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Thesis Summary

At present, the global energy system remains heavily dependent on fossil fuels, which are
estimated to account for 81% of total energy consumption. To meet the internationally
agreed temperature targets, a shift from the current fossil fuel-based economy to a sus-
tainable, decarbonized economy is needed. In this thesis, I analyze several mechanisms
that serve to reduce the dependency on fossil fuels. The thesis aims to contribute to the
existing literature by advancing empirical knowledge of the forces that accelerate the
development of green innovation and promote low-carbon energy use.

The introductory chapter illustrates the importance of climate policy and green in-
novation in addressing climate change. It argues that effective policies and technological
progress offering environmentally-friendly alternatives to fossil fuels are necessary for
the global transition to a more sustainable economy. Further, the chapter discusses
the mechanisms of climate policy and of mergers and acquisitions. In the subsequent
chapters, I empirically address these topics to contribute to the general understanding
of mechanisms that induce green innovation and sustainable energy use.

Chapter 2 focuses on the innovation incentive mechanisms of government policies.
The chapter empirically analyzes the inducement effect of regional environmental regu-
lation on green innovation activity in the case of California’s Cap-and-Trade Program.
The goal of the chapter is to gain new insights into the effectiveness of policy-induced
incentives in stimulating the development of new and environmentally-friendly technolo-
gies. The study finds that the introduction of the emission trading scheme led to an
increase in green technological innovation in California.

Chapter 3 focuses on the impact of government regulation on energy use. The chapter
provides a micro-level analysis on the effects of the Swiss CO2 levy on the use of fossil
fuels. The study finds that the regulation considerably reduced the use of heating oil by
business entities in the industrial and service sector and thereby the CO2 emissions from
the combustion of fossil fuels. The results further show a heterogeneous response to the
levy, with entities that regularly use heating oil being more responsive to tax changes
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than occasional users.
Finally, Chapter 4 revisits the topic of green innovation by exploring the effects of

mergers and acquisitions on green innovation. The chapter addresses the question of how
consolidation between companies in the energy industry affects sustainable innovation
of the entities by analyzing its impact on the subsequent innovation activities of ac-
quiring firms. The chapter finds that green technological acquisitions – involving target
firms that possess intellectual property related to sustainable technologies – significantly
increase the green innovation output of acquiring firms post-acquisition.



Zusammenfassung

Nach wie vor ist das globale Energiesystem stark von fossilen Brennstoffen abhängig,
deren Anteil am Gesamtenergieverbrauch auf 81 % geschätzt wird. Der Übergang von
der derzeitigen auf fossilen Brennstoffen basierenden Wirtschaft zu einer nachhaltigen
Wirtschaft erfordert dringende Massnahmen. In dieser Dissertation analysiere ich die
Wirkungsmechanismen, die dazu beitragen, die Abhängigkeit von fossilen Brennstoffen
zu verringern. Die Dissertation hat zum Ziel, einen Beitrag zur bestehenden Literatur zu
leisten, indem die Einflussfaktoren, welche die Entwicklung grüner Technologien und die
Förderung eines kohlenstoffarmen Energieverbrauchs begünstigen, empirisch untersucht
werden.

Das einleitende Kapitel beleuchtet die Bedeutung von Klimapolitik und grüner Inno-
vation in der Bewältigung des Klimawandels. Darin wird argumentiert, dass wirksame
politische Massnahmen und technologischer Fortschritt, der umweltfreundliche Alterna-
tiven zu fossilen Brennstoffen bietet, notwendig sind für den weltweiten Übergang hin zu
einer nachhaltigen Wirtschaft. Ferner werden in dem Kapitel die Wirkungsmechanismen
der Klimapolitik sowie jene von Fusionen und Übernahmen erörtert. In den darauffol-
genden Kapiteln erforsche ich diese Thematiken empirisch. Dadurch wird ein Beitrag
zum allgemeinen Verständnis der Wirkungsmechanismen geleistet, die grüne Innovation
und eine nachhaltige Energienutzung begünstigen.

Kapitel 2 behandelt die Innovationsanreizmechanismen staatlicher Regulierungen.
Das Kapitel analysiert empirisch den Anreizeffekt regionaler Umweltregulierung auf
grüne Innovationstätigkeit am Beispiel des kalifornischen Cap-and-Trade-Programmes.
Ziel ist es, neue Erkenntnisse über die Anreizwirkungen umweltpolitischer Instrumente
auf den technischen Fortschritt zu gewinnen. Die vorliegende Studie zeigt, dass die
Einführung des Emissionshandelssystems zur Förderung neuer und umweltfreundlicher
Technologien in Kalifornien geführt hat.

Kapitel 3 befasst sich mit den Auswirkungen staatlicher Regulierung auf den Energie-
verbrauch. In dem Kapitel werden die Auswirkungen der Schweizer CO2-Abgabe auf
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den Verbrauch von fossilen Brennstoffen auf Betriebsebene untersucht. Die Studie zeigt,
dass die Einführung der CO2-Abgabe den Verbrauch von Heizöl von Betriebsstätten im
Industrie- und Dienstleistungssektor und damit die Emissionen aus der Verbrennung
fossiler Brennstoffe erheblich reduziert hat. Die Ergebnisse zeigen darüber hinaus eine
heterogene Reaktion auf die Besteuerung, wobei Betriebsstätte, die regelmässig Heizöl
verwenden, stärker auf die Steueränderungen reagieren als gelegentliche Nutzer.

In Kapitel 4 wird das Thema der grünen Innovation erneut beleuchtet, indem die
Auswirkungen von Fusionen und Übernahmen auf grüne Innovationen untersucht wer-
den. Das Kapitel befasst sich mit der Frage, wie sich die Konsolidierung zwischen Un-
ternehmen in der Energieindustrie auf die Innovation der Unternehmen auswirkt. Hi-
erbei werden die Effekte von Fusionen und Übernahmen auf die Innovationsaktivitäten
der übernehmenden Unternehmen nach der Konsolidierung untersucht. Die Analyse
zeigt, dass Akquisitionen im Bereich grüner Technologien – bei denen die akquirierten
Unternehmen über Patente auf nachhaltige Technologien verfügen – den grünen Innova-
tionsoutput der akquirierenden Unternehmen nach der Akquisition erheblich steigern.



Chapter 1

Introduction

The overwhelming majority of the world’s countries ratified the Paris Climate Agree-
ment of 2015. The key objectives of this treaty include country-based mitigation and
adaptation measures, in particular reducing emissions to limit global warming well be-
low 2 degrees Celsius above pre-industrial levels. Despite the pledges made by nations,
total net anthropogenic greenhouse gas (GHG) emissions have continued to increase,
with the majority of emissions coming from the energy supply sector (IPCC, 2022). It is
indisputable that emissions of energy-related greenhouse gases from the combustion of
non-renewable energy sources present the main cause of global warming and environmen-
tal degradation. Mitigating climate change can thus only be attained by decarbonizing
the energy system and reducing the demand for fossil fuels. An immediate and radical
reduction in GHG emissions is needed to keep global warming within the established
limits, yet the world is not on track to achieve the climate goals. How can the econ-
omy escape from its dependency on fossil fuels? How can the existing energy system be
transformed into one that is more climate-friendly? Great hopes have been pinned on
environmental policy, technology and energy substitution.

Achieving the climate targets requires not only short-term emission targets, but a
paradigm shift in the energy sector as well as products and processes that will aid the
sustainable development such as low-carbon emitting technologies. Technological devel-
opment of this nature, also referred to as green innovation, can reduce the environmental
impact of services and processes and optimize the use of natural resources.1 This inter-
relationship between energy use, innovation and environmental policy is at the core of
this dissertation.

1Throughout this dissertation, the terms green innovation, environmental innovation, and sustainable
innovation will be used interchangeably.

1



CHAPTER 1. INTRODUCTION 2

1.1 The Importance of Climate Policy & Green Innovation

Rising atmospheric levels of greenhouse gases and the scarcity of non-renewable energy
resources call for stricter environmental regulations and the development of sustainable
energy sources and technologies. The underlying notion is that polluting economic activ-
ities and resource depletion are negative environmental externalities – costs or harmful
effects that are not fully reflected in the market price and thus constitute market failures.
In contrast to the negative externalities caused by fossil fuel consumption, conduction
of research and development (R&D) generates positive externalities through knowledge
spillovers. In the presence of spillovers, the development of a new technology or product
leads to unintended technological benefits for competitors, reducing the incentives to
invest in technological advances. This is especially the case for green innovation as its
resulting environmental benefits are largely external (Brown, 2001). Consequently, in-
novation in low-carbon and resource-efficient technologies tends not to be self-enforcing,
causing private actors to under-invest in environmental R&D. In the presence of these
positive and negative externalities, the market fails to allocate resources efficiently, and
intervention is necessary to correct these market failures.

Externalities are particularly pronounced in the energy sector, as the sector and the
environment are inextricably linked (Jamasb & Pollitt, 2008), making this a primary
reason why energy consumption and innovation is a public policy concern. This has led
to a great deal of research on the optimal policies to correct externalities (see e.g. Pigou,
1920). Through the implementation of environmental policies, governments can take ac-
tion to reduce carbon emissions and minimize harm to the environment. Technological
advances can further accelerate the transition to a decarbonized economy. Progress in
renewable energy technologies such as solar and wind power have led to significant cost
reductions and increased efficiency in the power generation, and advances in energy stor-
age provide solutions to cope with the variability and uncertainty of renewable energy
sources. Technological breakthroughs of this kind are enabling renewables to become
increasingly competitive with fossil fuels. However, path dependency may limit the
development of low-carbon technologies as investment and innovation have historically
focused on fossil fuel-based technologies. This can lead to a lock-in of the economic
system due to high switching costs. Climate policies such as carbon pricing instruments
can provide impetus to overcome this path dependency by shifting the direction of tech-
nological change and encouraging the development and adoption of novel low-carbon
technologies (Acemoglu et al., 2012). Such policies, however, have limited public sup-
port and are often subject to criticism in public disputes as climate policy measures
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such as carbon taxes or emissions trading schemes are considered a burden on the econ-
omy. Neoclassical economic theory suggests that policies that limit the use of polluting
resources lead to a decrease in output and consumption. However, such neoclassical cli-
mate change policy models (e.g. the DICE model developed by Nordhaus (1994)) model
technological progress as exogenous process. Considering that carbon prices can induce
technological change, this represents a limitation and results in an overestimation of the
welfare costs of carbon policies. By introducing endogenous and directed technological
change (see Gillingham et al. (2008) for an overview of endogenous technological change
in climate change models), climate change models take into account that policy deci-
sions and economic activities can encourage innovation and investment in low-carbon
technologies. Endogenous technological change in climate change modelling results in
lower costs of carbon and greater support of policies aimed at reducing carbon emissions.
Thus, the interplay of climate policy and technological progress can facilitate and foster
the adoption of renewable energy sources and sustainable development.

The broad concept of sustainable development encompasses ensuring equity across
and between present and future generations (Pearce & Barbier, 2000), which should be a
key consideration in developing a successful environmental policy. Thus, much academic
and political discussion about designing sustainable economic frameworks is concerned
with equitable and sustainable resource management (see e.g. Anthoff & Tol, 2010;
Bretschger & Vinogradova, 2015; Lange et al., 2007). Given the finite supply of fossil
fuels and the negative environmental consequences of fossil fuel extraction, transporta-
tion, and use, the current energy system is not sustainable and leads to social inequities,
as low-income and marginalized communities are disproportionately affected by the as-
sociated environmental and health impacts (Bretschger & Valente, 2011). Implementing
environmental policies that reduce the reliance on fossil fuels contributes to ensuring that
future generations have the same access to resources and opportunities as the present
generation. Additionally, technological progress is a safeguard for sustaining prosperity
in a resource-constrained planet (see e.g. Bretschger, 2005; Borissov et al., 2019) and
plays a vital role in making low-carbon energy solutions more affordable and accessible
for all. Therefore, rather than focusing on penalizing environmentally harmful practices,
policy can incentivize the development and adoption of sustainable practices to ensure
that vulnerable regions and populations are not harmed. By promoting the transition
to more sustainable consumption and production, policy accelerates clean innovation in
energy production, transport, and buildings, which can in turn benefit countries and
regions with limited resources through technological spillover effects (Acemoglu et al.,
2014). One example is Kenya, which has made significant progress in improving energy
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access through the exploitation of renewable energy, particularly solar power. Whereas
at the beginning of the century only about 15% of the population in Kenya had access to
electricity, this number rose to over 71% by 2020.2 Kenya’s advances in renewable energy
have also contributed to the economic development as the construction and operation
of power plants has created job opportunities as well as boosted economic activity and
living standards in the surrounding regions (Mariita, 2002).

Overall, environmental policies and green innovation play a significant role in ad-
dressing the pressing climate change challenges while supporting sustainable economic
development across the globe.

1.2 The Mechanisms of Climate Policy

The prevailing market conditions lead to overconsumption and -production of goods
that cause harmful effects and prevent economic agents from investing in clean energy
resources and technologies. An effective and efficient environmental policy should aim
to correct for both these positive and negative externalities. Thus, beyond reducing
emissions, environmental policy must also be designed to promote technological devel-
opment.

Standard economic theory predicts that if the relative price of fossil fuels increases,
the demand for it decreases. Thus, increasing the relative price affects energy consump-
tion patterns of consumers. Firms and households may be encouraged to save more
energy, switch to more energy efficient machines and appliances, and replace fossil fuels
for substitutes with lower relative prices. In the long run, firms have an incentive to
invest in the development of technological innovation in order to decrease the use of the
increasingly expensive factor. The concept of stimulating technological development by
a change in factor prices was first proposed in 1932 by Hicks in The Theory of Wages.
This has become known as the “induced innovation hypothesis” and states that "[a]
change in the relative prices of the factors of production is itself a spur to invention, and
to invention of a particular kind — directed to economizing the use of a factor which
has become relatively expensive". The effects of a change in the relative price of energy
sources thus can be twofold: It can lead to a change in energy consumption patterns
and also impact the rate and direction of technological change by spurring innovation
in renewables and energy efficiency. Given that environmental policy instruments such

2The World Bank, World Development Indicators (2023). Retrieved from https://data.worldbank
.org/indicator/EG.ELC.ACCS.ZS

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
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as carbon pricing increase the relative price of environmental inputs, the induced inno-
vation hypothesis suggests that environmental policy can stimulate the development of
new technologies. Thus, there is a link between environmental policy and technological
change.

The environmental literature has investigated the effects of carbon pricing on resource
usage and innovation (see e.g. Dasgupta et al., 1980; Downing & White, 1986; Milliman
& Prince, 1989; Popp, 2019). Carbon pricing has been found to be an effective and
cost-efficient policy and thus an essential component of a policy mix that aims to steer
technological change towards green energy and sustainable production processes – at
least in theory (Acemoglu et al., 2012). The empirical evidence on the effects of carbon
pricing, however, is mixed and the effectiveness depends on the nature and stringency
of the policy as well as other factors such as characteristics of the economy and industry
(Brännlund et al., 2009; Elkins & Baker, 2001). Consequently, the effects of carbon
pricing on emissions and clean energy innovation is contingent on the particular context
in which the policy is implemented.

1.3 The Mechanisms of Mergers & Acquisitions

Policy can stimulate the invention and adoption of less harmful technologies and pro-
mote sustainable energy behavior by setting economic incentives. Increasing pressure
on companies to become more sustainable can also motivate environmental investments
in the form of mergers and acquisitions (M&A). Firms increasingly engage in M&A in
pursuit of growth opportunities to meet the demand for sustainable technologies and the
challenges of resource scarcity (Fraunhoffer & Schiereck, 2012; Yoo et al., 2013). This
trend is particularly evident in the energy sector, where global M&A activity is rising
significantly (IMMA, 2021). The increasing demand for alternative energy sources has
made renewable energy companies an attractive target for M&A with the aim of rapidly
obtaining new products and markets. Thus, the acquisition of renewable energy com-
panies constitutes a quick and effective way for firms to enter the renewable energy and
cleantech sectors (Palmquist & Bask, 2016; Salvi et al., 2018). This opens up the path
to sustainable development for companies, has a profound impact on corporate strategy
and influences the post-acquisition innovation output.

On account of these developments, economists are paying increased attention to the
impact of M&A and their consequences for innovation. The importance of innovation
has also manifested itself among competition authorities. The existing literature reveals
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that a merger between two firms is generally a combination of positive and negative
effects (Gilbert & Greene, 2014; Jullien & Lefouili, 2018; Katz & Shelanski, 2005). By
combining the R&D efforts of different companies, mergers and acquisitions can create
operational and financial synergies, allowing complementary resources, knowledge and
skills to enhance innovation capabilities and enable the realisation of new technologies
and products (Bena & Li, 2014; Hall, 1999). M&A can also negatively affect the inno-
vation output of the involved firms. For example, increased market concentration can
reduce incentives for innovation as there is less market pressure to differentiate and im-
prove products. This notion that mergers dampen the incentives to innovate by lessening
competition between two firms is often put forward by competition authorities and is
explored in research dedicated to competition law (Baker, 2007; Gilbert & Newbery,
1982; Rapp, 1995). However, the effects of competition on innovation are often found to
be ambiguous (see e.g. Aghion et al., 2005; Schmutzler, 2013) and whether M&A have
positive or negative effects on innovation is dependent on a variety of factors, including
the industry, the characteristics of acquirer and target firm, as well as the competitive
landscape. Research on the effects of M&A in the context of innovation remains scare
and no conclusive findings regarding the impact of M&A on environmental innovation
can be drawn.

1.4 Outline of the Thesis

The thesis aims at broadening the existing knowledge around the impacts of government
policies and the inducement of green innovation. While theoretical research has been
conducted on these topics, gaps still exist in the empirical literature. Empirical research
is required to test the theoretical considerations and verify their applicability in the real
world. Collecting empirical data can uncover behavior, patterns and other important
factors that are not apparent from theoretical models. As such, empirical studies are
critical to complementing existing theoretical research, as they can support or refute
theoretical hypotheses and provide a deeper understanding of real-world problems.

In the present thesis, I explore the mechanisms of climate policy and M&A in dif-
ferent empirical settings to advance research in the area of environmental economics
and policy. To do so, the subsequent chapters of the thesis deal with the following
three interlinked topics: green innovation, energy use and green energy innovation. In
chapter 2, I consider the effects of climate policies on green innovation. The chapter
evaluates the link between environmental regulation and green innovation in the context
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of regional emission trading systems, thereby expanding the empirical literature on the
innovation inducement impact of environmental policy. Chapter 3 is devoted to evalu-
ating the impact of environmental regulation on energy use. The chapter is co-authored
with Lucas Bretschger and Melissa Newham. My contribution includes the development
of the research question, data collection and processing, joint elaboration of the statis-
tical analysis and its implementation. In chapter 4, I shift the focus from the effects of
government actions to those of market transactions by empirically evaluating the effects
of M&A on green innovation. The chapter comprises work co-authored with Melissa
Newham, where my contribution includes formulating the research topic, collecting and
compiling the necessary data, co-developing of the hypotheses and assisting in the sta-
tistical process. The main research questions addressed in each chapter are as follows:

– Chapter 2: How does the introduction of a regional emission trading system affect
innovation in environmentally-friendly technologies?

– Chapter 3: What are the effects of a carbon tax on energy use and related emis-
sions?

– Chapter 4: Do M&A of firms that own or apply green technologies induce acquir-
ing firms to direct more of their innovation efforts towards green technologies?

The dissertation addresses the questions empirically based on the examples of Switzer-
land and the United States using diverse statistical methods. In the following sections,
the empirical methods and the innovation measure employed are described, and the
individual chapters of the dissertation are outlined in more detail.

1.5 Methods & Data

1.5.1 Empirical Methods

The selection of appropriate statistical methods is crucial for a reliable empirical analysis.
Each chapter requires its own empirical strategy, as the statistical method depends on
the empirical framework and the aim and purpose of the study. This section presents
the empirical challenges and the selected methods used in each chapter to answer the
different research questions.

In the second chapter, I draw on the synthetic control approach to empirically esti-
mate the effectiveness of emission trading schemes in inducing green innovative activity
as the method offers advantages relative to other commonly used identification strate-
gies such as the difference-in-differences (DiD) method. The DiD method is a frequently
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applied policy evaluation tool when estimating the effect of an intervention at an aggre-
gate level. However, the method relies on contrasting pre- and post-treatment outcomes
across the treatment and control group, assuming that the outcomes prior to the treat-
ment follow a parallel trend. Violation of the parallel trend assumption leads to a biased
estimate of the causal effect, thereby making a DiD method unsuitable. The synthetic
control method provides advantages as a research design method by relaxing the parallel
trend assumption due to the construction of a counterfactual of the weighted average
from a group of untreated units. This research method originally devised by Abadie
& Gardeazabal (2003) and Abadie et al. (2010) has been described as "[...] the most
important innovation in the policy evaluation literature in the last 15 years" (Athey &
Imbens, 2017).

In the third chapter, we estimate policy-relevant treatment effects at the micro-
level which requires a method that is designed for granular data. The main challenge in
estimating the policy treatment effect stems from the fact that all entities in the available
data are treated. Thus, we suffer from the fundamental problem of causal inference,
which is also known as the missing data problem (Holland, 1986; Rubin, 1974). Hence,
we do not observe the outcomes in the absence of the policy and there exists no control
group to which the treatment group can be compared. Machine learning (ML) methods
can address the problem of missing control groups that frequently arises in observational
studies, by using the available data to estimate counterfactual outcomes. ML methods
for policy evaluation have received much attention in recent years as they offer several
promising features (e.g. Kleinberg et al., 2015; Künzel et al., 2019; Varian, 2014). ML
methods are particularly beneficial as they are able to capture complex relationships
between covariates and outcomes and process high-dimensional data. Hence, we use
machine learning predictions as a counterfactual control scenario which allows for an
accurate and precise estimation of micro-level policy effects.

In the fourth chapter, we evaluate the causal effects of M&A on innovation. The
most common challenge of all empirical work dealing with the effects of M&A is the
problem of endogeneity, as mergers and acquisitions are often the result of a strategic
decision-making process. Further, as treatment occurs at different points in time, a sta-
tistical method is required that can accommodate the staggered nature of treatment.
Hence, we select the staggered DiD framework as our identification strategy while con-
sidering acquiring firms and control for endogenous selection by using not yet treated
entities as control observation as opposed to never treated entities to partially control
for endogeneity.
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1.5.2 Measuring Innovation Using Patent Data

The current literature proposes different measurements of innovation such as R&D ex-
penditures, total factor productivity and patents. Following previous studies on induced
innovation (e.g. Calel & Dechezleprêtre, 2016; Jaffe & Palmer, 1997; Noailly, 2012;
Popp, 2002), this dissertation relies on patent data to measure innovative activities. A
patent is an exclusive intellectual property right in exchange for disclosure of the cre-
ation. In order for an inventor to be granted a patent, the invention must constitute a
technical novelty, involve an inventive step and be susceptible of industrial application.
Each patent application must satisfy these three criteria as well as undergo a lengthy
and costly procedure in order to be granted. These aspects imply that an invention pro-
tected by a patent constitutes an innovation, since a novelty and utility standard applies
to the grant of such a right, and that this invention is expected to provide the applicants
with future benefits that offset the expenses of the time and cost consuming procedure
(Archibugi, 1992). These are the main indications of Schumpeter’s (1939) commonly
used distinction between the terms “innovation” and “invention”. Schumpeter defines
invention as the act of “intellectual creativity” with no economic significance, whereas an
innovation refers to the introduction of a novel technical idea with commercial purpose.
Thus, by this definition, granted patent applications represent innovation output and
are an appropriate indicator to capture technological progress.

The use of patents as an indicator of innovation activity is well established. Patent
data has been applied in numerous studies on a wide range of topics, and the advan-
tages and disadvantages of the indicator have been debated since the 1990’s (Archibugi,
1992; Desrochers, 1998; Griliches, 1990). Patent statistics are used as metric for inno-
vation due to several advantages. One of them is the common availability of data over
a long period of time (Archibugi, 1992; Griliches, 1990; OECD, 1994). All information
is collected by patent offices and can be accessed via public web search engines. As the
data is obtainable for all countries with a patent system, patents offer a high degree of
spatial coverage and allow for cross-national comparisons. On top of that, patents pro-
vide detailed information about the invention. Patent documents contain a description
of the invention, the name and address of the inventor and applicant, the technology
field to which the invention relates as well as citations to other patents. This allows
the evaluation of both the rate and the direction of technological change (Archibugi,
1992). Furthermore, it has been shown that there is a strong relationship between R&D
spending and the number of patent applications (Griliches, 1990).

Patent statistics as innovation indicator also have drawbacks. One of the biggest
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shortcomings is that patent data may be an incomplete measure of innovation. On the
one hand, not all inventions are patentable. Inventions that cannot meet the criteria
for patentability but are nonetheless considered innovations are not reflected by the
patent databases. On the other hand, not all inventions are being patented as there are
alternative strategies to protect intellectual property (Pavitt, 1988). However, it has been
found that there are only a few examples of economically significant inventions that have
not been patented (Dernis et al., 2001). Another area of concern is that the propensity
to apply for a patent differs significantly across technical fields, sectors and industries
(Archibugi, 1992; Desrochers, 1998). Some technical fields or industries may experience
more patent applications than others, which can lead to a skewed representation of the
innovation rate. Studies have also revealed that patents can differ significantly in terms
of their economic value (Lanjouw et al., 1998; Schankerman & Pakes, 1986). If the value
distribution of patent is skewed, a simple patent count can be deceptive because highly
valuable innovations are treated the same as innovations of little or no value.

Notwithstanding these limitations, patents are a widely accepted, popular indicator
for innovation due to the availability of data over a long period at a highly disaggregated
technological level which enables the research focus to be placed on green innovation
(OECD, 1994) . In consequence, I employ patent statistics as indicator for innovation.

1.6 Contribution of the Thesis

1.6.1 Cap-and-Innovate

In recent years, California has assumed a leading role in addressing the climate crisis
by enacting some of the nation’s most ambitious climate measures. Extreme weather
conditions in 1988 increased awareness of the greenhouse effect, leading to California
passing its first climate change legislation (Franco et al., 2008). In June 2005, the
Golden State established GHG emission reduction targets to reduce emissions to what
the state emitted in the years 2000 and 1990 by 2010 and 2020, respectively, and to
reduce emissions to 80 percent below 1990 levels by 2050. This was followed in 2006
by passing the Assembly Bill 32 (also known as AB 32 or California Global Warming
Solutions Act of 2006) which put the emission targets into law. The passage of the bill
made California the first state in the US to place legally binding, economy-wide emission
targets. The AB 32 required the California Air Resources Board (CARB) to establish
a scoping plan of regulatory and market mechanisms to achieve the reduction targets.
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At the heart of CARB’s Scoping Plan is the Cap-and-Trade Program which constrains
firm-level emissions. The Cap-and-Trade applies to emissions that account for about
80% of the state’s GHG emissions, thereby providing a strong economic incentive for
significant investment in cleaner and energy-efficient technologies.

By empirically analyzing the effects of the Cap-and-Trade on the State’s green in-
novation output, the chapter’s findings enrich the literature on the innovation incentive
effects of emission trading systems and quantitatively support the implementation of
regional environmental policy. The paper thus contributes to a greater understanding
of the role of local and regional policy in the achievement of sustainable development
goals. For the economy to transition to a green economic pathway, successful policies at
all levels of government are critical. Many US state governments are undertaking ground-
breaking work in developing and implementing ambitious climate policies, thereby taking
a leading role in promoting clean energy (Carley, 2011). Yet, research on climate pol-
icy has focused heavily on international political governance and the policy responses
of national governments. Insights on the effects of regional policies are useful for other
regional governments in setting their own climate policies. In this way, California’s poli-
cies can serve as an example and pave the way for the adoption of similar programs in
other US states as well as nationally.

1.6.2 Evaluation of Climate Policy Based on Machine Learning

In Switzerland, the introduction of a CO2 tax has been discussed since the 1980s. The
federal government has set the goal to reduce fossil fuel dependency and increase the
share of renewable energies to guarantee a secure and reliable supply of environmentally
sound energy. In 2000, the CO2 Act came into force, setting reduction targets for
the period 2008 – 2012 compared to 1990. On top of the goal of creating economical
energy consumption and increased use of climate-friendly energy sources, Switzerland
committed itself to reducing GHG emissions with the ratification of the Kyoto Protocol
in July 2003. Due to the increasing deviation from the targeted reduction path, the
Federal Council introduced a CO2 tax in 2008. The tax is imposed on fossil thermal
fuels (e.g. coal, heating oil, natural gas) when they are used by firms and households to
generate heat, light or electricity and is indicated on invoices for purchases of thermal
fuels. By increasing the price of fossil fuels, the levy is intended to set financial incentives
for households and firms to switch from CO2-intensive energy sources to low-CO2 or
CO2-free alternatives.
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Despite carbon taxation being a widely used policy instrument, there are a limited
number of ex-post assessments of carbon taxes in the literature. Using machine learning
to estimate the impacts of the Swiss CO2 levy, this chapter expands the literature on
carbon taxation. Taking a micro-level perspective, the paper provides insights into the
effect of carbon taxation on energy use of business entities and the associated emissions
from fossil fuels which can serve as a basis for future policy decisions and contribute to
ongoing discussions on effective environmental policy instruments. Further, our study
contributes to the emerging literature on the use of machine learning methods for causal
policy analysis by providing an implementation of this novel approach that illustrates
its use for estimating policy effects with real world data.

1.6.3 Learning by Buying

Instead of focusing exclusively on the price effects of mergers, competition authorities
are increasingly taking innovation aspects into consideration in competition investiga-
tions. Predicting the impact of M&A on innovation is difficult because the evaluation
is complicated by the interaction of several effects and depends on the characteristics
of the respective markets. In antitrust economics, the question of whether mergers are
helpful or harmful to investment in research and development (R&D) and innovation,
and thus to the long-term welfare of consumers, remains unsettled.

Both M&A and innovation in climate-friendly technologies have become a business
strategy to reduce environmental impacts and comply with environmental regulations,
yet there is little research on the interrelationship between M&A and green innovation.
Most existing studies in this field are limited to examining the overall impact on inno-
vation without taking into consideration the direction of innovation. Considering the
importance of green innovation in the reduction of emissions and the ongoing increase
in M&A activity in the energy sector, it is crucial to understand how the consolidation
of firms impacts the green innovation output. The importance of this topic is further
underscored by the fact that the electricity sector is one of the largest contributors to
global emissions. To this end, the chapter aims to fill the gap in the literature by study-
ing the effects of M&A in the energy sector. To our knowledge, this is the first paper
that empirically analyzes the effects of M&A on green innovation. The paper thereby
contributes to the literature on the effects of M&A on innovation and on the drivers of
green innovation.



Chapter 2

Cap-and-Innovate:
Evidence of Regulation-induced
Innovation in California

Chapter Abstract

California has adopted some of the strictest environmental regulations among US states, taking a cli-
mate leadership role at the subnational level. The paper applies the synthetic control method to evalu-
ate the effects of California’s Cap-and-Trade Program on environmental innovation. Using patent data
and a weighted combination of other US states as counterfactual, I estimate the causal effect of the
policy on innovative activity. The estimates show that the number of patents related to green tech-
nologies increased by approximately 22.5% after the implementation of the Cap-and-Trade regulation.
A difference-in-differences approach yields comparable estimates and provides empirical evidence that
the policy encouraged the development of alternative and energy conservation technologies. The results
indicate that the introduction of regional climate policies can promote environmental innovation in the
respective region.

13
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2.1 Introduction

New technological developments play an important and decisive role in tackling long-term
environmental problems. Scholars have therefore paid increasing attention to the nexus be-
tween environmental regulation and technological innovation. The idea that environmental
policies may spur technological innovation dates back to the “induced innovation hypothesis”
proposed by Hicks (1932). The hypothesis suggests that by increasing the relative price of
environmental inputs, policies can induce innovation to economize on the relatively expen-
sive input.1 This notion has sparked considerable literature on the impact of environmental
policies on the direction and rate of technological change.2 The majority of empirical studies
examining the link between environmental policy and innovation focus on national or transna-
tional policy and there is scant research on the impact of regional climate policies. I fill this
gap by providing an empirical analysis of the impact of regional environmental regulation on
green innovation.

Many political, innovative ideas and pioneering policies are emerging and being adopted
at the local level (Schreurs, 2008). Subnational climate change mitigation efforts can ad-
vance federal climate policy in that policymakers can benefit from local regulation by gaining
knowledge and experience in adopting and enforcing policy instruments (Adler, 2005). This
bottom-up policy approach is particularly evident in the United States, where the willingness
of federal and state governments to tackle climate change has diverged in recent decades. As
the federal government restrains its efforts to reduce greenhouse gas emissions, the actions
of lower levels of government are taking on greater importance. Environmental action has
increasingly shifted toward lower levels of government, with state and local policy makers
setting emissions targets and implementing regulations (Lutsey & Sperling, 2008). As such,
state governments have the ability to shape the course of political change at the national level
or within other states. Consequently, scholars have emphasized the growing role of state and
local government action in shaping US climate policy at the federal level (Rabe, 2004; Selin
& VanDeveer, 2007).

California, which is projected to be the fourth largest economy in the world,3 sets itself
apart from other US states due to its unrivaled pioneering role in environmentalism. Since the
1980s, the Golden State has implemented the most innovative and stringent environmental
policies. Due to its economic size and cross-border cooperations to reduce global emissions, the
state is playing a global climate leadership role. California’s global influence is also evidenced
by the term “California effect” invoked by Vogel (1997). The term describes the tendency for

1Porter further developed this idea and significantly contributed to the debate surrounding the link between
environmental regulation and innovation by proposing the so-called Porter Hypothesis (Porter, 1991; Porter
& van der Linde, 1995). The hypothesis asserts that well-designed and stringent environmental regulation can
effectively spur innovation aimed at lowering the cost of the regulation compliance, thereby improving firm
productivity and competitiveness.

2Earlier studies mainly involved theoretical models to compare the impacts of different environmental policy
instruments on environmentally-friendly innovation (see e.g. Downing & White, 1986 and Milliman & Prince,
1989). The growing availability of data on innovation activities has brought forth a number of empirical studies
analyzing the effects of environmental regulation on innovation (see Popp (2019) for an overview).

3https://www.weforum.org/agenda/2022/11/california-s-economy-may-surpass-germany-s-but-what-s-
beneath-the-numbers/
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environmental regulations to shift to the level of political jurisdictions with more stringent
regulatory standards. It derives from the spread of stricter environmental regulations, which
were first introduced by California and subsequently adopted in other US states.

In 2011, California adopted the first multi-sector Cap-and-Trade system in North America
covering electricity generators, large industrial facilities, and fuel suppliers. The Cap-and-
Trade is a key regulatory system for the state to respond to climate change and meet the
state’s greenhouse gas reduction goals. California’s climate action can provide valuable lessons
for the implementation and administration of state-wide emission trading systems and other
market-based instruments. Understanding the impact of California’s emission trading system
is therefore of great significance to the achievement of the US climate goals as well as to the
development of green technologies both domestically and in other parts of the world.

There is currently a limited body of research pertaining to subnational climate policy. The
existing studies are largely focused on “carbon leakage” where firms shift their production
to other regions with less stringent emission constraints. For example, Bushnell & Chen
(2012) and Fowlie (2009) investigate the potential for leakage between US states, finding
evidence of such leakage. It is argued that subnational climate policies are subject to larger
carbon leakage rates than their federal counterparts as trade between states is less restricted.
Related research examining the effects of “pollution havens” analyze how regional energy prices
impact trade and the location of energy-intensive manufacturing facilities (see e.g. Aldy &
Pizer, 2015; Fell & Maniloff, 2018; Kahn & Mansur, 2013). The general results suggest that
stricter environmental regulations or higher energy prices in a region can lead to an increase
in emission-intensive imports and a decrease in energy-intensive manufacturing in that area.

There are thus two opposing views on the effects of subnational climate action. Whereas
the induced innovation hypothesis asserts that companies respond to environmental regula-
tions by investing in green technology, the second view assumes that, in the case of asymmetric
environmental policies within national borders, companies may react by relocating to regions
with laxer regulation which potentially leads to carbon leakage. Against this background,
the question arises whether the theory of induced innovation is applicable when considering
subnational political regulation. I address this question by exploring the relationship between
environmental regulation and green innovation on a regional level by estimating the effect of
California’s regional Cap-and-Trade system on green innovation.

The goal of this paper is to explore whether state-level policy promotes innovation within
state borders. To analyze the impact of California’s Cap-and-Trade program, I use patents as
a measure for innovation and the synthetic control method (SCM) (Abadie & Gardeazabal,
2003; Abadie et al., 2010). The SCM aims to estimate treatment effects by constructing a
counterfactual for the treated region using a weighted combination of control units. I find that
the implementation of California’s Cap-and-Trade increased innovative activity measured in
patents related to climate change mitigation technologies by around 22.5%. I further perform
a difference-in-differences (DiD) method on disaggregated patent data, revealing that the
estimated effect is driven by an increase in patents related to alternative energy production
and energy conservation. Therefore, this paper indicates that the policy measure encouraged
the private sector to develop alternative and renewable energy technologies. The empirical
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findings provide evidence that regional emission trading systems spur innovation within state
borders. These findings give insights into mechanisms that promote technological change,
leading to valuable policy lessons. In a broader sense, the results of this paper deepen our
understanding of the impacts of regional governments in combating climate change, which
could have important ramifications for the role of regional governments in climate policy
discussions.

This paper contributes to the literature in two important ways. First, I add to the in-
duced innovation literature by extending the empirical evidence on the inducement impact
of environmental regulation. While there is an extensive literature examining the relation-
ship between environmental policy and innovation (see e.g. Popp, 2010 and Popp, 2019 for
an overview), there exist only few empirical studies that specifically address the inducement
effect of emission trading systems, most of which focus on the EU Emissions Trading System
(Bel & Joseph, 2018; Borghesi et al., 2015; Calel & Dechezleprêtre, 2016; Popp, 2003; Tay-
lor, 2012). With the emission trading system becoming an increasingly popular policy tool,
evaluating its impact can provide useful insights for policy makers.

Second, this paper adds to the literature analyzing the role of subnational governments
in combating climate change. It is increasingly recognised that research should address sub-
national climate policies to further our understanding of the challenges and effectiveness of
implementing local and state climate measures (Linstroth & Bell, 2007; Lundqvist & Biel,
2013; Schreurs, 2008). Prior research in this field has focused on the development and im-
plementation of innovative policy strategies and the diffusion of environmental policies (see
e.g. Anderton & Setzer, 2018; de Oliveira, 2009; Mazmanian et al., 2008). However, little is
known about the impact of state-level regulations on innovation, as existing studies focus on
policies at the national or transnational level. In a recent paper, Popp (2020) highlights the
significance of state and local government involvement in R&D efforts. Recognizing that the
current political climate in the US suggests that climate policy progress is more likely to be
made at the state and local level than at the federal level, Popp summarizes research on clean
energy innovation to draw important lessons for state and local governments. I extend this
line of research by providing quantitative evidence on the topic.

The remainder of this paper is organized as follows. Section 2 describes the empirical
design and data used to estimate the impact of the policy on innovation. Subsequently,
Section 3 presents the main findings. Section 4 concludes.
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2.2 Empirical Analysis

2.2.1 Method

I implement the synthetic control approach originally introduced by Abadie & Gardeazabal
(2003) and expanded in Abadie et al. (2010). The SCM estimates an unobserved counter-
factual of the treated unit. This involves constructing a synthetic control unit as a weighted
average of untreated states that is comparable with the treated unit before the policy interven-
tion. This allows to compare outcomes of the treated unit with a synthetic counterfactual over
time. The method has been applied by an increasing number of studies evaluating the impact
of policy interventions (e.g. Andersson, 2019; Bretschger & Grieg, 2020; Bueno & Valente,
2019; Kreif et al., 2016; Leroutier, 2019) as it offers advantages compared to other traditional
methods by allowing for the effects of unobserved variables to change over time (Kreif et al.,
2016). Another advantage stems from the transparency of the weights assigned to each unit
of the control group, providing a comprehensible construction of the estimated counterfac-
tual of interest (Abadie et al., 2015). However, the SCM also presents some drawbacks and
limitations, including the failure of the method to allow for the presence of spillover effects
and the requirement that the outcome trajectory of the synthetic control must approximate
that of the treated unit during the pre-treatment period (Abadie, 2021). The credibility of
the result depends on achieving a good pre-intervention fit for the outcome variable between
treated unit and synthetic control. The fit can be assessed graphically or measured by using
the mean squared prediction error (MSPE).4 Given a good fit, the difference in the outcome
variable during the post-treatment period can be interpreted as the treatment effect.

The notation and proceeding of the paper follows the approach of Abadie et al. (2010).
Let t = 1, ..., T be the observed time period. Let T0 denote the number of pre-intervention
periods with 1 ≤ T0 < T. In a case where forward looking economic agents react in advance
of the policy intervention and there are signs of anticipation, Abadie (2021) recommends to
"[...] backdate the intervention in the data set to a period before any anticipation effect can
be expected, so the full extent of the effect of the intervention can be estimated". Thus,
the beginning of the treatment period is set to begin with the passage of the bill in 2011 as
anticipated regulations can encourage firms and organizations to invest in R&D prior to the
first compliance period (Barbieri, 2015; Taylor et al., 2003).56

Let J + 1 be the states observed over the time period t with J = 1 being the state of
California. The remaining J states are potential control units will be referred to as the “donor
pool”. Control units in the donor pool are not affected by the treatment for any period t.
The observed outcome variable of interest for a unit i = 1, ..., J + 1 at time t is given by Yit.
Correspondingly, let Y N

1t and Y I
1t be the outcome variable for California under no treatment

and under treatment, respectively. Subsequently, the treatment effect can be denoted as:
4MSPE = 1

n

∑n

i=1 (yi − ŷi)2

5Due to regulations being published before the effective implementation, inventions are developed before-
hand to ensure that the requirements can be met which results in a rise in patent applications even before
regulations were implemented.

6Adjusting the starting point of the treatment period to account for earlier anticipation does not have a
significant impact on the results presented in the paper (see Appendix A.2).
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αt = Y I
1t − Y N

1t (2.1)

As the counterfactual Y N
1t is unobserved, it has to be estimated. The estimation of the

counterfactual is derived from the weighted average of control units Yjt (j = 2, ..., J + 1) in
the donor pool. Therefore:

Ŷ N
1t =

J+1∑
j=2

wjYjt (2.2)

where
∑J+1
j=2 wj = 1 and 0 ≤ wj ≤ 1.

∑J+1
j=2 wj is defined as a (J×1) vector W of weights, such

that each value of W represents a potential synthetic California. The vector W is obtained by
minimizing the discrepancy of the pre-treatment characteristics of California and the donor
pool. Formally, W is derived such that:

∥X1 −X0W∥v =
√

(X1 −X0W )′V (X1 −X0W ) (2.3)

where X1 = (Z ′
1, Y11, ..., Y1T0) denotes a (k × 1) vector of pre-treatment characteristics for

California and X0 = (Z ′
j , Yj1, ..., YjT0) is a (k×J) matrix for the untreated states. Zi denotes

the vector of predictors of Yit. Analogous to Abadie & Gardeazabal (2003), let V be some
(k × k) symmetric and positive semi definite matrix that assigns weights to pre-treatment
variables in such a way as to minimize the mean square error for the pre-treatment periods.

2.2.2 Patent Data

The patent data is collected from the U.S. Patent and Trademark Office (USPTO) online
database. The USPTO provides a publicly available data set, consisting of a complete history
of patent applications for all states as of 1976.7 For the analysis, I restrict the data to
successful patent applications (i.e. granted patents) to ensure that the applications meet the
requirements of novelty and marketability.8

As this paper focuses on green innovation, I rely on the “IPC Green Inventory” developed
by the International Patent Classification (IPC) to conduct a targeted search for relevant
patents.9 The IPC is a classification system developed at the World Intellectual Property
Organisation (WIPO). The IPC Green Inventory was established to facilitate searches for
patents relating to Environmentally Sound Technologies (ESTs).

Figure 2.1a depicts the evolution of patent filings from 1976 until 2015 distributed by year
of application in the US. Figure 2.1b graphs the development of patent filings for California.
At the beginning of the century, both the US and California experience an increase in green
patent applications. Towards the end of the observed period, however, the number of green

7Documentation updated on March 30, 2021.
8I discard all patents originating outside the US or in incorporated and unincorporated territories and mil-

itary states from the dataset. Furthermore, I omit all patent documents with faulty or incomplete information.
9The Green Inventory is one of several green patent classification systems. It is adopted in this paper due

to being the most widely used classification in academic literature (Tanner et al., 2019).
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patent application declines. This decreasing trend in green patent applications is in line with
previous published results on the development of environmental innovation who recorded
a decline in the number of patent applications this field (León et al., 2018; OECD, 2021;
Urbaniec et al., 2021).10

Figure 2.1: Patent Filing Trends, 1976–2015

(a) US Patent Trends (b) California Patent Trends

For each patent, I collect several bibliographic data including filing date, grant date,
IPC code as well as details of the inventor/assignee and citation information.11 I determine
the patent origin by the residence of the inventor and the assignee. In the case of two or
more entities residing in different states, I follow the OECD Patent Statistics Manual (2009)
which suggest fractional counting, i.e. "sharing" the patent among the respective states to
avoid double counting.12 It has to be noted, however, that this approach can result in over- or
underestimation of some states, as the different contributions to the inventive output of several
inventors may not have equal weight. Further, I define the application date as the date of origin
of the invention, as it is a good indicator of R&D activities and a more accurate approximation
than the grant date due to the duration of the patent granting process (Griliches, 1990).

To account for differences in the importance and value of inventions, the patents are
weighted using a logarithmic transformation of the number of forward citations.13 This

10The studies report that patent filings in the field have declined for some technologies, notably patenting
activity in alternative energy technologies. This development is not exclusive to the US but can also be observed
in countries such as Germany, Japan and China. The reasons for this development are not entirely clear.

11Inventorship is independent of the assignment of a patent. The person(s) listed as an inventor on a patent
application is determined by who conceived of the invention. In contrast, the assignee is defined as the entity
that holds the property rights to the patent.

12This case can occur if either (i) there are two or more inventors; (ii) inventor and assignee differ; or (iii)
there are multiple partial assignees of the patent property.

13Each patent application is multiplied by ln(2 + #forward citations). Because the number of citations
increases over time as older patents have had more time to accumulate citations, only citations within the first
five years of publication are counted to avoid bias (OECD, 2009). Studies have found that a citation window
of the first five years following publication is a reasonable indicator for the number of citations received for
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citation-weighted indicator overcomes the issue of the skewed distribution of patent values
(OECD, 2009).14 Thus, I determine the weighted number of patents per year for each US
state based on the inventor’s and assignee’s state of residence, the application date and frac-
tional counts. I then compute the patent count per 100’000 inhabitants for comparability
between states.15 Consequently, the outcome variable is given by the citation-weighted an-
nual count of granted green patent applications per 100’000 inhabitants per state.

Based on the patent classification, green patents can be categorized in seven major areas:
a) administrative, regulatory or design aspects; b) alternative energy production; c) agricul-
ture/ forestry; d) energy conservation; e) transportation; f) nuclear power generation; and
g) waste management.16 Figure 2.2 depicts the percentage distribution of green patents in
California per technological category.17 Notably, patents related to alternative energy pro-
duction and energy conservation represent the largest share of patent filings, reflecting the
growing interest in technological advancements in this field such as solar, wind and hydro
power since the late 1990s (WIPO, 2009). In comparison, only a small share of green patents
pertain to agriculture/forestry and waste management. Examples of patents falling under
these categories include innovations related to pesticide alternatives and reuse of waste mate-
rials. Green patents related to transportation include technologies related to hybrid vehicles
or cosmonautic vehicles using solar energy. The smallest share relates to patents concerning
administrative, regulatory or design aspects, such as patents on emissions trading.

Figure 2.2: Green Patent Filings in California by Technological Area, 2000–2015

each patent application as the majority of all citations occur during this period (Breschi et al., 2006; Narin &
Olivastro, 1993).

14Several studies provide evidence that the number of citations a patent receives is a valid measure of the
technological importance and value of an invention (Carpenter et al., 1981; Lanjouw & Schankerman, 1999;
Trajtenberg, 1990).

15Due to California being extreme in the number of patent applications compared to other US states, there
is not a weighted average of untreated states that can approximate the trajectory of the outcome variable in
the pre-treatment period (see Appendix A.1.1). To circumvent this, I transform the outcome variable by taking
the population size into account.

16Further details are given in Appendix A.1.4, Table A.3.
17Nuclear Energy Generation is not represented in the graph, as no patents were found for this category in

the data set.
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2.2.3 Covariates

The synthetic counterfactual is constructed based on a number of covariates X. Thus, I
determine covariates of the outcome variable which can explain some of the variability in the
dependent variable in the years before the intervention. Annual US state-level data for the
selected covariates is collected from several federal bureaus for the period 2000–2015.18 The
data are described below and summarized in Appendix A.1.5, Table A.4.

I include the following state-level variables: GDP per capita; real GDP growth; exports
(measured in total global merchandise exports); and total R&D expenditures (as a percent-
age of GDP). Further, I include science and engineering (S&E) indicators to control for dif-
ferences in higher education, labor force and the importance of S&E in the economy across
states. These are: the number of bachelor’s degrees awarded in S&E fields (conferred per
1’000 individuals 18 to 24 years old); the percentage of a state’s workforce employed in high
science, engineering, and technology (SET) establishments; and the high SET employment
establishments (as a percentage of all business establishments).19 Descriptive statistics for all
predictor variables based on the estimation sample are presented in Table 2.1.

Table 2.1: Descriptive Statistics

Variable N Mean Std. Dev. Max Min
(ln) GDP per Capita 816 3.79 0.29 5.22 3.14
Real GDP Growth (1-year lag) 816 1.91 2.71 22.30 -8.80
Total Energy Average Price 816 17.20 5.31 40.15 6.69
R&D expenditure (% of GDP, 1-year lag) 764 2.21 1.47 8.08 0.27
Exports (% of GDP) 816 6.86 3.88 27.66 0.75
High SET Establishments 663 8.26 2.10 17.77 4.68
Employment in High SET (% of Total) 663 11.01 2.74 18.21 5.42
S&E BA Degrees (3-year lag) 663 17.24 7.52 62.65 5.13

Notes: Differences in the number of observations are due to heterogenous time periods. The variable
R&D expenditures and the S&E Indicators are only available as of 2001 and 2003, respectively.

18Macroeconomic variables and crude oil prices affecting the entire national economy can be disregarded
due to the nature of the empirical framework.

19S&E fields include the physical, life, earth, ocean, atmospheric, computer, and social sciences; mathe-
matics; engineering; and psychology. High SET employment industries are defined as industries in which the
proportion of employees in technology-oriented occupations is at least twice the average proportion for all
industries.
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2.3 Estimation & Results

I start by selecting the control units for the donor pool. The donor pool selection is subject to
contextual requirements (Abadie, 2021). To employ the SCM, control units must be available
for the donor pool that have not taken measures similar to the one studied. Thus, states that
adopted any state-wide interventions similar to the Cap-and-Trade during the study period
are discarded from the donor pool.20 In addition, it is crucial that the control units are
comparable to California in terms of outcome variable. This is necessary in order to compute
a weighted average of the untreated units that can approximate the trajectory of the outcome
variable for the treated unit before treatment.

I restrict the donor pool to states in the US. I discard from the donor pool the mem-
ber states of the Regional Greenhouse Gas Initiative (RGGI), a mandatory Cap-and-Trade
program for GHG emissions which was established in 2009 (Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island and Ver-
mont).21 I further discarded states that initially joined the Western Climate Initiative (WCI)
(Arizona, Montana, New Mexico, Oregon, Utah and Washington).22 Finally, I also discard
the state of Missouri due to incomplete data on R&D expenditures. Consequently, the final
donor pool consists of the remaining 33 states (including the District of Columbia).

To obtain a suitable comparison unit for evaluating the intervention effects on patent
activity, a synthetic control is constructed as the weighted combination of US states in the
donor pool to match the pre-treatment outcome. The weights wj are estimated according to
the algorithm developed by Abadie et al. (2010) and reported in Table 2.2. The displayed
values represent the vector of weights W of each control state in the donor pool and indicate
that the synthetic California is best reproduced by a combination of the District of Columbia,
Hawaii, Idaho, Michigan, Texas and Virginia. The remaining states in the donor pool are
assigned a weight of zero.

Table 2.3 displays the relative weights corresponding to each of the key predictor in the
V matrix and the covariate-specific means for California and its synthetic counterpart in the
pre-treatment period. The last column represents the simple average. The mean compar-
isons indicates that the state average does not provide a suitable control group due to large
differences in pre-treatment characteristics. The synthetic counterfactual provides a better
approximation of the factual situation.

20The SCM allows to disregard nationwide policy interventions in this setting as the outcome path of each
state is uniformly affected.

21The state of Virginia effectively joined the RGGI on January, 2021. As the state was not yet a member
of the initiative during the observation period and a possible anticipation effect does not reach back to the
observed time period, Virginia is not eliminated from the donor pool.

22The WCI is a non-profit cooperation established in 2007. The goal of the WCI was to collectively imple-
ment emission policies to reduce GHG emissions to 15% below 2005 levels by 2020. In 2010, the WCI developed
and published a greenhouse gas reduction strategy that included the introduction of a regional Cap-and-Trade
program. Although all US states except California withdrew in November 2011, these states are excluded from
the donor pool because the anticipated implementation of the WCI Cap-and-Trade program prior to the states’
official withdrawal may bias the estimate.



CHAPTER 2. CAP-AND-INNOVATE 23

Table 2.2: State Weights in Synthetic California

Weight State Weight State

0.000 Alabama 0.000 Mississippi
0.000 Alaska 0.000 Nebraska
0.000 Arkansas 0.000 Nevada
0.000 Colorado 0.000 North Carolina
0.074 District of Columbia 0.000 North Dakota
0.000 Florida 0.000 Ohio
0.000 Georgia 0.000 Oklahoma
0.086 Hawaii 0.000 Pennsylvania
0.058 Idaho 0.000 South Carolina
0.000 Illinois 0.000 South Dakota
0.000 Iowa 0.000 Tennessee
0.000 Indiana 0.146 Texas
0.000 Kansas 0.335 Virginia
0.000 Kentucky 0.000 West Virginia
0.000 Louisiana 0.000 Wisconsin
0.300 Michigan 0.000 Wyoming
0.000 Minnesota

Table 2.3: Predictor Means for Green Patent Filings

Variables Weights Treated Synth. Sample
Mean

(ln) GDP per Capita 0.128 3.86 3.82 3.70
GDP Growth (1-year lag) 0.035 2.46 1.66 1.95
Total Energy Average Price 0.057 16.93 15.38 14.43
R&D expenditure (% of GDP, 1-year lag) 0.047 4.22 2.82 1.62
Exports (% of GDP) 0.246 6.99 6.92 6.23
High SET Establishments 0.124 10.02 9.77 7.97
Employment in High SET (% of Total) 0.205 13.56 13.51 10.48
S&E BA Degrees (3-year lag) 0.159 15.78 18.77 15.73

Notes: The predictor variable R&D expenditure is averaged over the period 2001–2015. High SET
Establishments, Employment in High SET, and S&E BA degrees are averaged for the period 2003–2015.
All remaining predictors are averaged for the 2000–2015 period. Data measurements are presented in
Appendix A.1.5, Table A.1.5. The values of the sample mean are simple averages with equal weights
assigned to each donor pool unit.

Figures 2.3 and 2.4 plot the key results from the synthetic control estimation. As noted
in Section 2.2.1, the credibility of the synthetic control estimator depends on the MSPE and
how closely the outcome path of the counterfactual follows that of the treated state. Thus,
it lends great credibility to the synthetic control estimator if the synthetic counterfactual is
able to closely track California’s trajectory in the pre-treatment period and reproduce the
values of the covariates. Figure 2.3 depicts the patent trajectories for both California and
its synthetic counterfactual during the period 2000–2015. The synthetic California closely
tracks the patenting trends of California before the introduction of the Cap-and-Trade, with
a pre-treatment MSPE of 0.005. Thus, the synthetic counterfactual is able to approximate
the treated unit closely.
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Figure 2.3: Trends in Green Patent Filings: California vs. Synthetic California

Figure 2.4: Green Patent Filings Gap between California and Synthetic California
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The discrepancy between the two trajectories in the post-treatment period represents the
treatment effect. The effect can be interpreted as the annual increase in successful green
patent filings resulting from the passing of the bill. The figure indicates a positive effect of
the policy on green patenting activity in California. Though both California and its counter-
factual display a decline in green patent filings towards the end of the post-treatment period,
the decline occurs later for California. This suggests that the introduction of the emission
trading system counteracted the decline in green patent activity in early years by incentivizing
businesses under the cap to develop environmentally-friendly technologies. Figure 2.4 visual-
izes the gap between the synthetic and treated California. I compute the average treatment
effect as the average post-treatment percent gap.23 I find that green innovation output in Cal-
ifornia increased by about 22.5% on average relative to the synthetic control in the observed
time period.

2.3.1 Robustness Checks

To test the validity of the findings, a series of robustness checks is performed. Abadie et
al. (2010) proposes three placebo tests to assess causal inference; “in-time”, “in-space” and
“leave-one-out” placebo tests.

For the in-time placebo test, the treatment is re-assigned to a date prior to the pre-
treatment period, all else being equal. The purpose is to test whether this placebo treatment
leads to a divergence in the outcome trajectory between California and the synthetic control.
I shift the treatment to 2006 to assess whether the observed results are in fact not a result
of the adoption of the passage of AB 32. Figures 2.5a and 2.5b show that the trajectories
and estimated treatment effects largely correspond to those in the main analysis. Notably,
the trajectories of California and its synthetic counterfactual do not diverge after 2006. Thus,
randomly assigning the intervention to 2006 has no perceivable effect, alleviating doubts that
the effect is owed to reasons other than the treatment.

For the in-space placebo, the treatment is iteratively re-assigned to each of the units in
the donor pool, using the remaining units as control. Thus, the synthetic control is run 33
times. Comparing the results of these runs to the main specification provides indications of
whether the gap associated with the actual synthetic control unit differs in size from the other
33 estimated gaps. The underlying rationale is to test whether a control unit experiences a
similar or even greater increase in patent applications compared to its respective synthetic
version. This would cast doubt on claims that the effect identified in the main specification
is due to the policy intervention.

Figure 2.6 displays the results of the in-space placebo. The grey lines denote the estimated
gaps between the control units in the donor pool and the corresponding counterfactual. The
bold black line represents the gap between the treated and synthetic California. Figure 2.6a
depicts the gaps for California and all 33 control states. It shows that for some specifications
the synthetic control method is unable to accurately replicate the pre-treatment outcome

23The average post-treatment percent gap is computed as 1
T −T0

∑
t>T0

(
Y I

1t−Ŷ N
1t

Ŷ N
1t

)
× 100
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trajectory by using a convex combination (this is characterised by large deviations from the
zero-gap line). While the median MSPE is 0.02, Michigan and Washington exhibit MSPEs
of 2.237 and 2.268, respectively. This indicates a very poor fit and the lack of a combination
of control units in the sample that accurately reflects the pattern of patent applications for
these states.

Abadie et al. (2010) recommend the exclusion of control units with a high MSPE due
to poor pre-treatment fit to achieve a meaningful comparison. In consequence, Figure 2.6b
discards states with a MSPE equal or higher than four times the MSPE of California. Among
the eighteen states remaining, the solid line from the main specification clearly stands out,
depicting the largest increase in patent applications from 2011 onwards. I further calculate the
ratio of post-treatment MSPE to pre-2011 MSPE for California and all states in the donor
pool. The ratios serve to illustrate the differences in the magnitude of the pre- and post-
intervention gap for California relative to the gaps obtained in the placebo tests, whereby a

Figure 2.5: Green Patent Filings: In-Time Placebo Test

(a) Trends in Green Patent Filings (b) Green Patent Filings Gap

Figure 2.6: Green Patent Filings Gaps in California and Placebo Gaps in Control States

(a) Including all 33 Control States (b) Including States with Small Pre-Intervention MSPE
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large ratio for California is indicative of a causal effect. I find that California clearly stands
out among most of the 33 control states and has the largest MSPE ratio. Further, I calculate
the probability of obtaining results of the magnitude of those obtained for California. That is,
if one were to assign treatment at random, the probability of attaining a post/pre-intervention
ratio this large is 1/34 = 0.03. This ratio can be interpreted as the p-value at which the null
hypothesis can be rejected (Abadie et al., 2010). Thus, the result is significant at the 5%
level.

For the leave-one-out placebo test, the six control states with a positive weight wj are
iteratively eliminated from the donor pool to examine whether the main results are sensitive
to the exclusion of one donor pool state. The objective is to assess the extent to which the
main results in Figure 2.3 are driven by any particular control unit. Thus, I re-estimate
the model excluding at each iteration one of the six states used to construct the synthetic
counterfactual, namely Washington, Hawaii, Idaho, Michigan, Texas and Virginia. Figure 2.7
displays the results of the leave-one-out placebo test.

Figure 2.7: Green Patent Filings: Leave-One-Out Placebo Test

As can be seen from the figure, eliminating Michigan deteriorates the pre-treatment fit. A
potential explanation for this outcome can be found in Table 2.4 which presents the detailed
results of the placebo test. When omitting Michigan, the synthetic control assigns a high
weight to the state of Minnesota which is not present in the baseline estimation. This impairs
the predictive ability of the model (MSPE of 0.034) and the magnitude of the effect is likely
overestimated (29%). The remaining leave-one-out estimations yield good fits and the result-
ing estimated treatment effects are comparable to the effect obtained in the main specification.
This suggests that the leave-one-out estimates are robust to changes in the synthetic control
state weights. The elimination of Washington, Idaho, Hawaii, Texas and Virginia provides
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us with a range for the estimated treatment effect, from an average increase in green patent
filings of 17.1% (for the elimination of Washington) to 24.7% (for the elimination of Idaho).

Table 2.4: State Weights from the Leave-One-Out Placebo Test

Washington Hawaii Idaho Michigan Texas Virginia

Alabama 0.000 0.000 0.000 0.000 0.000 0.000
Alaska 0.000 0.000 0.000 0.000 0.000 0.000
Arkansas 0.000 0.000 0.000 0.000 0.000 0.000
Colorado 0.000 0.000 0.000 0.000 0.000 0.349
Washington — 0.067 0.100 0.090 0.075 0.052
Florida 0.000 0.000 0.000 0.000 0.000 0.000
Georgia 0.000 0.000 0.000 0.000 0.000 0.000
Hawaii 0.000 — 0.000 0.000 0.032 0.071
Idaho 0.126 0.047 — 0.179 0.035 0.001
Illinois 0.000 0.000 0.000 0.000 0.000 0.000
Iowa 0.000 0.000 0.000 0.000 0.000 0.000
Indiana 0.146 0.000 0.000 0.000 0.000 0.000
Kansas 0.335 0.000 0.000 0.000 0.000 0.000
Kentucky 0.000 0.000 0.000 0.000 0.000 0.000
Louisiana 0.000 0.000 0.000 0.000 0.000 0.000
Michigan 0.317 0.316 0.302 — 0.327 0.241
Minnesota 0.103 0.000 0.001 0.600 0.000 0.045
Mississippi 0.000 0.000 0.000 0.000 0.000 0.000
Nebraska 0.000 0.000 0.000 0.000 0.000 0.000
Nevada 0.000 0.241 0.000 0.000 0.242 0.000
North Carolina 0.000 0.000 0.000 0.000 0.000 0.000
North Dakota 0.000 0.000 0.143 0.000 0.000 0.000
Ohio 0.000 0.000 0.000 0.000 0.000 0.000
Oklahoma 0.000 0.000 0.000 0.000 0.000 0.000
Pennsylvania 0.000 0.000 0.000 0.000 0.000 0.000
South Carolina 0.000 0.000 0.000 0.000 0.000 0.000
South Dakota 0.000 0.000 0.000 0.000 0.000 0.000
Tennessee 0.000 0.000 0.000 0.000 0.000 0.000
Texas 0.000 0.127 0.115 0.131 — 0.241
Virginia 0.455 0.201 0.337 0.000 0.288 —
West Virginia 0.000 0.000 0.000 0.000 0.000 0.000
Wisconsin 0.000 0.000 0.000 0.000 0.000 0.000
Wyoming 0.000 0.000 0.000 0.000 0.000 0.000
Estimated Effect 17.1% 18.6% 24.7% 29.0% 22.2% 18.5%
MSPE 0.009 0.004 0.006 0.034 0.005 0.003
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I undertake several further sensitivity checks to examine the validity of the synthetic control
estimates. In a first step, I extend the donor pool to include all US states. The resulting
synthetic control estimates presented in Figure A.3 produce a fairly similar outcome. Note
that the inclusion of the whole sample significantly changes the assigned weights yet does
not significantly affect the estimated treatment effect. This indicates that the counterfactual
outcome trajectory is not dependent on a particular combination of states.

In a second step, I re-assess the initial selection of the donor pool. I run the synthetic
control including the states initially discarded from the donor pool due to the adoption of
similar policies. Thus, I reproduce the estimation by including WCI and RRGI states. The
results are presented in Figure A.5 and A.4, respectively. The outcome shows that in the case
of a good pre-treatment fit, the main results are fairly robust to the undertaken modifications
in the donor pool which is an encouraging finding, as it further confirms that the estimated
treatment effect is not dependent on the donor pool selection.24

As a final robustness check, I re-run the baseline model using an alternative data set
constructed by employing a different green patent classification system. The motivation for
this robustness check is that the identification of green patents using filter-approaches based
on classification systems is prone to errors, and data sets can differ greatly depending on
the patent classification systems used to identify the relevant patents.25 To ensure that the
results do not depend on the chosen classification system, the SCM estimation is repeated with
green patent applications as identified by the Y02 tagging scheme of the Cooperative Patent
Classification (CPC) – a classification scheme for climate change mitigation and adaptation
technologies policies analogous to the IPC Green Inventory. The results of the robustness
check are shown in Figure A.6 illustrating a similar gap in green patent filings as found in
Figure 2.4.

In any case, the placebo tests and the sensitivity analyses to the choice of donor pool
states and classification system provide evidence that the main results are not driven by the
selection of specific control units or patent identification scheme.

2.3.2 Supplementary Analysis

The above analysis finds that the average treatment effect is positive and significant at the
5% level. The selected methodology, however, does not allow to examine in which of the seven
technology classes additional patents were filed, as it is not possible to determine which of the
patent applications were induced by the introduction of the Cap-and-Trade. Hence, to assess
whether the policy intervention has impacted the direction of technological change within the

24The inclusion of the WCI leads to a poor pre-treatment match indicating that there is no weighted
average of untreated units in the donor pool that can approximate the pre-treatment trajectory of the outcome
variable for the treated unit due to the high value assigned to the state of Washington. In contrast, the re-
estimation with the RGGI produces a very similar outcome as the baseline results despite a notable change in
the distribution of state weights.

25While the retrieval of relevant patent documents based on classification systems such as the IPC inventory
enables and simplifies the identification of patents related to specific technologies, it has to be noted that this
approach may lead to the inclusion of incorrect patent documents (Type I errors) or incomplete results (Type
II errors) (Veefkind et al., 2012).
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field of green innovation I apply a DiD approach at a more disaggregated level.26 I split the
patent data according to the seven areas of green innovation and set up the following model:

yit = β0 + β1Treatedi + β2Postt + β3Treatedi × Postt + β4Xit + εit (2.4)

where yit is the weighted number of green patent filings per 100’000 population for state i at
time t. Treatedi and Postt are dummy variables. Treatedi is equal to one for the treated
unit and Postt is equal to one after the policy change. The DiD estimate is given by the
coefficient β3 which represents the average treatment effect. Xit is a vector of the control
variables specified in the main analysis and εit is the error term. The regression results are
presented in Table 2.5.

For patents related to administrative, regulatory or design aspects as well as agricul-
ture/forestry, the coefficient of the interaction term is insignificant at a 5% level. This sug-
gests that patent activity in those areas is not affected by the policy change and therefore
exhibits no treatment effect. For patents related to transportation the estimated effect is also
not statistically significant. This is in line with the statistical expectation, as the cap coverage
expanded to transportation fuels only at the beginning of the second compliance period in
2015. This may have delayed the incentive to improve transportation technologies, whereby
the anticipatory effects on innovation set in later for the particular technological area. Fur-
ther, although for patents relating to waste management the coefficient is significant at a 10%
level, the sign of the coefficient is negative. This is consistent with the fact that the initial cap
does not directly cover agricultural and forestry nor waste management sources of emissions.

As can be seen in column three and four, the average treatment effect for patents related to
alternative energy and energy conservation is positive and statistically significant. This shows
that the policy intervention stimulated innovation in these technological areas. Moreover, this
result indicates that the treatment effect found in Figure 2.3 is largely driven by an increase
in patent filings relating to alternative energy technologies and energy conservation.

In the last column, I run the same regression model for the entire data set for a comparison
of the DiD and SCM estimates. The obtained DiD estimates of the average treatment effect
are positive and statistically significant at a 5% level. According to the model estimates,
the policy change leads to an estimated average increase in green patent filings of 0.849 (per
100’000 population). The treatment effect as estimated using the synthetic control method
corresponds to an average annual increase in patent filings by approximately 0.74 patent
filings per 100’000 population.27 Thus, the estimated average treatment effects obtained by
the DiD present plausible magnitudes. Note, however, that the estimates obtained by DiD
are larger than the SCM estimate. This difference in the estimated treatment effects may be
attributable to the violation of the parallel trends assumption.

26Disaggregated analysis on patents related to nuclear power generation is unfeasible due to lack of patents
in this area.

27The average treatment effect is computed as 1
T −T0

∑
t>T0

Y I
1t − Ŷ N

1t
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2.4 Conclusion

US states are undergoing great efforts to promote renewable and sustainable energy technolo-
gies within their borders by introducing regional climate and energy policies. Adopted in
2011, California‘s Cap-and-Trade program is aimed at reducing GHG emissions throughout
the state as well as creating an economic incentive for investments in cleaner, more efficient
technologies. In this paper, I empirically estimate the effect of the policy on the state’s green
innovation output.

The estimates of the synthetic control method indicate that the implementation of the
Cap-and-Trade system resulted in an increase in green patenting activity of approximately
22.5% over the 2011–2015 period. An additional DiD estimation suggests that this effect can
largely be attributed to an increase in alternative energy and energy conservation technologies.
Thus, this paper provides evidence that the policy has had a positive impact on environmental
innovation.

The findings of this paper contribute to the policy debate on the significance of local
and state government climate policies in achieving a sustainable transition to a green econ-
omy. Exploring the impacts of such policies is becoming increasingly important with federal
governments continuing to cede policy responsibilities to lower levels of government. I find
strong evidence that regional policies stimulate green innovation within state borders and
have therefore the potential to contribute to the achievement of national and global climate
goals.

Considering that market size may be a critical component for innovation-enhancing effects
of local and state-level policies, further studies should be conducted to assess the impact of
government interventions in different regions. Thus, future research should confirm the initial
findings and evaluate long-term effects. In addition, further efforts may be undertaken to
evaluate whether regional policies can evoke incentive effects in neighbouring regions as the
enactment of state measures to promote renewable energies need not necessarily be limited
to effects within the own state (Popp, 2020).



Chapter 3

Evaluation of Climate Policy Based
on Machine Learning:
The Case of Switzerland∗

Chapter Abstract

Carbon taxes are the climate policy instrument favored by economists and a core element of government policies
in many countries. Only a limited number of empirical studies have evaluated the effectiveness of the policy,
typically using traditional econometric models that may not be suitable in the absence of a control group. To
avoid these deficiencies, we use a novel machine learning approach for the case of Switzerland. We estimate
the effects of the Swiss CO2 levy on the energy use of business entities and emissions related to fossil fuels.
Microeconomic data covers energy use of business establishments in the industry and service sector for the
period 2000 – 2017. The findings provide evidence that the CO2 levy decreased heating oil use while increasing
the use of low-CO2 and CO2 alternatives. The results also suggest significant heterogeneity in the entities’
reaction to the levy. The direction and magnitude of the effect depends on the initial user behavior and energy
mix. Entities that regularly use heating oil are more responsive to tax changes than occasional users.

∗This chapter represents joint work with Prof. Lucas Bretschger and Dr. Melissa Newham (CER-ETH
Center of Economic Research at ETH Zurich)
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3.1 Introduction

The high energy demand of modern civilization is a central concern in the agenda for sus-
tainable development. Given the limited supply of non-renewable energy resources and their
combustion being the biggest source of human-caused emissions, there is an urgent need for
a transition towards a sustainable energy system. As a result, governments around the world
are intensifying climate action and implementing energy conservation and energy substitution
policies. The main objective of these policies is to encourage the use of renewable energy
sources and prompt households and firms to adopt more energy-efficient behaviors.

One of the most widespread climate policy measures is carbon taxation. The introduction
of a carbon tax, imposed on fossil fuels in proportion to their carbon content, makes carbon-
intensive energy sources more expensive than low-carbon alternatives. Thus, increasing the
relative price of fossil fuels through carbon taxation can induce substitution effects whereby
economic agents switch to less carbon-intensive energy sources (Fuss, 1977; Halvorsen, 1977;
Pindyck, 1979). However, empirical evidence on the impact of carbon taxes on energy use
and emission reduction associated therewith is limited (see Green (2021) for a review). This
study intends to extend the existing empirical evidence in this field by examining the case of
Switzerland.

Switzerland introduced carbon taxation in 2008 by imposing a CO2 levy on fossil com-
bustible fuels such as heating oil and natural gas. Fossil fuels are used by companies to
generate energy, i.e. for heat generation, in thermal plants for electricity generation or in
combined heat and power plants. Starting at 12 CHF/tCO2, the tax rate in Switzerland
was gradually increased to 96 CHF/tCO2 in 2020, making it one of the highest in the world
(OECD, 2021). Using data of a sample survey carried out by the Swiss Federal Office of
Energy (FOE), we analyze the energy usage behavior of business entities in the industrial
and service sector in Switzerland. Taking into account the tax relief mechanisms of the Swiss
regulatory framework, we construct a sample of business entities subject to the levy. Based
on this sample, we estimate the impact of the Swiss CO2 levy on the use of heating oil, the
substitution process between polluting and less polluting fossil fuels and the level of carbon
emissions from energy use.1

A few studies have evaluated the effects of the CO2 levy in Switzerland. Müller et al.
(2015) use a computable general equilibrium model to estimate the impact of the levy on CO2

emissions for the period 2008–2014. The study concluded that the tax reduces CO2 emissions
from fossil fuels by 2.5% to 6% in the observed time period. In 2016, the FOEN examined
the effects of the CO2 levy on around 4’000 tax-liable and tax-exempt companies in a direct
survey to gain insights into the decision-making processes of the involved businesses and their
reduction efforts (Jakob et al., 2016). In general, it was found that firms’ most common actions

1Operators of installations that emit a considerable amount of greenhouse gases can avoid the levy by
committing to reduce their greenhouse gas emissions. In addition, operators of large greenhouse gas-intensive
installations participate in the emissions trading system are thereby also exempt from the levy. However, our
study focuses exclusively on the effects of the levy, as the available data does not provide information on which
companies have entered reduction commitments, and the number of entities participating in the emissions
trading system is insufficient to produce a reliable estimate.
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were in the areas of selection of energy sources (e.g. switching from heating oil to gas or to
district heating), adjusting space and process heating, and consideration of these decisions in
operational and strategic planning. More recently, Leu (2018) empirically analyzes the policy
using data from the same survey as our analysis but for the period from 1999 – 2016 by using
panel data regression models to quantify the effects on energy use and GHG emissions. The
study found that the levy initially had a limited impact on fossil fuel use, with a reduction of
1% compared to the pre-policy period, but by 2016 use had fallen by 13% compared to levels
before the policy was introduced. The levy had a similar effect on total CO2 emissions, which
initially decreased by less than 1%, but by 2016 had decreased by 16% compared to levels
before the introduction of the policy. We complement these studies by evaluating the impact
of the Swiss climate policy using machine learning (ML) drawing on the approach proposed
by Abrell et al. (2022) for policy evaluation. The empirical framework is used to test a set of
hypotheses. In particular, we examine whether the effect of the policy varies across different
groups of energy users. Our hypotheses are based on the notion that the impact of the carbon
tax may vary depending on the energy mix used by the business entity and the frequency of
fossil fuel use. These hypotheses are tested to determine the strength and direction of the
policy’s impact on different user groups and across different energy sources.

Due to the widespread implementation of the carbon tax in Europe and the imposition
of measures affecting all business entities in Switzerland, no control group exists. The lack
of a suitable control renders empirical methods such as difference in differences (DiD) and
the synthetic control method (SCM) unfeasible.2 Machine learning techniques can be used
to perform counterfactual estimation in cases where a valid control group is unavailable, as
ML models can be used for the construction of the counterfactual outcome, thus overcoming
the missing data problem (Rubin, 1974). In addition, having disaggregated data on energy
use of business entities, we are able to estimate the impact of the policy on different energy
sources. This enables us to assess the impact on the use of energy sources with different
carbon intensities. Following Abrell et al., we train a model to predict entity-level energy
use under observed and counterfactual treatment. A causal inference of the treatment effect
can then be established derived from the difference between the predicted observed outcome
and the predicted counterfactual. To estimate energy use, we implement the Super Learner
(SL) as introduced by Van der Laan et al. (2007), an ensemble machine learning method that
creates a weighted combination of selected algorithms.

The findings in this paper indicate tax effects on energy usage behavior and reduction in
fossil fuel related emissions. We find that the taxation on fossil combustible fuels induces a
shift in energy use to less carbon-intensive alternatives. This substitution of energy sources
is associated with a reduction in emissions. We further find that the policy effect depends
on the energy mix and usage behavior of an entity, with business entities that regularly use
heating oil exhibiting a greater reduction than non-regular users.

Our work makes an important contribution to the literature in two ways. First, the
majority of econometric research on the impact of carbon taxes is based on macro- or sector-

2Reliably implementing these statistical methods would require a similar survey to be conducted in one or
more other countries to obtain comparable data.
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level data (for examples see Andersson, 2019; Bretschger & Grieg, 2020; Bruvoll & Larsen,
2004; Lin & Li, 2011; Murray & Rivers, 2015). There are only a limited number of studies
providing plant- and firm-level evidence on the effects of carbon pricing on energy use and
emission abatement from energy substitution (see e.g. Jo & Karydas, 2022; Marin & Vona,
2021; Martin et al., 2014). Ellerman & McGuinness (2008) use a panel regression and power
plant-data on emissions from the United Kingdom to estimate the effect of the EU ETS.
Annual average emission rates were calculated using predicted and counterfactual emissions.
Wagner et al. (2014) rely on propensity score matching and regression to analyze firm- and
plant-level data on French manufacturing firms to examine the impact of the EU ETS. The
composition of emissions in terms of fuel share is used to estimate emission abatement caused
by changes in the fuel mix. The present paper adds to this literature by using micro-level data
across different industries thereby providing additional empirical evidence on the effects of
carbon pricing policies. Moreover, we contribute to the scarce empirical evidence on emission
abatement from fuel switching.

Second, the paper contributes by applying a novel machine learning approach for evalu-
ating climate policy impacts. The use of ML methods for causal inference and applications
related to energy economics has gained popularity in recent years (e.g. Athey & Imbens
(2016); Hill (2011); Kleinberg et al., 2015; Künzel et al., 2019; Mullainathan & Spiess, 2017;
Varian, 2014).3 ML offers several advantages for causal inference in the evaluation of policy
measures. These include the capability of capturing non-linear relationships in the data to
build more accurate models, and the ability to build flexible models. ML algorithms are able
to autonomously select the best performing model, thereby improving the accuracy of the
predictions. ML has been particularly beneficial in settings where no control group is avail-
able. For example, Bertoni et al. (2021) apply multinominal choice framework to estimate
the counterfactual behavior of farmland units to estimate the greening impact of the Com-
mon Agricultural Policy reform. Other examples include Burlig et al. (2020) and Fabra et al.
(2022) who implement event study approaches with ML. Their approaches consist of training
a ML model using pre-treatment data to predict post-treatment counterfactual outcomes.
Recently, Abrell et al. (2022) developed and implemented a ML approach using observations
from both the pre- and post-treatment period to train a ML model. They apply the approach
to analyze the impact of the UK carbon tax by employing the LASSO algorithm. With the
present paper, we add to this literature by adopting the policy evaluation approach proposed
by Abrell et al. using the SL algorithm.

The study is divided into six sections, including this introduction. Section 2 describes
Switzerland’s climate policy. Section 3 develops a series of hypotheses to be tested. Section 4
presents the data and corresponding descriptive statistics. Section 5 provides a description of
the methodology. Section 6 presents the empirical results obtained. Section 7 discusses the
results and concludes.

3Ghoddusi et al. (2019) provide a review of recently published articles on the energy economics/finance
applications of ML methods.
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3.2 Swiss Climate Policy

Under the Kyoto Protocol, Switzerland pledged to reduce its greenhouse gas emissions by
20% below the 1990 level by 2020 with sectoral targets for transport, buildings and industry.
In order to meet these targets, the Swiss government enacted the CO2 Act in 2000, which
mandated the introduction of the CO2 levy.4 Additionally, large scale energy users are required
by cantonal energy legislation to conduct an analysis of their energy usage and implement
reduction measures to save energy. The levy and the cantonal energy policy are outlined in
more detail below.

CO2 Levy
The levy was introduced in 2008 in conjunction with the Swiss emissions trading scheme (CH-
ETS). It covers emissions from fossil heating and process fuels and is indicated on invoices
for purchases of thermal fuels. Oil products for transportation purposes (e.g. gasoline and
diesel) are not subject to the levy. Also not affected by the levy are wood and biomass, as
they are considered CO2-neutral.

Under the levy, the government sets a price that emitters must pay for each metric ton
of CO2 they emit. The tax was designed to be increased if CO2 emissions from fuels do not
decrease sufficiently to prospectively meet emission reduction targets set out in the Kyoto
Protocol. The rate of the levy was initially set at CHF 12 per ton of CO2. As the level of
actual CO2 emissions from heating and process fuels exceeded the stipulated threshold values,
the rate was increased to 36 CHF/ tCO2 for 2010–2013 and further increased to 60 CHF/tCO2

for 2014–2015, 84 CHF/tCO2 for 2016–2017 and 96 CHF/tCO2 for 2018–2021.
The levy is designed as an incentive tax. The level of the levy for each energy source

depends on the respective carbon content: the higher the carbon content during combustion
of an energy source, the higher the levy. An example is the combustion of heating oil and
natural gas. Heating oil has a higher emission factor than natural gas, leading to higher CO2

emissions per TJ than natural gas. As a result, the level of levy is higher for heating oil. The
tax rate levels for each energy source can be calculated using emission factors. The emission
factors that are used in this paper and the calculated tax rate levies are displayed in Table 3.1.
The policy instrument therefore sets financial incentives for households and firms to reduce
their fossil fuel consumption and switch from CO2 intensive energy sources to low-CO2 or
CO2-free alternatives. This can be achieved in a variety of ways, e.g. through the increased
use of low-carbon emitting technologies, through changes in process and production methods
or through changes in heating.

About two thirds of the revenues from the levy are redistributed by the federal govern-
ment to the citizens and the economy.5 The remaining third of the revenue (max. CHF 200

4Along with the levy, the CO2 Act contains a range of other reduction measures, namely the Buildings
Programme and emission regulations for new cars and light commercial vehicles. The Buildings programme is
a national programme that provides financial support for energy efficient renovations and the use of renewable
energies. The majority of the disbursements concern real estate under private ownership of natural persons.
Fund grants may be obtained upon request. In 2010, only 4.4% of the total requests originated from legal
entities (in 2016, they accounted for 16.1%).

5In 2015, a sum of about 236 million francs was distributed to the economy. In 2019, it amounted to 439
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million as of 2010, max CHF 300 million as of 2013, and max CHF 450 million as of 2018) is
used to support energy-efficient building renovations and renewable heating energy through
the building programme. The share of revenue from the CO2 levy paid by the population is
redistributed on a per capita basis to all residents of Switzerland, regardless of their individual
consumption. The revenue from the levy paid by the economy is redistributed to all employ-
ers in proportion to the settled AHV payroll of their employees.6 Thus, emission-intensive
companies tend to be burdened more by the tax than labor-intensive companies.

Table 3.1: Tax Rate Level of Levy per Energy Source, 2008–2022

2008–
2009

2010–
2013

2014–
2015

2016–
2017

2018–
2022

CHF per ton of CO2
12 36 60 84 96

Emission
Factor

(tCO2 / TJ) CHF per TJ

Heating Oil Medium/Heavy 77.0 884.40 2’653.20 4’422.00 6’190.80 7’075.20
Heating Oil Extra Light 73.7 824.00 2’772.00 4’620.00 6’468.00 7’392.00
Natural Gas 56.6 679.20 2’037.60 3’396.00 4’754.40 5’433.60

Notes: Calculations are based on emission factors. Information on emission factors is provided by the FOE. Under
the Federal Office for the Environment, other liquid fuels are not permitted if they higher or different emissions
than extra light heating oil. Thus, the same emission factor and tax rate level is used for other liquid fuels as for
light heating oil.

Depending on the size and nature of the installation, an operator can request to be ex-
empted from the levy. In return, the installation operators must enter a reduction commitment
or participate in the CH-ETS. This applies to firms that would be severely burdened by the tax
and thereby severely impaired in their international competitiveness. Small and medium-sized
installations producing large amounts of greenhouse gases can enter a reduction commitment.
Larger, carbon-intensive entities are obligated to participate in the emission trading scheme
and are subsequently exempted from the levy.

As a consequence, companies differ in terms of exemption regime depending on the sector
and yearly emitted CO2 levels. A distinction can be made between five categories as presented
in Table 3.2. An evaluation of the CO2 levy must take this environmental policy mix into
account.

million francs.
6During the first commitment period 2008–2012, the revenue was redistributed only to levy-paying com-

panies. As of 2013, all companies receive the redistribution even if they are exempt from the levy.
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Table 3.2: Levy Exemption Regimes in Swiss Federal Climate Policy

Description Levy Exemption Regime
1 Firms with installed capcaity of 20 MW and more (engaged in an

activity referred to in Annex 6 of the CO2 Ordinance) with
emissions ≥ 25’000 tonnes of CO2 equivalents per year

Obligatory participation in the
CH-ETS

2 Firms with installed capcaity of 20 MW and more (engaged in an
activity referred to in Annex 6 of the CO2 Ordinance) with
emissions < 25’000 tonnes of CO2 equivalents per year

Voluntary participation in the
CH-ETS or reduction commitment

3 Firms with an installed capacity of between 10 and 20 MW (engaged
in an activity referred to in Annex 7 of the CO2 Ordinance)

Voluntary participation in the
CH-ETS or reduction commitment

4 Firms with an installed capacity below 10 MW (and engaged in an
activity referred to in Annex 7 of the CO2 Ordinance) with
emissions > 100 tonnes of CO2 equivalents per year

Reduction commitment

5 Firms with emissions ≤ 100 tonnes of CO2 equivalents per
year

None

Notes: Annex 6 and 7 can be found in the Ordinance of 30 November 2012 for the Reduction of CO2 Emissions
(CO2 Ordinance) available at https://www.bafu.admin.ch/.

Cantonal Energy Policy
With the revision of the federal energy law in 2007, the cantons are mandated to implement a
"large consumer model" known as Grossverbrauchermodell (GVM). The GVM stipulates that
establishments with an annual heat consumption of more than 5 GWh or an annual electricity
use of over 0.5 GWh are required to analyze their energy use and take reasonable measures
to reduce consumption.7 This measure is specifically targeted at promoting a more efficient
use of energy by large-scale energy users on a cantonal level.

7This corresponds to an annual heat consumption of more than 18 TJ and an annual electricity use of more
than 1.8 TJ.

https://www.bafu.admin.ch/.
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3.3 Hypotheses

In the following analysis, we focus on a number of contingencies that may be crucial for
assessing the impact of carbon taxation on energy use. Based on prior work in the field, we
formulate a series of hypotheses to be tested using our novel methods.

Standard economic theory predicts that carbon taxation affects the behavior of households
and firms. Carbon taxes levied on fossil fuels in proportion to their carbon content raise the
price of carbon-intensive energy sources relative to low-carbon alternatives. Thus, by raising
the price of heating oil relative to other sources of energy, taxation is expected to induce both
a decrease in the use of heating oil and an increase in natural gas or other energy sources. We
aim to replicate this theoretical prediction using our ML approach. In addition, we expect the
effects induced by the levy to be contingent on the tax level. Thus, the higher the tax rate,
the more entities react with a change in energy use. Hence, we posit the following hypothesis:

Hypothesis 1 (H1) With an increasing tax rate, the use of high carbon energy source de-
creases and the use of low-carbon alternatives increases when all the other determinants of
energy use are held constant.

Inter-company differences in energy usage patterns may lead to differences in the effect of
carbon taxation. Thus, when evaluating the effects of a CO2 levy, energy usage patterns may
be considered.

The degree and form of impact of a carbon tax may vary due to differences in heating oil
usage and associated costs and benefits of adapting energy demand. Entities with a regular
demand for heating oil face a higher tax burden in relation to the total costs, which increases
the financial benefit of tax avoidance. As a result, regular heating oil consumers may be more
sensitive to carbon taxation than irregular users.

Further, the nature and extent of substitution opportunities between energy sources are
essential to the analysis of fossil fuel reduction mechanisms (Steinbuks, 2012). Hence, the
impact and behavioral choices of entities prompted by the levy depend on the entity’s scope
of action. Substituting heating oil used for production or process purposes for other energy
sources requires technological substitution possibilities and technical flexibility. The feasi-
bility of implementing changes in the production process or replacement of energy-related
equipment may therefore depend on historical energy usage patterns. Entities that already
include natural gas and alternative energy resources in their energy mix may be able to shift
away from heating oil more easily than entities that relied entirely on heating oil until the
introduction of the tax. Thus, fuel-switching and fuel-saving possibilities may vary. However,
if the switching potential is exhausted, further reductions in heating oil use might be limited.

In consequence, it may be relevant to take into account entity-specific differences between
energy usage patterns when considering the effects of a carbon tax. Taking this into consid-
eration, we hypothesize:

Hypothesis 2 (H2) Entities that regularly use heating oil are more responsive to tax changes
than occasional users when all the other determinants of oil use are held constant.
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Hypothesis 3 (H3) Entities that have used low-carbon and carbon-free alternatives before
the implementation of the carbon tax policy are more responsive to tax changes than the
average entity, independent of the regularity of oil use.

Further, theoretical research finds that a carbon tax can effectively reduce emissions due
to inter-fuel substitution (Agostini et al., 1992; Delarue et al., 2008; Morrison & ten Brink,
1993; Karki et al., 2006). By replacing more polluting energy sources with lower-polluting
alternatives, the energy mix becomes cleaner, leading to a reduction in emissions. Conse-
quently, fuel switching induced by carbon taxation can be a cost-effective and quick way to
achieve carbon reductions (Wilson & Staffell, 2018). Accordingly, we hypothesize:

Hypothesis 4 (H4) Energy substitution gradually decreases CO2 emissions with a growing
carbon tax rate.
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3.4 Data & Descriptives

The empirical analysis is based on entity-level data that was collected annually in the period
1999–2020 in the course of a survey on the “energy consumption in industry and the service
sector” carried out by the Swiss Federal Office of Energy (SFOE). In the survey, business
entities were asked to report the annual usage quantity for each energy source (i.e. electricity,
fossil fuels, gaseous fuels and others). With heating oil and natural gas being subject to
the levy, the focus of this analysis is placed on these main energy sources. The energy
sources industrial waste, local and district heating as well as wood are grouped together
and labeled as “other energy sources”. The entities are classified into 19 different industry
groups (the industrial sector contains 12 subsectors, the service sector contains 7 subsectors
as presented in Table A.5). The survey yielded an annual average of 5’224.82 respondents,
and the average entity participated 4.81 times. The annual entity-level data is measured in
terajoules (TJ), which allows a comparison between energy sources in a common energy unit.
For the empirical estimation we use log-transformed values.8 Besides questions on energy
use, the survey included questions on basic characteristics (number of employees, gross floor
space).

Beyond the data provided by the survey, we include variables that may affect energy
use. We include prices for the respective energy sources to control for market-driven price
changes. Further, we use the number of heating degree days per year as a weather-based index
on the heating energy requirements. Considering that energy research activities may effect
energy use through innovative solutions and technological improvements, public spending on
Swiss energy research is included as control variable. At last, we include an index for energy
efficiency to control for the progress in energy efficiency and the related energy savings. Table
4.2 presents information for the variables included in the analysis.

3.4.1 Sample

To construct our final sample, we make use of emission estimates and the guidelines for CO2

tax exemption of the FOE to determine tax liability. As such, we classify entities that are not
eligible for a tax exemption as subject to the levy. The proceedings are discussed below.

As detailed in Section 3.2, entities that emit more than 25’000 tCO2e per year are obliged
to participate in the CH-ETS and in consequence are exempt from the levy. Business entities
that emit less than 25’000 tCO2e but more than 100 tCO2e have the option to be exempted
from the levy during the commitment period 2013–2020 by voluntarily participate in the CH-
ETS or by committing to reducing their greenhouse gas emissions in return. Decisive for this
are the emissions in the years leading up to the commitment period 2013–2020. It follows
that all business entities with yearly emissions ≤ 100 tCO2e in the years prior to 2013 are
subject to the levy (see Table 3.2). Consequently, we use a classification approach based on
this exemption regime: We estimate the CO2 emissions of a business entity by multiplying

8For analytical reasons, we convert it to megajoules (MJ) (1 TJ = 1’000’000 MJ) before the log transfor-
mation of the data.
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the amount of energy used with the fuel-specific CO2 emission factor. On the basis of these
calculations, we identify entities in the sample with average annual CO2 emissions ≤ 100
tCO2e before the introduction of the policy as subject to the levy.9 As annual observations
are not available for every business entity, we classify as subject to the levy those entities for
which the average annual CO2 emissions from energy use in the period 2008 – 2012 are equal
or less than 100 TCO2.11. We further remove "large users" that are subject to cantonal energy
policy (i.e. GVM). Applying this strategy results in a sample of 3’561 entities that can be
classified as being subject to the levy covering the years 2000–2017.12 Summary statistics for
the sample are displayed in Table 3.3.

Table 3.3: Summary Statistics

Pre-policy Post-policy
n = 13’240 n = 13’005

Mean St. Dev Median Mean. St. Dev. Median.
Heating Oil (ln) 7.86 6.22 11.74 6.37 6.40 8.19
Natural Gas (ln) 2.67 5.16 0.00 3.59 5.75 0.00
Electricity (ln) 12.03 1.49 12.21 12.43 1.41 12.69
Other Energy Sources (ln) 1.90 4.62 0.00 2.58 5.32 0.00
Total Energy Consumption (ln) 13.18 1.29 13.40 13.44 1.22 13.67
GFS 1919.39 5853.11 1000.00 2402.07 3458.68 1427.00
FTE 9.20 87.49 2.00 12.51 41.99 4.00
PTE 28.48 100.56 15.00 40.71 74.35 22.00
EE 112.77 5.86 110.38 130.52 9.67 129.49
EF 180.32 13.97 184.22 214.61 47.95 200.78
HDD 4193.81 134.50 4183.88 4236.17 195.07 4286.58
Oil Price 46.63 12.66 54.00 59.87 13.46 63.20
Electricity Price 14.30 1.04 13.90 13.66 1.16 13.80
Gas Price 4.32 0.64 4.20 5.08 0.41 5.19
GDP per Capita 76946.95 2974.26 76784.64 82942.09 1569.34 82997.69

9The CO2 equivalents of an entity are determined on the basis of the following greenhouse gas emissions:
i) energetic CO2 emissions from the combustion of fossil regular fuels and ii) fossil waste fuels and/or geogenic
process emissions.10 The sample survey, however, does not provide any information on the second category,
thereby the classification is conducted solely on the basis of the stated energy-related CO2 emissions. Never-
theless, this approach is warranted by the fact that energy-related emissions from Swiss firms account for a
predominant share of a firm’s or facility’s total greenhouse gas emissions. Thus, whilst this method is fraught
with uncertainties, we argue that it provides a sufficiently good representation of the entity’s situation.

11Entities for which we do not have observations in this period are automatically dropped. We further drop
entities for which we do not have any observations in the pre-treatment period. In addition, we drop entities
pertaining to the cement and concrete sector as our sample does not provide a representative number of entities
for this industry group.

12Outliers and inconsistent observations were removed from the data set. Missing values for the variables
FTE, PTE and GFS were imputed by using the k-Nearest Neighbors imputation method.
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Table 3.4: Description of Variables Used for the Analysis

Variable Description
Energy Consumption (in MJ)

Electricity Net electricity use
Heating oil Heating oil extra light, heating oil medium/heavy and other liquid

fuels
Natural gas Natural gas
Other Energy Sources Industry waste, local / district heating and wood

Facility characteristics
Industry group 19 industry groups (as described in Table A.5)
Number of full-time employees (FTE) Employees with an employment ratio ≥ 90%
Number of part-time employees (PTE) Employees with an employment ratio < 90%
Gross floor space (GFS) Measured in m2

Other explanatory variables
Heating oil price (Real) price excl. CO2 levy1)

Gas price (Real) price excl. CO2 levy1)

Electricity price (Real) price1)

Heating Degree Days (HDD) Sum of differences between outside air temperature and target
indoor air temperature (20°C) for all heating days of the year2)3)

Public spending on energy research (EF) Total spending on energy research in the fields of energy efficiency,
renewable energies, nuclear energy and energy policy fundamentals
(2 years lag)4)

Energy Efficiency (EE) Index on the basis of GDP/end-use energy consumption4)

GDP per capita GDP in constant 2015 US Dollars5)

1) Source: Overall energy statistics (Swiss Federal Office of Energy, 2021), Tab. 39
2)A heating day is defined as a day with a daily mean temperature of less than 12°C
3) Source: Meteo Swiss
4) Source: Federal Statistical Office (2022)
5) Source: World Bank
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Figure 3.1 illustrates the mean energy use for this sample. Figure 3.1a depicts the average
share of energy use by source. Heating oil was one of the predominant energy sources at the
beginning of the century, but the share of energy use for heating oil has declined steadily
over time. This trend coincides with an increase in average use for all other energy sources.
Consequently, the energy mix of the business entities in the sample has changed drastically
in this time period: While the average share of heating oil dropped from roughly 41% to
under 20%, the average share of natural gas grew from 7% to roughly 17%. Other energy
sources followed a similar development, with their share increasing from 7% to 15%. Further,
we observe an increase in average total energy consumption (see Figure 3.1b). Total mean
energy use per square meter of floor space, however, declined since the introduction of the
levy in 2008.

Figure 3.1: Trends in Energy Use, 2000–2017

(a) Share of Energy Use per Source

(b) Total Average Energy Use
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We further consider the distribution of energy source use by looking at the share of entities
in the sample that use each energy source. Figure 3.2 illustrates the annual share of firms
that include each energy source in their energy mix.13 We find that all of the entities in the
sample use electricity. More than 60% of the entities used heating oil at the beginning of the
period. However, this share declined significantly over the course of time, falling to below 40%
in 2017. For natural gas and other energy sources, on the other hand, an rise in the shares can
be observed. Thus, we find that increasingly more entities are including these energy sources
into their energy mix while heating oil is being phased out of the energy mix.

Figure 3.2: Distribution of Energy Source Usage

On a more in-depth examination of the annual changes in the heating oil at the entity level,
three patterns can be observed in our data: Entities either (i) use less than in the period before
(yt−1 > 0,∆t < 0); (ii) use more or the same than in the period before (yt−1 ≥ 0,∆t ≥ 0); or
(iii) remain at zero use ((yt−1 = 0,∆t = 0). Figure 3.5 graphically illustrates these patterns.
We observe a high share of business entities that remain at zero heating oil use from one year
to the next, with this share increasing over the entire period. The annual share of entities that
increase their heating oil use from one year to the next also decreases over time, indicating
that entities are gradually abandoning the use of heating oil. In the same vein, the annual
percentage of entities that experience a negative change in their heating oil use increases.
Most of them remain at a positive usage level, with only a small proportion of entities ceasing
heating oil use completely from one year to the next.

Given the percentage of business entities that do not use heating oil in a given year, it is
apparent that not all entities in our sample regularly use heating oil prior to the introduction
of the levy. Establishments may be affected to a varying extent by the levy depending on their
energy usage patterns. As a result, the entities in our sample can be categorized into three
groups according to their energy use before the introduction of the levy: Occasional oil users
who have used heating oil at least once before the introduction of the levy; regular oil users,
who have used heating oil in every observed year before the introduction of the levy; and non

13Figure A.9 provides a detailed illustration of the trends in energy mix over time.
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Figure 3.3: Annual Changes in Heating Oil Use

oil users who have not used heating oil in any of the observed years before the introduction of
the levy. Table 3.5 provides an overview of the energy usage patterns, including the allocation
between industry and the service sector. The largest share in our dataset is regular oil users,
which are equally distributed between industry and the service sector. Non oil users constitute
another large share in our data, i.e. more than a third of the companies in our sample do not
use heating oil.

We also find differences within these groups regarding pre-treatment natural gas use.
While only a small share of regular heating oil users use natural gas before 2008, this share is
much greater for occasional users and for non-users. Hence, entities that regularly use heating
oil therefore use natural gas considerable less frequently. Conversely, entities that do not or
only occasionally use heating oil frequently use natural gas. We find a similar pattern for
other energy sources. Again, only a small share of regular heating oil users use other energy
sources while the share is notably bigger for occasional users and for non-users.

Table 3.5: Heating Oil Usage Patterns (Pre-Treatment)

Occasional oil users Regular oil users Non oil users
346 entities 1’902 entities 1’313 entities

2’911 observations 14’367 observations 8’967 observations
(43% industrial sector, 57%
service sector)

(51% industrial sector, 49%
service sector)

(40% industrial sector, 60%
service sector)

Pre-Levy Energy Mix: Freq. Pre-Levy Energy Mix: Freq. Pre-Levy Energy Mix: Freq.

Oil + Electricity 35.8% Oil + Electricity 88.7% Electricity 23.8%
Oil + Electricity + Gas 37.9% Oil + Electricity + Gas 5.7% Electricity + Gas 43.5%
Oil + Electricity + Others 22.3% Oil + Electricity + Others 5.4% Electricity + Others 28.9%
All 4.0% All 0.2% Electricity + Gas + Others 3.8%
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3.5 Methodology

3.5.1 Model

The empirical strategy follows the approach proposed by Abrell et al. (2022) for policy eval-
uation in setting where no suitable control group exists. We define energy use y of entity i in
period t as a function:

yit = fi(xit, kit, zt) + ϵit (3.1)

where xit and kit are vectors of observed and unobserved controls, respectively. zt is the
continuous treatment variable, i.e. the levy. z0

t is the levy rate zero (no treatment). ϵit is a
random noise with mean zero and variance σ2

ϵ . ϵit is independent of controls and treatment:
ϵit ⊥ (xit, kit, zt) ∀ i, t. We assume that controls affect energy use via the function fi(xit, kit, zt)
and that the function fi is autonomous to changes in the treatment.

The objective of this study is to identify the effect on energy use y caused by the govern-
ment intervention. Let y1it be the energy use of entity i under treatment and let y0it be the
energy use without treatment. The treatment effect can then be calculated as θ = y1it − y0it.
To identify the impact of treatment on the outcome variable, the following assumptions have
to hold true:

1. Observed control variables are independent of the changes in the treatment variable:

xit ⊥ zt

2. Unobserved control variables are conditionally independent to changes in the treatment
variable given the observed controls:

kit ⊥ zt|xit

Assumption 1 rules out effects of the treatment on observed control variables. If the assump-
tion doesn’t hold, there would be an indirect effect on the outcome, which would, in turn, bias
the estimated treatment effect. Assumption 2 rules out effects of the treatment on unobserved
control variables once observed control variables are controlled for. Otherwise, there would
be an indirect effect biasing the estimated treatment effect.

Given that all business entities in Switzerland are subject to one of the three policy
instruments, there is no untreated control sample y0it available to estimate the impact of
the levy. Thus, the estimation of the causal effect using standard statistical approaches is
hampered due to the lack of couterfactual outcome (Holland, 1986; Rubin, 1974). Thus, we
use supervised machine learning to obtain an estimator f̂i for fi to produce reliable out-of-
sample predictions for the outcome variable under the observed and counterfactual treatment:

ŷit = f̂i(xit, kit, zt) + ϵit = yit + ξit(xit, kit, zt) + ϵit (3.2)

where ξit is the prediction error which is unobserved in the case of the counterfactual outcome.
As a result, the estimated treatment effect can be computed as: θ̂ = ŷ1it− ŷ0it. The estimated
treatment effect is unbiased if the following assumption is satisfied:
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3. The prediction errors are independent of the treatment:
ξ(xit, kit, zt) = ξ(xit, kit, z0

t ) = ξ(xit, kit)

Given this and E[ϵit] = 0, the estimated treatment effect θ̂ is unbiased, i.e. E[θ̂] = 0.
Additionally, we impose two further assumptions on the properties of our data for the

feasibility of the applied estimation strategy:

4. The variation in the level of treatment and controls over time is sufficiently large

5. Each combination of the counterfactual treatment and control variables has been ob-
served (thus Prob[z|xit] > 0)

Assumption 4 is imposed because variation is needed for ML algorithms to detect patterns
and relationships between variables. If variation over time is insufficient, the algorithm may
not be able to accurately capture the effect of the treatment. Therefore, assuming sufficient
variation in the level of treatment and controls over time is necessary for ML algorithms to
produce reliable estimates of the treatment effect. Assumption 5, the “positivity” or “covariate
overlap” assumption (Samii et al., 2016) is necessary as ML algorithms may not perform
well on combinations of variables that were not observed during training. Therefore, it is
uncertain how well the estimated models generalize to unseen observations. We assume that
all combinations of z and x are within the range of the observed data.

3.5.2 Empirical Implementation

The empirical implementation requires us to obtain a precise estimate of the energy use at the
entity level. To estimate fi, we use facility characteristics as well as the covariates presented
in Table 4.2. Further, we include entity and industry group fixed effects.

As we do not know the functional form of fi and restrain from restricting the relationship
by assuming a functional form, we estimate the relationship directly from the data. Therefore,
we can treat estimation as a prediction task, and use any algorithm suited for prediction. This
excludes standard OLS regression because this method breaks down when accounting for many
(often) correlated covariates. In this case, OLS overfits the data, inducing variance inflation
and sign reversal. To avoid the risk of overfitting and increase prediction accuracy without
restricting functional forms, we use a machine learning method to obtain an estimator of fi.
We make use of the Super Learner (SL) ensemble machine learning algorithm as outlined in
Van der Laan et al. (2007). The method is described in the subsequent section.

Impact on energy use. In order to estimate the impact of the levy on entity-level
energy use, we need to obtain predictions for energy use with and without treatment, i.e.
ŷ1it and ŷ0it. For this, we employ the SL algorithm to train a model including a continuous
treatment variable zt indicating the tax levy. The prediction model is trained on untreated
observations (i.e. before the introduction of the levy where the tax rate is equal to zero)
and treated observations (i.e. after the introduction of the levy). This model is then used to
predict actual, observed and counterfactual, unobserved outcomes for the period 2000–2017.
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To simulate untreated, unobserved outcomes after 2008, we assign the treatment variable the
value of zero for the entire time period, everything else remaining unchanged. The resulting
predictions are our counterfactual. By estimating ŷ1it and ŷ0it, the difference between the two
values can be calculated to determine the treatment effect, i.e., the difference in energy use
relative to the counterfactual situation in the absence of the levy.

Impact on CO2 emissions from the combustion of fossil fuels. The impact of the
levy on emissions from energy-related fossil fuel use can be assessed based on the estimated
energy use. To estimate the emission abatement, we calculate emissions under observed and
unobserved outcome using the emission factors in Table 3.1. Thus, we obtain the amount of
emissions resulting from fossil fuel use by multiplying energy use with the respective emission
factors. Aggregating the sum of emissions from heating oil and natural gas over all periods t
yields the total emissions from the use of fossil fuels:

Êi =
∑
t

eoil × ŷoilit +
∑
t

egas × ŷgasit (3.3)

The emission abatement can then be computed as the difference between total emissions
in the case with and without levy.

3.5.3 The Super Learner Algorithm

The Super Learner is an algorithm that minimizes the cross-validated risk with respect to an
appropriate loss function. In other words, the SL uses cross-validation to create an optimal
weighted convex combination of candidate prediction algorithms, the so-called base learners.
The approach has proven to perform asymptotically as well as or better as its best performing
candidate learner (Van Der Laan & Dudoit, 2003; Van der Laan et al., 2006). In the following,
we summarize the SL algorithm as detailed in the paper by Van der Laan et al..

Let Ui = (Yi, Xi), i = 1, ..., n be the data set where Y is the outcome variable of interest
and X is a p-dimensional set of covariates. The objective of the SuperLearner is to estimate
the function ψ0(X) = E(Y |X). The function ψ0(X) can be defined as the minimizer of the
expected loss:

ψ0(X) = argmin
ψ

E[L(U,ψ(X))] (3.4)

where L is a loss function. Predictions of n observations are constructed as follows: Let L be a
collection of base learners with cardinality K(n). The idea is to fit each algorithm in L on the
entire data set to estimate Ψ̂k(X), k = 1, ...,K(n). The weight vector α is then determined
such that it minimizes the cross-validated risk of the candidate estimator

∑K
k=1 αkΨ̂k with∑K

k=1 αk = 1 and ∀αk >= 0, over all allowed combinations of α:

α̂ = argmin
α

n∑
i=1

(Yi − αkΨ̂k)2 (3.5)

The SuperLearner fit is then given by:
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Ψ̂(X)SL =
K∑
k=1

α̂Ψ̂k (3.6)

We make use of the R package “SuperLearner” to implement the algorithm. The following base
learners are selected: random forests (Breiman, 2001), gradient boosting (Chen & Guestrin,
2016), regularized regression (Friedman et al., 2010).

Gradient Boosting. Gradient boosting refers to a tree-based ensemble method. En-
semble methods are learning algorithms where multiple models, also known as base learners,
are trained to combine the predictions to improve the overall accuracy of the model results.
In gradient boosting the base learners are trained sequentially wherein each subsequent base
learner uses information from previous models to provide more accurate estimates. One imple-
mentation of such gradient boosted decision trees is the XGboost (eXtreme Gradient Boost-
ing) algorithm developed by Chen & Guestrin (2016). It is a novel boosting-based ensemble
learning that offers efficient computational performance and sparsity aware split-finding. R
provides the “xgboost” package to implement the algorithm.

Random forest. As in the case of gradient boosting, random forest is an ensemble
machine learning technique. The algorithm proposed by Breiman (2001) is an extension of
the bagging method introduced by Breiman (1996). Each tree in the ensemble is built using
a bootstrap sample of the data. At each node in a tree, the splitting criteria is selected from
a subset of predictors randomly chosen at that note. The main idea behind random forest is
to reduce variance by training on different samples drawn with replacement. Thus, random
forests often achieve high accuracy and reduces the risk of overfitting by averaging the results
of different decision trees trained on randomly drawn subsets. We use the “ranger” R package
to implement Breiman’s algorithm.

Regularized Regression. Regularized linear regression is a regression method that
includes a regularization penalty. The regularization constrains or shrinks the coefficient
estimates towards zero. This constraint discourages complex models to avoid over-fitting.
This is done by adding a penalty that is the squared magnitude of the coefficients to the loss
function (ridge regression) or a penalty equal to the absolute value of the magnitude of the
coefficients (LASSO regression). We implement regularized regression by using the “glmnet”
R package.

To sum up, we have a versatile set of algorithms which are weighted by the SL algorithm
such as to minimize the cross-validated risk.
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3.6 Estimations & Results

3.6.1 Preliminary Analysis

Our machine learning approach estimates the causal effects of the policy measured on a
continuous scale. To corroborate this, we estimate a regression model including dummy
variables to measure the impact of each tax rate on energy use as compared to pre-treatment.
This allows to evaluate the effect of the increasing tax rate. Therefore, for each tax rate we
include a dummy variable that takes the value 1 for the respective years, and 0 otherwise.
The results of the regression estimations are presented in Table 3.6. The results indicate that
the CO2 levy had a negative impact on heating oil use (column 1), and a positive impact on
the use of all other sources of energy (column 2–4). Notably, the coefficients show that the
effect gradually increases with the increase in the tax rate. The dummy coefficients thereby
confirm that the effect of the levy increases when the tax rate is raised which validates the
use of a continuous variable in our ML-based estimation approach.

Table 3.6: Regression Results (Full Sample)

Dependent variable:

ln Heating Oil ln Natural Gas ln Electricity ln Others

(1) (2) (3) (4)

12 CHF/tCO2 −0.221 0.067 −0.016 0.090
(0.143) (0.125) (0.030) (0.109)

36 CHF/tCO2 −0.411∗∗ 0.435∗∗ 0.354∗∗∗ 0.425∗∗∗

(0.195) (0.170) (0.041) (0.148)
60 CHF/tCO2 −0.748∗∗ 0.566∗∗ 0.548∗∗∗ 0.650∗∗∗

(0.295) (0.257) (0.062) (0.224)
84 CHF/tCO2 −0.854∗∗ 0.458 0.571∗∗∗ 0.789∗∗∗

(0.339) (0.296) (0.072) (0.258)

Observations 26,245 26,245 26,245 26,245
R2 0.069 0.044 0.211 0.123
Adjusted R2 0.068 0.043 0.210 0.123

Entity FE YES YES YES YES
GROUP FE YES YES YES YES
FIRM CONTROLS YES YES YES YES

Note: The constant term and control variables are estimated but not reported.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To assess whether the regularity of use leads to differences in the direction and magnitude
of treatment effects, we repeat this regression for regular users and occasional users separately.
Quantifying the effect for the two user groups sheds light on how causal effects may differ
across usage patterns. Figure 3.4 compares the dummy coefficients obtained for the full
sample, occasional users and regular users. Our findings show that the results in Table 3.6
are mainly driven by the latter. Entities that regularly use heating oil react strongly to the
taxation of fossil fuels by simultaneously reducing heating oil use and increasing natural gas
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Figure 3.4: Regression Results, Coefficient Comparison of Different Samples

use, i.e. inter-fuel switching. Further, for this user group we see a smaller but positive effect
in the use of electricity and other energy sources. For occasional users, on the other hand,
the effects are mostly insignificant.

Next, we examine whether the pre-levy energy mix of entities affect usage behavior. For
this, we evaluate whether entities that have used natural gas in pre-treatment period react
differently to the introduction of the levy relative to entities who have only relied on heating
oil. The regression model can be written as follows:

yit = β0 + β1Gasi + β2Postt + β3Gasi × Postt + β4Xit + εit (3.7)

where yit is the heating oil use of entity i at time t. Gasi is a dummy variable which is
equal to one if entity i has used natural gas during the pre-treatment period and equal to
zero otherwise. Postt is an indicator variable for time t and is equal to one if the observation
occurs after the introduction of the levy and equal to zero in the previous periods. Thus, the
interaction term Gasi × Postt takes the value of one for observations for “gas users” in the
post-treatment period. The corresponding estimated coefficient β3 can be interpreted as the
effect of the levy on gas users. Xit represents the control variables as specified in the main
analysis and εit is the error term. We run the equivalent regression for other energy sources:

yit = β0 + β1Otheri + β2Postt + β3Otheri × Postt + β4Xit + εit (3.8)

The regression results are reported in Table 3.7. We find that entities that have used
natural gas in the pre-treatment period have a significantly lower heating oil use in the post-
treatment period compared to entities that only use electricity and other energy sources.
Thus, the findings show that entities are characterized by stronger decreases in heating oil if
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the entity used natural gas already in the pre-treatment period. For other energy sources,
this only holds true for regular users, however, we find that this effect is less pronounced.

Table 3.7: Regression Analysis

Dependent variable:

ln Heating Oil

Regular Oil Users Occasional Oil Users

(1) (2) (3) (4)

Gas × Post −2.938∗∗∗ −2.948∗∗∗

(0.212) (0.431)
Others × Post −0.121 0.100

(0.236) (0.488)
Gas −0.164 −0.769∗∗

(0.154) (0.298)
Others −0.167 −0.209

(0.164) (0.337)
Post −0.004 −0.154 0.469 −0.810∗∗

(0.094) (0.095) (0.413) (0.400)

Observations 14,367 14,367 2,911 2,911
R2 0.145 0.119 0.131 0.091
Adjusted R2 0.144 0.118 0.123 0.083
Entity FE YES YES YES YES
GROUP FE YES YES YES YES
FIRM CONTROLS YES YES YES YES

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.6.2 Machine Learning

We proceed by evaluating the size of the policy effect on energy use for both the full sample
and the regular users subsample using our machine learning approach.14 Separate models are
estimated for each sample. We start by performing hyperparameter optimization by training
the SL on the entire sample. To tune the hyperparameters of each individual learner, we
define a range of possible values for each tuning parameter and run the models for every
combination of hyperparameters specified to select the tuning parameters that minimize the
mean squared error.15

To estimate energy use in observed and unobserved outcomes, we need an estimator f̂i
that provides reliable out-of-sample predictions. Therefore, we proceed by evaluating the out-

14To obtain accurate and reliable predictions, an adequate sample size is required. With a small sample
size, machine learning may result in overfitting and produce unreliable predictions. Due to the low number of
occasional users in our sample, we are unable to perform model estimations for this subsample that provide
reliable results.

15For the selection of tuning parameters we do not use cross-validation as this is computationally costly. We
try the following range of values: Using the ranger algorithm, we tune two hyperparameters, the number of
predictors that are sampled at each split (mtry ∈ {10, 20, 50, 100, 120} and the minimal node size (min.node.size
∈ {3, 4, 5}). For the XGboost algorithm we tune the number of trees (ntrees ∈ {500, 1000, 1500}, the minimal
node size (min.node.size ∈ {3, 4, 5}) and the learning rate or shrinkage (eta ∈ {0.1, 0.15, 0.2, 0.25, 0.3}). For
the regularized regression, we tune the elastic net mixing parameter (α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}).
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of-sample prediction performance. For this, the respective data set is randomly split into a
training and test set with an 80/20 split. The training data is used to fit the SL model using
a 10-fold cross-validation. This model is then used to to predict energy use yit of the unseen
test set which allows us to evaluate the out-of-sample prediction performance. This process is
done for the prediction of each energy source individually. The results are displayed in Table
3.8.

Table 3.8: Out-of-sample Prediction Performance

Other
Heating Oil Natural Gas Electricity Energy Sources

Full Sample

RMSE 2.000 1.981 0.351 1.711
MdAE 1.115 0.900 0.195 0.444
R2 0.920 0.930 0.949 0.927

Regular Oil User

RMSE 1.748 1.485 0.293 1.144
MdAE 0.584 0.199 0.173 0.109
R2 0.900 0.917 0.968 0.912

The R-squared values across all models are relatively high, indicating that a high pro-
portion of the variance in the values of the dependent variable yit can be explained by the
independent variables xit. Root Mean Square Error (RMSE) is a measure of accuracy and
is the standard deviation of the prediction errors, indicating how far the predictions deviate
from the true values.16 The median absolute error (MdAE) evaluates the precision of the
predictive performance and is a robust measure of how spread out the prediction errors are.17

For both metrics, values closer to zero represent better fitting models. The normalized RMSE
values range from 0.02 to 0.11, indicating a high prediction accuracy out-of-sample.

In a next step, the SL is trained using the selected hyperparameters for the three base
learners using 10-cross-validation.18 As mentioned in Section 3.5.3, the weights for each
algorithm are chosen so as to minimise a predictive loss function. Across all models, the best
predictive algorithms are glmnet and ranger.19

Based on the resulting predictions, the treatment effect can be estimated as described
in Section 3.5.2. The estimated treatment effects for the full sample are presented in Table
3.9. Notably, the effect varies substantially over time depending on the tax rate. We find
that for the first two years after the introduction of the levy, at a tax rate of 12 CHF/tCO2,
the effect on heating oil and natural gas was relatively low, averaging −8.2% and +3.4%,
respectively, compared to the counterfactual situation without a levy. In the subsequent
years, during which the tax rate was successively increased, the effects on heating oil and

16RMSE =
√∑n

i=1
(ŷi−yi)2

n
, Normalized RMSE = RMSE

(Max−Min)
17MdAE = median(|ŷi − yi|, ..., |ŷn − yn|)
18The following hyperparameters are selected: mtry = 120, min.node.size=3, ntrees=1500, eta=0.1, α = 0.
19See Table A.9 for an overview of the weights assigned to each model.
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natural gas are considerably greater. Raising the tax to 84 CHF/tCO2, the estimated effect
amounts to −43.9% and +19.7%, respectively, suggesting a magnifying effect associated with
the tax rate. In other words, an increase in the tax rate of 1 CHF/tCO2 leads to an average
decrease in heating oil use of ∼ 0.59% and an average increase in natural gas use of ∼ 0.26%.

In column 6, we compute how the change in energy mix affects emissions. The estimates
indicate that the tax has led to considerable emission reductions when compared to the situ-
ation without CO2 levy. According to the results, the average entity-level emission reduction
amounted to −3.9% for the first two years after the introduction of the levy and increased
to an average of −14% in 2016 and 2017 at a levy rate of 84 CHF/tCO2. On average, the
carbon tax led to a reduction in energy-related emissions of −7.5% in the period 2008–2017
for business entities in the sample due to the switch to the less carbon-intensive alternative
natural gas.

Table 3.9: Average Impact of the CO2 Levy on Energy Use (Full Sample)

Other
Heating Oil Natural Gas Electricity Energy

Sources
Emissions

12 CHF/tCO2 -8.21% 3.38% 0.7% 0.6% -3.9%
36 CHF/tCO2 -22.1% 11.0% 2.2% 2.8% -7.7%
60 CHF/tCO2 -33.7% 15.4% 3.4% 4.1% -11.3%
84 CHF/tCO2 -43.9% 19.7% 4.7% 5.3% -14.0%

Table 3.10 reports the estimated treatment effects for regular users. We find that, on
average, heating oil reduction is greater for regular users when compared to the full sample.
Entities that regularly use heating oil on average reduce its consumption by −13.6% at the
lowest tax rate in the years immediately after introduction of the policy. At a levy rate of
84CHF/tCO2, the average reduction in heating oil usage amounts to −60.9% compared to the
counterfactual situation without the levy. In addition, we see a significantly stronger increase
in natural gas and other energy sources for regular oil users relative to the full sample. Regular
users exhibit an average increase in natural gas usage of 64% and other energy sources usage
up to 33% relative to the untreated case. These results strongly suggest that regular users
are substituting heating oil for natural gas and other energy sources. Electricity use, however,
remains roughly stable. The results find that the introduction of the carbon tax led to a
very low impact on the use of electricity (0.2–0.9%) for regular users. Thus, the increase
in electricity found in Table 3.9 is seemingly driven by occasional users or non-users. On
average, the carbon tax led to a reduction in energy-related emissions of −13% in the period
2008–2017 for regular users in the sample due to the energy substitution.
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Table 3.10: Average Impact of the CO2 Levy on Energy Use (Regular Oil User)

Other
Heating Oil Natural Gas Electricity Energy

Sources
Emissions

12 CHF/tCO2 -13.6% 11.5% 0.2% 5.6% -9.6%
36 CHF/tCO2 -33.9% 41.4% 0.6% 18.8% -14.3%
60 CHF/tCO2 -49.4% 49.1% 0.7% 22.4% -14.7%
84 CHF/tCO2 -60.9% 64.0% 0.9% 33.1% -18.1%

3.6.3 Sensitivity Analyses

We carry out a number of robustness checks to ensure validity of our results. In Appendix
A.2.5 we explore the sensitivity of our results regarding the classification approach used to
determine tax liability which ultimately defines our sample. First, we use an alternative
approach whereby we identify entities in the sample with annual CO2 emissions ≤ 100 tCO2 in
each observation after the introduction of the tax as subject to the levy.20 Thus, we construct
an alternative sample where all firms emit less than 100 tCO2 in every period after 2008 and
re-estimate the treatment effects (see Table A.10).21 The results are robust and do not depend
on the classification approach chosen in the main specification. We also re-estimate our models
without this restriction, only excluding very high emitters (> 25’000 tCO2) as those are in the
emission trading system (see Table A.11).22 Overall, these estimates are comparable to those
in the main specification, with natural gas exhibiting a small discrepancy. This may be due
to the fact that this sample includes entities that are covered by the reduction measures and
are therefore not subject to the tax. The reaction to the reduction commitment may differ
from the reaction to the tax, resulting in different policy impacts.

20The restriction to at least one observation in the pre-treatment period and the exclusion of large users
remains in place.

21This alternative sample has more stringent restrictions and is therefore smaller than the full sample.
22See footnote 20.
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3.7 Discussion & Conclusions

Previous empirical research examining the impact of carbon taxation on energy use and emis-
sions has predominantly focused on the effects at the macroeconomic or sectoral level. This
paper extends the current body of research by studying the effects of carbon taxation on
energy use, energy substitution and energy-related emissions at the microeconomic level; the
level of entities is even below the firm level as firms typically include multiple entities at
different locations.

The results of the regression models and machine learning estimations in Table 3.6 and
3.9 indicate support for H1. The findings reflect a significant decrease in heating oil and a
significant increase in natural gas and other energy sources as a result of the policy, with the
effect becoming more pronounced as the tax rate is raised. The estimations of the SL also
find that electricity does not react strongly to the carbon tax. This is in line with previous
research findings showing that electricity is a poor substitute for fossil fuels (Hyland & Haller,
2018; Fuss, 1977; Pindyck, 1979; Steinbuks, 2012).

Our results of the regression models further show that there is considerable variation in
the magnitude of the effect, depending on the historical energy usage behaviour of the entities.
We find that entities that regularly use heating oil react strongly to the introduction of the
levy. Conversely, for occasional users we do not find significant effects on the use of fossil
fuels. This is in line with the idea that entities who use heating oil regularly face higher
financial incentives to switch away from heating oil, supporting H2. In addition, we find
that entities that were already using natural gas prior to the imposition of the CO2 levy
reduced their heating oil use to a greater extent than entities that did not exhibit this usage
pattern (see Table 3.7). This holds true for both regular and occasional oil users and is in
line with the idea that entities who have natural gas at their disposal are more flexible in
terms of substituting heating oil in response to increases in the relative price. This finding
indicates a substitution between heating oil and natural gas. Such a substitution pattern is
not observed for other energy sources. While our ML estimates reveal an uptick in the use
of other energy sources due to the policy, we do not observe a larger decline in heating oil
use among entities that were already using these energy sources prior to the introduction
of the levy compared to those that were not. These findings suggest that natural gas is a
readily available alternative to heating oil, rendering it a viable option for businesses. Other
energy sources such as industrial waste or district and local heating systems on the other hand
may not be as immediately accessible, or the reduction potential through the switch to other
energy sources may already be exhausted, making further reductions through switching no
longer possible. Thus, while our results provide support for H3 in the context of natural gas,
we do not find evidence that it holds true for other energy sources.

Further, we find supporting evidence for H4. We estimate that switching to the less
carbon-intensive alternative, natural gas, resulted in an average entity-level reduction of CO2

emissions from the combustion of fossil fuels of approximately -7.5% in the period 2008–2017.
For entities that exhibited regular heating oil usage before the introduction of the levy we find
that this effect is even more pronounced and amounts to -13% emission reduction attributable
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to policy-induced fuel switching.
The results of this analysis can be compared to other studies in this field. Ellerman

& McGuinness (2008) empirically assess impact of the European Union Emissions Trading
Scheme (EU ETS) carbon pricing on the plant-level CO2 abatement as a result of fuel switch-
ing using power plant data on UK. They find that the carbon price increased natural gas
utilization between 19% to 24%, while coal utilization decreased by 16% to 18%, resulting in
an annual emission abatement of roughly 8-12% due to fuel switching. Similarly, Wagner et
al. (2014) find that the policy has resulted in a significant reduction in GHG emissions within
ETS plants, of 20%, relative to non-ETS plants which is mainly driven by a decrease in carbon
intensity of the fuel mix in ETS plants. The results of these studies are therefore roughly
in the same order of magnitude. Variations in the magnitude of the estimated impact may
be attributable to multiple factors, including differences in the level of the tax rate, varying
empirical settings and estimation methods.

In summary, the empirical analysis shows that business entities in the industry and service
sector respond to the introduction of the fossil fuel tax by amending the energy mix used. This
leads to a less carbon-intensive energy mix which in turn reduces emissions. The estimated
effects provide new evidence on fossil fuel use under carbon taxation that can be useful in
designing policies to reduce emissions of energy-related GHG emissions. The implications of
these findings extend to research, policy, and practice, which will be discussed in the following
subsections.

3.7.1 Implications for Research

First, this study evaluates the impact of carbon taxation on entity-level energy use. A com-
pany’s economic performance and competitiveness can be affected by carbon taxation as it
increases production costs. Assessing the micro-level impact of carbon taxation can help pol-
icymakers moderate the potentially negative effects on competitiveness and promote a level
playing field. Further, it offers insights on how business entities and firms respond to envi-
ronmental policies and can provide a more accurate estimate of impacts by accounting for
inter-firm differences. In this way, micro-level policy analysis deepens the understanding of
how policy measures affect the behavior of companies.

Second, this study examines the impact of carbon pricing on businesses with different oil
usage patterns, thereby enriching research by considering heterogeneity across energy usage
patterns. Further research could explore the importance of the energy mix for fuel switching
opportunities, as emphasized in this study.

Third, this paper complements the research on carbon taxation by applying a new machine
learning approach to evaluate the effectiveness of this policy in reducing fossil fuel use and
emissions. Future studies can build upon and expand the current findings to develop more
accurate and efficient policy evaluation methods. Furthermore, the ML approach can be
applied to evaluate the effectiveness of other environmental policies, broadening the scope of
policy analysis and improving our understanding of the impact of policies on firms.
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3.7.2 Implications for Policy & Practice

The CO2 levy is one of the Swiss government’s key instruments for curbing carbon emissions.
It is therefore essential to assess how the levy has performed up until now in order to determine
whether the climate policy measures are taking effect. The findings show that the increase
of the tax rate had a significant positive impact on the reduction of emissions of business
entities. This implies that the Swiss government can accelerate the decarbonization in the
industrial and service sector by raising the tax rate, thereby creating incentives for entities to
switch to low-carbon energy sources.

While there is general consensus on the need to transition away from fossil fuels, there is
disagreement on the best course of action to achieve this transition. One view is that resorting
to intermediates such as gas instead of renewable energy sources such as wind and solar can
help phase out the use of carbon-intensive energy sources in the short term. However, an
alternative view claims that relying on intermediates can delay the final transition to fully
clean and secure energy sources, and therefore the direct transition to clean energy sources
should be prioritized. Both perspectives in this contentious debate offer valid arguments
— resorting to intermediate sources of fossil fuels constitutes a quick way to curb emissions,
however, the approach poses the risk of hampering the advancement of renewable technologies
and possibly resulting in another lock-in, e.g. due to gas-based infrastructure. Furthermore,
our findings reveal that occasional oil users are not sufficiently incentivised to reduce heating
oil use under the current tax rate. With an increase in the tax rate, one may be able to target
these entities and reduce their heating oil use.

In sum, the findings of substituting heating oil with natural gas by implication entail
that there is further action necessary to completely abandon the use of fossil fuels and avoid
further carbon lock-ins. Thus, although the CO2 levy has led to a reduction in heating oil
use and energy-related emissions, higher levy rates are required for the decarbonization of the
economy. The analysis also revealed that business entities reduce their use of heating oil to
a greater extent when alternatives are available. Strengthening the promotion of renewable
and climate-friendly alternatives can therefore accelerate the transition away from heating
oil. Accordingly, in line with Acemoglu et al. (2012), an increase in levy rates in combination
with other policy instruments, e.g. strengthened measures to promote renewable energy, is
advisable.

On 13 June 2021, the Swiss electorate voted on an amendment on the Federal Act on
the Reduction of Greenhouse Gas Emissions (CO2 Act). The revised law was designed
to strengthen Switzerland’s efforts to reduce greenhouse gas emissions and combat climate
change. Under the revised CO2 Act, the maximum tax rate on fossil thermal fuels would have
been raised from 120 to 210 CHF/tCO2. However, Swiss voters rejected legislation by a vote
of 51.59% to 48.41%. There is concern that the maximum rate foreseen by the current law is
insufficient to achieve the required emission reductions and that an increase in the maximum
tax rate must be considered.
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3.7.3 Research Limitations & Prospects

Several limitations to our analysis should be noted. To begin with, we do not allow for
anticipatory effects. If entities react before the levy, or if certain anticipatory measures are
introduced before the formal implementation of the levy that otherwise would not have been
introduced in the absence of the policy intervention, the estimates may be biased.

Another limitation of the study is attributable to our applied classification strategy. In the
analysis, entities are classified as subject to the levy on the basis of their calculated emissions.
This allows us to examine only those entities that emit less than 100 CO2 per year. Entities
that exceed this threshold but do not make use of tax exemption regime by entering into
reduction measure agreements are also subject to this tax. However, our estimation of the
policy impact does not account for these entities as we are not able to reliably identify those.
If there are heterogeneous regulatory effects in the quantity of emissions, this may constitute
a source of bias in our estimates.

The lack of available data presents another limitation. The data needed to precisely
evaluate the effects of a government policy requires a comprehensive set of variables on relevant
entity characteristics as well as data on potential confounding factors. The available data on
energy use of Swiss business entities collected by the survey pose substantial challenges for
data analysts. These challenges include missing information on important variables such as
productivity, profits or the degree of control over the energy use of the building. A big political
concern is the negative impact of carbon taxation on firms’ productivity and competitiveness.
The increase in the relative cost of fossil fuels can negatively affect industries reliant on these
fuels and reduce the competitiveness of a country, sector or firm. In view of the principal-agent
problem, it is important to consider whether the business entity owns the building in which
it is located or merely rents it, as this can have a significant impact on the incentives and
decision-making processes related to energy use.23 To conduct a fully comprehensive study of
these impacts, additional variables must be made available.

3.7.4 Overall Conclusions

With the ratification of the Paris Agreement in 2017, Switzerland has committed to halving its
emissions from GHG by 2030 in comparison with 1990 levels. The CO2 levy is a key element
of Switzerland’s strategy to achieve this climate goal. The levy was introduced in 2008 on
fossil combustible fuels to set incentives for firms and households to use less carbon-intensive
energy sources and to thus reduce CO2 emissions.

This paper provides empirical evidence on the effects of the Swiss CO2 levy based on
micro-level data on energy use. The unavailability of a control group and the exemption
regimes from the levy complicated the analysis, requiring a well-chosen statistical method
and an identification of the entities subject to the levy on the basis of emitted emissions.

23In cases where a businesses are tenants, they may have little control over energy use and influence over how
heating and cooling systems are maintained and operated, as the building owner is responsible for managing
these systems. Moreover, it is less likely that tenants will invest in energy-efficient improvements or adopt
energy-saving practices.
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Using a machine-learning approach, we estimate the effects of the levy on energy use and
emissions from the combustion of fossil fuels.

Our results indicate that the carbon tax successfully lead to a reduction in the use of
heating oil from business entities, while simultaneously increasing the use of natural gas and
other energy sources. These findings suggest that the CO2 levy stimulates a substitution
from heating oil towards less CO2-intensive energy sources, with an associated reduction
in entity-level emissions. Beyond these empirical findings, our findings suggest that there is
heterogeneity in reaction to the introduction of the Swiss CO2 levy. We find that the direction
and magnitude of the effect depends on the initial usage behavior and energy mix.



Chapter 4

Learning by Buying:
The Impact of Mergers on Green
Innovation∗

Chapter Abstract

Achieving the green transition requires investment and innovation in green technologies. However, due to
path dependencies in innovation, established firms may be slow to develop clean technologies. Mergers and
acquisitions (M&A) are one strategy for firms to gain access to new knowledge. Applying a comprehensive
dataset of M&A deals in the US power and utilities sector between 1981 and 2017, we document a steep rise in
“green acquisitions” - involving target firms engaged in renewable energy and clean technologies - in the last two
decades. We then analyze the impact of M&A on the subsequent innovation activities of acquiring firms. We
find that green technological acquisitions – involving target firms that possess intellectual property related to
sustainable technologies – significantly increase the green innovation output of acquiring firms post-acquisition,
providing evidence of “learning by buying” in green technologies.

∗This chapter represents joint work with Dr. Melissa Newham (CER-ETH Center of Economic Research
at ETH Zurich)
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4.1 Introduction

Achieving the green transition while maintaining economic growth requires that firms under-
take green innovation i.e. invest in research and development (R&D) related to sustainable
and low-carbon technologies. However, due to path dependencies in innovation, established
firms may be slow to develop new technologies. Mergers and acquisitions (M&A) are one
strategy for firms to gain access to new knowledge.1 Could M&A with “green firms” - that
own or apply green technologies - induce acquiring firms to direct more of their innovation
efforts towards green technologies? Applying a detailed dataset of M&A activity in the US
power and utilities sector combined with firm-level patent data, we address this question.

Mergers and acquisitions can affect the innovation output of merging firms by altering both
their incentives and ability to innovate (Jullien & Lefouili, 2018; Shapiro, 2011). The sign of
the impact, at the firm or industry level, depends on the interplay between a number of factors.
In certain situations, increases in market power post-merger dampen the incentives to invest in
R&D (Arrow, 1962). However, these negative effects can be offset by the presence of research
synergies and spillovers in knowledge and learning.2 Thus, the effect of M&A on innovation in
a specific setting is an empirical question. Existing empirical research predominately analyzes
the biotech and pharmaceutical industry (e.g. Cunningham et al., 2021; Haucap et al., 2019).
Research on how M&A affect the direction of innovation is scant and there has been no study
analyzing how mergers affect green innovation in particular.3 We fill this gap by empirically
analyzing the impact of M&A on the extent and nature of subsequent innovation activities of
acquiring firms in the electric power sector; a sector where the promotion of green innovation
is paramount to curb greenhouse gas emissions.

The electric power sector has experienced a significant rise in M&A activity worldwide
since 1985 (IMMA, 2021). Increasingly, firms are undertaking M&A with renewable energy
firms to widen their energy portfolio, acquire new technologies and achieve CO2 reduction
goals set by climate change policies (Fraunhoffer & Schiereck, 2012; Yoo et al., 2013). This
pursuit of M&A may spur the development of climate-friendly technologies at the firm level
due to path dependency. In the automobile industy, Aghion et al. (2016) show that firms with
a history of green innovation activities, as well as firms that have had more exposure to green
innovations from other firms, are more likely to direct their research efforts to climate-friendly
innovations in the future. One mechanism contributing towards this path dependency is that
firms learn by doing (Arrow, 1962).

Acquisitions may similarly affect firms’ green innovation paths as exemplified by the merger
between Vivint Solar Inc, a large provider of residential solar systems, and Solmetric Corpora-

1A merger combines two or more firms into one new legal entity, typically with a new name. An acquisition,
also known as a takeover, entails one firm purchasing another outright. The acquired firm may retain its name
and operate as a subsidiary of the acquirer or it may be incorporated into the acquiring firm. In this article,
we use the two terms interchangeably.

2As it stands, the relationship between mergers and innovation is hotly contested in economics. For a
recent discussion of the literature see Gilbert (2020). Relatedly, there is a body of literature that studies how
the level of competition affects innovation (e.g. Acemoglu & Akcigit, 2012; Aghion et al., 2005).

3Lambertini et al. (2017) examine the relationship between competition and green innovation in an
oligopolistic market model. This study is related to the literature on merger effects as mergers between
two rival firms may increase market concentration and lessen competition.
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tion, a manufacturer of photovoltaic system installation tools and software, in 2014. Solmetric
filed its first patent in 2005 when it invented a shade measurement device to assist the design
and installation of solar panels. Since then, the company was granted seven additional patents
by the United States Patent and Trademark Office (USPTO), four of which were classified
as technologies or applications related to climate change mitigation or adaptation (“green
patents”). Whilst the acquirer Vivint Solar had no patents prior to 2014, following the ac-
quisition, Vivint Solar registered two new green patents in 2015 and 2016, citing Solmetric’s
patents. Through the acquisition, the acquiring company was also able to expand its product
range by offering photovoltaic installation software products and devices.4

As recognized in the literature, the effect of an acquisition on the innovation output of the
merging firms ex-post is conditional on the technological input acquired in the transaction
(Ahuja & Katila, 2001; Cassiman et al., 2005; Cloodt et al., 2006). Consequently, our analysis
distinguishes between different types of M&A and categorizes deals based on the technological
input provided by the target. Further, we distinguish between target companies engaged in
green vs. conventional business activities. Drawing on the theory of path dependence in
environmental innovation (Aghion et al., 2016, 2019) and the existence of high technological
spillovers for green technologies (Dechezleprêtre et al., 2014; Martin & Verhoeven, 2022),
we argue that “green technological acquisitions” - involving innovative targets engaged in
sustainable technologies - have the potential to impact positively on the green innovation
activities of the acquiring firm via learning and R&D spillovers.

To test this claim, we construct a detailed panel dataset of firms engaging in M&A in
the US power and utilities sector between 1980 and 2017. Data on M&A events is combined
with data on patent applications filed by the merging parties pre- and post acquisition from
the USPTO. By identifying patents related to climate change mitigation and adaption tech-
nologies using the Cooperative Patent Classification (CPC) Y02-tagging scheme, we are able
to separate between green and conventional technologies. This allows us to categorize deals
into “green technological acquisitions" (such as the Vivint-Solmetric deal) and “conventional
technological acquisitions." It further enables us to specifically analyze the impact of merg-
ers on green innovation by estimating the effect on green patents filed by the acquiring firm
subsequent to the transaction.

The empirical set-up involves staggered treatment as firms in the sample experience a
merger/acquisition at different points in time. We adopt a differences-in-differences frame-
work, implementing two-way fixed effects regressions. The identification of causal effects of
M&A on subsequent innovation output represents a challenging task due to the fact that the
potential innovation outcomes that would have been realized in the absence of the consolida-
tion would likely have occurred contemporaneously with the merger decision. Firms’ research
activities and the probability that they will seek to engage in an acquisition may both be
influenced by the respective characteristics of the firms which can create endogeneity issues.
Identifying the causal effect of M&A on innovation is further complicated by the fact that
firms select into acquiring. We address this concern by limiting the control group to acquiring

4Vivint Solar Inc, Form S-1 Registration Statement, EDGAR., Securities and Exchange Commission, 2016,
https://www.sec.gov/Archives/edgar/data/1607716/000119312514321739/d716029ds1.htm.

https://www.sec.gov/Archives/edgar/data/1607716/000119312514321739/d716029ds1.htm
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firms that have not yet acquired/merged. However, it should be noted that despite the efforts
made to account for endogeneity, the fundamental limitation of the approach employed in
this paper is that the decision to merge is largely determined by factors that are not observ-
able. Thus, the potential still remains that the correlation between mergers and innovation
outcomes it attributable to other sources of unobserved heterogeneity.

Our data shows that since the year 2000 there has been a steep rise in acquisitions involving
green target firms. In line with the theory of path dependence in environmental innovation,
energy firms in our sample with a higher existing stock of patents relating to green (con-
ventional) technologies are more likely to file new green (conventional) patents. Controlling
for knowledge stocks at the firm-level, amongst other variables, we find that green techno-
logical acquisitions indeed promote further green innovation as evidenced by an increase in
the likelihood that the acquiring firm will file a green patent post-acquisition. Conversely,
conventional technological mergers do not significantly impact on conventional innovation nor
green innovation. These results are consistent with the notion that green technologies are as-
sociated with larger knowledge spillovers than conventional technologies (see Dechezleprêtre
et al., 2014; Martin & Verhoeven, 2022), and point towards research synergies between tar-
get and acquirer firms with regard to green technologies in particular. In sum, the findings
suggest that acquiring firms exhibit “learning by buying” in green innovation.

Although the endogeneity concerns may not be completely resolved, the empirical results
of this study nevertheless provide a basis for discussion and highlight the need for further
attention to the impact of M&A on green innovation. The findings suggest that, when con-
sidering green innovation, the commonly held notion that mergers have a negative effect on
innovation may not hold true. Across all model specifications, the acquisition of green targets
(both technological and non-technological) exhibit a positive effect on the subsequent green
innovation output of the acquirer. Consequently, a general conclusion from this paper is
that a distinction should be made between conventional and green innovation when analyzing
M&A effects. This research contributes to two strands of literature. Firstly, we contribute to
the literature on the drivers of green innovation. In the face of climate change, identifying
and understanding drivers of green innovation is crucial. Previous research has identified a
number of factors which impact on green innovation including environmental regulation (e.g.
Lanjouw & Mody, 1996; Noailly, 2012), R&D subsidies (e.g. Howell, 2017), energy prices (e.g.
Popp, 2002), existing stock of knowledge (e.g. Aghion et al., 2016; Popp, 2002) and corporate
governance (Amore & Bennedsen, 2016). We add to this literature by highlighting the role of
M&A.

Secondly, we contribute to the literature addressing the impact of mergers on innovation.
Previous empirical research on the topic has predominantly focused on the biotech and phar-
maceutical industry (e.g. Cunningham et al., 2021; Haucap et al., 2019; Ornaghi, 2009). In
this industry, Haucap et al. (2019) find that average patenting and R&D of the merged entity
and its rivals declines in post-merger periods. Conversely, using an economy-wide sample of
firms, Bena & Li (2014) find that acquirers with prior technological linkage to their target
firms generate more patents post-merger, concluding that synergies obtained from combining
innovation capabilities are important drivers of acquisitions. Whereas previous research has
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used overall innovation as the outcome of interest, we delineate innovation output further by
looking at the direction of innovation in terms of green vs. conventional patents, and explore
the implications of M&A in the power and utilities sector.

The remainder of this paper is organized as follows. Section 2 provides background in-
formation and describes the data. Section 3 describes the trends in M&A in the US energy
sector. Section 4 describes the methodology used to analyze the impact of M&A on innova-
tion. Section 5 presents results. Section 6 provides a discussion of our results and the policy
implications thereof. Section 7 concludes.
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4.2 Background & Data

4.2.1 The Power & Utilities Sector

The power and utilities sector includes establishments that perform one or more of the follow-
ing activities: (1) operate electricity generation facilities (powered by fossil fuels, gas, wind,
solar and other power sources); (2) operate transmission systems that convey the electricity
from the generation facility to the distribution system; and (3) operate distribution systems
that convey electricity to the final consumer.

Historically, US power utilities were vertically integrated, i.e. utilities were responsible for
all three of these activities. Utilities were subject to regulations dictating electricity prices
and services by the Federal Energy Regulatory Commission and state regulators. Under this
traditional regulated structure, utilities were operating as monopolies. While firms benefited
from economies of scale in production, it has been argued that the regulated framework and
lack of competition lead to a dearth of technological progress in the industry in the last half
of the 20th century (Willis & Philipson, 2018).

Nowadays, there are only a few utilities in the US operating under this traditional scheme.
Structural and regulatory reforms beginning in the 1990s led to a vertical separation of electric-
ity retailing, distribution and generation in many states and measures were taken to promote
competition in the industry (Borenstein & Bushnell, 2015). Although deregulation was ex-
pected to boost innovation, a study by Sanyal & Ghosh (2013) finds no marked increase in
electric technology innovation in the years that followed. This is attributable, among other
things, to the fact that technology and innovation in the electric power sector have some
unique characteristics. Market failures associated with energy R&D investments, indivisibil-
ity and spillovers are more pronounced than in other industries, leading firms to under-invest
in energy R&D (Jamasb & Pollitt, 2008).5 The large-scale operations of established power
firms also contribute to technological lock-in at the firm and industry level, leading to slow
technological progress (Unruh, 2000).

In recent years, US utilities and power generators have been faced with further industry
transformations, driven by the shale revolution as well as the increasing significance of re-
newables and energy storage resources, among other factors. These developments have led
companies to use M&A as one strategy to adapt to ongoing changes in the market (Adams et
al., 2021).

The developments and characteristics of the industry described in the preceding paragraph
make the power and utilities industry an interesting industry in which to study the effects of
M&A on green innovation. Increased utilization of clean electricity is crucial for the reduction
of greenhouse gas emissions. To meet the energy demand through renewable energy sources,
technological advancements are needed (IEA, 2020). Given that advances in energy tech-
nologies are critical to mitigating climate change but are hampered by market failures, it is
important to understand whether recent trends in M&A are encouraging or further hindering

5Jamasb & Pollitt (2008) present a review of the literature on R&D and innovation to identify the potential
causes of the decline in R&D spending in the post-liberalisation electricity sector.
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the development of such technologies.

4.2.2 M&A Data

For our analysis we construct a unique dataset that combines data on relevant acquisition
events and firm-level innovation activity. To obtain M&A data, information from two sources
were combined; M&A reports by Datastream and accessed via Refinitiv Eikon, and the Zephyr
M&A database provided by Bureau von Dijk. From these sources, we collect data on deals
taking place in the period 1981 – 2017 which pertained to US firms, falling under the NAIC
Classification 2211 – Electric Power Generation, Transmission and Distribution, undertaking
acquisitions of US firms.6,7 We focus on M&A occurring up until the year 2017 as this provides
us with a sufficiently long post-acquisition time window in which to observe the effects on
innovation.

For each acquisition event, information is provided on the date of completion, the name of
the acquiring firm, the name of the target firm, and further information about firms such as
NAICS codes and a business description. Additionally for each firm, for all available years, we
collect financial data from Compustat accessed through the Wharton Research Data Services
(WRDS) platform. Our sample is then restricted to M&A deals for which financial data on
the acquiring firm is available.8 This yields a sample comprising of 482 individual deals. As
firms enter (through incorporation) and exit (through mergers and dissolution) over time, we
have an unbalanced panel.

4.2.3 Patent Data

As a measure of firms’ (green) innovation activities, we use granted patent applications. This
approach is common in the literature analyzing innovation as the data provides detailed infor-
mation on the technological field of the innovation which allows, in our case, for a differentia-
tion between conventional and green innovation (Archibugi, 1992). Furthermore, patents are
considered a good proxy for innovative output because there is a strong relationship between
R&D spending and the number of patent applications (Griliches, 1990).

For each firm in our sample we obtain the complete patenting history for the period 1970
until 2021 from the USPTO accessed through Patentsview. Names of the merging firms are
matched to patents using the name of the patent “assignee" at issue, which is the company
that owns legal rights related to the patent.9 We allocate patents to firms in the year in

6An overview of the NAICS codes and corresponding code descriptions can be found in Table A.12.
7Deals classified as exchange offers and buybacks along with acquisition in which only certain certain assets

were acquired (such as subdivisions, facilities, projects or specific assets and acquisitions of less than 80% of
shares) are excluded. Further, we exclude three-way mergers and joint ventures as well as deals involving firms
owned by the government and undisclosed deals. Finally, we exclude three large conglomerate firms that have
significant business activities and patents related to other industries (General Electric, BWX Technologies and
General Dynamics).

8In effect this means that we include acquiring firms that were publicly listed at some point in time. Target
firms, in contrast, can be both public or private.

9Further information on the construction of the data set is provided in Appendix A.3.3.
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which the patent was filed (submitted), as opposed to published, as the publication process
can take up to five years. The matching procedure results in a total of 1270 successful patent
applications.10 For each identified patent, bibliographic data is extracted including the filing
date and technological classes assigned to the patent.

We separate between patents pertaining to green vs. conventional technologies on the basis
of the CPC Y02-scheme (Veefkind et al., 2012).11, 12 The Y02 class identifies “technologies
or applications for mitigation or adaptation against climate change”, which we refer to as
“green patents.” We refer to all patents which are not green as “conventional patents." On the
basis of the Y02-tagging scheme, 44% of the patents matched to firms in our sample qualify
as green patents. In addition to patent counts, we construct measures that summarize firms’
existing knowledge stocks, including total accumulated green and conventional patents as well
as discounted accumulated green and conventional patents at the firm-year level.13

4.2.4 M&A Classification

Firms in the energy sector undertake M&A for a variety of reasons. As recognized in the
literature (e.g. Ahuja & Katila, 2001), the effects on innovation subsequent to the acquisition
are dependent, among other things, on the motive behind the deal and, associated therewith,
the characteristics of the targeting firm. Our analysis thus distinguishes between different
types of M&A.

First, we distinguish between technological and non-technological M&A by classifying
acquisitions of targets with a patent history of at least one patent as technological acquisitions,
and non-technological acquisitions otherwise. The underlying reason for this distinction is that
the impact is likely to depend on the assets acquired in the transaction and the objectives of
the deal. Acquisitions with the intent of gaining access to technology can supply acquirers
with knowledge in new fields, enhancing and shaping the future innovative activities of the
company (Denicolò & Polo, 2021; Jullien & Lefouili, 2018). In contrast, M&A motivated
by other reasons, such as geographical expansion or access to a new customer base, may
not necessarily provide new technological inputs and can therefore be expected to have little
impact on an acquirer’s ability to innovate. Although, such non-technological acquisitions
may nevertheless affect the firm’s innovation incentives via, for example, increased market
power.14

10Only successful patent applications, i.e. granted patents, are included in the data set. This ensures that
the inventions are novel and marketable as the requirements concerning novelty, inventive step and industrial
applicability must be met for the granting of a patent.

11The CPC is an internationally compatible classification system for technical documents such as patent
publications jointly developed by the European Patent Office (EPO) and the USPTO.

12Recent studies making use of the Y02-scheme to study innovation at the firm-level include Calel (2020)
and Calel & Dechezleprêtre (2016).

13Discounted knowledge stocks are calculated using a perpetual inventory method. We follow the literature
and apply a depreciation rate of 15% (Aghion et al., 2016; Haucap et al., 2019). Patent counts start in 1970
at the earliest.

14Market power can dampen incentives to innovate due to the monopolist’s interest in protecting the status
quo (the “replacement effect”) (Tirole, 1988). The effect can move in the opposite direction, if market power
increases the ability to appropriate the benefits of inventions (Gilbert & Greene, 2014).
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Second, we distinguish between “green" and “conventional" businesses depending on whether
the target is active in the renewable energy sector or owns green patents.15 In comparison to
conventional technologies, green technologies are associated with high knowledge spillovers,
larger than the dirty technologies that they replace (Dechezleprêtre et al., 2014; Martin &
Verhoeven, 2022; Noailly & Shestalova, 2017). One reason being that green technologies are
at an earlier stage of development and thus benefit from steep learning curves associated with
new technological fields.16 Due to the internalization of R&D externalties post-merger there
is a positive impact on the incentives of the merged entity to invest in R&D post-merger
(Jullien & Lefouili, 2018). Further, the presence of R&D externalities and learning spillovers
contributes towards path dependence in environmental innovation (Aghion et al., 2019). By
providing environmentally-friendly inputs, we argue that the acquisition of green technological
firms has the potential to direct the nature of technical innovation at the firm-level towards
clean technologies. Hence, even among technological acquisitions, the impact on innovation
is likely to depend on the nature of the technological knowledge acquired in the transaction.

In consequence, we classify deals into four different categories based on the technological
input provided by the target and the type of firm acquired as presented in Table 4.1. The
most frequent type of acquisition is conventional non-technological which accounts for 74% of
deals, followed by green non-technological acquisitions.

Table 4.1: Classification of M&A

Technological Non-Technological

Conventional Conv-T Conv-NT
Acquisition of firm with

conventional patents (and no
green patents)

Acquisition of a firm without
any patents

N= 30 N=357

Green Green-T Green-NT
Acquisition of firm with green

patents (may also have
conventional patents)

Acquisition of renewable energy
firm without any patents

N=22 N=73

As discussed, many mechanisms interact to determine the sign of the effect of an acquisi-
tion on the innovative output of the firm. This makes predictions on the overall sign of the
effect difficult. However, owing to larger knowledge spillovers for green technologies we expect
that the impact of a green technological acquisition on innovation will be more positive that
the impact of a conventional technological acquisition. Further we hypothesize that green

15Renewable firms are identified on the basis of the industry information as well as a search of the firm
description using keywords associated to renewable energy.

16There are several reasons why knowledge spillovers may be greater for green technologies (Dechezleprêtre
et al., 2014). Additional reasons are that green technologies are more novel/radical than the dirty technologies
that they replace; green patents have more general applications than dirty inventions; and environmental
regulation pushing green innovation can amplify spillovers.
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technological acquisitions may allow the acquirer to obtain and further develop clean tech-
nologies, as exemplified by the Vivint-Solmetric deal detailed in the introduction, leading to a
positive impact on green innovation. In contrast, green non-technological acquisitions may be
undertaken for reasons other than technological ones, such as capacity expansion, market en-
try and portfolio diversification.17, 18 Hence we expect the impact of green non-technological
acquisitions on green innovation to be weaker.

Table 4.2 provides an overview of the key variables in the data and their definitions.

17An example a green non-technological acquisition in our sample is the acquisition of US Geothermal
Inc by Ormat Technologies Inc in 2019 which was undertaken with the intent to increase geothermal capac-
ity. See https://investor.ormat.com/news-events/news/news-details/2018/Ormat-Closes-Acquisition
-Of-US-Geothermal/default.aspx.

18Green non-technological acquisitions also provide opportunities to diversify the energy portfolio by in-
cluding renewables as exemplified by NRG Energy Inc’s acquisition of Pandoma Wind Power LLC in 2006
which marked NRG Energy’s entrance into the wind generation market. See https://investors.nrg.com/
news-releases/news-release-details/nrg-energy-inc-completes-acquisition-padoma-wind-power-llc.

https://investor.ormat.com/news-events/news/news-details/2018/Ormat-Closes-Acquisition-Of-US-Geothermal/default.aspx
https://investor.ormat.com/news-events/news/news-details/2018/Ormat-Closes-Acquisition-Of-US-Geothermal/default.aspx
https://investors.nrg.com/news-releases/news-release-details/nrg-energy-inc-completes-acquisition-padoma-wind-power-llc
https://investors.nrg.com/news-releases/news-release-details/nrg-energy-inc-completes-acquisition-padoma-wind-power-llc
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Table 4.2: Variables

Variable Description

Event1)

MA Indicator for acquisition event
MA_Green Indicator for green acquisition (technological and non-technological)
MA_Green_T Indicator for green technological acquisition
MA_Green_NT Indicator for green non-technological acquisition
MA_Conv Indicator for conventional acquisition (technological and non-technological)
MA_Conv_T Indicator for conventional technological acquisition
MA_Conv_NT Indicator for conventional non-technological acquisition
deal_year Year in which acquisition event occurs

Innovation2)

patents Number of total patents assigned to the firm
green_patents Number of green patents assigned to the firm
conv_patents Number of conventional patents assigned to the firm
dpatentstk Discounted total knowledge stock
dgreenpatentstk Discounted green knowledge stock
dconvpatentstk Discounted conventional knowledge stock

Financials3)

ln_at Log of total value of assets (in mil. $)
ln_emp Log of number of company workers (in thousands)
ln_revt Log of gross income received from all divisions (in mil. $)
ln_che Log of cash and short-term investments (in mil. $)

Firm information4)

I_renewable Indicator for firm active in the renewable energy sector
I_generation Indicator for firm primarily engaged in the generation of electricity
I_transmission Indicator for firm primarily engaged in the transmission of electricity
I_distribution Indicator for firm primarily engaged in the distribution of electricity
company_age Age of company in years
never_listed Indicator for private firm that was at no point publicly listed

Notes: Indicator variables take on the value 1 if the specification in the description holds true, 0 otherwise. Discounted
knowledge stocks are calculated using a perpetual inventory method such that patent stock PSit = (1− δ)PSi,t−1 + Pit,
where the knowledge depreciation rate, δ, is set to 15%. Data is collected from the following sources:
1) Source: Datastream, Zephyr
2) Source: USPTO
3) Source: Compustat
4) Source: Datastream, Zephyr and keyword search
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4.3 Descriptive Analysis

In this section we explore and describe the trends in M&A activity in the electric power
industry. Figure 4.1 depicts the evolution of the number of green and conventional acquisi-
tions between 1981 and 2017.19 It also illustrates the evolution of the discounted green and
conventional patent stock for all acquirers and targets in the sample.

The figure illustrates the technological progress and shift towards green technologies that
has taken place in the industry. While the stock of green patents starts at a lower level than
the stock of conventional patents, it trends upwards quickly. The discounted stock of green
patents catches up and exceeds that of conventional patents after 2010. Similar trends have
been observed in patent activity in the European electricity generation sector by Noailly &
Smeets (2015) who find evidence that technology gap between patents related to renewable
energy technologies and fossil fuel energy technologies has become smaller over the period
1978 – 2006.

Figure 4.1: Acquisitions and Discounted Patents Stocks Overtime (1981–2017)

The figure shows that following the restructuring and deregulation of the market, the
sector experienced an increase in the number of M&A transactions in the mid 1990s, reaching
a peak in the year 2000. Further, companies have increasingly been acquiring green targets.
While most transactions carried out between 1981 and 2006 involved conventional targets, the
number of transactions involving green targets, both with and without technological input,
has increased in recent years. In the last 10 years of the observation period (2007–2017), on
average, roughly 50% of M&A deals involved green targets (see Figure 4.2).

19A small number of firms engage in multiple mergers per year. For a cleaner depiction of trends, we
aggregate events to the firm-year level.
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Figure 4.2: Share of Acquisitions Types Overtime

Table 4.3 compares acquirer and target characteristics in the year directly before the
acquisition. Acquirer firms in our sample are on average larger (in terms of e.g. assets and
employees) and more well-established (in terms of years since foundation).20 77% of targets
in our dataset are private firms that were never publicly listed, whereas by construction, all
acquiring firms in our dataset are at some point in the sample period publicly listed. Looking
at the innovation output of firms, we find that acquirers are also characterized by higher levels
of patent stocks and patenting activity, for both green and conventional patents.

Table 4.3: Summary Statistics for Acquirer and Target Pre-Acquisition

VARIABLES
Acquirer

Mean
Acquirer

Obs.
Target
Mean

Target
Obs.

Difference

patents 0.095 482 0.025 482 0.071***
dpatentstk 0.614 482 0.138 482 0.476***
greenpatents 0.035 482 0.006 482 0.029*
dgreenpatentstk 0.244 482 0.039 482 0.205***
convpatents 0.06 482 0.019 482 0.041**
dconvpatentstk 0.37 482 0.1 482 0.27***
I_renewable 0.299 482 0.168 482 0.131***
I_generation 0.282 482 0.095 482 0.187***
I_transmission 0.133 482 0 482 0.133***
I_distribution 0.585 482 0.249 482 0.336***
never_listed 0 482 0.774 482 –0.774***
company_age 23.929 482 6.5 482 17.429***
ln_at 7.86 416 7.15 90 0.71***
ln_emp 1.521 414 0.986 90 0.536***
ln_revt 7.004 416 6.493 90 0.51**
ln_che 4.169 416 2.919 90 1.25***
Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

20Missing financial data for certain firms and years explains discrepancies in observation counts.
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We further compare acquiring firms in terms of transactions undertaken. Table 4.4 presents
the average characteristics of the acquirers of each type of target in the year directly before
the merger. Several interesting patterns are visible. Acquirers of technological targets have
higher patent stocks and more employees. In particular, acquirers of green technological
targets have both higher discounted green patent stocks and discounted conventional patent
stocks when compared to the average acquirer for other types of targets. Further, acquirers
of green firms are more likely to be involved in renewable energy: All acquirers of green non-
technological target companies in our sample are also active in the renewable energy sector;
among acquirers of green technology companies, 45% are active in renewables, compared to
16% and 10% for acquirers of conventional non-technological and conventional technological
acquisitions, respectively.

Table 4.4: Acquirer Characteristics by Acquisition Type

Green-NT Green-T Conv-NT Conv-T
VARIABLES mean mean mean mean

patents 0.123 0.0909 0.0812 0.200
dpatentstk 0.481 1.947 0.498 1.342
greenpatents 0.0274 0.0455 0.0308 0.100
dgreenpatentstk 0.247 0.873 0.156 0.820
convpatents 0.0959 0.0455 0.0504 0.100
dconvpatentstk 0.234 1.074 0.341 0.522
I_renewable 1 0.455 0.162 0.100
I_generation 0.589 0.591 0.210 0.167
I_transmission 0.0137 0 0.171 0.0667
I_distribution 0.397 0.409 0.619 0.767
company_age 18.05 24.50 24.75 28
deal_year 2010 2007 2001 2001
ln_at 7.128 9.037 7.856 8.496
ln_emp 1.126 1.903 1.544 1.792
ln_revt 5.883 7.856 7.102 7.544
ln_che 4.400 5.634 4.003 4.387

In sum, there has been a rise in green acquisitions in recent years, both in absolute number
and as a share of total M&A activity in the electric power industry. At the same time, the
gap between conventional and green patenting in the industry has become smaller, with green
patenting overtaking conventional patenting in the last years. We note that acquirers in our
sample display different characteristics on average depending on the type of target that they
acquire. As these characteristics may also drive firms’ innovation activities, it is important
to control for these confounding factors when analyzing the impact of M&A on innovation,
which we now turn our attention to.
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4.4 Empirical Strategy

We aim to quantify both the average effect of a M&A event on acquiring firms innovation
activities, as well as explore heterogeneous effects across different types of acquisitions. There
are several reasons, both practical and conceptual, as to why we focus our attention on effects
on the acquiring entity as opposed to targets or the combined entity. First, the availability
of more complete data on acquiring firms allows us to control for a larger set of confounding
factors. Many targets are private companies and hence financial data for these firms is not
available. Second, many targets are merged into the acquirer ceasing to exist as a stand-
alone entity post-acquisition. Finally, the effect of being acquired on targets is likely to be
more prone to endogeneity concerns because acquirers may select targets with promising yet
unpatented research.21 As we are interested in how the (technological) assets acquired affect
new innovation due to potential R&D spillovers and synergies, we argue that the focus on
acquiring firms is appropriate.

The empirical set-up involves staggered treatment as firms in the sample experience an
acquisition at different points in time. To assess the effects on the acquiring firm we adopt
a differences-in-differences framework, implementing two-way fixed effects regressions. Our
baseline regression specification takes the following functional form,

I_(green/conv)patentit = β0 +
k∑
k=1

βkMAkit + γXit−1 + ηi + µt + ϵit

where the binary dependent variable I_(green/conv)patent captures the registration of at
least one new patent (green or conventional) by acquirer i in year t. That is, the dependent
variable I_patent captures the filing of any patent, I_greenpatent captures the filing of
a green patent, I_convpatent captures the filing of a conventional patent. We use binary
outcome variables as the vast majority of firms file a maximum of one patent per year (see
Figure A.11 and A.12 in the Appendix). In a robustness check, we use the log of patent
counts.

MAkit is a dummy variable indicating the acquisition type k ∈ K, with the corresponding
coefficient vector βk being the treatment effect of interest. K depends on the model specifica-
tion and can either be {MA}, {MA_Green, MA_Conv} or {MA_Green_T, MA_Green_NT,
MA_Conv_T, MA_Conv_NT}. Each observation in the sample experiences only one merger
event, thus treatments are always mutually exclusive at the firm-level. The relevant treatment
variable is equal to 1 for x years after the year in which the acquisition takes place, and equal
to 0 otherwise. In the main specification x is 3 years.22 Post-acquisition observations after x
periods are dropped. In a robustness check, we vary this time period.

Xit−1 is a vector of time varying firm characteristics, measured in t − 1, including dis-

21There is still the remaining concern that acquirers may patent the target’s promising work shortly after the
acquisition under their own name, however patenting (under the acquirer’s name) may also be made possible
precisely because of access to funds and resources provided by the acquirer. Moreover, our analysis focuses on
a time window of three years after the merger year, not only immediate effects.

22This time period is comparable to the existing literature. In Ornaghi (2009) the specification is estimated
up to three years after the merger, and in Haucap et al. (2019) up to fours years.
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counted patent stock and financial controls. To account for path dependency in the nature of
innovation, we control separately for green patent stock and conventional patent stock. ηi are
firm fixed effects and µt are year fixed effects. Year fixed effects account for changes in regu-
lation and economic conditions that affect all firms similarly in a given year.23 By including
firm fixed effects, we control for time-constant unobserved firm characteristics and estimate
the average within-firm effects of acquisitions. Standard errors are clustered at the year level
to account for within-year correlation and heteroscedasticity.24 Given the substantial number
of fixed effects included in our analysis, we use ordinary least squares (OLS) as the primary
estimation method.25

Similarly to other empirical studies on the effects of M&A, our analysis faces the challenge
of identification. Identifying the causal effect of M&A on innovation is complicated by the
fact that firms select into acquiring and that firms may already take into account current and
expected changes in innovation when making acquisition decisions. In order to address the
concern of selection into acquiring the control group is constructed to only consist of acquirers
that have not yet acquired (i.e. not yet treated), as opposed to never treated, on the grounds
that these firms are most similar to the treated firms. A similar approach is taken by other
recent studies on the effects of M&A including Affeldt & Kesler (2021) and Blonigen & Pierce
(2016). The rationale for this identification strategy relies on the assumption that, conditional
on the included control variables and fixed effects, the treated and not yet treated firms should
not differ in future innovative performance, if it were not for the merger itself.26

The occurrence of multiple acquisitions by the same firm in quick succession poses another
challenge for identification. In such cases, it is not possible to clearly isolate the effects of
individual mergers. Estimation of the treatment effect of acquisitions using the specification
above therefore requires a clean time window, both before and after the merger, in which the
firm does not undergo any other major changes that are not captured by the included covari-
ates. In our data, more than half of the deals are part of a chain of successive acquisitions.
Hence, we develop a novel strategy to make use of acquisitions that take place consecutively,
provided that they occur sufficiently far apart (in time), and excluding them otherwise.27

Our rule for the inclusion of a M&A event is that there needs to be a minimum of six years
between the events. In the three years immediately preceding the event and in the three years

23Popp et al. (2010) and Popp (2019) provide an extensive review of the literature examining the linkage
between innovation and varying policy instruments. Duso et al. (2019) analyze the impact of competition
policy in energy markets.

24Due to changes in technological developments and regulation overtime which may affect firms’ innovation
activities, it is unlikely that error terms in our analysis would be independent over time.

25The advantage of OLS is that it is by construction better suited to accommodate a large number of fixed
effects and can also estimate coefficients of groups where every member of the group has the same value for the
dependent variable. Logit and probit models fail in our setting given that patenting is a rare event, we have a
limited number of mergers within each merger category type, and a large number of fixed effects. Consequently,
when using logit or probit regression with four merger categories the included fixed effects perfectly predict
the outcome for many observations.

26An alternative approach in the literature on the effects of M&A is to use propensity score matching
to select a suitable control group (e.g. Haucap et al., 2019; Ornaghi, 2009), however this approach faces the
limitation that while matched control firms will be similar with regard to observable characteristics, unobserved
differences remain a concern.

27Previous research has excluded firms that engage in other M&A (Haucap et al., 2019; Szücs, 2014).
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following the event no other deal should take place. The firm is given a new identifier for each
time window around one M&A event which recognizes the changes that firms undergo after
merging. The fixed effects included in the model are associated with the new firm identifier.
In a few cases acquirers engage in more than one transaction in the same year.28 For these
cases, we aggregate observations to the firm-year level.29 Thus, we obtain a sample of firms
where each firm undertakes one acquisition, and we have a clean window of at least three
years before the acquisition, and a clean window of at least three years after the acquisition,
in which we observe the firm.

The implementation of the procedure described above leaves us with 100 merger events
for which we have complete data for all variables. Table 4.5 provides summary statistics for
the final panel dataset used in the regression analysis.

Table 4.5: Summary Statistics for Acquirers in the Final Sample

VARIABLES
Mean Std.

Dev
Min Max Obs

I_patents 0.058 0.234 0 1 2228
I_greenpatents 0.025 0.155 0 1 2228
I_convpatents 0.034 0.18 0 1 2228
ln_patents 0.062 0.28 0 2.944 2228
ln_greenpatents 0.022 0.147 0 1.792 2228
ln_convpatents 0.046 0.238 0 2.944 2228
dpatentstk 0.845 4.113 0 51.516 2228
dgreenpatentstk 0.263 1.713 0 28.963 2228
dconvpatentstk 0.583 3.157 0 51.516 2228
ln_company_age 2.704 0.829 0.693 4.625 2228
ln_at 7.109 2.245 0 11.676 2228
ln_revt 6.152 2.197 0 10.346 2228
ln_emp 1.301 0.931 0 3.804 2228
ln_che 2.934 1.879 0 8.292 2228

28This is not the norm. For 76% of events, the event is the only one for that year for a firm.
29We sum the patents of the targets and use the same criteria as described in Table 4.1 to define acquisition

types. The combined target is considered to be engaged in the renewable sector if at least half the targets are
renewable.
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4.5 Results

We begin by quantifying the average effect of a merger event (MA) on the three outcomes
variables of interest. The results are presented in Table 4.6. In columns 1-3 firm fixed effects
are excluded in order to shed more light on how the control variables are associated with
patenting activity.30 Firm fixed effects are included in columns 4-6.

Consistent with path-dependency in the direction of innovation, Table 4.6 indicates that
discounted green patent stock is a highly significant predictor of green patenting activity
(column 2) and discounted conventional patent stock is a highly significant predictor of con-
ventional patenting activity (column 3). The number of employees is positively associated
with patenting. Company age is on average negatively correlated with green patenting activ-
ity, but positively correlated with conventional innovation, indicating that younger firms are
more likely to undertake green innovation.

After the inclusion of fixed effects, we find a negative and significant effect of mergers on
the average patenting probability (column 4) and on the probability to patent in conventional
technologies (column 6).

Table 4.6: Results

(1) (2) (3) (4) (5) (6)
VARIABLES I_patents I_greenpatents I_convpatents I_patents I_greenpatents I_convpatents

MA -0.0139 0.00217 -0.0161 -0.0375*** -0.00755 -0.0299**
(0.0130) (0.0112) (0.00975) (0.0137) (0.0108) (0.0115)

dgreenpatentstk 0.0414*** 0.0395*** 0.00187 0.0181 0.00296 0.0151
(0.00551) (0.00503) (0.00526) (0.0140) (0.0190) (0.0174)

dconvpatentstk 0.0225*** 0.00121 0.0213*** 0.00838 0.000398 0.00799
(0.00470) (0.00167) (0.00454) (0.00880) (0.00411) (0.00843)

ln_company_age -0.0177* -0.0207*** 0.00302 0.0288 0.0189 0.00988
(0.00891) (0.00653) (0.00635) (0.0232) (0.0201) (0.0179)

ln_emp 0.0358*** 0.0197** 0.0162* 0.0102 0.0229 -0.0127
(0.0109) (0.00805) (0.00856) (0.0264) (0.0164) (0.0218)

All controls yes yes yes yes yes yes

Observations 2228 2228 2228 2228 2228 2228
R-squared 0.302 0.238 0.184 0.473 0.379 0.294
Company FE no no no yes yes yes
Year FE yes yes yes yes yes yes

Notes: The binary dependent variable is equal to one when observation i files at least one patent (columns 1 and 4), or at least one
green patent (columns 2 and 5), or at least one conventional patent (columns 3 and 6) in year t. The variable MA is a binary indicator
equal to one for the three years subsequent to the merger. Fixed effects for each firm (Company FE) and year (Year FE) are included as
indicated. The constant term and control variables are estimated but not reported. Standard errors displayed in parentheses are robust
and clustered at the year level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

30Firm level fixed effects will absorb most of the variation due to control variables such as discounted green
patent stock and the financial controls if these variables are relatively constant over time.
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Next, we consider the impact of green and conventional acquisitions separately. Table
4.7 reveals that the average negative effect of M&A observed in Table 4.6 is driven by con-
ventional acquisitions (column 1). The acquisition of green targets has a positive (although
not significant effect) on green innovation (column 2) and a negative effect on conventional
innovation (column 3).

Table 4.7: Results by Target Type I

(1) (2) (3)
VARIABLES I_patents I_greenpatents I_convpatents

MA_Green -0.0196 0.0499 -0.0695**
(0.0256) (0.0338) (0.0314)

MA_Conv -0.0408*** -0.0182** -0.0226**
(0.0140) (0.00868) (0.0107)

All controls yes yes yes

Observations 2228 2228 2228
R-squared 0.473 0.381 0.295
Company FE yes yes yes
Year FE yes yes yes

Notes: The binary dependent variable is equal to one when observation
i files at least one patent (column 1 ), or at least one green patent
(column 2), or at least one conventional patent (column 3) in year t.
The variable MA_Green(Conv) is a binary indicator equal to one for
the three years subsequent to a Green (Conventional) merger. The
constant term and control variables are estimated but not reported.
Standard errors displayed in parentheses are robust and clustered at
the year level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Exploring these heterogeneous effects further, we separate green technological acquisitions
from green non-technological acquisitions and conventional technological acquisitions from
non-technological conventional acquisitions. As shown in Table 4.8, the negative effect of
acquisitions on the probability to patent is driven by conventional non-technological mergers
(column 1). Turning our attention to green innovation (column 2), we find that green techno-
logical mergers increase the probability of filing a green patent post-merger. On average, the
probability to file at least one green patent in a given year in the three years subsequent to a
merger is 9 percentage points higher after a green technological merger, ceteris paribus. The
unconditional probability to file at least one green patents in a given year for firms that even-
tually engage in green technological acquisitions is 0.25, hence an increase in the probability
to patent by 9 percentage points represents a large impact in terms of economic magnitude.
Green non-technological mergers have a positive although not statistically significant effect
on green patenting. Conventional non-technological mergers, which often expand acquirers’
generative capabilities in conventional technologies, lead to a decline in green patenting post-
merger. Finally, green non-technological mergers, which often expand acquirers’ generative
capabilities in renewable energy and do not provide new technological inputs, lead to a decline
in conventional patenting post-merger (column 3).
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Table 4.8: Results by Target Type II

(1) (2) (3)
VARIABLES I_patents I_greenpatents I_convpatents

MA_Green_T 0.0575 0.0935** -0.0360
(0.0540) (0.0355) (0.0283)

MA_Green_NT -0.0395 0.0395 -0.0789**
(0.0355) (0.0443) (0.0355)

MA_Conv_T -0.0785 -0.0190 -0.0595
(0.0588) (0.0388) (0.0370)

MA_Conv_NT -0.0332** -0.0178** -0.0154
(0.0125) (0.00798) (0.0118)

All controls yes yes yes

Observations 2228 2228 2228
R-squared 0.474 0.382 0.296
Company FE yes yes yes
Year FE yes yes yes

Notes: The binary dependent variable is equal to one when observation i

files at least one patent (column 1), or at least one green patent (column
2), or at least one conventional patent (column 3) in year t. The vari-
able MA_Green(Conv)_T(_NT) is a binary indicator equal to one for
the three years subsequent to a Green (Conventional) Tech (Non-Tech)
merger. The constant term and control variables are estimated but not
reported. Standard errors displayed in parentheses are robust and clus-
tered at the year level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Our results are broadly robust across a number of specifications as documented in Ap-
pendix A.3.5. In Table A.14 we use the log of patents as the main outcome variable. Our
results remain qualitatively very similar. In Table A.15 we explore the sensitivity of our
results regarding green innovation to different time windows. We find a significant positive
effect when we measure the impact of the acquisition within a period of 2, 3 or 4 years. If
we limit the effect to 1 year post-acquisition, the coefficient carries the same sign but loses
statistical significance.

In Table A.16 we limit the sample to data from the year 2000 on. This excludes data from
the 1990s when the US power industry was undergoing substantial structural transformation
and, as shown earlier, is roughly the time when the trend toward green acquisitions begins.
To ensure sufficient observation periods prior to the acquisition, we consider deals that take
place from 2004 onward. This results in a much smaller sample. Our finding that green
technological acquisitions promote green patenting remains positive and significant at the 5%
level. The negative effect of green non-technological acquisitions on conventional innovation
remains significant. However, the negative effect of conventional non-technological mergers
on green innovation loses significance.

Taken together, the key finding that green technological acquisitions promote green patent-
ing activity among acquirers is very robust. In the following section we interpret our results
in greater detail and discuss the policy implications.
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4.6 Discussion

While previous studies have empirically examined the impact of mergers on innovation, the
focus has been almost exclusively on innovation in general rather than focusing specifically
on green innovation. The present work broadens our knowledge on the effects of acquisitions
on acquirers’ innovation rate and direction by taking the target firm’s innovation history into
account.

The results indicate that when characteristics of the acquired company are not accounted
for, on average, acquisitions have a negative impact on subsequent innovation output. How-
ever, this masks considerable heterogeneities in the sign and magnitude of the effect depending
on the nature of the acquisition. In particular, green technological acquisitions - involving
target firms with a history of green patenting activity - induce further green innovation by the
acquiring entities. Conversely, conventional technological mergers do not significantly impact
on conventional innovation nor green innovation. This is consistent with the notion that green
technologies are associated with larger knowledge spillovers than conventional technologies,
providing more opportunities to learn, and points towards significant research synergies be-
tween target and acquirer firms with regard to green technologies. Further, we find that green
non-technological acquisitions are associated with a decline in conventional patenting. Poten-
tial explanations for this finding include that firms investing in renewable power generation
capacity scale back on conventional innovation or that organizational disruptions caused by
the acquisition negatively impact the innovation output.31

An implication of the findings for research is that empirical studies disregarding hetero-
geneity in treatment effects may miss crucial effects of M&A on post-merger patent output.
In particular, the present analysis reveals that it is essential to account for differences in the
knowledge stock of target firms in order to accurately estimate the impact on the acquirers’
innovative activities.

The findings also have implications for policy geared towards supporting green innovation,
and for competition authorities who are increasingly interested in assessing the innovation im-
pact of mergers in addition to price effects.32 Firstly, our findings indicate that competition
authorities should pay closer attention to the nature of the acquired knowledge stock when
evaluating mergers. Secondly, we shed light on a positive aspect of mergers and acquisi-
tions owing to the potential to drive the development of new green technologies. Recently
academics and policymakers have expressed concerns about potential “killer acquisitions” -
where incumbent firms acquire innovative targets purely to shut down their research and pre-
empt future competition. These concerns are founded in a recent study which, using data from
the pharmaceutical industry, estimates that “killer acquisitions” account for 5-7% of M&A
(Cunningham et al., 2021). In contrast, our findings temper such concerns for the power and

31M&A can entail a disruption of business routines causing the integration of the target to require consid-
erable managerial time and resources, thus negatively affecting the innovation output (Hitt et al., 1991).

32In particular policy interest on mergers and innovation has centered around the pharmaceutical industry.
For example, in May 2021, the European Commission (EC) fined the company Merck KGAA EUR 7.5m
for a failure to disclose an R&D project while pursuing the acquisition of Sigma-Aldrich in 2015 (European
Commission, 2021).
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utilities sector and draw attention to the positive effects of M&A on green innovation. This
is a crucial insight in view of the fact that encouraging technological change in the energy
sector is a pressing issue and hampered by specific market failures.
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4.7 Conclusion

In this paper, we construct a panel dataset by combining data comprising of merger events
in the power and utility sector between 1981 and 2017 with firm level patent and financial
data. Applying a differences-in-differences framework with two-way fixed effects we estimate
the effect of acquisitions on the subsequent innovative output of the acquiring entity. Dis-
tinguishing between different types of M&A, we find that green technological acquisitions -
involving target firms with a history of green patenting activity - substantially increase the
probability that the acquiring entity files a green patent in the post-acquisition period. This
points towards significant knowledge spillovers and research synergies between merging firms
with regard to green technologies in particular. In short, acquiring firms exhibit “learning by
buying” in green innovation.

We see several interesting avenues to extend this work. Further research can explore
whether learning by buying in green innovation is present in other industries, such as the
transportation and buildings industries where technological progress is also crucial to tackling
climate change. Future research can make greater use of the information provided by patents
to examine the development of clean technologies arising from green acquisitions in more
detail, i.e. by including patent citations or more granular information on the technological
classes of patents (e.g. wind, solar, energy storage). Finally, as this study emphasizes the
crucial role of technological progress in combating climate change, researchers can link these
insights with data on greenhouse gas emissions to estimate the carbon reducing effect of green
acquisitions.



Appendix

A.1 Appendix: Chapter 2

A.1.1 State-level Trends in Green Patent Activity

As the US states differ greatly in economic size, there is great disparity in the number of
patents among the individual states. California is by far the largest state in the US and
as such has the largest number of patents. Thus, California is extreme in the values of the
outcome variable, such that the values cannot be closely approximated by states in the donor
pool (see Figure A.1). In these cases, transformations to the outcome variable are necessary
to employ the SCM (Abadie, 2021). By calculating the number of green patent applications
per 100’000 population, the differences between California and the states in the donor pool
are less pronounced (see Figure A.1.1).

Figure A.1: Total Number of Green Patent Filings, 2000–2015

86
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Figure A.2: Green Patent Filings (per 100’000 Population)

A.1.2 Further Robustness Checks

A.1.2.1 Choice of Donor Pool

For further robustness checks, modifications are made in terms of the donor pool from which
the synthetic California is constructed. Predictor variables are chosen as for the main speci-
fication discussed in Section 2.2.2.1 The corresponding weights of control units can be found
in Table A.1.

Figure A.3: Robustness Check: Including All US States

(a) Trends in Green Patent Filings (b) Green Patent Filings Gap

1There is no data on R&D for the state of Minnesota in the year 2010. The NA value is ignored in the
estimation.
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Figure A.4: Robustness Check: Including Members of the RGGI in Donor Pool

(a) Trends in Green Patent Filings (b) Green Patent Filings Gap

Figure A.5: Robustness Check: Including Former Members of the WCI in Donor Pool

(a) Trends in Green Patent Filings (b) Green Patent Filings Gap
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Table A.1: State Weights in Synthetic California (Robustness Checks)

Weights

State Incl. All US States Incl. WCI Incl. RGGI
Alabama 0.001 0.000 0.000
Alaska 0.002 0.000 0.000
Arizona 0.001 0.000 —
Arkansas 0.001 0.000 0.000
Colorado 0.001 0.000 0.000
Connecticut 0.006 — 0.001
Delaware 0.061 — 0.000
District of Columbia 0.012 0.337 0.000
Florida 0.001 0.000 0.000
Georgia 0.001 0.000 0.000
Hawaii 0.00 0.117 0.000
Idaho 0.001 0.000 0.000
Illinois 0.001 0.000 0.000
Indiana 0.001 0.000 0.000
Iowa 0.001 0.000 0.000
Kansas 0.001 0.000 0.000
Kentucky 0.000 0.000 0.000
Louisiana 0.001 0.000 0.000
Maine 0.000 — 0.000
Maryland 0.099 — 0.279
Massachusetts 0.363 — 0.311
Michigan 0.001 0.000 0.155
Minnesota 0.001 0.000 0.000
Mississippi 0.000 0.000 0.000
Missouri 0.001 0.000 0.000
Montana 0.001 0.000 —
Nebraska 0.001 0.000 0.000
Nevada 0.056 0.000 0.107
New Hampshire 0.001 — 0.000
New Jersey 0.001 — 0.000
New Mexico 0.142 0.013 —
New York 0.001 — 0.000
North Carolina 0.001 0.000 0.000
North Dakota 0.001 0.109 0.000
Ohio 0.001 0.000 0.000
Oklahoma 0.001 0.000 0.000
Oregon 0.001 0.000 —
Pennsylvania 0.001 0.000 0.000
Rhode Island 0.001 — 0.000
South Carolina 0.001 0.000 0.000
South Dakota 0.001 0.001 0.000
Tennessee 0.001 0.000 0.000
Texas 0.231 0.000 0.146
Utah 0.001 0.000 —
Vermont 0.000 — 0.000
Virginia 0.001 0.000 0.000
Washington 0.000 0.422 —
West Virginia 0.000 0.000 0.000
Wisconsin 0.001 0.000 0.000
Wyomning 0.001 0.000 0.000
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A.1.2.2 Choice of Patent Classification System

For the robustness check, I select all patents issued between 2000 and 2015 that pertain to
the Y02 class and re-estimate the synthetic control model using the resulting data set. Figure
A.6 reports the results of the estimation. It is evident that the CPC Y02-tags schema returns
significantly more results than the Green Inventory. Nevertheless, the illustrations show that
the number of green patent filings of California and its synthetic counterpart show a similar
progression as those in the main specification.

Figure A.6: Robustness Check: Identifying Green Patents Using the CPC

(a) Trends in Green Patent Filings (b) Green Patent Filings Gap



A.1.3 Alternative Treatment Periods

Table A.2: Alternative Treatment Periods

Indication Modification Estimated Effect

M1 Treatment is set to 2010 20.8%
M2 Treatment is set to 2009 21.3%
M3 Treatment is set to 2008 21.4%
M4 Treatment is set to 2007 23.5%

Figure A.7: Alternative Treatment Periods



A.1.4 IPC Green Inventory

Table A.3: Topics of WIPO’s Green Inventory (WIPO, 2020)

Topic Sub-Topic

Administrative,
Regulatory or
Design Aspects

Commuting (e.g. High-occupancy vehicle lanes, telework-
ing, etc.); Carbon / emissions trading (e.g. pollution cred-
its); Static structure design

Alternative
Energy
Production

Bio-fuels; Integrated gasification combined cycle; Fuel cells;
Pyrolysis or gasification of biomass; Harnessing energy from
manmade waste; Hydro energy; Ocean thermal energy con-
version; Wind energy; Solar energy; Geothermal energy;
Other production or use of heat, not derived from com-
bustion (e.g. natural heat); Using waste heat; Devices for
producing mechanical power from muscle energy

Agriculture/
Forestry

Forestry techniques; Alternative irrigation techniques; Pes-
ticide alternatives; Soil improvement

Energy
Conservation

Storage of electrical energy; Power supply circuitry; Mea-
surement of electricity consumption; Storage of thermal en-
ergy; Low energy lighting; Thermal building insulation, in
general; Recovering mechanical energy

Nuclear Power
Generation

Nuclear engineering; Gas turbine power plants using heat
source of nuclear origin

Transportation Vehicles in general; Vehicles other than rail vehicles; Rail
vehicles; Marine vessel propulsion; Cosmonautic vehicles
using solar energy

Waste
Management

Waste disposal; Treatment of waste; Consuming waste by
combustion; Reuse of waste materials; Pollution control



A.1.5 Data Sources
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https://www.patentsview.org/download/
https://www.bea.gov/data/gdp/gdp-state
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https://ncses.nsf.gov/indicators/states/indicator/se-bachelors-degrees-per-1000-18-24-year-olds
https://www.census.gov/programs-surveys/popest.html
https://www.eia.gov/state/seds/seds-data-complete.php?sid=US
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A.2 Appendix: Chapter 3

A.2.1 Industry Groups

Table A.5: Industry Groups

Industrial Sector Service Sector
1 Food 13 Commerce
2 Textile / Leather 14 Hospitality
3 Paper / Printing 15 Lending / Insurance
4 Chemicals / Pharmaceuticals 16 Administration
5 Cement / Concrete 17 Schooling
6 Other non-ferrous minerals 18 Health care & social services
7 Metal / Iron 19 Other services
8 Non-ferrous metals
9 Metal / Appliances
10 Machinery
11 Other Industries
12 Construction

Figure A.8: Number of Entities per Industry Group in the Sample
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A.2.2 Energy Mix

Figure A.9: Energy Mix of Entities

A.2.3 Types of Consumers

Table A.6: Summary Statistics Regular Oil User

Pre-policy Post-policy
n = 7’362 n = 7’005

Mean St. Dev Median Mean. St. Dev. Median.
Heating Oil (ln) 12.73 1.11 12.90 10.86 4.67 12.73
Natural Gas (ln) 0.54 2.46 0.00 1.61 4.21 0.00
Electricity (ln) 11.97 1.48 12.16 12.36 1.39 12.59
Other Energy Sources (ln) 0.55 2.62 0.00 1.11 3.71 0.00
GFS 1742.50 2642.16 1004.00 2274.41 3125.96 1400.00
FTE 7.50 98.61 2.00 10.24 33.63 3.00
PTE 24.16 41.69 14.00 33.67 51.31 20.00

Table A.7: Summary Statistics Occasional Oil User

Pre-policy Post-policy
n = 1’614 n = 1’297

Mean St. Dev Median Mean. St. Dev. Median.
Heating Oil (ln) 6.43 6.23 9.92 3.65 5.58 0.00
Natural Gas (ln) 4.02 6.02 0.00 5.59 6.46 0.00
Electricity (ln) 12.11 1.45 12.28 12.65 1.33 12.93
Other Energy Sources (ln) 2.25 4.91 0.00 3.30 5.78 0.00
GFS 1824.83 2676.08 958.00 2607.97 5517.90 1450.00
FTE 8.10 47.10 2.00 10.65 18.59 4.00
PTE 33.52 75.77 15.00 51.57 94.21 27.00
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Table A.8: Summary Statistics Non Oil User

Pre-policy Post-policy
n = 4’264 n = 4’703

Mean St. Dev Median Mean. St. Dev. Median.
Heating Oil (ln) 0.00 0.00 0.00 0.45 2.28 0.00
Natural Gas (ln) 5.83 6.31 0.00 5.99 6.39 0.00
Electricity (ln) 12.10 1.52 12.28 12.47 1.45 12.78
Other Energy Sources (ln) 4.09 6.12 0.00 4.57 6.42 0.00
GFS 2260.60 9563.22 980.00 2535.44 3175.27 1491.00
FTE 12.55 78.26 3.00 16.39 55.43 4.00
PTE 34.02 161.74 15.00 48.20 93.58 23.00

Figure A.10: Share of Energy Use per Source, 2000–2017

(a) Regular Oil User (b) Occasional Oil User

(c) Non Oil User
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A.2.4 Further Figures and Tables

Table A.9: SL Weights

Other
Heating Oil Natural Gas Electricity Energy Sources

Full Sample

glmnet 0.953 0.677 0.794 0.720
ranger 0.047 0.323 0.126 0.280
XGboost 0.000 0.000 0.080 0.000

Regular Oil Users

glmnet 0.432 0.158 0.735 0.051
ranger 0.568 0.842 0.256 0.949
XGboost 0.000 0.000 0.009 0.000

A.2.5 Sensitivity Analysis

Table A.10: Sensitivity Analysis: Alternative Sample incl. Entities with Annual CO2 Emissions ≤ 100
tCO2

Other
Heating Oil Natural Gas Electricity Energy

Sources

Full Sample

12 CHF/tCO2 -5.6% 2.6% 0.5% 0.6%
36 CHF/tCO2 -15.4% 9.1% 1.7% 2.7%
60 CHF/tCO2 -23.9% 12.8% 2.6% 4.1%
84 CHF/tCO2 -31.9% 16.5% 3.7% 5.6%

Regular Oil Users

12 CHF/tCO2 -14.3% 15.7% 0.1% 4.3%
36 CHF/tCO2 -34.9% 42.8% 0.3% 15.2%
60 CHF/tCO2 -49.1% 42.2% 0.4% 19.1%
84 CHF/tCO2 -60.7% 55.1% 0.6% 32.3%
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Table A.11: Sensitivity Analysis: Alternative Sample incl. Entities with Annual CO2 Emissions ≤
25’000 tCO2

Other
Heating Oil Natural Gas Electricity Energy

Sources

Full Sample

12 CHF/tCO2 -7.8% 1.5% 0% 1.8%
36 CHF/tCO2 -21.4% 3.5% 0% 5.3%
60 CHF/tCO2 -32.8% 3.1% 0% 7.3%
84 CHF/tCO2 -42.6% 3.9% 0% 9.8%

Regular Oil Users

12 CHF/tCO2 -13.1% 7.6% 0.0% 5.4%
36 CHF/tCO2 -32.7% 25.4% 0.2% 22.8%
60 CHF/tCO2 -47.0% 31.8% 0.2% 26.5%
84 CHF/tCO2 -59.1% 42.9% 0.0% 39.0%
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A.3 Appendix: Chapter 4

A.3.1 NAICS Industry Group 2211 – Electric Power Generation, Trans-
mission and Distribution

Table A.12: NAICS Codes that Fall Under 2211

Category NAICS
Code Description

Generation

221111 Hydroelectric Power Generation
221112 Fossil Fuel Electric Power Generation
221113 Nuclear Electric Power Generation
221114 Solar Electric Power Generation
221115 Wind Electric Power Generation
221116 Geothermal Electric Power Generation
221117 Biomass Electric Power Generation
221118 Other Electric Power Generation

Transmission 221121 Electric Bulk Power Transmission and Control
Distribution 221122 Electric Power Distribution

A.3.2 Y02 Tagging Scheme - Technologies or Applications for Mitiga-
tion or Adaptation Against Climate Change

Table A.13: CPC Subsection Y02

Subclass Description

Y02A Technologies for adaption to climate change
Y02B Climate change mitigation technologies related to buildings
Y02C Capture, storage, sequestration or disposal of greenhouse gases
Y02D Climate change mitigation technologies in information and communication

technologies
Y02E Reduction of greenhouse gas emissions, related to energy generation,

transmission or distribution
Y02P Climate change mitigation technologies in the production or processing of

goods
Y02T Climate change mitigation technologies related to transportation
Y02W Climate change mitigation technologies related to wastewater treatment or

waste management
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A.3.3 Construction of the Data Set

We construct a unique data set by combining our sample of mergers with patent and
financial data. The patents granted to firms in our sample are identified by matching
assignee names to the company names. This matching process presents some challenges.
Spelling mistakes and affiliations between entities complicates the attribution of patents
to a particular company (OECD, 2009). Moreover, the merger data only provides the
company name at the time of the merger. However, changes in enterprise names may
have occured over time. Thus, cleaning and preparing a list of company names is neces-
sary. The following steps were undertaken:

– Internet research has been conducted to compile a list of former and subsequent
names taken on by these entities before and after the merger, respectively.

– Inclusion of abbreviated company name

– Standardizing different expressions (e.g. “Corp” and “Corporation”)

– Removal of suffixes as “Gmbh” or “Inc.”

– Removal of punctuation

The prepared list of cleaned and standardized company names is then matched to stan-
dardized company names extracted from the patent data using a approximate string
matching to allow for spelling errors, missing characters and slight variations of the en-
tity name. The matches obtained were validated by examining each match individually
and identifying and removing faulty matches. We further remove reissue patent applica-
tions. The resulting data set comprises patent applications granted by the USPTO and
assigned at issue to the firms in our sample.
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A.3.4 Additional Figures

Figure A.11: Histogram Green Patents
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Notes: Sample of firm-years where green patents > 0

Figure A.12: Histogram Conventional Patents
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Notes: Sample of firm-years where conventional patents > 0
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A.3.5 Additional Tables

Table A.14: Results - Log Outcome

(1) (2) (3) (4) (5) (6)
VARIABLES ln_patents ln_patents ln_greenpatents ln_greenpatents ln_convpatents ln_convpatents

MA -0.0241* -0.00563 -0.0195
(0.0134) (0.00930) (0.0123)

MA_Green_T 0.0820 0.0647** 0.0318
(0.0501) (0.0304) (0.0418)

MA_Green_NT -0.00443 0.0340 -0.0331
(0.0348) (0.0326) (0.0379)

MA_Conv_T -0.0521 0.00244 -0.0543
(0.0586) (0.0436) (0.0337)

MA_Conv_NT -0.0266** -0.0170* -0.0126
(0.0131) (0.00864) (0.0111)

dgreenpatentstk 0.00194 0.00253 -0.00809 -0.00767 -0.00352 -0.00328
(0.0253) (0.0253) (0.0226) (0.0226) (0.0220) (0.0221)

dconvpatentstk 0.00619 0.00628 6.67e-05 -1.25e-05 0.00526 0.00542
(0.0161) (0.0161) (0.00389) (0.00388) (0.0154) (0.0154)

ln_company_age 0.0157 0.0131 0.0156 0.00970 0.00345 0.00579
(0.0234) (0.0243) (0.0163) (0.0176) (0.0208) (0.0204)

ln_at 0.0437*** 0.0447*** -0.00167 -0.00297 0.0458*** 0.0479***
(0.0123) (0.0135) (0.00919) (0.0101) (0.0116) (0.0122)

ln_revt -0.0139 -0.0158 -0.00408 -0.00488 -0.00730 -0.00857
(0.0150) (0.0151) (0.0107) (0.0107) (0.0120) (0.0119)

ln_emp -0.00233 -0.00338 0.0167 0.0176 -0.0163 -0.0182
(0.0239) (0.0247) (0.0123) (0.0130) (0.0208) (0.0211)

ln_che 0.000157 0.000207 -0.00278 -0.00286 0.00295 0.00308
(0.00510) (0.00513) (0.00279) (0.00284) (0.00475) (0.00479)

I_distribution -0.241** -0.228** 0.0472 0.0806 -0.308*** -0.323***
(0.102) (0.112) (0.0658) (0.0747) (0.0974) (0.0988)

I_transmission -0.163 -0.151 0.0516 0.0828 -0.227** -0.242**
(0.102) (0.112) (0.0641) (0.0729) (0.0933) (0.0956)

I_renewable 0.0935* 0.0895* 0.0503 0.0382 0.0517 0.0581
(0.0476) (0.0465) (0.0301) (0.0262) (0.0429) (0.0419)

Constant -0.0223 -0.0281 -0.0531 -0.0700 0.0241 0.0324
(0.0674) (0.0714) (0.0470) (0.0507) (0.0566) (0.0576)

Observations 2228 2228 2228 2228 2228 2228
R-squared 0.513 0.514 0.402 0.404 0.476 0.477
Company FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes

Notes: The dependent variable is the log(all/green/conventional patents + 1) filed by observation i in year t. The variable MA is
a binary indicator equal to one for the three years subsequent to the merger. The variable MA_Green(Conv)_T(_NT) is a binary
indicator equal to one for the three years subsequent to a Green (Conventional) Tech (Non-Tech) merger. Fixed effects for each firm
(Company FE) and year (Year FE) are included. Standard errors displayed in parentheses are robust and clustered at the year level.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table A.15: Results - Effect on Green Patents for Different Time Windows

(1) (2) (3) (4) (5)
VARIABLES deal year 1 year 2 years 3 years 4 years

MA_Green_T 0.0634 0.176 0.153** 0.0935** 0.0658*
(0.0897) (0.153) (0.0584) (0.0355) (0.0342)

MA_Green_NT 0.0485 0.0768 0.0726 0.0395 0.0355
(0.0626) (0.0625) (0.0472) (0.0443) (0.0396)

MA_Conv_T -0.0776** -0.0397 -0.0443 -0.0190 -0.0270
(0.0369) (0.0329) (0.0281) (0.0388) (0.0357)

MA_Conv_NT -0.0256** -0.0170* -0.0191** -0.0178** -0.0108
(0.0111) (0.00928) (0.00829) (0.00798) (0.00920)

dgreenpatentstk 0.00740 0.00741 0.00775 0.00367 0.00102
(0.0192) (0.0190) (0.0190) (0.0189) (0.0189)

dconvpatentstk 0.000617 0.000559 0.000777 0.000383 0.000559
(0.00408) (0.00407) (0.00406) (0.00409) (0.00406)

ln_company_age 0.0230 0.0216 0.0189 0.0122 0.00703
(0.0233) (0.0229) (0.0213) (0.0211) (0.0203)

ln_at -0.00620 -0.00786 -0.00373 -0.000974 -0.000412
(0.0103) (0.0105) (0.0106) (0.0111) (0.0116)

ln_revt -0.00504 -0.00508 -0.00268 -0.00828 -0.0115
(0.0139) (0.0142) (0.0136) (0.0127) (0.0140)

ln_emp 0.0304 0.0307 0.0228 0.0232 0.0247
(0.0198) (0.0190) (0.0178) (0.0171) (0.0168)

ln_che -0.00401 -0.00397 -0.00401 -0.00393 -0.00424
(0.00369) (0.00365) (0.00347) (0.00335) (0.00332)

I_distribution 0.0866 0.106 0.0648 0.0906 0.107
(0.106) (0.0974) (0.0858) (0.0903) (0.0825)

I_transmission 0.0936 0.111 0.0750 0.0955 0.108
(0.104) (0.0957) (0.0843) (0.0883) (0.0798)

I_renewable 0.0641 0.0654 0.0611* 0.0550* 0.0283
(0.0455) (0.0415) (0.0335) (0.0276) (0.0286)

Constant -0.0839 -0.0916 -0.0766 -0.0856 -0.0864
(0.0778) (0.0720) (0.0608) (0.0614) (0.0541)

Observations 2043 2043 2138 2228 2296
R-squared 0.391 0.393 0.403 0.382 0.372
Company FE yes yes yes yes yes
Year FE yes yes yes yes yes

Notes: The dependent variable is a binary indicator equal to one when observation i

files at least one green patent in year t. The variable MA_Green(Conv)_T(_NT) is a
binary indicator equal to one for the year of the Green (Conventional) Tech (Non-Tech)
merger (column 1), one year subsequent to the merger (column 2), two years subsequent
to the merger (column 3), three years subsequent to the merger (column 4), and four
years subsequent to the merger (column 5). Fixed effects for each firm (Company FE)
and year (Year FE) are included. Standard errors displayed in parentheses are robust
and clustered at the year level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table A.16: Results - Sample After 2000

(1) (2) (3) (4) (5) (6)
VARIABLES I_patents I_patents I_greenpatents I_greenpatents I_convpatents I_convpatents

MA -0.0472* 0.00278 -0.0499***
(0.0241) (0.0223) (0.0138)

MA_Green_T 0.0514 0.113** -0.0618
(0.0690) (0.0428) (0.0380)

MA_Green_NT -0.0484 0.0425 -0.0909***
(0.0467) (0.0502) (0.0305)

MA_Conv_T -0.159 -0.0574 -0.101
(0.140) (0.104) (0.0844)

MA_Conv_NT -0.0381* -0.0171 -0.0210
(0.0212) (0.0165) (0.0190)

dgreenpatentstk 0.00770 0.00901 0.0130 0.0144 -0.00532 -0.00538
(0.0157) (0.0154) (0.0218) (0.0218) (0.0175) (0.0183)

dconvpatentstk -0.00179 -0.00148 0.00131 0.00138 -0.00309 -0.00285
(0.0102) (0.0102) (0.00218) (0.00222) (0.00995) (0.00996)

ln_company_age 0.0150 0.0120 0.0405 0.0275 -0.0255 -0.0155
(0.0433) (0.0485) (0.0367) (0.0417) (0.0301) (0.0312)

ln_at 0.0477 0.0502* 0.00588 0.00411 0.0418 0.0461
(0.0278) (0.0284) (0.0217) (0.0227) (0.0282) (0.0284)

ln_revt -0.0209 -0.0264 -0.00484 -0.00732 -0.0161 -0.0191
(0.0294) (0.0289) (0.0222) (0.0209) (0.0203) (0.0216)

ln_emp 0.0483 0.0501 -0.0105 -0.00808 0.0588 0.0582
(0.0758) (0.0746) (0.0284) (0.0280) (0.0676) (0.0668)

ln_che 0.0117 0.0141 -0.000604 0.000109 0.0123 0.0140
(0.0112) (0.0121) (0.00617) (0.00732) (0.0107) (0.0111)

I_distribution -0.287** -0.278* -0.0504 0.00421 -0.236** -0.282***
(0.117) (0.136) (0.117) (0.135) (0.0897) (0.0945)

I_transmission 0.273 0.266 0.377 0.396 -0.104 -0.130
(0.283) (0.292) (0.302) (0.312) (0.211) (0.212)

I_renewable 0.214 0.212 0.0525 0.0260 0.161 0.186
(0.186) (0.185) (0.0617) (0.0513) (0.178) (0.180)

Constant -0.302 -0.292 -0.0906 -0.0694 -0.211 -0.223
(0.185) (0.187) (0.0712) (0.0678) (0.175) (0.176)

Observations 671 671 671 671 671 671
R-squared 0.511 0.515 0.456 0.462 0.335 0.339
Company FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes

Notes: The dependent variable is a binary indicator equal to one when observation i files at least one patent (columns 1 and
2), or at least one green patent (columns 3 and 4), or at least one conventional patent (columns 5 and 6) in year t. The variable
MA is a binary indicator equal to one for the three years subsequent to the merger. The variable MA_Green(Conv)_T(_NT)
is a binary indicator equal to one for the three years subsequent to a Green (Conventional) Tech (Non-Tech) merger. The
sample is limited to observations from 2000 on, and mergers occurring from 2004 on. Standard errors displayed in parentheses
are robust and clustered at the year level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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