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Abstract

In-network packet processing utilizing SmartNICs has emerged as a promising method
for enhancing the performance of distributed applications. This approach leverages
packet-level parallelism and aligns with the in-network computing trend, which in-
volves integrating energy-efficient processing cores with high-speed NICs. By offload-
ing specific data processing tasks to the networking infrastructure instead of relying
solely on the Host CPU, application latency can be reduced, and Host throughput
can be maximized by effectively overlapping computation and communication. Over
the past decade, several SmartNIC architectures have been developed, accompanied
by corresponding APIs for programming them. Off-path SmartNICs incorporate an
on-NIC PCIe switch to route packets to a multi-core SoC running an operating sys-
tem, while on-path SmartNICs integrate cores along the packet communication path
with packet manipulation capabilities. To analyze the trade-offs of these two archi-
tectures, we conducted a comparative analysis of on-path and off-path SmartNICs.
We ported the main components of Caladan, a data plane system that incorporates
interference-aware CPU scheduling, to the off-path Bluefield-2 SmartNIC. To assess
its performance, we implemented IO and compute-bound tasks on top of Caladan
and evaluated their throughput. We then compared the resulting throughputs with
those achieved by the same tasks in PsPIN, an on-path RISC-V-based accelerator.
We uncover PsPIN’s superior performance while acknowledging the increased com-
plexity associated with its application implementation. Conversely, Caladan pro-
vides a straightforward pathway for tailoring to distinct use cases and simplifying
application development, albeit with potentially lower performance. These findings
shed light on the intricate trade-offs and differences between performance and the
intricate domains of overall system complexity and complexity of API development
in off-path and on-path architectures.
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Chapter 1

Introduction

Efficient packet processing plays a vital role in distributed computing, as it directly
impacts overall system performance. However, relying solely on the Host CPU for
data processing faces scalability and efficiency limitations as applications become
more data-intensive. Amdahl’s Law highlights that the non-parallelizable portions
of data processing tasks impose limitations on the overall speedup that can be
achieved [4]. However, the challenges of scalability and efficiency in handling the
growing demands of data processing are further compounded by the diminishing
returns of Dennard [10] and Moore’s Law [32] scaling.

Moore’s Law, which predicts the continuous increase in transistor density on
microchips, has historically led to an exponential growth in computing power and
performance. Nevertheless, as Dennard scaling has slowed down in recent years,
individual transistors within the CPU are no longer advancing at the same rapid
pace as the escalating data intensity of modern applications. This convergence
of limitations from Amdahl’s Law, Moore’s Law, and Dennard scaling collectively
hampers the Host CPU’s ability to effectively handle the growing demands of data
processing, leading to scalability and efficiency challenges.

To address this, a recent advancement has been made by eliminating the CPU
from the packet processing path. In its place, dedicated data processors now pro-
vide remote direct memory access (RDMA) capabilities, enabling transmission rates
of tens of gigabytes per second at sub-microsecond latencies in modern network
interface cards (NICs). This significant leap in bandwidth and latency has been
achieved through the integration of specialized data processors, allowing for efficient
and high-speed data transmission within the network [20].

Modern 400 Gbit/s NICs can receive packets at an astonishing per packet ar-
rival time of around 1-2 nanoseconds [20]. However, placing and reading from L3
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cache incurs a higher cost, averaging around 10-15 nanoseconds [20, 31, 21]. There-
fore, with the advent of terabits-per-second networks [15], a bottleneck arises in
processing the incoming data. The primary issue lies in the fact that packets are
indiscriminately stored in main memory, regardless of the nature of their contents.
A problem arises as CPU cores are not well-suited for handling messages, given that
their microarchitecture is optimized for computational tasks. The time required for
thread activation, scheduling, and data movement leads to CPU cores waiting for
data processing, resulting in inefficient overall data processing [20].

In recent years, in-network packet processing with smart network interface cards
(SmartNICs) has emerged as a promising solution to address the challenges of tra-
ditional packet processing architectures [7, 8, 16]. SmartNICs integrate specialized
processing cores within high-speed NICs, offering a paradigm shift in packet process-
ing capabilities. SmartNICs enable the utilization of packet-level parallelism, which
provides a more fine-grained approach compared to CPU threads. With specialized
hardware, data processing is partially offloaded to the networking infrastructure,
leveraging this packet-level parallelism. This offloading not only reduces application
latency but also maximizes Host throughput by maximizing the degree of computa-
tion/communication overlap [28, 42].

SmartNIC architectures have evolved over the past decade, accompanied by
APIs for their programming. They can be classified into two types: Off-path and On-
path (also known as sideband and Bump-in-the-wire) [28]. Off-path SmartNICs have
an on-NIC PCIe switch responsible for routing packets to a multi-core System-on-
Chip (SoC) running an operating system like Linux. These off-path SmartNICs offer
expanded deployment opportunities as applications can leverage conventional APIs
provided by Linux and other libraries, such as DPDK [14], netmap [40], XDP [41],
and more. However, off-path offloading can negatively impact application latency
and throughput due to routing through the on-NIC PCIe fabric and reliance on the
Linux kernel infrastructure [28, 42].

On the other hand, on-path SmartNICs incorporate specialized programmable
cores directly on the NIC ingress and egress pipeline with packet manipulation capa-
bilities. Applications need to be programmed using a vendor-specific API to leverage
the capabilities of these cores. On-path offloading offers potential performance ad-
vantages compared to off-path offloading but requires tailoring applications to the
specific offloading API in use to ensure compatibility and maximize performance
gains [28, 29, 42].

This work focuses on analyzing two notable systems in the realm of packet
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processing: PsPIN and Caladan. PsPIN is a RISC-V-based in-network accelerator
designed for flexible, high-performance, and low-power packet processing, represent-
ing the on-path systems [13]. On the other hand, the Caladan framework integrates
interference-aware CPU scheduling to achieve performance isolation and maximize
CPU utilization in data center servers [18]. This study uses Caladan as the front-end
and back-end for packet delivery, running on the off-path Bluefield-2 NIC [33].

We have ported the key components of the Caladan runtime to the ARM archi-
tecture and implemented several applications on top of the user datagram protocol
(UDP) API provided by Caladan. In our evaluation, we assessed the throughput
and latency of two different kinds of applications: IO-bound and compute-bound.
We conducted evaluations using various packet sizes and application threads while
executing the corresponding handlers. Furthermore, we also evaluated the perfor-
mance of the same applications using PsPIN and compared the resulting throughput
with that achieved using Caladan. By exploring the efficiency and effectiveness of
PsPIN and Caladan, this research sheds light on the capabilities, potential benefits,
and trade-offs of packet processing with SmartNICs on off-path and on-path archi-
tectures in enhancing overall system performance, reducing latency, and maximizing
throughput in data center environments.



4



Chapter 2

Background

2.1 Off-path and On-path SmartNICs

A Multicore SoC SmartNIC consists of four major parts: computing units with a
general-purpose ARM/MIPS multicore processor and accelerators for packet pro-
cessing and specialized functions (such as encryption/decryption, hashing, pattern
matching, compression), onboard memory, a traffic control module for transferring
packets between transmit (TX) and receive (RX) ports and the packet buffer, and
DMA engines for communicating with the Host [28, 42].

Furthermore, SmartNICs can be categorized as on-path or off-path based on
how SmartNIC cores interact with traffic. Off-path SmartNICs like Bluefield-2 [33]
and Broadcom Stingray [5] deliver traffic flows to Host or NIC cores using forward-
ing rules installed on the on-NIC PCIeC switch. These SmartNICs have multicore
processors equipped with a full operating system like Linux, making them easily
programmable. The operating system running on the SmartNIC operates indepen-
dently from the Host operating system and can directly process and handle network
traffic without involving the Host CPU or kernel. Moreover, it supports zero-copy
kernel bypass, allowing it to bypass not just the Host kernel but also the kernel on
the off-path SmartNIC [28, 42].

SDKs/APIs like DPDK [14], netmap [40], and XDP [41] can be used to leverage
the processing capabilities of the SmartNIC and customize packet handling based
on specific requirements. Additionally, there is significant work in developing data
plane systems for optimizing operating system (OS) networking for throughput and
tail latency. Arachne [39] and Shenango [36] are examples of software primarily
operating in the user space. They rely on user-level threading models, specifically
green threads, to manage and schedule threads without direct involvement from

5
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the operating system’s kernel, reducing tail latency and improving programmabil-
ity. Another system, ZygOS [37], focuses on work stealing to reduce tail latency.
Caladan, a data plane system [18], builds on top of these ideas to eliminate network
processing and queuing bottlenecks, allowing it to manage interference unperturbed
by software overheads or load imbalances.

These data plane systems can effectively use Host OS and kernel bypass on off-
path SmartNICs, handling the entire traffic independently from the Host. On the
other hand, on-path SmartNICs like LiquidIO [30], PsPIN [13] or Bluefield-3 [34] do
not run a full operating system on their cores. Instead, they have handlers offloaded
to the NIC cores. In on-path SmartNICs, the NIC cores are part of the NIC ingress
and egress pipeline, meaning that incoming traffic always traverses the NIC cores.
Handlers offloaded on the cores enable manipulation and preprocessing of incoming
traffic. Since no OS is running on the cores, one typically needs to use vendor-
specific APIs to develop the handlers. As example, for programming Bluefield-3,
the FlexIO SDK [35] can be used, and for PsPIN, their provided interface is utilized
[13]. Using these specific APIs results in more complexity and limitations in terms
of functionality compared to application development on off-path SmartNICs.

2.2 Caladan: Off-Path Processing and its Stack

Caladan is an advanced data plane system representing the current state of the
art [18]. It enhances its capabilities by building upon other systems like Shenango
[36] and ZygOS [37]. One notable feature of Caladan is its new CPU scheduler,
which achieves significantly lower tail latency and improved throughput compared to
standard Linux or Parties [6, 18]. The fact that the entire Caladan runtime operates
in user space simplifies the required modifications for the ARM architecture, making
them easier to implement. In Section 2.3, we will explore the additional benefits of
implementing the data plane in user space, including reducing kernel overhead. Due
to these advantages, Caladan was used for off-path processing in this work.

2.2.1 Interference-Aware CPU Scheduling in Caladan

As mentioned earlier in the introduction, the Caladan runtime [18] was used as front-
end and back-end for packet delivery, running on the off-path Bluefield-2 NIC [33].
It is specifically designed for low tail latency and high CPU efficiency in data center
servers. To accomplish this, Caladan utilizes control signals and policies that priori-
tize quick core allocation over resource partitioning. The system includes a runtime
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environment responsible for collecting various control signals, such as CPU usage,
memory usage, I/O usage, queuing delays, and request processing times. These
signals serve as crucial inputs for Caladan’s efficient task scheduling. To effectively
respond to these signals and optimize task scheduling, Caladan incorporates two
important components. The first component is the centralized scheduler core, also
referred to as the Top-level core allocator, which actively manages resource
contention within the memory hierarchy and among hyperthreads.

The second component of Caladan leverages kernel bypass on the off-path Smart-
NIC. This involves utilizing a dedicated kernel module, called Ksched module that
circumvents the conventional Linux Kernel scheduler. By bypassing the traditional
scheduler, Caladan achieves the capability of performing microsecond-scale monitor-
ing and precise task placement. Ksched provides the scheduler core with essential
information, such as global memory bandwidth usage obtained from the DRAM
controller. Additionally, it supplies the scheduler core with data on per-core last
level cache (LLC) miss rates and notifies it when a task has voluntarily yielded. An
overview is given in Fig. 2.1.

To read performance counters from the Ksched module, such as the LLC miss
rate, the scheduler core initiates a read request through the ioctl() interface [2].
Since the Ksched module resides in the kernel, shared memory between the ker-
nel module and the scheduler core facilitates direct communication between them.
These shared memory regions are depicted in Figure 2.2. The scheduler core writes
commands into the shared memory, such as requesting the reading of performance
counters, and uses the ioctl() interface [2] in conjunction with the Ksched module

to execute these instructions.

The Ksched module is capable of executing three different commands: waking
tasks, idling cores, and reading performance counters. This combination of the kernel
module and scheduler core enables Caladan to efficiently handle core reallocation
and performance counting, even with a large number of concurrent tasks. A more
detailed description of the implementation of the scheduling algorithms can be found
in the Caladan paper [18, 17].
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Figure 2.1: The flow of information through Caladan’s scheduler [18]

2.2.2 Task Allocation in Caladan

To set up a networking task in Caladan, the first step is to define a main handler and
initialize it within the Caladan runtime using a simple C or C++ program. During
the initialization process, Caladan automatically creates kernel threads (kthreads)
dedicated to handling incoming network packets. These kthreads play a crucial
role in packet processing. When a packet is received, the corresponding kthread

performs the necessary decapsulation based on whether UDP or transmission control
protocol (TCP) was used. The packet is then enqueued in a shared ingress queue,
which the main task can access.

This means that the kthreads are responsible for executing the relevant net-
work protocols, including handling address resolution protocol (ARP) requests and
Internet control message protocol (ICMP) messages, as these protocols are already
implemented within Caladan. It is important to note that each task must be as-
signed at least one kthread, which the scheduler assigns to a specific core. Therefore,
the number of kthreads cannot exceed the available cores. If multiple kthreads

are created, they work in parallel, distributing the workload across multiple cores
to enhance network application performance.

Despite their name, kthreads in Caladan are lightweight user-level threads, as
the majority of the system runs in userspace, with only the kernel module operating
at the kernel level. Even though kthreads in Caladan are user-level threads, users
still have no direct control over their behavior, as it is predetermined by the Caladan
framework. Regarding the task itself, a main thread is spawned along with the
corresponding handler and initialized within the Caladan runtime. The main handler
provides an interface to access the aforementioned ingress queue, allowing the main
process to retrieve the payload of the packet. However, it does not have direct access
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to the packet header.
When sending packets, the responsibility lies with the main process, which per-

forms the necessary encapsulation. Unlike PsPIN [13], as we will see, Caladan offers
APIs for sending UDP and TCP segments. This streamlined approach makes it
easier to send packets within the network task. With Caladan, developers only need
to focus on the payload itself without having to manage the intricacies of packet
encapsulation and decapsulation. Furthermore, these interfaces exclusively utilize
the network stack within Caladan and do not rely on the kernel network stack of
the operating system [18, 17].

Figure 2.2: Caladan’s system architecture [18]

2.2.3 Kernel Overhead Reduction with Directpath

Caladan offers a significant feature known as Directpath, built on top of the RDMA-
Core library [27]. This library leverages zero-copy kernel bypass using the mlx5
Ethernet poll mode driver to create and access sender and receiver queues directly.
When Directpath is enabled, the first kthread created during the spawning of a
new network task will allocate dedicated sender and receiver queues. These queues
can be accessed directly by the kthread itself for reading or by the main handler
for sending operations. This streamlined approach leads to enhanced throughput
compared to scenarios where all packets are handled by the IOKernel, resulting in
improved overall performance [17, 18].

2.3 Caladan’s User Space Approach for Data Plane

Caladan’s design, residing in the user space, incorporates the implementation of
both the network stack and scheduler within this space, resulting in several benefits.
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Implementing the network stack in user space brings about a significant reduction
in kernel overhead. Caladan efficiently manages read and write operations between
user space and the TX/RX queues, utilizing the Directpath feature to bypass kernel
involvement. This approach minimizes the impact of the kernel on network process-
ing, ultimately improving overall system performance. Furthermore, Caladan’s user
space data plane empowers users with enhanced control and flexibility over appli-
cation functionality and behavior. This capability allows for precise customization
and optimization of the data plane, tailored to specific use cases or architectural
requirements.

Additionally, Caladan situates the scheduler and context switch in user space,
which yields multiple advantages. Firstly, this arrangement offers greater flexibility,
as the Caladan scheduler is specifically designed to handle interference efficiently,
necessitating comprehensive information. Managing and adapting this information
becomes more manageable with the scheduler entirely in use space. Secondly, run-
ning the scheduler in user space reduces kernel overhead. Context switches between
user and kernel modes can incur performance costs. However, the scheduler in user
space eliminates the need for frequent context switches, resulting in improved per-
formance and CPU efficiency, as shown in Table 5.1.

2.4 On-path Architecture: PsPIN

PsPIN [13] was selected as on-path architecture as it provides pre-implemented
applications [12], offering ready-to-use functionality. Furthermore, PsPIN includes a
simulation module that can be easily customized to match the specific specifications
and requirements of the Bluefield-2 SmartNICs [33]. Additionally, it achieves a
remarkably high throughput of up to 400 Gbit/s [13].
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2.4.1 Architecture Overview of PsPIN

Figure 2.3: sPIN Architecture Overview [20]

For on-path offloading, PsPIN [13] was utilized, which is an implementation of the
portable programming model sPIN [20]. The fundamental concept of this model is
packetization, which allows programmers to define headers, payloads, and comple-
tion handlers (kernels) that operate on exposed packets. These handlers are offloaded
to handler processing units (HPUs), which can be thought of as NIC cores.

In the sPIN network layer, all the necessary information to identify and route
a message into memory is included in the first packet, known as the header packet.
The header information is exclusive to the first packet and is not present in the
payload packets. The user-defined header handler is executed on the header packet
to extract the essential details. Subsequent packets, except for the last one, trigger
the payload handler, while the completion handler is called for the final packet.
Importantly, packet order or arrival does not need to be maintained.

The scheduling of handlers on HPUs is managed by a simple runtime system.
Each handler has access to shared memory that remains persistent throughout the
message’s lifetime, enabling communication among handlers. The Host operating
system handles the management of HPU memory, while the user-level application
adheres to the conventional control/data-plane separation [20]. In PsPIN, the HPUs
are organized into processing clusters. Each HPU is implemented as a RISC-V core,
and each cluster is accompanied by a scratchpad memory known as L1 memory,
providing single-cycle access. Although other clusters theoretically have access to
this L1 memory, memory access in such cases incurs higher latency. Apart from
the L1 memory, PsPIN features three off-cluster memories: the packet buffer, the
handler memory, and the program memory [13].
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Figure 2.4: NIC model and PsPIN architecture overview [13]

2.4.2 Packet Processing Pipeline of PsPIN

Once the code and data for the handlers have been offloaded, the Host constructs
an execution context that includes various pointers necessary for packet processing.
This execution context is then transferred to the NIC and utilized by the NIC’s
inbound engine to route packets to PsPIN. Upon receiving an incoming packet, the
NIC’s inbound engine processes it by typically copying the packet data into Host
memory. To determine which packets should be processed by PsPIN, the engine
matches packets to PsPIN execution context. If a match is found, the packet is
forwarded to the PsPIN unit. If no match occurs, the packet is copied to the Host
memory.

In the next step, the packets are copied into the L2 packet buffer, and a handler
execution request (HER) is sent to PsPIN’s packet scheduler. The scheduler then
selects the processing cluster responsible for processing the new packet. Within a
cluster, a cluster-local scheduler (CSCHED) initiates DMA copy operations to move
the packets from the L2 packet buffer to the L1 memory. It also selects an idle HPU
where the handler for the packets available in L1 can be executed. Once packet
processing is complete, a notification is sent back to the NIC, allowing it to update
its view of the packet buffer.

For the reverse operation, sending data, the sPIN API provides an RDMA-put
operation. This involves sending a blocking NIC command to the NIC’s outbound
engine for data transmission. The NIC can send data from either the L2 packet
memory or the L1 memories or directly transmit data from Host memory [13].
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Figure 2.5: PsPIN control path overview [13]
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Chapter 3

Porting Caladan’s Data Plane
System to ARM Architecture

3.1 Changes to Caladan

In this work, the Bluefield-2 SmartNICs [33] were utilized as off-path SmartNICs.
These SmartNICs incorporate ARM DPUs. As Caladan was originally developed
for the x86 architecture, significant adjustments were made to make it compatible
with the ARM architecture for execution on Bluefield DPUs.

Firstly, the RDMA-Core library [27] needed to be updated to ensure compati-
bility with the Bluefield-2. The original version was unsuitable for the ARM DPUs,
so modifications were made to enable proper functionality. Consequently, version
44 was used instead of version 32. Additionally, a small inline assembly in the
RDMA-Core library had to be adjusted since ARM’s instruction pause is called
differently.

Next, all functionalities related to the performance counter monitor (PCM) li-
brary [9] from Intel were removed, including instructions to read CPU states. More-
over, any other inline assembly instructions used to read the CPU state, unrelated to
the PCM library, had to be adjusted for ARM. These instructions involved reading
the CPU ID or the cycle counter register. Another aspect of the adaptation process
was rewriting certain functionalities implemented initially in x86 assembly, such as
the Internet protocol (IP) checksum [23] and cyclic redundancy check (CRC) [38].
Both checksums were rewritten in C, with the IP checksum being natively imple-
mented and the CRC using the zlib1g library [3].

However, the most challenging aspect of the adaptation was the context switch.
Caladan had its own context switch implemented in x86 assembly, which needed to

15



16 3.1. Changes to Caladan

be reworked for ARM assembly. This involved several tasks: identifying all registers
that must be saved for a context switch on the ARM architecture, implementing the
context switch in ARM assembly, and including all additional checks and function
calls within the context switch (as in the original x86 implementation). Additionally,
since different registers are used in ARM, the thread structure implemented in Cal-
adan needed to be adjusted. Adjustments because of ARM calling conventions were
also necessary. In x86, the return address is stored on the stack, whereas in ARM,
it is stored in a register. Therefore, the thread initialization had to be changed to
ensure the correct address was held in the return address register. Moreover, since
there is no return address on the stack in ARM, the stack alignment needed to be
corrected by changing the initialization address of the stack to ensure proper 16-byte
alignment.

In addition to the thread structure, adjustments were also made to the per-
thread variable declaration. In the original Caladan implementation, per-thread
variables were placed in the .perthread section. However, this syntax for such a
declaration does not exist for ARM, as it is compiled differently. Instead, per-thread
variables were declared as thread variables without specifying the section.

The last changes were made in the Ksched module support. In the kernel mod-
ule, all CPU state reads specific to x86 had to be removed. The function mwait,
which is only available for x86 and allows efficient idling of cores [22], was also re-
moved and replaced with busy waiting. Furthermore, the driver initialization was
adapted. The Ksched module assumes the presence of a CPU idle driver that can be
hijacked when loading the module [17]. However, since the DPUs do not have such
a driver, the hijacking part was removed and replaced with registering the driver.
Similarly, the unjacking process was replaced with deregistering the driver.

Here, a limitation of the ported version arises. Registering the driver alone
is insufficient to enable the functionalities of the Ksched module. Implementing
proper initialization of a CPU idle driver was not feasible within the scope of this
thesis. Consequently, the kernel module is unable to execute any commands sent
from the Caladan runtime, and therefore all corresponding ioctl() [2] calls were
removed from the Caladan implementation.

Overall, the adjustments made to Caladan for the ARM architecture involved
updating libraries, modifying inline assemblies, rewriting functions, implementing
a context switch for the ARM architecture, adjusting the thread implementation,
and removing all unsupported functionalities. These adaptations were necessary to
ensure smooth execution and compatibility on the Bluefield DPUs.
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File Lines
rdma-core/providers/mlx5/dr_send.c 1

inc/asm/ops.h 9
inc/asm/chksum.h 26
inc/base/thread.h 4

inc/runtime/preempt.h 18
ksched/ksched.c 30
runtime/sched.c 13
runtime/defs.h 53

runtime/switch.S 281

Table 3.1: This table provides an overview of the amount of rewritten C and ARM
assembly lines, excluding any deletions. The total number of lines that have been
rewritten amounts to 435.
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Chapter 4

Porting Applications for Off-path
Processing

To gain a deeper understanding of individual system performance, we conducted
measurements on the throughput of two types of tasks: compute-bound and IO-
bound tasks. Compute-bound applications are constrained by computational costs,
allowing us to assess the CPU’s ability to handle incoming packets that require
significant computation. On the other hand, IO-bound tasks were also tested, as
they do not involve any expensive computational processes. The purpose of these
tasks is to evaluate the system’s memory management, including latency for memory
reads, writes, and RDMA operations. In order to compare the performance of these
tasks on Caladan [18] and PsPIN [13], we needed to implement the applications for
both systems. To achieve this, we utilized the pre-existing examples available in the
GitHub repository of PsPIN [12] and ported them to the Caladan framework using
the provided interfaces.

4.1 Data processing in Caladan

For the benchmarks in Caladan, the applications were ported using UDP and TCP
interfaces, which differs from PsPIN’s implementation, which utilizes handlers for
packet processing. Notably, the time taken for connection establishment, including
the TCP handshake and the ARP request to obtain the MAC address, was not
included in the measurement. The focus was specifically on measuring the perfor-
mance during data transmission and processing, excluding the initial setup time.

For measuring the time, the benchmarks were conducted using the gettimeofday
(struct timeval *restrict tv, struct timezone* tz) function from the stan-
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dard C library [1]. It is important to note that all time measurements were made in
microseconds. Furthermore, in the absence of any information regarding the Maxi-
mum Transmission Unit (MTU), a default MTU value of 9000 bytes was selected.
Also, in each benchmark, precisely 1000 packets were sent, either from the client
to the server or from the server to the client, depending on the specific applica-
tion being tested. The decision to send 1000 packets was deliberate, as sending
more packets resulted in packet drops. One final point to note: when referring to a
packet, we specifically address its payload. For instance, if the application sends a
packet containing 1000 bytes, it means a payload of 1000 bytes is being transmitted.
However, some additional bytes will be sent along with it due to the packet header.

4.1.1 Empty Handler

To have a baseline, allowing us to understand how throughput behaves in a very
simple scenario and to assess the applications performance within the systems, we
implemented an empty handler. Both client and server processes are provided with
the buffer size as an input parameter. After receiving the buffer size, the client
starts transmitting the packets to the server, with each packet being the same size
as the buffer size. Upon receiving the first packet, the server initializes the first
timestamp. Subsequent packets are received, and their buffer sizes are accumulated
until the final packet is received, which triggers the second timestamp. Finally, the
server computes the throughput by dividing the total number of received bytes by
the measured time.

4.1.2 Empty Handler with different MTUs

Since the empty handler represents a simplistic scenario, we were also interested
in examining how throughput and latency behave when altering the MTU size.
Therefore, in this benchmark, we slightly modify the empty handler by including
the MTU as an input parameter for both the client and server processes instead of
using the buffer size. Consequently, the buffer size was set to be equal to the chosen
MTU value. For example, if an MTU of 3000 bytes was selected, the buffer size was
also set to 3000 bytes. Apart from these adjustments, the benchmark followed the
same procedures as discussed in the section 4.1.1.
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4.1.3 IO-bound Benchmark Applications

PingPong

The purpose of this IO-bound application is to measure the time it takes for a packet
to be sent and for a corresponding response to be received. In order to accomplish
this, both the server and client processes are provided with the buffer size as an
input parameter. The client generates a timestamp and sends a packet, which has
the same size as the buffer size, to the server. The server then receives the packet
and sends back an identical one as a response. Upon receiving the response, the
client takes a second timestamp, and the resulting latency measurement is recorded.

CopyFromHost

The second IO-bound application we ported was CopyFromHost, which served as a
means to investigate how RDMA read affects throughput. The application operates
as follows: the server and client receive a buffer size as input. In the second step, the
server initiates an RDMA connection to the Host. It’s worth noting that in the case
of using multiple application threads, a separate RDMA connection was established
for each created thread, enabling concurrent RDMA read operations.

Next, the server performs an RDMA read from the Host Memory with a prob-
ability of 0.5. If an RDMA read is not performed, the server simply accesses local
memory. The read data is then sent to the client, where throughput measurements
are conducted. Similar to the empty handler scenario, the first packet serves as a
trigger for the first timestamp on the client side and the buffer size of the received
packets is accumulated. Once the last packet is received, the second timestamp is
recorded.

CopyToHost

This IO-bound task can be considered the inverse of the CopyFromHost application.
Instead of investigating how RDMA read influences the throughput, we focus on how
RDMA write affects it. Similar to the previous benchmarks, the server and client
receive the input buffer size as parameters. The server initiates an RDMA connection
to the Host, and in the case of using multiple application threads, separate RDMA
connections are established for each created thread.

Once the setup is completed, the client sends packets to the server. For each
packet received, the server utilizes RDMA write to copy the data to the Host mem-
ory, except for the first packet. Also here, the server adds up the buffer size of all
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packets received from the client. The first packet serves as a trigger for the times-
tamp recording. The second timestamp is recorded when the last packet is received,
concluding the measurement.

Filter

To assess the impact of a small additional and constant workload coupled to a IO-
bound task, we ported the filter application. In this particular benchmark, the client
and server processes are provided with the buffer size as an input parameter. Ini-
tially, the server initializes a hash table where entries are set to zero or some random
number greater than zero. Subsequently, the client sends a packet to the server, with
the packet size matching the received input size. This packet is initialized with a
random number. The arrival of the first packet marks the starting point for the
timer.

For each subsequent packet, the server calculates the hash value of the first 8
bytes of the received payload, utilizing the Jenkins hash function [25]. This calcu-
lated hash value is then used for a lookup in the hash table. If the lookup value in
the table is zero, the server copies the buffer via RDMA to the Host memory. Oth-
erwise, the packet is filtered out, meaning nothing happens. Independent of whether
the packet was filtered out, the received buffer size was included in the throughput
calculation. As in the CopyFromHost and CopyToHost applications, in case of us-
ing multiple application threads, each thread has its own RDMA connection to the
Host. Once the server receives the final packet, it takes the second timestamp and
calculates the throughput.

4.1.4 Compute-bound Benchmark Applications

Aggregate

To assess compute-bound tasks, we ported three applications, one of which is the
aggregate application. The functioning of the aggregate application is as follows:
upon receiving a buffer size as an input parameter, the server process initializes
a shared memory region, which corresponds to a volatile declared memory region
having a size of 8 bytes. This shared memory can be accessed by different threads
in a multi-threaded version of the server.

After the initialization of the shared memory region, the client starts to send
packets to the server. Each packet has the size of the received buffer size, where
each element is an integer. As with previous descriptions, the timer starts with the
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arrival of the first packet. The server threads then sequentially sum up all elements
within the buffer locally. The resulting sum is added to the shared memory region
using the provided atomic addition implementation from Caladan, as shown in Fig.
4.1.

Once the server receives the final packet, it writes the shared memory via RDMA
to the Host memory and captures the second timestamp to mark the operation’s
completion. It’s important to note that the shared memory is only copied once to the
Host memory and not by every thread in case of using multiple threads. The result-
ing throughput measurement, which consists of the time taken and the accumulated
buffer sizes received on the server side, is subsequently stored for evaluation.

Figure 4.1: Overview of the aggregate operation

Reduce

As a second compute-bound task, we also ported the reduce application. In this
case, the process receives a buffer size as an input parameter and initializes a shared
memory region with a size that matches the received buffer size. Apart from the size
of the shared memory, the reduce application has one key difference compared to the
aggregate application. Instead of summing the elements locally, the server threads
sequentially read each element from the buffer and add it to the corresponding region
in the shared memory. Specifically, the i-th element of the buffer is consistently
added to the i-th element of the shared memory, as illustrated in Figure 4.2. Similar
to the previous scenarios, all shared memory accesses are handled using atomic
addition. Apart from these variations, all other benchmark aspects remain identical
to the aggregate benchmark described in section 4.1.4.
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Figure 4.2: Overview of the reduce operation

Histogram

In this benchmark, we shift our focus from the reduce operation to a histogram
operation. The fundamental setup remains similar to that of the reduce application
but with a difference in the memory access pattern of the shared memory. Instead of
summing the received values, the server now increments a counter for each specific
number encountered. Each unique number is associated with its dedicated counter,
enabling the construction of a histogram based on the received numbers. These
counters are also implemented as shared memory, facilitating access by multiple
threads in a multi-threaded version.

Similar to the reduce application, the increment of counters utilizes the provided
atomic increment implementation of Caladan. Besides this modification, the bench-
mark follows the same procedures outlined in the earlier reduce application. The
timer starts with the arrival of the first packet, and the server threads sequentially
process each element of the received buffer to update the corresponding counters in
the shared memory. Once all packets have been received and processed, the server
writes the final histogram data to the Host memory via RDMA and captures the
second timestamp to mark the operation’s completion.
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Benchmark Applications Lines
Emtpy Handler with TCP 194
Emtpy Handler with UDP 187

PingPong with TCP 134
PingPong with UDP 128

CopyFromHost 263
CopyToHost 226

Filter 356
Reduce 221

Histogram 218
Aggregate 218

Table 4.1: This table provides an overview of the total number of lines of C code
written for the benchmark applications.
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Chapter 5

Results

5.1 Execution of the Benchmarks

5.1.1 Execution of Caladan Benchmarks on the Host

The benchmarks were conducted in the following manner: A Python script was
utilized to initiate all the necessary processes and pass the required input parameters.
Each process allocated a single kthread, and Directpath was employed for all
benchmarks. To ensure proper packet transmission, all client processes were bound
to a specific port distinct from the server’s port. For each input parameter, every
application was executed 100 times. For instance, if a buffer size of 1024 bytes was
specified, the application would be executed 100 times with a buffer size of 1024
bytes. In case of a failed attempt, it was repeated until a successful outcome was
achieved. Only the successful attempts were considered for the evaluation of the
results.

Notably, the processes were aware of the exact number of packets they should
receive. If any packets were missing, the benchmark was deemed unsuccessful, ensur-
ing no packet loss for the measured values. After executing an application 100 times,
the arithmetic mean was calculated for latency or the harmonic mean, depending on
whether throughput was being measured [19]. The resulting mean value was then
saved, and the entire process was repeated for the next set of input parameters until
all tests for all input parameters were completed.

5.1.2 Execution of Caladan Benchmarks on Bluefield-2 DPUs

The benchmarks were conducted following a similar procedure as on the Host, but
with a notable difference: the server and client processes were allocated on different

27
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SmartNICs. Additionally, certain benchmarks were scaled by varying the number of
kthreads and application threads used. The number of kthreads is always equal
to the number of application threads, i.e. when the number of threads is specified,
it always refers to both. The remaining steps of the procedure remained consistent
with the description provided in the previous section.

Additionally, we conducted cycle measurements of different operations in Cal-
adan. To measure the cycles, we directly read the cycle count from the pmccntr_el0
register using the assembly instruction mrs [11]. As reading the pmccntr_el0 reg-
ister from user space is not permitted by the operating system, we utilized the
armv8_pmu_cycle_counter_el0 module [24] to overcome this restriction.

5.1.3 Execution of PsPIN Benchmarks

For PsPIN a simulation model was used [12]. The inbound engine of this model takes
a trace of packets as input and injects them into PsPIN at a specified rate [13]. This
rate, denoted by the input delay parameter, was set to 650 when executing the
benchmarks, aiming to achieve a maximum throughput of 100 Gbit/s for the empty
handler. This choice represents the highest attainable throughput considering the
setup used and taking into account the limitations of the SmartNIC.

To further enhance the experimental configuration, two clusters were selected,
each comprising four HPU cores. Accordingly, we adjusted the values of NUM_CLUSTERS
and NUM_CORES to 2 and 4, respectively. Additionally, to accommodate packet sizes
up to 8192 bytes, we modified DEFAULT_NO_MAX_PKT_SIZE to 16384. The execu-
tion of the benchmarks followed a similar process as in Caladan. A Python script
passed the necessary input parameters and initiated the simulation. Since it was a
simulation, each benchmark was executed only once, and a total of 32 packets were
transmitted. Feedback latency and throughput were automatically measured by the
simulator itself, when the application was completed.

5.2 Benchmarks for Caladan on Host

This section comprises benchmarks conducted on the Host machine. We began with
the simplest benchmark scenario since no porting of Caladan was required on the
Host. These Host benchmarks were not intended for comparison with other systems,
especially not with PsPIN. Instead, their primary purpose was to test the Caladan
setup on the Host machine and verify whether the packets were sent through the
SmartNICs, while also ensuring that the measured rate aligns with the hardware
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setup. Consequently, we only utilized specific configurations and did not perform
all benchmarks for this particular testing phase.

5.2.1 Throughput of Emtpy Handler

Results for TCP

This operation was primarily affected by the additional overhead introduced by
TCP. When comparing it with the results obtained with UDP, see Fig. 5.2a, it is
evident that the time spent in the TCP protocol significantly impacts the through-
put. Nevertheless, it is very stable; the throughput remains almost equal.
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Figure 5.1: Throughput and message rate for only receiving packets without any
computation using TCP. The maximum theoretical throughput of around 57 Gbit/s
was derived from the PCIe on the motherboard through which the SmartNICs were
connected.
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Results for UDP
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Figure 5.2: Throughput and message rate for only receiving packets without any
computation using UDP. The maximum theoretical throughput of around 57 Gbit/s
was derived from the PCIe on the motherboard through which the SmartNICs were
connected.

In this scenario, the achieved throughput is significantly better than when using
TCP. For certain buffer sizes, we were able to approach the maximum theoretical
throughput. Further investigation revealed that by using multiple threads, including
both application threads and kernel threads, a throughput of approximately 54
Gbit/s could be reached, which is very close to the theoretical maximum throughput.
Notably, the significant drop in the graph can be attributed to the execution of the
server and client on the same Host. However, by separating them on two different
SmartNICs and utilizing multiple threads, this drop was effectively eliminated.

In summary, the conventional Host setup with TCP is very stable
but is affected by significant overhead, whereas UDP is much faster but
inefficient in handling large packets.

Results using different MTUs

We did not anticipate significant changes in the results when using different MTUs,
which was generally the case. However, there is a noticeable difference, particularly
for UDP, where the graph collapses much earlier when using an MTU size other
than 9000 bytes for all packets. In Figure 5.2a, it can be observed that the drop
occurs at a buffer size of approximately 5000 bytes, whereas with a variable MTU
size, the drop happens at a buffer size of around 3000 bytes. The reason behind this
behavior is currently unclear to us.
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Figure 5.3: Throughput and message rate for receiving packets without any com-
putation using different MTUs. The maximum theoretical throughput of around 57
Gbit/s was derived from the PCIe on the motherboard through which the Smart-
NICs were connected.

5.2.2 Latency of PingPong

In the case of the PingPong operation, we expected to achieve low latency due to
the inexpensive computations involved. It is interesting to observe how the TCP
protocol impacts the latency of the PingPong operation. With TCP, we experience
nearly double the latency compared to UDP.
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Figure 5.4: PingPong with different buffer sizes
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5.3 Benchmarks for Caladan on Bluefields

5.3.1 Throughput of Emtpy Handler
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Figure 5.5: Throughput and message rate for receiving packets without any com-
putation using UDP. The theoretical throughput of 100 Gbit/s was determined based
on the specifications and capabilities of the SmartNIC. It represents the maximum
potential throughput supported by the SmartNIC and the 100 Gbit/s cable connec-
tion.

The empty handler measurement aims to provide a baseline for the maximum achiev-
able throughput of SmartNICs using a multithreaded server and multiple kthreads

within the Caladan framework. It can be observed that the peak of the graph is
around 50 Gbit/s. Additionally, it was found that the throughput of a single thread
sending packets also reached 50 Gbit/s. Interestingly, employing a multithreaded
client with a higher packet-sending throughput does not alter the result. Therefore,
it becomes evident that the bottleneck lies in packet processing on the server side.

It is worth noting that performance diminishes when utilizing more than four
threads. In terms of packet reception, multiple shared resources necessitate the use
of a mutex. One such shared data structure between the kthreads and application
threads is the ingress queue. After packet decapsulation, a kthread locks the queue
and executes the corresponding protocol, such as UDP. The queue remains locked
until the protocol termination [17]. This process, coupled with the fact that 12
threads in total attempt to access the queue and other shared resources, leads to
the conclusion that, in the case of six kthreads and six application threads, we
encounter a bottleneck caused by the overhead associated with multithreading.

In summary, the overhead induced by Caladan, including synchro-
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nization of shared resources, limits the throughput to 50 Gbit/s, which
falls short of the theoretical maximum throughput of 100 Gbit/s.

5.3.2 Results of IO-bound Benchmark Applications

Latency of PingPong

In the case of the PingPong application, we expected low latency. Consequently, we
used only one application thread and one kthread since the server receives and sends
back only one message. When comparing the latency of the PingPong benchmark on
the Host with that on the SmartNIC, there is some variation. The small difference
aligns with our expectations, as the PingPong protocol does not require any ex-
pensive computation. Furthermore, when executing the protocol on the Bluefields,
there is no copy to the Host memory, which results in slightly lower latency.

In summary, the removal of additional latency caused by copying to
the Host memory improves performance, surpassing the results of the
PingPong benchmarks on the Host.
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Figure 5.6: Latency of PingPong with different buffer sizes using UDP.

Throughput of CopyFromHost

The throughput for the CopyFromHost operation was slightly lower than the through-
put of the CopyToHost operation, even though the CopyToHost operation requires
more time, as shown in Figure 5.13b and Figure 5.13a. The reason for this difference
lies in the significant disparity between the computational effort involved in receiv-
ing a packet and performing a CopyFromHost operation. In the CopyFromHost
operation, we measure the throughput on the client side to determine the efficiency
of receiving packets when some of them need to be read from the Host memory. The
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cycle measurements confirm that receiving a packet is much less computationally
intensive than sending it in a CopyFromHost operation, including the RDMA read.
Consequently, the client ends up waiting for the next packet, leading to a lower
throughput. However, by reducing the frequency of RDMA reads, we can observe
an overall increase in throughput.

In summary, the significant difference in computational effort between
receiving a packet and performing a CopyFromHost operation results in
reduced throughput on the client side.
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Figure 5.7: Throughput and message rate of the CopyFromHost operation using
UDP. The throughput of the RDMA read operation can be regarded as an upper
bound for the maximum theoretical throughput.

Throughput of CopyToHost

The result of the CopyToHost operation was as expected. The only additional work
involved in this operation was the RDMA write to the Host memory. Overall, the
operation is similar to the filter operation, and therefore, a similar performance could
be anticipated. In contrast to the filter operation, where only specific data received
from the client is written to the Host memory, every received packet is written to
the Host memory in the CopyToHost operation.

This additional processing time eliminates the remaining overhead observed in
the filter operation in Fig. 5.9a when using six threads. Now, with every additional
thread, the throughput increases. It is also evident that the overhead is eliminated
relatively early, similar to the aggregate operation, see Fig. 5.10a. Further investi-
gation into the cycle measurement confirms that the throughput is primarily deter-
mined by the latency of the CopyToHost operation, thus validating the elimination
of overhead.
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In summary, while we do incur additional latency through the RDMA
write operation, it effectively eliminates multithreaded overhead, en-
abling efficient utilization of 6 threads.
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Figure 5.8: Throughput and message rate of the CopyToHost operation using
UDP. The maximum achievable throughput is determined by the throughput of the
RDMA write, as it sets an upper limit for the overall process.

Throughput of Filter

The filter operation itself is independent of the buffer size, as it always takes the
first two elements to calculate the lookup value. In the measurement presented in
Fig. A.1, it can be observed that RDMA achieves a throughput of approximately 56
Gbit/s. Consequently, it can be deduced that the overall performance of the filter
operation is mainly limited by packet processing. Additionally, we must consider
the time required for the filter operation and the RDMA write, which results in a
slightly lower throughput compared to our empty handler, see Fig. 5.9a and Fig.
5.5a. It is also interesting to note that for the largest buffer size, the overhead caused
by multithreading appears to be eliminated.

In summary, the RDMA writes to the Host and filtering calculations
cause a slight reduction in throughput compared to the empty handler.
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Figure 5.9: Throughput and message rate for the filter operation using UDP.
The maximum achievable throughput in the filter operation is determined by the
throughput of the RDMA write, as it sets an upper limit for the overall process.

5.3.3 Results of compute-bound Benchmark Applications

Throughput of Aggregate

In this benchmark, we observe that the more computationally expensive operations
eliminate the overhead caused by multi-threading relatively early, and the overall
throughput scales with the number of threads after a buffer size of 2000 bytes. As
the application threads now operate dependent on the buffer size, the overhead
gradually diminishes with increasing buffer size. Consequently, the throughput of
the threads also scales with the number of threads earlier compared to the filter
operation, see Fig. 5.9a. However, according to the cycle measurement Fig. A.1,
the overall throughput is still predominantly influenced by the time required for
packet processing, specifically the encapsulation of the packet and its enqueuing in
the ingress queue. Although the latency difference between the aggregate operation
of a single packet and the encapsulation process and enqueuing of the packet is
minimal, the latency of the aggregate operation remains consistently lower for all
buffer sizes.

In summary, summing the elements of the buffer in local memory
is very efficient, resulting in good performance compared to the empty
handler.
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Figure 5.10: Throughput and message rate of the aggregate operation using UDP.
The maximum theoretical throughput corresponds to the throughput of the RDMA
write operation, as it is the last operation of the protocol.
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Figure 5.11: Throughput and message rate of the reduce operation using UDP

The results of the reduce operation yielded somewhat unexpected outcomes. Com-
pared to the empty handler (Fig. 5.5a) and the aggregate operation (Fig. 5.10a),
the throughput significantly decreased. The highest achievable throughput was ap-
proximately 2.5 Gbit/s, which is relatively low considering a theoretical maximal
achievable throughput of 57 Gbit/s. The primary reason for this considerable per-
formance degradation can be attributed to the atomic additions.

In contrast to the aggregate operation, where the buffer is summed locally, the
reduce operation adds each element from the buffer to the shared memory using
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atomic additions. The applications employed the atomic addition implementation
from Caladan [17]. However, these additions appear to be particularly costly on
the SmartNIC’s DPUs. Further investigation revealed that by replacing the atomic
additions with local summing, specifically writing to the thread’s local memory,
similar performance to the aggregate operation could be observed.

Furthermore, the cycle investigation in Fig. A.1 demonstrates that the through-
put is clearly bottlenecked by the reduce operation itself. As a result, the throughput
of the reduce operation scales differently than the throughput of aggregate. When
utilizing more threads, the throughput immediately increases since employing multi-
ple threads allows to partition the overall computation cost of the reduce operation.

In summary, the additional atomic addition to the shared memory
leads to very poor performance.
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Figure 5.12: Throughput and message rate of the histogram operation using UDP

In this particular benchmark, the throughput further deteriorated, reaching a mere
1.2 Gbit/s, which is unacceptably low given the current setup. One of the reasons
for this decline is the same as in the reduce operation – the use of atomic additions.
Employing atomic additions for the histogram operation led to poor performance.
However, removing the atomic additions and replacing the increments on shared
counters with increments on local counters resulted in improved performance, similar
to the reduce operation.

Another bottleneck in this scenario arises from the accesses of random elements
of the shared memory. The shared array contains a total of 10’000 counters, with
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each counter occupying 8 bytes. Consequently, not all counters are allocated on
the same 4KB page. Since the buffer sent by the client is randomly initialized
before transmission, accessing the counters increases the occurrence of page faults.
Additionally, the probability of cache misses also increases. Remarkably, changing
the histogram operation to iterate in ascending order over the counters mitigates
these issues, resulting in throughput similar to that of the reduce operation.

When multiple threads are employed, it’s essential to consider that threads share
the same virtual address space. Consequently, counter access can interleave and lead
to page faults for accesses that would not have triggered a page fault before. The
same holds for cache misses. The cycle measurement in Fig. A.1 confirms that
the throughput is clearly constrained by the computational cost of the histogram
operation itself.

In summary, the atomic additions, along with the additional page
faults and cache misses induced by the shared memory accesses of the
counters, result in significantly worse performance.

5.4 Critical path break-down of CopyToHost and

CopyFromHost in Caladan

In addition, it is worth exploring the breakdown of the process to gain insights into
the different stages involved in starting an application in Caladan and identify the
most resource-intensive components. The first section in Fig. 5.13 corresponds to the
initialization of the process, which involves tasks such as starting the process, reading
the config file, configuring settings, and spawning kernel threads. This section is
executed only once and is relatively similar for all network processes created with
Caladan.

The second part focuses on the scheduler. The measured time represents the
average duration between the initialization phase and the execution of the server’s
main handler function. This part can be invoked multiple times, particularly when
working with multiple threads. In the third part, the main server handler creates
additional threads and establishes the RDMA connection. Each time a thread is
created, the scheduler is invoked, so the measured time in this section includes the
scheduler’s time.
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(a) CopyToHost

(b) CopyFromHost

Figure 5.13: Time spend for the following operations: (1) Initialization of the pro-
cess, (2) scheduler, (3) setup all threads, (4) CopyToHost/CopyFromHost operation
for one packet on the server

Lastly, the corresponding latency of the operation was measured. It is important
to note that this time can vary depending on rescheduling events and the number
of packets the server needs to process. However, it is clear that the most time-
consuming operation by a significant margin is the initialization process. When
continuously switching between applications, this can have a substantial impact on
overall performance, as one has to wait a relatively long time before being able to
start processing packets.

Processing Unit (PU) Frequency ISA Linux Caladan RTOS
Host Ryzen 7 5700 3.8GHz x86 28576 211 -

BF-2 DPU A72 2.5GHz ARMv8 13250 192 -
PULP cores (used in PsPIN) 1GHz RISC-V - - 121

Table 5.1: Average latency of context switching between 2 processes. Measure-
ments shown in PU cycles scaled to 1 GHz (i.e., 1 ns/cycle) [26].

5.5 Benchmarks for PsPIN

The PsPIN benchmarks were utilized to measure the following throughputs and
latencies. The results aligned with expectations since the examples used for the
benchmarks had been previously examined in the PsPIN paper [13]. It is worth
noting that the plots for the Filter, CopyToHost, CopyFromHost and Empty are
nearly identical and overlap each other. A more comprehensive analysis of the
benchmarks can be found in the PsPIN paper [13].
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Figure 5.14: Throughput and message rate of PsPIN benchmarks
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Discussion

6.1 Throughput Comparison of Off-path and On-

path

Upon comparing Figure 6.1a with Figure 5.14a, a noticeable performance difference
between Caladan and PsPIN can be observed. The empty handler, which was opti-
mized to achieve the theoretical maximum throughput of 100 Gbit/s in PsPIN, was
unable to reach that level in Caladan. The highest throughput achieved in Caladan
was approximately 50 Gbit/s, which is only half of the maximum.
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Figure 6.1: Best throughputs with associated operation and message rate in Cal-
adan

For all IO-bound tasks, PsPIN demonstrates performance nearly equivalent to
the empty handler’s. Caladan exhibits a similar trend, with almost equal throughput
for the filter operation but slightly lower throughput for CopyToHost and also for

43
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CopyFromHost. PsPIN appears to handle RDMA to the Host more efficiently than
Caladan.

When examining the compute-bound applications, it can also be observed that
the results on Caladan and PsPIN follow the same trend, ordered by the increasing
complexity of the workloads. In both systems, the aggregate operation performs
the best, followed by the reduce operation and the histogram operation, as shown
in Fig. 6.2. Caladan manages to keep up with PsPIN for the aggregate operation
when comparing the results to the corresponding baseline.

However, this is not the case for the reduce and histogram operations. In these
cases, the advantage of the low-cycle accessible memory in PsPIN and its efficient
implementation of atomic operations becomes evident. In Caladan, the atomic op-
eration combined with using local memory of the SmartNICs, leads to poorer perfor-
mance. Nevertheless, it appears that the accesses to the shared memory in random
order in the histogram operation also have a significant effect on the performance
of PsPIN.

Overall, we can conclude that an off-path system like PsPIN [13] significantly
outperforms the on-path offloading utilizing a data plane system like Caladan [18].
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Figure 6.2: Performance comparison of compute-bound and IO-bound applications
of PsPIN (P) and Caladan (C)

6.2 Latency Comparison of Packet Processing in

Off-path and On-path

The disparity in performance between Caladan and PsPIN also becomes evident
when examining the latency of the copyFromHost and CopyToHost operations. Fig-
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ure 6.3 illustrates the time required for a single copyFromHost and CopyToHost op-
eration in the Caladan system, as well as the average feedback delay associated with
these operations in PsPIN. As described in the Background section 2.4.1, once the
packet handling is complete, a notification is sent back. The feedback time encom-
passes the duration from sending the packet, processing it, sending the notification,
and receiving it. The feedback latency in PsPIN typically falls within the range of
1 µs. On the other hand, Caladan exhibits a feedback latency in the range of 10’s
µs.

It is important to note that the feedback delay encompasses more than just the
latency of a single operation. The discrepancy in latency can be attributed to var-
ious factors, including the architectural differences between the SmartNICs. These
measurements conclude that PsPIN is more efficient in packet receiving, sending,
and performing RDMA operations compared to Caladan.
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Figure 6.3: Latency comparison of CopyToHost and CopyFromHost for Caladan
and PsPIN

6.3 Implementation Comparison of PsPIN and Cal-

adan

The significant difference in throughput between Caladan and PsPIN, as observed
in the throughput comparison discussed in Section 6.1, can likely be attributed to
the varying system architectures and implementations of the off-path and on-path
offloading approaches. One notable distinction is the implementation design of the
scheduler. The PsPIN scheduler aims to optimize core utilization by incorporat-
ing a cluster scheduler and individual schedulers within each cluster to maximize
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efficiency [13]. In contrast, Caladan’s scheduler is specialized for inference but not
specifically designed for scaling with network traffic [18]. In Caladan, the number
of threads must be defined when starting the process, and the scheduler does not
assess whether it would be more efficient to use additional threads. This results in
unnecessary overhead when using too many threads, as observed in the measure-
ments. This limitation becomes problematic, particularly when the exact packet
quantity is unknown.

Another factor to consider is the difference in header handling and packet re-
ceiving. PsPIN requires the necessary information only in the first packet, while
Caladan necessitates decapsulation for every packet, requiring the execution of the
header handler for each one. Moreover, in Caladan, packet receiving and handling
may not occur on the same core, as it employs separate threads called kthreads to
execute the header handler. This introduces additional latency in the communica-
tion between kthreads and handler threads [13, 17].

Lastly, it is essential to acknowledge the impact of the ported version and simu-
lation in our comparison. We are evaluating a ported version against a simulation,
which means that the ported version may not be fully optimized for ARM CPUs
and may still require adjustments to achieve optimal efficiency on the Bluefield
DPU. Additionally, the simulation does not perfectly replicate the Bluefield setup,
so differences stemming from the setup itself should be taken into account.

In conclusion, these factors, including system architecture, implementation de-
sign, header handling, and potential bias due to the ported version and simulation,
collectively contribute to the observed performance disparities between PsPIN and
Caladan.

6.4 Trade-offs in Off-Path and On-Path Offloading

The comparison between PsPIN and Caladan reveals the trade-offs between perfor-
mance and application development complexity. PsPIN demonstrates excellent per-
formance, often maximizing throughput in certain scenarios. However, programming
applications in PsPIN requires the use of a more complex and limited PsPIN-specific
API. This complexity extends beyond just programming, as the entire system setup
becomes more intricate due to the absence of a user-friendly operating system.

On the other hand, Caladan’s performance falls short with a peak bandwidth
of 50% of the maximum possible throughput. However, developing applications in
Caladan is comparatively simpler, as it allows for the utilization of all the functional-
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ities and libraries provided by the operating system and also provides a conventional
socket API, which makes developing network applications much easier. Addition-
ally, adapting the data plane to specific use cases is more straightforward in Caladan
since Caladan is a software and everything resides in user space.
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Chapter 7

Conclusion

In summary, we conducted a comparative analysis of on-path and off-path SmartNIC
architectures. To achieve this, we first ported Caladan, including the IO-bounded
and compute-bounded applications, to the Bluefield-2 off-path SmartNIC. Subse-
quently, we measured the throughput and latency of these ported applications. In a
second step, we fine-tuned the PsPIN simulation model to match our Caladan setup
and performed the benchmarks for the same applications tested in Caladan.

Based on the benchmark results, we conclude that PsPIN delivers better through-
put performance compared to Caladan. However, it should be noted that achieving
this performance with PsPIN requires dealing with increased programming com-
plexity and a more intricate setup. Caladan, while not reaching the same level
of performance as PsPIN, offers a simpler development process and the advantage
of leveraging the full functionalities of an operating system. Therefore the choice
between off-path and on-path offloading depends on the specific requirements and
priorities of the application under development. For complex applications that rely
heavily on external libraries and additional functionalities, opting for off-path of-
floading may be the more convenient approach. On the other hand, for relatively
simpler applications such as reduce, histogram, or aggregate operations, choosing
on-path offloading is likely the better option. These operations can be implemented
without significant difficulty, making on-path offloading a viable choice.

Ultimately, the decision between off-path and on-path offloading depends on
the complexity and specific requirements of the application. Complex applications
benefit from the capabilities of off-path offloading, while simpler operations can be
efficiently handled through on-path offloading.
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Appendix A

A.1 RDMA reade/write Bandwidth Measurement

Buffer Size [bytes] NIC-To-NIC [Gbit/s] NIC-To-Host [Gbit/s]
2 0.03504 0.03536
4 0.07424 0.07328
8 0.14632 0.14816
16 0.2856 0.29976
32 0.58552 0.59808
64 1.2056 1.19856
128 2.29696 2.21472
256 4.52576 4.73576
512 9.41432 9.08072
1024 18.21352 18.4892
2048 37.19384 36.06792
4096 76.35928 57.14
8192 92.798 57.32984

Table A.1: Throughput of the RDMA write operation
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Buffer Size [bytes] NIC-From-NIC [Gbit/s] NIC-From-Host [Gbit/s]
2 0.0332 0.03256
4 0.06664 0.06632
8 0.14264 0.13896
16 0.29616 0.29408
32 0.55472 0.58312
64 1.16032 1.18552
128 2.29616 2.28168
256 4.58344 4.532
512 8.96512 9.20896
1024 17.21032 18.0248
2048 33.4448 35.1548
4096 74.54784 43.15288
8192 77.26736 47.01256

Table A.2: Throughput of the RDMA read operation

A.2 Cycles Measurements of Caladan Operations
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Figure A.1: Cycles of different operations with UDP in Caladan
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submitting your thesis (which includes defending it) and grading is up to three weeks.

1. Introduction
In-network packet processing with SmartNICs is an emerging approach to speed-up distributed
applications through packet-level parallelism. It follows the in-network computing trend to
integrate energy-efficient processing cores with high-speed Network Interface Card (NIC). With
such specialized hardware, data processing is partially relegated to the networking
infrastructure from the Host CPU. This helps to reduce application latency and maximize Host
throughput by hiding computation cost with communication, i.e., maximizing degree of
computation/communication overlap.

During the past decade many SmartNIC architectures have evolved along with APIs for their
programming. From an architectural perspective they could be classified between two types:

a) Off-path smartNICs have an on-NIC PCIe switch that routes packets to multi-core SoC
running an OS (e.g., Linux). Off-path SmartNICs offer wider deployment capabilities
since applications could use conventional APIs provided by Linux and other libraries. Yet
off-path offloading penalizes application latency and throughput due to using routing
done through on-NIC PCIe fabric and usage of Linux kernel infrastructure.

b) On-path smartNICs feature specialized programmable cores on the packet
send/receive critical path path (i.e. NIC link layer). These cores should be programmed
with a vendor-specific API. Thus, potential performance gains of on-path offloading
compared to off-path one, come with the need to tailor applications for particular
offloading API.

Thus, off-path and on-path techniques differ in ease of offloading deployment and degree of
possible performance overheads. In this light, the main result of this thesis will be a systematic
experimental study of on-path and off-path offloading, that gives a SmartNIC programmer an
insight on the best offloading architecture for his application.

2. Project description

https://spcl.inf.ethz.ch/Publications/.pdf/hoefler-scientific-benchmarking.pdf


The goal of this project is to understand performance and programming/deployment productivity
trade-offs that arise from on-path and off-path sNIC architectures.

In particular, 3 experimental setups are considered for performance evaluation:
a) Off-path offloading with Bluefield-3 ARM SoC and Caladan framework.

Bluefield 3 data processing unit (DPU), is the latest generation of Nvidia SmartNICs. It
presents the 3rd generation of Nvidia’s off-path offloading engine based on ARM SoC
that runs Linux. Benchmarking of DPU performance will be done on top of the Caladan
library, a load-balancing middleware and between CPU and NIC that also supports
generic interface for Remote Procedure Calls offloading:
https://github.com/shenango/caladan.
A part of the thesis will be devoted to porting it to the Bluefield ARM SoC.

b) On-path offloading with Bluefield-3 Datatpath Accelerator (DPA) and FlexIO API.
Latest generation of Bluefield DPU also features an on-path Data Processor Accelerator
based on RISC-V cores. It could be programmed with FlexIO SDK that is tightly
integrated with the RDMA Verbs interface:
https://docs.nvidia.com/doca/sdk/flexio-sdk-programming-guide/index.html.

c) On-path offloading with PsPIN.
PsPIN is an open-source smartNIC architecture based on energy-efficient RISC-V cores
and features support for streaming processing in the network (sPIN) programming
model: https://github.com/spcl/pspin.
sPIN programming model facilitates network offloading through writing packet handlers,
a small C-program executed on packets.

The focus of evaluation will be put on answering the following question:
“What are the fundamental characteristics of workloads that make them better suited for on-path

or off-path SmartNIC offloading?”

To achieve this with Bluefield-based setups (e.g., a) and b)), a set of synthetic
micro-benchmarks will be developed for Caladan and FlexIO APIs. Benchmarking suite will
cover various performance aspects of a smartNIC and re-implement functionality of PsPIN
examples (https://github.com/spcl/pspin/tree/master/examples):

- ability to sustain packet processing for various workloads with various distribution of
service times, packet sizes, etc.

- ability to offload IO-bound (e.g. copy_to_host, copy_from_host, filtering) and
compute-bound processing (e.g. reduce, aggregate, histogram) workloads;

- RDMA networking primitives (e.g. copy_from_host with RDMA write/read);
- sNIC–Host communication (e.g. host_direct).

For the PsPIN evaluation (e.g., setup c)), microbenchmarks available in the PsPIN Github
repository will be re-used.

3. Milestones / project plan
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The project plan is divided on 4 main parts:

1. (1.5 months) Off-path offloading benchmarking:
a. Toolchain setup on Bluefield DPU.
b. Porting of Caladan library to run on Bluefield-2 DPU ARM cores;
c. Development of microbenchmarks for Caladan;
d. Report with performance evaluation of Caladan performance.

2. (1 month) In-path offloading benchmarking:
a. Setup toolchain for in-path offloading, i.e., Bluefield-3 DPA and FlexIO;
b. Evaluation of PsPIN using built-in benchmark suite;
c. Development of microbenchmarks for FlexIO API;
d. Report on evaluation of DPA performance and comparison to off-path offloading

performance with Caladan.
3. (0.5 month) First thesis draft.

a. Finish the first draft with all the text and experiments by the end of the semester.
4. (remaining time) Thesis submission.

a. Final revision of the draft text.
b. Slides for thesis presentation.
c. Code for open-source publishing.

4. Project administration

Weekly Report: The student is advised, but not required, to write a weekly report at the end of
each week and to send it to his advisors. The idea of the weekly report is to briefly summarize
the work, progress and any findings made during the week, to plan the actions for the next
week, and to bring up open questions and points. The weekly report is also an important means
for the student to get a goal-oriented attitude to work.

Final Report: The final report has to be presented at the end of the project and a digital copy
needs to be handed in and remain property of the SPCL. Note that this task description is part
of your report and has to be attached to your final report. Note that we will need up to two weeks
after the presentation to submit the final grade.

sPIN meeting: sPIN weekly meetings are held weekly (Thursdays, 16:30). The student is asked
to present the status of the thesis once every month (scheduling is dynamic). The presentation
should take 15/20 minutes and leave room for questions/comments.

5. Deliverables
Software:



1. Caladan library ported for Bluefield-3 SmartNIC and documentation for its deployment on
Bluefield DPUs.

2. Micro-benchmarks for Caladan evaluation ready for open-sourcing and manuals for
running it;

3. Micro-benchmarks for FlexIO evaluation ready for open-sourcing and manuals for
running it.

Reports:
1. Final report with systematic and exhaustive performance evaluation of on-path and

off-path SmartNICs architectures.

6. Success criteria

1. Caladan library is successfully ported to the Bluefield-2 SmartNIC and the corresponding
code is ready for open-sourcing.

2. Performance evaluation of the all Caladan runtime components on the SmartNIC is
completed using the benchmarks ported from the PsPIN repository.

3. Detailed experimental and qualitative comparison of the off-path (Caladan running on top
of the Bluefield-2 SmartNIC) and on-path (PsPIN simulated with Verilator) architectures
is done, resulting in a formulation of application developer guidelines.

Alessandro Vezzu


