
ETH Library

Self-adjusting population sizes
for the (1,λ)-EA on monotone
functions

Journal Article

Author(s):
Kaufmann, Marc; Larcher, Maxime; Lengler, Johannes; Zou, Xun

Publication date:
2023-11-10

Permanent link:
https://doi.org/10.3929/ethz-b-000637220

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Theoretical Computer Science 979, https://doi.org/10.1016/j.tcs.2023.114181

Funding acknowledgement:
192079 - DynaGIRG (SNF)
173721 - Temporal Information Integration in Neural Networks (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000637220
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2023.114181
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Theoretical Computer Science 979 (2023) 114181
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Self-adjusting population sizes for the (1, λ)-EA on monotone

functions ✩

Marc Kaufmann ∗,1, Maxime Larcher, Johannes Lengler, Xun Zou 2

Department of Computer Science, ETH Zürich, Zürich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2022
Received in revised form 13 July 2023
Accepted 7 September 2023
Available online 19 September 2023
Communicated by C. Witt

Keywords:
Parameter control
Self-adaptation
(1, λ)-EA
One-fifth rule
Monotone functions
Dynamic environments
Evolutionary algorithm

We study the (1, λ)-EA with mutation rate c/n for c ≤ 1, where the population size is
adaptively controlled with the (1 : s + 1)-success rule. Recently, Hevia Fajardo and Sudholt
have shown that this setup with c = 1 is efficient on OneMax for s < 1, but inefficient
if s ≥ 18. Surprisingly, the hardest part is not close to the optimum, but rather at linear
distance. We show that this behaviour is not specific to OneMax. If s is small, then the
algorithm is efficient on all monotone functions, and if s is large, then it needs super-
polynomial time on all monotone functions. In the former case, for c < 1 we show a O (n)

upper bound for the number of generations and O (n log n) for the number of function
evaluations, and for c = 1 we show O (n logn) generations and O (n2 log log n) evaluations.
We also show formally that optimization is always fast, regardless of s, if the algorithm
starts in proximity of the optimum. All results also hold in a dynamic environment where
the fitness function changes in each generation.
An extended abstract, containing only the results without proofs, has been published at
the PPSN conference [1].

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Background

Randomized Optimization Heuristics (ROHs) like evolutionary algorithms (EAs) are simple general-purpose optimizers.
One of their strengths is that they can often be applied with little adaptation to the problem at hand. However, ROHs
usually come with parameters, and their efficiency often depends on the parameter settings. Therefore, parameter control is
a fundamental topic in the design and analysis of ROHs [2]. It aims at providing methods to automatically tune parame-
ters over the course of optimization. The goal is not to remove parameters altogether; the parameter control mechanisms
themselves introduce new meta-parameters. Nevertheless, there are two objectives that can sometimes be achieved with
parameter control mechanisms.

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.

* Corresponding author.
E-mail addresses: marc.kaufmann@inf.ethz.ch (M. Kaufmann), larcherm@inf.ethz.ch (M. Larcher), johannes.lengler@inf.ethz.ch (J. Lengler),

xun.zou@inf.ethz.ch (X. Zou).
1 The author was supported by the Swiss National Science Foundation [grant number 192079].
2 The author was supported by the Swiss National Science Foundation [grant number CR-SII5_173721].
https://doi.org/10.1016/j.tcs.2023.114181
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.tcs.2023.114181
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114181&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:marc.kaufmann@inf.ethz.ch
mailto:larcherm@inf.ethz.ch
mailto:johannes.lengler@inf.ethz.ch
mailto:xun.zou@inf.ethz.ch
https://doi.org/10.1016/j.tcs.2023.114181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Firstly, some ROHs are rather sensitive to small changes in the parameters, and inadequate setting can slow down or
even prevent success. Two examples that are relevant for this paper are the (1, λ)-EA, which fails to optimize even the easy
OneMax benchmark if λ is too small [3–5], and the (1 + 1)-EA, which fails on monotone functions if the mutation rate is
too large [6–8]. In both cases, changing the parameters just by a constant factor makes all the difference between finding
the optimum in time O (n log n), and not even finding an ε-approximation of the optimal solution in polynomial time. So
these algorithms are extremely sensitive to small changes of parameters. In such cases, one hopes that performance is more
robust with respect to the meta-parameters, i.e., that the parameter control mechanism manages to find a decent parameter
setting regardless of its meta-parameters.

Secondly, often there is no single parameter setting that is optimal throughout the course of optimization. Instead,
different phases of the optimization process profit from different parameter settings, and the overall performance with
dynamically adapted parameters is better than for any static parameters [9–13]. This topic, which has always been studied
in continuous optimization, has taken longer to gain traction in discrete domains [14–16,11] but has attracted increasing
interest over the last years [17–30]. Instead of a detailed discussion we refer the reader to the book chapter [31] for an
overview over theoretical results, and to [32] for a discussion of some recent developments.

One of the most traditional and influential methods for parameter control is the (1 : s + 1)-success rule [33], indepen-
dently developed several times [34–36] and traditionally used with s = 4 as one-fifth rule in continuous domains, e.g. [37].
This rule has been used for controlling the offspring population size in discrete domains [11,16], in particular for the (1, λ)-
EA [32,38], where it yields the so-called self-adjusting (1, λ)-EA or SA-(1, λ)-EA, also called (1, {λ/F , F 1/sλ})-EA. As in the
basic (1, λ)-EA, in each generation the algorithm produces λ offspring, and selects the fittest of them as the unique par-
ent for the next generation. The difference to the basic (1, λ)-EA is that the parameter λ is replaced by λ/F if the fittest
offspring is fitter than the parent, and by λ · F 1/s otherwise. We will give a more thorough discussion of this algorithm in
Section 2 below. Thus, the (1 : s + 1)-success rule replaces the parameter λ by two parameters s and F . As outlined above,
there are two hopes associated with this scheme:

(i) that the performance is more robust with respect to F and s than with respect to λ;
(ii) that the scheme can adaptively find the locally optimal value of λ throughout the course of optimization.

1.2. Prior work

Recently, Hevia Fajardo and Sudholt have investigated both hypotheses on the OneMax benchmark [38,32]. They found a
negative result for (i), and a (partial) positive result for (ii). The negative result says that performance is at least as fragile
with respect to the parameters as before: if s < 1, then the SA-(1, λ)-EA finds the optimum of OneMax in O (n) generations,
but if s ≥ 18 and F ≤ 1.5 the runtime becomes exponential with overwhelming probability. Experimentally, they find that
the range of bad parameter values even seems to include the standard choice s = 4, which corresponds to the 1/5-rule. On
the other hand, they show that for s < 1, the algorithm successfully achieves (ii): they show that the expected number of
function evaluations is O (n log n), which is optimal among all unary unbiased black-box algorithms [12,39]. Moreover, they
show that the algorithm makes steady progress over the course of optimization, needing O (b − a) generations to increase
the fitness from a to b whenever b − a ≥ C log n for a suitable constant C . The crucial point is that this is independent
of a and b, so independent of the current state of the algorithm. It implies that the algorithm chooses λ = O (1) in early
stages when progress is easy, and (almost) linear values λ = �(n) in the end when progress is hard. Thus, it achieves (ii)
conditional on having appropriate parameter settings.

Interestingly, it is shown in [32] that for s ≥ 18, the SA-(1, λ)-EA fails in a region far away from the optimum, more
precisely in the region with 85% one-bits. Consequently, it also fails for every other function that is identical with OneMax in
the range of [0.84n, 0.85n] one-bits, which includes other common benchmarks like Jump, Cliff, and Ridge. It is implicit that
the algorithm would be efficient in regions that are closer to the optimum. This is remarkable, since usually optimization is
harder close to the optimum. Such a reversed failure profile has previously only been observed in very few situations. One
is the (μ + 1)-EA with mutation rate c/n for an arbitrary constant c > 0 on certain monotone functions. This algorithm is
efficient close to the optimum, but fails to cross some region in linear distance of the optimum if μ > μ0 for some μ0 that
depends on c [40]. A similar phenomenon has been shown for μ = 2 and a specific value of c in the dynamic environment
Dynamic BinVal [41,42]. These are the only examples for this phenomenon that the authors are aware of.

1.3. Our results3

A limitation of [32] is that it studies only a single benchmark, the OneMax function. Although the negative result also
holds for functions that are identical to OneMax in some range, the agreement with OneMax in this range must be perfect,
and the positive result does not extend to other functions in such a way. This leaves the question on what happens for
larger classes of benchmarks:

3 An extended abstract, containing only the results without proofs, has been published at the PPSN conference [1].
2

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
(a) Is there a safe choice for s that makes the algorithm efficient for a whole class of functions?
(b) Does the positive result (ii) extend to other benchmarks than OneMax?

In this paper, we will answer both questions with Yes for the set of all (strictly) monotone pseudo-Boolean functions, i.e.,
functions where flipping a zero-bit into a one-bit always increases the fitness.4 This is a very large class; for example, it
contains all linear functions. In fact, all our results hold in an even more general dynamic setting: the fitness function may be
different in each generation, as long as it is a monotone function every time and therefore shares the same global optimum
(1, . . . , 1). We show an upper bound of O (n) generations (Theorem 18) and O (n log n) function evaluations (Theorem 28)
if the mutation rate is c/n for some c < 1, which is a very natural assumption for monotone functions as many algorithms
become inefficient for large values of c [7,8,45,46]. Those results are as strong as the positive results in [32], except that
we replace the constant “1” in the condition s < 1 by a different constant that may depend on c. For c = 1 we still show
that a bound of O (n log n) generations (Theorem 19) and O (n2 log log n) evaluations (Theorem 29). It is in line with general
frameworks for elitist algorithms that the number of function evaluations stops being quasi-linear [47,7], although the
bounds in other contexts are better than quadratic [48].

Both parts of the answer are encouraging news for the SA-(1, λ)-EA. It means that, at least for this class of benchmarks,
there is a universal parameter setting that works in all situations. This resembles the role of the mutation rate c/n for the
(1 + 1)-EA on monotone functions: If c < 1 + ε, then the (1 + 1)-EA is efficient on all monotone functions [7,8,45], and
for c < 1 this is known for many other algorithms as well [46]. On the other hand, the (μ + 1)-EA is an example where
such a safe parameter choice for c does not exist: for any c > 0 there is μ such that the (μ + 1)-EA with mutation rate c/n
needs super-polynomial time to find the optimum of some monotone functions.

We do not just strengthen the positive result, but we show that the negative result generalizes in a surprisingly strong
sense, too: for any arbitrary mutation rate c/n where c < 1, if s is sufficiently large, then the SA-(1, λ)-EA needs exponential
time on every monotone function, Theorem 40. Thus, the failure mode for large s is not specific to OneMax. On the other
hand, we also generalize the result (implicit in [32]) that the only hard region is in linear distance from the optimum: for
any value of s, if the algorithm starts close enough to the optimum (but still in linear distance), then with high probability it
optimizes every monotone function efficiently, Theorem 35. Finally, we complement the theoretical analysis with simulations
in Section 7. These simulations show another interesting aspect: in a ‘middle region’ of s, it seems to depend on F whether
the algorithm is efficient or not. Thus, we conjecture that there does not exist an efficiency threshold s0 such that all
parameters s < s0 and F > 1 are efficient, while all s > s0 and F > 1 are inefficient. Note that our results show that this
dependency on F can only appear in a ‘middle region’, since our results for small s and large s are independent of F
(which improves the negative result in [32]). A similar effect was observed for the self-adjusting (1 + (λ, λ))-GA in [49],
but for different reasons. There, the effect was caused by a universal upper bound on the success probability of ≈ 0.31 < 1,
independent of λ. This can cause problems if the target success rate is larger than 0.31, and thus unachievable, see [49,
Section 6.4] for a full discussion. In our setting, the success probability approaches one as λ grows, so the problem does not
exist, and the reason for the impact of F seems different.

Our proofs build on ideas from [32]. In particular, we use a potential function of the form g(xt , λt) = Zm(xt) + h(λt),
where Zm(xt) is the number of zero-bits in xt and h(λt) is a penalty term for small values of λt . Similar decompositions
have been used before [50]. The exact form of h depends on the situation; sometimes it is very similar to the choices
in [32] (positive result for c < 1, negative result), but some cases are completely different (positive results for c = 1 and
close to the optimum). With these potential functions, we obtain a positive or negative drift and upper or lower bounds
on the number of generations, depending on the situation. When translating the number of generations into the number
of function evaluations, while some themes from [32] reappear (e.g., to consider the best-so-far Zm value), the overall
argument is different. In particular, we do not use the ratchet argument from [32], see Remark 31 for a discussion of the
reasons.

1.4. Discussion of the SA-(1, λ)-EA

Let us give a short explanation of the concept of the (1 : s + 1)-success rule (or (1 : s + 1)-rule for short). For given λ and
given position x in the search space, the algorithm has some success probability p, where success means that f (y) > f (x)
for the fittest of λ offspring y of x. For simplicity we will ignore the rounding effect coming from λ ∈ N and will assume
that p(λ) ≤ 1/(s + 1) for λ = 1, and that 0 < p < 1. The success probability p = p(λ) is obviously an increasing function in
λ, since additional offspring can only increase the chances of finding an improvement. Moreover, it is strictly increasing due
to 0 < p < 1. Hence there is a value λ∗ such that p(λ) < 1/(s + 1) for λ < λ∗ and p(λ) > 1/(s + 1) for λ > λ∗ . Now consider
the potential logF λ. This potential decreases by 1 with probability p and increases by 1/s with probability 1 − p. So in

4 Shortly after our work, Hevia Fajardo and Sudholt also provided such a class in [43]. This is the class of everywhere hard functions, for which the chance
of creating a strict improvement does not exceed n−ε anywhere in the search space. This includes the popular LeadingOnes benchmark, but not OneMax.
In fact, it does not include any monotone function, since from the all-zero string (and from all other strings with �(n) zero-bits) the probability of an
improvement is �(1) on monotone functions. Hence, their class is disjoint from ours. In [43] it was shown that for any constant s the SA-(1, λ)-EA imitates
the elitist SA-(1 + λ)-EA on everywhere hard functions, which by design can never lose fitness. This arguably makes the comma variant a bit pointless for
everywhere hard functions, since its potential benefit of escaping from local optima [44] is suppressed in this case.
3

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
expectation it changes by −p + (1 − p)/s = (1 − (s + 1)p)/s. Hence, the expected change is positive if λ < λ∗ and negative
if λ > λ∗ . Therefore, λ has a drift towards λ∗ from both sides (in a logarithmic scaling). So the rule implicitly has a target
population size λ∗ , and this population size λ∗ corresponds to the target success rate p = 1/(s + 1).

Note that a drift towards λ∗ does not necessarily imply that λ always stays close to λ∗ . Firstly, p depends on the current
state x of the algorithm, and might vary rapidly as the algorithm progresses (though this does not seem a very typical situ-
ation). In this case, the target value λ∗ also varies. Secondly, even if λ∗ remains constant, there may be random fluctuations
around this value, see [51,52] for treatments on when drift towards a target guarantees concentration. However, we note
that the (1 : s + 1)-rule for controlling λ gives stronger guarantees than the same rule for controlling other parameters like
step size or mutation rate. The difference is that other parameters do not necessarily influence p in a monotone way, and
therefore we cannot generally guarantee that there is a drift towards success probability 1/(s + 1) when the (1 : s + 1)-rule
is used to control them. Only when controlling λ we are guaranteed a drift in the right direction.

2. Preliminaries and definitions

Throughout the paper we will assume that c > 0, s > 0 and F > 1 are constants independent of n while n → ∞. Note
that s need not be an integer. Our search space is always {0, 1}n , and we denote by supp{x} := {i ∈ [n] | xi = 1} the support
of a bit string x ∈ {0, 1}n . We say that an event E = E(n) holds with high probability or whp if Pr[E] → 1 for n → ∞. We
denote the negation of an event E by E , and by 1E the indicator of E , i.e., 1E = 1 if E holds and 1E = 0 otherwise.

2.1. The algorithm: SA-(1, λ)-EA

We will consider the self-adjusting (1, λ)-EA with (1 : s + 1)-success rate, with mutation rate c/n, success ratio s and
update strength F , and we denote this algorithm by SA-(1, λ)-EA. It is given by the following pseudocode. Note that the
parameter λ may take non-integral values during the execution of the algorithm, however the number of children generated
at each step is chosen to be the closest integer 	λ
 to λ.

Algorithm 1 SA-(1, λ)-EA with success rate s, update strength F and mutation rate c/n for maximizing a fitness function
f : {0, 1}n →R.

Initialization: Choose x0 ∈ {0, 1}n uniformly at random and λ0 := 1
Optimization: for t = 0, 1, . . . do

Mutation: for j ∈ {1, . . . , ⌊λt
⌉} do

yt, j ← mutate (xt) by flipping each bit independently with prob. c/n

Selection: Choose yt = arg maxi f (yt,i), breaking ties randomly;
Update: if f (yt) > f (xt) then λt+1 ← max{1, λt/F };

else λt+1 ← F 1/sλt ;
xt+1 ← yt ;

We will often omit the index t if it is clear from the context.

2.2. The benchmark: dynamic monotone functions

Whenever we speak of “monotone” functions in this paper, we mean strictly monotone pseudo-Boolean functions, de-
fined as follows.

Definition 1. We call f : {0, 1}n → R monotone if f (x) > f (y) for every pair x, y ∈ {0, 1}n with x �= y and xi ≥ yi for all
1 ≤ i ≤ n.

In this paper we will consider the following set of benchmarks. For each t ∈ N , let f t : {0, 1}n → R be a monotone
function that may change at each step depending on xt . Then the selection step in the t-th generation of Algorithm 1 is
performed with respect to f t . By slight abuse of notation we will still speak of a dynamic monotone function f .

All our results (positive and negative) hold in this dynamic setup. This set of benchmarks is quite general. Of course, it
contains the static setup in which we only have a single monotone function to optimize, which includes linear functions
and OneMax as special cases. It also contains the setup of Dynamic Linear Functions (originally introduced as Noisy Linear
Functions in [53]) and Dynamic BinVal [41,42]. On the other hand, all monotone functions share the same global optimum
(1 . . . 1), have no local optima, and flipping a zero-bit into a one-bit strictly improves the fitness. In the dynamic setup, these
properties still hold “locally”, within each selection step. Thus, the setup falls into the general framework by Jansen [47],
which was extended to the partially ordered EA (PO-EA) by Colin, Doerr, Férey [48]. This implies that the (1 + 1)-EA with
mutation rate c/n finds the optimum of every such Dynamic Monotone Function in expected time O (n log n) if c < 1, and
in time O (n3/2) if c = 1.
4

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
2.3. Drift analysis and potential functions

Drift analysis is a key instrument in the theory of EAs. To apply it, one must define a potential function and compute the
expected change of this potential. A common potential for simple problems in EAs are the OneMax and ZeroMax potential
of the current state xt , which assign to each search point x ∈ {0, 1}n the number of one-bits and zero-bits, respectively:

Om(x) = OneMax(x) =
∑

i
xi and Zm(x) = ZeroMax(x) = n − Om(x).

Note that for two bit strings x and y, Om(|x − y|) computes their Hamming distance, where the difference and absolute
value are taken component-wise.

For our purposes, this potential function will not be sufficient since there is an intricate interplay between progress and
the value of λ. Following [38,32], we use a composite potential function of the form g(xt , λt) = Zm(xt) + h(λt), where h(λt)

varies from application to application (Definitions 20, 24, 36, 41). We will write Zt := Zm(xt), Ht := h(λt) and Gt := g(xt , λt)

throughout the paper.
Once the drift is established, the positive and negative statements about generations then follow from standard drift

analysis [52]. In particular, we will use the Additive, Multiplicative, and Negative Drift Theorem, given below.5

Theorem 2 (Additive Drift Theorem [52]). Let (Xt)t≥0 be a sequence of non-negative random variables over a bounded state space
S ⊂R+

0 containing the origin and let T := inf{t ≥ 0 | Xt = 0} denote the hitting time of 0. Assume there exists δ > 0 such that for all
t < T ,

E
[

Xt − Xt+1 | Xt] ≥ δ,

then

E[T | X0] ≤ X0

δ
.

Theorem 3 (Multiplicative Drift Theorem [54]). Let (Xt)t≥0 be a sequence of non-negative random variables over a bounded state
space S ⊂ R+

0 containing the origin and such that xmin := min{x ∈ S : x > 0} is well defined. Let T := inf{t ≥ 0 | Xt ≤ 0} denote the
hitting time of 0. Suppose that there exists a constant δ > 0 such that for all t < T ,

E[Xt − Xt+1 | Xt] ≥ δXt .

Then,

E[T | X0] ≤ 1 + log(X0/xmin)

δ
.

Theorem 4 (Negative Drift Theorem With Scaling [55]). Let (Xt)t≥0 be a sequence of random variables over a state space S ⊂ R.
Suppose there exists an interval [a, b] ⊆ R and, possibly depending on � := b − a, a drift bound ε := ε(�) > 0 as well as a scaling
factor r := r(�) such that for all t ≥ 0 the following three conditions hold:

1. E[Xt+1 − Xt | X0, . . . , Xt;a < Xt < b] ≥ ε.
2. Pr[|Xt+1 − Xt | ≥ jr | X0, . . . , Xt;a < Xt] ≤ e− j for j ∈N0 .
3. 1 ≤ r2 ≤ ε�/(132 log(r/ε)).

Then for all X0 ≥ b, the first time T ∗ := min{t ≥ 0 : Xt < a | X0, . . . , Xt} when X drops below a satisfies

Pr[T ∗ ≤ eε�/(132r2)] = O (e−ε�/(132r2)).

2.4. Concentration of hitting times

In our analysis, we will prove concentration of the number of steps needed to improve the number of 1-bits. We will
use the following results of Kötzing [51], which we slightly reformulate for convenience.

Definition 5 (Sub-Gaussian [51]). Let
(

Xt
)

t≥0 be a sequence of random variables and F = (
F t

)
t≥0 an adapted filtration. We

say that
(

Xt
)

t≥0 is (γ , δ)-sub-Gaussian if

5 Theorem 2 and 3 are stated in the references for finite state spaces S but continue to hold as long as S is bounded, see the remark on p.6 in [52].
5

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
E
[

ezXt+1 | F t
]

≤ eγ z2/2,

for all t and all z ∈ [0, δ].

Theorem 6 (Tail Bounds Imply Sub-Gaussian [51]). For every 0 < α, 0 < β < 1, there exists γ , δ > 0 such that the following holds.
Let

(
Xt

)
t≥0 be a random sequence and F an adapted filtration. Assume that E[Xt+1 | F t] ≤ 0 and for all times t and that for all

x ≥ 0 we have

Pr
[|Xt+1| ≥ x | F t] ≤ α

(1 + β)x
.

Then
(

Xt
)

t≥0 is (γ , δ)-sub-Gaussian.

Theorem 7 (Concentration of Hitting Times [51]). For every γ , δ, ε > 0 there exists a D > 0 such that the following holds. Let
(

Xt
)

t≥0
be a random sequence and F an adapted filtration satisfying the following properties

(i) E[Xt+1 − Xt |F t] ≥ ε.
(ii)

(
ε − Xt

)
t≥0 is (γ , δ)-sub-Gaussian;

Let T denote the first point in time when
∑T

t=1 Xt ≥ N, then for all τ ≥ 2N/ε,

Pr[T > τ] ≤ exp (−Dτ) .

To prove concentration of the number of steps spent improving the fitness under multiplicative drift, we will use the
following theorem.

Theorem 8 (Multiplicative Drift, Tail Bound [56]). Let (Xt)t≥0 be non-negative random variables over a state space S ⊂R+
0 . Assume

that X0 ≤ b and let T be the random variable that denotes the first point in time t ∈N for which Xt ≤ a, for some a ≤ b. Suppose that
there exists δ > 0 such that for all t < T ,

E[Xt − Xt+1 | Xt] ≥ δXt .

Then,

Pr

[
T >

t + log(b/a)

δ

]
≤ e−t .

2.5. Further tools

We will use the FKG inequality (Fortuin–Kasteleyn–Ginibre inequality), which is a standard tool in percolation theory,
but less commonly used in the theory of EAs. We only give a special case of what is known as Harris inequality.

Theorem 9 (FKG inequality [57, Section 2.2]). Let I be a finite set, and consider a product probability space � = ∏
i∈I �i , where all �i

have binary sample space {0, 1}. A real-valued random variable X is called increasing if X(ω) ≤ X(ω′) holds for all elementary events
ω, ω′ in � with ωi ≤ ω′

i for all i ∈ I . It is called decreasing if −X is increasing.

1. If two random variables X, Y are both increasing or are both decreasing, then

E[XY] ≥ E[X] · E[Y].
2. If X is increasing and Y is decreasing, or vice versa, then

E[XY] ≤ E[X] · E[Y].

We also say that X and Y are positively correlated and negatively correlated in the first and second case respectively. Note
that the FKG inequality also applies to probabilities. E.g., if A, B are increasing events (which just means that their indicators
1A and 1B are increasing), then Pr[A] = E[1A], Pr[B] = E[1B], and 1A1B = 1A∩B , hence Pr[A ∩ B] ≥ Pr[A] · Pr[B].

To switch between differences and exponentials, we will frequently make use of the following estimates, taken from
Lemma 1.4.2 – Corollary 1.4.6 in [58].
6

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Lemma 10.

1. For all r ≥ 1 and 0 ≤ s ≤ r,

(1 − 1/r)r ≤ 1/e ≤ (1 − 1/r)r−1

and

(1 − s/r)r ≤ e−s ≤ (1 − s/r)r−s.

2. For all 0 ≤ x ≤ 1,

1 − e−x ≥ x/2.

3. For all 0 ≤ x ≤ 1 and all y > 0,

1 − (1 − x)y ≤ xy
1+xy .

Finally, we will also use standard Chernoff bounds.

Theorem 11 (Chernoff Bound [58, Section 1.10]). Let X1, . . . , Xn be independent random variables taking values in [0, 1]. Let X =∑n
i=1 Xi and let 1 ≥ δ ≥ 0. Then

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
− δ2 E[X]

3

)
. (1)

3. Technical definitions and results

As mentioned previously, our techniques resemble those of Hevia Fajardo and Sudholt [38,32]. The key is analysing
a suitable potential function g(x, λ) = Zm(x) + h(λ) which combines the distance Zm(x) to the optimum (as defined in
Section 2) with a penalty term for small λ. When this function has strong positive drift, we can establish that the optimum
is reached fast; conversely, when g has (strong) negative drift, the optimisation takes super-polynomial time. In some cases,
we use a similar penalty term h(λ) (and thus potential function) as [32], in other cases very different ones. However, the
potential always contains the number of zero-bits Zt = Zm(xt) at time t as an additive term, so the drift of Z enters the
drift of the potential in all cases. The goal of this section is to compute this drift in Lemma 13. Moreover, the definitions
and results for showing this lemma are also used at other places in the paper.

Finally, we show that if the penalty term h(λ) is ‘reasonable’, then the truncated change of g at each step min{C, Gt −
Gt+1} has exponential tail bounds and is thus sub-Gaussian. This allows us to apply the concentration results from Sec-
tion 2.4 to establish concentration from above of the optimisation time; see Remark 14 for more details.

3.1. Definition and properties of basic events

Because our analysis deals with an entire class of functions, we will not be able to precisely compute the probability of
finding a fitness improvement. However, since we study (dynamic) monotone functions we can relate that probability to the
probability of 1) having a child that flips no 1-bit of the parent, and 2) having a child that flips at least a 0-bit of the parent.
Understanding those two events, which we respectively denote by A and B and formally define below, is the backbone of
our approach and this subsection is devoted to their analysis.

Recall that xt and λt are the search point and the offspring population size at time t respectively, and that yt, j denotes
the j-th offspring at time t . For all times t we define

At, j := {supp(xt) ⊆ supp(yt, j)} and At =
⋃

j

At, j .

In words, At, j is the event that the j-th offspring at time t does not flip any one-bit of the parent, and At is the event that
such a child exists at time t . We also define

Bt, j = {∃i : xt
i < yt, j

i } and Bt =
⋃

j

Bt, j,

respectively as the event that the j-th child does flip a zero-bit of the parent, and the event that such a child exists. We drop
the superscript t when the time is clear from context, and just write x, y j and λ for parent, offspring, and population size
at time t , and A j, A, B j, B for the events defined above. We also observe that all the events {A j} j ∪ {B j} j are independent
and in particular A and B are independent.
7

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
In the lemma below we estimate the probability of At and Bt in terms of Zt and λt . We also provide a bound on the
probability of not finding a fitness improvement.

Lemma 12. For any mutation rate c ≤ 1, there exist constants b1, b2, b3 > 0 depending only on c such that at all times t with Zt ≥ 1
we have

Pr[Ā] ≤ e−b1λ and e−b2λZt/n ≤ Pr[B̄] ≤ e−b3λZt/n.

Moreover, Pr[f (xt+1) ≤ f (xt)] ≤ e− 1
2 ce−c	λ
Zt/n.

Proof. Let us start with the first inequality. The event A j happens with probability (1 − c/n)n−Zt ≥ e−c by Lemma 10, so
Ā = ⋂

j A j has probability

Pr[Ā] ≤ (
1 − e−c)	λ
 ≤ e−e−c	λ
,

again using Lemma 10. We conclude the first proof by observing that 	λ
 ≥ λ/1.5.
The event B̄ happens if none of the 	λ
 offspring flips a zero-bit of the parent. This happens with probability

Pr[B̄] = (1 − c/n)Zt	λ
.

The upper bound is obtained as above: (1 − c/n) ≤ e−c/n by Lemma 10 and 	λ
 ≥ λ/1.5. For the lower bound, we see that
(1 − c/n) ≥ e−2c/n for c/n ≤ 1/2 by Lemma 10 and 	λ
 ≤ 2λ so that

Pr[B̄] ≥ e−4c Ztλ/n.

For the last inequality, for every j the event A j ∩ B j implies f (y j) > f (x), since an offspring y j is always an improvement if
it is obtained by flipping a single zero-bit and no one-bit. Since all A j and B j are independent and Pr[B j] = 1 −(1 −c/n)Zt ≥
1 − e−c Zt/n ≥ 1

2 c Zt/n by Lemma 10,

Pr[f (xt+1) ≤ f (xt)] = Pr[∀ j : f (yt, j) ≤ f (xt)] ≤
	λ
∏
j=1

(
1 − Pr[A j] · Pr[B j]

)

≤ (
1 − e−c · 1

2 c Zt/n
)	λ
 ≤ e− 1

2 ce−c	λ
Zt/n
. �

3.2. The drift of Zt

With the definitions introduced in the previous subsection, we may now state and prove the key result of this section,
that is, we compute the drift of Z in terms of Pr[A], Pr[B], Z and λ.

Lemma 13. Consider the SA-(1, λ)-EA with mutation rate 0 < c ≤ 1. There exist constants a1, a2, b > 0 depending only on c such that
at all times t with Zt > 0 we have

E
[

Zt − Zt+1 | xt, λt] ≥ Pr[B] · a1
(
1 − c(1 − Zt/n)

) − a2e−bλt
.

This also holds if we replace Zt − Zt+1 by min{1, Zt − Zt+1}.

Remark 14. Theorems 6 and 7 which we use to prove concentration of hitting times require that the probability of having
large jumps is small. This is not true in general: when we generate many children λ there is an increased probability of
flipping many bits.

In order to still be able to prove concentration, we consider the situation in which the number of 0-bits may decrease
by at most 1 at each step, i.e., this is why we cap the difference Zt − Zt+1 at 1. Even under this pessimistic assumption, we
prove (in Sections 4 and 5) that the drift is positive and the optimum is reached fast.

The proof of this will be obtained using the following claims.

Claim 15. At all times t ≥ 0 with Zt > 0 we have

E
[

Zt − Zt+1 | A, B
] ≥ e−c

(
1 − c

(
1 − Zt

n

))
.

This also holds if we replace Zt − Zt+1 by min{1, Zt − Zt+1}.
8

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Claim 16. At all times t ≥ 0 with Zt > 0 we have

E
[

Zt − Zt+1 | Ā
] ≥ − c

1 − e−c
.

This also holds if we replace Zt − Zt+1 by min{1, Zt − Zt+1}.

Proof of Claim 15. First, let us define K to be the index of the fittest offspring, i.e. yK = xt+1. A first step in proving the
claim will be to show that

Pr
[

yK
i = 0 | A, B K

]
≤ c/n, (2)

for all i ∈ supp(x). Note that (2) would hold with equality if we replaced K by a fixed j ∈ [λ
] and omitted conditioning
on A, so the task is to show that conditioning on A and conditioning on the offspring being selected can only decrease the
probability. To show this, we use a multiple exposure of the randomness: we let u1, . . . , u	λ
 respectively be obtained from
x by only revealing the flips (or non-flips) of the 0-bits of x in each of the 	λ
 children (where we abbreviate x = xt and
λ = λt). The child y j , j ∈ [λ
] may then be obtained from u j by revealing the rest of the bits, i.e. the flips of the 1-bits of
x.

Consider an index i such that xi = 1, and decompose

Pr
[

yK
i = 0, A, B K | (u�)�∈[λ
]

]

=
	λ
∑
j=1

Pr
[

K = j, y j
i = 0, A, B j | (u�)�∈[λ
]

]

=
	λ
∑
j=1

1B j · Pr
[

K = j, y j
i = 0, A | (u�)�∈[λ
]

]
. (3)

For a given j, we observe that if we additionally condition on the 1-bit flips in other children (y�)� �= j , then 1K= j,A is
a decreasing function of the 1-bit flips in the j-th child, while 1

y j
i =0

is an increasing function of those flips. The FKG
inequality, Theorem 9, thus gives

Pr
[

K = j, y j
i = 0, A | (u�)�∈[λ
], (y�)�∈[λ
],��= j

]
≤ Pr

[
y j

i = 0 | (u�), (y�)��= j

]
· Pr

[
K = j, A | (u�), (y�)��= j

]
= c

n
· Pr

[
K = j, A | (u�), (y�)��= j

]
,

where the last line simply comes from the fact that the i-th bit flip in y j is independent of what happens in the other
children and in the 0-bit flips of y j . Using the law of total probability over (y�)� �= j gives

Pr
[

K = j, y j
i = 0, A | (u�)

]
≤ c

n
· Pr

[
K = j, A | (u�)

]
,

and plugging this into (3) gives

Pr
[

yK
i = 0, A, B K | (u�)�∈[λ
]

]
≤

	λ
∑
j=1

1B j
c

n
Pr

[
K = j, A | (u�)�∈[λ
]

]
. (4)

A similar decomposition gives

Pr[A, B K | (u�)�∈[λ
]] =
	λ
∑
j=1

1B j · Pr[K = j, A | (u�)�∈[λ
]], (5)

and combining (4) and (5) gives Pr[yK
i = 0 | A, B K , (u�)�∈[λ
]] = (4)/(5) ≤ c/n. To obtain (2) it suffices to apply the law of

total probability over (u�)� . We can now compute the drift conditioned on A, B K : since B K implies that yK turns (at least)
one 0-bit into a 1-bit, we obtain

E[Zt − Zt+1 | A, B K] ≥ 1 −
∑

i∈supp(x)

Pr[yK
i = 0 | A, B K]

(2)≥ 1 − (n − Zt) · c

n
= 1 − c

(
1 − Zt/n

)
.

(6)
9

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Note that the first step in (6) remains correct if we replace Zt − Zt+1 with min
{

1, Zt − Zt+1
}

, and this difference does not
play a role in any other parts of the proof. To continue the proof, we decompose

E[Zt − Zt+1 | A, B] = Pr
[

B K | A, B
]
· E

[
Zt − Zt+1 | A, B, B K

]
+ Pr

[
B K | A, B

]
· E

[
Zt − Zt+1 | A, B, B K

]
.

Since B ∩ B K = B K , the first conditional expectation of the RHS is exactly E[Zt − Zt+1 | A, B K] ≥ 1 − c(1 − Zt/n) by (6). To
conclude the proof, it thus suffices to show

Pr[B K | A, B] ≥ e−c, (7)

and

E
[

Zt − Zt+1 | A, B, B K
]

= 0. (8)

We start by proving (8): we will argue that if both A and B K hold, then xt+1 = xt . Indeed, B K implies that f (xt+1) ≤
f (xt) since no bit is flipped from 0 to 1. Additionally, the equality holds if and only if xt+1 = xt , since flipping any 1-
bit to 0 would decrease f by strict monotonicity. On the other hand, one easily observes that A implies f (xt) ≤ f (xt+1).
Consequently, A ∩ B K implies that xt = xt+1, which proves (8).

Finally, we prove (7). Once (u�)�∈[λ
] is revealed, we can define J as the set of those indices j which maximise f (u j).
We observe that if B and ∪ j∈ J A j hold, then B K also does. Indeed, if we let J ′ ⊆ J be the set of indices for which A j holds,
and if J ′ �= ∅, then the set of children which maximise f (y j) is exactly J ′ . Hence we have

Pr
[

B K | A, B
]

≥ Pr
[
∪ j∈ J A j | A, B

]
≥ (1 − c/n)n−Zt ≥ e−c .

The second inequality is simply obtained by noting that, under the assumption that B holds and since J is not empty, the
probability of ∪ j∈ J A j is at least that of A j for a single (arbitrary) j in J . The event A j has probability (1 − c/n)n−Zt

, is
independent of B and positively correlated with A. The last inequality follows from Lemma 10 since Zt ≥ 1. �
Proof of Claim 16. Recall that Ā is the event that every offspring flips at least one one-bit. Let K be the index of the fittest
child and let N j be the number of one-bits flipped in the j-th offspring, we want to show that E[N K | Ā] ≤ E[N j | Ā] holds
for all j ∈ [λ
], i.e. the fittest offspring does not flip more one-bits than an arbitrary offspring in expectation.

Note that conditioning on Ā leads to dependent bit flips within each individual offspring, but once we know that a
specific one-bit is flipped, the remaining one-bit flips are independent. Therefore, we can couple the one-bits flips given
Ā with the following procedure. Assume there are m one-bits in x, we first sample the position of the first (= left-most)
one-bit l to be flipped. Afterwards, we still flip each bit to the right of l independently with probability c/n. This gives the
usual distribution of one-bit flips, conditioned on Ā. To make this formal, we sample l ∈ [m] with probability pl(m) =
(1 − (1 − c/n)m)−1(c/n)(1 − c/n)l−1 and flip the l-th one-bit. It is easy to verify that

∑m
l=1 pl(m) = 1 since pl is a geometric

sequence. Then for each l′ ∈ [m] \ [l], we flip the l′-th one-bit independently with probability c/n. The probability that a
specific one-bit is flipped given Ā is (c/n)(1 − (1 − c/n)m)−1. By our procedure, this probability is

Pr[the l-th one-bit is flipped] = pl(m) +
l−1∑
i=1

pi(m)
c

n

= pl(m) + p1(m)(1 − (1 − c/n)l−1)

1 − (1 − c/n)

c

n

= c

n

1

1 − (1 − c/n)m
,

which is exactly the desired conditional probability.
Therefore, we can get rid of Ā as follows. Let N j

a:b be the random number of bit flips when we flip the a-th to the b-th
one-bit independently with probability c/n for offspring j and l j be the index l sampled for offspring j. Then

E[N K | Ā] =
	λ
∑
j=1

E[N j · 1K= j | Ā]

=
	λ
∑ m∑

E[(1 + N j
i+1:m) · 1K= j | l j = i]Pr[l j = i]
j=1 i=1

10

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
=
	λ
∑
j=1

m∑
i=1

E[(1 + N j
i+1:m) · 1K= j] · pi(m).

Now we may use the FKG inequality to show

E[N j
i+1:m · 1K= j] ≤ E[N j

i+1:m] · E[1K= j]. (9)

The proof is similar to that used in the previous claim: one conditions on (u�), (y�)� �= j in order to have a product space on
which N j

i+1:m is increasing and 1K= j decreasing. One then applies the FKG inequality. Observing that N j
i+1:m is independent

of (u�), (y�)� �= j and using the law of total probability over (u�), (y�)� �= j gives (9). Continuing the previous derivation,

E[N K | Ā] ≤
	λ
∑
j=1

m∑
i=1

E[1 + N j
i+1:m]E[1K= j] · pi(m)

=
	λ
∑
j=1

E[1K= j]
m∑

i=1

E[1 + N j
i+1:m] · pi(m)

=
m∑

i=1

E[1 + N j
i+1:m | l j = i]Pr[l j = i] = E[N j | Ā],

where we use the fact that
∑	λ

j=1 1K= j = 1 and that E[(1 + N j
i+1:m)] is invariant with respect to the index j.

The term E[N j | Ā] is maximized for m = n, hence

E[Zt − Zt+1 | Ā] ≥ −E[N K | Ā] ≥ −E[N j | Ā]
≥ − c

n

1

1 − (1 − c/n)n
n ≥ − c

1 − e−c
,

which proves Claim 16. �
We now combine the two claims above to obtain Lemma 13.

Proof of Lemma 13. The drift of Zt = Zm(xt) may be decomposed as follows,

E[Zt − Zt+1 | x, λ] = Pr[A, B] · E[Zt − Zt+1 | A, B]
+ Pr[A, B̄] · E[Zt − Zt+1 | A, B̄]
+ Pr[Ā] · E[Zt − Zt+1 | Ā],

(10)

where we omitted the conditioning on x, λ on the right-hand side for brevity. As observed above, A, B are independent so
we get Pr[A, B] = Pr[A] Pr[B]. Also, we observe that the second conditional expectation in (10) must be 0: if B̄ holds then
no child is a strict improvement of the parent, but A guarantees that some children are at least as good. Hence, if A, B̄ hold,
we must have xt = xt+1. Combining those remarks with the bounds of Claims 15 and 16 gives

E[Zt − Zt+1 | x, λ] ≥ Pr[A]Pr[B] · 1 − c(1 − Zt/n)

ec
− Pr[Ā] · c

1 − e−c
.

Lemma 12 guarantees that Pr[A] is at least a positive constant C when λ ≥ 1 and that Pr[Ā] ≤ e−b1λ . Choosing a1 = Ce−c ,
a2 = c/(1 − e−c) and b = b1 gives the result. �
3.3. Improvements are sub-Gaussian

In Sections 4.2 and 5 we will prove that the number of time steps needed to optimise a function is tightly concen-
trated. We provide the following result, based on Theorems 6 and 7, which allows us to relate strong positive drift and
concentration of hitting times.

Lemma 17. Consider the SA-(1, λ)-EA with parameters 0 < c < 1 < F and with an arbitrary success rate s > 0, and let ε, C1, C2 > 0
be constants. Then there exist γ , δ > 0 which only depend on c, F , s, ε, C1, C2 such that the following holds.

Let h be a decreasing function, g(x, λ) = Zm(x) + h(λ) and define

�t := min{1 + C1, g(xt , λt) − g(xt+1, λt+1)}.
Assume the following two properties are satisfied
11

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
(i) E
[
�t | xt , λt

] ≥ ε;
(ii) h(λ) − h(λF) ≤ C2 for all λ ∈ [1, ∞).

Then
(
ε − �t

)
t≥0 is (γ , δ)-sub-Gaussian.

Proof. We will use Theorem 6 to prove that (ε − �t) is sub-Gaussian. To be able to apply this theorem, we must prove that
E

[
ε − �t

] ≤ 0 and that there exist 0 < α and 0 < β < 1 such that Pr[|ε − �t | > w] ≤ α/(1 + β)w for all w ≥ 0. The first
immediately holds by i, so we focus on the second.

Let y1, . . . , y	λ
 be the children at step t and let K = arg max j f (y j) the index of the fittest child. We also let N1, . . . , N	λ

be the number of 1-bit flips in y1, . . . , y	λ
 and we define N = N K . Clearly N ≥ Zt+1 − Zt .

Let w > C2 + ε and w ′ = �w − ε − C2
. Since the value of h may only decrease by C2 at each step by ii, to have (
ε − �t

) ≥ w it must be that Zt+1 − Zt ≥ w − ε − C2, and in particular we must have N ≥ w ′ . We compute

Pr[N ≥ w ′] ≤
∑

j

Pr[N j ≥ w ′, K = j] ≤
∑

j

Pr[N j ≥ w ′]Pr[K = j]

=
∑

j

(
n − Zt

w ′

)(c

n

)w ′ (
1 − c

n

)n−Zt−w ′
Pr[K = j]

≤ 1/w ′! ≤ 2−w ′ ≤ 2ε+C2−w .

Above, the second inequality is obtained using the FKG inequality in the same fashion as in the proof of Claim 15.
The above implies that for all w > C2 + ε, the probability of having ε − �t ≥ w is bounded by α/(1 + β)w for α = 2ε+C2

and β = 1. Up to possibly increasing α to be a large constant, the same relation holds for w ∈ [0, C2 + ε]. Since �t is upper
bounded by the constant 1 + C1, the quantity of interest ε − �t is lower-bounded by ε − 1 − C1 so we can also trivially
achieve

Pr[�t − ε ≥ w | xt, λt] ≤ α

(1 + β)w
,

by possibly increasing α again.
Theorem 6 may now be applied: ε − �t is (γ , δ)-sub-Gaussian for some γ , δ depending on ε, C1, C2. �

4. Monotone functions are efficiently optimized for small success rates

In this section we analyse the SA-(1, λ)-EA when the success rate s is small, and the mutation rate is c/n for a constant
0 < c ≤ 1. We show that if s is sufficiently small then for any strictly monotone fitness function, the optimum is found
efficiently both in the number of generations and evaluations. We distinguish between the cases c < 1 and c = 1.

4.1. Bound on the number of generations

In this subsection, we study the number of generations required to reach the optimum and show that for c ≤ 1, the
SA-(1, λ)-EA finds the optimum efficiently. We start with the case c < 1.

Theorem 18. Let 0 < c < 1 < F be constants. Then there exist C, s0 > 0 such that for all 0 < s ≤ s0 and for every dynamic monotone
function the expected number of generations of the SA-(1, λ)-EA with success rate s, update strength F and mutation probability c/n
is at most Cn.

For c = 1, we additionally need to assume that the update strength F is bounded from above by a suitable constant
F0 > 1. As we will show experimentally, the update strength can have a notable impact on performance, but it remains
open whether this effect vanishes for sufficiently small s.

Theorem 19. There exist constants F0 > 1, s0 > 0 and C > 0 such that for all 1 < F < F0 , all 0 < s ≤ s0 , and for all dynamic monotone
functions the expected number of generations of the SA-(1, λ)-EA with success rate s, update strength F and mutation probability 1/n
is at most Cn logn.

Our approach will be essentially the same for both theorems and will follow the ideas of Hevia Fajardo and Sudholt [32,
38]. We prove them in the following two subsections.
12

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
4.2. Expected number of generations when c < 1

We will prove Theorem 18 in this section; for the remainder of this section, we assume that 0 < c < 1 < F and the
dynamic monotone function f are all given and we will show the existence of a desired s0 independent of f . Recall that xt

is the search point at time t , its children are yt,1, . . . , yt,	λt
 , and λt is the value of λ at time t . In particular, the latter does
not need to be an integer, and the actual number of offspring at time t is the closest integer 	λt
. Whenever the time t is
clear from the context, we will remove it from the superscript.

We show that for an appropriate function g , the drift E[g(xt , λt) − g(xt+1, λt+1)] is positive. Our choice of g will guar-
antee that g(x, ·) = 0 implies x = (1, · · · , 1), and the Additive Drift Theorem 2 will allow us to bound the time until this
happens. For this section, we use the following g = g1.

Definition 20 (Potential function for positive result). Let

h1(λ) := K1 · max{0, logF
λmax

λ
},

where K1 is a constant to be chosen later, and λmax := F 1/sn. Then for all x ∈ {0, 1}n and λ ∈ [1, ∞) we define

g1(x, λ) := Zm(x) + h1(λ).

Recall that Zt = Zm(xt), and denote Ht
1 := h1(λ

t) and Gt
1 := g1(xt , λt).

Our first lemma states that g1(x, λ) does not deviate much from Zm(x) for all x, λ, and that it suffices to show that g1
reaches 0, since then the optimum is found.

Lemma 21 (“Sandwich” inequalities relating the potential function and the fitness). For all x ∈ {0, 1}n and λ ∈ [1, ∞) we have

g1(x, λ) − K1 logF λmax ≤ Zm(x) ≤ g1(x, λ).

In particular g1(x, λ) = 0 implies that Zm(x) = 0.

Proof. The lemma follows trivially from the fact that

h1(λ) = K1 max
{

0, logF (λmax/λ)
} ∈ [0, K1 log λmax] . �

We will now compute the drift of Gt
1. The drift of Zt was already computed in the previous section, so it suffices to

compute that of Ht
1.

Claim 22. At all times t ≥ 0 we have

E
[

Ht
1 − Ht+1

1 | xt , λt
]

≥ −K1 · Pr [B] + K1

s
· Pr

[
B̄
] · 1λt<n.

Proof of Claim 22. We first give a general bound that we will use for the case that the fitness increases. We have λt+1 ≥
λt/F and thus logF (λmax/λ

t+1) ≤ 1 + logF (λmax/λ
t) and Ht+1

1 ≤ K1 + Ht
1. In particular,

E
[

Ht
1 − Ht+1

1 | xt , λt, f (xt+1) > f (xt)
]

≥ −K1.

For f (xt+1) ≤ f (xt), we have λt+1 ≤ λt , and thus Ht
1 − Ht+1

1 ≥ 0. If additionally λt < λmax F −1/s = n, then λt < F 1/sλt =
λt+1 ≤ λmax, and hence Ht

1 − Ht+1
1 = K1/s. Summarizing,

E
[

Ht
1 − Ht+1

1 | xt , λt, f (xt+1) ≤ f (xt)
]

≥
{

K1/s if 1 ≤ λt < n;

0 if λt ≥ n.

This gives

E
[

Ht
1 − Ht+1

1

]
≥ −K1 Pr[f (xt+1) > f (xt)] + K1

s
Pr[f (xt+1) ≤ f (xt)]1λt<n.

Observe that f (xt+1) > f (xt) only if B holds: indeed for the fitness to increase at time t , at least one child needs to mutate
a 0-bit of xt into a 1-bit. This gives Pr[f (xt+1) > f (xt)] ≤ Pr[B], and Claim 22 follows. �
13

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Claims 15, 16 and 22 may now be combined to obtain the following drift of Gt
1. We again drop the index t from xt and

λt .

Corollary 23. There exists a constant s0 > 0 such that for all 0 < s ≤ s0 the following holds. There is a constant δ and a choice of K1

such that for all t with Zt > 0,

E
[

Gt
1 − Gt+1

1 | x, λ
]

≥ δ.

This also holds if Gt − Gt+1 is replaced by min{1 + K1/s, Gt − Gt+1}.

Proof. Combining Lemma 13 and Claim 22, one obtains that the drift of G1 is at least

E
[

Gt
1 − Gt+1

1 | x, λ
]

≥ Pr[B] (α1 − K1) + 1λ<n Pr[B̄]K1/s − α2e−βλ, (11)

for some constants α1, α2, β > 0.
We choose K1 = α1/2 so that the drift for any t with Zt > 0 is at least

E
[

Gt
1 − Gt+1

1 | x, λ
]

≥ Pr[B]K1 + 1λ<n Pr[B̄]K1/s − α2e−βλ.

• If λ < n: then as we want s small enough, we may assume that s < 1. In this setting the drift is lower bounded by

E[Gt
1 − Gt+1

1 | x, λ] ≥ Pr[B]K1 + Pr[B̄]K1/s − α2e−βλ

= K1 + Pr[B̄]K1(1 − s)/s − α2e−βλ.

Note that there is λ0 = λ0(α2, β, K1) such that for λ ≥ λ0 the last term can be bounded as α2e−βλ ≤ K1/2, in which case
the drift is at least K1/2. For the remaining case, recall Lemma 12 guarantees that Pr[B̄] ≥ e−b2λ for some constant b2 > 0
depending only on c. Hence, for a choice of s small enough we can achieve Pr[B̄]K1(1 − s)/s ≥ α2e−βλ , so the drift stays
above K1 > K1/2.

• If λ ≥ n: the drift is

E
[

Gt
1 − Gt+1

1 | x, λ
]

≥ Pr[B]K1 − α2e−βn.

The first term is at least Pr[B]K1 ≥ (1 − (1 − c/n)	λ
Zt
)K1 ≥ (1 − e−c)K1 while the second is e−�(n) = o(1); this implies that

the drift is at least (1−e−c)
2 K1 for sufficiently large n.

To see why the statement also holds for min{1 + K1/s , Gt − Gt+1}, we recall that Gt = Zt + Ht
1, that Lemma 13 holds

for min{1, Zt − Zt+1} and that H1 may increase by at most K1/s in each step. This implies that the first formula (11) also
holds if we replace Gt − Gt+1 by min{1 + K1/s , Gt − Gt+1} and all following arguments are unchanged. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 18. Corollary 23 guarantees that for s sufficiently small there is δ > 0 such that the drift of G1 is at least
E[Gt

1 − Gt+1
1 | x, λ] ≥ δ whenever Zt > 0. Let T be the first point in time when either G T

1 = 0 or Z T = 0. Then the drift
bound for G1 applies to all t < T , and by Theorem 2 we have E[T] ≤ G0

1/δ ≤ (n + K1 log(λmax))/δ = O (n). By Lemma 21,
G T

1 = 0 implies Z T = 0, so in particular at time T we have xT = (1, . . . , 1) and Theorem 18 is proved. �
4.3. Expected number of generations when c = 1

We will now prove Theorem 19; that is, we will show that the self-adjusting EA is also efficient when the mutation rate
is 1/n. The reason we need to treat this case differently from the previous one is because of the expected number of bits
gained when increasing the fitness. If we set c = 1, the drift obtained in Claim 15 is no longer constant but proportional
to Zt/n. In particular, in the last stages of the exploration, the drift is a lot smaller and this results in a looser bound for the
number of generations. Still, the proof is similar to the one for c < 1, but we need to choose a different potential function.

Definition 24 (Potential function for c = 1). Let

h2(λ) := K2 · max{0, 1
λ

− 1
λmax

},
where K2 is a constant to be chosen later, and λmax = F 1/sn. Then for x ∈ {0, 1}n and λ ∈ [1, ∞) we define

g2(x, λ) := Zm(x) + h2(λ),

and we set Ht := h2(xt , λt) and Gt := g2(xt , λt), and as before Zt := Zm(xt).
2 2

14

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
As before, we have a lemma stating that the deviation between Zm(x) and g2(x, λ) is small.

Lemma 25 (“Sandwich” inequalities). For all x, λ we have

g2(x, λ) − K2

(
1 − 1

λmax

)
≤ Zm(x) ≤ g2(x, λ).

In particular g2(x, λ) = 0 implies that Zm(X) = 0.

Proof. Similar to the proof of Lemma 21, the proof follows from the fact that

h2(λ) = K2 max

{
0,

1

λ
− 1

λmax

}
∈

[
0, K2

(
1 − 1

λmax

)]
,

when λ ∈ [1,∞). �
The drift of Z is known from Lemma 13, so to compute the drift of G it suffices to compute that of H2. As before, we

abbreviate x = xt and λ = λt where the index is clear from the context.

Claim 26. At all times t ≥ 0 with Zt > 0 we have

E
[

Ht
2 − Ht+1

2 | x, λ
]

≥ − K2

λ
(F − 1)Pr [B] + K2

λ

(
1 − F −1/s)Pr

[
B̄
]

1λ<n.

Proof of Claim 26. Similar to the proof of Claim 22, we analyse the drift of Ht
2. We first give a general bound that we

will use for the case that the fitness increases. We have λt+1 ≥ λt/F and thus (λt)−1 − (λt+1)−1 ≥ (1 − F)/λt . Hence,
Ht

2 − Ht+1
2 ≥ K2(1 − F)/λt for all t . In particular,

E[Ht
2 − Ht+1

2 | xt, λt , f (xt+1) > f (xt)] ≥ K2
(1 − F)

λt
.

For f (xt+1) ≤ f (xt), we have λt+1 ≥ λt , and thus Ht
2 − Ht+1

2 ≥ 0. If additionally λt < λmax F −1/s = n, then λt < F 1/sλt =
λt+1 ≤ λmax, and hence Ht

2 − Ht+1
2 = K2(1 − F −1/s)/λt . Summarizing,

E[Ht
2 − Ht+1

2 | xt, λt , f (xt+1) ≤ f (xt)] ≥
{

K2(1 − F −1/s)/λt if λt < n;

0 if n ≤ λt .

This gives

E[Ht
2 − Ht+1

2] ≥ K2(1 − F)/λt · Pr[f (xt+1) > f (xt)]
+ K2(1 − F −1/s)/λt · Pr[f (xt+1) ≤ f (xt)] · 1λt<n,

where the conditioning on x, λ is implicit. Recall that B is the event that at least one of the offspring flips a 0-bit of Xt ,
which is a necessary condition for f (xt+1) > f (xt). Also, we have 1 − F < 0 and 1 − F −1/s > 0 due to F > 1, so replacing
Pr[f (xt+1) > f (xt)] by its upper bound Pr[B] and replacing Pr[f (xt+1) ≤ f (xt)] by its lower bound Pr[B̄], we conclude the
proof. �

We can bound the drift of Gt
2 from below as follows.

Corollary 27. There exist constants 0 < s0 and 1 < F0 such that the following holds. For all 0 < s ≤ s0 and all 1 < F ≤ F0 there exists
a choice of K2 and a constant δ > 0 such that for all times t with Zt > 0,

E[Gt
2 − Gt+1

2 | x, λ] ≥ δGt
2/n.

Proof. We will first show

E[Gt
2 − Gt+1

2 | x, λ] ≥ δ′ Zt/n (12)

for some δ′ > 0. Combining Lemma 13 together with Claim 26 we obtain that the drift of G2 is at least

E[Gt
2 − Gt+1

2 | x, λ] ≥ Pr[B]
(
α1

Zt

n
− K2(F − 1)

1

λ

)
− α2e−βλ

+ Pr[B̄]K2(1 − F −1/s) · 1

λ
1λ≤n, (13)
15

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
for some constants α1, α2, β > 0.
We will argue that if F > 1 and s > 0 are both small enough and if K2 is chosen appropriately, then the drift of Gt

2 is of
order Zt/n. We will choose F , s later but we may already choose K2 = α1/(2(F − 1)) so that the drift is at least

E[Gt
2 − Gt+1

2 | x, λ] ≥ Pr[B]α1

(
Zt

n
− 1

2λ

)
− α2e−βλ

+ Pr[B̄]α1
1 − F −1/s

2(F − 1)
· 1

λ
1λ≤n.

Our proof is based on a case distinction. Let b3 be the constant of Lemma 12, γ := 1 − e−b3 and let λ̃ > 0 be such that
γα1/(4λ) − α2e−βλ ≥ 0 holds for all λ ≥ λ̃.

• If λ ≤ max{λ̃, n/Zt}: then by ignoring the first positive contribution in (13), the drift is at least

E[Gt
2 − Gt+1

2 | x, λ] ≥ −Pr[B]α1
1

2λ
− α2e−βλ + Pr[B̄]α1

1 − F −1/s

2(F − 1)
· 1

λ
.

Splitting the positive contribution into three equal parts gives

E[Gt
2 − Gt+1

2 | x, λ] ≥ Pr[B̄]1

3
α1

1 − F −1/s

2(F − 1)
· 1

λ

+
(

Pr[B̄]1

3
· 1 − F −1/s

(F − 1)
− Pr[B]

)
α1

2λ

+ Pr[B̄]1

3
α1

1 − F −1/s

2(F − 1)
· 1

λ
− α2e−βλ.

(14)

Recall that Lemma 12 guarantees that Pr[B̄] = e−(λZt/n) . For the currently considered range of λ, we have Pr[B̄] = �(1),
while Pr[B] = O (1). Also, (1 − F −1/s)/(F − 1) s→0→ 1/(F − 1) F→1→ +∞, so a choice of F , s small enough (but constant)
guarantees that the second and third line in (14) are both non-negative. This means that in the range of λ considered, the
drift is at least some multiple of 1/λ, which is at least δ′ Zt/n for a small enough constant δ′ .

• If λ > max{λ̃, n/Zt}: then by ignoring the last positive contribution in (13) we see that the drift is at least

E[Gt
2 − Gt+1

2 | x, λ] ≥ Pr[B]α1

(
Zt

n
− 1

2λ

)
− α2e−βλ

≥ Pr[B]α1
Zt

2n
− α2e−βλ

≥ Pr[B]α1
Zt

4n
+ Pr[B]α1

1

4λ
− α2e−βλ.

Lemma 12 states that Pr[B] ≥ 1 − e−b3λZt/n ≥ 1 − e−b3 = γ since λ > Zt/n and by definition of γ . Since λ > λ̃, the last two
contributions sum up to a non-negative constant so that the drift is at least γα1

Zt

4n ≥ δZt/n.
At any time when Zt ≥ 1 and λt ≥ 1 we have

Gt
2 = Zt + K2 max{0,1/λ − 1/λmax} ≤ Zt(1 + K2),

so Zt ≥ Gt
2/(1 + K2). Letting δ′ = δ/(K2 + 1) we have for all t ≥ 0 with Zt > 0

E[Gt
2 − Gt+1

2 | x, λ] ≥ δ′Gt
2.

This proves (12). To relate Zt to Gt
2, recall that by Lemma 25, we have Zt ≥ Gt

2 − K2. To obtain a multiplicative drift, we
distinguish two cases. If Zt ≥ K2, then we have Zt ≥ Zt/2 + K2/2 ≥ (Gt

2 − K2)/2 + K2/2 = Gt
2/2. On the other hand, if

0 < Zt < K2, then we have Zt ≥ 1 = 2K2/(2K2) ≥ Gt
2/(2K2). Hence, for all times t < T we have

E
[

Gt
2 − Gt+1

2 | x, λ
]

≥ δ′ Zt/n ≥ δ′Gt
2

n max{2,2K2} ,

which concludes the proof. �
Now we are ready to prove the main result of this subsection.
16

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Proof of Theorem 19. Corollary 27 guarantees that at all times before the time T when the optimum is found,

E
[

Gt
2 − Gt+1

2 | x, λ
]

≥ δGt
2/n,

for a constant δ > 0. Moreover, Gt
2 ≤ Zt ≤ n + K2 holds for all t ≥ 0 by Lemma 25. Let gmin := inf{g2(x, λ) | x ∈

{0, 1}n, Zm(x) > 0, λ ≥ 1} = K2. By the Multiplicative Drift Theorem 3,

E[T] ≤
n

(
1 + log

(g2(x0,λ0)
gmin

))
δ

≤
n

(
1 + log

(n+K2
K2

))
δ

= O (n log n),

which concludes the proof. �
4.4. Bound on the number of evaluations

We have proved that the number of generations is respectively O (n) or O (n log n) if c < 1 or c = 1. We will now turn
our attention to the total number of function evaluations. For c = 1, we again need to assume that F is sufficiently close to
one. More precisely, we will show the following theorems.

Theorem 28. Let 0 < c < 1 < F be constants. Then there exist constants C, s0 > 0 such that for all s ≤ s0 and every dynamic mono-
tone function, the expected number of function evaluations of the SA-(1, λ)-EA with success rate s, update strength F and mutation
probability c/n is at most Cn logn.

Theorem 29. There exist constants C, s0 > 0 and F0 > 1 such that for all s ≤ s0 , all 1 < F < F0 and every dynamic monotone function,
the expected number of function evaluations of the SA-(1, λ)-EA with success rate s, update strength F and mutation probability 1/n
is at most Cn2 log log n.

Remark 30. Theorem 28 is tight since any unary unbiased algorithm needs at least �(n log n) function evaluations to opti-
mize OneMax [39]. On the other hand, Theorem 29 is not tight. Calculating a bit more precisely would allow to replace the
log log n factor by an even smaller factor. However, we suspect that even the main order n2 is not tight, since the (1 + 1)-EA
with c = 1 is known to need time O (n3/2) even in the pessimistic PO-EA model [48], which includes every dynamic mono-
tone function. The order n3/2 is tight for the PO-EA, but a stronger bound of O (n log2 n) is known for all static monotone
functions [45], and an O (n log n) bound is known for all dynamic linear functions [53].

We conjecture that the number of function evaluations required to optimise static monotone functions is linear up to
some logarithmic factors (in fact, we conjecture O (n log n)) even for c = 1. However, the methods used in [45] are rather
different from the ones in this paper, so it remains unclear whether they can be transferred.

We also conjecture that dynamic monotone functions are harder to optimise, i.e., that O (n log n) generations and O (n3/2)

evaluations are tight. More precisely, we conjecture that the ‘adversarial’ Dynamic BinVal described in our conclusion is the
hardest dynamic monotone function for the SA-(1, λ)-EA, and requires �(n log n) generations and �(n3/2) evaluations.

Remark 31. Our approach uses the best-so-far ZeroMax value Zt∗ defined below as in [32,38]. However, apart from that our
proof is rather different. In fact, we believe that the proof in these papers is not fully correct. In the proof of Theorem 3.5
in [32], the authors bound the number of evaluations per generation by identically distributed random variables, and use
Wald’s equation to bound the total number of evaluations. However, Wald’s equation is only true for the sum of independent
random variables (or for similar conditions, e.g. [59]), a condition that is not satisfied in this situation. (The random variables
are identically distributed, but not independently identically distributed.) Thus we need to use a different approach.

To avoid the issue mentioned above, we will decompose the interval [n] into smaller ‘sub-intervals’ and we will show
that with very high probability, the time needed for Zm(x) to ‘traverse’ such an interval is of the expected order. We will
compute the expected number of children at each of those steps, and will conclude using linearity of expectation.

To prove concentration of the time needed to traverse ‘sub-intervals’ we will use Theorem 7 in the case c < 1 and
Theorem 8 in the case c = 1. The key ideas are summarised in the following lemmas. The first one is an adaptation of
one proved by Hevia Fajardo and Sudholt. Below, we let Zt∗ := mint′≤t(Zt′) be the smallest value of Zt observed until time
t . Naturally, the process is unaware of this value but it will turn out useful for the analysis. We will apply the following
lemmas to intermediate stages of a run, so we will consider an arbitrary starting population size λinit in them.

Lemma 32 (Fajardo, Sudholt [32,38]). Consider the SA-(1, λ)-EA as in Theorems 28 or 29, with an arbitrary initial search point and an
initial value of λ = λinit . There exists a constant C > 0 such that at all times t ≥ 0 and for all z > 0 we have

E
[
λt · 1Zt ≥z

]
≤ λinit/F t + Cn/z.
∗

17

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Lemma 33. Consider the self-adjusting (1, λ)-EA as in Theorems 28 or 29, with an arbitrary initial search point and an initial value of
λ = λinit . Let T denote the first time t at which λt ≤ 8en logn/Zt . There exists an absolute constant C > 0 such that

E

[
T∑

t=1

λt

]
≤ Cλinit.

Lemma 34. Let (a, b) be an interval of length b − a = logn. Consider the self-adjusting (1, λ)-EA with c < 1 as in Theorem 28, with
an initial search point x = xinit such that Zm(xinit) ≤ b, and an arbitrary initial value of λ.

Let T be first time t at which Zt ≤ a. Then there exists an absolute constant D > 0 such that T ≤ D log n with probability at least
1 − n−4 .

Proof of Lemma 32. We will compute the expectation using the following formula

E[λt · 1Zt∗≥z] ≤ 1 +
∞∑

�=1

Pr
[
λt ≥ �, Zt∗ ≥ z

]
. (15)

Let � be an integer; if � ≤ max{λinit/F t , n/z}, then Pr[λt ≥ �] = 1. Otherwise, observe that for λt ≥ � there has to exist a
time before t when λ increases, i.e. when the fitness does not improve. We may then write

1λt≥�, Zt∗≥z =
t∑

k=1

1λt≥�, Zt∗≥z, t − k is the last time when λ increases. (16)

Note that if (t − k) is the last time when λ increases, then the number of children at this time must be 	λt · F k−1/s
 ≥
−1 + � · F k−1/s . Naturally, if Zt∗ ≥ z, we must also have Zt−k∗ ≥ z. In particular, we find that if the following event holds{

λt ≥ �, Zt∗ ≥ z, t − k is the last time when λ increases
}
,

then so does

{λt−k ≥ �F k−1/s, Zt−k∗ ≥ z, no improvement made at time t − k}. (17)

If Zt−k∗ ≥ z, the probability of a single child improving the fitness is at least

(1 − c/n)n−Zt−k ·
(

1 − (1 − c/n)Zt−k
)

≥ e−c · (1 − e−cz/n) ≥ cz

2ecn
,

where the last step holds by Lemma 10 since cz/n ≤ 1. In particular, this implies that the probability of the event in (17) is
at most

Pr
[
λt−k ≥ �F k−1/s, Zt−k∗ ≥ z, no improvement is made at time t − k

]

≤
(

1 − cz

2ecn

)	�F k−1/s�
.

Replacing in (16) and using F k = ek log F ≥ 1 + k log F gives

Pr
[
λt = �,Zm

∗
t ≥ z

] ≤
t∑

k=1

(
1 − cz

2ecn

)	�·F k−1/s�

≤
∞∑

k=1

(
1 − cz

2ecn

)−1+�·(1+k log F)F −1/s

=
(

1 − cz

2ecn

)−1+�F −1/s

·
(
1 − cz

2ecn

)� log F F −1/s

1 − (
1 − cz

2ecn

)� log F F −1/s

≤ C
(

1 − cz

2ecn

)�F −1/s

,

for a sufficiently large constant C since � ≥ n/z. Now using Equation (15) and taking the trivial upper bound of 1 for the
probability of the first max{n/z, λinit/F t} terms, we obtain
18

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
E
[
λt · 1Zt∗≥z

]
≤ 1 + λinit

F t
+ n/z + C

∞∑
�=n/z

(
1 − cz

2ecn

)�F −1/s

≤ 1 + λinit

F t
+ n/z + C

∞∑
�=0

(
1 − cz

2ecn

)�F −1/s

≤ 1 + λinit

F t
+ n/z + C

1

1 − (
1 − cz

2ecn

)F −1/s

≤ 1 + λinit

F t
+ n/z + C

2ec F 1/sn

cz

(
1 + cz

2ecnF 1/s

)

≤ λinit

F t
+ C ′ n

z
,

for a large constant C ′ > 0. �
Proof of Lemma 33. Consider a time t < T such that λt ≥ 8en logn/Zt . The probability that a child improves the fitness is
at least

(1 − c/n)n−Zt
(

1 − (1 − c/n)Zt
)

≥ e−c
(

1 − e−c Zt/n
)

≥ c Zt/(2ecn),

where the last step holds by Lemma 10 since c Zt/n ≤ 1. Hence the probability that all the
⌊
λt

⌉
children fail to improve the

fitness is at most
(
1 − c Zt/(2ecn)

)	λt
 ≤ exp
(−c Zt	λt
/(2ecn)

) = o(1). From this, we easily compute

E
[
λt+1 · 1t+1<T | λt

] = (1 − o(1))λt/F + o(1)λt F 1/s ≤ λt/F 1/2.

This recursively implies that E
[
λt · 1t<T

] ≤ λinit · F −t/2. Using λt ≤ λt−1 F 1/s , we can now conclude,

E

[
T∑

t=1

λt

]
= E

[∞∑
t=1

λt · 1t≤T

]
≤ E

[
F 1/s

∞∑
t=1

λt−1 · 1t≤T

]

= F 1/s
∞∑

t=0

E
[
λt · 1t<T

] ≤ F 1/s
∞∑

t=0

λinit F −t/2 ≤ Cλinit,

for some constant C . �
Proof of Lemma 34. Recall the definition

g1(x, λ) = Zm(x) + h1(λ) = Zm(x) + K1 max{0, logF (λmax/λ)},
and Gt

1 := g1(xt , λt). We define �t := min{1 + K1/s, Gt
1 − Gt+1

1 }. We observe that
∑τ

t=0 �t ≤ G0
1 − Gτ

1 ≤ K1 logF λmax +b − Zτ ,
so if we define T ′ as the first time τ when

∑τ
t=1 �t ≥ K1 logF λmax + b − a, we clearly have Zτ ≤ a. In other words, T ≤ T ′

and we will show the desired tail bound for T ′ .
To obtain the tail bound for T ′ , we observe that h1 is decreasing and that h(λ) − h(λF) ≤ K1 for all λ. By Corollary 23,

the drift of �t is at least a constant ε > 0 and Lemma 17 applied with C1 = K1/s, C2 = K1 guarantee that ε − �t is sub-
Gaussian. Thus Theorem 7 is applicable. Let D be the constant from Theorem 7. Then we choose τ = max{4/D, 2/ε} · log n
and Theorem 7 immediately implies that Pr[T > τ] ≤ Pr[T ′ > τ] ≤ n−4. �

We are now ready to prove Theorem 28. We look at a slight alteration of the SA-(1, λ)-EA, working in exactly the
same way as the ‘normal’ process except that we introduce some idle steps in which the algorithm does not do anything.
Moreover, we divide a run of the algorithm into blocks and phases as follows. For simplicity, we will assume in the following
that n/ log n is an integer. A block starts with an initialisation phase which lasts until the condition λt ≤ F 1/s8en logn/Zt

is met. Once this phase is over, the block runs for n/ log n phases of length D log n, with D the constant of Lemma 34.
During the i-th such phase the process attempts to improve Zt from n − i logn to n − (i + 1) log n. If such an improvement
is made before the D log n steps are over, then the process remains idle during the remaining steps of that phase. We call
the non-idle steps active.

If a phase fails to make the correct improvement in D log n generations, or if λt ≥ F 1/s8en log n/Zt∗ at any point after
the initialisation phase is over, then the whole block is considered a failure, and the next block starts. Obviously, the entire
process stops (and succeeds) if the optimum is found. With this partitioning of a run, we will prove Theorem 28.
19

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Proof of Theorem 28. The proof relies on the following two facts:

(i) every block finds the optimum whp;
(ii) consider a block starting with λ = λinit, then the expected number of function evaluations during this block is at most

K (λinit + n log n) for a constant K = K (c, F , s).

It is rather easy to see how those two items imply the theorem. The algorithm starts with an initial value of λ = 1, so the
expected number of function evaluations in the first block is at most O (n log n). Recall that a block terminates as soon as λ
goes above F 1/s8en logn/Zt∗ after the initialisation phase. This means that any block-run after the first one will start with
λinit ≤ F 2/s8en logn/Zt∗ and by ii its expected total number of evaluations is also O (n log n). The success of each block is
at least 1 − o(1) for all possible xinit, λinit it starts with, so by i we have an expected (1 + o(1)) blocks, each requiring an
expected O (n log n) evaluations, hence the result.

To conclude, we will now prove the two items above. Let us start with i which is simpler: the initialisation never
fails since it runs until it succeeds, i.e., until λ gets small enough or the optimum is found. By Lemma 34, ‘crossing’ any
interval of size log n fails with probability at most n−4. By union bound over all n/ log n phases of the block, the probability
that one of them fails for this reason is at most n−3 log−1 n = o(n−3). Finally, the block might also fail because we have
λt ≥ F 1/s8en logn/Zt∗ at some point, which means that the (t − 1)-th step was not successful despite λt−1 ≥ 8en logn/Zt−1,
since Zt∗ ≤ Zt−1. This happens with probability at most n−2 by Lemma 12, so by union bound over the Dn generations in
the different phases, the probability that this happens at some time during a given block is at most o(1).

We now prove ii. Consider any 1 ≤ i ≤ n/ log n; we will show that the number of function evaluations in the i-th phase
of the block is at most of order n

n−i logn . In a slight abuse of notation, for t ∈ [D log n] we will let λt
i denote the value of λ

in the t-th step of the i-th phase, and we set λt
i to be 0 if step t is idle, e.g. if the improvement to Zt ≤ n − (i + 1) log n has

already been found, or if the i-th phase does not happen because the block has failed before that.
Since the previous phase is successful, the value of λ at the start of this phase must be λ0

i ≤ C n logn
n−i logn . By definition, t is

only active if Zt has never been at or below n − (i + 1) log n, so by Lemma 32 we have

E
[
λt

i

] ≤ C ′
(

λ0
i /F t + n

n − (i + 1) log n

)
.

Note that in each round, the number of function evaluations is 	λt
i
 ≤ 1 + λt

i . Summing over the D log n steps of the i-th
phase, we see that the total number of function evaluations during this phase satisfies

E
[∑D log n

t=1
(1 + λt

i)

]
≤ C ′′ n log n

n − (i + 1) log n
,

for a constant C ′′ > 0. Hence, excluding the initialisation phase, the total number of function evaluations is in expectation
at most

C ′′
n/ log n∑

i=1

n logn

n − i log n
= C ′′

n/ log n∑
j=1

n log n

j logn
≤ C ′′′n logn

for a new constant C ′′′ > 0. Lemma 33 immediately gives that the expected number of function evaluations of the initiali-
sation phase is at most C ′λinit, and ii is proved. �

The proof of Theorem 29 is extremely close to that above, so we will only give a sketch of it. The main dif-
ference is the way the phases of a block are defined: during the i-th phase, the algorithm attempts to improve Zt

from n/ logi−1 n to n/ logi n in Dn log log n steps for a large constant D . One checks that n/ logi n = n/ei log logn is less than
1 for i > log n/ log log n, so we have 1 + log n/ log log n phases in a block. Since Gt

2 has multiplicative drift, Theorem 8 im-
mediately gives that the probability that a phase fails to improve Zt is at most log−2 n, so the probability that any phase
in a fixed block fails is O (log n/ log log n · log−2 n) = o(1). In the i-th phase, the expected value of λ at each step is at most
O (logi n). The total number of function evaluations per block after the initialization phase is then

O (1)

log n/ log log n∑
i=0

n log log n · logi n = O (n2 log log n),

which implies Theorem 29.

5. Close to the optimum success rates become asymptotically irrelevant

In this section, we will show that one can still have efficient search even when s is large, provided one starts close
enough to the optimum. More precisely, we will prove the following theorem. For simplicity, we only treat the case c < 1.
20

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181

λ
}

Theorem 35. Let 0 < c < 1 < F be constants. For every s > 0, there exists an ε > 0 such that for any initial search point x0 satisfying
Zm(x0)/n ≤ ε and for any initial population size λinit ≥ 1 the following holds. For every dynamic monotone function, with high
probability the number of generations of the SA-(1, λ)-EA with success rate s, update strength F , and mutation probability c/n and
initial state (x0, λinit) is O (n). Additionally, the number of function evaluations is ω(n logn) with probability o(1).

The approach will be essentially the same as in Section 4.2. The main difference lies in the potential function: we will
need to introduce a second penalty term into the part h(λ) that depends on λ. Moreover, when s is large, no potential
function can have strong positive drift towards the optimum for all values of Zt , as it would otherwise contradict the
negative results from Section 6. Hence, we will only show that the potential has positive drift when Zt/n ≤ 2ε. Then by the
Negative Drift Theorem, starting from Zt/n ≤ ε it is unlikely that the exploration reaches a search point for which Zt/n > 2ε
in polynomial time. Hence, the algorithm stays in a range where the drift is positive, and by the Additive Drift Theorem the
optimum is found efficiently.

Definition 36 (Potential function for positive result near optimum). For all λ ≥ 1, we set

h3(λ) = K1 max
{

0, logF λmax/λ
} + K2e−K3λ,

where λmax = F 1/sn and the constants K1, K2, K3 > 0 will be fixed later. Then for x ∈ {0, 1}n and λ ∈ [1, ∞) we define

g3(x, λ) := Zm(x) + h3(λ),

and we set Ht
3 := h3(xt , λt) and Gt

3 := g3(xt , λt), and as usual Zt := Zm(xt).

As before, we get a sandwich lemma.

Lemma 37 (“Sandwich” inequalities). For all x, λ we have

g3(x, λ) − K1 logF λmax − K2 ≤ Zm(x) ≤ g3(x, λ).

Proof. The proof runs as for Lemma 21, except that we also use K2e−K3λ ∈ [0, K2]. �
As in Section 4, A = At denotes the event that some child of xt flips no one-bit and B = Bt the event that some child of

xt flips (at least) one zero-bit. Also recall that we abbreviate x = xt and λ = λt when t is clear from the context.

Claim 38. At all times t ≥ 1 with Zt > 0 we have

E[Ht
3 − Ht+1

3 | x, λ] ≥ 1λ<n Pr[B̄](K1/s + K2(1 − e−K3(F 1/s−1))e−K3λ
)

− Pr[B] · (K1 + K2e−K3λ/F)
.

Proof. The proof is extremely similar to that of Claim 22. In particular, the contribution of the first term K1 max
{

0, logF λmax/

is exactly the same, so we will only compute the contribution of the second term. Since that term is non-negative at time t
and is at most K2e−K3λ/F at time t + 1 due to λt+1 ≥ λ/F , it contributes at least −K2e−K3λ/F to the difference Ht

3 − Ht+1
3 .

In the case f (xt+1) ≤ f (xt) of non-success we have λt+1 = λF 1/s , so we may use the exact contribution to Ht
3 − Ht+1

3 ,
which is

K2(1 − e−K3λ(F 1/s−1))e−K3λ ≥ K2(1 − e−K3(F 1/s−1))e−K3λ,

since λ ≥ 1. As in Section 4.1, observing that Pr[f (xt+1) > f (xt)] ≤ Pr[B] and using the law of total expectation gives the
result. �
Corollary 39. There exist constants ε, δ, K1, K2, K3 > 0 (which may only depend on c, F , s) such that for all times t when 0 < Zt/n ≤
2ε we have

E
[

Gt
3 − Gt+1

3 | x, λ : Zm(x)/n ≤ 2ε
]

≥ δ.

This also holds if we replace Gt
3 − Gt+1

3 by min{1 + K1/s + K2 , Gt
3 − Gt+1

3 }.

Proof. Combining Claims 15, 16 and 38, there exist constants α1, α2, α3, β > 0 (which may only depend on c, F , s) such
that at all times t with Zt > 0 we have
21

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
E[Gt
3 − Gt+1

3 | x, λ] ≥ Pr[B]
(
α1 − K1 − α2 K2e−K3λ/F

)
− α3e−βλ

+ Pr[B̄]1λ<n

(
α4 K2 K3e−K3λ + K1/s

)
. (18)

We choose K1 = α1/2, K3 = β/2, K2 ≥ 2α3/(α4 K3). We will prove a constant lower bound in two different cases, depending
on whether λ is small or not.

• If λ ≤ F
K3

log 2α2 K2
K1

: then, ignoring the (positive) contribution of Pr[B](α1 − K1) and Pr[B̄]K1/s, we see that the drift of
g is at least

E[Gt
3 − Gt+1

3 | x, λ] ≥ −Pr[B]α2 K2e−K3λ/F − α3e−βλ + Pr[B̄]α4 K2 K3e−K3λ

≥ −Pr[B]α2 K2 + α3e−K3λ(2 Pr[B̄] − 1),

≥ −Pr[B]α2 K2 + α3

(
K1

2α2 K2

)F

(2 Pr[B̄] − 1) (19)

where in the second step we bounded e−K3λ/F ≤ 1 and used β ≥ K3 and K2 ≥ 2α3/(α4 K3), and in the third step we used
λ ≤ F/K3 · log(2α2 K2/K1). Recall that Pr[B̄] ≥ e−b2λZt/n for some b2 > 0 by Lemma 12. Since λ is bounded by a constant
in the current case, if we choose ε small enough (w.r.t. all previous constants) then we can achieve 2 Pr[B̄] − 1 ≥ 1/2 and

Pr[B]α2 K2 ≤ α3
4

(
K1

2α2 K2

)F
. Then the drift must be at least

E[Gt
3 − Gt+1

3 | x, λ] ≥ α3 K F
1

4(2α2 K2)F
≥ δ,

for a δ > 0 chosen small enough.
• If F

K3
log 2α2 K2

K1
≤ λ < n: then the first contribution in (18) is at least Pr[B]K1/2. Hence, the drift is at least

E[Gt
3 − Gt+1

3 | x, λ] ≥ Pr[B] K1

2
− α3e−βλ + Pr[B̄]

(
α4 K2 K3e−K3λ + K1

s

)

= Pr[B] K1

2
+ Pr[B̄] K1

s
+

(
2 Pr[B̄] − e−K3λ

)
· α3e−K3λ

≥ K1

max{2, s} +
(

2 Pr[B̄] − e−K3λ
)

· α3e−K3λ,

where the second line holds since K3 = β/2 and K2 = 2α3/(α4 K3). Recall that Pr[B̄] = (1 − c/n)	λ
Zt ≥ e−4cλε whenever
Zt/n ≤ 2ε and n is sufficiently large. Choosing ε small guarantees that this is larger than e−K3λ for all λ, meaning that the
drift of Gt

3 is at least K1/ max{2, s} ≥ δ for a suitable δ > 0.
• If λ ≥ n: then in (18) every negative contribution is of order e−�(n) while the term Pr[B] (α1 − K1) = Pr[B]K1 is (1),

so the drift is at least δ for some δ > 0.
For the last part of the statement, we use the same argument as for Corollary 23, using that (18) also holds for

min{1, Gt − Gt+1} since Claims 15 and 16 do, and h may only increase by K1/s + K2 at each step. �
We may now prove Theorem 35.

Proof of Theorem 35. Let ε, δ, K1, K2, K3 > 0 be the constants from Corollary 39 and assume the initial search point x0 is
such that Zm(x0)/n ≤ ε. Analogously to the proof of Theorem 28, we define �t = min{1 + K1/s + K2, Gt

3 − Gt+1
3 }, let T be

the first time t when Zt = 0 or Gt
3 = 0, and observe that this actually implies Z T = 0. Moreover, we define T ′ as the first

time when Zt/n > 2ε.
By Corollary 39 the drift at any time t < min{T , T ′} is at least

E
[
1t<min{T ,T ′}�t | x, λ

] ≥ δ.

As in the proof of Theorem 28, we use Lemma 17 to see that δ −�t is sub-Gaussian since h3 is decreasing may not increase
too much at each step.

In particular, Theorem 7 gives that, for a suitable constant D > 0, the event E := {T > Dn and
∑Dn

τ=0 �τ < εn +
K1 log λmax + K2} has probability Pr[E] = e−�(n) . If the second event does not happen,

∑Dn
τ=0 �τ ≥ εn + K1 logλmax + K2,

then by the Sandwich Lemma 37 this implies Zt ≤ 0 for t = Dn and thus T ≤ Dn. Hence, Pr[T ≤ Dn] ≥ Pr[Ē] = 1 − e−�(n) ,
and the statement about the number of generations is proven. For the number of function evaluations, in the proof in
Theorem 28 we use the potential function as a black box (except for the Sandwich Lemma), so the proof carries over. �
22

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
6. Small success rates yield exponential runtimes

The aim of this section is to show that for large s, that is, for a small enough success rate, the SA-(1, λ)-EA needs super-
polynomial time to find the optimum of any dynamic monotone function. The reason is that the algorithm has negative
drift in a region that is still far away from the optimum, in linear distance. In fact, as we have shown in Section 5, the drift
is positive close to the optimum. Thus the hardest region for the SA-(1, λ)-EA is not around the optimum. This surprising
phenomenon was discovered for OneMax in [38]. We show that it is not caused by any specific property of OneMax, but
that it occurs for every dynamic monotone function. Even in the OneMax case, our result is slightly stronger than [32], since
they show their result only for 1 < F < 1.5, while ours holds for all F > 1. On the other hand, they give an explicit constant
s1 = 18 for OneMax.

Theorem 40. Let 0 < c ≤ 1 < F . For every ε > 0, there exists s1 > 0 such that for all s ≥ s1 the following holds. For every dynamic
monotone function and every initial search point xinit satisfying Zm(xinit) ≥ εn the number of generations of the SA-(1, λ)-EA with
success rate s, update strength F , and mutation probability c/n is e�(n/ log2 n) with high probability.

Definition 41 (Potential function for negative result). Given F , we define

h4(λ) := −K4 log2
F (λF) = −K4 · (logF (λ) + 1)2

with K4 a positive constant to be chosen later. As before, we define the potential function to be the sum of Zm(x) and
h4(λ):

g4(x, λ) = Zm(x) + h4(λ).

As usual, we set Gt
4 := g4(xt , λt), Ht

4 := h4(λ
t) and Zt := Zm(xt). Contrary to the previous sections, we now are now

aiming to show that the difference Gt+1
4 − Gt

4 is positive in expectation. (Note the switched order of t + 1 and t .) This will
require approaches slightly different from the ones we used so far.

The theorem will be proved using the following lemmas. Recall from Section 3.1 the event B that at least one child flips
a zero-bit.

Lemma 42. There exists a constant α1 > 0 depending only on c such that at all times t we have

E[Zt+1 − Zt | x, λ] ≥ −Pr[B]α1(1 + logλ).

Lemma 43. There exist constants ε, α2 > 0 depending only on c, F such that if Zt ≤ εn and λ ≤ F , then

E[Zt+1 − Zt | x, λ] ≥ α2.

Lemma 44. Assume that s ≥ 1 ≥ c. At all times t with Zt > 0 we have

E[Ht+1 − Ht | x, λ] ≥ 1

3
Pr[B]K4(1 + logF λ)1λ≥F − 3

s
K4(1 + logF λ)

Proof of Lemma 42. The event B̄ implies supp(xt+1) ⊆ supp(xt) and thus Zt+1 − Zt ≥ 0. Hence, E[Zt+1 − Zt | B̄] ≥ 0. By the
law of total probability, we may thus bound

E[Zt+1 − Zt] = Pr[B] · E[Zt+1 − Zt | B] + Pr[B̄] · E[Zt+1 − Zt | B̄]
≥ Pr[B] · E[Zt+1 − Zt | B]. (20)

To bound the conditional expectation, let N j be the number of zero-bits flipped by the j-th individual, and let N :=
max j{N j}. We have Zt+1 − Zt ≥ −N , so we would like to bound E[−N | B]. The events B j are positively correlated with the
event N ≥ z, for every z ≥ 1. Therefore,

Pr[N ≥ z | B] ≤ Pr[N ≥ z | B, B1, . . . , B	λ
] = Pr[N ≥ z | B1, . . . , B	λ
]

= 1 −
	λ
∏
j=1

(1 − Pr[N j ≥ z | B j]).

As in the proof of Claim 16, we can couple the one-bit flips in y j given B j by first sampling the position l of the left-
most one-bit flip, and then flipping all bits to the right of l independently with probability c/n. Since there are less than
23

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
n positions to the right of l, this shows that N j is dominated by 1 + N ′ , where N ′ follows a Bin(n, c/n) distribution. In
particular, by the Chernoff bound, Theorem 11, Pr[N j ≥ z | B j] ≤ Pr[N ′ ≥ z − 1] ≤ e−α0(z−1) for a constant α0 that only
depends on c. Hence,

Pr[N ≥ z | B] ≤ 1 −
	λ
∏
j=1

(1 − Pr[N j ≥ z | B j]) ≤ 1 − (1 − e−α0(z−1))	λ

≤ min{1, 	λ
e−α0(z−1)},
and

E[N | B] =
∞∑

z=1

Pr[N ≥ z | B] ≤
∞∑

z=1

min{1, 	λ
e−α0(z−1)}

≤ 1 + log	λ
 +
∞∑

z=log	λ
+1

	λ
e−α0(z−1) ≤ α1(1 + logλ)

for a suitable constant α1 > 0. Combining this with (20), we obtain

E[Zt+1 − Zt] ≥ Pr[B] · E[Zt+1 − Zt | B]
≥ Pr[B] · E[−N | B] ≥ −Pr[B]α1(1 + logλ),

as desired. �
Proof of Lemma 43. For all j ∈ [λ
], let us denote by M j the number of one-bits flipped by the j-th offspring and M =
min j M j . We also define N j as the number of zero-bits flipped by the j-th child and let N = max j N j .

Clearly, Zt+1 − Zt ≥ M − N , so it suffices to prove that E [M − N] ≥ α2 for some constant α2.
Observe that M is the minimum of 	λ
 ≤ 	F
 i.i.d. random variables following a binomial distribution Bin(n − Zt, c/n).

In particular,

Pr[M ≥ 1] =
(

1 − (1 − c/n)(n−Zt)
)	λ

≥
(

1 − e−(1−ε)c
)	F

,

since Zt ≤ εn. From this we deduce that E [M] ≥ (1 − e−(1−ε)c)	F
 = �(1).
Observe now that N ≤ ∑

j N j . Since each N j follows a binomial distribution Bin(Zt , c/n) the expected value of N is at
most

E [N] ≤ 	λ
 Ztc/n ≤ εc 	F
 .

Choosing ε small enough and α2 = (
1 − e−(1−ε)c

)	F
 − εc 	F
 gives the result. �
Proof of Lemma 44. Conditioned on f (xt+1) ≤ f (xt) we have

Ht+1
4 − Ht

4 = −K4 log2
F (λF 1+1/s) + K4 log2

F (λF)

= −K4

(
log2

F (λF) + 2 logF (λF)/s + 1/s2 − log2
F (λF)

)
= −1

s
K4 (2 logF λ + 2 + 1/s)

≥ −3

s
K4 (1 + logF λ) ,

since s ≥ 1.
If we now condition on f (xt+1) > f (xt) and assume λ ≥ F , we have

Ht+1
4 − Ht

4 = −K4 log2
F (λ) + K4 log2

F (λF)

= K4 (2 logF λ + 1)

≥ K4(1 + logF λ).

We observe that h4 is decreasing with λ, so when λ < F we may simply lowerbound the drift by 0.
24

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
The law of total probability then gives

E
[

Ht+1
4 − Ht

4

]
≥ Pr[f (xt+1) > f (xt)]K4(1 + logF λ)1λ≥F

− Pr[f (xt+1) ≤ f (xt)]3

s
K4(1 + logF λ).

Clearly Pr[f (xt+1) ≤ f (xt)] ≤ 1, so to obtain the result is suffices to prove that Pr[f (xt+1) > f (xt)] ≥ Pr[B]/3.
Recall that B is the event that some offspring flips a zero-bit of the parent into a one-bit at time t . Assume that B

holds, and let j ∈ [λ
] be the index of a child which flips a zero-bit of the parent. Clearly, if y j flips no one-bit of xt into
a zero-bit, then f (y j) > f (x) and the fitness increases at step t . The event that y j flips no one-bit is independent of B and
has probability (1 − c/n)n−Zt ≥ e−c . In particular, this implies that Pr[f (xt+1) > f (xt)] ≥ e−c Pr[B] ≥ Pr[B]/3 since c ≤ 1. �
Corollary 45. For all 0 < c ≤ 1 < F and every sufficiently small ε > 0 there exists s1 > 0 such that for all s ≥ s1 the following holds.
There exists a constant δ > 0 such that if εn/2 ≤ Zt ≤ εn then

E
[

Gt+1
4 − Gt

4 | x, λ
]

≥ δ.

Proof. We take ε > 0 so small that Lemma 43 is applicable, and let α1, α2 be the other constants from Lemmas 42 and 43.
We will show that for a sufficiently large (but constant) s, the drift of Gt

4 is at least a constant δ when Zt ∈ [εn/2, εn].
We distinguish on whether λ is small or not.

If λ ≥ F , then Lemmas 42 and 44 combine into

E[Gt+1
4 − Gt

4 | x, λ] ≥ Pr[B] (1
3 K4(1 + logF λ) − α1(1 + log λ)

)
− 3

s K4(1 + logF λ).

We choose K4 large enough so that α1(1 + logλ) ≤ K4(1 + logF λ)/12 for all λ. The drift is then

E[Gt+1
4 − Gt

4 | xt, λt] ≥ 1
4 Pr[B]K4(1 + logF λ) − 3

s K4(1 + logF λ)

= K4(1 + logF λ)
(

1
4 Pr[B] − 3

s

)
. (21)

Recall that Lemma 12 guarantees that Pr[B] ≥ 1 − e−b3 Ztλ/n for some positive constant b3. In particular, since Zt ≥ εn/2,

Pr[B] ≥ 1 − e−b3ελ/2 ≥ 1 − e−b3ε/2

is at least a constant. For a choice of s larger than 24(1 − e−b3ε/2), the bound (21) is at least E[Gt+1
4 − Gt

4 | x, λ] ≥ δ for some
constant δ > 0.

If λ < F , then Lemmas 43 and 44 guarantee that

E[Gt+1
4 − Gt

4 | x, λ] ≥ α2 − 3

s
K4(1 + logF λ)

≥ α2 − 6

s
K4.

For a choice of s large enough this is at least δ, for some constant δ > 0. �
We are now ready to prove the main theorem of this section. Essentially, it follows from Corollary 45 and the Negative

Drift Theorem 4. However, compared to the other sections, there is a slight complication since the difference |Gt
4 − Zt | =

K4 log2
F (λF) is not bounded. However, we will prove that with overwhelming probability the difference does not grow larger

than K4
√

n.

Proof of Theorem 40. Let � := n2/F and let T be the first point in time when Zt ≤ εn/2. We first show that with over-
whelming probability, we have λt ≤ � for all 1 ≤ t ≤ min{T , en}. Indeed, to obtain some λ > �, it would be necessary to
have a step with λ > �F −1/s that does not improve the fitness. If this were to happen before time T , it must happen in a
step with Zt ≥ εn/2. By Lemma 12, the probability to have a non-improving step is e−�(λ) . By a union bound, the probabil-
ity that such a step happens before time en is at most en−�(λ) = o(1). Hence, w.h.p. λt ≤ � for all 1 ≤ t ≤ min{T , en}. Note
that in this case we have |Gt

4 − Zt | ≤ 4K4 log2
F n, so in particular, Gt

4 > 4K4 log2
F n implies that Zt > 0 for λ ≤ �.

In the following, we will apply the Negative Drift Theorem 4 to Gt
4. The drift condition is satisfied by Corollary 45

whenever Zt ∈ [εn/2, εn], which is implied whenever Gt
4 ∈ [εn/2 + 4K4 log2

F n, εn] and λ ≤ �.
For the step size condition, let L j denote the total number of bits flipped in y j , and L := max{L j} j . Since L j follows

a Bin(n, c/n) distribution, by the Chernoff bound, Theorem 11, there is a constant β > 0 such that Pr[L j ≥ z] ≤ e−βz for
25

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
all z ≥ 0. Let r := 4K4 logF n/β , and note that we can achieve |Ht+1
4 − Ht

4| ≤ r/2 when λ ≤ �, by making β > 0 smaller if
necessary. Then for all j ≥ 1,

Pr[|Gt+1
4 − Gt

4| ≥ jr] ≤ Pr[|Zt+1 − Zt | ≥ (j − 1/2)r] ≤ Pr[L ≥ (j − 1/2)r]
= 1 − (

1 − Pr[L1 ≥ (j − 1/2)r])	λ

≤ 1 − (1 − e−β(j−1/2)r)	λ
 ≤ 1 − (1 − n−4(j−1/2))�+1

≤ 1 − e− 1
2 (�+1)n−4(j−1/2) = 1 − e−n−�(j)

= n−�(j) ≤ e− j,

where the last inequality holds for n sufficiently large. Thus the step size condition of Theorem 4 is satisfied, and we obtain
that w.h.p. Gt

4 ≥ εn/2 + 4K4 log2
F n for e�(n/ log2 n) steps if λt ≤ � during this time. Since the latter also holds w.h.p., this

implies T = e�(n/ log2 n) w.h.p., which concludes the proof. �
7. Simulations

In this section, we provide simulations that complement our theoretical analysis. The functions optimized in our sim-
ulations include OneMax, Binary, HotTopic [46], BinaryValue, and Dynamic BinVal [41], where Binary is defined as
f (x) = ∑	n/2�

i=1 xin + ∑n
i=	n/2�+1 xi , and BinaryValue is defined as f (x) = ∑n

i=1 2i−1xi . The definition of HotTopic can be
found in [46], and we set the parameters to L = 100, α = 0.25, β = 0.05, and ε = 0.05. Dynamic BinVal is the dynamic
environment which applies the BinaryValue function to a random permutation of the n bit positions, see [41] for its formal
definition. In all experiments, we start the SA-(1, λ)-EA with a randomly sampled search point and an initial offspring size
of λinit = 1. The algorithm terminates when the optimum is found or after 500n generations. The code for the simulations
can be found at https://github .com /zuxu /OneLambdaEA.

7.1. Threshold of s

In Fig. 1, we follow the same setup as in [32], but for a larger set of functions. We observe exactly the same threshold
s = 3.4 for OneMax. For the other monotone functions of our choice, the threshold effect happens before s = 3.4, which
suggests that some hard monotone functions might have a lower allowance for the value of s than OneMax, other than
conjectured by Hevia Fajardo and Sudholt in [32].

7.2. Effect of F

We have shown that the SA-(1, λ)-EA with c < 1 optimizes every dynamic monotone function efficiently when s is
sufficiently small and is inefficient when s is too large. Both results hold for arbitrary F . It is natural to assume that there is
a threshold s0 between the efficient and inefficient regime. However, Fig. 2 below shows that the situation might be more
complicated. For this plot, we have first empirically determined an efficiency threshold for s on Dynamic BinVal (see Fig. 1),
then fixed s slightly below this threshold and systematically varied the value of F . For this intermediate value of s, we see
that there is a phase transition in terms of F .

Hence, we conjecture that there is no threshold s0 such that the SA-(1, λ)-EA is efficient for all s < s0 and all F > 1, and
inefficient for all s > s0 and all F > 1. Rather, we conjecture that there is ‘middle range’ of values of s for which it depends
on the value of F whether the SA-(1, λ)-EA is efficient. Note that we know from this paper that this phenomenon can only
occur for a ‘middle range’: both for sufficiently small s (Theorems 18, 28), and for sufficiently large s (Theorem 40), the
value of F does not play a role.

In general, smaller values of F seem to be beneficial. However, the correlation is not perfect, see for example the dip for
c = 0.98 and F = 5.5 in the left subplot of Fig. 2. These dips also happen for some other combinations of s, F and c (not
shown), and they seem to be consistent, i.e., they do not disappear with a larger number of runs or larger values of n up
to n = 5000. To test whether this is due to the rounding scheme, we checked whether the effect disappears if we round λ
in each generation stochastically to the next integer; e.g., λt = 2.6 means that in generation t we create two offspring with
probability 40% and three offspring with probability 60%. The effect remains, and the runtime still seems to depend on F in
a non-monotone fashion, see the right subplot of Fig. 2.

The impact of F is visible for all ranges c < 1, c = 1 and c > 1. For c = 1 we have only proven efficiency for sufficiently
small F . However, we conjecture that there is no real phase transition at c = 1, and the ‘only’ difference is that our proof
methods break down at this point. For the fixed s, with increasing c the range of F becomes narrower and restricts to
smaller values while larger values of c admit a larger range of values for F .
26

https://github.com/zuxu/OneLambdaEA

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
Fig. 1. Average number of generations of the self-adjusting (1, λ)-EA with F = 1.5 and c = 1 in 10 runs when optimizing monotone functions with n =
10000, normalised and capped at 500n generations. HotTopic and Binary behave similarly, so the corresponding curves have a large overlap. The evaluated
values of s range from 0.2 to 5 with a step size of 0.2 for all functions except that Dynamic BinVal was not evaluated for 3.2 ≤ s ≤ 5 due to performance
issues.

Fig. 2. Average number of generations of the self-adjusting (1, λ)-EA with s = 1.8 and in 50 runs when optimizing Dynamic BinVal with n = 1000, nor-
malised and capped at 500n generations. The left and right subplots correspond to the deterministic and randomized rounding schemes respectively. The
length of each vertical bar is one standard deviation at its corresponding data point.

8. Conclusion

In this paper, we have studied the SA-(1, λ)-EA on dynamic monotone functions. Hevia Fajardo and Sudholt had shown
an extremely strong dependency of the performance on the success rate s for the OneMax benchmark. We have shown that
there is nothing specific to OneMax about the situation. The same effect happens for any (static or dynamic) monotone
fitness function: for small values of s, the SA-(1, λ)-EA is efficient on all dynamic monotone functions, while for large values
of s, the SA-(1, λ)-EA is inefficient on every dynamic monotone function. In the latter case, the bottleneck is not around
the optimum, but rather in some area of linear distance from the optimum. Thus the SA-(1, λ)-EA is one of the surprising
examples showing that some algorithms may fail in easy fitness landscapes, but succeed in hard fitness landscapes.

Hevia Fajardo and Sudholt have conjectured that the problem becomes worse the easier the fitness landscape is. Con-
cretely, they conjectured that any parameter choice that works for OneMax should also give good result for any other
landscape [38]. In a companion paper [60], we disprove this conjecture, but for an unexpected reason: there are different
ways to measure ‘easiness’ of a fitness landscape. While it is theoretically proven that OneMax is the easiest fitness func-
tion with respect to decreasing the distance from the optimum [54], this is not the aspect that matters for the SA-(1, λ)-EA.
Here, the important aspect is how easy it is to find a fitness improvement, since this may induce too small target pop-
27

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
ulation sizes in the SA-(1, λ)-EA. For finding fitness improvements, there are easier functions than OneMax, for example
the dynamic BinVal function [41] or HotTopic functions [46], see [60] for details. It remains open to determine the easiest
dynamic monotone function feasiest with respect to fitness improvements. A candidate for feasiest might be the ‘adversarial’
Dynamic BinVal, which we define as Dynamic BinVal (see Section 7) with the exception that the permutation is not random
but chosen so that any 0-bit is heavier than any 1-bit. With this fitness function, any 0-bit flip gives a fitter child, regardless
of the number of 1-bit flips, so it is intuitively convincing that it should be the easiest function with respect to fitness
improvement.

Moreover, the conjecture of Hevia Fajardo and Sudholt might still hold if we replace OneMax by feasiest. I.e., is it true
that any parameter choice that works for feasiest also works for any other dynamic monotone function, and perhaps even in
yet more general settings?

Apart from that, the most puzzling part of the picture is the experimental finding that in a ‘middle regime’ of success
rates, the update strength F seems to play a role in a non-monotone way (for fixed success rate s). It is open to prove
theoretically that there is indeed such a ‘middle regime’ where F plays a role at all. For why this effect is non-monotone in
F , we do not even have a good hypothesis. As outlined in Section 7, it does not seem to be a rounding effect. This shows
that we are still missing important parts of the overall picture.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank Dirk Sudholt for helpful discussions during the Dagstuhl seminar 22081 “Theory of Randomized Optimization
Heuristics”, and we thank Mario Hevia Fajardo for sharing his code for comparison.

We also thank the two anonymous reviewers for their valuable input and suggestions. Their feedback contributed to
improving the quality of this paper, and we are grateful for their time and effort.

References

[1] M. Kaufmann, M. Larcher, J. Lengler, X. Zou, Self-adjusting population sizes for the (1, λ)-EA on monotone functions, in: Parallel Problem Solving from
Nature, PPSN, Springer, 2022.

[2] A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Trans. Evol. Comput. 3 (1999) 124–141.
[3] J. Jägersküpper, T. Storch, When the plus strategy outperforms the comma strategy and when not, in: Foundations of Computational Intelligence, FOCI,

IEEE, 2007, pp. 25–32.
[4] J.E. Rowe, D. Sudholt, The choice of the offspring population size in the (1, λ) evolutionary algorithm, Theor. Comput. Sci. 545 (2014) 20–38.
[5] D. Antipov, B. Doerr, Q. Yang, The efficiency threshold for the offspring population size of the (μ, λ) EA, in: Genetic and Evolutionary Computation

Conference, GECCO, 2019, pp. 1461–1469.
[6] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, C. Zarges, Optimizing monotone functions can be difficult, in: International Conference on Parallel Problem

Solving from Nature, Springer, 2010, pp. 42–51.
[7] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, C. Zarges, Mutation rate matters even when optimizing monotonic functions, Evol. Comput. 21 (1) (2013)

1–27.
[8] J. Lengler, A. Steger, Drift analysis and evolutionary algorithms revisited, Comb. Probab. Comput. 27 (4) (2018) 643–666.
[9] G. Badkobeh, P.K. Lehre, D. Sudholt, Unbiased black-box complexity of parallel search, in: Parallel Problem Solving from Nature, PPSN, Springer, 2014,

pp. 892–901.
[10] S. Böttcher, B. Doerr, F. Neumann, Optimal fixed and adaptive mutation rates for the LeadingOnes problem, in: Parallel Problem Solving from Nature,

PPSN, Springer, 2010, pp. 1–10.
[11] B. Doerr, C. Doerr, F. Ebel, From black-box complexity to designing new genetic algorithms, Theor. Comput. Sci. 567 (2015) 87–104.
[12] B. Doerr, C. Doerr, J. Yang, Optimal parameter choices via precise black-box analysis, Theor. Comput. Sci. 801 (2020) 1–34.
[13] B. Doerr, C. Witt, J. Yang, Runtime analysis for self-adaptive mutation rates, Algorithmica 83 (4) (2021) 1012–1053.
[14] G. Karafotias, M. Hoogendoorn, Á.E. Eiben, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput. 19 (2) (2014)

167–187.
[15] A. Aleti, I. Moser, A systematic literature review of adaptive parameter control methods for evolutionary algorithms, ACM Comput. Surv. 49 (3) (2016)

1–35.
[16] B. Doerr, C. Doerr, Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings, in: Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, 2015, pp. 1335–1342.
[17] J. Lässig, D. Sudholt, Adaptive population models for offspring populations and parallel evolutionary algorithms, in: Foundations of Genetic Algorithms,

FOGA, 2011, pp. 181–192.
[18] B. Doerr, C. Gießen, C. Witt, J. Yang, The (1 + λ) evolutionary algorithm with self-adjusting mutation rate, Algorithmica 81 (2) (2019) 593–631.
[19] A. Rajabi, C. Witt, Self-adjusting evolutionary algorithms for multimodal optimization, in: Genetic and Evolutionary Computation Conference, GECCO,

2020, pp. 1314–1322.
[20] B. Doerr, C. Doerr, J. Lengler, Self-adjusting mutation rates with provably optimal success rules, Algorithmica 83 (10) (2021) 3108–3147.
28

http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE7BA5DB0DFB2DF19D37478A6CEC52CE0s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE7BA5DB0DFB2DF19D37478A6CEC52CE0s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibF00D862A892ADAC00DA0D79401A4F576s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib507E94AA66077FD7DFCD6498782093ADs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib507E94AA66077FD7DFCD6498782093ADs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib69AB20B76B828C763A62A549219FB6EBs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib6D56E76102F78605E7B4C2CFBB195C52s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib6D56E76102F78605E7B4C2CFBB195C52s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1E1AE3A6A5FC9FE9DDE18ACDBC5A3293s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1E1AE3A6A5FC9FE9DDE18ACDBC5A3293s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1497F29384B8CC4DB3A8C9C2307055B5s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1497F29384B8CC4DB3A8C9C2307055B5s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibFC24C696B15BF658174EA2F62FE98240s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib30FBED4BB5E37363C4CA2D3CD64BFB61s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib30FBED4BB5E37363C4CA2D3CD64BFB61s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibC6411A3B9E1CBD8F4257D0C0CC304912s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibC6411A3B9E1CBD8F4257D0C0CC304912s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib7B49045DAC36CE51262323547425BD8As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib2F0D1FF87834A4EB9F45E478550D2486s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib9DBAA6A7C5CB19C1412335A57DA5F833s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib3DE16B6ABFCEE40914B8358F9581438Bs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib3DE16B6ABFCEE40914B8358F9581438Bs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibB819CDA3E14C48CB1B29A83611E0F73Ds1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibB819CDA3E14C48CB1B29A83611E0F73Ds1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib2965FB97BE1F523999A9BAF90F3AA32Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib2965FB97BE1F523999A9BAF90F3AA32Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib830944E70D5D0768DF0268C0D751E731s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib830944E70D5D0768DF0268C0D751E731s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibF5F762A62C85E9BCE2589F2F9D9C7857s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib72B22DC8A2D7715DAA4A6C7D42CD4F72s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib72B22DC8A2D7715DAA4A6C7D42CD4F72s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1093A25543C8FFD5F6CA608B47DD96FCs1

M. Kaufmann, M. Larcher, J. Lengler et al. Theoretical Computer Science 979 (2023) 114181
[21] A. Rodionova, K. Antonov, A. Buzdalova, C. Doerr, Offspring population size matters when comparing evolutionary algorithms with self-adjusting
mutation rates, in: Genetic and Evolutionary Computation Conference, GECCO, 2019, pp. 855–863.

[22] A. Lissovoi, P.S. Oliveto, J.A. Warwicker, On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation, Proc. AAAI Conf.
Artif. Intell. 33 (1) (2019) 2322–2329.

[23] A. Lissovoi, P. Oliveto, J.A. Warwicker, How the duration of the learning period affects the performance of random gradient selection hyper-heuristics,
Proc. AAAI Conf. Artif. Intell. 34 (3) (2020) 2376–2383.

[24] A. Lissovoi, P.S. Oliveto, J.A. Warwicker, Simple hyper-heuristics control the neighbourhood size of randomised local search optimally for LeadingOnes,
Evol. Comput. 28 (3) (2020) 437–461.

[25] B. Doerr, A. Lissovoi, P.S. Oliveto, J.A. Warwicker, On the runtime analysis of selection hyper-heuristics with adaptive learning periods, in: Genetic and
Evolutionary Computation Conference, GECCO, 2018, pp. 1015–1022.

[26] B. Doerr, C. Doerr, T. Kötzing, Static and self-adjusting mutation strengths for multi-valued decision variables, Algorithmica 80 (5) (2018) 1732–1768.
[27] M.A. Hevia Fajardo, D. Sudholt, On the choice of the parameter control mechanism in the (1+(λ, λ)) genetic algorithm, in: Genetic and Evolutionary

Computation Conference, GECCO, 2020, pp. 832–840.
[28] A. Mambrini, D. Sudholt, Design and analysis of schemes for adapting migration intervals in parallel evolutionary algorithms, Evol. Comput. 23 (4)

(2015) 559–582.
[29] B. Case, P.K. Lehre, Self-adaptation in nonelitist evolutionary algorithms on discrete problems with unknown structure, IEEE Trans. Evol. Comput. 24 (4)

(2020) 650–663.
[30] A. Rajabi, C. Witt, Evolutionary algorithms with self-adjusting asymmetric mutation, in: Parallel Problem Solving from Nature, PPSN, Springer, 2020,

pp. 664–677.
[31] B. Doerr, C. Doerr, Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices,

in: Theory of Evolutionary Computation, 2020, pp. 271–321.
[32] M.A. Hevia Fajardo, D. Sudholt, Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter, arXiv preprint, arXiv:

2104 .05624, 2021.
[33] S. Kern, S.D. Müller, N. Hansen, D. Büche, J. Ocenasek, P. Koumoutsakos, Learning probability distributions in continuous evolutionary algorithms–a

comparative review, Nat. Comput. 3 (1) (2004) 77–112.
[34] I. Rechenberg, Evolutionsstrategien, in: Simulationsmethoden in der Medizin und Biologie, Springer, 1978, pp. 83–114.
[35] L. Devroye, The compound random search, Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 1972.
[36] M. Schumer, K. Steiglitz, Adaptive step size random search, IEEE Trans. Autom. Control 13 (3) (1968) 270–276.
[37] A. Auger, Benchmarking the (1+ 1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed, in: Genetic and Evolutionary

Computation Conference, GECCO, 2009, pp. 2447–2452.
[38] M.A. Hevia Fajardo, D. Sudholt, Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter, in: Genetic and

Evolutionary Computation Conference, GECCO, 2021, pp. 1151–1159.
[39] P.K. Lehre, C. Witt, Black-box search by unbiased variation, Algorithmica 64 (2012) 623–642.
[40] J. Lengler, X. Zou, Exponential slowdown for larger populations: the (μ + 1)-EA on monotone functions, Theor. Comput. Sci. 875 (2021) 28–51.
[41] J. Lengler, J. Meier, Large population sizes and crossover help in dynamic environments, in: Parallel Problem Solving from Nature, PPSN, Springer, 2020,

pp. 610–622.
[42] J. Lengler, S. Riedi, Runtime analysis of the (μ + 1)-EA on the dynamic BinVal function, in: Evolutionary Computation in Combinatorial Optimization,

EvoCom, Springer, 2021, pp. 84–99.
[43] M.A. Hevia Fajardo, D. Sudholt, Hard problems are easier for success-based parameter control, in: Genetic and Evolutionary Computation Conference,

GECCO, 2022, pp. 796–804.
[44] J. Jorritsma, J. Lengler, D. Sudholt, Comma selection outperforms plus selection on onemax with randomly planted optima, in: Genetic and Evolutionary

Computation Conference, GECCO, 2023.
[45] J. Lengler, A. Martinsson, A. Steger, When does hillclimbing fail on monotone functions: an entropy compression argument, in: Analytic Algorithmics

and Combinatorics, ANALCO, SIAM, 2019, pp. 94–102.
[46] J. Lengler, A general dichotomy of evolutionary algorithms on monotone functions, IEEE Trans. Evol. Comput. 24 (6) (2019) 995–1009.
[47] T. Jansen, On the brittleness of evolutionary algorithms, in: Foundations of Genetic Algorithms, FOGA, Springer, 2007, pp. 54–69.
[48] S. Colin, B. Doerr, G. Férey, Monotonic functions in EC: anything but monotone!, in: Genetic and Evolutionary Computation Conference, GECCO, 2014,

pp. 753–760.
[49] B. Doerr, C. Doerr, Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic algorithm, Algorithmica 80 (5) (2018) 1658–1709.
[50] B. Doerr, C. Doerr, T. Kötzing, Provably optimal self-adjusting step sizes for multi-valued decision variables, in: International Conference on Parallel

Problem Solving from Nature, Springer, 2016, pp. 782–791.
[51] T. Kötzing, Concentration of first hitting times under additive drift, Algorithmica 75 (3) (2016) 490–506.
[52] J. Lengler, Drift analysis, in: Theory of Evolutionary Computation, Springer, 2020, pp. 89–131.
[53] J. Lengler, U. Schaller, The (1 + 1)-EA on noisy linear functions with random positive weights, in: Symposium Series on Computational Intelligence,

SSCI, IEEE, 2018, pp. 712–719.
[54] B. Doerr, D. Johannsen, C. Winzen, Multiplicative drift analysis, Algorithmica 64 (2012) 673–697.
[55] P.S. Oliveto, C. Witt, Improved time complexity analysis of the simple genetic algorithm, Theor. Comput. Sci. 605 (2015) 21–41.
[56] B. Doerr, L.A. Goldberg, Drift analysis with tail bounds, in: Parallel Problem Solving from Nature, PPSN, Springer, 2010, pp. 174–183.
[57] G.R. Grimmett, et al., Percolation, vol. 321, Springer Science & Business Media, 1999.
[58] B. Doerr, Probabilistic tools for the analysis of randomized optimization heuristics, in: Theory of Evolutionary Computation, Springer, 2020, pp. 1–87.
[59] B. Doerr, M. Künnemann, Optimizing linear functions with the (1+ λ) evolutionary algorithm—different asymptotic runtimes for different instances,

Theor. Comput. Sci. 561 (2015) 3–23.
[60] M. Kaufmann, M. Larcher, J. Lengler, X. Zou, OneMax is not the easiest function for fitness improvements, https://arxiv.org /abs /2204 .07017, 2022.
29

http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA6406BB9BC29181209824D1F05CD1D72s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA6406BB9BC29181209824D1F05CD1D72s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib2D601CB3046B3F28637785E407C59A4Bs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib2D601CB3046B3F28637785E407C59A4Bs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib70EBEFC9E276172675C2D3BB88021435s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib70EBEFC9E276172675C2D3BB88021435s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib471778FC062E48628107A8E2345B7594s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib471778FC062E48628107A8E2345B7594s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE1B69B1EDB41DCF9D3A41DC5046BC59Ds1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE1B69B1EDB41DCF9D3A41DC5046BC59Ds1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA5FB2C052A3FC6C8F3ADFEEA7769820As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib918656A62C71FF8BA47634B41C2F0FF3s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib918656A62C71FF8BA47634B41C2F0FF3s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib7770DFBC0DEB84258DE4999B16F4F326s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib7770DFBC0DEB84258DE4999B16F4F326s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA886F69589345A803D916D84149960F0s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA886F69589345A803D916D84149960F0s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib827DF19F2F38DBA5B822CE40712CE0CFs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib827DF19F2F38DBA5B822CE40712CE0CFs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibB24B3288F15EE94443CCFB35271B298Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibB24B3288F15EE94443CCFB35271B298Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib3A74A3DCE8A33FC9EBB57A8A7EAA2E33s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib3A74A3DCE8A33FC9EBB57A8A7EAA2E33s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib15992B54FED375F223793568E70C125Cs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib15992B54FED375F223793568E70C125Cs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibEC3D773FD4FBBA6933223BA0EB6A297Fs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibCE6AB4953F5C3C99CA4EC3CEDB671687s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib386675A005275AC69B203442AB785293s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib111AFA94C0900BE674662D08BA0E8A1As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib111AFA94C0900BE674662D08BA0E8A1As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibCBABE17060C5983AB315B9E8C68925ABs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibCBABE17060C5983AB315B9E8C68925ABs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib1D612D261EB553A4139A28B2BBB7B833s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib031B91EA2EDE83508AB500AD3AE5EC22s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibF59AC6777E865EF45E6CDDDDAAC59200s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibF59AC6777E865EF45E6CDDDDAAC59200s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibC97BE8F3988CCD41C83B137B207787ADs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibC97BE8F3988CCD41C83B137B207787ADs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib8CED1BC1B66D33B39F9DA66C2C7A33EDs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib8CED1BC1B66D33B39F9DA66C2C7A33EDs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib9E646BE3F2151EDE088426D931B85AAFs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib9E646BE3F2151EDE088426D931B85AAFs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibD46C1B3BC95DC658F5371CFB436F5AF1s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibD46C1B3BC95DC658F5371CFB436F5AF1s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE1D41B4CFCD767A6B6D73EA5D66A1437s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibE3F4E38F7CDEC0733DCF56087563A22As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibD6C7479094DCF607A826953718C37E2Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibD6C7479094DCF607A826953718C37E2Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib42CF67320572CA4EA4C27D7F8A96559Fs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibEABDBA7D5F568888257AD87412FBC05Fs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibEABDBA7D5F568888257AD87412FBC05Fs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib3B9BCFAE75D0991B4062755384D5D907s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibC85D41F7828FB344A5966955F0ED4038s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA70C031DF611D79AE8FEEB9422AB7194s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA70C031DF611D79AE8FEEB9422AB7194s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib88B523B3D4D5146EE40473878A3BD947s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA8568A8E12AD0035BB70AD183E38F02Es1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib009328BF799DEE693E785A09615591AEs1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib87111A429E6A32475A827C2E44FFD9E1s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bib75D00AD10429E4F79435B397D0C2E29As1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA27A9AD1D4D51FC1CA765C5165924D56s1
http://refhub.elsevier.com/S0304-3975(23)00494-2/bibA27A9AD1D4D51FC1CA765C5165924D56s1
https://arxiv.org/abs/2204.07017

