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Abstract

Mutual information is a general statistical dependency measure which has found
applications in representation learning, causality, domain generalization and compu-
tational biology. However, mutual information estimators are typically evaluated on
simple families of probability distributions, namely multivariate normal distribution
and selected distributions with one-dimensional random variables. In this paper, we
show how to construct a diverse family of distributions with known ground-truth
mutual information and propose a language-independent benchmarking platform
for mutual information estimators. We discuss the general applicability and lim-
itations of classical and neural estimators in settings involving high dimensions,
sparse interactions, long-tailed distributions, and high mutual information. Finally,
we provide guidelines for practitioners on how to select appropriate estimator
adapted to the difficulty of problem considered and issues one needs to consider
when applying an estimator to a new data set.

1 Introduction

Estimating the strength of a non-linear dependence between two continuous random variables (r.v.)
lies at the core of machine learning. Mutual information (MI) lends itself naturally to this task, due to
its desirable properties, such as invariance to homeomorphisms and the data processing inequality. It
finds applications in domain generalization [Li et al., 2022, Ragonesi et al., 2021], representation
learning [Belghazi et al., 2018, Oord et al., 2018], causality [Solo, 2008, Kurutach et al., 2018],
physics [Keys et al., 2015], systems biology [Selimkhanov et al., 2014, Grabowski et al., 2019, Uda,
2020], and epidemiology [Young et al., 2023].

Over the last decades, the estimation of MI has been extensively studied, and estimators have been
developed, ranging from classical approaches based on histogram density [Pizer et al., 1987], kernel
density estimation [Moon et al., 1995] to k-nearest neighbor [Kozachenko and Leonenko, 1987,
Kraskov et al., 2004] and neural estimators [Belghazi et al., 2018, Oord et al., 2018, Song and Ermon,
2020]. However, despite the progress that has been achieved in this area, not much attention has been
focused on systematically benchmarking these approaches.

Typically, new estimators are evaluated assuming multivariate normal distributions for which MI is
analytically tractable [Darbellay and Vajda, 1999, Kraskov et al., 2004, Suzuki, 2016]. Sometimes,
simple transformations are applied to the data [Khan et al., 2007, Gao et al., 2015], moderately
high-dimensional settings are considered [Lord et al., 2018, Lu and Peltonen, 2020], or strong
dependencies are evaluated [Gao et al., 2015]. Beyond that, Song and Ermon [2020] study the
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Figure 1: Visualisations of selected proposed distributions. Two correlated Gaussian variables X
and Y (1) can be transformed via the Gaussian CDF into correlated uniform variables (2), into a
long-tailed distribution via the “half-cube” mapping t 7→ t

√
|t| (3), into a multi-modal distribution

(4) or embedded in the three-dimensional space via the composition of the Swiss roll mapping and
Gaussian CDF (5). Color on the plot corresponds to the original Y variable.

self-consistency (additivity under independence and the data processing inequality) of neural MI
estimators in the context of representation learning from image data.

Our Contributions In this work we show a method of developing expressive distributions with
known ground-truth mutual information (Sec. 2), propose forty benchmark tasks and systematically
study the properties of commonly used estimators, including representatives based on kernel or
histogram density estimation, kNN estimation, and neural network-based estimators (Sec. 3). We
address selected difficulties one can encounter when estimating mutual information (Sec. 4), such as
sparsity of interactions, long-tailed distributions, invariance, and high mutual information. Finally,
we provide recommendations for practitioners on how to choose a suitable estimator for particular
problems (Sec. 6). Our benchmark is designed so that it is simple to add new tasks and estimators. It
also allows for cross-language comparisons — in our work we compare estimators implemented in
Python, R and Julia. All of our experiments are fully reproducible by running Snakemake workflows
[Mölder et al., 2021]. Accompanying code is available at http://github.com/cbg-ethz/bmi.

Overall, our key findings from the benchmark can be summarized as follows:

• Testing on multivariate normal distributions gives a biased and overly optimistic view of estimator
performance. In this setting, canonical correlation analysis (CCA), a model-based approach,
emerges as the most effective method — even if the model is slightly misspecified.

• Compared to classical estimators, neural estimators excel in high-dimensional settings, capturing
sparse interactions across multiple dimensions.

• The popular KSG estimator [Kraskov et al., 2004] is accurate in low- and moderate-dimensional
settings, but its performance suffers on problems involving high-dimensions or sparse interactions.

• Although MI is invariant to a wide range of transformations (Theorem 2.1), numerical estimates,
even with large sample sizes, are not. Thus, MI may not be suitable when metric invariance to
specific transformation families is required.

• Multivariate Student distributions pose an important and hard challenge to many mutual information
estimators. This effect is partially, but not fully, attributed to their long tails.

2 Mutual Information: Estimation and Invariance

We start by recalling the definition of MI, then discuss the problem of estimating it, and introduce the
estimators used in the benchmark.

Consider two r.v. X and Y with domains X respectively Y , joint probability measure PXY and
marginal probability measures PX and PY , respectively. If PXY is absolutely continuous with respect
to PX ⊗PY (e.g., X and Y are finite r.v.), MI is equal to the following Kullback–Leibler divergence2:

I(X;Y ) = DKL (PXY ∥ PX ⊗ PY ) =

∫
log f dPXY ,

where f = dPXY /d(PX⊗PY ) is the Radon–Nikodym derivative. If the absolute continuity does not
hold, then I(X;Y ) = +∞ [Pinsker and Feinstein, 1964, Theorem 2.1.2]. If X and Y are Euclidean
spaces and measures PXY , PX and PY have probability density functions (PDFs) with respect to
the Lebesgue measure, then the Kullback–Leibler divergence can be written in terms of the PDFs.

2We use the natural logarithm, meaning that the mutual information is measured in nats.

2

http://github.com/cbg-ethz/bmi


However, we will later consider distributions which do not have PDFs with respect to the Lebesgue
measure and the general Radon–Nikodym derivative must be used (see “Swiss roll” in Fig. 1).

In almost all applications, PXY and PX ⊗ PY are not known and one needs to estimate MI from
a finite sample from PXY , i.e., a realization

(
(x1, y1), . . . , (xN , yN )

)
∈ (X × Y)N of N i.i.d. r.v.

(X1, Y1), . . . , (XN , YN ) distributed according to the joint distribution PXY . As a MI estimator we
will denote a family of measurable mappings, indexed by the sample size N and spaces X and Y (in
most applications, Euclidean spaces of various dimensionalities): eXY

N : (X ×Y)N → R. Composing
this mapping with the r.v. representing the whole data set we obtain a real-valued r.v. EXY

N . For a
given PXY we can consider the distribution of EXY

N . It is often summarized by its first two moments,
resulting in the bias and the variance of the estimator. Understanding the bias of an estimator however
requires the knowledge of ground-truth MI, so the estimators are typically tested on the families of
jointly multivariate normal or uniform distributions, with varying N and ground-truth I(X;Y ) [Khan
et al., 2007, Lord et al., 2018, Holmes and Nemenman, 2019, Song and Ermon, 2020].

Constructing Expressive Distributions and Benchmarking Besides considering different types
of distributions such as (multivariate) normal, uniform and Student, our benchmark is based on
the invariance of MI to the family of chosen mappings. Generally MI is not invariant to arbitrary
transformations, as due to the data processing inequality I(f(X); g(Y )) ≤ I(X;Y ). However, under
some circumstances MI is preserved, which enables us to create more expressive distributions by
transforming the variables.

Theorem 2.1. Let X , X ′, Y and Y ′ be standard Borel spaces (e.g., smooth manifolds with their
Borel σ-algebras) and f : X → X ′ and g : Y → Y ′ be continuous injective mappings. Then, for
every X -valued r.v. X and Y-valued r.v. Y it holds that I(X;Y ) = I(f(X); g(Y )).

This theorem has been studied before by Kraskov et al. [2004, Appendix], who consider diffeomor-
phisms and by Polyanskiy and Wu [2022, Th. 3.7], who assume measurable injective functions with
measurable left inverses. For completeness we provide a proof which covers continuous injective
mappings in Appendix A. In particular, each of f and g can be a homeomorphism, a diffeomorphism,
or a topological embedding. Embeddings are allowed to increase the dimensionality of the space,
so even if X and Y have probability density functions, f(X) and g(Y ) do not need to have them.
Neither of these deformations change MI. Thus, using Theorem 2.1, we can create more expressive
distributions Pf(X)g(Y ) by sampling from PXY and transforming the samples to obtain a data set(
(f(x1), g(y1)), . . . , (f(xN ), g(yN )

)
∈ (X ′ × Y ′)N .

While offering a tool to construct expressive distributions, another valuable perspective to consider
with this problem is estimation invariance: although MI is invariant to proposed changes, the estimate
may not be. More precisely, applying an estimator to the transformed data set results in the induced
r.v. Ef(X)g(Y )

N and its distribution. If the estimator were truly invariant, one would expect that

E
[
E

f(X)g(Y )
N

]
should equal E

[
EXY

N

]
. This invariance is rarely questioned and often implicitly

assumed as given (see e.g. Tschannen et al. [2020] or Murphy [2023, Sec. 32.2.2.3]), but as we will
see in Sec. 4.3, finite-sample estimates are not generally invariant.

3 Proposed Benchmark

In this section, we outline forty tasks included in the benchmark that cover a wide family of dis-
tributions, including varying tail behaviour, sparsity of interactions, multiple modes in PDF, and
transformations that break colinearity. As our base distributions, we selected multivariate normal and
Student distributions, which were transformed with continuous injective mappings.

We decided to focus on the following phenomena:

1. Dimensionality. High-dimensional data are collected in machine learning and natural
sciences [Bühlmann and van de Geer, 2011, Ch. 1]. We therefore change the dimensions of
the X and Y spaces between 1 and 25.

2. Sparsity. While the data might be high-dimensional, the effective dimension may be much
smaller, due to correlations between different dimensions or sparsity [Lucas et al., 2006].
We therefore include distributions in which some of the dimensions represent random noise,
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which does not contribute to the mutual information, and perform an additional study in
Section 4.1.

3. Varying MI. Estimating high MI is known to be difficult [McAllester and Stratos, 2020].
However, we can often bound it in advance — if there are 4000 image classes, MI between
image class and representation is at most log 4000 ≈ 8.3 nats. In this section, we focus on
problems with MI varying up to 2 nats. We additionally consider distributions with higher
MI in Section 4.4.

4. Long tails. As Taleb [2020] and Zhang et al. [2021] argue, many real-world distributions
have long tails. To model different tails we consider multivariate Student distributions as
well as transformations lengthening the tails. We conduct an additional study in Section 4.2.

5. Robustness to diffeomorphisms. As stated in Theorem 2.1, mutual information is invariant
to reparametrizations of random variables by diffeomorphisms. We however argue that
when only finite samples are available, invariance in mutual information estimates may not
be achieved. To test this hypothesis we include distributions obtained by using a diverse set
of diffeomorphisms and continuous injective mappings. We further study the robustness to
reparametrizations in Section 4.3.

While we provide a concise description here, precise experimental details can be found in Appendix D
and we visualise selected distributions in Appendix F. We first describe tasks employing one-
dimensional variables.

Bivariate Normal For multivariate normal variables MI depends only on the correlation matrix.
We will therefore consider a centered bivariate normal distribution PXY with Cor(X,Y ) = ρ and
I(X;Y ) = −0.5 log

(
1− ρ2

)
. We chose ρ = 0.75.

Uniform Margins As a first transformation, we apply the Gaussian CDF F to Gaussian r.v. X
and Y to obtain r.v. X ′ = F (X) and Y ′ = F (Y ). It is a standard result in copula theory (see
Lemma D.2 or e.g., Nelsen [2007] for an introduction to copulas) that F (X) ∼ Uniform(0, 1)
resp. F (Y ) ∼ Uniform(0, 1). The joint distribution PX′Y ′ , however, is not uniform. Mutual
information is preserved, I(X ′;Y ′)=I(X;Y ). For an illustration, see Fig. 1. A distribution P
transformed with Gaussian CDF F will be denoted as Normal CDF @ P.

Half-Cube Map To lengthen the tails we applied the half-cube homeomorphism h(x)=|x|3/2 signx
to Gaussian variables X and Y . We visualize an example in Fig. 1 and denote a transformed
distribution as Half-cube @ P.

Asinh Mapping To shorten the tails we applied inverse hyperbolic sine function asinhx =
log
(
x+

√
1 + x2

)
. A distribution transformed with this mapping will be denoted as Asinh @ P.

Wiggly Mapping To model non-uniform lengthscales, we applied a mapping

w(x) = x+
∑
i

ai sin(ωix+ φi),
∑
i

|aiωi| < 1.

Due to the inequality constraint this mapping is injective and preserves MI. The parameter values can
be found in Appendix D. We denote the transformed distribution as Wiggly @ P.

Bimodal Variables Applying the inverse CDF of a two-component Gaussian mixture model to
correlated variables X and Y with uniform margins we obtained a joint probability distribution
PX′Y ′ with four modes (presented in Fig. 1). We call this distribution Bimodal and provide technical
details in Appendix D.

Additive Noise Consider independent r.v. X ∼ Uniform(0, 1) and N ∼ Uniform(−ε, ε), where ε
is the noise level. For Y = X +N , it is possible to derive I(X;Y ) analytically (see Appendix D
for the formula and the parameter values) and we will call this distribution Uniform (additive
noise=ε).

Swiss Roll Embedding As the last example in this section, we consider a mixed case in which a
one-dimensional r.v. X ∼ Uniform(0, 1) is smoothly embedded into two dimensions via the Swiss
roll mapping, a popular embedding used to test dimensionality reduction algorithms (see Fig. 1 for
visualisation and Appendix D for the formula). Note that the obtained distribution does not have a
PDF with respect to the Lebesgue measure on R3.

Next, we describe the tasks based on multivariate distributions.
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Multivariate Normal We sampled (X,Y ) = (X1, . . . , Xm, Y1, . . . , Yn) from the multivariate
normal distribution. We model two correlation structures: “dense” interactions with all off-diagonal
correlations set to 0.5 and “2-pair” interactions where Cor(X1, Y1) = Cor(X2, Y2) = 0.8 and
there is no correlation between any other (distinct) variables (Multinormal (2-pair)). For a
latent-variable interpretation of these covariance matrices we refer to Appendix D.2.

Multivariate Student To see how well the estimators can capture MI contained in the tails of the
distribution, we decided to use multivariate Student distributions (see Appendix D) with dispersion
matrix3 set to the identity Im+n and ν degrees of freedom. Contrary to the multivariate normal case,
in which the identity matrix used as the covariance would lead to zero MI, the variables X and Y can
still interact through the tails.

Transformed Multivariate Distributions As the last set of benchmark tasks we decided to transform
the multivariate normal and multivariate Student distributions. We apply mappings described above
to each axis separately. For example, applying normal CDF to the multivariate normal distribution
will map it into a distribution over the cube (0, 1)m+n with uniform marginals. To mix different
axes we used a spiral diffeomorphism (denoted as Spiral @ P); we defer the exact construction to
Appendix D but we visualise this transformation in Fig. 5.

Estimators In our benchmark, we include a diverse set of estimators. Following recent interest,
we include four neural estimators, i.e., Donsker–Varadhan (D-V) and MINE [Belghazi et al., 2018],
InfoNCE [Oord et al., 2018], and the NWJ estimator [Nguyen et al., 2007, Nowozin et al., 2016,
Poole et al., 2019]. As a representative for model-based estimators, we implement an estimator
based on canonical correlation analysis (CCA) [Murphy, 2023, Ch. 28], which assumes that the joint
distribution is multivariate normal. For more classical estimators, we include the Kraskov, Stögbauer
and Grassberger (KSG) estimator [Kraskov et al., 2004] as the most well-known k-nearest neighbour-
based estimator, a recently proposed kernel-based estimator (LNN) [Gao et al., 2017b], as well as an
estimator based on histograms and transfer entropy (both implemented in Julia’s TransferEntropy
library). A detailed overview of the different classes of estimators is provided in Appendix C. Further,
we describe the the hyperparameter selection in Appendix E.

Preprocessing As a data preprocessing step, we standardize each dimension using the mean and
standard deviation calculated from the sample. Other preprocessing stategies are also possible, but
we did not observe a consistent improvement of one preprocessing strategy over the others (see
Appendix E).

3.1 Benchmark Results

We show the results for N = 10 000 data points in Fig. 2. Neural estimators and KSG perform better
than alternative estimators on most problems, with KSG having often low sample requirements (see
Appendix E). The simple model-based estimator CCA obtained excellent performance at low sample
sizes (see Appendix E), even for slightly transformed multivariate normal distributions. Finally, LNN
and the two Julia estimators (histogram and transfer entropy), work well in low dimension but are not
viable in medium- and high-dimensional problems (dimX + dimY ≥ 4).

Overall, we observed that for most 1×1-dimensional and multivariate normal problems MI can be
reliably estimated. Difficulties arise for sparse interactions, atypical (Student) distributions, and for
significantly transformed distributions. This suggests that the typical evaluations of MI estimators are
overly optimistic, focusing on relatively simple problems.

KSG is able to accurately estimate MI in multivariate normal problems, however performance drops
severely on tasks with sparse interactions (2-pair tasks). For 5×5 dimensions the estimate is about
70% of the true MI, and for 25×25 dimensions it drops to 10%, which is consistent with previous
observations [Marx and Fischer, 2022]. Meanwhile, performance of neural estimators is stable. We
study the effect of sparsity in more detail in Sec. 4.

Student distributions have proven challenging to all estimators. This is partially due to the fact that
long tails can limit estimation quality (see Sec. 4), and indeed, applying a tail-shortening asinh
transformation improves performance. However, performance still remains far below multivariate
normal distributions with similar dimensionality and information content, showing that long tails are

3The dispersion matrix of multivariate Student distribution is different from its covariance, which does not
exist for ν ≤ 2.
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Figure 2: Mean MI estimates of nine estimators over n = 10 samples with N = 10 000 points each
against the ground-truth value on all benchmark tasks grouped by category. Color indicates relative
negative bias (blue) and positive bias (red). Blank entries indicate that an estimator experienced
numerical instabilities.

only part of the difficulty. For neural estimators, the issue could be explained by the fact that the
critic is not able to fully learn the pointwise mutual information (see Appendix E).

Interestingly, the performance of CCA, which assumes a linear Gaussian model, is often favorable
compared to other approaches and has very low sample complexity (see Appendix E). This is
surprising, since in the case of transformed distributions the model assumptions are not met. The
approach fails for Student distributions (for which the correlation matrix either does not exist or is
the identity matrix), the Swiss roll embedding and multivariate normal distributions transformed
using the spiral diffeomorphism. Since the spiral diffeomorphism proved to be the most challenging
transformation, we study it more carefully in Sec. 4.

4 Selected Challenges

In this section we investigate distributions which proved to be particularly challenging for the
tested estimators in our benchmark: sparse interactions, long tailed distributions and invariance to
diffeomorphisms. Additionally we investigate how the estimators perform for high ground truth MI.

4.1 Sparsity of Interactions

In the main benchmark (Fig. 2) we observed that estimation of MI with “2-pair” type of interactions
is considerably harder for the KSG estimator than the “dense” interactions. On the other hand, neural
estimators were able to pick the relevant interacting dimensions and provide better estimates of MI in
these sparse cases.

We decided to interpolate between the “dense” and “2-pair” interaction structures using a two-stage
procedure with real parameters α and λ and the number of strongly interacting components K. While
the precise description is in Appendix D.2, we can interpret α as controlling the baseline strength
of interaction between every pair of variables in {X1, . . . , X10, Y1, . . . Y10} and λ as the additional
strength of interaction between pairs of variables (X1, Y1), . . . , (XK , YK). Dense interaction struc-
ture has λ = 0 and 2-pair interaction structure has α = 0 andK = 2. First, we setK = 10 and λ ≈ 0
and decrease α raising λ at the same time to maintain constant MI of 1 nat. When α = 0, whole
information is contained in the pairwise interactions (X1, Y1), . . . , (X10, Y10). We then decrease K
and increase λ, still maintaining constant MI.

In Fig. 3 we observe that the performance of all estimators considered (apart from CCA, a model-
based approach suitable for multivariate normal distributions) degrades when the interactions between
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Figure 3: Two-stage interpolation between dense and sparse matrices. From left to right the sparsity
of interactions increases. Shaded regions represent the sample standard deviation.
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Figure 4: MI estimates as a function of the information contained in the tail of the distribution. Left:
lenghtening the tails via x 7→ |x|k signx mapping with changing k. Right: increasing the degrees of
freedom in multivariate Student distribution shortens the tails. Shaded regions represent the sample
standard deviation.

every pair of variables become sparser (lower α). In particular, even neural estimators are not able
to model the information in ten interacting pairs of variables. However, when we decrease the
number of interacting pairs of variables, the performance of the neighborhood-based KSG estimator
is qualitatively different from the neural estimators: performance of KSG steadily deteriorates, while
neural estimators can find (some of the) relevant pairs of variables.

This motivates us to conclude that in the settings where considered variables are high-dimensional and
the interaction structure is sparse, neural estimators can offer an advantage over neighborhood-based
approaches.

4.2 Long-Tailed Distributions

In Fig. 4 we investigate two different ways to lengthen the tails. First, we lengthen the tails of a
multivariate normal distribution using the mapping x 7→ |x|k signx (with k ≥ 1) applied to each
dimension separately. In this case, we see that the performance of CCA, KSG, and neural estimators
is near-perfect for k close to 1 (when the distribution PXY is close to multivariate normal), but the
performance degrades as the exponent increases. Second, we study multivariate Student distributions
varying the degrees of freedom: the larger the degrees of freedom, the lower the information content
in the tails of the distribution. Again, we see that that the performance of CCA, KSG, and neural
estimators is near-perfect for high degrees of freedom for which the distribution is approximately
normal. For low degrees of freedom, these estimators significantly underestimate MI, with the
exception of CCA which gives estimates with high variance, likely due to the correlation matrix being
hard to estimate.

Overall, we see that long tails complicate the process of estimating MI. The Student distribution is
particularly interesting, since even after the tails are removed (with asinh or preprocessing strategies
described in Appendix E) the task remains challenging. We suspect that the MI might be contained in
regions which are rarely sampled, making the MI hard to estimate. When neural estimators are used,
pointwise mutual information learned by the critic does not match the ground truth (see Appendix E).

Hence, we believe that accurate estimation of MI in long-tailed distributions is an open problem.
Practitioners expecting long-tailed distributions should approach this task with caution.

7



2 1 0 1 2
Coordinate x1

2

1

0

1

2

Co
or

di
na

te
 x

2

Original
Speed 0.5
Speed 1.5

0.0 0.5 1.0 1.5
Speed

0.0

0.2

0.4

0.6

0.8

M
I e

st
im

at
e 

[n
at

s]

CCA
D-V
InfoNCE
Hist. (Julia)
Transfer (Julia)
MINE
NWJ
KSG I (R)
LNN (R)
True MI

Figure 5: Left: Spiral diffeomorphism with different speed parameter v. Right: Performance of
considered estimators for increasing speed.

4.3 Invariance to Diffeomorphisms

The benchmark results (Fig. 2) as well as the experiments with function x 7→ |x|k signx lengthening
tails (Fig. 4) suggest that even if ground-truth MI is preserved by a transformation (see Theorem 2.1),
the finite-sample estimates may not be invariant. This can be demonstrated using the spiral diffeo-
morphism.

We consider isotropic multivariate normal variables X = (X1, X2) ∼ N (0, I2) and Y ∼ N (0, 1)
with Cor(X1, Y ) = ρ. Then, we apply a spiral diffeomorphism sv : R2 → R2 to X , where

sv(x) =

(
cos v||x||2 − sin v||x||2
sin v||x||2 cos v||x||2

)
is the rotation around the origin by the angle v||x||2 (see Fig. 5; for a theoretical study of spiral
diffeomorphisms see Appendix B). In Fig. 5, we present the estimates for N = 10 000, ρ = 0.8 and
varying speed v.

In general, the performance of the considered estimators deteriorates with stronger deformations.
This is especially visible for the CCA estimator, as MI cannot be reliably estimated in terms of
correlation.

4.4 High Mutual Information

Gao et al. [2015] proves that estimation of MI between strongly interacting variables requires large
sample sizes. Poole et al. [2019], Song and Ermon [2020] investigate estimation of high MI using
multivariate normal distributions in the setting when the ground-truth MI is changing over the training
time. We decided to use our family of expressive distributions to see the practical limitations of
estimating MI. We chose three one-parameter distribution families: the 3×3 multivariate normal
distribution with correlation ρ = Cor(X1, Y1) = Cor(X2, Y2), and its transformations by the half-
cube mapping and the spiral diffeomorphism with v = 1/3. We changed the parameter to match the
desired MI.

In Fig. 6 we see that for low enough MI neural estimators and KSG reliably estimate MI for all
considered distributions, but the moment at which the estimation becomes inaccurate depends on
the distribution. For example, for Gaussian distributions, neural estimators (and the simple CCA
baseline) are accurate even up to 5 nats, while after the application of the spiral diffeomorphism, the
estimates become inaccurate already at 2 nats.

We see that in general neural estimators perform well on distributions with high MI. The performance
of CCA on the multivariate normal distribution suggests that well-specified model-based estimators
may require lower number of samples to estimate high mutual information than model-free alternatives
(cf. Gao et al. [2015]).

5 Related Work

Existing Benchmarks Khan et al. [2007] used one-dimensional variables and an additive noise
assumption to evaluate the estimators based on histograms, nearest neighbors, and kernels. However,
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Figure 6: We select three one-parameter families of distributions varying the MI value (x-axis and
dashed line). We use N = 10 000 data points and n = 5 replicates of each experiment.

Table 1: Comparison between benchmarks.
Khan et al.

[2007]
Poole et al.

[2019]
Song and

Ermon [2020]
Proposed

Benchmark

Gaussian Distrib. ✓ ✓ ✓ ✓
Heavy-Tailed Distrib. (✓) (✓) ✓

Sparse/Dense Inter. ✓

High MI (✓) (✓) ✓

Invariance to Homeom. ✓

Self-Consistency ✓

Language Indep. ✓

Code Available ✓ ✓

the original code and samples are not available. Song and Ermon [2020] proposed to evaluate
neural estimators based on variational lower bounds [Oord et al., 2018, Belghazi et al., 2018] on
image data. However, besides the multivariate Gaussian which they also evaluate, the ground-truth
MI is not available. Therefore, they proposed self-consistency checks, which include I(X;Y )=0
for independent X and Y , and preservation of the data processing inequality. Poole et al. [2019]
study neural estimators in settings employing Gaussian variables, affine transformation followed
by axis-wise cubic transformation and investigate the high MI cases. In our benchmark, we focus
on distributions with known MI and information-preserving continuous injective mappings such
as homeomorphisms, evaluate heavy tail distributions, and compare representative estimators from
different classes and platforms. We summarize the differences between the benchmarks in Table 1.4

Causal Representation Learning and Nonlinear ICA Recent work on disentanglement and non-
linear independent component analysis (ICA) aims at identifying causal sources up to an ambiguous
transformation [Xi and Bloem-Reddy, 2022]. Examples include orthogonal transformations [Zim-
mermann et al., 2021], permutations and diffeomorphisms applied along specific axes [Khemakhem
et al., 2020], or the whole diffeomorphism group [Von Kügelgen et al., 2021, Daunhawer et al.,
2023]. To check whether the learned representations indeed capture underlying causal variables, it
is important to use estimators which are invariant to the ambiguous transformations specific to the
model. Our results suggest that such requirements are not met by MI estimators and practitioners
should carefully choose the used metrics, so they are not only theoretically invariant, but also can be
robustly estimated in practice.

6 Conclusions and Limitations

Venturing beyond the typical evaluation of mutual information estimators on multivariate normal
distributions, we provided evidence that the evaluation on Gaussian distributions results in overly
optimistic and biased results for existing estimators. In particular, a simple model-based approach as

4Khan et al. [2007] consider two one-dimensional r.v. related by additive noise, in which one of the r.v. is
parametrized with a cubic function. This implicitly lengthens the tails, so we marked this with (✓); similarly,
Poole et al. [2019] consider cubic transformation of a multivariate normal variable. The experimental setup of
estimation of MI considered by Poole et al. [2019] and Song and Ermon [2020] requires changing ground truth
MI over training time of a neural estimator. This procedure differs from the usual approaches to estimating MI,
so we marked it with (✓).
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CCA is already sufficient if the distribution is (close to) multivariate normal, highlighting the effect of
using available prior information about the problem to design efficient estimators. To provide a basis
for more thorough evaluation, we designed a benchmark, compatible with any programming language,
with forty general tasks focusing on selected problems, as estimation with sparse interactions, the
effects of long tails, estimation in problems with high MI, and (only theoretical) invariance to
diffeomorphisms.

Our results suggest that in low- and medium-dimensional problems the KSG estimator remains a
solid baseline, requiring a lower number of samples than the alternatives and no parameter tuning.
In high-dimensional settings where the interactions are sparse, neural estimators offer an advantage
over classical estimators being able to more consistently pick up the signal hidden in the high-
dimensional space. We further provide evidence that although MI is invariant to continuous injective
transformations of variables, in practice the estimates can differ substantially. Appropriate data
preprocessing may mitigate some of these issues, but no strategy clearly outperforms the others (see
Appendix E).

We hope that the proposed benchmark encourages the development of new estimators, which address
the challenges that we highlight in this paper. It can be used to assess invariance to homeomorphisms,
understand an estimator’s behavior in the situations involving distributions of different complexity,
low-data behaviour, high mutual information or to diagnose problems with implementations. We
believe that some parts of the benchmark could also be used to assess whether other estimators
of other statistical quantities, such as kernel dependence tests, transfer entropy or representation
similarity measures, can be reliably estimated on synthetic problems and if they are robust to selected
classes of transformations.

Limitations and Open Problems Although the proposed benchmark covers a wide family of
distributions, its main limitation is the possibility to only transform the distribution PXY via transfor-
mations f × g to Pf(X)g(Y ) starting from multivariate normal and Student distributions. In particular,
not every possible joint distribution is of this form and extending the family of distributions which
have known MI and allow efficient sampling is the natural direction of continuation. We are, however,
confident that due to the code design it will be easy to extend the benchmark with the new distributions
(and their transformations) when they appear.

Estimation of information in multivariate Student distributions remains a challenge for most estimators.
Although we provide the evidence that distributions with longer tails pose a harder challenge for
considered estimators, shortening the tails with asinh transform did not alleviate all the issues. In
neural estimators this can be partly explained by the fact that the critic may not learn to approximate
pointwise mutual information (up to an additive constant) properly, as demonstrated in Appendix E,
but the question of what makes the neighborhood-based estimator, KSG, fail, remains open.

As noted, unless strong inductive biases can be exploited (as illustrated for CCA), estimation of high
MI is an important challenge. An interesting avenue towards developing new estimators can be by
incorporating a stronger inductive bias, which could also take a form of development of better data
normalization strategies and, in case of neural estimators, critic architectures. Better normalization
strategies may make the estimators more invariant to considered transformations.
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A Invariance to Continuous Injective Mappings

In this section, we provide a proof for Theorem 2.1, formally proving the invariance of mutual
information with respect to continuous injective mappings. First, we recall the standard definitions
from Chapters 1 and 2 of Pinsker and Feinstein [1964].
Definition A.1. Let (Ω,A) be a measurable space. A family of sets E ⊆ A is a partition of Ω if for
every two distinct E1 and E2 in E it holds that E1 ∩E2 = ∅ and that

⋃
E = Ω. If E is finite, we call

it a finite partition.
Definition A.2 (Mutual Information). Mutual information between r.v. X and Y is defined as

I(X;Y ) = sup
E,F

∑
i,j

PXY (Ei × Fj) log
PXY (Ei × Fj)

PX(Ei)PY (Fj)
,

where the supremum is taken over all finite partitions E = {E1, E2, . . . } of X and F = {F1, F2, . . . }
of Y with the usual conventions 0 log 0 = 0 and 0 log 0/0 = 0.
Remark A.3. If PXY is absolutely continuous with respect to PX ⊗PY (e.g., X and Y are finite r.v.),
mutual information is equal to the following Kullback–Leibler divergence:

I(X;Y ) = DKL (PXY ∥ PX ⊗ PY ) =

∫
log f dPXY ,

where f is the Radon–Nikodym derivative f = dPXY /d(PX ⊗ PY ). If the absolute continuity does
not hold, then I(X;Y ) = +∞ [Pinsker and Feinstein, 1964, Theorem 2.1.2].
Theorem 2.1. Let X , X ′, Y and Y ′ be standard Borel spaces (e.g., smooth manifolds with their
Borel σ-algebras) and f : X → X ′ and g : Y → Y ′ be continuous injective mappings. Then, for
every X -valued r.v. X and Y-valued r.v. Y it holds that I(X;Y ) = I(f(X); g(Y )).

Proof. First, note that a continuous mapping between Borel spaces is measurable, so random variables
f(X) and g(Y ) are well-defined.

Then, observe that it suffices to prove that

I(f(X);Y ) = I(X;Y ).

It is well-known that we have I(f(X);Y ) ≤ I(X;Y ) for every measurable mapping f , so we will
need to prove the reverse inequality.

Recall form Definition A.2 that

I(X;Y ) = sup
E,F

∑
i,j

PXY (Ei × Fj) log
PXY (Ei × Fj)

PX(Ei)PY (Fj)
,

where the supremum is taken over all finite partitions E of X and F of Y .

The proof will go as follows: for every finite partition E of X we will construct a finite partition of
X ′, which (together with the same arbitrary partition F of Y) will give the same value of the sum.
This will prove that I(f(X);Y ) ≥ I(X;Y ).

Take any finite partitions {E1, . . . , En} of X and {F1, . . . , Fm} of Y . First, we will show that sets

G0 = X ′ \ f(X )

G1 = f(E1)

G2 = f(E2)

...

form a partition of X ′.

It is easy to see that they are pairwise disjoint as f is injective and it is obvious that their union is the
whole X ′. Hence, we only need to show that they are all Borel.

For i ≥ 1 the Lusin–Suslin theorem [Kechris, 2012, Theorem 15.1] guarantees that Gi is Borel
(continuous injective mappings between Polish spaces map Borel sets to Borel sets). Similarly, f(X )
is Borel and hence G0 = X ′ \ f(X ) is Borel as well.
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Next, we will prove that
n∑

i=1

m∑
j=1

PXY (Ei × Fj) log
PXY (Ei × Fj)

PX(Ei)PY (Fj)
=

n∑
i=0

m∑
j=1

Pf(X)Y (Gi × Fj) log
Pf(X)Y (Gi × Fj)

Pf(X)(Gi)PY (Fj)
.

Note that Pf(X)(G0) = PX(f−1(G0)) = PX(∅) = 0, so that we can ignore the terms with i = 0.

For i ≥ 1 we have

Pf(X)(Gi) = PX(f−1(Gi)) = PX(f−1(f(Ei))) = PX(Ei)

as f is injective.

Similarly, f × 1Y is injective and maps Ei × Fj onto Gi × Fj , so

Pf(X)Y (Gi × Fj) = PXY

(
(f × 1Y)

−1(Gi × Fj)
)
= PXY (Ei × Fj).

This finishes the proof.

B Spiral Diffeomorphisms

In this section we will formally define the spiral diffeomorphisms and prove that they preserve
the centred Gaussian distribution N (0, σ2In). They were inspired by the “swirling construction”,
discussed by Hauberg [2019].
Definition B.1. Let O(n) be the orthogonal group and γ : R → O(n) be any smooth function. The
mapping

f : Rn → Rn

given by f(x) = γ(||x||2)x will be called the spiral.
Example B.2. Let so(n) be the vector space of all skew-symmetric matrices. For every two matrices
R ∈ O(n) and A ∈ so(n) and any smooth mapping g : R → R we can form a path

γ(t) = R exp(g(t)A).

In particular, R = In and g(t) = vt yields the spirals defined earlier.

From the above definition it is easy to prove that spirals are diffeomorphisms. We formalize it by the
following lemma.
Lemma B.3. Every spiral is a diffeomorphism.

Proof. Let γ be the path leading to the spiral f . As matrix inverse is a smooth function, we can
define a smooth function h(x) = γ

(
||x||2

)−1
x.

Note that ||f(x)||2 = ||x||2, as orthogonal transformation γ
(
||x||2

)
preserves distances.

Then

h(f(x)) = γ
(
||f(x)||2

)−1
f(x)

= γ
(
||x||2

)−1
f(x)

= γ
(
||x||2

)−1
γ
(
||x||2

)
x

= x.

Analogously, we prove that f ◦ h also is the identity mapping.

Finally, we will give the proof that spirals leave the centred normal distribution N (0, σ2In) invariant.
This will follow from a slightly stronger theorem:
Theorem B.4. Let P be a probability measure on Rn with a smooth probability density function p
which factorizes as:

p(x) = u
(
||x||2

)
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for some smooth function u : R → R.

Then, every spiral f : Rn → Rn preserves the measure P :

f#P = P,

where f#P = P ◦ f−1 is the pushforward measure.

In particular, for P = N (0, σ2In) (a centered isotropic Gaussian distribution), if X ∼ N (0, σ2In),
then f(X) ∼ N (0, σ2In).

Proof. As we have already observed, for every x ∈ Rn it holds that ||f(x)||2 = ||x||2, so the PDF
evaluated at both points is equal

p(x) = p(f(x))

Hence, we need to prove that for every point x ∈ Rn, |det f ′(x)| = 1, where f ′(x) is the Jacobian
matrix of f evaluated at the point x.

The proof of this identity was given by Carapetis [2022], but for the sake of completeness we supply
a variant of it below.

First, we calculate the Jacobian matrix:

∂fi(x)

∂xj
=

∂

∂xj

∑
k

γ(||x||2)ikxk

=
∑
k

γ(||x||2)ik
∂xk
∂xj

+
∑
k

xk
∂γ(||x||2)ik

∂xj

= γ(||x||2)ij +
∑
k

xk · 2xj · γ′(||x||2)ik

= γ(||x||2)ij + 2

(∑
k

γ′(||x||2)ikxk

)
xj

Hence,
f ′(x) = γ(||x||2) + 2γ′(||x||2)xxT .

Now fix point x and consider the matrix γ(||x||2) ∈ O(n). Define a mapping y 7→ γ(||x||2)−1f(y).
As we have already observed, multiplication by γ(||x||2)−1 does not change the value of the PDF. It
also cannot change the |det f ′(x)| value as because γ(||x||2)−1 is a linear mapping, its derivative is
just the mapping itself and because γ(||x||2)−1 is an orthogonal matrix, we have |det γ(||x||2)−1| =
1. Hence, without loss of generality we can assume that γ(||x||2) = In and

f ′(x) = In + 2AxxT ,

where A := γ′(||x||2) ∈ so(n) is a skew-symmetric matrix.

If x = 0 we have |det f ′(x)| = |det In| = 1. In the other case, we will work in coordinates induced
by an orthonormal basis e1, . . . , en in which the first basis vector is e1 = x/||x||. Hence,

f ′(x) = In + 2||x||2Ae1eT1 .

For i ≥ 2 we have eT1 ei = 0 and consequently

f ′(x)ei = ei + 2||x||2Ae1eT1 ei = ei.

This shows that in this basis we have

f ′(x) =


a1 0 0 . . . 0
a2 1 0 . . . 0
a3 0 1 . . . 0
...

...
...

. . . 0
an 0 0 · · · 1

 ,

where the block on the bottom right is the identity matrix In−1 and det f ′(x) = a1.
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The first column is formed by the coordinates of

f ′(x)e1 = e1 + 2||x||2Ae1
and we have

a1 = eT1 f
′(x)e1 = 1 + 2||x||2eT1 Ae1 = 1 + 0 = 1

as A ∈ so(n) is skew-symmetric.

C Overview of Estimators

There exists a broad literature on (conditional) mutual information estimators ranging from estimators
on discrete data [Paninski, 2003, Valiant and Valiant, 2011, Vinh et al., 2014, Marx and Vreeken,
2019], over estimators for continuous data [Kraskov et al., 2004, Darbellay and Vajda, 1999, Belghazi
et al., 2018] to estimators that can consider discrete-continuous mixture data [Gao et al., 2017a, Marx
et al., 2021, Mesner and Shalizi, 2020]. Here, we focus on the most commonly used class, which
also finds applications in representation learning: estimators for continuous data. For continuous
data, the most widely propagated classes of estimators are histogram or partition-based estimators,
nearest neighbor-based density estimators, kernel methods, and neural estimators. In the following,
we briefly discuss a representative selection of estimators from these classes, as well as model-based
estimation.

Histogram-Based Estimators A natural way to approximate mutual information, as stated in
Definition A.2, is by partitioning the domain space of X and Y into segments and estimate the
densities locally. This approach is also known as histogram density estimation, where the probability
mass function is approximated locally for each hyper-rectangle Ei by P̂X(Ei) =

ni/N
Voli

, where Voli is
the volume of Ei, and ni refers to the number of data points residing in Ei.

To estimate mutual information, we explore the space of allowed partitionings and select the parti-
tioning that maximizes mutual information [Darbellay and Vajda, 1999, Cellucci et al., 2005]

EXY
Disc,N = sup

E,F

∑
i,j

P̂XY (Ei × Fj) log
P̂XY (Ei × Fj)

P̂X(Ei)P̂Y (Fj)
.

Many estimators follow this idea. Darbellay and Vajda [1999] use adaptive partitioning trees and
propose to split bins until the density within a bin is uniform, which they check with the χ2 test.
Daub et al. [2004] use B-Splines to assign data points to bins, and other authors use regularization
based on the degrees of freedom of partitioning to avoid overfitting [Suzuki, 2016, Cabeli et al., 2020,
Vinh et al., 2014, Marx et al., 2021].

A well-known property of histogram-based estimators is that they are consistent for N → ∞ if the
volume of the largest hypercube goes to zero, while the number of hypercubes grows sub-linearly
with the number of samples, N (see e.g. Cover and Thomas [2006]). For low-dimensional settings,
histogram density estimation can provide accurate results, but the strategy suffers from the curse of
dimensionality [Pizer et al., 1987, Klemelä, 2009].

In our evaluation, we resort to partitioning estimators based on a fixed number of grids (10 equal-width
bins per dimension), since more recent partitioning-based estimators focus on estimating conditional
MI and only allow X and Y to be one-dimensional [Suzuki, 2016, Marx et al., 2021, Cabeli et al.,
2020], or do not have a publicly available implementation [Darbellay and Vajda, 1999].

kNN Estimators An alternative to histogram-based methods is to use k-nearest neighbor (kNN)
distances to approximate densities locally. Most generally, kNN estimators express mutual informa-
tion as the sum H(X) +H(Y )−H(X,Y ), which can be done under the assumptions discussed in
Remark A.3, and estimate the individual entropy terms as

Ĥ((x1, . . . , xN )) = − 1

N

N∑
i=1

log
k(xi)/N

Voli
,

where k(xi) is the number of data points other than xi in a neighborhood of xi, and Voli is the volume
of the neighborhood [Kozachenko and Leonenko, 1987]. The quality of the estimator depends on two
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factors: i) the distance metric used to estimate the nearest neighbor distances, and ii) the estimation
of the volume terms.

The most well-known estimator is the Kraskov, Stögbauer and Grassberger (KSG) estimator [Kraskov
et al., 2004]. In contrast to the first kNN-based estimators [Kozachenko and Leonenko, 1987],
Kraskov et al. [2004] propose to estimate the distance to the k-th neighbor ρi,k/2 for each data point i
only on the joint space of Z = X × Y , with

DZ(zi, zj) = max{DX(xi, xj), DY (yi, yj)} ,
where DX and DY can refer to any norm-induced metric (e.g., Euclidean ℓ2, Manhattan ℓ1 or
Chebyshev ℓ∞).5 To compute the entropy terms of the sub-spaces X and Y , we count the number of
data points with distance smaller than ρi,k/2, i.e. we define nx,i as

nx,i =
∣∣∣{xj : DX(xi, xj) <

ρi,k
2
, i ̸= j

}∣∣∣ , (1)

and specify ny,i accordingly. As a consequence, all volume-related terms cancel and the KSG
estimator reduces to

EXY
KSG,N = ψ(k)+ψ(n)− 1

n

n∑
i=1

ψ(nx,i+1)+ψ(ny,i+1) . (2)

The diagamma function6 ψ was already introduced by Kozachenko and Leonenko [1987] to correct for
biases induced by the volume estimation. For a detailed exposition of the issue, we refer to Kraskov
et al. [2004, Sec. II.A].

There exist various extensions of the classical KSG estimator. When selecting the L∞ norm as a
distance measure for DX and DY , EXY

KSG,N can be efficiently computed with the K-d trie method [Ve-
jmelka and Hlaváčková-Schindler, 2007]. Other approaches aim to improve the estimation quality
by explicitly computing the volume terms via SVD [Lord et al., 2018] or PCA [Lu and Peltonen,
2020], or use manifold learning [Marx and Fischer, 2022] or normalizing flows [Ao and Li, 2022] to
estimate the nearest neighbors more efficiently in high-dimensional settings.

Kernel Estimators A smaller class of estimators builds upon kernel density estimation
(KDE) [Moon et al., 1995, Paninski and Yajima, 2008]. Classical approaches compute the den-
sity functions for the individual entropy terms via kernel density estimation, which is well-justified
under the assumption of PXY being absolutely continuous with respect to PX ⊗PY (cf. Remark A.3).
i.e., the density for a d-dimensional random vector X is approximated as

p̂(x) =
1

Nhd

N∑
i=1

K

(
x− xi
h

)
,

where h is the smoothing parameter or bandwidth of a Gaussian kernel [Silverman, 2018].

Moon et al. [1995] propose to estimate mutual information using a Gaussian kernel, for which the
bandwidth can be estimated optimally [Silverman, 2018]. Similar to histogram-based approaches,
KDE-based estimators with fixed bandwidth h are consistent if Nhd → ∞ as h→ 0.

A more recent proposal, LNN [Gao et al., 2017b], uses a data-dependent bandwidth based on
nearest-neighbor distances, to avoid fixing h globally.

Neural Estimators Neural network approaches such as MINE [Belghazi et al., 2018] use a varia-
tional lower bound on mutual information using the Donsker–Varadhan theorem: let f : X × Y → R
be a bounded measurable function and

Vf (X,Y ) = sup
f

EPXY
[f(X,Y )]− logEPX⊗PY

[exp f(X,Y )].

Under sufficient regularity conditions on PXY , I(X;Y ) is equal to Vf (X,Y ), which is evaluated
over all bounded measurable mappings f . In practice, the right hand side is optimized with respect

5In the original approach, the L∞ is used, and Gao et al. [2018] derives theoretical properties of the estimator
for the L2 norm.

6The digamma function is defined as ψ(x) = d log Γ(x)/dx. It satisfies the recursion ψ(x+1) = ψ(x)+ 1
x

with ψ(1) = −γ, where γ ≈ 0.577 is the Euler–Mascheroni constant.
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to the parameters of a given parametric predictive model f , as a neural network. Approaches
following this idea also count as discriminative approaches since the neural network is trained to
distinguish points from the joint and marginal distribution. The literature on variational lower bounds
of mutual information is growing [Oord et al., 2018, Song and Ermon, 2020] and the idea of using
a discriminative approach to estimate mutual information has also been explored by Koeman and
Heskes [2014], who used random forests. For an excellent theoretical overview of different neural
estimators we refer to Poole et al. [2019].

Model-based Estimators Finally, if one assumes that PXY is a member of a family of dis-
tributions QXY (θ) with known mutual information, one can estimate θ basing on the data
((x1, y1), . . . , (xN , yN )) and calculate the corresponding mutual information. For example, if one
assumes that there exist jointly multivariate normal variables X̃ = (X̃1, . . . , X̃r, E1, . . . , Em−r)

and Ỹ = (Ỹ1, . . . , Ỹr, Ẽ1, . . . , Ẽn−r) such that the cross-covariance terms are zero apart from
Cov(X̃i, Ỹi), and that X = AX̃ + a and Y = BỸ + b for invertible matrices A and B and vectors
a ∈ Rm and b ∈ Rn, then the mutual information can be found as

I(X;Y ) = −
r∑

i=1

log

√
1− Cor(X̃r, Ỹr)2.

The model parameters A, B, a, and b, as well as the pairs of corresponding r.v. X̃r and Ỹr, can be
found by maximising likelihood using canonical correlation analysis (CCA) [Murphy, 2023, Ch. 28],
which has been previously explored by Kay [1992].

D Additional Information on Benchmark Tasks

D.1 Task Descriptions

Bimodal Variables Consider a r.v. X distributed according to a Gaussian mixture model with
CDF F = w1F1 + w2F2, where F1 and F2 are CDFs of two Gaussian distributions and w1 and
w2 are positive weights constrained as w1 + w2 = 1. The CDF is everywhere positive, continuous,
and strictly increasing. Hence, it has an inverse, the quantile function, F−1 : (0, 1) → R, which is
continuous and injective as well (see Lemma D.1). Thus, we can define r.v. X ′ = F−1(X), where
X ∼ Uniform(0, 1) and I(X;Y ) = I(X ′;Y ) for every r.v. Y . We generated two CDFs of Gaussian
mixtures and implemented a numerical inversion in JAX [Bradbury et al., 2018] defining both X ′

and Y ′ to follow a bimodal distribution.

For the experimental values, we used

FX(x) = 0.3F (x) + 0.7F (x− 5)

FY (y) = 0.5F (x+ 1) + 0.5F (x− 3),

where F is the CDF of the standard normal distribution N (0, 1).

Wiggly Mapping As the “wiggly mapping” we used

wX(x) = x+ 0.4 sinx+ 0.2 sin(1.7x+ 1) + 0.03 sin(3.3x− 2.5)

wY (y) = y − 0.4 sin(0.4y) + 0.17 sin(1.3y + 3.5) + 0.02 sin(4.3y − 2.5)

and we used visualisations to make sure that they do not heavily distort the distribution.

Additive Noise For the additive noise model of Y = X + N where X ∼ Uniform(0, 1) and
N ∼ Uniform(−ε, ε) it holds that

I(X;Y ) =

{
ε− log(2ε) if ε ≤ 1/2

(4ε)−1 otherwise

implying that I(X;Y ) = 1.7 for ε = 0.1 and I(X;Y ) = 0.3 for ε = 0.75.
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Swiss Roll Embedding Consider a bivariate distribution PXY with uniform margins X ∼
Uniform(0, 1) and Y ∼ Uniform(0, 1) and I(X;Y ) = 0.8. The Swiss roll mapping is an em-
bedding i : (0, 1)2 → R3 given by i(x, y) = (e(x), y), where e : (0, 1) → R2 is given by

e(x) =
1

21
(t(x) cos t(x), t(x) sin t(x), t(x) =

3π

2
(1 + 2x).

Note that PX′Y ′ does not have a PDF with respect to the Lebesgue measure on R3. We visualise the
Swiss roll distribution in Fig. 1.

Spiral Diffeomorphism For the precise definition and properties of the general spiral diffeomor-
phism consult Appendix B.

In our benchmark we applied the spiral x 7→ exp(vA||x||2)x to both X and Y variables. We used an
m×m skew-symmetric matrix AX with (AX)12 = −(AX)21 = 1 and an n× n skew-symmetric
matrix AY with (AY )23 = −(AY )32 = 1. Each of these effectively “mixes” only two dimensions.

The speed parameters vX and vY were chosen as vX = 1/m and vY = 1/n to partially compensate
for the fact that if X ∼ N (0, Im), then ||X||2 ∼ χ2

m and has mean m.

Multivariate Student Let Ω be an (m+ n)× (m+ n) positive definite dispersion matrix and ν be
a positive integer (the degrees of freedom). By sampling an (m + n)-dimensional random vector
(X̃, Ỹ ) ∼ N (0,Ω) and a random scalar U ∼ χ2

ν one can define rescaled variables X = X̃
√
ν/U

and Y = Ỹ
√
ν/U , which are distributed according to the multivariate Student distribution. For

ν = 1 this reduces to the multivariate Cauchy distribution (and the first two moments are not defined),
for ν = 2 the mean exists, but covariance does not, and for ν > 2 both the mean and covariance exist,
with Cov(X,Y ) = ν

ν−2Ω, so that the tail behaviour can be controlled by changing ν. In particular,
for ν ≫ 1 because of the concentration of measure phenomenon U has most of its probability mass
around ν and the variables (X,Y ) can be well approximated by (X̃, Ỹ ).

Arellano-Valle et al. [2013] proved that I(X;Y ) can be computed via the sum of the mutual
information of the Gaussian distributed basis variables and a correction term, i.e., I(X;Y ) =

I(X̃; Ỹ ) + c(ν,m, n), where

c(ν,m, n) = f (ν)+f (ν+m+n)−f (ν+m)−f (ν+n) , f(x) = log Γ
(x
2

)
− x

2
ψ
(x
2

)
,

and ψ is the digamma function.

Contrary to the Gaussian case, even for Ω = Im+n, the mutual information I(X;Y ) = c(ν,m, n)
is non-zero, as U provides some information about the magnitude. In the benchmark we use this
dispersion matrix to quantify how well the estimators can use the information contained in the tails,
rather than focusing on estimating the Gaussian term.

D.2 Covariance Matrix Family

We generated jointly multivariate normal variables X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) with
the following procedure.

Consider i.i.d. Gaussian variables

Uall, UX , UY , Z1, . . . , ZK , E1 . . . , Em, F1, . . . , Fn, E
′
m−K , . . . , E

′
m, F

′
n−K , . . . , F

′
n ∼ N (0, 1).

Now let εX , εY , ηX , ηY , α, βX , βY , λ ∈ R be hyperparameters and for l = 1, 2, . . . ,K define

Xl = εXEl + αUall + βXUX + λZl, Yl = εY Fl + αUall + βY UY + λZl,

for l = K + 1, . . . ,m define

Xl = εXEl + αUall + βXUX + ηXE
′
l

and for l = K + 1, . . . , n define

Yl = εY Fl + αUall + βY UY + ηY F
′
l .

The interpretation of the hyperparameters is the following:
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1. α contributes to the correlations between all the possible pairs of variables.

2. βX contributes to the correlations between the X variables.

3. βY contributes to the correlations between the Y variables.

4. λ gives additional “interaction strength" between pairs of variables Xl and Yl for l =
1, . . . ,K.

5. εX and εY control part of the variance non-shared with any other variable.

6. ηX and ηY can be used to increase the variance ofXl and Yl for l > K to match the variance
of variables l ≤ K due to the λ.

Every term of the covariance matrix is easy to calculate analytically:

Cov(Xi, Xj) = α2 + β2
X + 1[i = j]

(
ε2X + λ21[i ≤ K] + η2X1[i > K]

)
Cov(Yi, Yj) = α2 + β2

Y + 1[i = j]
(
ε2Y + λ21[i ≤ K] + η2Y 1[i > K]

)
Cov(Xi, Yj) = α2 + λ21[i = j]1[i ≤ K]

In the following, we analyse some special cases.

Dense Interactions Consider λ = ηX = ηY = βX = βY = 0 and write ε := εX = εY . We have

Cov(Xi, Xj) = Cov(Yi, Yj) = α2 + ε21[i = j]

Cov(Yi, Yj) = α2

Hence, between every pair of distinct variables we have the same correlation α2

α2+ε2 .

Sparse Interactions Consider α = 0, ε := εX = εY , ηX = ηY = λ and βX = βY = 0

Cov(Xi, Xj) = Cov(Yi, Yj) = 1[i = j](ε2 + λ2)

Cov(Xi, Yj) = λ21[i = j]1[i ≤ K]

All the variables have the same variance, but the covariance structure is now different. Between
(distinct) Xi and Xj the correlation is zero and similarly for (distinct) Yi and Yj .

Correlations between Xi and Yj are zero unless i = j ≤ K, when Cor(Xi, Yi) = λ2/(ε2 + λ2).

Interpolation In Section 4 we discussed a two-stage interpolation from dense matrices to sparse
matrices: in the first stage α is decreased increasing λ at the same time to keep the mutual information
constant. In the second stage we decrease the number of interacting variables K increasing λ. The
selected covariance matrices from this two-stage process are visualised in Fig. 7.

D.3 Technical Results

In this subsection we add the technical results, related to the copula theory [Nelsen, 2007] and
uniformization of random variables.

Lemma D.1. Let X be a real-valued r.v. with a strictly increasing, positive everywhere, and continu-
ous CDF F . Then

F : R → (0, 1)

is a homeomorphism.
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Figure 7: Interpolation between dense and sparse covariance matrices.

Proof. As F is a CDF we have F (R) ⊆ [0, 1]. Note that 0 is excluded from the image as F is
positive everywhere and 1 is excluded as F is strictly increasing. Hence, F (R) ⊆ (0, 1). Using
continuity, strict monotonicity, and

lim
x→−∞

F (x) = 0, lim
x→+∞

F (x) = 1

we note that F is a bijection onto (0, 1). Analogously, we prove that

F ((a, b)) = (F (a), F (b))

for all a < b, so F is an open map. As a continuous bijective open map F is a homeomorphism.

Lemma D.2. Let X be a real-valued r.v. with a CDF F which is continuous, strictly increasing and
positive everywhere. Then, F (X) is uniformly distributed on (0, 1).

Proof. Our assumptions on F imply that it is a continuous homeomorphism R → (0, 1).

Let now y ∈ (0, 1). We have

P (F (X) ≤ y) = P (X ≤ F−1(y)) = F
(
F−1(y)

)
= y.

E Additional Experiments

E.1 Pointwise Mutual Information

To understand why neural estimators are not able to estimate the mutual information contained in the
Student distribution, we decided to qualitatively study the learned critic.

In the NWJ approach [Nguyen et al., 2007], for N → ∞ data points the optimal critic f(x, y) is
given by

f(x, y) = 1 + PMI(x, y),

where

PMI(x, y) = log
pXY (x, y)

pX(x)pY (y)

is the pointwise mutual information [Pinsker and Feinstein, 1964, Ch. 2] and pXY , pX and pY are
the PDFs of measures PXY , PX and PY , respectively.
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Student and normal distributions.
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Figure 9: Minimal number of samples needed for the mutual information estimate to fall between
2/3 and 3/2 of the true MI. The minimal number of samples tested is 100, the maximal 10 000. The
entry > 10k means that the desired accuracy was never achieved. For neural estimators 1 000 is the
minimal possible number of samples, since we use a 50% train-test split and a batch size of 256.

We trained NWJ estimator with the default hyperparameters on N = 5000 data points and visualised
the critic predictions (with 1 subtracted), true PMI, and 500 samples from the distribution in Fig. 8.
The data is drawn from a bivariate Student distribution with dispersion matrix

Ω =

(
1 0.5
0.5 1

)
and varying degrees of freedom ν ∈ {1, 2, 3, 5, 8}. Additionally, we repeated the experiment for the
bivariate normal distribution with covariance matrix given by the dispersion, which corresponds to
the limit ν → ∞.

Qualitatively we see that the critic does not learn the correct PMI for ν ∈ {1, 2}, with better
similarities for ν ∈ {3, 5, 8}. For the normal distribution, the critic qualitatively approximates well
the PMI function in the regions where the data points are available.

We hypothesise that these problems can be partly atributed to the longer tails of Student distributions
(as the critic may be unable to extrapolate to the regions where few points are available) and partly to
the analytical form of the PMI function — for the considered bivariate normal distribution the PMI is
given by a simple quadratic function, which is not the case for the bivariate Student distribution.

E.2 Sample Size Requirements

We investigated the minimal number of samples needed to estimate the mutual information changing
the number of samples in N ∈ {100, 500, 1000, 3000, 5000, 10 000}. We say that sample ℓ suffices
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to solve the task if for every ℓ′ ≥ ℓ the estimator provides the estimate between 2/3 and 3/2 of the
ground-truth mutual information.

We present the minimal number of samples ℓ as a function of benchmark task and considered estimator
in Fig. 9. Note that CCA and KSG typically need very small amount of samples to solve the task. As
neural estimators use batch size of 256 and split the sample into training and test data sets, it is not
possible for them to have ℓ < 1000, which is the smallest number of samples considered greater than
2 · 256 = 512.

E.3 Preprocessing

In Fig. 2 and Fig. 9 we transformed all samples by removing the mean and scaling by the standard
deviation in each dimension calculated empirically from the sample. This strategy ensures that
the scales on different axes are similar. Note that this strategy is not always suitable (e.g., if the
distance metric used in the kNN approach should weight select dimensions differently) and makes
the observed data points not i.i.d. (as the “shared” information, sample mean and variances, has been
used to rescale the variables), although the effect of it seems to be negligible on most tasks in the
benchmark.

Additionally, we considered two other preprocessing strategies, implemented using the
scikit-learn package [Pedregosa et al., 2011]: making each marginal distribution uniform
Uniform(0, 1) by calculating empirical CDF along each axis (see Section D for the technical lemmata
discussing this operation) and making each marginal distribution a Gaussian variable N (0, 1). These
approaches may affect the effective sample size more strongly than the previous rescaling strategy, as
estimating empirical CDF requires more data points than estimating mean and standard deviation.

We used N = 10 000 data points and rerun the benchmark (see Fig. 10). Overall, the impact of the
“uniformization” strategy appeared to be insubstantial for most tasks, and in certain cases negative.
The “Gaussianisation” strategy improved estimation for Student distributions and helped histogram
based approaches in low-dimensional tasks. Interestingly, both approaches worsen the performance
of CCA on Student distributions.

While the improvements gained from “Gaussianisation” were minor, the approach is simplistic,
treating each axis separately. Ideally, appropriate preprocessing would be able to transform PXY

into a better-behaved distribution Pf(X)g(Y ), and thus simplify the estimation. In certain cases such
preprocessing could (partially) undo transformations considered in our benchmark, and in effect
make the estimators invariant (or more robust) to these transformations (cf. Section 4). We consider
the design of informed preprocessing strategies an important open problem.

E.4 Hyperparameter Selection

CCA We used the implementation provided in the scikit-learn [Pedregosa et al., 2011] Python
package (version 1.2.2). We set the latent space dimension to the smaller of the dimensions of the
considered random vectors X and Y .

Histograms Adaptive estimators such as JIC [Suzuki, 2016] or MIIC [Cabeli et al., 2020] were
not applicable to the high-dimensional data we considered, hence we resort to using an equal-width
estimator implemented in TransferEntropy library (version 1.10.0). We fixed the number of bins
to 10, although the optimal number of bins is likely to depend on the dimensionality of the problem.

KSG As a default, we used the KSG-1 variant from the rmi package with 10 neighbors. However,
as shown in our ablation in Fig. 11, changing the number of neighbors or using the KSG-2 variant
did not considerably change the estimates. We compared the used implementation with a custom
Python implementation and one from TransferEntropy library. The version implemented in the
TransferEntropy suffers from strong positive bias.

LNN We used the implementation from the rmi package (version 0.1.1) with 5 neighbors and
truncation parameter set to 30. Ablations can be seen in Fig. 11.

Neural Estimators We split the data set into two equal-sized parts (training and test) and optimized
the statistics network on the training data set using the Adam optimiser with initial learning rate set
to 0.1. We used batch size of 256 and ran each algorithm for up to 10 000 training steps with early
stopping (checked every 250 training steps). We returned the highest estimate on the test data set.
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Figure 10: Estimates for preprocessed data with N = 10 000 samples. Top: margins transformed
into uniform distributions. Bottom: margins transformed into normal distributions.

We chose the architecture using a mini-benchmark with four ReLU neural networks considered on
two neural estimators (see Fig. 11) and chose a neural network with two hidden layers (network M in
Table 2).

As neural estimators rely on stochastic gradient descent training, we implemented heuristic diagnostics
used to diagnose potential problems with overfitting and non-convergence. We present the number of
runs susceptible to these issues in Fig. 12. We did not include these runs when computing statistics in
the main benchmark figures (Fig. 2 and Fig. 9).
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Figure 11: Left: ablation of hyperparameters of the KSG and LNN estimators (with n neighbors and
threshold t). Right: ablation of neural network architectures.

Architecture Hidden layers
D 8, 8, 8
L 24, 12
M 16, 8
S 10, 5

Table 2: Network architectures and their corresponding hidden layer specifications.

F Visualisation of Selected Tasks

In the following, we visualise a selection of benchmark tasks. Each figure visualises a sample of
N = 10 000 points from PXY . The upper diagonal represents the scatter plots PXiXj

, PXiYj
and

PYiYj
for all possible combinations of i ̸= j. The lower diagonal represents the empirical density

fitted using a kernel density estimator with 5 levels. The diagonal represents the histograms of the
marginal distributions PXi

and PYi
for all possible i.

We present selected 1×1-dimensional tasks in Fig. 13 and Fig. 14; the 2×1-dimensional Swiss-
roll distribution in Fig. 15 and selected 2×2-dimensional tasks in Fig. 16. Finally, in Fig. 17 we
present two 3×3-dimensional problems, visualising the effect of the normal CDF and the spiral
diffeomorphism.
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Figure 12: Number of runs (out of 10) when our convergence and overfitting diagnostics diagnosed
potential problems in neural estimator training.

Figure 13: Top row: additive noise model. Bottom row: bivariate normal distribution and transforma-
tion making each variable a bimodal mixture of Gaussians.
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Figure 14: Top row: bivariate normal distribution transformed so that the margins are uniform and
asinh-transformed bivariate Student distribution with 1 degree of freedom. Bottom row: bivariate
normal distribution transformed with the half-cube and the wiggly mappings.
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Figure 15: Visualisation of the Swiss-roll distribution.
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Figure 16: Visualisations of selected 2×2-dimensional problems. Top row: multivariate normal
distributions with dense and sparse interactions. Bottom row: multivariate Student distribution with 2
degrees of freedom.
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Figure 17: Visualisations of selected 3×3-dimensional problems. Top: multivariate normal distribu-
tion transformed axis-wise with normal CDF, to uniformise margins. Bottom: multivariate normal
distribution transformed with the spiral diffeomorphism.
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