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1.  Introduction
Marine sediments are one of the largest global carbon sinks, with continental margins acting as key areas of 
organic carbon (OC) storage (Atwood et al., 2020; Hedges & Keil, 1995). Understanding the factors and processes 
that determine the stabilization of organic matter (OM) on continental margins and their adjacent deep oceanic 
domain is vital to constrain global carbon inventories and carbon cycling. Sedimentary OM is composed of vary-
ing proportions of marine and terrestrial OC. Each of these pools may, in turn, combine with freshly produced 
OC from primary productivity, aged and altered OC that has been retained in the system prior to final burial, and 
fossil or rock-derived (petrogenic) OC mainly introduced by fluvial transport. Isotopic (ẟ 13C, ẟ 15N, and Δ 14C) 
and elemental (carbon and nitrogen content and atomic C/N ratios) characteristics of sedimentary OM allow to 
identify contrasting combinations of these three components on the basis of their primary origin and reactivity 
(Meyers, 1994).

Once in the water column, OM is transformed and degraded by chemical, physical and biological processes 
(Burdige,  2007), with exposure to oxic conditions playing a major role in favoring OM remineralization. 
Protection from oxic degradation is promoted via organo-mineral associations (Hemingway et  al.,  2019; 
Mayer, 1994a, 1994b). OM sorption onto particle surfaces is greater in finer grains because the latter provide 
a higher surface area to volume ratio. Accordingly, there is a broadly linear relationship between OC content 
and mineral surface area (SA), which is in turn inversely related to grain size. However, fine-grained minerals 
may further expose hosted OM to transport under oxic conditions because non-cohesive fine-grained sediments 
(i.e., silt; 2–63 μm) are more prone to resuspension and subsequent lateral advection than cohesive fine grains 
(i.e., clay; <2 μm) and coarser grains (i.e., sand; >63 μm) (Ausín et al., 2021). Hence, the hydrodynamic sorting 
of fine-grained sediment favors OC degradation (Blair & Aller, 2012). Since hydrodynamic processes play a 
crucial role in the dispersal and characteristics of sedimentary OM (Ausín et al., 2021; Bao et al., 2018; Bröder 
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et al., 2018; Bruni et al., 2022), the distribution and geochemical composition of OM must also be assessed in a 
sedimentological context.

Integrated studies on the origin and fate of sedimentary OC at basin scales are limited because it is difficult to 
disentangle the various biological, physico-chemical, and geological processes that influence the geochemical 
and sedimentological characteristics of OM. Yet, a comprehensive assessment of the influence of these processes 
at basin scales is vital in understanding the role of marine sediments in the global carbon cycle.

In this regard, spatially restricted seas provide a natural laboratory to assess in detail the diverse OM origins and 
varied depositional processes that influence the spatial distribution of the content and geochemical characteristics 
of sedimentary OM.

Here, we examine the spatial distribution of the content and geochemical characteristics of sedimentary OM in 
surface sediment samples from the Atlantic sector west of the Strait of Gibraltar and across the Western Medi-
terranean Sea to improve our understanding of carbon cycling on continental margins and adjacent deep basins 
and shed light on the underlying processes that might impact OM signals in the sedimentary record and their 
interpretation in paleoenvironmental studies.

2.  Study Area
The Western Mediterranean Sea (Figure 1) is a semi-enclosed basin whose restricted connection to the open 
ocean allows examination of the major processes that control the distribution and geochemical characteristics 
of sedimentary OM on continental margins and in neighboring deeper environments. In this work, the Western 
Mediterranean has been divided into smaller basins following Bricaud et al. (2002): Alboran Sea, Algerian Basin, 
Balearic Sea, Algero-Provencal Basin, and Gulf of Lions. Because the Atlantic water enters the Mediterranean 
Sea through the Strait of Gibraltar and mixes with the more saline, warmer, and oligotrophic Mediterranean 
water, influencing the resulting geochemical signature of Mediterranean surface waters, the adjacent Atlantic 
sector (SW Iberian margin) west of the Strait of Gibraltar is also included in this study.

The SW Iberian margin is part of the Canary Current Upwelling System and is characterized by strong mesos-
cale gradients and seasonal variability in upwelling occurrence and primary productivity (Relvas et al., 2007). 
The Western Mediterranean Sea is considered mesotrophic with annual mean values of net primary produc-
tion of 131 ± 6 g C m −2 yr −1 (Lazzari et al., 2012) due to wind-induced winter mixing and coastal upwelling 
(Siokou-Frangou et  al.,  2010). The annual primary production is relatively high in the Alboran Sea 
(215–244 gC m −2 yr −1 (Bosc et al., 2004)) due to the presence of upwelling cells related to semi-permanent 
geostrophic fronts associated with the inflow of Atlantic waters (Sarhan et al., 2000). The annual primary produc-
tion decreases toward the northeast throughout the Algerian Basin, the Balearic Sea, and the Algero-Provencal 
Basin (158–156, 153–175, and 145–165 gC m −2 yr −1, respectively (Bosc et al., 2004)). Values are higher in the 
Gulf of Lions (180–204 gC m −2 yr −1) due to intense convective mixing in winter, which causes a large planktonic 
bloom in spring (Kessouri et al., 2018; Mayot et al., 2017).

Large rivers are absent along the Portuguese coast south of Lisbon, whereas the Guadiana and Guadalquivir 
rivers discharge water at annual mean rates of 180 m 3 s −1 and 230 m 3 s −1 on average, respectively, into the Gulf 
of Cadiz, which connects surface-flowing North Atlantic waters with the Mediterranean waters flowing at depth 
(Figure 1). To the east, the annual mean river discharge of each minor European and African river ranges between 
5 and 50 m 3 s −1 to the Alboran Sea (Struglia et al., 2004). The annual mean fluvial discharge across the Western 
Mediterranean catchment area increases toward the northeast, with African rivers contributing each between 5 
and 150 m 3 s −1 to the Algerian Basin and major annual mean contributions from the Ebro River (300–500 m 3 s −1) 
and the Rhone River (1,500–1,800 m 3 s −1) draining into the Balearic Sea and the Gulf of Lions, respectively 
(Figure 1) (Struglia et al., 2004). Like most rivers with large drainage basins (Blair & Aller, 2012), the Ebro and 
the Rhone rivers transport and deliver large amounts of pre-aged and petrogenic terrestrial OC eroded from sedi-
mentary rock outcrops, which for these rivers are mainly composed of sandstone, limestone and shales (Ollivier 
et al., 2010; Soria-Jáuregui et al., 2019). Offshore sediment dispersal from the Ebro River is limited to the broad 
continental shelf of the Balearic Sea (Arnau et al., 2015), whereas sediments delivered by the Rhone River might 
be intercepted by canyons and transported to the deeper basin of the Gulf of Lions and along the continental 
margin of the Balearic Sea (Palanques et al., 2006).
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Previous studies have addressed the influence of other local-scale processes and features on the fate of OM in this 
region. For instance, lateral transport of fine-grained sediments via intermediate and bottom nepheloid layers has 
been suggested to contribute to the dispersal and geochemical signature of OC in the SW Iberian margin (Magill 
et al., 2018). Submarine canyons incising the European margin play a major role channeling sediments resuspended 
from the shelf toward the deeper basins. The most prominent canyon in the south-western basins is the Almeria Canyon, 
affected by active tectonics and characterized using downslope processes (García et al., 2006). Yet, canyons are more 
abundant and developed toward the northeast (Canals et al., 2013) where they channel shelf sediments resuspended by 
storms and coastal processes (e.g., wave activity and local outfalls) basinward (Quirós-Collazos et al., 2017), leading 
to the preferential off-shelf export of fine-grained sediments enriched in OC (Pedrosa-Pàmies et al., 2013). Sediments 
are drained by canyons to the deep basin by sediment gravity flows. The latter mainly include turbidity currents, as 
observed in the Valencia Trough (Amblas et al., 2011; O'Connell et al., 1985), but also dense shelf water cascading, as 
in the Gulf of Lions (Durrieu de Madron et al., 2023). Here, intense winter storms coupled with the overflow of cold, 
dense-shelf waters that are channeled through submarine canyons, drive large volumes of eroded sediment and aged 
OC toward the deep-sea (Canals et al., 2006; Tesi et al., 2010), although the OC signal of these events on the slope is 
masked by the intrinsic heterogeneity of surface sediments (Durrieu de Madron et al., 2020).

Finally, the bottom trawling activity performed on the margin down to 1,000 m depth is also responsible for grain 
size sorting and modifies OM composition (Paradis, Goñi, et al., 2021). Such activity triggers sediment grav-
ity flows into submarine canyons (Puig et al., 2012) that may form persistent nepheloid layers (Arjona-Camas 
et al., 2021) that also affect the OM signature that is transported toward the deep sea (Paradis et al., 2022).

3.  Methods
3.1.  Sample Description

A total of 149 core-top samples were analyzed: 134 from the Western Mediterranean Sea and 15 from the adja-
cent Atlantic Ocean, west of the Strait of Gibraltar (Figure 1 and Table S1 in Supporting Information S1). The 

Figure 1.  Study area and location of the 149 surface sediment samples. Surface and deep water circulation is marked by solid and dashed arrows, respectively. Colored 
symbols indicate sampling location and coring device used. The Mediterranean Sea is divided into smaller basins following Bricaud et al. (2002).
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samples were retrieved at water depths ranging from 18 to 4,672 m during several oceanographic cruises carried 
out between 1979 and 2011 using a variety of coring devices (gravity corer, piston corer, kasten corer, box corer, 
and multicorer). Multicore and box core samples were sliced onboard at 0.5 or 1 cm and kept at 4°C until the 
return to the laboratory. Sediment cores, on the other hand, were stored at the Core Repository of the Institute of 
Marine Sciences (CSIC) in Barcelona until sampling of the top cm (0–1 cm) for this investigation. All sediments 
were stored at −20°C in different laboratories and freeze-dried prior to analyses.

3.2.  Radiocarbon Analyses

Samples analyzed for radiocarbon ( 14C/ 12C) were measured as CO2 gas in a Mini Carbon Dating System (MICA-
DAS) with a gas ion source at the Laboratory of Ion Beam Physics, ETH Zürich.

For OC- 14C analyses, between 20 and 25 mg of freeze-dried and homogenized sediment were fumigated in silver 
capsules with concentrated HCl (37%, 72 hr) to remove inorganic carbon and subsequently neutralized under 
a basic atmosphere (NaOH pellets, 72 hr) in a desiccator at 60°C. Samples were wrapped in tin capsules and 
OC- 14C was determined by Elemental Analyzer–Accelerator Mass Spectrometry (EA–AMS). Processing blanks, 
consisting of fossil (in-house shale) and modern (in-house sediment) reference materials were prepared follow-
ing the same procedure. The oxalic acid reference material (NIST SRM 4990C) was used as a normalization 
standard. The method proposed by Welte et al. (2018) was adopted to assess and correct for capsule contribution 
and constant contamination introduced during sample fumigation and EA–AMS measurements. The estimated 
correction parameters were a carbon mass of 6.3 ± 1.6 μg with a F 14C of 0.65 ± 0.19. These values are higher 
than the long-term mean of the ETH laboratory (2–3 μg C). The source of contamination was not investigated; 
nevertheless, all the samples were prepared as large samples (>100 μg C), the subsequent correction did not 
substantially modify the F 14C values, and the error associated with the corrected values is <2% for most samples.

Planktic foraminifera- 14C was used as an indication of the age of surface sediments. Unlike OC bound to fine 
minerals, planktic foraminifera are large and dense, and thus less prone to resuspension and redistribution. Approx-
imately 3 g of freeze-dried sediment from 27 samples were wet-sieved with tap water through 63- and 150-μm 
mesh sieves and thoroughly washed with deionized water prior to drying at 60°C overnight. Well-preserved tests 
of Globigerina bulloides, Neogloboquadrina incompta, or Globorotalia inflata were collected to determine  14C 
from 40 to 100 μg of C using an automated method for acid digestion of carbonates (Wacker et al., 2013).  14C 
determinations were corrected for isotopic fractionation via  13C/ 12C isotopic ratios.

 14C data for OC and foraminifera are reported here in Δ 14C notation (Stuiver & Polach, 1977).

3.3.   210Pb Analyses

Only a subset of 29 samples had sufficient material for excess  210Pb analyses, which was used to determine the 
recent (<∼100 years) deposition of sediment in core-tops following Sánchez-Cabeza et al. (1998) at the Auton-
omous University of Barcelona. Briefly, 200–300 mg of homogenized sediment was microwave-digested using 
concentrated HF, HNO3, and HBO3, using  209Po as an internal tracer. The resulting solutions were evaporated and 
reconditioned with 1 M HCl. Polonium isotopes were spontaneously deposited onto silver disks while stirring 
at 70°C for 8 hr. Alpha emissions of  209Po (4,883 keV) and  210Po (5,304 keV) were quantified using passivated 
implanted planar silicon (PIPS) detectors (CANBERRA, model PD-450.18 a.m.) and the Genie™ data acqui-
sition software. Concentrations of  210Po were then transformed into total  210Pb concentrations assuming secular 
equilibrium of both radionuclides at the time of analysis. Excess  210Pb concentrations were obtained by subtract-
ing total  210Pb from supported  210Pb concentrations, the latter obtained from data of sediment cores in the area 
(Martín et al., 2014; Masqué et al., 2002; Paradis et al., 2018).

3.4.  Stable Isotopic and Elemental Analyses of OM

Organic carbon content (dry weight; OC%) was measured simultaneously with OC- 14C on the same aliquots by 
EA–AMS (Section 3.2) to an accuracy of better than 0.1% based on standards.

Between 10 and 15 mg of freeze-dried and homogenized sediment were fumigated as described for OC% and 
OC- 14C to determine stable carbon isotopic composition (δ 13C) on an EA coupled in continuous flow with a Delta 
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V isotope ratio mass spectrometer (EA-iRMS). Values are reported relative to the Vienna Pee Dee Belemnite and 
precision was better than 0.1 ‰ (1σ) based on replicate measurements of standards. For total nitrogen content 
(N%) and stable nitrogen isotopic composition (δ 15N), approximately 30 mg of freeze-dried and non-decarbonated 
sediment were analyzed via EA-iRMS. δ 15N values are reported relative to N2 in air. The atomic C/N ratio was 
then calculated using N% and OC%.

3.5.  Grain Size and Mineral SA

For grain-size and SA estimates, freeze-dried sediments were combusted (450°C, 12  hr) to remove OM and 
cooled down slowly (50°C per hour) prior to analyses.

Between 1 and 2  g of combusted sediment were suspended in a solution of sodium hexametaphosphate in 
Milli-Q® water (1 g L −1) and analyzed via laser diffraction on a Mastersizer 2000. Samples were measured 
in triplicates under repeatable conditions. Results were analyzed in terms of clay (<2 μm), fine silt (2–10 μm), 
coarse silt (10–63 μm), and sand (>63 μm).

Between 150 and 500 μg of combusted sediment were used for the analyses of nitrogen-based BET (Brunauer–
Emmett–Teller) surface area on a Quantachrome NOVA 4000e. Degassing was performed using a Quan-
tachrome FLOVAC degasser at 350◦C for 2 hr. The precision of low- and high- surface area measurements was 
>±0.04 m 2 g −1 and <±1.00 m 2 g −1, respectively, based on replicate measurements of surface area Quantachrome 
instruments standards.

4.  Results
4.1.  Radiocarbon Content and Ages

Bulk OC-Δ 14C ranges from −130 to −970 ‰ (−462 ‰ on average) and features large spatial variability 
(Figure 2a and Table S2 in Supporting Information S1). Generally, values decrease from the southwest to the 
northeast, except for the Gulf of Lions, where several samples show intermediate values. The most  14C-depleted 
samples (i.e., the oldest OC) are found in the Algero-Provencal Basin (−526 to −970 ‰) and the Gulf of Lions 
(−503 to −695 ‰). The most  14C-enriched values (i.e., the youngest OC) are found in the Atlantic sector (−235 
to −390 ‰) and in the Alboran Sea (−195 to −753 ‰). In the Atlantic sector, the more  14C-depleted values in 
the Gulf of Cadiz contrast with higher Δ 14C values off the west coast of Portugal. Similarly, samples from the 
Catalan continental shelf show higher values than those observed in the Valencia Trough.

Conventional (uncalibrated)  14C ages of planktic foraminifera samples range between 500 and 17,470 years BP 
(Figure 2c and Table S2 in Supporting Information S1). The incorporation of bomb  14C in two samples in the 
Alboran Sea indicates that foraminifera tests originated after the radiocarbon thermonuclear weapon testing in 
the 60s'. In contrast, four samples in the Balearic Sea and Algero-Provencal Basin show  14C ages >10,000 years.

4.2.  Excess  210Pb Concentrations

Samples from the Alboran Sea show highest excess  210Pb concentrations, between 112 and 665 Bq kg −1 
(Figure 2d). In the Balearic Sea and Gulf of Lions, only the samples from depths <1,800 m have detectable 
excess  210Pb concentrations (28–115 Bq kg −1), whereas deeper water samples have undetectable excess  210Pb. 
Similarly, the two analyzed samples from the Algerian Basin do not have any detectable excess  210Pb.

4.3.  OM Content and Properties

The OC% values ranged from 0.1% to 1.9% (Figure 3a and Table S2 in Supporting Information S1). The highest 
values are found in the Atlantic sector and Alboran Sea (0.83% and 0.79% on average, respectively) decreasing 
throughout the Algerian Basin (0.78%), the Balearic Sea (0.71%), and the Algero-Provencal Basin (0.40%). 
Values in the Gulf of Lions increase up to 0.64% on average.

The ẟ 13C values range from −21.8 to −27.1 ‰ and show a general decreasing trend toward the northeast, except 
for the higher values observed in the Gulf of Lions (−22.7 ‰ on average) (Figure 3b and Table S2 in Supporting 
Information S1). Accordingly, minimum values are found in the Algero-Provencal Basin (−23.8 to −27.2 ‰) 
while the highest values are found in the Atlantic sector (−22.7 to −23.6 ‰).
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N% values range between 0.02% and 0.17% and show a gradual southwest to northeast decrease (Figure 3c and 
Table S2 in Supporting Information S1) with minimum values in the Algero-Provencal Basin and Gulf of Lions 
(0.05% and 0.07% on average, respectively). The prodelta areas of the Ebro and Llobregat rivers in the Balearic 
Sea show slightly higher N values than the surrounding samples.

The ẟ 15N values range from 1.8 to 5.8 ‰ and, except for the Gulf of Lions, show an apparent SW-NE decreasing 
trend (Figure 3d and Table S2 in Supporting Information S1). Surface sediments from the Ebro shelf are enriched 
by 1 ‰ with respect to nearby sediments.

C/N ratios range from 3.2 to 25 and show a spatially variable distribution within the different basins (Figure 3e 
and Table S2 in Supporting Information  S1). In general, the lowest values are found in the Atlantic sector 

Figure 2.  The spatial distribution of sample ages. (a) Radiocarbon content of OC, (b) radiocarbon age of OC, (c) radiocarbon age of planktic foraminifera, (d) 
excess  210Pb in sediments, and (e) age difference between OC and planktic foraminifera. Note the non-linear color scale in (b–e) to avoid masking of lower values. 
White circles in panels (c) and (e) represent the incorporation of bomb  14C and negative age differences, respectively. Note that some sample locations overlap (Table 
S3 in Supporting information S1).
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(6.7–9.3), the Algerian Basin (3.1–15.6), and the Alboran Sea (5.5–9.8), excluding two outliers with a C/N 
ratio of 25. In contrast, the Balearic Sea and the Algero-Provencal basin show more variable and higher values 
(5.0–27.2). Samples within the Ebro shelf reveal lower C/N values (∼5) than surrounding sediments on the adja-
cent shelf.  The Gulf of Lions shows lower variability (8.9–14.7) and the highest average value (10.5).

4.4.  Sedimentological Properties

The median grain-size values range between 5 and 384 μm (Figure 4a and Table S3 in Supporting Informa-
tion  S1). Most samples are mainly composed of silt, with coarse (10–63  μm) and fine silt (2–10  μm) being 
the greatest contributors (35% and 39% on average, respectively) (Figures 4b–4e and Table S3 in Supporting 

Figure 3.  The spatial distribution of isotopic and elemental composition of OM. (a) OC content (wt%), (b) stable carbon isotopic composition, (c) total nitrogen 
content, (d) stable nitrogen isotopic composition, and (e) atomic C/N ratio, with non-linear color scale to avoid masking of lower values. Data from 13 samples in the 
Gulf of Lions in panels (a–d) are reported elsewhere (Durrieu de Madron et al., 2020).
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Information S1). Grain-size composition is rather homogeneous in the southern region (Atlantic sector, Alboran 
Sea, and Algerian Basin) with relatively high percentages of total silt (56%–88%). The total silt contribution 
increases toward the northeast along with a slight increase in the median grain size.

Mineral SA ranges from 1.6 to 44.7 m 2 g −1 with a mean of 18 m 2 g −1 and shows an apparent decrease toward the 
northern basins (Figure 4f and Table S3 in Supporting Information S1).

5.  Discussion
5.1.  Sedimentation Rates and Possible Artifacts During Core Recovery

Low sedimentation rates typically imply lower OC-Δ 14C as sediment mixing entrains older carbon from deeper 
sediment layers. The observed decreasing trend in OC-Δ 14C values corresponds to major changes in sedimenta-
tion rates across the study area. For instance, sediment accumulation rate is highest in the Alboran Sea (∼0.1 cm/
yr; Masqué et al., 2003) and decreases toward the Balearic Sea (∼0.05 cm/yr; Zuo et al., 1997) and the Gulf of 
Lions as a function of water depth (0.01–0.65 cm/yr; Miralles et al., 2005). The lowest values are observed in the 
Algerian basin (0.008 cm/yr; Jimenez-Espejo et al., 2007).

In this regard, the possible partial loss of surface sediments during core recovery would have a larger impact 
on the measured core-top ages in the north-eastern basins. Many of the oldest samples were retrieved by kasten 
coring (Figure 1), which, if used correctly, and unlike gravity coring, typically leads to high recoveries of the top 
few centimeters of the sediment column (Gersonde & Seidenkrantz, 2013). In contrast, box coring and multicor-
ing are assumed to faithfully recover the sediment-water interface. Excess  210Pb is typically used as an indicator 
of recent sedimentation (<100 years). However, the time elapsed between core retrieval and  210Pb measurements 
(40-30 years in most cases) limits the detection of excess  210Pb to sites where high concentrations occur naturally 
(i.e., Atlantic sector, Alboran Sea, and possibly some locations of the Balearic Sea, in agreement with observa-
tions (Figure 2d)).

Samples from the Gulf of Lions retrieved by multicorer between 2008 and 2011 (Table S1 in Supporting 
Information S1) represent only the top half-cm of a multicore (0–0.5 cm) and yet, age range between 2,370 
and 9,470  14C yr (3660  14C yr, on average) indicating the presence of strongly aged OC even in freshly depos-
ited sediment layers in this region. This finding supports the consistency of the  14C age decrease toward the 
north-eastern basins regardless of the employed coring device. Moreover, our results are consistent with 
evidence from three sediment traps deployed in this region that recorded highly depleted OC-Δ 14C values (from 
−653 to −774 ‰) and old ages (∼8,500 to ∼12,000 years) in the water column (Tesi et al., 2010). These results 
were attributed to the resuspension and subsequent transport of sediments buried in the upper slope containing 
fossil OC.

Potential sediment loss during coring also does not explain the large age discrepancies observed between 
co-deposited foraminifera and OC for these samples, which range from hundreds to several thousands of years 
(Figure 2e, Table S2 in Supporting Information S1). Older-than-foraminifera OC ages are typically interpreted 
as resulting from the transport of pre-aged/fossil OC to the study site (e.g., Mollenhauer et al., 2005; Ohkouchi 
et al., 2002). OC is older than foraminifera in most of the samples, and the magnitude of this discrepancy increases 
toward the NE, supporting the idea that the input of pre-aged/fossil OC is higher in this region. Two samples in the 
NE show younger-than-foraminifera OC ages (Figure 2e), a phenomenon typically ascribed to post-depositional 
processes such as bioturbation (Ausín et al., 2019). Values of surface mixed layer depth are spatially distinct in 
the NE, ranging from high (up to 30 cm) near the Rhone and down to <0.5 cm offshore (Zuo et al., 1997), where 
these two samples are located. However, additional factors such as decreased foraminifera production, shell frag-
mentation, or lateral displacement of foraminifera tests by strong currents may have contributed to the magnitude 
of the observed negative age differences in these two samples (ca. 10,000  14C yr).

Overall, while potential sediment loss in some samples cannot be discounted, such potential artifacts cannot 
explain the geochemical gradients that emerge from these data (Figure 5), which are indeed coherent with the 
main biological, hydrological, and sedimentological changes that occur along the  14C age gradient (Section 5.3). 
Thus, an interplay of factors including lower vertical flux of fresh OM, lower sedimentation rates, and higher 
input of fossil and pre-aged OC by rivers and re-exposed sediments may have determined the observed geochem-
ical and sedimentological spatial patterns.

 19449224, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

B
007695 by E

th Z
ã¼

R
ich, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Global Biogeochemical Cycles

AUSÍN ET AL.

10.1029/2023GB007695

9 of 18

Figure 4.  Grain-size composition. (a) Median grain size with non-linear color scale to avoid masking of lower values. Relative abundance of (b) clay, (c) fine silt, (d) 
coarse silt, and (e) sand. (f) Mineral surface area and (g) OC loadings normalized to mineral surface area.
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5.2.  Geochemical and Sedimentological Spatial Patterns

An apparent SW-NE gradient is observed in most of the geochemical and sedimentological features (Figures 5a–5h), 
which generally show a decreasing trend toward the north-eastern basins. However, an exception to these trends 
is found in samples collected from the Gulf of Lions. In this region, a notable trend reversal is observed in most 
parameters, as illustrated in Figures 5a–5e and 5g.

Specifically, samples from the south-western basins (i.e., the Atlantic sector and Alboran Sea) exhibit higher 
median OC% and N%, higher median ẟ 13C, ẟ 15N, and Δ 14C values, and higher median mineral SA and relative 
abundance of clay than those from the Balearic Sea and the Algero-Provencal Basin.

5.3.  Major Biological and Hydrological Controls on the Spatial Distribution of the Geochemical 
Characteristics of OM

The spatial variability observed in the elemental and stable isotopic composition of OM indicates regional differ-
ences in the relative proportions of marine and terrestrial OM (Rau et al., 1989; Wada & Hattori, 1991). These, 

Figure 5.  The boxplot of the main geochemical and sedimentological characteristics of OM within each basin, shown from the SW to the NE of the study area. (a) OC 
content (wt%), (b) nitrogen content, (c) stable carbon isotopes of OC, (d) stable nitrogen isotopes, (e) radiocarbon content of OC, (f) mineral surface area, (g) clay and 
(h) coarse silt relative abundance. Black dots represent the values for each sample. The solid black line is the median and the upper and lower limits of the box represent 
the interquartile range (25%–75%). Open circles indicate potential outliers.
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in turn, reflect the major biological and hydrological processes that characterize the study area. For instance, the 
spatial gradient in OC% (Figure 5a) parallels that of primary productivity as evidenced by ocean color satellite 
data (Bosc et al., 2004; D'Ortenzio & Ribera d'Alcalà, 2009) and model analysis (Colella et al., 2016; Lazzari 
et al., 2012).

In the south-western basins (Atlantic sector and Alboran Sea), higher OC% can be largely explained by enhanced 
vertical settling of local and freshly produced OM. In agreement, sedimentary OC from these basins is of 
primarily marine origin and relatively young (higher OC-Δ 14C values) (Figure 6a). Here, higher ẟ 13C and lower 
C/N values agree with typical values of marine phytoplankton for northern mid-latitudes (−20 and −22.5 ‰ 
(Verwega et al., 2021) and ∼7 (Liang et al., 2019; Meyers, 1994), respectively). The Atlantic sector is part of a 
major upwelling region, whereas the primary production in the Alboran Sea is one of the highest in the Mediter-
ranean Sea (Lazzari et al., 2012). Moreover, the major rivers in this region have smaller drainage basins and lower 
discharge volumes in relation to the major northern rivers (Ebro and Rhone), and except for the Almeria canyon, 
canyons are not as well developed in this southern region (Würtz, 2012). Altogether, these factors diminish the 
potential input of terrestrial OC.

By contrast, the OC content gradually decreases and ages toward the NE (Figure 6a). This pattern is explained by 
reduced primary productivity and increased input of terrestrial OM throughout the Algerian Basin, the Balearic 
Sea, and the Algero-Provencal Basin. Resuspension and lateral transport of fine sediments by strong deep currents 
can expose mineral-associated OC to further alteration, leading to the preferential degradation of more labile 
(younger and predominantly marine) OC in relation to the more refractory (older material including terrestrial) 
OC (Bao et al., 2016; Tesi et al., 2007). However, the observed extremely low Δ 14C values (−381 to −970 ‰) 
cannot solely be explained by aging during resuspension and lateral transport. These values instead likely indi-
cate the input of fossil/petrogenic ( 14C-depleted) OC, mainly of terrestrial origin (Figure 6b). Indeed, numerous 
rivers discharging into this region are responsible for the entrainment of large amounts of terrestrial OM in the 
north-eastern basins. The biochemical characterization over a 1 year period of the particulate OM delivered by 8 
major and minor rivers discharging into the Gulf of Lions and the Catalan shelf showed ẟ 13C values ranging from 

Figure 6.  Isotopic composition of OM. (a) Radiocarbon content versus ẟ 13C with OC content as normalized bubble size, and (b) ẟ 13C versus ẟ 15N with atomic C/N 
ratios as normalized bubble size. Dashed boxes indicate the main endmembers: marine phytoplankton (Verwega et al., 2021), soil OM (McCallister et al., 2004; Ogrinc 
et al., 2008), and dominant Mediterranean vegetation (C3 plants; Countway et al., 2007; Hedges et al., 1997; Ogrinc et al., 2008).
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−33 to −24.5 ‰, ẟ 15N values between 1.9 and 16.8 ‰, and C/N values from 2.8 to 14.7 (Higueras et al., 2014). 
According to Higueras et al. (2014), such values reflect the admixture of soil OM (McCallister et al., 2004; Ogrinc 
et al., 2008) and vascular C3 plant remains (Countway et al., 2007; Hedges et al., 1997; Ogrinc et al., 2008).

Weathering and supply of terrestrial OC to the Balearic Sea by the Rhone and Ebro rivers is typically limited 
to the shelf (Arnau et al., 2015; Palanques et al., 2006). However, the presence of large submarine canyons on 
the Catalan shelf compared to the margins of the south-western basins and the seaward deflection of the coastal 
current at the southern limit of the Valencia Trough (Figure 1) deliver large quantities of sedimentary OM to 
deeper waters (Arnau et al., 2015; Ulses et al., 2008). Similarly, fish trawling activity, which influences the sedi-
mentary OM distribution through sediment erosion and enhanced OC remineralization (Palanques et al., 2014; 
Paradis, Lo Iacono, et al., 2021), is limited to the shelf and upper slope of the Catalan margin. Nevertheless, 
onshore and offshore ẟ 13C values are comparable (Figure 3b), suggesting the input of terrestrial OC through 
mass movement events and strong along-slope and upslope currents around the Balearic Island (Lüdmann 
et  al.,  2012) and the efficient transport of sedimentary OM along the basin in the Valencia Trough (Amblas 
et al., 2011; O'Connell et al., 1985). Slightly enhanced N% and ẟ 15N values in the proximity of the mouth of the 
Ebro River have been ascribed to the delivery of synthetic fertilizer products derived from agricultural activities 
(Lassaletta et al., 2012), enabled by the dense irrigation channels and reservoirs in the catchment area of the Ebro 
(<400 kg N km- 2 yr −1) (Romero et al., 2016).

In the Gulf of Lions, relatively higher Δ 14C and ẟ 13C (Figure 6a) values reflect higher contribution of marine OM 
linked to increased primary productivity compared to other north-eastern basins of the NW Mediterranean Sea 
(Bosc et al., 2004; Colella et al., 2016; D'Ortenzio & Ribera d'Alcalà, 2009). Δ 14C and stable isotopic values of 
OM agree with previous observations and suggest the admixture of OC from different sources (Sanchez-Vidal 
et al., 2009; Tesi et al., 2010). In addition to the intense seasonal planktonic bloom that characterizes this region, 
fluvial discharges by major and minor rivers imply the entrainment of large amounts of terrestrial OC (Higueras 
et al., 2014). Previous work has shown the alternation between sedimentary OC sources in the Gulf of Lions, 
being predominantly terrestrial during winter, and mainly marine during spring and summer (Sanchez-Vidal 
et al., 2009). Re-exposure and advection of sediments deposited during low sea-level stands and buried on the 
upper continental slope are an additional source of pre-aged/fossil OC in this region (Tesi et al., 2010). Finally, 
resuspension and dispersal of sediments by deep currents following bottom-reaching convection events in this 
region (Durrieu de Madron et al., 2017; Stabholz et al., 2013) further contributes to the mixing of freshly produced 
marine OM and older terrestrial OM (Canals et al., 2006; Sanchez-Vidal et al., 2009).

5.4.  Potential Additional Controls on the Distribution and Fate of OM Via Organo-Mineral Associations

5.4.1.  Lateral Transport of Allochthonous OC

Substantial and positive age differences between co-deposited OC and planktic foraminifera increase toward 
the NE and are mainly ascribed to the addition of old OC (Section 5.1). Although the origin of this OC appears 
to be predominantly terrestrial, the contribution of laterally transported pre-aged/fossil OC of marine origin in 
association with mineral grains has been observed in the region (Tesi et al., 2010) and could have contributed to 
the observed age differences to some extent.

Moreover, OM may age during resuspension/redeposition cycles (Bao et al., 2016) because selective degradation 
of the more labile organic molecules over the more refractory material occurs under oxic conditions and lateral 
transport leads to an increase in oxygen exposure times (Burdige, 2007; Hedges et al., 1999). Recently produced 
marine OM is more prone to remineralization potentially as a consequence of its chemically labile and less altered 
nature compared to terrestrial OM (Zonneveld et al., 2010). Similarly, previous work in the Gulf of Lions has 
shown that sedimentary OM along a mud belt on the shelf is much more depleted in  14C than in the delta region 
due to the preferential loss of labile OM and retention of fossil carbon during resuspension and lateral transport 
(Cathalot et al., 2013; Tesi et al., 2007). Thus, preferential degradation of freshly produced marine OC could also 
have contributed to the observed terrestrial signal toward the NE basins.

Finally, hydrodynamic mineral sorting during lateral transport leads to a strong  14C age-grain-size dependence 
(Ausín et al., 2021). The spatial changes observed in the relative contribution of clay and sortable silt (Figures 5g 
and  5h) suggest that hydrodynamically-sorted minerals that host OC could contribute to some extent to the 
observed Δ 14C, which decreases toward the NE (except in the Gulf of Lions) along with a decrease in clay relative 
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abundance and an increase in coarse silt percentage. However, as in other marginal seas, no apparent relationship 
is observed between Δ 14C and median grain size in samples dominated by fine-grained sediments (<63 μm, 
Figure 7a) because the Δ 14C-grain-size relationship is only apparent when investigated across grain-size fractions 
(Bao et al., 2016).

5.4.2.  OM Protection Via Association With Mineral Surfaces

Minerals influence the abundance and geochemical composition of sedimentary OC via mineral SA protection 
(Keil et al., 1994). Finer mineral grains offer higher SA (Figure 7b); spaces where the OM may be occluded and 
OC is protected from remineralization by heterotrophic organisms (Bianchi et al., 2018). Accordingly, OC preser-
vation would be comparatively lower in the Balearic Sea and Algero-Provencal Basin (Figures 5f and 7b) because 
lower SA would expose OM to selective degradation (Zonneveld et al., 2010).

SA does not follow the SW-NE gradient observed in other geochemical and sedimentological parameters 
because it is not the highest on the Atlantic side. The latter suggest a lower potential for OM protection by 
mineral surfaces in the Atlantic sector. However, the OC/SA ratio allows the assessment of net supply and reac-
tion processes of OC and preservation efficiency (Blair & Aller, 2012). Most OC/SA values are <0.4 mg C m −2 

Figure 7.  Additional controls on the distribution and fate of OM. (a) Relationship between Δ 14C and median grain size 
with coarse silt (10–63 μm) relative abundance as normalized bubble size, (b) relationship between mineral surface area and 
median grain size, and (c) OC content versus mineral surface area with water depth as normalized bubble size. FS = Fine 
silt. CS = Coarse silt. Solid lines in (b) indicate OC/SA ratios >1 and <0.4 mg OC m −2, which allow the differentiation of 
depositional environments (Bianchi et al., 2018; Blair & Aller, 2012).
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(Figure 7c). This is especially the case for the majority of the samples from the Algerian Sea, Balearic Sea, 
and Algero-Provencal Basin, with few exceptions to shallower waters from the Balearic Sea that show an OC/
SA ratio between 1 and 0.4 mg C m −2. OC/SA values <0.4 mg C m −2 are characteristic of passive continental 
margins and environments where sediment is frequently resuspended and subjected to enhanced remineraliza-
tion (e.g., highly energetic deltaic deposits and low-sedimentation-rate deep-sea environments with long oxygen 
exposure times) (Bao et  al.,  2018; Blair & Aller,  2012). Samples from the Atlantic Sector and the Alboran 
Sea, on the other hand, show comparatively higher OC/SA values, and more than half of them show ratios in 
the 1–0.4  mg  C  m −2 range. These values are characteristic of river-suspended material and shelf sediments 
and indicate relatively stable OM-mineral associations that prevent OC from further remineralization (Blair & 
Aller, 2012; Hedges & Keil, 1995). Therefore, our results suggest that the potential for OM protection by mineral 
surfaces is larger in the Atlantic sector and Alboran Sea, and lower in the Balearic Sea and Algero-Provencal 
Basin. In the absence of other factors that have also proven to play an important role in OM protection-like 
sediment mineralogy (Blattmann et  al.,  2019), mineral surface area protection would magnify the observed 
geochemical gradients.

6.  Conclusions
This regional study on the isotopic and elemental composition of OM in surface sediments from the western 
Mediterranean Sea and the neighboring Atlantic sector west of the Strait of Gibraltar sheds light on the controls 
on the origin, distribution, and fate of OM in continental margins and adjacent deep-sea basins.

Here, most geochemical parameters depict a clear SW-NE gradient that reverses in the Gulf of Lions (Figure 8). 
Thus, samples from the Atlantic sector and Alboran Sea reveal comparatively younger OM that is primarily of 
marine origin. Samples from the Algerian Basin, the Balearic Sea, and the Algero-Provencal Basin exhibit a 
larger influence of terrestrial OC toward the NE characterized by lower ẟ 13C and  14C values. OM in the Gulf of 
Lions shows a more prominent influence of fresh and young OC compared to other basins in the north-eastern 
part of the NW Mediterranean Sea. Such spatial variability largely reflects regional differences in relation to 
marine primary productivity and terrestrial input of pre-aged/fossil OC, the latter delivered by rivers and chan-
neled to the deeper basin by the numerous canyons that incise the continental margin, especially toward the NE 
of the study area.

Figure 8.  A conceptual model summarizing the influence of major and potential additional controls on the geochemical 
characteristics of sedimentary OM in the Western Mediterranean Sea and adjacent Atlantic sector, from the SW to the NE. 
Values of the main geochemical parameters correspond to the bound mean values (10%) of each basin. Note the SW-NE 
gradient, which reverses in the Gulf of Lions.
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When explored a sedimentological context, our results reveal the potential secondary control of two other mech-
anisms on the fate of OM (Figure 8). The first involves the resuspension and lateral transport of allochthonous 
(mainly pre-aged or fossil) OC in association with fine-grained sediments. The increasing contribution of coarse 
silt toward the NE basins suggests that the impact of this mechanism is potentially greatest in the north-eastern 
basins, where intense high-energy events promote grain-size sorting and its subsequent sediment (and OC) redis-
tribution. Moreover, lateral transport would further expose OM to oxic conditions, favoring selective degradation 
of labile OC over refractory OC. The other potential secondary control in the fate of OM is OM protection from 
oxic degradation via association with mineral surfaces. This mechanism would have a larger influence in the 
Atlantic sector and Alboran Sea due to comparatively higher OC/SA ratios in these basins. In the Balearic Sea 
and Algero-Provencal Basin, lower OM protection by mineral surfaces would potentially lead to lower OC% and 
the preferential retention of more refractory terrestrial OC that renders bulk OC strongly depleted in  14C, in line 
with the observed geochemical gradients.

Overall, the spatial heterogeneity exhibited by the western Mediterranean Sea allows us to explore the interplay 
of biological, chemical, and hydrological factors that control the amount and geochemical characteristics of sedi-
mentary OM in continental margins, including the land-sea continuum and the deeper ocean.
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