin dynamics and Hamiltonian
Monte Carlo, are sparsely discussed in the literature, as these methods are
more challenging to implement and calibrate [79–81]. Although recent studies
discuss the role of uncertainties, a Bayesian perspective is missing [82–
86]. The present work provides an introduction to Bayesian uncertainty
quantification in RL, and we use the MuJoCo [87] continuous control tasks
in the OpenAI gym [88] in order to assess these methods during training and
policy evaluation.

3.3.1 Bayesian Inference

In a Bayesian framework, parameters and model outputs are treated as
random variables. It assumes the knowledge of the likelihood p(y |x , ϑ) of
a prediction y for some modelM with input x and parameters ϑ. The prior
distribution p(ϑ) can be assumed or learned from data and describes the
degree of knowledge about the unknown parameters ϑ. We increase our
knowledge about the parameters using data D = {(x , y)i}N

i=1. Splitting
the data into the inputs X = {x i}N

i=1 and target values Y = {y i}N
i=1 and

applying Bayes’ theorem we can compute the posterior distribution of the
parameters

p(ϑ|X , Y ) =
p(Y |X , ϑ)p(ϑ)

p(X , Y )
. (54)

The denominator on the right-hand side is the evidence, or marginal likeli-
hood. Assuming independent and identically distributed (i.i.d) data, we can
write the likelihood as

p(Y |X , ϑ) =
N

∏
i=1

p(y i |x i , ϑ) . (55)

During evaluation of the model, the prediction ŷ for an input x̂ is obtained by
sampling the posterior predicitive distribution

p(ŷ |x̂) =
∫

p(ŷ |x̂ , ϑ)p(ϑ|X , Y ) dϑ . (56)

This is in large contrast to frequentist inference, where predictions are made
using p(ŷ |x̂ , ϑ⋆) based on a single set of parameters ϑ⋆ obtained by per-
forming maximum a-posteriori estimation

ϑ⋆ = arg max
ϑ

log p(ϑ|X , Y ) . (57)
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This does not consider the distribution of the parameters and therefore
does only allow estimating the uncertainties of the estimate under stringent
assumptions such as a Gaussian distribution of the errors in the data.

3.3.2 Reinforcement Learning

Reinforcement Learning (RL) solves sequential decision-making processes
formalized by Markov Decision Processes (MDPs). An MDP is defined by
the tuple (S , A, r , D) consisting of a state-space s ∈ S , an action-space
a ∈ A, a reward function r : S × A → R, and an unknown, stochastic
transition map D(s′|a, s). For a given stochastic policy π(a|s) we can define
the state-value function

V π(s) = ED,π

[
∞

∑
t=0

γt rt |s0 = s

]
. (58)

Here γ ∈ [0, 1) is the discount factor and we abbreviate rt = r (st , at ) for
time t . The goal is to find the optimal policy

π⋆ = arg max
π

V π(s) , ∀s ∈ S . (59)

Algorithms that compute the optimal policy are based on interactions with
the environment. At every timestep, the agent takes an action at based on
the observation of a state st . Thereby the environment transitions into a new
state st+1 and the reward rt is computed. In off-policy actor-critic methods
the states, actions, and rewards are stored in a replay memory. From the data
stored in the replay memory the optimal policy π(a|s; ϑ) and value function
V (s; ϑ) with parameters ϑ is learned. State-of-the-art deep RL employs
neural networks NN(s; ϑ) as function approximator, where the weights ϑ of
the neural network are typically optimized using stochastic gradient descent

ϑn+1 = ϑn − η∇ϑL(ϑn, D) . (60)

Here η denotes the learning rate and ∇ϑL(ϑn, D) denotes the stochastic
gradient estimator computed with respect to the parameters of the empirical
loss computed over a mini-batch of samples D. Upon convergence, this
approach yields a point estimate NN(s; ϑ⋆).
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3.3.3 Bayesian Deep Reinforcement Learning

For Bayesian RL we propose learning the posterior predictive policy

π(a|s) =
∫

π(a|s; ϑ) p(ϑ|D)dϑ . (61)

The posterior distribution is defined as the negative exponential p(ϑ|D) =
exp[−L(ϑ, D)] such that the point estimate discussed in section 5.1 corre-
sponds to the maximum a-posteriori estimate. Without loss of generality, we
assume that the policy is parameterized with mean µ(s; ϑ) and standard de-
viation σ(s; ϑ). For the posterior predictive distribution, the total uncertainty
of the action in state s can then be computed from

∆a(s)2 = vara [π(a|s)] . (62)

The total uncertainty can be decomposed into the epistemic uncertainty

δa(s)2 = varϑ|D [µ(s; ϑ)] , (63)

and the aleatoric uncertainty

da(s)2 = ∆a(s)2 − δa(s)2 . (64)

Similarly, the value function V or state-action value function Q can be com-
puted via

V (s) = Eϑ|D [V (s; ϑ)] , Q(s, a) = Eϑ|D [Q(s, a; ϑ)] , (65)

instead of using a point estimate.
We note, that in RL the stochastic form of the policy is introduced to

cope with the exploration-exploitation dilemma [89]. Although algorithms like
the used VRACER algorithm [33] learn the variance used to sample the
action, the underlying objective is to maximize the cumulative reward, not
to express the uncertainty of an action. In safety-critical applications, the
correct assessment of uncertainty is essential, and as we will see in the
following section how the present method allows a clearer picture.

3.3.3.1 Approximation

The expectation values in eqs. (61) and (65) can not be computed analytically.
In order to compute an approximation, we assume that we are given i =
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1, ... , N samples ϑ(i) ∼ p(·|D) from the posterior distribution. Using these
samples we can use Monte Carlo integration to approximate

π(a|s) ≈ 1
N

N

∑
i=1

π(a|s; ϑ(i)) , (66)

and

V (s) ≈ 1
N

N

∑
i=1

V (s; ϑ(i)) , Q(s, a) ≈ 1
N

N

∑
i=1

Q(s, a; ϑ(i)) . (67)

Under this approximation, an action is sampled by first sampling a categorical
distribution with pi = 1/N for i = 1, ... , N. The action is then found by
sampling the realization π(a|s; ϑ(i)) of the policy for parameters ϑ(i). For this
approximation and assuming independence between the components of the
action aj the total uncertainty is

∆aj (s) ≈

√√√√ 1
N

N

∑
i=1

(
µ2

j (s; ϑ(i)) + σ2
j (s; ϑ(i))

)
− µ̂2

j (s) . (68)

Where µj and σj are the mean and standard deviation of the j-th action and

µ̂j (s) =
1
N

N

∑
i=1

µj (s; ϑ(i)) . (69)

Furthermore, the epistemic uncertainty reads

δaj (s) ≈

√√√√ 1
N

N

∑
i=1

µ2
j (s; ϑ(i))− µ̂2

j (s) , (70)

while the aleatoric uncertainty becomes

da(s) ≈

√√√√ 1
N

N

∑
i=1

σ2
j (s; ϑ(i)) . (71)

This is in accordance with our intuitive picture, where the noise from the
stochastic policy becomes the aleatoric uncertainty, and the variance in
the mean action for different samples of the posterior corresponds to the
epistemic uncertainty.
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3.3.3.2 Sampling Algorithms

In the following paragraphs, we will present the prominent methods from the
literature, and discuss their applicability to sample the posterior distribution
in deep RL models.

M O N T E C A R L O D R O P O U T ( M C D ) One of the central problems in deep
learning is overfitting. One method that was found to be an effective regular-
ization techniques are Dropout [90] and DropConnect [91]. Here, the idea is
to randomly set weights in the neural network to zero. Later work showed that
dropout is a Bayesian approximation and can be used to compute samples
from the predictive posterior distribution of the data [92, 93]. In RL, this was
found to be ineffective due to inconsistencies arising between training and
testing [78].

S TO C H A S T I C W E I G H T AV E R AG I N G G AU S S I A N ( S WAG ) Upon conver-
gence, SGD only changes the weights of the neural network in the vicinity
of a local minimum. The idea of stochastic weight averaging is to average
these weights in order to improve the predictive performance of deep neu-
ral networks [94]. In later work, this idea was extended to approximate a
Gaussian distribution based on the samples [95]. While in RL this method is
readily applicable given the most recent weights of an already trained model,
during training, only the most recent samples can be considered.

D E E P E N S E M B L E S ( D E ) Instead of training one neural network, we can
configure the learning to train N neural networks. It was shown that the sam-
ples obtained like this allow a good approximation of the predictive posterior
distribution [96]. These networks are not only initialized independently but
also trained on separate mini-batches. Ensembles can be combined with
all of the methods presented so far and should help sampling from multiple
local minima [76, 86, 97, 98].

L A N G E V I N DY N A M I C S ( L D ) It was found that suitable choices of the
learning rate guarantee convergence of SGD to a local minimum and that
the parameters recorded on the trajectory are samples from an approximate
posterior distribution [99]. This also applies to variants with momentum like
the Adam optimizer [100]. Later it was shown, that adding the correct amount
of noise to the trajectory of stochastic gradient descent yields samples from
the full posterior distribution [101, 102]. Similarly to variants of SGD like
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FIGURE 8: Visualization of sampling techniques. From left to right: MCD pro-
poses to disable connections in the neural network at random. SWAG
computes a Gaussian approximation of the posterior based on past
samples. DE methods train several independent networks. LD and
HMC are Markov-Chain Monte Carlo methods to sample the posterior
distribution.

Adam, convergence can be improved by adopting the covariance of the
added noise by the empirical covariance of the gradients [103–106].

H A M I LTO N I A N M O N T E C A R L O ( H M C ) Hamiltonian Monte Carlo (HMC)
re-frames the inference problem in the framework of Hamiltonian mechanics.
By introducing the energy and momentum variables, the Hamilton equa-
tions can be solved in order to compute proposals in a Metropolis–Hastings
algorithm [107]. This approach requires the availability of gradient informa-
tion, which are readily available for neural networks [108, 109]. With the
increasing complexity of the neural network architectures and the size of the
datasets, standard HMC was soon found to be infeasible and SGD-HMC was
introduced [110, 111]. Similar to the approaches from Langevin dynamics,
the geometry of the loss surface can be taken into account [112].

3.3.3.3 Policy Approximation

The present section shows some approaches to retain the Gaussian form of
the policy that is required by many algorithms. Since the gradient of the im-
portance weight can be computed based on eq. (66), the reason we present
these approximations are mainly to approximate the KL-divergence [113–
115] and other regularization terms that might rely on a Gaussian policy.

N A I V E From a formal point of view, off-policy methods like ReF-ER can
be understand as a sampling from an ensemble of past policies [116], thus
these algorithms should also applicable for the more general ensemble
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like eq. (66). This means that even though during inference we sample the
action from eq. (61), we approximate

π(a|s) ≈ π(a|s; ϑ) , V (s) ≈ V (s; ϑ) (72)

during the training in order to compute the policy gradient. We have observed
that this requires clipping the KL gradient to 107, an approach that was also
used in the baseline model to avoid numerical problems. We call this method
the Naive Model (NM).

G AU S S I A N Another option is to approximate the mixture distribution aris-
ing from the Monte Carlo approximation in eq. (61) using a diagonal, clipped
Gaussian distribution

π(a|s) ≈ N c(µ̂(s), diag(σ̂2(s))) . (73)

Using the chain rule we find the gradients to update the weights

dL(ϑ)
dµj (s; ϑ)

=
∂L(ϑ)
∂µ̂j (s)

∂µ̂j (s)
∂µj (s; ϑ)

+
∂L(ϑ)
∂σ̂j (s)

∂σ̂j (s)
∂µj (s; ϑ)

,

dL(ϑ)
dσj (s; ϑ)

=
∂L(ϑ)
∂µ̂j (s)

∂µ̂j (s)
∂σj (s; ϑ)

+
∂L(ϑ)
∂σ̂j (s)

∂σ̂j (s)
∂σj (s; ϑ)

.
(74)

We note that this requires that the current network is part of the set of
samples. While deep ensembles and stochastic gradient Langevin dynamics
readily contain the current set of parameters in the samples, for dropout
and stochastic weight averaging this is not the case. For the latter two, the
current weights of the network have to be included in the samples. While the
first factors can be reused from the baseline algorithm (see appendix B.2),
the latter has to be computed. Using eq. (67) to compute the value function
implies a factor 1/N. For the computation of the mean µ̂j (s) and variance
σ̂2

j (s) we can distinguish several approximations:

Total If we want to preserve the moments of the mixture distribution
and incorporate the total uncertainty, we need to take eq. (68). In this
case, the derivative of the mean µ̂ and standard deviation σ̂ of the
approximate predictive posterior distribution π̂ with respect to the mean
and standard deviation of the current policy gives

∂µ̂j (s)
∂µj (s; ϑ)

=
1
N

,
∂σ̂j (s)

∂µj (s; ϑ)
=

1
N

1
σ̂j (s)

(
µj (s; ϑµ)− µ̂j (s)

)
,

∂µ̂j (s)
∂σj (s; ϑ)

= 0 ,
∂σ̂j (s)

∂σj (s; ϑ)
=

1
N

σj (s; ϑ)

σ̂j (s)
.

(75)
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We call this method the Gaussian with Total Uncertainty (GTU).

Epistemic Instead of using the total variance, we can only consider
the epistemic uncertainty and compute the standard deviation of the
Gaussian approximation via eq. (70). In this case, the chain rule gives

∂µ̂j (s)
∂µj (s; ϑ)

=
1
N

,
∂σ̂j (s)

∂µj (s; ϑ)
=

1
N

1
σ̂j (s)

(
µj (s; ϑµ)− µ̂j (s)

)
,

∂µ̂j (s)
∂σj (s; ϑ)

= 0 ,
∂σ̂j (s)

∂σj (s; ϑ)
= 0 .

(76)

We call this method the Gaussian with Epistemic Uncertainty (GEU).

Aleatoric We can ignore the epistemic uncertainty and compute the
standard deviation of the Gaussian approximation using eq. (71). In
this case, the chain rule gives

∂µ̂j (s)
∂µj (s; ϑ)

=
1
N

,
∂σ̂j (s)

∂µj (s; ϑ)
= 0 ,

∂µ̂j (s)
∂σj (s; ϑ)

= 0 ,
∂σ̂j (s)

∂σj (s; ϑ)
=

1
N

σj (s; ϑ)

σ̂j (s)
.

(77)

We call this method the Gaussian with Aleatoric Uncertainty (GAlU).

Average Instead of taking inspiration from the uncertainties, we can
follow the same approach as for the mean and average the standard
deviations resulting from the sampled parameters. In this case, the
chain rule gives

∂µ̂j (s)
∂µj (s; ϑ)

=
1
N

,
∂σ̂j (s)

∂µj (s; ϑ)
= 0 ,

∂µ̂j (s)
∂σj (s; ϑ)

= 0 ,
∂σ̂j (s)

∂σj (s; ϑ)
=

1
N

.
(78)

We call this method the Gaussian with Average Uncertainty (GAvU).

We note that mixing different approximations results in an inconsistency
between the policy gradient and the KL-regularization. In these cases, we
observed that the experiences in the replay memory become off-policy very
fast, and therefore hinder learning. Furthermore, we found that using the
total uncertainty, or the aleatory uncertainty, training the variance will not
be successful. We observe, that the policies will reduce their variances,
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MCD SWAG DE LD

O(M) O(NM+M) O(1) O(M)

(a) Sampling

Naive Gaussian

O(1) O(N)

MCD SWAG DE LD

O(1) O(1) O(N) O(1)

(b) Neural Network

TABLE 4: Scaling of the different algorithms. We regard the scaling of the com-
putational cost in terms of the number of weights M and the number of
posterior samples N.

which causes numerical problems. In our case we use squareplus(x) =
0.5(x +

√
1 + x2) which only slowly goes to zero, thus requiring very large

values in the hidden layers. Indeed the values get so large, that we observe
an overflow. When changing the activation to ReLU(x) = 0.5(x + ∥x∥), the
variance immediately drops to zero, and thus the variance of the individual
policies is not trained anymore. In order to avoid this, we suggest disabling
training the standard deviation for these methods.

3.3.3.4 Computational Cost

In the following analysis, two types of computational cost are distinguished.
The first is the cost to sample the weights, and the other is the cost to train
the neural network. The different algorithms are discussed in the following,
a summary can be found in table 4. For sampling the parameter, the DE is
the cheapest. In order to sample the parameters, we solely have to sample
a categorical distribution to determine the index for one of the P policies
p ∼ {1, ... , P}. The weights can then readily be read from memory. It is
followed by MCD and LD. While MCD requires a uniformly distributed sample
for every weight, LD requires sampling a Gaussian distribution for every
weight. For the vanilla version of LD, where there is no additional noise
added to the samples from the SGD trajectory, this cost even diminishes.
The most expensive variant is SWAG. Here first the approximate multivariate
Gaussian distribution is computed using N samples from the SGD trajectory,
based on which a Gaussian distribution is sampled for every weight. In
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order to estimate the cost of inference and training of the neural network,
we have to distinguish the cost from the respective learning and sampling
methods. While all methods besides ensembles require just one set of
neural network parameters, the ensemble method requires training N neural
networks. From the learning algorithms, the naive variant is the cheapest.
A categorial distribution is sampled to determine the sample to consider,
then the neural network is forwarded for this set of parameters. For the
Gaussian approximation and the full model, the neural network has to be
forwarded for every of the N parameter samples. When combining the
ensembles with the Gaussian approximation or the full model, we would
naively find a complexity of O(N2), however, this can be reduced to O(N) if
we train all the neural networks in the ensemble using the same minibatch.
In this case, we can evaluate the posterior distribution once (causing a cost
of O(N)) and then compute the backward pass for each of the networks
individually. Moreover, we note that the ensemble training can be parallelized
and therefore the time-to-solution is rescued. Even though the computational
cost is higher, in science and engineering applications, the evaluation of
the environment is much slower than processing the neural network. The
respective computation can be easily overlapped when collecting samples
in parallel [117, 118]. Furthermore, optimization techniques that parallelize
the computational load in order to reduce the time-to-solution can readily be
applied.

3.3.4 Results

In order to learn the policy, we employ V-RACER with ReF-ER [33], an
algorithm that has shown to be successful for computationally demand-
ing optimal control problems (scientific multi-agent reinforcement learn-
ing (SciMARL) [46, 47]). We use the standard hyperparameters reported
in the original publication and parameterize the policy as π(a|s; ϑ) =
N c(µ(s; ϑ), diag(σ(s; ϑ))2) with the clipped normal distribution N c (see ap-
pendix B.2). It will serve as our baseline method. For the comparison, we will
restrict our attention to a subset of the methods presented in section 3.3.3.1.
We regard DropConnect with varying dropout probability p, DE with a varying
number N of policies, SWAG with a diagonal approximation of the posterior
based on the M most recent weights collected from the SGD trajectory, and
LD without adding noise. HMC is disregarded to avoid the large cost to tune
its hyperparameters.
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In order to ensure a fair comparison, all evaluation results under com-
parison were obtained using the same set of random seeds. This includes
the seed for the initialization of the neural network and the sampling of
the mini-batch during training, but also the seed in the environment. For
the evaluation, we restricted our attention to three tasks from the ope-
nAI gym MuJoCo environments [87, 88]: Half-Cheetah-v4, Hopper-v4, and
Swimmer-v4. We evaluate these environments using the sampling methods
that are applicable to already trained models, i.e. MCD, SWAG, DE, and
LD without additional noise. We furthermore benchmark NM during train-
ing. The code and scripts for all experiments are available under https:

//github.com/cselab/korali/tree/UQRL.

3.3.4.1 Testing Performance and Uncertainties

In the first section of the results, the sampling methods which can be used
on a pre-trained model are tested. A collection of 16 policies is trained for
ten million updates. For each of the training runs, we store the past 1’024
neural network parameters. This enables testing MC, SWAG, DE, and LD.
Here, we replace the latest policy with the mixture distribution eq. (66) using
a different number of samples out of the 1’024 stored hyperparameters
and from the 16 trained policies. For each of the sampling methods we
subsequently perform 32 runs in order to obtain the testing statistics. In
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FIGURE 9: Normalized Testing returns for the different sampling methods. The
blue bars ( ) correspond to HalfCheetah-v4, the orange bars ( ) to
Hopper-v4, and the green bars ( ) to Swimmer-v4.
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order to compare the methods on the different environments, we define the
normalized return as the return using the sampling method R divided by the
return of the baseline method R0. The results are presented in fig. 9. We
observe, that the only method that can completely retain the performance
of the original method over the range of samples tested is LD. For MCD,
we observe a strong deterioration of the returns with increasing dropout
probability. While SWAG performs almost en-par with the baseline for N ≥ 25
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FIGURE 10: Coefficient of variation for the uncertainty estimates. The plots are
grouped by the environment HalfCheetah-v4, Hopper-v4, and Swimer-
v4 in columns and sampling methods DE, LD, SWAG, MCD in the
rows. The blue line ( ) shows the uncertainties σ(s; ϑ) learned for the
baseline policy, the orange lines ( ) show the aleatoric uncertainty
(eq. (71)), and the green lines ( ) show the epistemic uncertainty
(eq. (70)). The four shades (from dark to light; from more to fewer sam-
ples/disturbance) correspond to different numbers of samples (N =
1024, 512, 128, 32 for SWAG and LD, p = 10−2, 10−3, 10−4, 10−5 for
MCD, and N = 16, 8, 4, 2 for DE).
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samples, we observe inconsistent behavior when using N = 23 samples.
This indicates that N ≥ 25 samples are needed in order to have a converged
local approximation of the posterior distribution. For the DE, we do not
find a consistent result: While the HalfCheetah environment has slightly
below-baseline performance, the Hopper and Swimmer environments show
variation in the attainable returns.

In order to better understand these variations, we consider the uncertain-
ties resulting with the different sampling methods for all environments under
comparison. In order to compare the uncertainties defined in section 3.3.3
we regard the coefficient of variation

c =

∣∣∣∣uncertainty
mean

∣∣∣∣ , (79)

which allows comparing the uncertainties of all actions independent of their
magnitude. This allows comparison between environments and plotting c for
all components of the actions. The resulting densities on one testing trajec-
tory per environment is shown in fig. 10. We observe a notable differences for
the different sampling methods. While for the DE, the aleatoric uncertainty
of HalfCheetah and Swimmer is in close correspondence to the learned
uncertainty σ(s; ϑ), it grows with increasing number of policies in the ensem-
ble for the Hopper environments. While for HalfCheetah and Swimmer, the
epistemic uncertainty unveils that the multiple trained policies are different
local optima, which is reflected by the growing uncertainty. On the Hopper
environment this is not evident. For LD the shift of the epistemic uncertainty
is less severe, and also the aleatoric uncertainty matches the learned un-
certainty very well. This is expected and shows the important property of
of LD to create samples steam from the same local optima. The picture
for SWAG is intriguing, while for low number of samples used to approxi-
mate the posterior distribution, the aleatoric uncertainty is peaked around
zero, while the epistemic uncertainty is flat. when adding more samples
this picture changes and the epistemic uncertainty becomes more peaked,
while the aleatoric becomes flat. For MCD the failure becomes evident and
the aleatoric uncertainty captures the learned uncertainty from the original
model only for very low dropout probabilities. The epistemic uncertainty is
unpeaked and indicated the main problem, namely that the actions become
close-to random.
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3.3.4.2 Training Performance

After analyzing the testing performance we compare the training performance
for the samplers SWAG, DE, and LD. This excludes MCD which has been
shown to introduce too much uncertainty in order to work during testing. The
course of training for the first 2.5 million updates is shown in fig. 27. As can
be seen, DE and LD reach the same level of maximal reward as the baseline
algorithm, indicating that the introduced sampling methods do not disturb
the training process. For SWAG this picture is not confirmed and increasing
the number of samples hinders training. In the HalfCheetah environment this
trend is clearly visible. For Hopper it is less pronounced and the runs with 32
and 128 samples still reach good rewards. Here, only the runs with 512 and
1024 samples are strongly lagging behind. Interestingly, this observation
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FIGURE 11: Training results for the different sampling methods. We perform ten
training runs and plot the median and 60% confidence interval for
each method with shading in the columns - top row HalfCheetah-v4,
center row Hopper-v4, and bottom row Swimmer-v4. In each plot, the
baseline result is displayed as blue line ( ). The left column shows
the results for DE, with two (orange ), four (green ), eight (red ),
and sixteen (purple ) policies. The center and right columns show
the results for Langevin and SWAG, with different number of samples:
32 (orange ), 128 (green ), 512 (red ), and 1024 (purple ).
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is not confirmed for the Swimmer environments, although a delay can be
observed the reached maximal reward after 2.5M updates is still at a decent
level. The fact that SWAG seems to be problematic during training can be
understood from different perspectives: In essence SWAG approximates the
posterior locally by averaging the past N samples along the SGD trajectory.
This implies that updates that reinforce the observed behavior are delayed
and therefore the training process slowed down. Another point of view arises
when considering the handling of off-policy experiences with ReF-ER: The
averaging also implies a larger off-policy ratio, that hinders the training.
These observations are invalid for the other methods under comparison.
In both cases the sampling of the action takes place with policies that are
currently being trained, and thus the off-policy method can readily handle
the samples. The level of disturbance introduced by these methods can
only be observed when looking at the confidence intervals. While for Half-
Cheetah, the variance between the runs is almost the same, we can see
clear differences for LD and DE in the Hopper and Swimmer environments.
Also here the trend is towards larger uncertainties when increasing the
number of samples. This is also in accordance with the expectations from
our analysis of the uncertainties in the previous section.
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4
B AY E S I A N O P T I M A L E X P E R I M E N TA L D E S I G N

Intellect distinguishes between the possible and
the impossible; reason distinguishes between
sensible and the senseless. Even the possible can
be senseless.

— Max Born

Fish schooling implies an awareness of the swimmers for their compan-
ions. In flow mediated environments, in addition to visual cues, pressure and
shear sensors on the fish body are critical for providing quantitative informa-
tion that assists the tracking the proximity to other fish. Here we examine the
distribution of sensors on the surface of an artificial swimmer so that it can
optimally identify a leading group of swimmers. We employ Bayesian experi-
mental design coupled with numerical simulations of the two-dimensional
Navier Stokes equations for multiple self-propelled swimmers. The follower
tracks the school using information from its own surface pressure and shear
stress. We demonstrate that the optimal sensor distribution of the follower
is qualitatively similar to the distribution of neuromasts on fish. Our results
show that it is possible to identify accurately the center of mass and the
number of the leading swimmers using surface only information.

AC K N OW L E D G M E N T S This chapter is based on [119, 120]. For sake of
brevity, we moved study for the optimal allocation of limited test resources to
the appendix appendix A.2. The computational resources were provided by
the Swiss National Supercomputing Centre (CSCS) under project s929.
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4.1 Information Gain and Expected Utility

We define the information gain as the distance between the prior belief
on the quantities of interest and the posterior belief after obtaining the
measurements. Here, we choose as measure of the distance the Kullback–
Leibler divergence between the prior and the posterior distribution.

4.1.1 Formalism

A measurement y ∈ Rn can be expressed as,

y = F (s, ϑ; ϑ′) + ε . (80)

Here, F (ϑ; s) denotes the prediction of a model of the system at for mea-
surement parameters s (location, time, or any other parametrisation of the
experimental configuration) and for some parameter of interest ϑ. The model
can further depend on some nuissance parameters ϑ′, that are not of in-
terest. We model the error term by a multivariate Gaussian distribution
ε ∼ N (0,Σ(s)) with zero mean and covariance matrix Σ(s) ∈ Rn×n. In this
case the likelihood of a measurement is given by,

p
(
y |ϑ, s, ϑ′

)
=

1√
(2π)n det(Σ(s))

exp
(
−1

2
(
y − F (s, ϑ; ϑ′)

)⊤
Σ−1(s)

(
y − F (s, ϑ; ϑ′)

))
.

(81)

The covariance matrix depends on the measurement parameters s, which
allows modeling correlations of measurements taken simultaneously. Intro-
ducing such correlations is importance to avoid clustering of sensors [121].
We wish to identify the locations s yielding the largest information gain about
the unknown parameter ϑ of the disturbance. A measure for information gain
is defined through the Kullback–Leibler (KL) divergence between the prior
belief of the parameter values and the posterior belief, i.e., after measuring
the environment. The prior and posterior beliefs are represented through the
density functions p(ϑ) and p(ϑ|y , s, ϑ′), respectively. The two densities are
connected through Bayes’ theorem,

p(ϑ|y , s, ϑ′) =
p(y |ϑ, s, ϑ′) p(ϑ|s, ϑ′)

p(y |s, ϑ′)
, (82)

where p(y |ϑ, s, ϑ′) is the likelihood function defined in Equation (81) and
p(y |s, ϑ′) the marginal likelihood. We assume that the prior belief on the
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parameters ϑ does not depend on the sensor locations and nuissance
parameters, p(ϑ|s, ϑ′) ≡ p(ϑ). The utility function is defined as [122],

u(s, y , ϑ′) : = DKL(p(ϑ|y , s, ϑ′)||p(ϑ))

=
∫
T

ln
p(ϑ|y , s, ϑ′)

p(ϑ)
p(ϑ|y , s, ϑ′)dϑ .

(83)

Here the integration is performed over the space of parameter of interest T .
The expected utility is defined as the expectation over the measurements
and nuisance parameters

U(s) : = Ey∼p(·|s,ϑ′)
ϑ′∼p(·)

[
u(s, y , ϑ′)

]
=
∫
Y

∫
P

u(s, y , ϑ′) p(y |s, ϑ′)p(ϑ′)dy dϑ′ ,
(84)

where Y is the domain of all possible measurements and P the space of
nuisance parameters . Using Equation (82) and (83) the expected utility can
be expressed as,

U(s) =
∫
Y

∫
P

∫
T

ln
p(y |ϑ, s, ϑ′)

p(y |s, ϑ′)
p(y |ϑ, s, ϑ′) p(ϑ)p(ϑ′) dy dϑ dϑ′ . (85)

4.1.2 Estimation

The expected utility presented in eq. (85) admits no closed-form solution.
Therefore we use numerical integration to estimate the expected utility for
each sensor location. For sake of brevity we neglect the nuisance parameters
in what follows.

C O N T I N O U S PA R A M E T E R S PAC E S When ϑ is a continuous random
variable, the estimator for the expected utility can be obtained by approx-
imating the two integrals by numerical integration. We note that for low
dimensional integrals, using quadrature might be benefitial. More generally
we use Monte Carlo integration with Nϑ samples from p(ϑ) and Ny samples
from p(y |ϑ, s) [123]. In this case the resulting estimator is given by,

U(s) ≈ Û(s) =
1

NϑNy

Ny

∑
j=1

Nϑ

∑
i=1

[
ln p(y (i ,j)|ϑ(i), s)

− ln

(
1

Nϑ

Nϑ

∑
k=1

p(y (i ,j)|ϑ(k), s)

)]
.

(86)
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The samples are denoted as ϑ(i) ∼ pϑ(·) for i = 1, ... , Nϑ and y (i ,j) ∼
py (·|ϑ(i), s) for j = 1, ... , Ny .

D I S C R E T E PA R A M E T E R S PAC E S When ϑ is a discrete random variable
taking values in the set {ϑ1, ... , ϑNϑ

} the expected utility in Equation (85) is
given by,

U(s) =
Nϑ

∑
i=1

p(ϑi )
∫
Y

ln
p(y |ϑi , s)

p(y |s) p(y |ϑi , s) dy . (87)

An estimator of the given utility can be obtained by Monte Carlo integration
using Ny samples from the likelihood distribution p(y |ϑi , s). The estimator
is given by

U(s) ≈ Û(s) =
1

Ny

Ny

∑
j=1

Nϑ

∑
i=1

p(ϑi )

[
ln p(y (i ,j)|ϑi , s)

− ln

(
Nϑ

∑
k=1

p(ϑk )p(y (i ,j)|ϑk , s)

)]
.

(88)

where y (i ,j) ∼ py (·|ϑ(i), s) for j = 1, ... , Ny .

C O M P U TAT I O N A L C O S T We remark that in cases where the evalua-
tion of the model F (s, ϑ) is computationally expensive, the cost is mainly
determined by the number of simulations Nϑ. In the other extreme when
the measurements are in very high-dimensional spaces, the cost is domi-
nated by the computational burden to compute the Ny samples following the
measurement error model in Equation (81).

4.1.3 Optimization

In order to determine the optimal measurement parameters we maximize the
utility estimator Û(s) described in Equation (86). It has been observed that
the expected utility in the case of multiple equivalent sensors s often exhibit
many local optima [121, 124]. Heuristic approaches, such as the sequential
sensor placement algorithm described by [125], have been demonstrated
to be effective to elevate this problem. Following [125], we perform the
optimization iteratively, placing one sensor after the other. This procedure is
formalized as

s⋆i = arg max
s

Û(s) where s = (s⋆1, ... , s⋆i−1, s) . (89)
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Besides the mentioned advantages, sequential placement allows to quantify
the importance of each sensor placed and provides further insight into the
resulting distribution of sensors.
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4.2 Optimal Sensor Placement for Schooling Swimmers

Fish navigate in their habitats by processing visual and hydrodynamic cues
from their aqueous environment. Such cues may serve to provide awareness
of their neighbors as fish adapt their swimming gaits in groups. Early studies
have shown that vision is a critical factor for fish schooling [126]. However,
more recent studies have shown that even blinded fish can keep station in a
school [127]. Such capabilities are of particular importance in flow environ-
ments where vision capabilities may be limited [128].The flow environment
is replete with mechanical disturbances (pressure, shear) that can convey
information about the sources that generated them. Fish swimming in groups
have been found to process such hydrodynamic cues and balance them with
social interactions [129, 130]. In order to detect mechanical disturbances in
terms of surface pressure and shear stresses fish have developed a special-
ized organ, the lateral line system. The mechanoreceptors in the lateral line
– allowing the sensing of the disturbances in water – are called neuromasts.
A number of studies and experiments have shown that the functioning of
the lateral line is crucial for several tasks [131, 132]. Experiments with trout
in the vicinity of objects have shown its importance for Kármán gaiting and
bow wake swimming as well as energy efficient station keeping [133, 134].
Using the information contained in the flow, the cylinder diameter, the flow
velocity, and the position relative to the generated Kármán vortex street were
quantified [135, 136]. Using blind cave fish, several studies have shown
the importance of the lateral line to detect the location and the shape of
surrounding objects and avoid obstacles [137–140]. In another study, the
feeding behavior of blinded mottled sculpin was tested and it was found that
they use their lateral line system to detect prey [141]. It was also found that
blind fish manage to keep their position in schools and lose this ability with a
disabled lateral line organ [142]. The importance of the lateral line was also
shown for enhanced communication [143], the selection of habitats [144]
and rheotaxis [145].

In this work, we mimic the mechanosensory receptors, more specifically
the sub-surface ‘canal’ neuromasts and superficial neuromasts [146, 147].
The neuromast on the fish skin are used to detect shear stresses, where
the ones residing in the lateral line canals are used to detect pressure
gradients [148–152]. Due to the filtering nature of the canals, the detection
of small hydrodynamic stimuli against background noise is improved for the
subsurface neuromasts [153].
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The effectiveness and versatility of the lateral line organ has yielded sev-
eral bio-inspired artificial flow sensors [154–158]. Arranging these sensors in
arrays on artificial swimmers has attracted attention to transform underwater
sensing [128, 159–164]. Here, leveraging the intelligent distributed sensing
inspired by the lateral line showed to be effective in robots moving in aquatic
environments [165–170].

In order to better use and understand the capabilities of the artificial sen-
sors several studies regarding the information content in the flow and optimal
harvesting of this information were performed: The prevalence of informa-
tion on the position of a vibrating source was shown to be linearly coded
in the pressure gradients measured by the subsurface neuromasts [171].
Furthermore, it was shown that the variance of the pressure gradient is
correlated with the presence of lateral line canals [172]. In [173], fish robots
equipped with distributed pressure sensors for flow sensing were combined
with Bayesian filtering in order to estimate the flow speed, the angle of attack,
and the foil camber. Other studies have focused on dipole sources in order to
develop methods that extract information and optimize the parameters of the
sensing devices [174, 175]. In a recent study artificial neural networks were
employed to classify the environment using flow-only information [176–179].
In order to find effective sensor positions weight analysis algorithms were
employed [180].

Following an earlier work for detection of flow disturbances generated from
single obstacles [181], we examine the optimality of the spatial distribution
of sensors in a self-propelled swimmer that infers the size and the relative
position of the leading school. We combine numerical simulations of the
two-dimensional Navier–Stokes equation and Bayesian optimal sensor place-
ment to examine the extraction of flow information by pressure gradients
and shear stresses and the optimal positioning of associated sensors. The
work demonstrates the capability of sensing a rather complex system using
information of shear and pressure. Such information is available both, to
biological organisms and artificial swimmers. We remark that the work does
not aim to reproduce biological systems but rather reveal algorithms that
may be applicable to robotic systems. At the same time, we find that the
identified optimal sensor locations for the two-dimensional artificial swimmers
have similarities to biological systems indicating common governing physical
mechanisms for the hydrodynamics of natural and artificial swimmers.



62 B AY E S I A N O P T I M A L E X P E R I M E N TA L D E S I G N

4.2.1 Schooling Formations

The tail-beating motion that propels forward a single swimmer generates
in its wake a sequence of vortices. The momentum contained in the flow
field induces forces which swimmers in schooling formation must overcome
to maintain their positions in the group [182]. In this study, we maintain
the schooling formation for multiple swimmers by employing closed-loop
parametric controllers. The tail beating frequency Tp,i of each swimmer i is
increased or decreased if it lags behind or surpasses respectively a desired
position ∆xi in the direction of the school’s motion,

Tp,i = Tp(1−∆xi ) . (90)

The mean school trajectory is adjusted by imposing an additional uniform
curvature kC,i along each swimmer’s midline in order to minimize its lateral
deviation ∆yi and its angular deflection ∆θi ,

kC,i = [∆yi , ⟨∆θi ⟩]− + [⟨∆yi ⟩,∆θi ]− + [⟨∆yi ⟩, ⟨∆θi ⟩]− . (91)

Here, ⟨·⟩ defines an exponential moving average with weight δt/Tp, which
approximates the integral term found in PI controllers and

[a, b]− =

|a|b , if ab < 0 ,

0 , otherwise .
(92)

The formulation in Equation (91) indicates that if both the lateral displacement
and the angular deviation are positive (or both negative) the swimmer will
gradually revert to its position in the formation. Conversely, if ∆yi and ∆θi
have different signs the displacement has to be corrected by adding (or
subtracting) curvature to the swimmer’s midline.

4.2.2 Flow Sensors

We distinguish two types of sensors on the swimmer body. The superficial
neuromasts detect flow stresses and the subcanal neuromasts pressure
gradients [156, 183, 184]. From the numerical solution of the 2D Navier–
Stokes equation we obtain the flow velocity u = (u, v) and the pressure p at
every point of the computational grid. The surface values of these quantities
are obtained through a bi-linear interpolation from the nearest grid points.
We perform offline analysis by recording the interpolated pressure p and
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flow velocity u in the vicinity of the body. We remark that we have neglected
points near the end of the body to reduce the influence of large flow gradients
that are generated by the motion and sharp geometry of the tail. The shear
stresses are computed on the body surface using the local tangential velocity
in the two nearest grid points. Moreover, we compute pressure gradients
along the surface by first smoothing these pressure along the surface using
splines implemented in SCIPY [185, 186].

In the present experiment setup, we consider a group of swimmers followed
by a single swimmer. The follower needs to identify (i) the relative location
r of the center of mass and (ii) the population nf of the leading group.
We denote with ϑ = r or ϑ = nf these unknown quantities and allow the
follower to update its prior belief p(ϑ) about the leading group of swimmers
by collecting measurements on its sensors. These sensors are distributed
symmetrically on both sides of the swimmer and are represented by a single
point on its mid-line. We denote the k -th measurement location at the upper
and the lower part with x1(sk ) and x2(sk ), respectively. The corresponding
measurements are denoted by y1

k and y2
k , respectively (see Figure 12 for a

sketch of the setup).

4.2.3 Measurement Model

The measurement model is specified in accordance with eq. (81) with a
covariance matrix is given by,

Σij (s) =


σ2 exp

(
− ∥x1(si )−x1(sj )∥

ℓ

)
, if 1 ≤ i , j ≤ n ,

σ2 exp
(
− ∥x2(si−n)−x2(sj−n)∥

ℓ

)
, if n < i , j ≤ 2n ,

0 , otherwise ,

(93)

where ℓ > 0 is the correlation length and σ is the correlation strength. For all
the cases described in this work, the correlation length is set to one tenth of
the swimmer length ℓ = 0.1L. The correlation strength is set to be two times
the average of the signals coming from the simulations,

σ =
1

n Nϑ

2n

∑
j=1

Nϑ

∑
i=1
|F (ϑ(i); sj )| , (94)

where ϑ(i) are samples from the distribution p(ϑ). We remark that the co-
variance matrix must be symmetric and positive definite. To ensure positive
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FIGURE 12: Simulation setup used for determining the optimal sensor distribution
on a fish-like body. The follower is initially located inside the rectan-
gular area. The number of swimmers in the leading group is varied
between one and eight. The sensor-placement algorithm attempts to
find the arrangement of sensors s that allows the follower to deter-
mine with lowest uncertainty the relative position r and the number of
swimmers nf in the leading group of swimmers. For each sensor sk
the swimmer collects measurements y1

k and y2
k at locations x1(sk )

and x2(sk ) on the skin, respectively.
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definiteness we have to take special care to the case where we pick a sensor
location twice. Notice that when si = sj for i ̸= j , a non-diagonal entry
equals the diagonal entry and positive definiteness is violated. We handle
this case by setting the argument of the exponential in Equation (93) to 10−7

when si = sj . This form of the correlation error reduces the utility when
sensors are placed too close together and prevents excessive clustering of
the sensors [121, 187].

4.2.4 Inferring the Number of Swimmers

Let φ be the random variable representing one of the group configurations.
Each group configuration is associated with a unique number φi ,ℓ for ℓ =
1, ... , ni , where ni is the total number of configurations containing i swimmers.
With this notation, φ takes values in the set {φi ,ℓ | i = 1, ... , 8 , ℓ = 1, ... , ni}.
For examples of different configurations see Appendix A.1.1. Using the fact
that for i = 1, ... , Nϑ,

p(y ,φ = φk ,ℓ|ϑ = ϑi , s) = 0, for k ̸= i ,

and

p(y |ϑ = ϑi ,φ = φi ,ℓ, s) = p(y |φ = φi ,ℓ, s), for ℓ = 1, ... , ni ,

and the assumption

p(φ = φi ,ℓ|ϑ = ϑi , s) =
1
ni

, for ℓ = 1, ... , ni ,

the likelihood function can be written as,

p(y |ϑ = ϑi , s) =
Nϑ

∑
k=1

ni

∑
ℓ=1

p(y ,φ = φk ,ℓ|ϑ = ϑi , s)

=
ni

∑
ℓ=1

p(y ,φ = φi ,ℓ|ϑ = ϑi , s)

=
ni

∑
ℓ=1

p(y |ϑ = ϑi ,φ = φi ,ℓ, s) p(φ = φi ,ℓ|ϑ = ϑi )

=
1
ni

ni

∑
ℓ=1

p(y |φ = φi ,ℓ, s) .

(95)

Notice that the likelihood function for fixed ϑi , is a mixture of Gaussian distri-
butions with equal weights and that p(y |φ = φi ,ℓ, s) = N (y |F (φi ,ℓ; s),Σ(s)).
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In order to draw a sample from the likelihood, first we draw an integer ℓ∗ with
equal probability from 1 to ni and then draw y ∼ py (·|φi ,ℓ∗ , s). The final form
of the estimator is given by

Û(s) =
1

Ny

Ny

∑
j=1

Nϑ

∑
i=1

p(ϑi )

[
ln

1
ni

ni

∑
ℓ=1

p(y (i ,j)|φi ,ℓ, s)

− ln

(
1
ni

Nϑ

∑
k=1

p(ϑ(k))
ni

∑
ℓ=1

p(y (i ,j)|φi ,ℓ, s)

)]
.

(96)

4.2.5 Results

We examine the optimal arrangement of pressure gradient and shear stress
sensors on the surface of a swimmer trailing a school of self-propelled swim-
mers. We consider two sensing objectives: (a) the size of the leading school
and (b) the relative position of the school. The simulations correspond to a
Reynolds number Re = L2

ν = 2000. In all experiments, we use 4096 points
to discretize the horizontal direction x ∈ [0, 1] and all artificial swimmers
have a length of L = 0.1.

For the “size of the leading school” experiment, where the aim is to de-
termine the size of the group, we chose the school-sizes to be ϑi = 1, ... , 8.
First we consider one configuration per group-size. In this case inferring the
configuration is equivalent to inferring the number of swimmer in the group.
To increase the difficulty we consider ni different initial configurations. In
each configuration we assign a number φi ,ℓ for i = 1, ... , 8 and ℓ = 1, ... , ni .
In total, we consider Ntot = ∑i ni = 61 distinct configurations each having
the same prior probability 1/Ntot . In Appendix A.1.1 we present the initial
condition for all configurations. The center of mass of the school is located
at x = 0.3 and in the y-axis in the middle of the vertical extent of the domain.
We use a controller to fix the distance between x and y coordinates of two
swimmers to ∆x = ∆y = 0.15, see section 4.2.1.

For the “relative position” experiment, where the aim is to determine
the relative location of the follower to the center of mass of the leading
group, we consider three independent experiments with one, four and seven
leading swimmers. Snapshots of the pressure field for these simulations
are presented in Figure 13. The prior probability for the position of the
group is uniform in the domain [0.6, 0.8]× [0.1, 0.4]. The support of the prior
probability is discretized with 21× 31 gridpoints. Since the experiments are
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(a) (b)

(c)

FIGURE 13: Snapshots of the pressure field in the environment of the follower
swimmer generated by one (Figure 13a), four (Figure 13b) and seven
(Figure 13c) schooling swimmers. The snapshots are taken at the
moment the measurement was performed for one particular location
of the follower in the prior region. High pressure is shown in red and
low pressure in blue.

independent, the total expected utility function for the three cases is the sum
of the expected utility of each experiment [181].

For both experiments we record the pressure gradient and shear stress
on the surface of the swimmer using the methods discussed in section 4.2.2.
The motion of the swimmer introduces disturbances on its own surface. In
order to distinguish the self-induced from the environment disturbances we
freeze the movement of the following swimmer and set its curvature to zero.
The freezing time is selected by evolving the simulation until the wakes of
the leading group are sufficiently mixed and passed the following swimmer.
We found that this is the case for T = 22. The transition from swimming
to coasting motion takes place during the time interval [T , T + 1]. Finally,
we record the pressure gradient and the shear stress at time T + 2. The
resulting sensor-signal associated to the midline coordinates s for a given
configuration ϑ is denoted F (ϑ; s), see Equation (81).
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4.2.5.1 Expected Utility for the First Sensor

In this section we discuss the optimal location of a single pressure gradi-
ent sensor using the estimators in Equations (86) and (96). Recall that we
estimate the expected KL divergence between the prior and the posterior
distribution for different sensor locations s. The KL divergence can be under-
stood as a measure of distance between two probability distributions. Thus,
higher values of divergence correspond to preferable locations for the sensor,
leading to higher information gain. The resulting utilities are plotted in Figure
14. For all experiments we find that the tip of the head (s = 0) exhibits the
largest utility independent of the number of swimmer in the leading group. At
the tip of the head, the two symmetrically placed sensors have the smallest
distance. In Equation (93) we have assumed that the two swimmer halves
are symmetric and uncorrelated. Due to the small distance of the sensors
at the head, spatial correlation between the sensors across the swimmer
halves would decrease the utility of this location. In order to test whether the
utility for sensors at the head is influenced by this symmetry assumption,
we perform experiments where we place a single sensor on one side of the

(a) (b)

FIGURE 14: Utility curves for the first sensor using pressure measurements. In Fig-
ure 14a the utility estimator for the “size of the leading school” experi-
ment is presented. Figure 14b corresponds to the utility estimator for
the “relative position” experiment. We show the resulting curves for
one, three and seven swimmer in the leading group and the total ex-
pected utility. We observe that although the form does not drastically
change, the total utility increases with increasing size of the leading
group.
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swimmer. Again, in this case the location at the head is found to have the
highest expected utility.

There is evidence that the head experiences the largest variance of pres-
sure gradients F (ϑ; s). The same observations can be made for the den-
sity of the sub-canal neuromasts, which is also highest in the front of the
fish [172]. To check the presence of this correlation in our study, we exam-
ine the variance of the values obtained from our numerical solution of the
Navier–Stokes equation. We confirm that our simulations are consistent
with this experimental observation. We find that independent of the number
of swimmers, the variance in the sensor signal varϑ(F (ϑ; s)) is largest at
s = 0.

4.2.5.2 Multiple Sensors

In this section we discuss the results of the sequential sensor placement
described in Section 4.1.3. For the “size of the leading school” experiment
we present the results in Figure 15. In Figure 15a the utility curve for the first
five sensors is shown. We observe that the utility curve becomes flatter as
the number of sensors increase. Furthermore, we observe that the location
where the previous sensor was placed is a minimum for the utility for the next
sensor. Figure 15b shows the utility estimator at the optimal sensor for up to
20 sensors and it is evident that the value of the expected utility reaches a
plateau. In Figure 15c the found optimal location of the sensors on the skin
of the swimmer is presented. The numbers correspond to the iteration in the
sequential procedure that the sensor was placed. Note that the sensors are
being placed symmetrically.

The optimal sensor placement results for the “relative position” experiment
can be found in Figure 16. Similar to the other experiment the utility curves
become flatter after every placed sensor and the location for the previous
sensor is a minimum for the utility for the next sensor (see Figure 16a). We
plot the maximum of the utility for up to 20 sensors (see Figure 16b) and
observe a convergence to a constant value. In Figure 16c the found optimal
location of the first 20 sensors is presented.

For both experiments, it is evident that the utility of the optimal sensor
location approaches a constant value. This fact can be explained by recalling
that the expected utility in Equation (85) is a measure of the averaged dis-
tance between the prior and the posterior distribution. Increasing the number
of sensors leads to an increase in the number of measurements. By the
Bayesian central limit theorem, increasing the number of measurements
leads to convergence of the posterior to a Dirac distribution. As soon as the
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(a) (b)

(c)

FIGURE 15: Optimal sensor placement for the pressure sensors and the “size of
the leading school” experiment. In Figure 16a the utility estimator for
the first five sensors and in Figure 16b the value of the utility estimator
at the optimal sensor location for the first 20 sensors are presented.
In Figure 16c, the distribution of the sensors on the swimmer surface
is presented. Here, the numbers associated to each sensor indicate
that this location is the i-th sensor location chosen according to
Equation (89).

posterior has converged, the expected distance from the prior, and thus the
expected utility, remains constant.

The found sensor distributions for the two objectives are similar, having
clusters at the head and uniform distribution along the body. In order to
underpin the biological relevance of the observed sensor distribution we
compare our results to [172]. Given that the canals display significant 3D
branching in the head a direct comparison is difficult. However, the found
cluster of sensors at the head agrees qualitatively with the high canal density
reported in [172].
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(a) (b)

(c)

FIGURE 16: Optimal sensor placement for the pressure gradient sensors for the
“relative position” experiment. In Figure 16a, the utility estimator for
the first five sensors and in Figure 16b the value of the utility estimator
at the optimal sensor location for the first 20 sensors are presented.
In Figure 16c, the distribution of the sensors on the swimmer surface
is presented. Here, the numbers associated to each sensor indicate
that this location is the i-th sensor location chosen according to
Equation (89).
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4.2.5.3 Inference of the Environment

In this section we demonstrate the importance of the optimal sensor locations
and examine the convergence of the posterior distribution. We compute the
posterior distribution via Bayes’ theorem given in Equation (82). We set
y = F(ϑ, s) and compute the posterior for different values of ϑ in the prior
region. We consider measurements collected at: (a) the optimal and (b) the
worst sensors location.

The posterior probability for the “size of the leading school” experiment is
shown in Figure 17. We observe that the worst sensor location implies an
almost uniform posterior distribution, reflecting that measurements at this
sensor carry no information. On the other hand, the posterior distribution for
the optimal sensor is more informative. We observe that for groups with small
size the follower is able to identify the size with more confidence, as opposed
to larger groups. We compare the posterior for an experiment with only one
configuration per group-size to an experiment with multiple configurations.
For multiple configurations the posterior is less informative. This indicates
that the second case occurs to be a more difficult problem. Finally, notice
that the posterior for one configuration is symmetric, where when adding
multiple configurations this symmetry is broken. This fact is discussed in
Appendix A.1.2.

The posterior density for the “relative position” with one leading swimmer
is presented in Figure 18. The posterior for the configuration with three and
seven swimmers is similar. We compute the posterior for measurements
at the best and the worst location for one and three sensors. For the three
sensors the worst location has been selected in all three phases of the
sequential placement.The results for the normalized densities are shown
in Figure 18. We observe that one sensor at the optimal location gives a
very peaked posterior. Three optimal sensors can infer the location with low
uncertainty. This is not the case for the worst sensors, where adding more
sensors does not immediately lead to uncertainty reduction.
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FIGURE 17: (a) Estimated posterior probability for a single sensor optimally placed
and a single configuration per group size. The posterior shows clear
peaks at the correct number of swimmer for all cases, leading to
perfect inference of the parameter of interest. The posterior probability
for (b) optimal and (c) worst sensor location for multiple configurations
per group size. Here, for the optimal sensor location and one, two,
three and five swimmer we see a clear peak for the true size of the
group. For the worst sensor location the posterior is almost uniform
and does not allow to extract any information about the size of group.
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(a) One sensor, best location (b) One sensor, worst location

(c) Three sensors, best location (d) Three sensors, worst location

FIGURE 18: Estimated posterior for the final location for the best (left column)
and worst (right column) sensor-location for one (upper row) and
three sensors (lower row). Light colors correspond to high probability
density values. We marked the actual location with a black circle.
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4.2.5.4 Shear Stress Sensors

In this section, we discuss the results for the optimal positioning of shear
stress sensors. We follow the same procedure as in Sections 4.2.5.1 and
4.2.5.2. Here, we omit the presentation of all the results and focus on the
similarities and differences to the pressure gradient sensors.

The optimal location for a single sensor for the “size of the leading school”
experiment is at s∗ = 3.01× 10−4. For the “relative position” experiment we
find the optimal location s∗ = 3.84× 10−4. In contrast to the optimal location
for one pressure gradient sensor, the found sensor is not at the tip of the
head and is at different positions for the two experiments. Examining the
variance in the shear signal shows quantitatively the same behaviour as the
utility. Comparing the location of the maxima in variance shows that they do
not coincide with the found maxima for the expected utility for shear sensors.

We perform sequential placement of 15 sensors. The resulting distribution
of sensors is shown in Figure 19. In Section 4.2.5.2 we argue that the
expected utility must reach a plateau when placing many sensors using the
Bayesian central limit theorem. For shear stress sensors we observe that
the convergence is slower compared to the pressure gradient sensors. We
conclude that the information gain per shear stress sensor placed is lower
as for the pressure gradient sensors.

The posterior density obtained for both experiments is less informative
when using the same number of sensors. Also this indicates that shear is
a less informative quantity yielding a slower convergence of the posterior.
This is in agreement with the observation that the subcanal neuromasts

(a)

(b)

FIGURE 19: Optimal sensor locations for the shear stress measurements for the
“size of the leading school” in Figure 19a experiment and “relative
position” experiment in Figure 19b.
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associated with pressure gradient sensing are more robust to noise [153]. For
multiple fish in schools the resulting flow field is disturbed, thus suggesting
the use of pressure gradient sensors.
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5
C O N T R O L L I N G A R T I F I C I A L S W I M M E R S U S I N G D E E P
R E I N F O R C E M E N T L E A R N I N G

But in practial affairs, [..], men are needed who
combine human experience [..] with a knowledge
of science and technology.

— Max Born

In the following we present two applications of the reinforcement learning
methods presented in the previous chapters for an algorithmic understanding
of natural behavior:

M U LT I - TA S K R E I N F O R C E M E N T L E A R N I N G TO S W I M I N R E V E R S E A N D

F O RWA R D K Á R M Á N WA K E S Fish possess a remarkable ability to
sense and interact with their aquatic environment. They harvest energy
from vortices in the flow during upstream migration and schooling.
The present work combines deep reinforcement learning and direct
numerical simulations to reproduce the energy harvesting in-silico. We
use multi-task learning and adaptive mesh refinement to reduce the
computational cost. The experiments focus on forward and reverse
Kármán vortex streets in the range of relevant Strouhal numbers. The
results allow insights in the flow physics by analyzing the computed flow
fields. They showcase the capabilities of the employed methodology
to complement the existing experiments in an unified framework. We
provide visualizations of the policy and value function to decipher the
learned neural network.

T R A N S F E R L E A R N I N G F O R S C H O O L I N G S W I M M E R S W I T H M U LT I - A -
G E N T R E I N F O R C E M E N T L E A R N I N G The hydrodynamics of school-
ing fish has remained elusive. One of the reasons for the difficulty
is the computational cost of acquiring effective control policies that
allow simulations of schools where the swimmers are self-propelled
and do not rely on external forcing. In this work we simulate schools
up to 100 swimmers with direct numerical simulations and learn their
control with reinforcement learning. Varying the number of swimmers
allows examining the stability and control law. The study is enabled
by adaptive mesh refinement and transfer learning. We refine the grid
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around the swimmers and in their wake and initialize the learning for
larger schools using the policies from smaller schools. We assess the
benefits and disadvantages of different training strategies for multi-
agent reinforcement learning. We find that while training a single policy
per agent gives more robust policies, they are less transferable. In con-
trast to that, training a single policy for all swimmers allows successful
transfer of information from small schools to larger schools. Our study
allows unprecedented insight and analysis of the hydrodynamics of
fish schools over a large range of sizes.

AC K N OW L E D G M E N T S The content is based on [188, 189]. The compu-
tational resources were provided by the Swiss National Supercomputing
Centre (CSCS) under project s929.
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5.1 Reinforcement Learning for Artificial Swimmers

We assume that fish interact with their environment at discrete times t =
1, ... , T . First, the fish observes a sixteen-dimensional state s(t) ∈ S ⊂ R16.
The elements correspond to three sources of perceptional cues: sight, flow
sensing, and proprioception. The first six components are the displacement,
orientation, as well as the linear and angular velocity. The lateral line system
allows fish to sense shear stress and pressure gradients via neuromast
sensors. We computed the optimal placement of these sensors by using
Bayesian optimal experimental design to determine the locations that maxi-
mize the information gain from measurements [190, 191]. We include the
shear stresses at three of the resulting locations, giving another six compo-
nents of the state vector. Finally, we model proprioception by adding the time
of the previous interaction, the last two signals to modify the curvature, as
well as the current phase of the undulation as a state [56, 182]. Given the
cues from the environment, the fish decides upon an action a(t) ∈ A ⊂ R2

that represents the incentive to change the direction and the velocity. After
performing an action, the fish observes a new state s(t+1) and a reward
r (t) ∈ R. In the present work, we chose the Froude swimming efficiency as
reward [56].

The described interaction loop is visualized in fig. 20 and the implemen-
tation of the learning follows the discussion from chapter 3. As we have
discussed in chapter 2, we model the deformation via the midline curvature
by a sinusoidal wave with period T . The amplitude K (s) is linearly increasing
from K (0) = 0.82/L to K (L) = 5.7/L. The baseline motion is modified by
the actions of the agent at every half swimming period. They control the swim-

states , rewards s(t+1) r(t)

action a(t)

s(t+1), r(t) = D(s(t), a(t))
s μ

Σ } π = 𝒩(μ, Σ)
Environment

Agent

action a ∼ π( ⋅ |s)

FIGURE 20: Schematic of the reinforcement learning loop.
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a) b) c)

FIGURE 21: Illustration of the swimmer model. In grey we plot the midline over one
period (t ∈ [0, T ]) of the baseline motion (a), and the modified motion
when repetitively taking the minimal- (b), and the maximal action (c).
At t = 0.3 the shape is plotted together with the midline. Note that b)
and c) are symmetric when adding a phase ϕ = π, which explains
why the time between actions is half the swimming period.

ming period T and add a wave package A(s, t) to the baseline-curvature
(see [56, 182] for details)

kRL(s, t) = K (s)
[
sin
(

2πt
T
− 2πs

L
+ ϕ

)
+ A(s, t)

]
. (97)

Figure 21 shows the effect of the additional curvature A(s, t) for the minimal
and maximal values of the action. As can be seen, the actions allow biasing
the motion of the fish towards a certain direction. Using the Frenet–Serret
formulas, the midline and the normal vectors can be reconstructed from
the curvature [9]. The shape is constructed by adding the width as defined
in chapter 2.

During the undulation, drag and thrust production are distributed over the
whole body. The total force is computed by integrating the force components
over the swimmer surface [192]. Here, we distinguish the negative and posi-
tive contributions as drag and thrust respectively [8, 56]. From the forces, the
forward power Pthrust and the deformation power Pdeformation are computed.
The Froude swimming [193] efficiency is consequently

η =
Pthrust

Pthrust + max{0, Pdeformation}
. (98)

Clipping of the deformation power is required to avoid negative contributions
when the deformation of the obstacle is aligned with the fluid forces [56]. If
swimmers collide or a swimmer exits the computational domain, a negative
penalty is given.
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5.2 Multi-Task Reinforcement Learning to Swim in Reverse and For-
ward Kármán Wakes

The effectiveness of fish swimming is unprecedented and understanding
how can inspire the effective design of underwater robots [194]. In multiple
experiments it was shown how fish can benefit from the complex non-linear
interactions with the vortices in fluid flows [195, 196]. Reproducing their
behaviour in accurate computer simulations allows better understanding of
this behaviour and the underlying flow physics. The gained knowledge can
then be transferred back to experiment and engineering applications [197].
In the present study we combine Direct Numerical Simulations (DNS) and
Reinforcement Learning (RL) to achieve this task. RL has been successfully
applied in fluid mechanics applications [198, 199]. For swimming, RL was
used to optimize the motion of artificial swimmers to follow a given path [200,
201], keep station [182], or optimize efficiency [56]. Similarly it was used
for goal-reaching and swimming behind a D-shaped cylinder [202, 203], or
discovering optimal escape patterns [204].

The existing literature provides insight into the mechanics that govern fish
propulsion, collaborative behaviour, and station keeping via case-by-case
experimental or reverse engineering studies. In nature, however, fish rarely
face a single task, and can quickly adapt to new situations. We thus argue

Reinforcement Learning

Fluid Dynamics

Nature

policyexperiences

prediction

validation

behaviour

explanation

∇ ⋅ u = 0

∂u
∂t

+ (u ⋅ ∇)u = − ∇p
ρ

+ νΔu +
N

∑
i=1

λχi(ui − u)

FIGURE 22: Schematic of the proposed integration of RL in an algorithmic un-
derstanding of nature. Computational Fluid Dynamics (CFD) allows
predicting nature, where experiments provide data for validating the
code. By combining CDF with RL, we generate experiences, that in
turn allow training a policy to optimize a reward that is inspired by
behaviour observed in nature. Evaluating the resulting policy closes
the loop and can be used to explain the targeted behaviour.
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that the underlying optimization problem cannot only focus on solving one
task at a time. In the present work, we shift the paradigm of algorithmic un-
derstanding of nature [205] towards multiple tasks. RL works effectively and
we show that it enables the reproduction of the versatile behaviour observed
in real fish by optimizing the Froude swimming efficiency. The found policies
work in different flow scenarios without retraining or modifying the state. This
level of generalization is achieved by randomly sampling the environment
during training. Our approach can be transferred to other domains that target
the algorithmic understanding of natural behaviour. Furthermore, employing
DNS minimizes the modeling error and provides an accurate picture of the
governing physics. We visualize the proposed loop in fig. 22: While DNS
have to be strictly validated against nature, they allow predicting outcomes
in new scenarios. DNS generate experiences using which a policy can be
trained via RL. The goal can be inspired from natural behaviour and in turn
yields a possible explanation and detailed picture of the underlying physics.

5.2.1 Environment

The velocity u : Ω× [0, T ]→ R2 and pressure p : Ω× [0, T ]→ R of the fluid
with kinematic viscosity ν ∈ R and density ρ ∈ R that surrounds the swimmer
is computed by solving the incompressible two-dimensional Navier-Stokes
equation with Brinkman penalisation as discussed in chapter 2.

For sufficiently high Reynolds numbers, the flow around bluff bodies is char-
acterized by forward Kármán vortex streets. Experimental studies showed,
that fish swimming behind D-shaped cylinders reduce their muscle activ-
ity [195] and adopt characteristic kinematics, the Kármán gait [206, 207].
Both, the size of the bluff body and the speed of the flow, influence the vortex
shedding frequency and correspondingly alter the Kármán gait [208]. Similar
studies were performed with dead trout. Although lacking any control, their
bodies synchronize with the vortex street and are propelled upstream [209].
In contrast to bluff bodies, self-propelled objects imply reverse Kármán vortex
streets. A typical example are flapping hydrofoils, which serve as a model
for swimming fish. Also for this type of flow, a recent study found altered
swimming gaits for rainbow trout [196]. In earlier studies, flapping hydrofoils
enabled a better understanding of the undulation frequency of fish [210–212],
interaction of self-propelled bodies with vortices [213, 214], and energy gains
in groups [215–217].

We study forward and reverse Kármán wakes by simulating D-shaped
cylinders and flapping hydrofoils. Figure 23 illustrates the vorticity field and
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a)

b)

FIGURE 23: The flow behind a D-shaped cylinder with diameter d = 0.06 (a), the
flow behind a flapping hydrofoil at St = 0.3 (b) at Re= 1′000. Negative
vorticity is highlighted in blue, positive vorticity in red. The stream-
lines display the velocity magnitude (darker lines for larger absolute
values). On the right we plot the time-average of the x-component of
the flow velocity.

the average velocity profile for such flows. The streamlines are shaded
according to velocity magnitude. Light colors indicate lower velocity and thus
areas where station keeping is easier. In both cases we can identify light
regions where a swimmer can harvest energy from the flow. However, the
forward and reverse Kármán wakes are fundamentally different. While the
drag inducing D-shaped cylinder shows an overall velocity deficit, the flapping
hydrofoil generates a flow excess by generating thrust. The spacing between
the vortices is determined by the non-dimensional Strouhal number St = f ·A

u ,
where f is the frequency of the vortex shedding for the D-shaped cylinder or
the flapping frequency for the hydrofoil; A denotes the characteristic length,
that is the diameter of the hydrofoil, or the amplitude of the flapping.

5.2.2 Results

For the simulations, the computational domain is Ω = [0, 10]× [0, 5]. The
reference length scale L equals to one swimmer length and the reference
time scale equals one swimming period T . The reference density ρ is set
equal to one and the Reynolds number, defined as Re = L2

T ν , is equal to
1′000. The moving obstacle’s position is fixed at x = (3, 2.5) by moving the
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frame of reference at constant velocity. The swimmer starts at r = (4.5, 2.5)+
∆r with ∆r ∼ U ([−1/3, 1/3]2) downstream from the obstacle at an angle
of α ∼ U ([−5, 5]) degrees. Here, U ([a, b]) denotes the uniform distribution
over the interval [a, b] ⊂ R. Given the initial condition, the simulation runs
for at most 100 swimming periods, after which the environment is truncated.
Numerical difficulties arising from an impulsive start of the undulating motion
are avoided by ramping up the amplitude of the curvature over the first
swimming period. The swimmer reaches a steady swimming speed after
approximately four swimming periods. Similarly, the obstacle velocity is
linearly increased from 0 to the target velocity v = (−0.75, 0) over five
swimming periods. If the swimmer leaves the margins Ωhabitable = [0.5, 9.5]×
[0.5, 4.5] the simulation is terminated and the swimmer is penalized. We
use an effective number of 2′048× 1′024 grid points with seven levels of
refinement. The grid is refined around obstacles and according to vorticity
magnitude. The resulting grid-spacing at the finest resolution is ∆x = ∆y =
0.005, i.e. 200 grid points per swimmer length. The time-step is controlled
via a Courant number of 0.4. Following the experimental studies on Kármán
gaiting [195, 218, 219], we focus on diameter of the D-shaped cylinder in
the range d ∈ [0.3, 0.7] and place it at an angle of 10◦ to obtain vortex
shedding. For the flapping hydrofoil, we fix the amplitude to A = 13.15◦, the
length to c = 0.6, and vary the frequency f such that the Strouhal number
St = 2Acf

∥v∥ ∈ [0.1, 0.5] is in the natural range for swimming [196, 220].

5.2.2.1 Physical Mechanisms

The physical mechanisms that allow the swimmer to harvest energy while
swimming behind the obstacle are examined by observing the flow field
(fig. 24, fig. 25, and fig. 26).

As shown in fig. 24, the optimal policy computed with RL adopts the
strategy which was observed in experiment [195]. The fish slalom between
the vortices, thus avoiding regions with high flow velocity and aligning with
the flow field. This behaviour, termed Kármán gait, tends to be adopted by
fish in nature [221]. In the right of the figure we see how the swimmer aligns
with the velocity field, and therefore it reduces the amount of work that has to
be brought up against the fluid to deform its shape. This reduces the required
muscle contractions. Additionally it benefits from the upward direction of the
velocity field to reduce its drag.

In reverse Kármán vortex streets, the mechanism is different. Especially
at Strouhal numbers close to the self-propelled swimmer, the wavelength
of the vortex-street is smaller. For small wavelengths, slaloming in between
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t = 24.5

t = 25.0

t = 25.5

t = 26.0

FIGURE 24: Figure showing the flow encountered in the wake of the D-shaped
cylinder (d = 0.3) during one shedding cycle. The left column shows
vorticity, the right the pressure and velocity field. Darker red indicate
more positive and blue negative values, respectively.
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t = 28.0

t = 28.4

t = 28.8

t = 29.2

FIGURE 25: Figure showing the flow encountered in the wake of a flapping hy-
drofoil (St= 0.5) during one swimming cycle. The left column shows
vorticity, the right the pressure and velocity field. Darker red indicate
more positive and blue negative values, respectively.
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t = 9.5

t = 9.9

t = 10.3

t = 10.7

FIGURE 26: Figure showing the flow encountered in the wake of a flapping hy-
drofoil (St= 0.3) during one swimming cycle. The left column shows
vorticity, the right the pressure and velocity field. Darker red indicate
more positive and blue negative values, respectively.



90 C O N T R O L L I N G A RT I F I C I A L S W I M M E R S U S I N G D R L

vortices becomes infeasible. One strategy employed in tandem swimmers is
to intercept vortices [56]. This strategy is also recovered in the present work
when using high flapping frequencies (St=0.5) (see fig. 25). In contrast to the
previous study, we only see the formation of one secondary vortex on each
of the respective sides. The lower Reynolds number used in the present
study is 1,000 and was 5,000 in [56]. Reducing the Reynolds number can be
seen as a weakening of the inertial forces, which explains the difference.

For intermediate Strouhal numbers, a second strategy is found. As shown
in fig. 26, the swimmer positions itself at a slight offset from the central
axis. The offset allows the fish to intersect a vortex with its head, thereby
transporting negative vorticity along the surface, creating a new vortex dipole.
The vorticity generated from the underlying motion is propelled downwards.
The resulting fluid momentum points downstream and, according to Newtons
third principle, the swimmer is propelled upstream. Interestingly, the swimmer
does not align with the flow field. Since from alignment additional energy
can be extracted from the flow this yields lower efficiency gains compared to
swimming behind the D-shaped cylinder (see fig. 27 b)).

5.2.2.2 Training and Evaluation

We perform three RL studies where we trained the agent for 500’000 inter-
actions with the environment. As shown in fig. 27 a), the returns plateau,
indicating that the policy converged. In our first study, we sample D-shaped
cylinders with diameter size d ∼ U ([0.3, 0.7]). In the second study, we
trained the swimmer behind hydrofoils with chordlength 0.6 and random
Strouhal number St ∼ U ([0.1, 0.5]). Lastly, we train a multi-task policy where
we sample a Bernoulli distribution to decide whether to perform an episode
using a cylinder or a hydrofoil. We evaluate the policy’s performance with
10 random initial conditions for 10 values of the diameter D-shaped cylinder
and frequency for the flapping hydrofoil. The obtained testing returns are
shown in fig. 27 b).

The median cumulative rewards and ranges only show slight differences
between the environments. Based on this we could prematurely conclude
that the returns that can be achieved in these environments are the same.
Therefore we could hypothesize, that similar underlying characteristics are
shared by both environments.

Multitask training achieves the same returns as training a single task, de-
spite having the same total number of observations. Since the computational
cost is mainly determined by the number of interactions, multitask training
effectively reduces necessary computational resources. Without multitask
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a) b)

FIGURE 27: Figure illustrating the training and testing process. Figure (a) shows
the median of the cumulative sum of rewards over 100 episodes with
the range of samples shaded. Figure (b) shows the minimum, mean,
and maximal return when varying the radius and flapping frequency
for the cylinder and the hydrofoil, respectively. The colors distinguish
the returns achieved with the policies of the different reinforcement
learning studies: D-shaped cylinders ( ), hydrofoils ( ), or the
multitask training ( ).

learning, we would have performed the optimization for each obstacle and
also each parameter separately. For the present results we consider 10
different angles and flapping frequencies, resulting in an effective saving of
2× 10X. With the presented approach, RL allows optimizing the policy for all
environment configurations simultaneously. Thus, the multi-task approach re-
duces the computational costs of learning a policy that generalizes between
environments.

During the evaluation, the differences between the environments and the
used training schemes becomes clearer. When regarding fig. 27 b) we find
much larger ranges for the returns for the cylinder. They range from 20-80.
Although the mean return becomes smaller for larger radii, the maximal
attained returns are almost constant (blue shaded area). This indicates that
the maximal amount of energy that can be extracted from the flow does not
greatly vary when changing the radius of the D-shaped cylinder. However,
the required control is more difficult, yielding a lower mean return.

For the agent behind the flapping hydrofoil, the mean return increases
from 10 to 60 when increasing the flapping frequency. The range of the
returns is much narrower. One exception to the picture is the run at f = 1.25.
Here a run with a very low value for the return is recorded. This indicates that
the swimmer had a fatal encounter with the wake of the hydrofoil. According
to our results it is preferable for the swimmer to swim behind a hydrofoil with
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higher flapping frequency. Furthermore, the found returns is more consistent,
indicating a more stable control law.

When evaluating the multitask policy, the dependencies of the testing
returns are similar. However, the returns compared to the specialized policies
are 20-30% lower. When doing cross-validation, the multi-task learning
shows it’s benefits. The returns are 40-50% lower when evaluating the
policies from one environment in the other. This means a 2X improvement.
How each cases can profit from the insights from the respective other cases
will become clearer in the analysis in the following section.

5.2.2.3 Policy and Behaviour

In order to understand how these returns are achieved, an evaluation of the
collected experiences is performed. Since the policy is converged, the 65’536
samples in memory follow the distribution d of states visited by the optimal
policy. We focus on the spatial dependencies (x , y) ∈ R2. The marginal is
computed for the value function V and mean output µ for the actions

V (x , y) = Es\(x ,y)∼d [V (s)] , µ(x , y) = Es\(x ,y)∼d [µ(s)] , (99)

where s \ (x , y) indicates that the expectation is over all states s excluding
(x , y). The expectation values are computed by discretizing the spatial
domain into 5000 squares [sb, sb+1]× [sb′ , sb′+1] for b, b′ = 0, ... , 99 with
sb = b∆ and ∆ = 0.1. We average the entries in the replay memory with
(x , y) ∈ [sb, sb+1]× [sb′ , sb′+1]. The resulting marginals (fig. 28) can then
be plotted and analyzed in order to understand the spatial dependency of
the value function and the learned policy.

A clear difference between the marginals for the forward Kármán wakes
shed by the D-shaped cylinder and the reverse Kármán behind a flapping
hydrofoil is the area of the states that are visited. For the hydrofoil, the area
is significantly smaller than for the cylinder due to the form of the vortex
streets and the paths that allow intersecting the low-velocity regions in the
wake (see fig. 23). For the cylinder, it is preferable to slalom between the
vortices; for the hydrofoil, it is beneficial to stay close to the center of the
vortex street. We discussed these conclusions in section 5.2.2.1.

Notably, the marginal of the value function for the D-shaped cylinder
shows a peak, corresponding to regions in space where the attainable
efficiency gain is maximal. This finding coincides with the observations from
experiments and previous numerical studies [203, 207], where a peak in
the occupation probability is found downstream from the cylinder. The effect
is less pronounced for the hydrofoil, where any location close enough has
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a)

c)

e)

b)

d)

f)

FIGURE 28: Figure illustrating the value function and the policies for the three
cases considered. The left column (panels a,c,e) illustrates the
marginal of the value function, the right column (panels b,d,f) the
marginal of the curvature-controlling component of the actions. The
rows correspond to the different training runs. a) and b) are found for
the D-shaped cylinder, c) and d) are found for the hydrofoil, and the
last row with e) and f) corresponds to the multitask training.

similar value, as observed in experiments [196]. In the multi-policy case,
the value function resembles a superposition of the two individual value
functions. We note that regions close to the boundary of the habitable zone
have a very low value, indicating that a swimmer is in an unrecoverable state.

The mean of the policy provides additional information. When found above
the centerline through the obstacle, the fish is likely to perform action (+1);
when below the centerline, action (-1) is more likely. As depicted in fig. 21,
such actions translates into a bias of the undulatory motion that allows the
swimmer to stay in the wake of the cylinder. The insight can be used as
a prior when designing controllers in engineering applications. A similar
analysis of the action controlling the swimming period shows that all agents
tend to decrease their frequency. Decreasing the swimming period increases
the swimming speed, however it also decreases the swimming efficiency.
Since the obstacle moves at a higher velocity than the swimmer can reach
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during steady swimming, we require harvesting energy from the flow. The
magnitude of the action can provide a baseline when designing engineering
application.

The differences between for the policies also shed light on the different
evaluation results discussed in the previous section. The state visitation for
the hydrofoil is confined in a very narrow region with values decreasing when
approaching the boundary of the domain. For the D-shaped cylinder, the
optimal policy visits much more states that have suboptimal value, indicating
higher probability to fail.
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5.3 Transfer Learning for Schooling Swimmers with Multi-Agent Rein-
forcement Learning

Fish school. This observation is fascinating and yields some of the most
beautiful patterns in nature. However, it puzzles scientists that seek un-
derstanding the reasons. From a physical point of view, schooling means
coordination in a fluid dynamic environment. Fluids are described by the
Navier-Stokes Equation (NSE), which belongs to the most complex equa-
tions known to humanity [222]. For non-trivial cases like fish swimming in a
school we can not solve the NSE analytically and require simplified models
or Direct Numerical Simulations (DNS).

Early theoretical work on the subject argued that fish school for a hydro-
dynamic benefit [223, 224]. This results however were controversial [225].
One of the main reasons for the dispute is that in some experiments the
predicted structure could be found [226], where for others it was not [227,
228]. An accepted explanation is that energetic benefits are not the only
reason for schooling, but is is also a mean of protecting from predators.
Correspondingly, the active adoption and change in schooling configuration
can be explained by balancing a trade-off between energetic benefit and
awareness against predators [229, 230].

Another problem is the proposed static arrangement, that can not be
achieved without forcing or active control [9, 200]. The arguably simplest
branch of related work ignores any medium and considers particles that
interact locally to satisfy three major traits: alignment, avoidance, and attrac-
tion [231–233]. Besides neglecting the complex non-linear hydrodynamic
interactions these models yield to collisions that are nonphysical. Therefore
these models do not allow to understand the physical effects taking place.
Including invicid interactions makes this particle models fail and RL was
introduced as a means to stabilize the school structure [201]. In later studies,
RL was used to minimize the lateral displacement for two fish swimming
in tandem [182]. Doing so implied efficiency benefits when intersecting the
vortices shed by the leader. A follow up study directly optimized the efficiency,
again finding the familiar patterns of schooling fish in nature [56]. More recent
studies extended the scope to minimize the deviation from a target swimming
velocity [234] and included up to six independent swimmers [57].

Using DNS with adaptive mesh refinement and Reinforcement Learning
(RL) we extend the existing studies to 100 swimmers. We train the fish
to avoid collisions while maximizing their efficiency. The resulting ability
to simulate the school in a DNS allows to analyze the relation between
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fluid forces and efficient controls. The DNS are performed using a high-
fidelity Navier-Stokes solver for incompressible flows around obstacles with
distributed block-structured adaptively refined grids. The refinement takes
place around the body of the swimmer and in the wake, where vorticity is
formed. This allows reducing the computational cost, however the cost is still
proportional to the number of swimmers. In order to account for this, we use
transfer learning to initialize the learning for larger schools using the policies
learned from smaller schools.

Both, the physical insight and the proposed learning strategy can ben-
efit other studies in science and engineering and can help the design of
windfarms [235, 236] or robotics [237–239].

5.3.1 Results

We consider different type of schools. The first is an extension of previous
works, where leader-follower configurations were regarded [56, 182]. In the
second part we regard the applicability of transfer-learning for diamond con-
figurations, the shape considered in the pioneering works in the field [223,
224]. In the last section we discuss the results for simulations of 100 swim-
mers. The main difference between the first and the later two cases is the
choice of policy. While in the first case the control is achieved by using one
policy per swimmer, the later requires the use of a shared policy. The reason
for this is the emergence of individual policies according to the position in the
school. Although we found that individual policies yield more robust control
overall [35], this comes at the cost of transferability. When trying to transfer
the policies of the 20 swimmers according to their position to a school with
100 swimmers, the control is insufficient and the school breaks up. The emer-
gence of individual roles in the school forbids the transfer of the policy to a
new - even related - case. This is the main reason why it is preferable to use
a single shared policy when trying to transfer policies learned from one case
to another. The simulations are performed using DNS with CUBISMAMR [1,
192]. The Reynolds number is expressed in terms of the swimming period T
and swimmer length L and set to Re= L2

T ν = 1′000. The RL is performed in
KORALI [240] where V-RACER with ReF-ER [33] for Multi-Agent RL [35] was
implemented and used with the default hyperparameters.



5.3 T R A N S F E R L E A R N I N G F O R S C H O O L I N G S W I M M E R S W I T H M A R L 97

5.3.1.1 Column of Swimmers

We simulated a column of swimmers with N = 4 swimmers. Following an
earlier study [182], we minimize the lateral displacement with an uncontrolled
swimmer that leads the group. Here, it is observed that intersection of vortices
lead to spontaneous bursts in efficiency. This motivated a study where we
optimize the efficiency for a fixed leader [56]. In the following we revisit
this studies with a column of 4, instead of 2 swimmers (see top figure
fig. 29). The quantitative results are shown in the lower panels in fig. 29.
The achieved mean displacement and efficiency increase for swimmers that
are further back in the column. This confirms the intuitive picture that the
swimmers in the back are exposed to more disturbances in the flow. While
reducing the lateral displacement becomes harder, the ability to harvest
energy from the vortices shed by the leader is increased. The mean efficiency
for the last agent maximizing efficiency is 10% higher than for the agents
minimizing the lateral displacement. For the agents maximizing efficiency, the
column structure is not respected, the school breaks up and thus the lateral
displacements become large and stabilize at value that are at the edge of
the domain. This can be understood in terms of the definition of reward as
swimming efficiency. By reducing the swimming speed, the swimmers are
able to increase their efficiency. Since the swimmers are penalized if they
approach the bounds of the computational domain, they can not fall back
forever and form a school near the boundary of the domain. We conjecture,
that this is also the reason for the breakup observed in a related study with
up to 6 swimmer [57]. Since controlling the swimming speed is considered
to be the reason for the division, we perform a study where all swimmers are
controlled and the swimming speed can not be controlled. Interestingly in this
case neither minimizing lateral displacement, nor maximizing efficiency are
successful. This can be understood from the flow physics. By intersecting
vortices, the swimmers increase their swimming efficiency. This increase
in swimming efficiency implies an increased swimming speed. Since this
acceleration only affects the followers, the distance to the leaders is reduce
and yields collisions. With the ability to control the swimming speed, the
collisions can be readily avoided. In the present case, however, the problem
is rendered ill-posed. Without the ability to control the swimming speed,
the swimmers can not find an optimal policy. An intriguing picture is found
when optimizing both objectives without control over the swimming period.
While the lateral displacement is at about the same level as for the case only
optimizing displacement, the achieved swimming efficiencies are 41% and
28% higher than for the case optimizing lateral displacement and swimming
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safety margins 0.1

agent 1

agent 2

agent  3
passive leader /

Δy

agent 0

FIGURE 29: Results from the studies with 4 swimmers arranged in a column. The
top figure shows the configuration, the lower plots show the results.
Here, the first column shows the displacement, the second column
the swimming efficiency. The rows the different cases that have been
considered. The different colors indicate the different agents. The
leader is ( ), and first follower ( ), the second ( ), and the last
swimmer in the column ( ). In the first two cases the passive leader
is not shown.
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efficiency, respectively. The evaluation of the policy shows that the swimmer
adopt burst-coast swimming, which is consider one of the most efficient
swimming modes [241].

5.3.1.2 Transfer Learning for Diamond Shapes Schools

The ability to transfer knowledge between different sizes of schools is ex-
amined by varying the school size in the range N = 4, 9, 16 swimmers. The
diamond shaped lattice structure is considered for the school of fish [223,
224]. Initially, the lateral displacement of the swimmers is chosen to be one
fish length L, where the stream-wise displacement is three fish lengths (see
fig. 30). The employed adaptive mesh refinement algorithm refines the grid
around the body and in the wake of the swimmers. This in turn implies that
the computational cost required to perform a simulation with N swimmers
scales linearly with the number of swimmers. Thus, transferring knowledge
from small schools to bigger schools results in computational benefits.

The aim of the study is to understand the effect of using the weights of the
neural network as an initial guess for the policy, while ignoring any already
collected experiences. In order to do so we do a total of six runs for the
different number of swimmers N = 4, 9, 16. For each school, we train a
policy until reaching 500’000 experiences. In the second run we do transfer
learning. Here, we start with N = 4 swimmer and train for 24 hours. We then
initialize the policy for the case with N = 9 swimmers and train for 24 hours.
The resulting policy is again used to initialize the policy for the case with
N = 16 swimmers. After that, the training is continued until reaching a total
of 500’000 experiences.

Δy = L

Δx = 3L

N = 4

N = 9

N = 16

FIGURE 30: Schematic of the diamond shaped schools that were considered.
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FIGURE 31: Results from the transfer learning. The top row shows the training
results for 9 swimmers (left) and 16 swimmers (right). The lower row
show the testing returns (left) as well as a snapshot of the flow field
for 16 swimmers (right). Orange color corresponds to the results
obtained from transfer learning, where blue results are plotted in blue.
For the flow field, vorticity is shown, where positive values are red
and negative vorticity is shown in blue.

The effect of the transfer learning becomes clearly visible when looking at
the training rewards for the first 65’536 experiences, which are the experi-
ences required to initially fill the replay memory (fig. 31). While the cold start
mostly results in bad returns in the initial episodes, the transferred policy
shows successful from the start. In order to compare the wealth of the final
policies from the two strategies, we perform evaluation runs with the mean
configuration and 10 configurations with a random displacement from the
initial configurations. For the resulting 11 runs, we compute the mean and
standard deviation of the returns. The results are shown in in fig. 31. As can
be seen, the transfer learning performs better. This indicates that transferring
the weights from a run with few fish to a run with more fish can be an effective
initialization strategy. Moreover, we regard the computational cost. While
during the first 24 hours 4 swimmer produce 220’086 experiences. The runs
with 9 fish only reach 86’521 experiences. For the school with 16 swimmers
we find 68’978 experiences. The resulting speedups are consistent with the
linear scaling with respect to the number of swimmers. We consider this
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FIGURE 32: Results from the 100 swimmers run.

strong evidence, that the proposed transfer learning can effectively reduce
computational burdens in reinforcement learning studies where complexity
is systematically increased.

5.3.2 Schooling Hydrodynamics

Using the proposed transfer learning allows learning the optimal policy for a
school with 100 swimmers. The results are shown in fig. 32. The vorticity is
plotted together with the envelope of the motion of the swimmers and the
swimming efficiency. We note that the motion is biased since the swimmer
all start swimming in the same direction. The optimal policy that is found
yields swimming on the diagonal, which is consistent with the observations
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in the previous section: swimmers in the back of a column are exposed to
more disturbances that they can harvest in order to increase their efficiency.
The found efficiency distribution and the envelopes reflect this. While the
leading swimmers, and the swimmers at the top and bottom edge have below-
average efficiency, the swimmers in the center benefit from the arrangement
in the school. Interestingly, this does not apply to all swimmers, and the ones
in the top right corner, that have many fish in front show lower efficiency and
also a larger envelope. This indicates, that the increased disturbance implies
higher probability of collisions. Thus the controller is mainly focusing on
avoiding collisions and can not benefit from increased swimming efficiency.

An important difference to the situation in 3D is the form of the wake.
Where in 2D, the swimming motion implies a reverse Von Karman vortex
street, in 3D, the vortices are shed in a V-shaped pattern. In order to achieve
the intersection with the eddies of the leader, the swimmer would prefer
swimming straight. Although RL demonstrates success in the simplified 2D
model, the transfer of the knowledge to 3D is not straightforward and requires
control to maintain the positions that were already discussed in previous
publications [56].
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6
D I S C U S S I O N A N D O U T L O O K

The belief that there is only one truth and that
oneself is in possession of it seems to me the root
of all the evil that is in the world.

— Max Born

Fluid-Structure Interaction in Incompressible Flows

In the first chapter, we presented a two-dimensional incompressible flow
solver on an adaptively refined mesh. Validation and verification results were
shown for the flow past an impulsively started cylinder at several Reynolds
numbers that are in excellent agreement with previous simulations and
theoretical work. The solver is open source and available under https://
github.com/cselab/CUP2D. It provides a reliable tool for making distributed,
large-scale AMR simulations for machine learning applications.

Bayesian Optimal Experimental Design

In the second chapter, we presented a Bayesian approach to optimal experi-
mental design, which is implemented open source in the high-performance
korali framework under https://github.com/cselab/korali. After present-
ing the underlying formalism, we applied this method in two scenarios: The
optimal sensor placement for schooling swimmers and the optimal allocation
of limited test resources. These applications demonstrate the potential of
Bayesian optimal experimental design to guide measurement execution in
order to improve the collection of data to calibrate model parameters.

Optimal Sensor Placement for Schooling Swimmers

We presented a study of the optimal sensor locations on a self-propelled
swimmer for detecting the size and location of a leading group of swimmers.
This optimization combined Bayesian experimental design with large scale
simulations of the two dimensional Navier–Stokes equations. Mimicking
the function of sensory organs in real fish, we used the shear stress and
pressure gradient on the surface of the swimmers to determine the sensor
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feedback generated by a disturbance in the flow field. The optimization was
performed for different configurations of swimmers, ranging from a simple
leader-follower configuration with two swimmers, to a group of up to eight
swimmers leading a single follower. We considered two types of information:
the number of swimmers in the leading group and the relative location of the
leading group. We find that, although the general shape of the utility function
varies between the two objectives, the preferred location of the first sensor
on the head of the swimmer is consistent. Furthermore, we find that the
objective is only weakly influenced when varying the number of members in
the leading group. We performed a sequential sensor placement and found
that the utility converges to a constant value and thus concluded that few
sensors suffice to infer the quantities of the surrounding flow. Indeed, we
found that the optimal sensor locations correspond to a posterior distribution
that is strongly peaked around the true value of the quantity of interest. In
summary, we found, that for the group sizes under examination, changing the
number of swimmers in the leading group does not influence the follower’s
ability to infer the mean school location. Furthermore, we were able to show
that choosing the locations for the measurements in a systematic way we are
able to infer the number of swimmer in the leading group and the location of
our agent to high accuracy. We envision that the presented methodology can
provide guidance in developing autonomous systems of schooling artificial
swimmers. While biological organisms have distinct flow fields from those
examined in the present two-dimensional simulations, we believe that the
algorithms presented here in can be extended to 3D flows. Moreover, while
we draw a distinction between fish and the studied artificial swimmers, we
note the capability of identifying neighboring swimmers using shear and
pressure information on the body of the swimmers, indicating sufficiency of
such type of information for flow sensing.

Optimal Allocation of Limited Test Resources

We introduced a systematic approach to identify optimal times and locations
for epidemiological surveys to quantify infectious individuals in a country’s
population during the COVID-19 epidemic. The proposed OPALITS method-
ology exploits prior information and available data to maximise the expected
information gain in quantities of interest and to minimise uncertainties in the
forecasts of epidemiological models. The study addressed the need for an
accurate assessment of COVID-19 infections [242] and it is shown to be
far more accurate than the currently applied random testing. The proposed
methodology was, to the best of our knowledge, the first method to propose
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an optimal spatiotemporal allocation of limited test kit resources. A first study
of the estimation of unobserved COVID-19 infections [243] in the USA indi-
cated that early testing would have decreased the surveillance gap during a
critical phase of the epidemic. After that, a number of studies have emerged
that address the optimal allocation of resources. The “Test and Contain”
process suggested in [244] addresses an idealised population of 10,000
and solves an allocation problem using predictions of the SIR model. They
assume isolation of the positively identified individuals and showed that just
one test a day can reduce the peak of infected individuals by 27%. This study
is similar to ours in casting the test allocation problem in an optimisation
framework, using linear programming in contrast to information maximisation
that we propose. However, their approach is not data informed and does not
address a realistic country scenario. Another study [245] focused on test kit
allocation in the Philippines. They use a statistical approach and non-linear
programming to determine the optimal percentage allocation of COVID-19
test kits among accredited testing centres in the Philippines, aiming for an
equitable chance for all infected individuals to be tested. Their goal of optimal
percentage allocation differs from ours, which is optimal space and time
allocation of test kits. The proposed method is demonstrated by focusing
on the outbreak of the epidemic in Switzerland. We compare OPALITS with
random testing and demonstrate its advantages in producing forecasts with
far reduced uncertainties. We note that the existing testing capacity of 1500
tests per million people in Switzerland can be better allocated than the
ongoing random testing. Moreover we show that the present methodology
will be of particular importance to countries with testing capacity that is far
lower than that of Switzerland [246]. The methodology relies on Bayesian
experimental design using prior information and available data of reported
infections along with forecasts from the SEIr IuR model. We compute the
optimal testing strategy for three phases of the epidemic. At the onset of
the epidemic the method identifies the most crucial dates and locations for
randomised tests in the country’s population. The deployment of OPALITS at
this phase would have allowed authorities to perform randomised testing in a
period of high uncertainty, well in advance of the disease outbreak. Moreover,
the presented approach is applicable to any newly arising epidemic and can
be used to identify important surveying locations and a general protocol
of action, whenever an unknown disease starts to spread. In the case of
COVID-19, such course of action would limit early inaccurate estimates
of metrics such as the virus mortality rate, estimated around 3% in early
March 2020 by the World Health Organization [247] and currently believed
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to be lower than 1% [248]. During the period of nonpharmaceutical interven-
tions, the proposed strategy would help quantify their effectiveness, assisting
decision-making for further interventions or retraction of measures that may
be harmful to the economy. In this study, available data for the daily reported
infections prior to any interventions, combined with the proposed methodol-
ogy, indicated that conducting two surveys after measures are imposed is
sufficient. This can help to identify the new virus dynamics quickly and adjust
interventions accordingly. Similarly, the OPALITS can assist monitoring for
a recurrence of the disease after preventive measures have been relaxed
and help guide further planning of interventions. Since massive testing for a
new disease might not be a possibility during its first outbreak and cheap
individual tests might become available only later, applying the proposed
methodology at this point provides a useful guideline on how to use the
individual tests to conduct large-scale surveys. For instance, in Switzerland
it was not before mid-April 2020 that rapid COVID-19 tests were released
on the market [249]. Collecting data for the reported cases before that and
using it to inform the proposed approach to find an OPALITS (after cheap
individual tests become available) that will be applied during a possible
lockdown would be the suggested course of action in this case. There are
a number of issues that the model should be able to accommodate in the
future. These include accounting for virological test sensitivity, delays in
the reporting of the test results and bias in the estimate of the unreported
infected individuals (Cochran’s formula). Further developments may include
models that account for different transmission dynamics in cantons, and the
classical Bayesian inference methods may be replaced with Hierarchical
Bayesian Method to account for heterogeneous data. We remark that the
proposed OPALITS does not depend on a particular type of data/model or
to the country of Switzerland. The open source code is modular, scalable
and readily adaptable to different scenarios for the epidemic and countries
around the world. We believe that the present work can be a valuable tool for
decision makers to allocate resources efficiently for testing the population,
providing a reliable quantification of the spread of the disease and designing
effective interventions. Finally the accurate estimation of the spread of the
disease can guide the timely distribution of vaccines.

Deep Reinforcement Learning

In the third chapter we presented some advancements in deep reinforcement
learning. In particular we extended the ReF-ER algorithm to multiple agents
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and introduced a Baysian approach to DRL. The implementation of this
methods is available open source in the high-performance korali framework
under https://github.com/cselab/korali.

Remember and Forget Experience Replay for Multi-Agent Reinforcement
Learning

We present ReF-ER MARL, the multi-agent generalization of the V-RACER
algorithm with ReF-ER [33]. The combination of V-RACER with ReF-ER has
shown significant promise in several benchmark problems and challenging
fluid dynamics applications. In the proposed ReF-ER MARL the actions of
the agents are independent while the probability distribution of an action
is conditioned on the respective agent’s state. We examine the effects of
different relations between the agents and vary the strength of their interac-
tions. This is achieved by modifying the value estimator and the importance
weight. For the value estimator we distinguish an individual and a cooperative
setting by either using the individual reward or the average of the rewards
from all agents. The strength of the agents’ interaction is controlled via the
importance weight. We benchmark ReF-ER MARL on the Stanford Intelligent
Systems Laboratory (SISL) Environments. We compare the value-estimates,
and importance weights for different assumptions. In these collaborative
environments one may expect that assuming a strong interaction and co-
operative estimates for the state-value is beneficial. However, we find that
the preferred approach is to estimate the value using individual rewards,
and to consider a local dynamics model. We find that ReF-ER MARL using
a single feed forward neural network outperforms the state of the art algo-
rithms, that often relies on complex network architectures. Finally, we test the
proposed algorithms when training multiple policies. The median returns are
lower during training. During testing, one controller per agent outperforms
a shared controller. Besides robustness, we show that introducing stricter
dependencies between the agents via the full dynamics (FDCo) cures the
deadly combination of non-stationarity and reward averaging. Furthermore,
the LDI with multiple policies is applied to enforce coordinated swimming on
20 swimmers experiencing hydrodynamic interactions in high-fidelity simula-
tions of the Navier-Stokes equation. It enables stable schooling formations
for up to 100 tail-beat periods (the formation brakes up after 20 tail beats
without control).

https://github.com/cselab/korali
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A Bayesian Perspective on Uncertainties in Deep Reinforcement Learning

We incorporated Bayesian inference for model-free actor-critic off-policy
reinforcement learning algorithms. We have first analyzed the testing and
training performance of different samplers. We then compare the uncertain-
ties that were found, and tested the detection of out-of-distribution samples.
One of the main caveats is the larger computational cost of the method,
which makes it challenging on benchmark environments that are traditionally
employed to test new methods. However, we note that computationally chal-
lenging applications from science and engineering can be a valuable tool
to assess the uncertainties after training the model. In future work, it would
be interesting to expand the scope of the present work from ReF-ER to a
broader benchmark with different RL algorithms and also to benchmark the
Gaussian approximations. Furthermore, one could include more elaborate
sampling algorithms to ensure that the samples are a good representation of
the posterior. With appropriate samples of the posterior at hand, the present
method enables model comparisons and select states, actions, and rewards
in a systematic way. We also envision developing a new method by taking in-
spiration from CMA-ES: Following the ideas of SWAG, we could approximate
the posterior distribution from samples along the SGD trajectory, however
instead of recomputing the approximation it could be adopted along the lines
of CMA-ES.

Controlling Artificial Swimmers using Deep Reinforcement Learning

In the last chapter of this doctoral thesis we accumulate the work presented
in the previous chapters and apply the method in order to advance the
understanding of natural behaviour of swimmers. In a first part we exam-
ined the swimming behaviour behind bluff bodies by leveraging multi-task
reinforcement learning to swim in reverse and forward Kármán wakes. The
second part uses transfer learning for schooling swimmers with multi-agent
reinforcement learning.

Multi-Task Reinforcement Learning to Swim in Reverse and Forward Kármán
Wakes

In the present work, we successfully train artificial swimmers to maximize
the Froude swimming efficiency. The training is performed in a multi-task set-
ting. For a given obstacle, a continuous parameter that determines the flow
is varied. We furthermore change the shape of the obstacles. Our results
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generalizes previous studies that used RL to understand the behaviour of
swimmers. We find that the multi-task approach allows saving computational
resources compared to state-of-the-art approaches that usually sample dis-
crete realizations or learn only one task at a time. The underlying direct
numerical simulations allow studying the flow field in detail and assess the
mechanisms that propel the fish which result in the reduced energy expen-
diture that was observed in experiment [195]. Using multi-task RL, we can
also compare the mechanisms across obstacles, giving an unifying picture
on the flow physics exploited by fish in nature. The found policies show
intriguing similarities to past experimental studies on the behaviour of swim-
mers behind obstacles. This shows that RL is suitable to understand natural
behavior [205]. It can readily be combined with experiments to uncover
rewards that are compatible with the observed behaviour for a multitude of
scenarios [197, 238] by employing inverse reinforcement learning [250].

Transfer Learning for Schooling Swimmers with Multi-Agent Reinforcement
Learning

In this study, we comprehensively analyzed the impact of reward function
choice on a column of swimmers, comparing minimizing lateral displacement
and maximizing swimming efficiency with and without control over the leader
swimmer. Our findings revealed valuable insights into multi-agent swimming
dynamics. Minimizing lateral displacement resulted in higher mean displace-
ment for rear swimmers, supporting previous studies on the influence of flow
disturbances. Maximizing swimming efficiency led to higher efficiency for
rear swimmers, indicating their ability to harness vortices shed by the leader.
However, pursuing maximum efficiency disrupted the column structure, caus-
ing larger lateral displacements that stabilized at the domain edges. This was
attributed to swimmers reducing their speed to optimize efficiency, making a
smaller school near the boundary beneficial. To explore sensitivity to poten-
tial actions, we conducted two additional studies. Controlling all swimmers’
speed led to collisions, underscoring the importance of speed control for
avoiding collisions and achieving optimal policies. Optimizing both objectives
without controlling the swimming period showed similar lateral displacement
levels but significantly higher swimming efficiencies, suggesting the adoption
of burst-coast swimming. Transfer learning demonstrated its effectiveness in
transferring knowledge across different school sizes. Initializing policies with
fewer swimmers and progressively increasing the number improved train-
ing efficiency and performance, surpassing cold start initialization. Transfer
learning facilitated learning the optimal policy for a 100-swimmer school,



112 D I S C U S S I O N A N D O U T L O O K

resulting in line formation and increased efficiency for center swimmers. In
conclusion, our study provides valuable insights into multi-agent swimming
dynamics, highlighting the influence of reward function choice, swimming
speed control, and burst-coast swimming strategies on behavior optimization.
Transfer learning proves to be a powerful technique for efficiently transferring
knowledge, enabling reinforcement learning in complex scenarios.
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A
A P P E N D I X F O R C H A P T E R B AY E S I A N O P T I M A L
E X P E R I M E N TA L D E S I G N

A.1 Optimal Sensor Placement for Schooling Swimmers

A.1.1 Configurations

The configuration used for the “size of the leading school” experiment. For the
configurations with three rows the vertical extent y ∈ [0, 0.5] was discretized
using 2048 gridpoints, for the ones with four rows it was extended to y ∈
[0, 0.75] and discretized using 3072 gridpoints.

A.1.2 The posterior Is Not Symmetric

The estimated posterior in Figure 17b is not symmetric with respect to
the ϑtrue = ϑ diagonal. This observation indicates that the posterior is not
symmetric with respect to an exchange of ϑ and ϑtrue, the parameter we try
to infer and the one used in the simulation. Here, we want to show that this
observation is true in general. In order to lighten the notation, we neglect the
dependence of the distributions on the sensor location s.

FIGURE 33: Configurations for two leading swimmers.
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FIGURE 34: Configurations for three leading swimmers.

FIGURE 35: Configurations for four leading swimmers.
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FIGURE 36: Configurations for five leading swimmers.

In section 4.1.2 we showed that the distribution of ϑi conditioned on
measurements y , under the assumption of uniform prior, is proportional to

p(ϑi |y) ∝ p(y |ϑi ) p(ϑi ) =
1
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We want to show that for any i ̸= j ,

p(ϑi |ϑj ) = p(ϑi |y = F (φj ,k )) ̸= p(ϑj |y = F (φi ,ℓ)) = p(ϑj |ϑi ) , (101)

for any configurations φj ,k and φi ,ℓ corresponding to a school of size ϑj and
ϑi , respectively. From Equation (100) it is easy to see that (101) is true due
to the fact that
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Finally, we note that in the case where we have only one configuration per
group size, i.e., ni = 1 for all i , the statement in (102) is not true and the
posterior is symmetric.
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FIGURE 37: Configurations for six leading swimmers.
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FIGURE 38: Configurations for seven leading swimmers.
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FIGURE 39: Configurations for eight leading swimmers.
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A.2 Optimal Allocation of Limited Test Ressources

The systematic identification of infected individuals is critical for the con-
tainment of the COVID-19 pandemic. Presently, the spread of the disease
is mostly quantified by the reported numbers of infections, hospitalizations,
recoveries and deaths; these quantities inform epidemiology models that
provide forecasts for the spread of the epidemic and guide policy making.
The veracity of these forecasts depends on the discrepancy between the
numbers of reported and unreported, yet infectious, individuals. We combine
Bayesian experimental design with an epidemiology model and propose a
methodology for the optimal allocation of limited testing resources in space
and time, which maximizes the information gain for such unreported infec-
tions. The proposed approach is applicable at the onset and spreading of the
epidemic and can forewarn for a possible recurrence of the disease after re-
laxation of interventions. We examine its application in Switzerland; the open
source software is, however, readily adaptable to countries around the world.
We find that following the proposed methodology can lead to vastly less
uncertain predictions for the spread of the disease. Estimates of the effective
reproduction number and of the future number of unreported infections are
improved, which in turn can provide timely and systematic guidance for the
effective identification of infectious individuals and for decision-making.

A.2.1 Introduction

The identification of unreported individuals infected by SARS-CoV-2 was
critical for the quantification, forecasting and planning of interventions during
the COVID-19 pandemic [251]. The spread of the disease is mostly quanti-
fied by the reported numbers of infections, hospitalisations, recoveries and
deaths [252]. These quantities inform epidemiology models that provide
short term forecasts for the spread of the epidemic, help quantify the role
of possible interventions and guide policy making. The veracity of these
forecasts depends on the discrepancy between the numbers of reported,
and unreported yet infectious, individuals.

During the COVID-pandemic, the estimation of unreported infections has
been the subject of several testing campaigns [253, 254]. Although there
is valuable information being gathered, their estimates rely on testing indi-
viduals who are either already symptomatic or have been selected based
on certain criteria (hospital visits, airport arrivals, geographic vicinity to re-
searchers, etc.). Generic, randomised tests of the population are broadly
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applied, but they have been hampered either by delays [243] or by insufficient
numbers of test kits [255]. There is broad recognition that efficient testing
strategies are critical for the timely identification of infectious individuals
and the optimal allocation of resources [244]. However, targeted testing
entails bias and random tests require access to a high percentage of the
population with commensurate high costs. The quality of the data, as well
as the ways they are incorporated in the epidemiology models, is critical
for their predictions and for estimating their uncertainties [256]. A way to
minimise these uncertainties by suitably distributing in space and time a
given number of test kits is the subject of this work. This optimal allocation
of testing resources and the respective increase in the fidelity of forecasting
models are essential to effective policy making throughout the pandemic.

Here, we present a methodology for the OPtimal Allocation of LImited
Testing resourceS (OPALITS) that maximises the information gain over any
prior knowledge regarding infections. The method relies on forecasts by epi-
demiological models with parameters adjusted through Bayesian inference
as data become available through suitable surveys [257]. The forecasts are
combined with Bayesian experimental design [123, 258, 259] to determine
the optimal test allocation in space and time for various objectives (minimise
prediction uncertainty, maximise information gain of unreported infections).
We emphasise that the proposed OPALITS is applicable in all stages of the
pandemic, regardless of the availability of data.

We employ the SEIr IuR model [260], which quantifies the spread of a
disease in a country’s population distributed in a number of communities that
are interacting through mobility networks. The SEIr IuR model predicts the
number of susceptible (S), exposed (E), infectious reported (Ir ), unreported
(Iu), and removed (R) individuals from the population. Here we focus on
Switzerland and consider its cantons as the respective communities. The
model parameters are: the relative transmission rate between reported
and unreported infectious individuals (µ), the virus latency period (Z ), the
infectious period (D) and the reporting rate (α). The transmission rate (β)
and the mobility factor (θ) are considered to be time dependent in order
to account for government interventions. For all stages of the epidemic,
the uncertainties of the model parameters are quantified and propagated
using Bayesian inference. At the onset of the epidemic, the uncertainty was
quantified through prior probability distributions. As data on daily infections
become available, the uncertainty in model parameters was updated through
Bayesian inference. The parameter probability distributions are used to
propagate uncertainties in the model forecasts and can assist decision
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makers in quantifying risks associated with the progression of the disease.
The proper quantification of uncertainty bounds in the model parameters
has a profound effect on predictions of the disease dynamics [256]. Large
uncertainty bounds around the most probable parameter values hinder the
decision process for identifying effective interventions.

The OPALITS aims to assign limited test-kit resources to acquire data that
would reduce the model prediction uncertainties. Minimising the uncertainty
of the model parameters leads to more reliable predictions for quantities
such as the reproduction number [261]. Moreover, the reduced model un-
certainties help minimise risks associated with the decision-making process
including timing, extent of interventions and probability of exceeding hospital
capacity.

We quantify the information gain from these tests using a utility func-
tion [259, 262] based on the Kullback-Leibler divergence between the in-
ferred posterior distribution and the current prior distribution of the model
parameters. The prior can be formulated using the posterior distribution esti-
mated from daily data of the infectious reported individuals up to the current
date (see Materials and methods). Hence, at any stage of the epidemic,
the OPALITS provides guidance on the time and location/community where
testing needs to be carried out to maximise the expected information gain
regarding infections in a population.

We demonstrate the simplicity and applicability of the present method in
estimating the spread of the coronavirus disease in the cantons of Switzer-
land. We find that the OPALITS methodology outperforms non-specific, ran-
domised testing of sub-populations throughout the COVID-19 pandemic. The
proposed strategy is readily applicable to other countries and the employed
open source software can readily accommodate different epidemiological
models.

A.2.2 Epidemiological Model

Here we employ the SEIr IuR epidemiological model [260] to forecast the
dynamics of the coronavirus outbreak in Switzerland

dSk
dt

= −
βSk Ir

k
Nk

−
µβSk Iu

k
Nk

+ θ
K

∑
l=1

(
MklSl
Nl − Ir

l
− Mlk Sk

Nk − Ir
k

) (103)
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dEk
dt

=
βSk Ir

k
Nk

+
µβSk Iu

k
Nk

− Ek
Z

+ θ
K

∑
l=1

(
MklEl
Nl − Ir

l
− Mlk Ek

Nk − Ir
k

) (104)

dIr
k

dt
= α

Ek
Z
−

Ir
k
D

(105)

dIu
k

dt
= (1− α)

Ek
Z
−

Iu
k
D

+ θ
K

∑
l=1

(
Mkl Iu

l
Nl − Ir

l
−

Mlk Iu
k

Nk − Ir
k

)
(106)

dNk
dt

= θ
K

∑
l=1

(Mkl −Mlk ) , (107)

where Sk , Ek , Ir
k and Iu

k denote the number of individuals in canton k =
{1, ... , K} that are susceptible, exposed, reported infectious and unreported
infectious, respectively. We denote by K the number of cantons (26 in
Switzerland), by Nk the total population of the canton k , while the population
mobility between cantons k and l is denoted by Mkl with values obtained
from the Swiss Federal Statistical Office [263]. The model parameters are
the transmission rate (β), the relative transmission rate between reported
and unreported infectious individuals (µ), the virus latency period (Z ), the
infectious period (D), the reporting rate (α) and the mobility factor (θ).

We employ different time-dependent expressions for the transmission rate
and the mobility factor for each stage of the epidemic. Constants are chosen
for the start of an epidemic while in the cases of monitoring of interventions,
the following expressions are used:

β(t) =

b0, t ≤ δ1

b1, δ1 < t
, θ(t) =

θ0, t ≤ δ1

θ1, δ1 < t
, (108)

where b0, b1, θ0 and θ1 are the transmission rates and mobility factors before
and after the intervention. Time t = 0 corresponds to the 25th of February
2020, and δ1 = 21 to the 17th of March 2020, when the lockdown was
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announced in Switzerland [264]. Finally, for the third case (monitoring of a
second outbreak) we assume that

β(t) =



b0, 0 ≤ t ≤ δ1

b1, δ1 < t ≤ δ2

b2, δ2 < t ≤ δ3

b3(t), δ3 < t

, θ(t) =



θ0, 0 ≤ t ≤ δ1

θ1, δ1 < t ≤ δ2

θ2, δ2 < t ≤ δ3

θ0, δ3 < t

. (109)

As in eq. (125), b0 is the transmission rate before the intervention while
b1 = c1 b0 and b2 = c2 b0 with c1, c2 ∈ [0, 1] are the transmission rates
after the two interventions. Similarly, θ0 is the mobility factor before any
interventions took place, while θ1 = c3 θ0 and θ2 = c4 θ0 with c3, c4 ∈ [0, 1]
are the mobility factors after the two interventions. Moreover, δ1 and δ2
correspond to the days of the interventions. The day when the measures are
loosened is denoted by δ3. After that day, the transmission rate is gradually
increasing

b3(t) = min(b2 + λ(t − δ3), b0) , (110)

with λ ∈ [0, 0.03], while the mobility factor regains its initial value of θ0. In the
present work, the assumed nuisance parameters are the correlation time τ
and the initial condition of the unreported infections in the cantons of Aargau,
Bern, Basel-Landschaft, Basel-Stadt, Fribourg, Geneva, Grisons, St.Gallen,
Ticino, Vaud, Valais and Zurich Iu

IC = (Iu
AR, Iu

BE, Iu
BL, Iu

BS, Iu
FR, Iu

GE, Iu
GR, Iu

SG, Iu
TI,

Iu
VD, Iu

VS, Iu
ZH), with prior distributions Iu

IC ∼ U ([0, 50]12) and τ ∼ U ([0.5, 3.5]).

A.2.3 Optimal Testing

We consider a testing campaign including a set (s) of surveys si = (ki , ti ), i =
1, ... My performed in location ki∈ C and on day ti∈ T . These surveys
measure a quantity of interest (QoI), that is denoted by y(s) = (y1, ... , yMy ).
Here, yi is the number of unreported infectious individuals, measured through
survey si . The QoI can be predicted by a model g(s, ϑ, ϑ̃) (here the SEIr IuR
epidemiological model) that depends on parameters of interest ϑ ∈ RN and
nuisance parameters ϑ̃ ∈ RÑ . We note that both sets of parameters are
uncertain and the proposed method aims to reduce the uncertainty only in the
parameters of interest. In the present study, the QoI measured by a survey
is the number of unreported infectious individuals in a particular canton on a
particular date. This implicitly assumes that there no restrictions on when
the survey can be conducted and that there are no observational delays,
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which means the the QoI is instantaneously obtained. Both assumptions
are not restrictive however. Restrictions on the possible survey dates can
be accounted for by simply excluding those dates from the dates on which
the utility function is evaluated. Also, a delay of one day (meaning that two
days are needed to survey a canton k , starting from day t) would mean that
y = (Iu

k (t) + Iu
k (t + 1))/2 is measured. In other words, when there is a delay

the measured quantity can still be mapped to a model quantity, which allows
us to perform Bayesian inference. There are several types of measurements
(Rapid testing [265], PCR [266], Schwabs [267]) being proposed for testing
asymptomatic individuals. We emphasize that our methodology is compatible
with any of these types. Data related issues such as uncertainties, test
sensitivities and delays in processing can be accommodated in the Bayesian
inference framework and in the input to the SEIR model.

A.2.4 Error Model

According to eq. (81) the QoI is linked to the model prediction via an Gaussian
error term. The elements of the covariance matrix (Σs,s′ ) correspond to
surveys taken at s = (k , t) and s′ = (k ′, t ′) and are given by

Σs,s′ = σt σt ′ exp
(
−|t − t ′|

τ

)
δkk ′ , (111)

where δkk ′ is the Kronecker delta, which is 1 for k = k ′ and 0 otherwise. The
correlation time τ ∈ [0.5, 3.5] is considered a nuisance parameter. These
assumptions about the covariance imply that surveys in different locations
are not correlated, while those in the same location have an exponentially
decaying temporal correlation. The latter avoids clustering of surveys in small
time intervals [268, 269]. The factor σt ∈ R is assumed proportional to the
expectation of the QoI, taken over all possible survey locations and over the
range of model and nuisance parameters

σt = c
1
K

K

∑
i=1

Eϑ,ϑ̃

[
g(si , ϑ, ϑ̃)

]
, (112)

where si = (i , t). The parameter c ∈ [0, 0.25] is considered a model param-
eter. The expectation Eϑ,ϑ̃ [ · ] is taken with respect to all parameters ϑ and ϑ̃

that follow the prior probability distribution with density p(ϑ, ϑ̃) = p(ϑ)p(ϑ̃).
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A.2.5 Informed Priors

A data informed prior p(ϑ|d) of the model parameters ϑ can be computed
from available data d =

(
d1, ... , dMd

)
, collected at Md locations and days.

Here, available data d refer to the daily number of reported infectious indi-
viduals and they are contrasted from the data y of the number of unreported
infectious individuals. The latter are obtained from testing strategies at se-
lected populations using optimal experimental design. The data is mapped
via a distinct model output f (s, ϑ, ϑ̃) through the following error model

p(di |ϑ, ϑ̃, ν) = NB
(

di | f (si , ϑ, ϑ̃), ν
)

(113)

where NB is the negative binomial distribution with mean f and dispersion
ν. Also, si = (ki , ti ) is the location and time the data di for i = 1, ... , Md was
collected. The choice of a different error model, compared to equation 81, is
based on the assumption that the data are independent and identically dis-
tributed. Such an assumption would not be acceptable in the measurement
model in equation 81, as it may result in uncorrelated measurements that
can become clustered in small time intervals [268, 269].

The data d =
(
d1, ... , dMd

)
are the daily number of reported infections

per canton in Switzerland [270] which corresponds to the following model
quantity

f (si , ϑ, ϑ̃) :=
∫ ti+0.5

ti−0.5

α

Z
Eki

(τ)dτ ≈ α

Z
Eki

(ti ) . (114)

The posterior distribution that will be used subsequently as a data informed
prior is obtained using Bayes’ theorem

p(ϑ, ϑ̃|d) = p(d |ϑ, ϑ̃) p(ϑ, ϑ̃)

p(d)
, (115)

and is sampled with a nested sampling algorithm [261]. Note the difference to
equation 121 and the optimal testing methodology, where we are interested
to reduce the uncertainty in p(ϑ|y , ϑ̃, s), which excludes the nuisance pa-
rameters ϑ̃. For the dispersion parameter in equation 133, it is assumed that
ν = r f (si , ϑ, ϑ̃). The coefficient r is unknown and included in the parameter
set, where r ∼ U ([0, 2]).

The three inferences performed are summarized in table S5, which shows
the involved model parameters in each case. The histograms for the found
samples are shown in figures S1, S2, and S3.

We remark that, using the present methodology, the inferred date for the
beginning of the intervention is δ1 = 22.5, which is the 18th of March 2020,
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FIGURE 40: Testing scenarios for the COVID19 outbreak in Switzerland. Daily
reported Coronavirus cases in Switzerland are plotted as gray bars.
The period before (blue), during (red) and after (green) imposing non-
pharmaceutical interventions are marked with color.

corresponding well with the 17th of March 2020 on which the lockdown was
introduced in Switzerland [264]. Moreover, we infer a significant reduction
in the mobility factor, which indicates that traffic between cantons was also
minimized. For the inference III we plot the fit using the inferred parameters
in figure S4. The daily reported cases per canton are shown, together with
the data used for the inference.

A.2.6 Results

We present the optimal test-kit allocation strategy for three stages of the
epidemic: (i) starting phase (blue), (ii) containment after enforcement of
interventions (red) and (iii) relaxing of interventions and monitoring for a
possible second outbreak (green) (fig.40). The strategy relies on Bayesian
experimental design and can operate when no data are available (as in the
start of the epidemic), as well as when data have been accumulated, as in
the last two stages of the epidemic. Testing campaigns rely on acquiring
randomized samples from a population. The collected data, together with
epidemiological models, help determine quantities of interest, such as the
basic reproduction number of the disease [261]. By suitably adapting the
testing campaign, the data can help to reduce the model uncertainty, thus
enabling improved estimates regarding the severity of the epidemic.
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A testing campaign consists of a set s of surveys si = (ki , ti ) which are
labeled by i = 1, ... My and performed in locations ki ∈ C and on days ti∈ T ,
where C and T are the set of all available locations and days, respectively.
In this work, a survey aims to determine the number of unreported infectious
individuals in a particular location on a particular day. In the following we
assume limited testing resources, where N test kits are available and each
test kit corresponds to testing one person. The goal is to allocate these test
kits in different times and locations so that we maximise the information
gain regarding forecasts of the epidemiology model. The locations are the
different Swiss cantons, and C := {ZH, BE, LU, ...} is the set of the strings
with canton name abbreviations.

The results of the survey in a canton enable the estimation of a desired
quantity of interest, such as the size of the unreported infected population (Iu).
The number of samples needed to estimate population proportions within
a given confidence interval, error tolerance, and probability of proportion
is given by Cochran’s formula [257] corrected for a finite population size.
Using Cochran’s formula with confidence level 99%, error tolerance 1% and
probability of infection 0.1 we find that the samples that would be required
to survey the largest Swiss canton (Zurich) are approximately 5950. All the
other cantons need up to 14% fewer samples, with the exception of the
smallest canton that needs 27% fewer samples (fig. 53). Hence we assume
the minimum sample size is the same for all cantons. Assuming random
sampling of a population with higher probability (up to 0.9) of infection
or requiring tighter error bounds would have implied even more samples
according to Cochran’s formula. We note that as of October 2020, 1500 tests
per one million people are performed on a daily basis in Switzerland [246].
This amounts to approximately 460 individual tests per canton, which is about
an order of magnitude less than what would be required from Cochran’s
formula for informative random sampling. In turn, by using the proposed
OPALITS, we can compensate for this lack of test kits with an optimal and
systematic process.

We outline the application of the proposed approach to a country with dis-
tinct administrative units (cantons in the case of Switzerland) (see figure 41).
First, we determine how many cantons will be surveyed, given the number of
available test-kits N. Then, the sequential optimisation of the expected utility
function is performed (see Materials and methods) to identify optimal survey
locations (cantons). We then distribute the test kits to the identified cantons
and test a random subset of their population on the suggested day. After
collecting the results from all the surveys we update the prior distributions
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0. Initialization of  Epidemiology Model 
a. Select epidemiology model (SEI2R). 
b. Initialize probability density functions 

(PDF) for model parameter uncertainties. 

2. Optimize Test Allocation (Locations/Dates) 
a. Model predictions are used to compute a utility function 

 (Eq. 13).  quantifies the  gain of information in 
different locations/dates for unreported infections. 

b. Identify locations/dates maximizing  (Eqs. 14,15).
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b. Process results and use data for a Bayesian update of 
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FIGURE 41: Schematic for the deployment of the Optimal Allocation of Limited
Testing Resources (OPALITS) methodology

of the model parameters. The collected data lead the maximal information
gain in the model parameters. This in turn translates into minimal uncertainty
in predictions made with the model for quantities, such as the number of
unreported infections.

The expected information gain of a particular strategy for selecting the
survey locations/times s is quantified by a utility function Û(s) [262]. The
maximum of this function corresponds to an optimal strategy that yields the
most information about the quantities of interest. The expected utility function
can be understood as a measure of the difference between prior knowledge
of the model parameters and the posterior knowledge, after surveys have
been conducted in a set of locations and dates. Given such a set, the utility
function estimates the expected difference, the equivalent information gain,
by taking the expectation over all possible survey results.

The OPALITS relies on forecasts by suitable epidemiological models. In
turn, these forecasts rely on prior information and their predictions are further
adjusted as data become available in a Bayesian inference framework [271].
The set of ordinary differential equations (ODEs) describing the SEIr IuR
model [260] are integrated to produce the model output. The uncertainty of
the model output and its discrepancy from the available data is quantified
through a parametrised error model. The resulting stochastic model and its
quantified uncertainties are then used to identify the optimal spatiotemporal
allocation of limited test resources.

A.2.6.1 Case 1: Beginning of the epidemic – optimal testing without data

At the start of an epidemic, there are no data and we assume no other
prior information regarding the spread of the pathogen in a country. The
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initial conditions for the number of unreported infections (Iu
IC) were selected

with non-zero values for the cantons of Aargau, Bern, Basel-Landschaft,
Basel-Stadt, Fribourg, Geneva, Grisons, St Gallen, Ticino, Vaud, Valais and
Zurich based on their populations and their large number of interconnec-
tions. Because of the lack of any prior information and relevant data, all the
parameters are assumed to follow uniform prior distributions (see table S5 in
appendix 1 for details).

The first infectious person in Switzerland was reported on 25 February
in the canton of Ticino (Ir

TI = 1) with no initial reported infections in any
other canton. The initial number of exposed individuals is set proportional
to the number of unreported infections Ek = 3Iu

k in accordance with the
value of R0 ≈ 3 reported in [272] in the initial stage of the disease. The rest
of the population is assumed to be susceptible. The methodology involves
parameters of interest (ϑ = (β, µ, α, Z , D, θ, c)) and nuisance parameters
(ϑ̃ = (Iu

IC, τ)) that the testing strategy does not aim to determine (see
Materials and methods section for definitions).

The estimated expected utility functions Û(s) for up to four surveys in the
cantons of Switzerland for a time horizon of 8 days is shown in Figure 42,
T = {Feb 25, ... , Mar 3}. Higher values for expected utility are estimated
in cantons with larger population, reflecting the larger relative uncertainty
for cantons with only few reported cases. This implies that smaller cantons,
with lower mobility rates, are less preferred for performing tests since their
contribution to the information gain is not significant. This reflects the fact that
the assumed covariance matrix is shared among cantons (see Materials and
methods). This implies a smaller relative error when surveying larger cantons
with consequently higher number of infections. The Bayesian analysis allows
the inference of the particular cantons and days on which a survey should
be performed in order to maximise the information gain. Accordingly, the
most informative survey should have been made in Zurich on 2 March. The
optimal location and time for the second survey is determined to be canton
of Vaud on the 27 February. As expected, the information gained from tests
in the canton of Vaud is less than the information gained from the canton
of Zurich. The information that would have been gained by surveying the
next two selected cantons of Vaud and Basel-Landschaft on 3 March and 28
February, respectively, is progressively reduced to a small level that, given
the testing costs, does not justify carrying out surveys in more than four
cantons. The values of the optimal times are listed in table 5.
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The results indicate that the proposed OPALITS methodology selects
certain populous and well interconnected cantons at specific times to acquire
the most information for estimating the model parameters.

A.2.6.2 Case 2: Exponential spreading and optimal testing strategy during
nonpharmaceutical interventions

When the spreading of the coronavirus entered an exponential growth stage,
several governments (including the Swiss) decided to make nonpharma-
ceutical interventions, such as requesting social distancing, closing schools
and restaurants, or ordering a complete lockdown in order to contain the
epidemic. Here, the goal of the OPALITS is to propose surveys that would
help to better assess the effectiveness of these interventions.

In this case, probability distributions of model parameters are informed
using data from the existing spread of the COVID-19. The daily reported
infections in Switzerland [270] from the 25 February up to the 17March
2020 are used to update the distributions specified in the previous phase by
using Bayesian inference. The marginal posteriors are plotted in fig. 47. The
SEIr IuR models the nonpharmaceutical interventions with a time-dependent
transmission rate β and mobility factor θ. These parameters are calibrated
by the data and provide an estimate of the timing and effectiveness of the
interventions [256].

Figure 43 shows the maximum values of the information gain for each
survey for T = {Mar 17, ... , Mar 30}. For cantons with a small population
and low connectivity to other cantons, a low information gain is found. The
opposite can be observed for cantons with large population and strong
connections to other cantons. The values for the maximum utility in time for
the measurements are listed in table 6. If only a single canton were to be
selected (due to limited availability of test kits in the country), then a survey
in the canton of Vaud carried out on the 30 March would be preferred over
surveys in the cantons of Zurich, Bern or Geneva (blue in fig. 43). If two
surveys could be afforded, the OPALITS methodology proposes them in the
same canton (Vaud) on the 17 and on the 30 March (blue and green in fig.
43). Note that the canton of Zurich, ranked as the next preferred canton for a
single survey (blue in fig. 43), is not selected by the methodology since part
of the information that would be gained from testing is already contained in
surveys performed in Vaud. If more test kits were available, in addition to the
two tests in Vaud, the optimal location and time for a third survey would have
been the canton of Grisons on the 30 March (yellow in fig. 43). The canton
of Zurich is proposed as the fourth location to be surveyed also on the 30
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March. However, the information gain from the fourth survey in the canton of
Zurich is approximately 10% of the total information gained from the surveys
carried optimally in the first three cantons.

The results suggest that surveys at two locations/times provide significant
information for assessing the effectiveness of interventions. Further tests on
more locations/times did not add substantial information. It is evident that
a trade-off between the required information gain and cost of testing are
decisive for the number of necessary surveys and test kits.

A.2.6.3 Case 3: Optimal monitoring for a second outbreak

After the relaxation of measures that assisted in mitigating the initial spread
of the disease, it is critical to monitor the population for a possible second
outbreak. The OPALITS methodology supports such monitoring with surveys
of the population based on data up to and after the release of the measures.

First, Bayesian inference is performed with data available from 25 February
to 6 June, to update the uniform priors the resulting marginal posteriors are
shown in fig. 48. This date is in accordance with the first stage of the major
release of measures in Switzerland [264]. The effects of interventions are
modelled by a parametrised time-dependent transmission rate and mobility
factor (see Materials and methods). The inferred probability distributions
of these additional parameters are taken into account as the OPALITS
maximises the information gain. Note that T = {Jun 7, ... , Jun 14} in this
case.

Subsequently, data from 25 February to 9 July are included, repeating the
Bayesian inference and estimating the marginal distributions and predictions
shown in supplementary figs. 49 and 50, T = {Jul 10, ... , Jul 17}. The results
indicate that the relaxation of measures correlates with an increase in the
number of reported infections (fig. 44). The information gain for each canton
indicates that the most informative surveys should be performed a week
after performing the inference. The provided information could then assist in
estimating the severity of a second outbreak, as indicated by the maximum
of the utility in time (tables 7 and 8). Given that tests should be carried out
in four locations and times, the methodology promotes optimal surveys for
two different times, within a week, in the cantons of Zurich and Vaud. First,
surveys should be performed in Zurich, providing high information gain for
both considered cases. The next two surveys are to be performed in Zurich
and Vaud, with a rank that depends on the considered case, and the fourth
test should be performed in Vaud. We find that the information gain from the
last test is approximately 10% of the cumulative information gain from the
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FIGURE 44: Optimal testing strategy to monitor a second outbreak. Bayesian
inference determines the parameters of the first infection wave using
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the optimal location, where the yellow and red correspond to adding
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first three surveys. The number of surveys can be then selected according
to the available test-kits N.

A.2.6.4 Case 4: Effectiveness of optimal testing

We demonstrate the importance of following the OPALITS by comparing
it with a non-specific testing campaign that is based on heuristics. We
first re-examine the situation at the start of an epidemic and assume that
the available resources allow for two surveys. Surveys are simulated by
evaluating the epidemiological model with the maximum a-posteriori estimate
(MPE) of the parameters obtained from the inference in phase II (exponential
growth) of the epidemic. We used data for the first 21 days of the infection
spread in Switzerland [270] (25 February to 17 March). After evaluating the
model, artificial surveys are obtained by adding a stochastic error term.

For the optimal strategy, data are collected by consulting figure 42. Thus,
the two surveys are performed in the cantons of Zurich and Vaud, on the 2nd
of March and the 27th of February, respectively. For a non-specific strategy,
the cantons of Ticino and Bern were selected, on the 28th of28 February. We
remark that this isthese are the canton where the first infection was reported
and the capital of the country, respectively. These artificial data, obtained
for the two strategies, are added to the real data of the daily reported cases
from the first 8 days after the outbreak in Ticino. For the expanded data-set
D the posterior distributions p(ϑ|ϑ̃MPE,D) are found by sampling the model
parameters using nested sampling [261]. Note that the value of c is also
inferred. For simplicity, the value of the correlation time τ is assumed to
be known as this does not influence the results as long as the surveys are
carried out in different cantons.

The resulting one- and two-dimensional marginalised posterior distribu-
tions for both strategies are shown in figure 45. We note that the dispersion
coefficient r (defined in the Materials and methods) in the error model for the
real data (the reported infections) and the correlation parameter are almost
the same for both strategies. However, the model parameters show signif-
icant differences even when only two new data-points are added to a set
of 208 data-points. The posterior distributions of the parameters of interest
are propagated through the epidemiology model to provide the uncertainties
in the number of unreported infectious individuals. In figure 46 the model
output for the total number of unreported infections is plotted together with a
99% confidence interval along with the true value of the unreported cases
obtained by using the selected parameters. The predictions from the OPAL-
ITS have a much higher certainty with a confidence interval that is up to four
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FIGURE 45: Marginal posterior distributions for two strategies. The diagonal
shows the histogram for the marginal distribution for every parameter.
Purple indicates posterior for the survey following the optimal testing
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upper half show the samples of the joint distribution of two parameters
for the optimal and the non-specific strategy respectively. Here black
indicates low density and yellow high density.



A.2 O P T I M A L A L L O C AT I O N O F L I M I T E D T E S T R E S S O U R C E S 139

times narrower than the one from a non-specific strategy. The same figure
also shows the relative histogram plots for the effective reproduction number,
which for the employed model is given from Rt = βDα + βDµ(1− α) [260].
Not only is the histogram more peaked, when data are optimally collected,
but also the mean value of the two histograms is different. When data are op-
timally collected, the found mean value for the effective reproduction number
is 2.1, whereas when the non-specific strategy is followed the average value
is 3.2. A mean value of 3.2 could lead to more strict non-pharmaceutical
interventions, which might prove unnecessary and harmful for the economy.

Further comparisons, demonstrating the value of the OPALITS, include
model predictions with higher certainty, as indicated by confidence inter-
vals that are narrower than the ones obtained from a non-specific strategy
(figs. 51 and 52). Narrower uncertainty bounds provide higher confidence
for decisions related to possible interventions to contain the epidemic. Fur-
ther comparisons, demonstrating the value of the OpST over non-specific
testing, are included in the Supplementary Material. First, fig. 50 shows the
predictions based on the computational model output in every canton. The
predictions per canton are obtained by evaluating the SEIr IuR model for all
samples of the posterior distributions of the model parameters. The exact
values and the data-points used in the inference are plotted as well. Also
there, the predictions that correspond to an optimal testing strategy have
higher certainty, as their confidence intervals are narrower than the ones
from a non-specific strategy. Second, in fig. 51 the predictions that include
the computational model output and the error model are shown. Once again,
the predictions that correspond to an optimal testing strategy display smaller
uncertainty.

A.2.7 Bayesian Inference from randomized testing

We consider a testing campaign including a set (s) of surveys si = (ki , ti ), i =
1, ... My performed in location ki∈ C and on day ti∈ T . These surveys
measure a quantity of interest (QoI), that is denoted by y(s) = (y1, ... , yMy ).
Here, yi is the number of unreported infectious individuals, measured through
survey si . The QoI can be predicted by a model g(s, ϑ, ϑ̃) (here the SEIr IuR
epidemiological model) that depends on parameters of interest ϑ ∈ RN

and nuisance parameters ϑ̃ ∈ RÑ . The distinction between model and
nuisance parameters is discussed in later sections. We note that both sets
of parameters are uncertain and the proposed method aims to reduce the
uncertainty only in the parameters of interest.
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A stochastic error term ε(s) links the model prediction with the QoI

y(s) = g(s, ϑ, ϑ̃) + ε(s) . (116)

The error ε(s) is assumed to follow a zero-mean multivariate normal distri-
bution N (0,Σ) with covariance matrix Σ ∈ RMy×My . The elements of the
covariance matrix (Σs,s′ ) correspond to surveys taken at s = (k , t) and
s′ = (k ′, t ′) and are given by

Σs,s′ = σt σt ′ exp
(
−|t − t ′|

τ

)
δkk ′ , (117)

where δkk ′ is the Kronecker delta, which is 1 for k = k ′ and 0 otherwise. The
correlation time τ ∈ [0.5, 3.5] is considered a nuisance parameter. These
assumptions about the covariance imply that surveys in different locations
are not correlated, while those in the same location have an exponentially
decaying temporal correlation. The latter avoids clustering of surveys in
small time intervals [268]. The factor σt ∈ R is assumed proportional to the
expectation of the QoI, taken over all possible survey locations and over the
range of model and nuisance parameters

σt = c
1
K

K

∑
i=1

Eϑ,ϑ̃

[
g(si , ϑ, ϑ̃)

]
, (118)

where si = (i , t). The parameter c ∈ [0, 0.25] is considered a model param-
eter. The expectation Eϑ,ϑ̃ [ · ] is taken with respect to all parameters ϑ and ϑ̃

that follow the prior probability distribution with density p(ϑ, ϑ̃) = p(ϑ)p(ϑ̃).
Under these assumptions, the conditional probability of y on ϑ, ϑ̃ and s is

given by

p(y |ϑ, ϑ̃, s) =
1√

(2π)My |Σ(s)|
exp

(
−1

2
z⊤Σ(s)−1z

)
, (119)

where |Σ(s)| is the determinant of the covariance matrix and z = y(s)−
g(s, ϑ, ϑ̃).

In the present study, the QoI measured by a survey is the number of unre-
ported infectious individuals in a particular canton on a particular date. This
implicitly assumes that there no restrictions on when the survey can be con-
ducted and that there are no observational delays, which means the the QoI
is instantaneously obtained. Both assumptions are not restrictive however.
Restrictions on the possible survey dates can be accounted for by simply
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excluding those dates from the dates on which the utility function is evaluated.
Also, a delay of one day (meaning that two days are needed to survey a
canton k , starting from day t) would mean that y = (Iu

k (t) + Iu
k (t + 1))/2 is

measured. In other words, when there is a delay the measured quantity can
still be mapped to a model quantity, which allows us to perform Bayesian
inference. There are several types of measurements (Rapid testing [265],
PCR [266], Schwabs [267]) being proposed for testing asymptomatic individ-
uals. We emphasize that our methodology is compatible with any of these
types. Data related issues such as uncertainties, test sensitivities and delays
in processing can be accommodated in the Bayesian inference framework
and in the input to the SEIR model.

A.2.8 Expected Information Gain

The most informative surveys y provide the least uncertainty in the estimates
of the model parameters ϑ. Starting with a user-postulated prior distribution
p(ϑ), Bayesian learning is used to update the uncertainties in the model
parameters leading to a posterior distribution p(ϑ|y , ϑ̃, s), based on the
information contained in the test data y . The Kullback–Leibler (KL) diver-
gence between the posterior p(ϑ|y , ϑ̃, s) and the prior distributions p(ϑ) of
the model parameters measures the distance between the two distributions.
Informative data produce posterior distributions that differ from the prior;
greater differences lead to higher information gain. Therefore, the most in-
formative data y correspond to the testing strategy (measurement locations
and times) with the highest information gain [262, 273].

The OPALITS is identified by maximizing a utility function [259]. One
choice is the KL divergence u(y , ϑ̃, s) = DKL

(
p(ϑ|y , ϑ̃, s)∥p(ϑ)

)
quantify-

ing the information gain from the data [259]. However, since data are not
available in the experimental design phase, the utility function is selected
here to be the expected KL divergence Ey |ϑ̃,s

[
u(y , ϑ̃, s)

]
over all data gen-

erated by the model prediction error equation 116. Also, to account for the
uncertainty in nuisance parameters ϑ̃, encoded in the prior distribution p(ϑ̃),
the expectation is also taken with respect to ϑ̃, which results in the utility
function [259]

U(s) = Eϑ̃

[
Ey |ϑ̃,s

[
u(y , ϑ̃, s)

]]
=∫∫∫

log

(
p(ϑ|y , ϑ̃, s)

p(ϑ)

)
p(ϑ|y , ϑ̃, s) dϑ p(y |ϑ̃, s) dy p(ϑ̃)dϑ̃ .

(120)
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By using Bayes’ theorem

p(ϑ|y , ϑ̃, s) =
p(y |ϑ, ϑ̃, s) p(ϑ)

p(y |ϑ̃, s)
, (121)

the utility function can be simplified to

U(s) =
∫∫∫

log

(
p(y |ϑ, ϑ̃, s)
p(y |ϑ̃, s)

)
p(y |ϑ, ϑ̃, s) p(ϑ) p(ϑ̃) dy dϑ dϑ̃ . (122)

Note that the expected utility only depends on the locations and times of the
measurements via s. The term p(y |ϑ̃, s) is the model evidence given by

p(y |ϑ̃, s) =
∫

p(y |ϑ, ϑ̃, s) p(ϑ) dϑ . (123)

The choice of the prior distribution p(ϑ) for the parameters allows to in-
corporate prior knowledge from epidemiology. If no information is available
from data, a case encountered in the beginning of the infection, a uniform
prior distribution can be assumed. Table S5 summarizes our choice of prior
distributions for all the involved uncertain quantities. If data d of the daily
number of reported infectious individuals is available, Bayesian inference
can be used to inform the prior distribution, as described later on. In this
case, the prior p(ϑ) in equation 122 is replaced by the distribution p(ϑ|d)
informed from the data d .

In the present work, the assumed nuisance parameters are the correlation
time τ and the initial condition of the unreported infections in the cantons of
Aargau, Bern, Basel-Landschaft, Basel-Stadt, Fribourg, Geneva, Grisons,
St.Gallen, Ticino, Vaud, Valais and Zurich

Iu
IC = (Iu

AR, Iu
BE, Iu

BL, Iu
BS, Iu

FR, Iu
GE, Iu

GR, Iu
SG, Iu

TI, Iu
VD, Iu

VS, Iu
ZH)

with prior distributions Iu
IC ∼ U ([0, 50]12) and τ ∼ U ([0.5, 3.5]).
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E P I D E M I O L O G I C A L M O D E L Here we employ the SEIr IuR epidemiolog-
ical model [260] to forecast the dynamics of the coronavirus outbreak in
Switzerland

dSk
dt

= −
βSk Ir

k
Nk

−
µβSk Iu

k
Nk

+ θ
K

∑
l=1

MklSl
Nl − Ir

l
− θ

K

∑
l=1

Mlk Sk
Nk − Ir

k

dEk
dt

=
βSk Ir

k
Nk

+
µβSk Iu

k
Nk

− Ek
Z

+ θ
K

∑
l=1

MklEl
Nl − Ir

l
− θ

K

∑
l=1

Mlk Ek
Nk − Ir

k

dIr
k

dt
= α

Ek
Z
−

Ir
k
D

dIu
k

dt
= (1− α)

Ek
Z
−

Iu
k
D

+ θ
K

∑
l=1

Mkl Iu
l

Nl − Ir
l
− θ

K

∑
l=1

Mlk Iu
k

Nk − Ir
k

dNk
dt

= θ
K

∑
l=1

(Mkl −Mlk ) ,

(124)

where Sk , Ek , Ir
k and Iu

k denote the number of individuals in canton k =
{1, ... , K} that are susceptible, exposed, reported infectious and unreported
infectious, respectively. We denote by K the number of cantons (26 in
Switzerland), by Nk the total population of the canton k , while the population
mobility between cantons k and l is denoted by Mkl with values obtained
from the Swiss Federal Statistical Office [263]. The model parameters are
the transmission rate (β), the relative transmission rate between reported
and unreported infectious individuals (µ), the virus latency period (Z ), the
infectious period (D), the reporting rate (α) and the mobility factor (θ).

We employ different time-dependent expressions for the transmission rate
and the mobility factor for each stage of the epidemic. Constants are chosen
for the start of an epidemic while in the cases of monitoring of interventions,
the following expressions are used:

β(t) =

b0, 0 ≤ t ≤ δ1

b1, δ1 < t
, θ(t) =

θ0, 0 ≤ t ≤ δ1

θ1, δ1 < t
, (125)

where b0, b1, θ0 and θ1 are the transmission rates and mobility factors before
and after the intervention. Time t = 0 corresponds to the 25th of February
2020, and δ1 = 21 to the 17th of March 2020, when the lockdown was
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announced in Switzerland [264]. Finally, for the third case (monitoring of a
second outbreak) we assume that

β(t) =



b0, 0 ≤ t ≤ δ1

b1, δ1 < t ≤ δ2

b2, δ2 < t ≤ δ3

b3(t), δ3 < t

, θ(t) =



θ0, 0 ≤ t ≤ δ1

θ1, δ1 < t ≤ δ2

θ2, δ2 < t ≤ δ3

θ0, δ3 < t

. (126)

As in equation 125, b0 is the transmission rate before the intervention while
b1 = c1 b0 and b2 = c2 b0 with c1, c2 ∈ [0, 1] are the transmission rates
after the two interventions. Similarly, θ0 is the mobility factor before any
interventions took place, while θ1 = c3 θ0 and θ2 = c4 θ0 with c3, c4 ∈ [0, 1]
are the mobility factors after the two interventions. Moreover, δ1 and δ2
correspond to the days of the interventions. The day when the measures are
loosened is denoted by δ3. After that day, the transmission rate is gradually
increasing

b3(t) = min(b2 + λ(t − δ3), b0) , (127)

with λ ∈ [0, 0.03], while the mobility factor regains its initial value of θ0.

A.2.9 Estimation of the Expected Information Gain

The calculation of the expected utility from equation 122 is performed with
Monte-Carlo integration. Samples from the prior distribution are denoted
by ϑ(i) ∼ p(ϑ) and by ϑ̃(i) ∼ p(ϑ̃), while samples on the measurement
space are denoted by y (i ,j) ∼ p(y |ϑ(i), ϑ̃(i), s), where i ∈ {1, ... , Nϑ} and
j ∈ {1, ... , Ny}. With these samples, an estimate of the expected utility is
computed as

Û(s) =
1

NϑNy

Nϑ

∑
i=1

Ny

∑
j=1

[
log

(
p
(
y (i ,j)|ϑ(i), ϑ̃(i), s

)
p(y (i ,j)|ϑ̃(i), s)

)]
,

p(y (i ,j)|ϑ̃(i), s) :=
1

Nϑ

Nϑ

∑
n=1

p
(
y (i ,j)|ϑ(n), ϑ̃(i), s

)
.

(128)

In our implementation the samples ϑ(i) and ϑ̃(i), (i = 1, ... , Nθ), remain the
same for different values of s. Thus, the model evaluations g(s, ϑ(i), ϑ̃(i))
are only carried out once and are stored and used in the iteration process
involved in the optimization. This allows to separate the computational cost
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of the model evaluation from the cost of computing the utility, which scales
as O(N2

ϑ Ny ).

A.2.10 Optimal Location and Time of Testing

We define the optimal survey times and locations as

s∗ = arg max
s1,...,sMy

Û(s) , (129)

where s∗ = (s∗1, ... , s∗My
) with s∗i = (k∗i , t∗i ) denote the locations k∗i and

times t∗i for the optimal surveys with i ∈ {1, ... , My}. For a grid search, the
associated computational cost is O((KT )My ) and thus grows exponentially
with the number of surveys. This curse of dimensionality is avoided by using
a sequential optimization method [125] to approximate the global optimum
by iteratively solving

s∗n = arg max
s

Ûn(s) , ∀n = 1, ... , My , (130)

where s = (k , t) is the location and time to be estimated sequentially starting
with n = 1 and

Ûn(s) = Û
(
s
)

, s = (s∗1, ... , s∗n−1, s) . (131)

Following this, we define the expected information gain for survey n as

∆Ûn(s) =

Û1(s), n = 1

Ûn(s)− Ûn−1(s∗n−1), n > 1.
(132)

A.2.11 Quantification of Uncertainty

A data informed prior p(ϑ|d) of the model parameters ϑ can be computed
from available data d =

(
d1, ... , dMd

)
, collected at Md locations and days.

Here, available data d refer to the daily number of reported infectious indi-
viduals and they are contrasted from the data y of the number of unreported
infectious individuals. The latter are obtained from testing strategies at se-
lected populations using optimal experimental design. The data is mapped
via a distinct model output f (s, ϑ, ϑ̃) through the following error model

p(di |ϑ, ϑ̃, ν) = NB
(

di | f (si , ϑ, ϑ̃), ν
)

, i = 1, ... , Md . (133)
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where NB is the negative binomial distribution with mean f and dispersion
ν. Also, si = (ki , ti ) is the location and time the data di was collected. The
choice of a different error model, compared to equation 116, is based on
the assumption that the data are independent and identically distributed.
Such an assumption would not be acceptable in the measurement model
in equation 116, as it may result in uncorrelated measurements that can
become clustered in small time intervals [268].

The data d =
(
d1, ... , dMd

)
are the daily number of reported infections

per canton in Switzerland [270] which corresponds to the following model
quantity

f (si , ϑ, ϑ̃) :=
∫ ti+0.5

ti−0.5

α

Z
Eki

(τ)dτ ≈ α

Z
Eki

(ti ) . (134)

The posterior distribution that will be used subsequently as a data informed
prior is obtained using Bayes’ theorem

p(ϑ, ϑ̃|d) = p(d |ϑ, ϑ̃) p(ϑ, ϑ̃)

p(d)
, (135)

and is sampled with a nested sampling algorithm [261]. Note the difference to
equation 121 and the optimal testing methodology, where we are interested
to reduce the uncertainty in p(ϑ|y , ϑ̃, s), which excludes the nuisance pa-
rameters ϑ̃. For the dispersion parameter in equation 133, it is assumed that
ν = r f (si , ϑ, ϑ̃). The coefficient r is unknown and included in the parameter
set, where r ∼ U ([0, 2]).

The three inferences performed are summarized in table S5, which shows
the involved model parameters in each case. The histograms for the found
samples are shown in figures S1, S2, and S3.

We remark that, using the present methodology, the inferred date for the
beginning of the intervention is δ1 = 22.5, which is the 18th of March 2020,
corresponding well with the 17th of March 2020 on which the lockdown was
introduced in Switzerland [264]. Moreover, we infer a significant reduction
in the mobility factor, which indicates that traffic between cantons was also
minimized. For the inference III we plot the fit using the inferred parameters
in figure S4. The daily reported cases per canton are shown, together with
the data used for the inference.
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FIGURE 47: Marginal posterior distributions with data up to 17th of March
2020. The used data correspond to the daily reported infectious per-
sons in the cantons of Switzerland. The marginals with a canton label
XY correspond to the initial condition Iu

XY(t = 0) for the unreported
cases in that canton.
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FIGURE 48: Marginal posterior distributions with data up to 6th of June 2020.
The used data correspond to the daily reported infectious persons
in the cantons of Switzerland. The marginals with a canton label XY
correspond to the initial condition IuXY(t = 0) for the unreported cases
in that canton.
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FIGURE 49: Marginal posterior distributions with data up to 9th of July 2020.
The used data correspond to the daily reported infectious persons
in the cantons of Switzerland. The marginals with a canton label XY
correspond to the initial condition IuXY(t = 0) for the unreported cases
in that canton.
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FIGURE 50: Maximum a-posteriori prediction with data up to 9th of July 2020.
The red points correspond to the daily reported cases per cantons
and the blue curve shows the maximum a-posteriori prediction. The
99% confidence interval is plotted in green and based on the sample
shown in figure S3.
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FIGURE 51: Comparison of prediction uncertainty per canton. The predictions
are based on optimal strategies and non-specific testing for collection
of data. They are also based on the SEIr IuR model output. The
error bounds show the 99% confidence intervals of the unreported
infectious model output for samples of the parameters with data
obtained by optimal (purple) and standard testing (gray). The black
dots show the actual unreported infectious for an artificial spread in
Switzerland.
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FIGURE 52: Comparison of propagated uncertainty per canton. The predic-
tions are based on optimal strategies and non-specific testing. The
SEIr IuR model output with added model error for the unreported
infectious is shown. The error bounds show the 99% confidence in-
tervals of the model output with added model error for samples of
the parameters with data obtained by optimal (purple) and standard
testing (gray). The black dots show the actual unreported infectious
for an artificial spread in Switzerland.
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Maximum of Expected Information Gain

Canton 1st measure-
ment

2nd measure-
ment

3rd measure-
ment

4th measure-
ment

AG 2.297 (01-03) 1.080 (27-02) 0.530 (28-02) 0.436 (27-02)

AI 0.240 (03-03) 0.167 (28-02) 0.152 (27-02) 0.123 (28-02)

AR 0.538 (03-03) 0.189 (28-02) 0.157 (03-03) 0.127 (26-02)

BE 2.547 (02-03) 1.130 (27-02) 0.558 (03-03) 0.432 (28-02)

BL 2.224 (29-02) 1.099 (27-02) 0.567 (28-02) 0.458 (28-02)

BS 1.930 (29-02) 0.969 (27-02) 0.545 (27-02) 0.445 (27-02)

FR 2.046 (01-03) 0.983 (27-02) 0.533 (28-02) 0.424 (27-02)

GE 2.338 (02-03) 1.074 (27-02) 0.512 (03-03) 0.410 (28-02)

GL 0.344 (03-03) 0.171 (28-02) 0.152 (27-02) 0.124 (01-03)

GR 2.174 (01-03) 1.039 (27-02) 0.517 (29-02) 0.416 (28-02)

JU 0.408 (03-03) 0.176 (29-02) 0.154 (01-03) 0.125 (03-03)

LU 1.220 (03-03) 0.340 (29-02) 0.225 (01-03) 0.173 (01-03)

NE 0.828 (03-03) 0.234 (29-02) 0.176 (01-03) 0.137 (01-03)

NW 0.246 (03-03) 0.168 (01-03) 0.152 (02-03) 0.123 (03-03)

OW 0.225 (03-03) 0.168 (03-03) 0.152 (02-03) 0.124 (03-03)

SG 2.067 (01-03) 0.981 (27-02) 0.519 (28-02) 0.425 (27-02)

SH 0.456 (03-03) 0.182 (29-02) 0.156 (01-03) 0.126 (01-03)

SO 1.515 (03-03) 0.455 (28-02) 0.256 (27-02) 0.199 (27-02)

SZ 0.785 (03-03) 0.221 (29-02) 0.167 (29-02) 0.134 (28-02)

TG 1.214 (03-03) 0.334 (28-02) 0.209 (28-02) 0.163 (28-02)

TI 2.362 (02-03) 1.077 (27-02) 0.516 (03-03) 0.409 (28-02)

UR 0.210 (03-03) 0.167 (03-03) 0.152 (02-03) 0.124 (28-02)

VD 2.666 (02-03) 1.233 (27-02) 0.594 (03-03) 0.314 (29-02)

VS 2.254 (01-03) 1.061 (27-02) 0.514 (28-02) 0.417 (28-02)

ZG 0.701 (03-03) 0.206 (28-02) 0.161 (29-02) 0.130 (28-02)

ZH 2.721 (02-03) 1.187 (27-02) 0.556 (28-02) 0.449 (27-02)

TABLE 5: Maximum expected information gain for outbreak of a new disease.
The corresponding optimal dates are shown in parenthesis.
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Maximum of Expected Information Gain

Canton 1st measure-
ment

2nd measure-
ment

3rd measure-
ment

4th measure-
ment

AG 2.307 (30-03) 1.128 (17-03) 0.399 (30-03) 0.264 (30-03)

AI 0.211 (30-03) 0.169 (17-03) 0.146 (21-03) 0.112 (26-03)

AR 0.474 (30-03) 0.205 (17-03) 0.154 (29-03) 0.115 (29-03)

BE 2.927 (30-03) 1.738 (17-03) 0.691 (17-03) 0.459 (17-03)

BL 1.663 (30-03) 0.710 (17-03) 0.241 (17-03) 0.167 (17-03)

BS 1.359 (30-03) 0.518 (17-03) 0.196 (17-03) 0.140 (17-03)

FR 2.149 (30-03) 1.093 (17-03) 0.256 (17-03) 0.176 (17-03)

GE 2.825 (29-03) 1.760 (17-03) 0.483 (21-03) 0.327 (21-03)

GL 0.364 (30-03) 0.183 (17-03) 0.149 (28-03) 0.114 (29-03)

GR 1.783 (30-03) 1.256 (17-03) 0.754 (17-03) 0.222 (21-03)

JU 0.736 (30-03) 0.251 (17-03) 0.163 (30-03) 0.121 (30-03)

LU 1.830 (30-03) 0.738 (17-03) 0.316 (30-03) 0.210 (30-03)

NE 1.573 (30-03) 0.626 (17-03) 0.205 (17-03) 0.145 (17-03)

NW 0.369 (30-03) 0.181 (17-03) 0.149 (30-03) 0.114 (29-03)

OW 0.332 (30-03) 0.176 (17-03) 0.148 (30-03) 0.114 (29-03)

SG 2.056 (30-03) 1.003 (17-03) 0.471 (17-03) 0.247 (17-03)

SH 0.625 (30-03) 0.215 (17-03) 0.158 (29-03) 0.119 (30-03)

SO 1.642 (30-03) 0.663 (17-03) 0.224 (30-03) 0.155 (30-03)

SZ 1.066 (30-03) 0.330 (17-03) 0.186 (30-03) 0.135 (30-03)

TG 1.495 (30-03) 0.548 (17-03) 0.250 (30-03) 0.168 (30-03)

TI 2.640 (29-03) 1.639 (17-03) 0.668 (17-03) 0.436 (17-03)

UR 0.315 (30-03) 0.175 (17-03) 0.148 (29-03) 0.114 (29-03)

VD 3.139 (30-03) 1.961 (17-03) 0.415 (22-03) 0.311 (23-03)

VS 2.313 (30-03) 1.251 (17-03) 0.397 (17-03) 0.264 (17-03)

ZG 0.920 (30-03) 0.285 (17-03) 0.172 (30-03) 0.127 (30-03)

ZH 2.980 (30-03) 1.695 (17-03) 0.735 (17-03) 0.494 (17-03)

TABLE 6: Maximum expected information gain of non-pharmaceutical inter-
ventions. The corresponding optimal dates are shown in parenthesis.
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Maximum of Expected Information Gain

Canton 1st measure-
ment

2nd measure-
ment

3rd measure-
ment

4th measure-
ment

AG 1.356 (13-06) 0.434 (06-06) 0.292 (06-06) 0.210 (13-06)

AI 0.171 (13-06) 0.167 (09-06) 0.159 (09-06) 0.142 (08-06)

AR 0.207 (13-06) 0.169 (08-06) 0.159 (08-06) 0.142 (11-06)

BE 1.877 (13-06) 0.746 (06-06) 0.435 (06-06) 0.339 (13-06)

BL 0.712 (13-06) 0.236 (07-06) 0.186 (06-06) 0.156 (13-06)

BS 0.512 (13-06) 0.202 (06-06) 0.172 (06-06) 0.148 (13-06)

FR 0.973 (13-06) 0.330 (06-06) 0.208 (13-06) 0.184 (13-06)

GE 1.490 (13-06) 0.644 (06-06) 0.381 (13-06) 0.328 (13-06)

GL 0.189 (13-06) 0.168 (08-06) 0.159 (12-06) 0.142 (08-06)

GR 0.567 (13-06) 0.219 (06-06) 0.173 (06-06) 0.152 (13-06)

JU 0.255 (13-06) 0.173 (07-06) 0.161 (06-06) 0.143 (13-06)

LU 0.936 (13-06) 0.286 (07-06) 0.213 (06-06) 0.168 (13-06)

NE 0.576 (13-06) 0.222 (06-06) 0.172 (13-06) 0.153 (13-06)

NW 0.193 (13-06) 0.168 (07-06) 0.159 (06-06) 0.142 (08-06)

OW 0.187 (13-06) 0.167 (06-06) 0.159 (07-06) 0.142 (11-06)

SG 1.084 (13-06) 0.330 (06-06) 0.238 (06-06) 0.179 (13-06)

SH 0.247 (13-06) 0.172 (07-06) 0.161 (06-06) 0.142 (07-06)

SO 0.701 (13-06) 0.235 (06-06) 0.184 (06-06) 0.154 (13-06)

SZ 0.403 (13-06) 0.187 (07-06) 0.167 (06-06) 0.145 (13-06)

TG 0.651 (13-06) 0.223 (06-06) 0.183 (06-06) 0.153 (13-06)

TI 1.241 (13-06) 0.539 (06-06) 0.367 (13-06) 0.322 (13-06)

UR 0.186 (13-06) 0.167 (09-06) 0.158 (09-06) 0.142 (08-06)

VD 1.881 (13-06) 0.873 (06-06) 0.505 (13-06) 0.443 (13-06)

VS 1.138 (13-06) 0.420 (06-06) 0.256 (13-06) 0.223 (13-06)

ZG 0.337 (13-06) 0.180 (07-06) 0.163 (07-06) 0.144 (13-06)

ZH 2.092 (13-06) 0.862 (06-06) 0.592 (06-06) 0.276 (09-06)

TABLE 7: Maximum expected information gain for monitoring of a second
outbreak with uninformed b3. The corresponding optimal dates are
shown in parenthesis.
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Assume we want to estimate the proportion of a population with some
margin of error d and a small risk α, i.e., we want Pr(|P − p| ≥ d) = α.
Here, the proportion corresponds to the proportion of unreported infected
population. The minimum number of samples to achieve this is given by
Cochran’s formula [257],

n0 =
z2

α

d2 p(1− p) ,

where zα is the inverse of the standard normal cumulative distribution function
evaluated at 1− α/2. In this formula, we have assumed that the population
is of infinite size. In order to correct for a finite size population N, we compute

n =
n0

1 + n0/N
.

In the next figure we present the minimum number of samples needed to
sample the cantons of Switzerland for d = 0.01 and α = 0.01. Notice that
α = 0.01 corresponds to a 99% confidence interval.

If the available test-kits are more than 26 × 5950 = 154700 then the
maximum information gain will be achieved by deploying all tests uniformly
in all cantons. However, when it is not realistic to conduct over 154700 tests,
we consider testing with limited resources. For example assuming 30000
available tests, will be enough to test 5 cantons 5× 5950. The question we
answer then is which 5 cantons (from the 26) should we test given that we
must test a minimum population of 5950 per canton?.

Distributing less than a particular number of tests (5950) in a canton will
not provide a statistically reliable estimate for the number of unreported
infections there. Thus, in such a case, the measured unreported infections
should not be used to estimate the expected information gain.

Finally, we note that in this work we ignore the bias in the estimate of Iu.
This means that the estimates of unreported infected enter the Bayesian
framework without explicitly accounting for this known error.
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Maximum of Expected Information Gain

Canton 1st measure-
ment

2nd measure-
ment

3rd measure-
ment

4th measure-
ment

AG 1.233 (17-07) 0.328 (10-07) 0.220 (17-07) 0.194 (10-07)

AI 0.170 (17-07) 0.167 (17-07) 0.154 (13-07) 0.136 (17-07)

AR 0.198 (17-07) 0.169 (10-07) 0.154 (14-07) 0.136 (16-07)

BE 1.596 (17-07) 0.460 (10-07) 0.347 (17-07) 0.267 (10-07)

BL 0.616 (17-07) 0.202 (10-07) 0.166 (17-07) 0.147 (10-07)

BS 0.441 (17-07) 0.184 (10-07) 0.159 (17-07) 0.141 (10-07)

FR 0.636 (17-07) 0.209 (10-07) 0.193 (17-07) 0.156 (17-07)

GE 0.896 (17-07) 0.326 (17-07) 0.308 (17-07) 0.225 (17-07)

GL 0.184 (17-07) 0.168 (13-07) 0.154 (17-07) 0.136 (10-07)

GR 0.418 (17-07) 0.182 (10-07) 0.162 (17-07) 0.141 (10-07)

JU 0.219 (17-07) 0.169 (10-07) 0.155 (17-07) 0.136 (17-07)

LU 0.834 (17-07) 0.234 (10-07) 0.178 (17-07) 0.157 (10-07)

NE 0.378 (17-07) 0.180 (10-07) 0.165 (17-07) 0.142 (17-07)

NW 0.187 (17-07) 0.168 (10-07) 0.154 (15-07) 0.135 (10-07)

OW 0.183 (17-07) 0.168 (10-07) 0.154 (10-07) 0.136 (12-07)

SG 0.994 (17-07) 0.267 (10-07) 0.191 (17-07) 0.169 (10-07)

SH 0.232 (17-07) 0.170 (10-07) 0.154 (15-07) 0.136 (11-07)

SO 0.581 (17-07) 0.197 (10-07) 0.166 (17-07) 0.145 (10-07)

SZ 0.362 (17-07) 0.178 (10-07) 0.157 (10-07) 0.139 (10-07)

TG 0.591 (17-07) 0.200 (10-07) 0.164 (17-07) 0.145 (10-07)

TI 0.556 (17-07) 0.318 (17-07) 0.296 (17-07) 0.224 (17-07)

UR 0.181 (17-07) 0.168 (11-07) 0.154 (16-07) 0.135 (16-07)

VD 1.297 (17-07) 0.452 (17-07) 0.433 (17-07) 0.281 (10-07)

VS 0.655 (17-07) 0.245 (17-07) 0.228 (17-07) 0.176 (17-07)

ZG 0.303 (17-07) 0.174 (10-07) 0.155 (15-07) 0.137 (11-07)

ZH 1.976 (17-07) 0.675 (10-07) 0.276 (14-07) 0.250 (13-07)

TABLE 8: Maximum expected information gain to monitor a second outbreak
with informed b3. The corresponding optimal dates are shown in paren-
thesis.
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ParameterPrior distribution / fixed
value

Inference I Inference II Inference
III

b0 U ([0.8, 1.8]) yes yes yes

α U ([0.01, 1]) yes yes yes

µ U ([0.2, 1]) yes yes yes

Z U ([1, 6]) yes yes yes

D U ([1, 6]) yes yes yes

θ0 U ([0.5, 1.5]) yes yes yes

c1 U ([0, 1]) no yes yes

c2 U ([0, 1]) no yes yes

c3 U ([0, 1]) no yes yes

c4 U ([0, 1]) no yes yes

δ1 U ([20, 30]) no yes yes

δ2 U ([30, 40]) no yes yes

δ3 102 no yes yes

λ U ([0, 0.03]) no no yes

r U ([0, 2]) yes yes yes

Iu
IC U ([0, 50]12) yes yes yes

TABLE 9: Parameters and prior distributions used in Bayesian inference. Here
the data corresponds to the daily reported infections. In all cases, data
are used from the 25th of February 2020, when the first reported case
was found in the canton of Ticino. Inference I uses data up to the day
non-pharmaceutical interventions were announced (17th of March 2020).
Inference II uses data up to the day measures were relaxed (6th of June
2020). Inference III uses data up to the 9th of July 2020. The choice of
prior distributions is consistent with the choice found in [260]; the ranges
used in our study are slightly extended.
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FIGURE 53: Estimated sample size using Cochran’s [257] formula for every can-
ton for confidence level 99%, margin of error 1% and probability of
infection 0.1. The cantons are sorted in descending order of their
population. The maximum sample size is estimated for Zurich and is
equal to 5950. All the other cantons need up to 14% less samples with
the exception of the smallest canton that needs 27% less samples.
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B.1 V-RACER for discrete action space

The V-RACER paper [33] presents the continuous action version of V-
RACER. For discrete action environments we employ a neural network
which takes as an input the state and outputs the state-value estimate, the
energies of each action ϵi for i = 1, ... , |A| and an inverse temperature β
parameter. The probability pi of sampling action ai is calculated according to
the Boltzmann distribution

pi =
exp (−ϵi )β

∑
|A|
k=1 exp (−ϵk )β

. (136)

Here we omit the derivation of the importance weight and the gradient
thereof, as well as the gradient of the Kullback-Leibler divergence of the
current policy from the past policy.

B.2 Clipped Normal Distribution

We use the clipped normal distribution to enforce action bounds during the
sampling of the actions in a truncated domain [a, b] ⊂ R. The probability
density function of the clipped normal distribution [274] is given by

f (x ; µ, σ) = Ia<x<bfN (x ; µ, σ)

+ δ(x − a)FN (a; µ, σ) + δ(x − b)[1− FN (b; µ, σ)] ,
(137)

where Ia≤x<b is the indicator function that is 1 inside (a, b) and 0 outside, δ
denotes the Dirac delta distribution, and fN (x ; µ, σ) is the density function
of the normal distribution with mean µ and standard deviation σ. In contrast
to the squashed normal distribution [275], the clipped normal distribution
retains a higher probability mass towards the action bounds. We found that
clipping performs superior to applying a squashing function on the samples.
In the following, we derive the gradient of the KL divergence, the importance
weight, and the gradient thereof.
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B.2.1 Importance Weight

The gradient of the importance weight

IW(x ; µq , σq , µp, σp) =


FN (a;µq ,σq)
FN (a;µp ,σp)

, if x = a ,
fN (x ;µq ,σq)
fN (x ;µp ,σp)

, if a < x < b ,
1−FN (b;µq ,σq)
1−FN (b;µp ,σp)

, if x = b ,

(138)

with respect to the parameters µq and σq can be computed using

∂fN (x ; µ, σ)

∂µq
=

x − µ

σ2 fN (x ; µ, σ) ,

∂fN (x ; µ, σ)

∂σq
=
(
− 1

σ
+

(x − µ)2

σ3

)
fN (x ; µ, σ)

=
µ2 − σ2 − 2µx + x2

σ3 fN (x ; µ, σ) ,

(139)

and eq. (149) as

∂ IW
∂µq

=


−fN (a;µq ,σq)
FN (a;µp ,σp)

, if x = a ,
(x−µq)fN (x ;µq ,σq)

σ2
q fN (x ;µp ,σp)

, if a < x < b ,

fN (b;µq ,σq)
1−FN (b;µp ,σp)

, if x = b .

(140)

∂ IW
∂σq

=


− a−µq

σq

fN (a;µq ,σq)
FN (a;µp ,σp)

, if x = a ,
((x−µq)2−σ2

q )fN (x ;µq ,σq)

σ3
q fN (x ;µp ,σp)

, if a < x < b ,

b−µq
σq

fN (b;µq ,σq)
1−FN (b;µp ,σp)

, if x = b .

(141)

B.2.2 Kullback-Leibler Divergence

The definition of the KL divergence is given by

DKL(p∥q) =
∫ ∞

−∞
log
[

p(x ; µp, σp)

q(x ; µq , σq)

]
p(x ; µp, σp)dx . (142)
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Plugging in the expression from eq. (137) we find

DKL(p∥q) = log
[

FN (a; µp, σp)

FN (a; µq , σq)

]
FN (a; µp, σp)

+

b∫
a

log
[

fN (x ; µp, σp)

fN (x ; µq , σq)

]
fN (x ; µp, σp)dx

︸ ︷︷ ︸
I

+ log
[

1− FN (b; µp, σp)

1− FN (b; µq , σq)

]
[1− FN (b; µp, σp)] .

(143)

Plugging in the expression for the normal distribution we can write the integral
expression for x ∈ (a, b) as

I =
1√

2πσp

∫ b

a

{
log
(

σq

σp

)
− 1

2

[
(x − µp)2

σ2
p

− (x − µq)2

σ2
q

]}

· exp

[
− (x − µp)2

2σ2
p

]
dx .

(144)

Using a substitution of variables x ′ = x−µp√
2σp

, the integral reads

I =
1√
π

∫ b−µp√
2σp

a−µp√
2σp

[
log
(

σq

σp

)
− x ′2 +

1
2
(
√

2σpx ′ + µp − µq)2

σ2
q

]
︸ ︷︷ ︸

Q

· e−x ′2dx ′ .

(145)

We expand Q giving

Q = log
(

σq

σp

)
+

(µp − µq)2

2σ2
q︸ ︷︷ ︸

C1

+
√

2σp
(µp − µq)

σ2
q︸ ︷︷ ︸

C2

x ′ −
(

1−
σ2

p

σ2
q

)
︸ ︷︷ ︸

C3

x ′2 .

(146)
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Using the identities∫ b

a
e−x2

dx =

√
π

2
[erf (b)− erf (a)] ,∫ b

a
xe−x2

dx = −1
2

[
exp

(
b2
)
− exp

(
a2
)]

,∫ b

a
x2e−x2

dx =

√
π

4
[erf(b)− erf(a)]

− 1
2

[
b exp(−b2)− a exp(−a2)

]
,

(147)

the integration can be performed

DKL(p||q) = log
[

FN (a; µp, σp)

FN (a; µq , σq)

]
FN (a; µp, σp)

+
1
2

[
log
(

σq

σp

)
+

(µp − µq)2

2σ2
q

− 1
2

(
1−

σ2
p

σ2
q

)]

·
[

erf

(
b− µp

σp
√

2

)
− erf

(
a− µp

σp
√

2

)]

+
1√
2π

[
1
2

(
1−

σ2
p

σ2
q

)(
b− µp

σp

)
− σp(µp − µq)

σ2
q

]

· exp

(
− (b− µp)2

2σ2
p

)

− 1√
2π

[
1
2

(
1−

σ2
p

σ2
q

)(
a− µp

σp

)
− σp(µp − µq)

σ2
q

]

· exp

(
− (a− µp)2

2σ2
p

)

+ log
[

1− FN (b; µp, σp)

1− FN (b; µq , σq)

]
[1− FN (b; µp, σp)] .

(148)

Using the derivatives of the cumulative distribution function with respect to
the mean and standard deviation

FN (x ; µ, σ)

∂µq
= −fN (x ; µ, σ) ,

FN (x ; µ, σ)

∂σq
= −x − µ

σ
fN (x ; µ, σ) ,

(149)
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and the gradient of the error function

∂

∂z
erf(z) =

2√
π

e−z2
, (150)

the derivative of the KL divergence with respect to µq

∂DKL(p∥q)
∂µq

=
FN (a; µp, σp)

FN (a; µq , σq)
fN (a; µq , σq)

− 1
2

µp − µq

σ2
q

[
erf

(
b− µp√

2σp

)

− erf

(
a− µp√

2σp

) ]
+

1√
2π

σp

σ2
q

[
exp

(
− (b− µp)2

2σ2
p

)

− exp

(
− (a− µp)2

2σ2
p

) ]
− 1− FN (b; µp, σp)

1− FN (b; µq , σq)
fN (b; µq , σq)

(151)



166 A P P E N D I X D E E P R E I N F O R C E M E N T L E A R N I N G

and σq is given by

∂DKL(p∥q)
∂σq

=
a− µq

σq

FN (a; µp, σp)

FN (a; µq , σq)
fN (a; µq , σq)

+
1
2

[
1
σq
− (µp − µq)2

σ3
q

−
σ2

p

σ3
q

]

·
[

erf

(
b− µp

σp
√

2

)
− erf

(
a− µp

σp
√

2

)]

+
1√
2π

[
σ2

p

σ3
q

(
b− µp

σp

)
+

2σp(µp − µq)

σ3
q

]

· exp

(
− (b− µp)2

2σ2
p

)

− 1√
2π

[
σ2

p

σ3
q

(
a− µp

σp

)
+

2σp(µp − µq)

σ3
q

]

· exp

(
− (a− µp)2

2σ2
p

)

− b− µq

σq

1− FN (b; µp, σp)

1− FN (b; µq , σq)
fN (b; µq , σq) .

(152)
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B.3 Algorithms

Algorithm 1 Multi-Agent Reinforcement Learning (Synchronous Variant)
Input :Environment function D(s, a), Replay Memory RM, Neural Net-

work(s) NN for agents i = 1, ... , N, Termination Criteria T

while not T do

// COLLECTING EXPERIENCES

Sample Initial States s(i)0

for t ∈ 1, ... , T do
Forward Neural Networks V π(s(i)t−1), πt−1(·|s

(i)
t−1) = NN(s(i)t−1; ϑ, ω)

Sample Actions a(i)
t−1 ∼ πt−1(·|s

(i)
t−1) for i = 1, ... , N

Run Environment Function r t−1, st = D(at−1, st−1)
end
// POSTPROCESS EPISODE

Save Episode Ek = {(st , at , r t , V t , πt )}Tk
t=0 in Replay Memory RM

Set V̂ tbc,(i)
T = V π(s(i)T )

for t ∈ T − 1, ... , 1 do
Compute V̂ tbc,(i)

t = V π(s(i)t ) + ρ̄t

[
f (r t ) + γV̂ tbc,(i)

t+1 − V π(s(i)t )
]

Add V̂ tbc,(i)
t to Replay Memory RM

end

// TRAINING NEURAL NETWORK

for i ∈ 1, ... , T do
miniBatch = generateMinibatch()
trainPolicy( miniBatch )
updateReFERparams()

end
end

Here f implements the relation between the agents. The function UPDATEREFER-
PARAMS updates the ReF-ER parameters, GENERATEMINIBATCH samples
a minibatch of experiences from the replay memory. TRAINPOLICY im-
plements the learning algorithm 2. The functions and COMPUTEIMPOR-
TANCEWEIGHT and COMPUTEPOLICYGRADIENT implement the respective
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variants described in the main text. The function ISONPOLICY classifies the
experience as on- or off-policy.
Algorithm 2 TRAINPOLICY

Input : miniBatch

ĝV (ϑ) = ĝπ(ω) = 0

for (sb, ab, rb, πb) ∈ miniBatch do

// FORWARD NEURAL NETWORK

V π
ϑ (s(i)b ), πω(s

(i)
b ) = NN(s(i)b ; ϑ, ω)

// BACKWARDS UPDATE OF VALUE ESTIMATOR

bfirst ← find first experience for episode containing b

for t ∈ b, ... , bfirst do
V π

f (s(i)t )← scalarize value from replay memory

V̂ tbc,(i)
t = V π

f (s(i)t ) + ρ̄t

[
f (r t ) + γV̂ tbc,(i)

t+1 − V π
f (s(i)t )

]
end

// COMPUTE IMPORTANCE WEIGHT

importanceWeight = computeImportanceWeight(ab, πb, πϑ)

// COMPUTE VALUE GRADIENT

V π
f (s(i)b )← scalarize value V π

ϑ (s(i)b )

ĝV ,(i)
b (ϑ) = 1

N

[
V π

f (s(i)b )− V̂ tbc,(i)
b

]
∇ϑV π

ω (s(i)b )

// COMPUTE POLICY GRADIENT

ĝKL,(i)
b (ω) = ∇ωDKL (πb∥πω) (s

(i)
b )

if isOnPolicy(importanceWeight) then
ĝ(i)

b (ω) =computePolicyGradient(importanceWeight,V π
ϑ (s(i)b ), πω(s

(i)
b ))

else
ĝ(i)

b (ω) = 0
end
// ACCUMULATE GRADIENT FOR VALUE FUNCTION

ĝV (ϑ) = ĝV (ϑ) + 1
N ·|miniBatch| ĝ

V ,(i)
b (ϑ)

// ACCUMULATE GRADIENT FOR POLICY

ĝπ(ω) = ĝπ(ω) + 1
N ·|miniBatch| (βĝ(i)

b (ω) + (1− β)ĝKL,(i)
b (ω))
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end

// UPDATE HYPERPARAMETERS

ϑ ← ϑ − ηĝV (ϑ)

ω← ω− ηĝπ(ω)
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