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Abstract

In-network-computing with SmartNICs is gaining popularity in high-
performance networking for their ability to offload packet processing
tasks from the CPU and their latency advantage thanks to the proximity
to the network traffic without having to go through PCIe. The sPIN
in-network-computing paradigm developed at ETH Zürich aims to
provide a programming model for developers to build high-performance
packet processing routines for on-path SmartNICs. While the paradigm
has been evaluated with use cases from diverse scenarios in software
and hardware simulation, it has yet to see a full E2E system-level
evaluation that exercises the entire packet processing loop on hardware
in the real world. In this thesis, we perform an end-to-end analysis
of the sPIN paradigm by building a full-system prototype of sPIN
on FPGA based on PsPIN, a cycle-accurate simulation prototype of
sPIN, and Corundum, an open-source FPGA-based Ethernet NIC. We
show that the resulting system FPsPIN facilitates the development
and testing of sPIN handlers, allowing real-world performance and
computation/communication overlap evaluations that would not have
been possible with the old cycle-accurate simulation models due to
the slow simulation speed and absence of a host CPU. We present
various improvement suggestions to the sPIN specification, discovered
through the process of building FPsPIN. In addition, we conduct a
detailed performance evaluation of FPsPIN through three benchmarks
implemented for the platform, showing a 50 us latency advantage,
over 99% computation/communication overlap, 6.4 Gbps and 1.2 Gbps
throughput in simple and complex synthetic benchmarks. The lower
application throughput shows the deficiency of the packet processing
cores used in FPsPIN and shows an opportunity for future research on
desirable architectural features for SmartNIC cores.
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1

Introduction

The network is the computer.

– John Gage, slogan for Sun Microsystems

Fourty years since John Gage has coined the catchy slogan for Sun Microsys-
tems, networked computers are being used around the world more than ever,
empowering a vast range of modern technologies that our societies are in-
creasingly depending upon. This directly corresponds to the ever increasing
higher bandwidth of datacenter networks: 100 and 200 Gbps Ethernet and
InfiniBand are becoming de-facto standards; link speeds of 400 Gbps and
beyond are already being developed and deployed [2].

On the other hand, CPU processing power have not been scaling up at the
same pace with the increase of link speeds and the higher packet processing
overhead that comes with these speeds. remote direct memory access (RDMA) is
one of the many offloading technologies designed to reduce packet processing
overheads on the CPU. While the RDMA approach reduces network-related
processing overheads, the actual consumption of the packet payload still
happens on the CPU cores. Modern CPU cores are built with complicated
micro-architectures optimised for compute-heavy workloads instead of most
packet-processing workloads that involve simple arithmetics and data move-
ment. The CPU cycles spent processing packets would be best utilised to
perform the compute-heavy tasks instead, which is what the CPU is designed
for.

SmartNICs are a recent movement towards offloaded packet processing to
free the CPU from packet processing and thus spend more time handling the
typical computation tasks. They come in different programming models and
dataflow models. Among different paradigms, sPIN [3] developed at ETH
Zürich proposes network accelerators with a micro-architecture optimised
for packet processing and fine-grain memory hierarchies and data movement
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1. Introduction
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Figure 1.1: Overview of the complete server system, showing the software stack on the CPU
and hardware components on the SmartNIC. The green box marks the existing PsPIN processing
cluster available from previous work. Everything else needs to be developed, integrated and
tested.

acceleration. It offers precise control to the programmers to build high-
performance networked applications that are offloaded completely to the
SmartNIC.

The sPIN paradigm has been evaluated extensively with diverse networked
applications [4, 5, 6], showcasing its capability of offloading complicated
applications to a sPIN-based network accelerator. Up to the writing of this
thesis, however, all evaluations of sPIN took place in simulation and there
lacked a real-world end-to-end demo on hardware. While simulation works
well to demonstrate capabilities of the paradigm in a synthetic environment,
an end-to-end evaluation involving all parts of the final system would uncover
unforeseen design and implementation shortcomings and offer valuable
insights to further improve the paradigm.

1.1 Contributions

In this section of the introduction, we give a brief summary of the contribu-
tions of this thesis and references of where they are explained in the text. An
overview functional diagram of the system is shown in Figure 1.1.

First of all, we built FPsPIN, the first full-system demo of sPIN in hardware
based on the PsPIN [7] implementation of sPIN and the Corundum [8] open-
source Ethernet NIC. This allows fast testing of packet handlers (code that
runs on the sPIN cluster, more details in Section 2.2) in comparison to the
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1.1. Contributions

slow cycle-accurate simulator (Section 2.4). The hardware (Chapter 3) and
software (Chapter 4) components bridge the missing parts in the PsPIN
prototype to allow sending and receiving of packet data from real NICs and,
most importantly, completes the host-side programming model of sPIN. This
allows development of complete sPIN applications with both the NIC-side
handlers and host-side application. In all, the demo system greatly facilitates
development both of the sPIN platform as well as applications designed for
it.

An important yet largely unexplored benefit of sPIN is the possibility of
computation/communication overlap by offloading packet processing tasks to
the SmartNIC. We implement synthetic ping-pong and file transfer bench-
marks to demonstrate the E2E latency and throughput of the system in ideal
situations. We port the MPI Datatypes [9] sPIN handlers [4] to the FPsPIN
platform (Section 6.3.2) to demonstrate the ratio of overlapping between
the computation and communication tasks, as well as interference from
each other. These demonstrations show sPIN’s potential of accelerating net-
worked applications and improving efficiency, but also open up interesting
research questions about the architectural design of packet processing units
in SmartNICs.

Last but not least, we discovered numerous shortcomings and points of im-
provement in the sPIN specification [3] (Chapter 5) during the development
of the FPsPIN prototype system. We discuss about the issues closely with the
sPIN team and work together towards a more complete and sensible specifi-
cation for other implementations of the paradigm. Several of the proposed
changes have already been incorporated back into the specification.
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2

Background

The job of science will never be done, it will just sink deeper and deeper
into never-ending complexity.

– Isaac Asimov, The Secrets of the Universe

In this chapter, we give an overview of the related technologies and prior
works that are important to this thesis. These projects and ideas are the
building blocks of the FPsPIN prototype system.

2.1 SmartNIC Architectures

SmartNICs from different vendors tend to have different architectures, but
they can be classified by the datapath design largely into two categories: on-
path versus off-path [10, 11]. We show a brief overview of both paradigms
in Figure 2.1. In addition to data path designs, there is also an increasing
trend to use reconfigurable hardware to implement SmartNICs. We introduce
the various paradigms and discuss how most commodity SmartNICs fit into
these categories.

On-path SmartNICs On-path SmartNICs, also known as bump-in-the-wire,
have the processing element (PE) sitting on the packet processing path for the
ability to modify incoming and outgoing packets. Figure 2.1a demonstrates
the flow of packet data on these SmartNICs: incoming packets get assigned
to NIC PE and either gets processed on the NIC as offloaded traffic ( 1 ),
or steered to the host ( 2 ). The NIC PE can further interact with the host
CPU over the PCIe interface ( 3 ). Examples of on-path SmartNICs include
the Marvell LiquidIO [12], Netronome Agilio CX [13], as well as research
systems [14, 15].

The most important benefit in this design is that the SmartNIC PEs have very
low latency access to packet data ( 1 ), allowing efficient NIC-only transactions
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①
②

③

(a) On-path SmartNICs.

RAM
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(b) Off-path SmartNICs. The PCIe switch is
marked in blue.

Figure 2.1: Overview of different PCIe-based SmartNIC data path designs. The purple arrows
denote different data flow interactions between the NIC cores and the host CPU upon incoming
traffic. 1 : offloaded traffic; 2 : (non-offloaded) host traffic; 3 : host-NIC interactions.

(that do not involve the host). The downsides of this design mainly come
from the fact that regular, non-offloaded host traffic still requires SmartNIC
PE to steer to the host ( 2 ). This results in degraded host traffic performance
when the NIC is heavily loaded [10]. Another difficulty is due to the low-
latency requirement from the on-path nature of the SmartNIC data path,
forcing a low-level interface that is difficult to program against.

Off-path SmartNICs In contrary to on-path SmartNICs, off-path SmartNICs
have the packet PE, usually as a separate system-on-chip (SoC) off the regular
packet data path. We show the flow of packet data on these SmartNICs in
Figure 2.1b: compared to the on-path paradigm, an extra PCIe switch allows
both the host CPU and the packet PE to act as fully-capable hosts to the NIC.
The switch steers the incoming packets from the network fabrics to the NIC
PE ( 1 ) or the host ( 2 ), according to configurable rules. An example of this
SmartNIC design is the NVIDIA BlueField [16].

Thanks to the packet processor not being on the critical path to the host,
the off-path paradigm allows for more complicated software stacks on the
SmartNIC. This allows for a full network stack and operating system, usually
the Linux kernel, on the SmartNIC cores, as well as more user-friendly pro-
gramming interfaces. However, the addition of the PCIe switch significantly
increases the latency of NIC-offloaded tasks ( 1 ) and NIC-host interactions
( 3 ) compared to on-path designs [11].

Reconfigurable hardware While most commercial vendors implement the
SmartNIC PE as fixed-purpose SoC with special accelerators, there are in-
creasing attention into building FPGA into the SmartNIC. This results in
architectures that are either SoC coupled with an FPGA or entirely FPGA-
centric designs. Examples include in-house deployments inside Microsoft

6



2.2. sPIN
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Figure 2.2: Overview of the sPIN architecture.

Azure [17], products from Intel [18] and AMD [19, 20], as well as research
systems [15, 21].

FPGA-enabled SmartNICs excel in reconfigurability. While having purpose-
built SoC coupled with a pre-determined set of accelerators can provide
the highest possible performance, they cannot evolve to accommodate the
changing demands of the workload. Reconfigurable solutions allow users to
customise the SmartNIC hardware after the hardware is built by implementing
new, custom accelerators in the FPGA. This offers the customers great
flexibility and more possibilities for accelerated offloading. They are also
suitable in domains with a small volume to the point where it is not cost-
effective to tape out a custom application-specific integrated circuit (ASIC) with
domain-specific accelerators, such as in telecommunications and research.

2.2 sPIN

sPIN [3] is a portable programming model that allows a programmer to
offload simple packet processing functions of a networked application code
the NIC. sPIN is designed to exploit packet-level parallelism through the
execution of short, lightweight packet handlers. The streaming semantics of
sPIN comes from its flow-oriented nature in keeping a state for each traffic
flow1 (e.g. TCP/UDP connections, MPI messages, etc.). This allows for
efficient packet processing with higher expressiveness in comparison to other

1We use flow and message interchangeably in the context of sPIN in this thesis.
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Figure 2.3: Consumption of packets of an incoming message by packet handlers. Inputs and
actions of individual handlers are shown in the zoom-in view.

offloaded packet processing models, such as Portals 4 [22] or eBPF/XDP [23],
in which packet processing functions are stateless. An overview of the sPIN
architecture is shown in Figure 2.2.

Packet handlers and how they behave is the core of sPIN: the possible actions
from the handlers together with the packet scheduling requirements define
sPIN as a network instruction set architecture (NISA) [3]. We visualise how
sPIN handlers process packet data in Figure 2.3. Handlers take the packet
data and per-flow state as input and perform one or many of the following
actions: update the flow state, read from and write to host memory, and notify the
host for further action. On incoming packets of a flow, the programming model
further defines three types of handlers for execution on the packet PE:

• A head handler to be executed on the first packet of a flow; this is
guaranteed to be the first handler executed for a given flow.

• A payload handler to be executed on every packet; they are guaranteed
to be scheduled only after the head handler finishes execution.

• A tail handler to be executed on the last packet of the flow; this is guar-
anteed to be scheduled only after all payload handlers finish execution.

8



2.3. FPGA and Design Reuse

Packet handlers are scheduled and executed concurrently on the SmartNIC
PE, namely handler processing unit (HPU). A packet scheduler schedules in-
coming packets on the HPUs for execution w.r.t. the handler scheduling
dependency requirements. The HPUs access packet data and per-flow states
in fast local memory and shared states in the shared NIC memory. They
access host memory through a device-level direct memory access (DMA) engine
between the host and shared NIC memory. The host CPU functions as the
control plane and is in charge of programming the scheduler and the HPUs,
host and NIC memory allocation and initialisation, as well as processing host
notifications from the HPUs.

2.3 FPGA and Design Reuse

FPGA [24] is a type of integrated circuit that allows runtime reconfiguration
after being manufactured. They consist of an array of configurable logic
block (CLB) that can function either as look-up table (LUT) or flip-flop (FF),
on-chip SRAM as block RAM (BRAM) or Ultra RAM (URAM) macros, and
programmable routing resources that connect the input and output of CLBs.
LUTs are used to implement combinational logic and FFs for sequential logic.
FPGA also have high-speed transceivers implemented as hard macros for
high-speed buses, e.g. PCIe or DDR4. A bitstream for an FPGA, when flashed
onto the device, configures all CLBs and routing resources into a specific
digital logic design. FPGA can be used to validate hardware designs before
they are taped out into ASIC since large designs take way too long to simulate
and bring up complicated software. They are also used for situations that
call for reconfigurability, such as building custom accelerators in the cloud,
as well as for products with a small volume where producing ASIC is not
cost-efficient.

Static timing analysis (STA) As is the same with traditional digital de-
sign on ASIC platforms, implementing such on FPGA requires STA such
that sequential logic in the design can capture signals synchronously and
consistently. For data paths between clocked elements (FF), the electronic
design automation (EDA) tool calculates the time it takes from the signal to
propagate from the source to the destination, such that the signal is captured
in the same clock cycle. The time difference between the required and actual
signal arrival time through the wires and combinatorial logic (LUT) is called
a setup slack; a negative setup slack indicates that the signal arrived too late i.e.
missed the clock edge at the destination. Hold slack is defined similarly for the
requirement that the signal value should be held stable until the destination
has captured the signal. Commercial EDA tools use the metrics worst negative
slack (WNS) and worst hold slack (WHS) to evaluate if a design has passed

9



2. Background

timing, and total negative slack (TNS) and total hold slack (THS) for how badly
the design failed to close timing.

Since large FPGA designs may take hours to implement, it is important
to identify the root cause of a timing violation for resolution. The design
may contain overly long combinatorial paths that exceed the clock period
budget; this requires either a redesign to split these paths into multiple clock
cycles (i.e. retiming), or a lower clock frequency (Fmax). On the other hand,
local exhaustion of routing resources would cause routing congestion, forcing
the EDA tool to take long detours when routing signals. Congestion issues
require the designer to provide assistance in placement by drawing placement
block (PBlock), also known as floor-planning, or to reduce the overall resource
consumption. Last but not least, since STA is a pessimistic analysis based
on the worst characteristics of the device (e.g. temperature, power, etc.), a
small timing violation may still result in a functioning design under normal
operating conditions.

Design reuse To facilitate the development of new microchips, hardware
intellectual property (IP) vendors package their hardware function blocks
as IP blocks and redistribute them to customers for integration into their
design. For interoperability with other IP vendors as well as customer
designs, IP blocks adopt industrial standards for bus protocols. On the other
hand, if design components do not speak the same bus protocol, an adapter is
needed. Adapters consume hardware resources and may impact performance
depending on the complexity of the protocol; a perfect adapter may not even
be possible in case of a mismatch of semantics between the protocols.

The simplest bus protocol for signalling the validity and acknowledgement of
data is the ready-valid protocol. It consists of two extra wires in addition to the
data signals: ready denotes that the receiver can accept data, and valid denotes
that the data-driven by the sender is valid. A beat of data is successfully
transmitted if both ready and valid are held high for one clock cycle; the
receiver can assert back pressure by de-asserting the ready signal. A common
variant of the protocol is a valid protocol, where the ready signal is missing
and implied to be always high. This indicates that the sender has no internal
buffer for dealing with possible back pressure from the receiver and that the
receiver always has to be ready for data. If the receiver could not keep up
with the data rate on the bus, a valid beat of data would be dropped.

The Advanced eXtensible Interface (AXI) [25, 26] is a family of on-chip communi-
cation bus protocols designed to connect IP blocks in a hardware design. AXI
protocols follow a master-slave design where the bus master initiates transac-
tions and the bus slave responds. The protocol has three flavours, designed
for different use cases. AXI-MM is designed for high-performance memory-
mapped read and write access from processor-like masters on addressable

10



2.4. PsPIN and RISC-V

Network Interface

Host Interface

PsPIN

Co
m

m
an

d 
Un

it

Outbound 
Engine

Inbound 
Engine

RAM

RAM

RAM

RAM

Global Sched.

Off-cluster DMA

Command Unit

Statistics

L2 Memory

0101
Program
Binary

Shared
States

Incoming
Packets

①

②

③

Legends Control Flow Data Flow Local Mem Shared Mem Handler State

Figure 2.4: Overview of the PsPIN architecture and NIC model. The purple arrows denote the
three major data flows cross-referenced in Section 2.4.

memory-like slaves. AXI-Lite is designed for lightweight memory-mapped
access for lower-performance situations; it does not support advanced fea-
tures like bursting, narrow transfers or interleaved requests, making it a
lot simpler to implement. AXI-Stream is designed for streaming data from
master to slave without addressing semantics.

Hardware used in this thesis We use the VCU1525 Development Kit from
Xilinx2 for development and testing of FPsPIN. The board comes with a
Xilinx UltraScale+ VU9P FPGA, 64 GB of DDR4 memory and 16 lanes of
PCIe 3.0. In addition, it also has 2 QSFP+ cages that support up to 100 Gbps
Ethernet; each QSFP+ port can be split into 4 25 Gbps Ethernet ports with a
breakout cable3. As later to be introduced in Chapter 3 and Chapter 6, we
operate the 100 Gbps Ethernet ports using a loopback cable without splitting
them.

2.4 PsPIN and RISC-V

While sPIN defines the streaming in-network-computing NISA, it does not
specify the exact micro-architecture of sPIN-enabled NICs such as the in-
struction set architecture (ISA) for the HPUs or the exact memory hierarchy on
the NIC. PsPIN [7] is the reference ASIC implementation of sPIN, ready to
be integrated into the packet data path of existing NIC designs. It specifies
the interface of a NIC into which PsPIN can be integrated. PsPIN uses the

2https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
3https://www.fs.com/de-en/products/70537.html
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2. Background

CPU cores developed by the PULP [27] project to implement the HPUs. It
groups the HPU cores into clusters for a hierarchical memory architecture
and multi-level scheduling. An overview of the PsPIN architecture and NIC
model is shown in Figure 2.4.

The control flow of PsPIN starts with new packets arriving from the NIC. The
NIC inbound engine generates a handler execution request (HER) that contains
metadata for scheduling the packet on a HPU, including the address of packet
data in the NIC memory and the address of the sPIN handler functions. The
global scheduler then resolves the scheduling dependencies according to the
sPIN NISA as described in Section 2.2 and forwards individual tasks to the
cluster schedulers. The cluster scheduler forwards the incoming tasks to the
HPUs local to that cluster for execution, and collects the finish notifications
from the HPUs called feedbacks. It forwards the feedback through the global
scheduler back to the NIC inbound engine, such that the packet buffer can
be deallocated and reused.

Three major data flows cover the full cycle of packet processing in PsPIN, all
of which are driven by various DMA engines, allowing fast data movement
and latency hiding. The inbound packet data from the NIC inbound engine
to the L2 packet buffer is handled by the DMA engine in the NIC inbound
engine; the data is further DMA’ed into the cluster-local L1 memory by the
cluster DMA engine ( 1 ). Host memory access by the HPUs flow from L2
or L1 to the host memory and is handled by the off-cluster DMA engine ( 2 ).
Outgoing packet data from L2 or L1 is handled by the DMA engine inside
the NIC outbound engine ( 3 ). PsPIN exposes AXI slave ports for access to
the internal interconnect by the NIC DMA engines.

RISC-V [28, 29] is an open ISA developed at UC Berkeley and now hosted
by the non-profit RISC-V Foundation. It has much momentum in the com-
munity of both research groups and companies due to its free and open
nature and has seen many open-source [30, 31, 27] and commercial [32, 33]
implementations. The openness of RISC-V to custom extensions and the
abundance of open-source implementation facilitate diverse architecture re-
search [34, 35, 36, 37, 21] where it was previously almost impossible to build
hardware prototypes due to the closed and proprietary nature of existing
ISAs and expensive and restrictive licensing of processor IPs.

2.5 Corundum

Corundum [8] is an open-source, FPGA-based NIC and a platform for in-
network computing. The project supports 10/25/100 Gbps Ethernet on
Xilinx and Intel platforms. It offers a high-performance, custom PCIe DMA
system and open-source platform-agnostic IPs including the Ethernet media
access control (MAC) layer and AXI infrastructure. Corundum also has sup-
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port for scatter/gather DMA, checksum offloading, as well as support for
multi-interface multi-port operation. It offers a full software stack on Linux,
exposing fine-grained scheduling and queue management tunable to the user.
The comprehensive feature set and open code base make Corundum an ideal
platform for high-performance network research.

The most important design of Corundum for the scope of this thesis is
its support for custom hardware logic to extend the functionality of the
NIC. The code base allows developers to pack custom logic into a self-
contained application block with access to the control path, data path, and
DMA subsystems. Corundum’s software stack also provides kernel interfaces
for custom drivers and user space utilities, as well as example designs. As
a result, Corundum makes a perfect candidate platform for integrating a
packet processing cluster like PsPIN to build a full SmartNIC.

Now that we have all the pieces. . .

We have now introduced the essential components towards building FPsPIN.
However, even though we have the major parts of the SmartNIC ready, we
still need to integrate them to create a complete SmartNIC. As we have shown
in Figure 1.1, apart from the PsPIN processing cluster marked in green, we
also need the data path engines and PCIe interface in hardware. Some of
these components come from Corundum; others, such as the matching engine
that determines which packets are going to be processed by the cluster, need
to be designed and implemented from scratch. In addition, as Corundum and
PsPIN are developed independently, we need various bus interconnects to
bridge the control and data paths. We explain the design and implementation
of these hardware components in Chapter 3. The host-side device drivers
and the runtime library for interfacing with the processing cluster need to
be implemented as well; we discuss this in detail in Chapter 4. We present
in Chapter 5 the shortcomings of the sPIN NISA that we discovered while
building FPsPIN. Finally, we explain in detail in Chapter 6 the experiments
we conduct to showcase the functionality and performance of FPsPIN. Let’s
dive in!
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Hardware

People who are more than casually interested in computers should have
at least some idea of what the underlying hardware is like. Otherwise the
programs they write will be pretty weird.

– Donald Knuth, The Art of Computer Programming, Vol. I

As we introduced in Section 2.4, PsPIN is a RISC-V-based packet processing
cluster implementing the sPIN in-network-computing paradigm. However,
PsPIN itself does not consist of a fully functional SmartNIC due to the lack of
capability to receive and send packets; it also lacks an interface to read from
and write to the system memory. The following three classes of hardware
components need to be implemented to achieve full functionality of a sPIN
NIC:

• the data path: the PsPIN cluster should be able to receive packet data
from the network and send a reply back into it;

• the control path: the PsPIN cluster and other components should be
configured from the host over various control registers and program
memory (code and data); and finally,

• the host-side DMA: the PsPIN cluster should be able to read from and
write to the main memory on the host system to establish the full sPIN
programming model.

An overview of all the hardware components is shown in Figure 3.1. We
now walk through the design and implementation of these modules in more
detail.

15
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Module Name Description

pspin host dma Host acdma adapter
pspin ingress datapath Collective ingress data path wrapper
pspin her gen HER generator
pspin ingress dma Ingress DMA engine
pspin pkt alloc Packet buffer allocator
pspin pkt match Packet matching engine
pspin ctrl regs Control registers adapter
pspin egress dma Egress DMA engine

Table 3.1: Description of the modules shown in in Figure 3.1.

Corundum
Corundum mqnic_app_block

pspin_ingress_datapath

pspin_egress_dma
pspin_ctrl_regs
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Ethernet PHY

Host
Access

Read Write

Figure 3.1: Overview of the FPsPIN hardware. A description of the hardware function blocks is
shown in Table 3.1. Blocks marked in green are the modules implemented as part of this project
to bridge the PsPIN cluster to Corundum.

3.1 Control Path

The control path handles configuration of the PsPIN cluster as well as the
various data path components before the actual execution of handler code on
the cluster. There are three important control-path tasks to perform from
the host, all of which are implemented over Corundum’s slow-path 32-bit
AXI-Lite (Section 2.3) interface with an address bus of 16 bits:

• to toggle various control registers to the PsPIN cluster and data path
components;

• to read back standard output produced by PsPIN (i.e., printf); and
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3.1. Control Path

• to load program code and data onto memory in the PsPIN cluster.

Control registers The control registers are configured through the pspin -

ctrl regs module. The module exposes an AXI-Lite slave towards the
AXI-Lite interconnect and converts this into simple valid-guarded interfaces
(Section 2.3) for PsPIN and various data path components to consume. Some
signal groups have requirements on consistency of update, that is, the signals
in the same group should always be consistent and no partial updates should
be visible to the components being controlled. Checks for this requirement
happens in the kernel driver as we will introduce in Section 4.1.2. An
overview of the exposed control signals from pspin ctrl regs is shown in
Table 3.2.

Name Direction Description

cl fetch en O Fetch-enable control to PsPIN
aux rst O Auxiliary reset for PsPIN and data path
cl busy I Cluster busy status from PsPIN
mpq full I message processing queue (MPQ) full status bitmap
match * O Matching engine configuration
her gen * O HER generator configuration
stdout * O Standard output readback

Table 3.2: Overview of the control wires exported by pspin ctrl regs. The meaning of these
control wires will be introduced in the coming sections.

The control registers module is designed to allow reconfiguration during
normal operation of the system. Therefore, components that take config-
uration data from the module are expected to have a explicit valid signal,
if they expect consistency between multiple registers. The software that
controls these register would then de-assert valid, change the registers, and
then reassert valid, such that the downstream module can have a consistent
configuration.

We group registers by the subsystem they control (e.g. the matching engine
or the HER generator) and assign a block of address in the control register
address space. We then refine these groups into subgroups that each of
them control a specific field of configuration; some of the subgroups contain
multiple identical register instances (e.g. for multiple rulesets in the matching
engine). As shown in Figure 3.2, the 16-bit control register address uses the
top 4 bits (”grpid”) to address the register groups and the lower 12 bits
(”regid”) to address the subgroup and register instances. We do not explicitly
define a subgroup field in the address due to different subgroup sizes across
different groups.
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Figure 3.2: Address translation from the Corundum application control space. Access to the
PsPIN host access space always have the top bit as 0; we use the second top bit to select the
correct memory area in PsPIN. Access to the configuration registers have the top bit set to 1;
the 22-bit offset is decoded as the 16-bit control register address and the top 6 bits ignored.

To maintain consistency about the naming, word size, and addressing about
various registers, we define registers in a declarative approach with an
external generator (regs-compiler.py). The hierarchical organisation of
registers is demonstrated by the metadata describing all the registers, shown
in Listing 1. The generator allocates addresses in the register address space
w.r.t. the group-subgroup abstraction described in the paragraph above.

Verilog modules that interact with the control register system are written in
a template language, namely Jinja [38], that abstracts the exact register defi-
nitions away. A generator written in Python processes all Verilog templates
w.r.t. the register metadata and emits the final source file ready for synthesis.
Such an approach eliminates the tedious and error-prone maintenance of
repetitive register definitions and proved to be crucial as the number of
control wires grows. The generator also derives part of the kernel driver that
later exposes these control registers as described later in Section 4.1.2.

Standard output access To facilitate debugging of handler code on the
PsPIN cluster, we implement a readback mechanism for the characters printed
by the RISC-V cores. The core executes putchar to write characters into the
apb stdout module. Different cores write to separate addresses exported by
the module, allowing the module to demultiplex the incoming characters.
The module enqueues the characters toegether with the source core ID in
a first-in first-out (FIFO). The FIFO is then read out from pspin ctrl regs.
To avoid introducing module ports on all levels of register transfer level (RTL)
hierarchy, we utilise the hierarchical reference scope [39] feature of Verilog to
connect the output ports from apb stdout directly. Finally, the host can read
back the enqueued characters by reading out the stdout * registers through
the register interface, demultiplex, and store the output as logs for future
inspection.
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1 groups = [

2 RegGroup('cl', [

3 RegSubGroup('ctrl', False, 2),

4 RegSubGroup('fifo', True, 1),

5 ]),

6 RegGroup('me', [

7 RegSubGroup('valid', False, 1, 1),

8 RegSubGroup('mode', False, 4, 1),

9 RegSubGroup('idx', False, 16, 32),

10 RegSubGroup('mask', False, 16, 32),

11 RegSubGroup('start', False, 16, 32),

12 RegSubGroup('end', False, 16, 32),

13 ]),

14 RegGroup('her_meta', [

15 RegSubGroup('handler_mem_addr', False, 4),

16 RegSubGroup('handler_mem_size', False, 4),

17 RegSubGroup('host_mem_addr', False, 4, 64),

18 RegSubGroup('host_mem_size', False, 4),

19 RegSubGroup('hh_addr', False, 4),

20 RegSubGroup('hh_size', False, 4),

21 # ... more subgroups ...

22 ]),

23 # ... more groups ...

24 ]

Listing 1: A simplified excerpt of the metadata definition of control registers in FPsPIN. RegGroup
defines the name and children (subgroups) of the register group; RegSubGroup defines the name,
immutability (from the CPU), number of registers, and optionally the signal width in hardware
of the subgroup. These are later consumed by Verilog and C templates to generate the register
definition and use sites.

Code and data download The code and data of the packet handler program
on PsPIN need to be loaded into the program memory in PsPIN before we can
start scheduling packets to execute on the HPUs. The program memory is
accessible through the host slave port on the PsPIN cluster. This port also
allows write to the other memory area, the handler memory, to allow writing
either static or dynamic configuration data by the host. Together, this allows
loading compiled PsPIN program images onto the cluster memory.

We implement such access by connecting the upstream AXI-Lite port from
Corundum, through a AXI-Lite interconnect and a AXI-Lite to AXI4 adpater,
to the host slave port. Note that the PsPIN host access address space on the
host slave port is 32-bits. However, we only have a 24-bit address space from
the application block control port from Corundum. Therefore, we perform a
compression in the address space by mapping the two memory areas closer
together into the application control port address space; we demonstrate
this in Figure 3.2. The FPsPIN kernel module (Section 4.1.2) will encode the
PsPIN memory accesses according to this mapping.
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3.2 Data Path

PsPIN, being a packet processor, needs to have access to the receive and
transmit paths in the NIC to function properly. We introduce in this section
the design and implementation of the ingress and egress data path engines
that gives PsPIN access to the packet data path.

Attach points of the data path Corundum provides access to raw Ethernet
frames over the AXI Stream interface. Three attachment points are available
to the application block for reading ingress Ethernet frames out, as well as
injecting egress frames:

• Direct: the AXI Stream interface directly after the Ethernet MACs and
before most Corundum modules. The interfaces are synchronous to the
MAC clock (322.265625 MHz for 100 Gbps Ethernet). This offers the
lowest possible latency from the application block.

• Sync: the AXI Stream interface after the clock domain crossing (CDC)
FIFO for each port. These interfaces are synchronous to the Corundum
core clock (250 MHz). They offer comparatively low latency.

• Interface: the AXI Stream interface after the main packet aggregation
FIFO per interface. These interfaces are per interface (instead of per
port; for example a 100 Gbps interface could be split into 4 25 Gbps
ports, as described in Section 2.3) and are the simplest to process. They
are synchronous to the Corundum core clock (250 MHz).

The FPGA board we use, as described in Section 2.3 and later in detail in
Section 6.1, has two 100 Gbps interfaces; each interface can be further split up
into 4 25 Gbps ports. For simplicity of implementation, we attach the PsPIN
data path at the interface attach point, such that we don’t have to multiplex
traffic from different ports by ourselves.

3.2.1 Ingress

After a packet has arrived at the interface attach point, multiple tasks need to
be done for an ingress packet before it lands in PsPIN memory and is ready
for processing. We implement four separate functional blocks as follows;
together they form the ingress data path module (pspin ingress datapath):

• pspin pkt match: match if the packet is to be processed by the Smart-
NIC cluster or to be forwarded to the normal Corundum data path;

• pspin pkt alloc: allocate buffer for the incoming packet in the L2
packet buffer, free the buffer once it finishes processing;

• pspin ingress dma: DMA write the packet data into the L2 packet
buffer
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• pspin her gen: generate the HER to the PsPIN cluster

We explain in detail the design of these modules. Note that common design
considerations presented in Section 3.4 apply to these modules.

Packet matching engine pspin pkt match exposes one AXI-Stream slave
(s axis nic *) towards the upstream packet data that comes from the ap-
plication block interface in Corundum. It further exposes two AXI-Stream
master ports towards the downstream packet processing logic. One of them
(m axis pspin *) forwards the matched packet data to the rest of the data
path components for further processing. In addition, the module also exposes
metadata for the matched packet over a ready-valid interface (packet meta )
providing the downstream components with the following information:

• Message ID from the sPIN Lightweight Messaging Protocol (SLMP) packet
header (see Section 5.1 for details of the SLMP protocol), for the HER
generator

• end-of-message (EOM) bit as specified by the matching ruleset, for the
HER generator

• Ruleset ID of the matching ruleset, for the HER generator to select the
correct execution context (ECTX)

• Length of the packet, for the packet buffer allocator

Since we need to count the length of the packet, the packet metadata can
only be generated after that the packet has been trasferred on the AXI-Stream
interface. A later stage in the data path (the ingress DMA engine) will reverse
this dependency by buffering the packet data.

We adopt a simple approach to define the matching rules similar to the
IPTables U32 match [40]. The matching engine provides a configurable
number of rulesets. We expose ruleset configuration to the host as control
registers. Each ruleset is defined by a configurable number of matching rules
for the matching units, which, each one on its own, matches against a 32-bit
word of the packet and produces a boolean output. Given index I, 32-bit
mask M, 32-bit start value S, and 32-bit end value E, the matching unit
output is defined as:

Output := S ≤ (Packet[4I : 4I + 3] & M) ≤ E

Each ruleset defines a mode in which the output from the matching units are
combined into the match output of the ruleset. We currently implement two
modes: MATCH AND, which combines the match unit outputs with a logical
AND; and MATCH OR, for a logical OR. The module is designed such that it is
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easy to add another combination mode, if such a use case rises (for example
an exactly-one combination mode). If any of the installed rulesets matched on
the packet, the module marks the packet as matched for further processing
in the data path. The module then sets the ruleset ID metadata of the packet
accordingly for ECTX selection as described later when we introduce the
HER generator.

A few examples of common matching rules are as follows:

• RULE IP: match EtherType at byte 12-13 = 0x0800

→ matcher #3, mask 0xffff0000, range 0x08000000-0x08000000

• RULE IP PROTO: match IP protocol at byte 23 = 17 (UDP)
→ matcher #5, mask 0xff, range 0x11-0x11

• RULE UDP DPORT: match UDP destination port at byte 36-37 = 9330
(SLMP)
→ matcher #9, mask 0xffff0000, range 0x24720000-0x24720000

• RULE FALSE: match nothing ≥ 1 and < 0 (logic false)
→ matcher #0, mask 0x0, range 0x1-0x0

The other AXI-Stream master interface (m axis nic *) performs a pass-through
of packets that did not match with any installed rulesets back into the regular
Corundum packet data path. This allows the NIC with PsPIN attached to it to
still function as a normal NIC when PsPIN is not configured. It also enables
host processing of traffic that is not of interest to PsPIN, for example in
handling the Address Resolution Protocol (ARP) as described in Section 5.4, or
when implementing an application-level control plane in the MPI Datatypes
application as described in Section 6.3.2.

Packet buffer allocator The packet buffer allocator takes the metadata from
the matching engine and allocates a buffer for the packet in the L2 packet
buffer of PsPIN. It runs the allocation algorithm based on the packet length,
adds the resulting address of the allocated buffer to the packet metadata,
and forwards the metadata to the DMA engine to actually write the packet
into the memory. It takes in the feedback from PsPIN, which denotes that
a packet has been processed and its buffer can be freed, to free the buffer
correctly. It further outputs one statistics counter of how many packets have
been dropped due to the buffer being full.

The Verilator model originally developed in the PsPIN project uses a software-
based ring buffer in the simulation testbench to allocate space for incoming
packets in the packet buffer. The free algorithm needs to keep a queue of
out-of-order frees and is thus difficult to implement in hardware. However,
most packets on the Internet and in data center environments follow a
bimodal distribution in size: 40% of packets are below 64 bytes and another
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40% are 1500 bytes (the maximum transmission unit (MTU) of an Ethernet/IP
network) [41, 42]. We thus take a simpler fixed-size allocation approach: we
partition the packet buffer into two halves; in one half we make fixed 128-byte
slots, and in the other half we make 1536-byte slots. We store these free slots
in two separate FIFOs. We then handle allocation and free simply by popping
from and pushing to the respective FIFOs. This way, we greatly simplify
the hardware implementation of the allocator while not sacrificing too much
buffer utilisation on internal fragmentation.

Ingress DMA The ingress DMA module takes the allocated address and
length in the packet metadata and performs a DMA transaction to write
the packet data to the PsPIN NIC inbound memory port. Upon finish of
the DMA request, the module forwards the packet metadata on to the HER
generator in the data path, such that the packet can get scheduled on the
PsPIN cluster. We use the axi dma wr module from the Corundum AXI IP
library to perform the actual DMA operation.

One complication to be handled in this module is that the matching engine
could only generate the packet metadata after transferring the packet data
on the AXI-Stream bus. This is due to a dependency introduced by needing
to count the length of the message. While this is handled by introducing a
shallow axis fifo to reverse this dependency for the DMA module, it would
introduce a per-packet latency of the number of cycles it takes to transmit the
packet on the AXI-Stream bus. In addition, the module has to ensure that
the DMA transfer to the PsPIN packet buffer is finished before it could issue
the HER to the cluster due to the current monolithic design of the PsPIN
scheduler. A possible direction of improvement is discussed in Section 7.4.

HER generator Once the packet is written to the right place in the L2 packet
buffer of PsPIN, the data path can now schedule the packet for processing by
issuing a HER to PsPIN. Part of the information required to generate a HER
comes from the packet metadata, such as the message ID and if the packet is
the last in a message (End-Of-Message, EOM). The rest of the HER stores the
address of the handler functions that the packet should be processed with, as
well as the host DMA and L2 memory regions. We expose a register control
interface to the host through pspin ctrl regs.

Collective ingress data path pspin ingress datapath does not provide
extra logic by itself, as it is simply an instantiation wrapper of the four data
path components. It keeps the parameters in synchronisation among the data
path modules and allows for one single place to pass in custom parameters.
It also functions as a top module for end-to-end simulation and unit tests so
that we can validate that the data path modules have consistent assumptions
of how each other operates.
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3.2.2 Egress

PsPIN also needs the ability to send packets into the network. This is needed
to either complete a protocol by sending back acknowledgements, or transmit
packets to other nodes e.g. to implement in-network AllReduce [43] with
PsPIN. The transmission of the prepared egress packet is handled by pspin -

egress datapath; we discuss about potential problems in preparing the
outgoing packet and solutions in Section 5.4.

pspin egress datapath handles egress commands from PsPIN. With the
Corundum IP axi dma rd, the module performs a DMA read from the packet
buffer and gets an AXI-Stream bus that contains packet data. It then injects
the AXI-Stream into the outbound AXI Stream of Corundum with an AXI-
Stream arbiter (axis arb mux). The arbiter is wired such that the outgoing
traffic from PsPIN has priority over egress traffic from the host for maximum
possible throughput from PsPIN. It can also be configured to use round-
robin arbitration to ensure fairness between the host and PsPIN on outgoing
packets.

3.3 Host DMA

A feature that distinguishes the sPIN programming model from other packet
processing paradigms intended for intrusion detection (IDS), for example [21],
is the ability of packet handlers to read from and write to host memory. Be-
tween PsPIN and Corundum, this is enabled through the pspin hostmem dma

module. The module bridges the AXI master port of the PsPIN cluster to
the segmented DMA interface of Corundum [44], which takes a RAM port
and a separate command bus. We utilize the AXI-Stream DMA client (dma -

client axis source, dma client axis sink) from Corundum to convert the
output AXI Stream bus to AXI4 channels. For write requests from PsPIN,
the module first issues a DMA command to the AXI-Stream client to capture
the write data in a dual-port RAM buffer (dma psdpram); it then issues a
command to the Corundum DMA subsystem to DMA the data from the
buffer RAM to the host memory. The read process happens in the reverse
order.

There are some notable limitations in this approach, namely that the adapter
is not fully AXI-compliant in multiple corner cases. We do not support irreg-
ular bursts (narrow bursts or modes other than INCR), as well as interleaved
read requests. Unlike AXI4, the PCIe interface also does not support arbitrary
byte enable (BE) configurations, so we also do not support these cases. While it
is theoretically possible to handle all these corner cases, it would lead to very
long combinatorial paths of the resulting hardware, which would then take
too much engineering effort to fix. However, these limitations are acceptable
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in our use case, since the DMA bus master in PsPIN does not issue such
requests.

One important corner case to implement correctly, however, is unaligned
writes. As mandated by the sPIN specification and also as we later will
see in Section 6.3.2, unaligned transfers are essential to some applications.
While it is possible to implement unaligned transfers in software by reading
the affected word first to compose and issue an aligned transfer, the extra
memory read transactions (up to two extra reads for one unaligned write)
would significantly hurt performance. Fortunately, the Corundum DMA
subsystem fully supports unaligned transfers. As AXI4 expresses unaligned
writes as aligned writes with strobe (byte-enable), we implement an address
recovery procedure that calculates the original address and length from the
AXI burst strobe (WSTRB) signal of the first and last beat in the AXI transaction.
The module then issues the unaligned transfer to the client and Corundum
DMA subsystem as normal.

3.4 Design Considerations

As we stated in Section 1.1, it is not a goal of this thesis project to achieve the
absolute highest possible performance. The hardware implementations are
thus designed with the approach of the simplest hardware implementation
possible. This means that modules with complicated logic e.g. the host DMA
engine are simple state machines without pipelining. We also do not support
concurrent requests, even if the protocol supports it (in the case of AXI4 on
the host DMA engine). For the purpose of a full-system demo, we argue
later in Section 6.2 that these design limitations would not impact the overall
system performance.

Another limitation of the hardware performance is in the PsPIN implemen-
tation. PsPIN uses the PULP Ultra Low Power (PULP) [27] RISC-V cores
and AXI infrastructure, which are originally designed for ultra-low-power
ASIC platforms. This means that they are optimised for recent ASIC process
nodes and thus have long critical paths, making them not suitable for FPGA
operation. While some parameter tweaking allowed us to break very long
critical paths e.g. single cycle bus across the entire SoC, most components
need to be redesigned to reach a higher Fmax on FPGAs. We discuss possible
directions to a solution in Section 7.1.

The lengthy critical paths of PULP and thus PsPIN on FPGAs mean that
without significant re-engineering, the packet processing cluster could only
run at a lower frequency. This situation is further worsened by the area
requirements of the original PsPIN design: the 4-cluster configuration that
was used in the original PsPIN paper proved to be extremely difficult, if
possible at all, to place and route on the FPGA device we are using. We thus
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use a 2-cluster configuration with reduced memory sizes. To further resolve
the routing congestion problems, we employ the incremental implementation
flow provided by Xilinx as described in Section 6.1.

In contrary to PsPIN, Corundum runs at 250 MHz on the target Xilinx
devices. While it is possible to retarget Corundum to run at a lower frequeny,
we would to have to reconfigure the clock domains and validate that the
resulting design still works properly; this is a non-trivial process. Instead,
we opted to only run the PsPIN cluster and the closely coupled data path
engines at a lower frequency (40 MHz for the evaluation in this thesis; more
about the setup in Section 6.1). We perform CDC on the AXI-Lite and AXI-
Stream interfaces with standard IP blocks from Xilinx. We isolate timing
optimisation as a separate task and keep it out of the scope this thesis due to
time constraints of the project.
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Software

Software is like entropy. It is difficult to grasp, weighs nothing, and obeys
the Second Law of Thermodynamics; i.e., it always increases.

– Norman Ralph Augustine, Augustine’s Laws

As described in Section 3.1, the hardware design of FPsPIN exposed all slow-
path control flows to the host CPU through the pspin ctrl regs. While
this simplified the hardware design by allowing us to omit a dedicated
management core on the FPGA, the job of configuring the hardware now lands
on the host CPU. In addition, we also extended the handler runtime on
PsPIN to support the new hardware integration. We explain in this chapter
the different software components developed for FPsPIN. Three classes of
software are required for the full operation of the hardware: Linux kernel
modules, user-space library and utilities, and the updated handler runtime.
An overview of the software landscape of FPsPIN can be seen in Figure 4.1.

4.1 CPU Kernel Modules

Multiple approaches to access to device memory on Linux exist and most
of them require some degree of kernel-level support. One approach is to
expose device I/O memory access (in the case of PCIe devices, the base
address register (BAR)) to user-space through /dev/mem and host memory
DMA access through udmabuf [45]. While this approach is commonly used
when developing FPGA-based accelerators in embedded environments, it
introduces severe security risks due to exposing direct physical memory
access to the user-space and is thus limited to embedded systems.

The other approach is to have a dedicated kernel module that interfaces with
existing subsystems in Linux and does not expose unconstrained physical
memory read and write (other than for diagnostics purposes). The application
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Figure 4.1: Overview of the software on the host. Yellow blocks denote existing software, while
blue boxes show software developed in this project’s scope. Note that we use only standard Unix
syscalls (read, write, mmap, ioctl) between the user- and kernel-space.

programming interface (API) exposed by the device driver kernel module
not only greatly reduces the attack surface, but also abstracts away details
of the hardware between different revisions, facilitating development of
user applications and support libraries. While writing a dedicated kernel
module requires experience with kernel programming, we argue that this
is a necessity in hardware development for this thesis. In addition, the
overhead of doing so has already been greatly reduced by Corundum from
their application block driver templates. This is the approach adopted by
Corundum (mqnic.ko) and in turn by FPsPIN (mqnic app pspin.ko) in this
thesis.

4.1.1 mqnic.ko

Corundum ships a kernel driver for the complete NIC functionalities, in-
cluding interactions with the Linux network stack to expose the device as
Ethernet NICs for packet transmit and receive, as well as control interfaces
with ethtool that reports link status. In addition, it also exposes a device file
/dev/mqnicX for the user-space libraries and utilities to perform management
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tasks, such as online firmware upgrade and device reset control.

Corundum provides driver support for the custom application block through
the auxiliary bus framework [46] in Linux. The framework allows splitting
drivers for largely independent functionalities on the same device into differ-
ent device drivers and thus different modules to allow compartmentalisation
and separated operation. The main device driver registers an auxiliary de-
vice while the sub-component driver registers an auxiliary driver with the
framework. In Corundum, the main driver registers the application block as
an auxiliary device and exposes the application base address (a separate PCIe
BAR) to the auxiliary driver. This allows the custom driver to access the
application block BAR to interact with the hardware.

4.1.2 mqnic app pspin.ko

The driver for FPsPIN configures the PsPIN cluster and additional datapath
components after they are brought out of reset. The driver exposes two
device nodes, /dev/pspin{0,1}, as well as a selection of device registers
over sysfs [47]. All user-space operations during configuration and normal
operation happen through access to these resources using standard system
calls (syscalls). In addition to normal operation, the kernel module checks
for additional requirements imposed by the hardware and rejects requests
from the user-space that violates these requirements. We explain the main
functionalities of the kernel module in this section.

Control registers The control registers from the hardware are exposed as
access to the application base address from the Corundum auxiliary device. We
use the register generator introduced in Section 3.1, regs-compiler.sh, to
generate the respective sysfs node implementations; the register group and
subgroup hierarchies are directly translated into device attributes. The genera-
tive approach keeps the driver’s view of the device registers consistent with
actual hardware. We implement consistency checks of data-path engines via
internal flags that are kept in sync with the respective enable registers, such
that only valid and consistent configurations can be latched into hardware.

By exposing the hardware registers directly to user-space through sysfs, we
adopt a user-space-centric approach to hardware configuration. This means
that most configuration logic will be implemented in a user-space library
(Section 4.2) instead of directly baked into the kernel module. This allows
more flexibility in the implementation, since we do not need to update the
kernel module as often; it acts more as a shim that only enforces basic safety
and forwards other requests directly to the hardware. This approach also
offers more protection against programming errors when implementing the
configuration routines, as errors in the user-space cannot crash the kernel.
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Standard output read-back Recall that as described in Section 3.1, the
HPUs write their standard output into a FIFO for the host CPU to read for
diagnostic purposes. The FPsPIN kernel driver exposes the /dev/pspin1

character device to the user-space. For simplicity, the raw word sequence
read from the hardware FIFO is directly exposed: each 4-byte word encodes
one character as well as which HPU wrote this character. A user-space script
later introduced in Section 4.2 would de-multiplex this stream and write a
log file for each HPU.

In the current design and implementation, the standard output device file
is on-demand, meaning that data will be fetched from the FIFO only when a
user-space program reads from the device file. This has the potential issue of
the HPUs writing too fast to overflow the FIFO, resulting in a partially lost
and corrupted output buffer. An alternative design is to run a kernel worker
(also known as a kernel thread) that continuously polls on the hardware
FIFO and actively fetches the standard output data as soon as it is available.
However, this would result in a constant overhead for busy polling and
wouldn’t be ideal if we do not care about the debug output. We thus stick to
the current on-demand design.

PsPIN memory access As part of the configuration process, the host needs
to download the code and runtime data for the HPUs onto NIC memory. As
explained in Section 3.1, a technicality due to the small Corundum control
port address space mandates a static address mapping when accessing PsPIN
memory from the host. The kernel module implements this mapping and
maintains the plain address view assumed by the PsPIN software development
kit (SDK); requests that does not land in a valid memory area will be rejected
with a SIGBUS (bus error signal in Linux) to avoid disrupting the hardware.
We hide the translation technicality away and never expose the exact mapping
details to the user-space.

The kernel module exposes two flavours of APIs to the user-space for accessing
PsPIN memory, designed for different use cases. The first flavour conforms to
the traditional non-buffered Unix file I/O: we implement the open(), seek(),
read(), write(), and close() syscalls on the /dev/pspin0 character device.
Reads and writes to the device file are directly translated into reads and
writes in the NIC memory region. This flavour is suitable for bulk read
or write on the PsPIN memory area and would be used during program
image load or debug memory dumping. It allows existing, unmodified Unix
user-space utilities such as dd [48] to work as diagnosis tools and quick
prototypes.

The second flavour is implemented as ioctl() over the /dev/pspin0 device
file. An ioctl (input/output control) is a syscall for device-specific I/O
operations. The syscall allows the user-space application to pass a pointer
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to the kernel to read or modify, along with an ioctl number to denote the
operation desired. We implement two ioctls, PSPIN HOST WRITE and PSPIN -

HOST READ, allowing the user-space to read and write 64-bit words in one
action. This simplifies the implementation of host DMA and performance
counters user-space routines (Section 4.2) and reduces the syscall overhead.
In comparison, the traditional Unix file I/O approach would require two
separate syscalls (seek() and read() or write()).

Host DMA Memory pages used for DMA on Linux have to be registered
with the kernel to ensure that cache coherency and alignment requirements
are fulfilled. It is also important to make sure that the memory page used for
DMA are not moved by the kernel through swapping or memory compaction
(through kcompactd). The easiest way to ensure these requirements is to have
the kernel module allocate the DMA buffer through the DMA API, which
takes care of these requirements automatically. We implement the mmap()

syscall for the /dev/pspin0 device to perform a multi-use DMA allocation
(as opposed to single-use; termed as coherent by Linux, but does not actually
imply cache coherency). We then mark the area as uncached and map the
allocated DMA memory area into the user application address space to allow
user processing of host DMA traffic.

Since we adopt a user-space-centric approach regarding the configuration
registers, the user-space needs access to the physical address1 of the mapped
DMA area to write to the control registers. We implement another ioctl on
/dev/pspin0, PSPIN HOSTDMA QUERY, to allow the user-space to query the
physical address of the DMA area, in order to program the ECTX to the
data-path engines, specifically the HER generator.

The multi-use DMA buffer allocations we use suit the purpose of a DMA
buffer shared between the CPU and device over a rather long period of
time. However, in the practice of implementing NIC drivers, the single-use
allocation scheme is more commonly used and allegedly more performant
due to the possibility of taking advantage of the cache. It is possible to take
advantage of this approach in FPsPIN by using a separate DMA area per
message, as opposed to the current strategy of one area per ECTX. We discuss
a possible implementation in Section 7.5 as future work.

4.2 CPU User-Space

The user-space software for FPsPIN caters to three distinct purposes in system
operation: configuration of the system to bring it into operative state; runtime
that supports the host-side application to interact with the NIC; and several

1On a system with an I/O memory management unit (IOMMU) enabled, this is actually the
bus address as seen by the DMA bus masters in the device.
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utilities to aid system-wide setup as well as to perform troubleshooting.
They interact with the various facilities provided by the mqnic app pspin.ko

kernel module. The user-space software shipped with FPsPIN are either
packaged into a static library, libfpspin.a, along with the header files, or as
standalone programs or scripts.

Configuration The main configuration routine is packaged in libfpspin.a

as one function: fpspin init. It takes as input the device node exposed
by the kernel (by default /dev/pspin0), the separately-built sPIN handlers
image, the ID of the ECTX to use, and a number of rule sets for the matching
engine. The user can either select existing rule sets that match against
common protocols, e.g. TCP or UDP over IP/Ethernet, or define their own
rule sets by filling in the fpspin ruleset t struct that contains configurations
for each matching unit (review Section 3.2.1 for more details). fpspin init

configures all the device registers over sysfs, loads the sPIN handler image,
and also allocates the host DMA area by requesting through mmap upon the
kernel. It then fills in all necessary addresses and handles in the context
variable fpspin ctx and returns this to the user. All future interactions with
the runtime takes the context as an argument.

After a successful return of fpspin init, FPsPIN is ready for packet process-
ing. However, in complicated applications e.g. the datatypes demo shown in
Section 6.3.2, the user may wish to perform additional initialisation, e.g., load-
ing dynamically generated data into the NIC memory. This is accomplished
via the host access to NIC memory interfaces provided in libfpspin.a,
namely fpspin write memory, allowing the host to generate the NIC mem-
ory content in the host application at runtime. The host application needs
to take care of relocation so that data structures contain valid NIC pointers
when they are accessed by the HPU in operation.

While the basic initialisation via fpspin init programs the matching engine
as the last step such that no packets can arrive at the cluster until it is fully
configured, host-side user initialisation happens after the HPUs have started
execution. As a result, the user needs to ensure that the sPIN handlers do
not start processing packets until the host initialisation process is finished,
e.g. through a flag that gates all HPUs from running. The exact mechanism
and interface requirements are further discussed in Section 5.5 as a possible
extension to the sPIN specification.

Runtime If the sPIN packet handlers programmed to the cluster requires
interaction with the host, e.g. to forward a processed incoming message to
the host for further processing, the host application should then poll the
notification interface from time to time. We currently implement a simple
flag-based notification method as shown in Figure 4.2: both PsPIN and the
CPU writes remotely and polls locally. The host application tries to pop a
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Figure 4.2: Simplified view of the host DMA loop, in chronological order. 1 ) The HPU sends a
request to the host for processing, by writing to the flag in host memory; 2 ) the host polls and
pops the request from local memory; 3 ) the host pushes the response by writing to the flag in
NIC memory; 4 ) the HPU polls and pops the response from local memory.

notification from PsPIN using fpspin pop req ( 2 ). If a message is present,
the host application processes the message and sends back a response via
fpspin push resp ( 3 ). The rest of the process ( 1 , 4 ) happens in the handler
runtime to be introduced in Section 4.3.

It is important that the host CPU should be able to perform other work-
loads, such as computational tasks, during packet processing in a truly
offloading manner. The host application can overlap other workloads via
multi-threading or by anticipating the inter-message gap (IMG) and polling
only when there could be a message arriving. For simplicity, the current
flags-based host DMA notification facility can only hold one in-flight mes-
sage between the host and each HPU; this limits the duration of overlapped
workloads between polling to be one IMG. The overlap can be increased by
implementing a proper ring buffer for the notification, which we leave as a
possible future improvement.

The host application may still need to receive and send network packets on
the same interface, for example to implement the slow, non-performance-
critical paths of a network protocol, like connection setup and tear-down in
TCP. The intended operation for this purpose is via the host network stack,
either normally or through the raw sockets (in case of state confusion due
to partially offloaded messages). The user needs to correctly configure the
matching engine, so that these packets are actually delivered to the host CPU
and not to PsPIN. Alternatively, if it is difficult to express the criteria in the
matching rules, the user can make the handlers perform a secondary match
and deliver such packets to the host over host DMA.

Performance measurements are important to estimate bottlenecks of packet
processing. The runtime provides facility to read and clear performance
counters exposed by the handlers. Up to 16 32-bit counters are accessible from
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the host application via fpspin get counter and fpspin clear counter.
Each counter keep track of a total sum and iteration count of updates,
enabling the calculation of an average value. The counters are updated in the
packet handlers using a facility in the handler runtime.

Utilities In addition to the libfpspin.a library to be statically linked into
the user application, we also provide several standalone utilities that are
important to the normal operation of FPsPIN. One of these is cat stdout.py

that reads from the log facility, /dev/pspin1, provided by the application
kernel module. The script performs blocking read on the log device and
demultiplexes the stream of printed characters according to the core ID. The
user can specify whether to dump the log to files and if the script should
remove stale logs. The script is provided separately instead of integrated
into the runtime, in case of an application that does not care about the debug
output from the HPUs and thus does not want to waste CPU cycles to read
them.

During the development and testing of handlers, it may be necessary to read
or write specific memory locations in the NIC L2 memory. The mem utility
takes a NIC address and performs a 64-bit read or write command over the
ioctl interface provided by the kernel module. It is possible to implement a
more complicated debugger protocol with memory access in this fashion; we
leave this as future work.

4.3 Handler Runtime

The PsPIN project provided a rather comprehensive implementation of the
handler-side sPIN API through the PsPIN/PULP runtime. This includes
the HER and task data structures, as well as host DMA commands for the
handler code to invoke. A few additions are made to accomodate new
abstractions introduced by FPsPIN. One of such additions concerns packet
header processing. The existing PsPIN runtime already provides C structs
for interpreting headers for IP and UDP, but since FPsPIN directly receives
Ethernet frames instead of the IP payloads of a lower-level messaging network
layer e.g. IP over InfiniBand (IPoIB), we added the Ethernet header and MAC
address structs for this situation. We also implement support for the SLMP,
introduced later in Section 5.1, in the same manner in the FPsPIN runtime.

As we have seen in Figure 4.2, the handler issues notifications to the host
for DMA events and pops the response of the host. The handler, through
the runtime function fpspin host req, issues the host notification via a host
DMA write ( 1 ) and polls for the host response in local memory ( 4 ). The
location of the host flag sits at a pre-determined offset in the host DMA area,
while the NIC flag is exposed via a global symbol in the handler image,
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retrieved during loading. Note that we adopt a synchronous design here in
contrast to the asynchronous design for the host-side counterpart of the host
DMA process. This is currently justified since most of the host notifications
happen at the end of messages in the tail handler and the handler would not
have meaningful workload to overlap with.

Performance measurements The host-side runtime has support for reading
back performance counters generated by the handler routines; these counters
are updated through the handler runtime on the HPU. Each 64-bit counter
consists of two 32-bit fields, the sum and count, allowing the handler logic to
push a specific performance value into the counter with the push counter

routine. Every time the counter is incremented, the count field is incremented
by one. The counters sit in L2 memory accessible to the host and are initialised
to zero on cluster setup. These counters can be used to collect various
statistics such as handler execution time at handler or message granularity,
as well as to profile specific code areas in the handler routines.

The counter values for performance measurements are derived from the
cycles register in PULP that is only accessible to machine-mode, while the
handler code executes in user-mode. We extend the existing fault handler
in the PsPIN runtime to handle syscalls and implement a syscall to read the
cycles register. With the current naı̈ve implementation, this syscall path takes
around 100 cycles on the PULP cores, in which most of the time consumed
comes from the need to save and restore all general purpose registers. While
it is possible to optimise this path for a lower latency, a proper solution is to
address the lack of a user-accessible time register for precise performance
measurements as we will argue in Section 5.2. We leave the related changes
to hardware as future work.
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sPIN Revisited

Their guess turned out to be right, but one is reminded of E. T. Bell’s
remark that the great vice of the Greeks was not sodomy but extrapolation.

– John Drury Clark, Ignition!: An Informal History of Liquid Rocket
Propellants

While we started this thesis to build an FPGA-based sPIN-compliant NIC,
the process of building FPsPIN has uncovered various aspects in the sPIN
specification that are important in a real-world system but left unspecified.
We have reported the findings in this chapter to the sPIN team and some of
them have already been incorporated back into the specification.

5.1 Messaging and Reliability Layer: SLMP

The sPIN specification did not impose a fixed list of underlying network
protocols; instead, it specifies two matching modes of the underlying network.
In packet matching, single packets are matched for processing on the packet
handler in the same flow; Ethernet would be an example of a network
operating in this mode. Message matching, on the other hand, requires the
network to provide an abstraction of messages as a stream of multiple packets;
they are in turn mapped onto the head, packet, and tail handlers for processing.
Examples of a network operating in message matching mode are RDMA-style
networks such as InfiniBand or the Intel Omni-Path Architecture (OPA).

5.1.1 Motivation

Although FPsPIN is built on Ethernet, which would seemingly force a packet
matching implementation, many applications still benefit from the message-
oriented abstraction sPIN offers; there would be significant HPU and memory
overhead to perform flow matching and differentiate the handler code paths
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in software, as opposed to the message processing queue (MPQ)-based hardware
flow matching mechanism introduced in PsPIN. As a result, it is desirable to
emulate the message abstraction on top of Ethernet. In addition, since Ethernet
is a lossy network1 but traditional high-performance network applications
such as MPI expect that messages do not get lost in the network, we also
need guarantee on reliable delivery of messages on top. We formalise the
requirements of a suitable protocol in the situation for sPIN:

1 Arbitrary length messages: the message matching mode in sPIN re-
quires messages longer than one MTU.

2 EOM feature in packet header: sPIN defines a tail handler for mes-
sages; this is required for a simple matching engine implementation.

3 Out-of-order segment delivery: sPIN does not specify a segment
delivery order requirement; in fact, in-order delivery will create Head-
of-Line (HoL) blocking issues that would hurt performance.

4 Pluggable reliability: high-performance networking applications re-
quire reliable packet delivery; however, since sPIN does not enforce
lossless packet delivery, the reliability module should be pluggable and
not forced on all applications.

5 Simple implementation: the on-path nature of sPIN mandates a simple
design that is easy to implement and does not add too much overhead,
especially on the receiver side that is offloaded.

A straightforward approach would be to adopt an existing protocol and
implement it in sPIN handlers; candidates for this purpose include TCP [49],
UDP [50], Stream Control Transmission Protocol (SCTP) [51], Datagram Con-
gestion Control Protocol (DCCP) [52], and the more recent QUIC [53]. We
show in Table 5.1 that these protocols does not satisfy the aforementioned
requirements of a messaging and reliability layer for an Ethernet-based sPIN
NIC such as FPsPIN, as well as the proposed solution in this thesis for
comparison.

5.1.2 The solution

We developed a thin messaging and reliability layer built on top of UDP/IP
for FPsPIN, which we named sPIN Lightweight Messaging Protocol (SLMP).
The protocol features a 10-byte header inside the UDP payload with the
following field definition:

1While RDMA over Converged Ethernet (RoCE) does provide a lossless guarantee on top
of Ethernet, it is not supported by Corundum at the time of this thesis and is not trivial to
implement in hardware. We thus consider RoCE irrelevant for this discussion.
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Protocol 1 2 3 4 5

UDP 7 - - 7 3

DCCP 7 - - l1 3

TCP 3 3 7 l2 7

SCTP 3 3 3 3 7

QUIC 3 l3 3 l2 7

SLMP 3 3 3 3 3

Table 5.1: Comparison of different protocols for reliability and messaging on FPsPIN. 3: fully
supported; l: partially supported; 7: not supported. Notes: (1) Only for acknowledgement
(ACK) segments and not data segments. (2) Reliability layer cannot be disabled. (3) QUIC
requires all packets to be encrypted, meaning that a simple matching engine could not recognise
EOM without decrypting.

• Flags (2 bytes): hosts three packet-level status bits, synchronisation
(SYN), acknowledgement (ACK), and EOM ( 2 ). The remaining bits are
reserved for future versions of the protocol.

• Message ID (4 bytes): unique ID of the message.

• Offset (4 bytes): byte offset of the first payload byte in the message.

The message ID and offset fields together implement 1 up to a message
size of 4 GB, limited by the 4-byte offset field in the SLMP packet header.
We believe that this is a sensible limitation and most applications would not
generate messages larger; for applications that require larger messages, we
could adjust the size of the offset field in a case-by-case fashion. Although
the offset field maintains a order among all the segments of a message, we
do not implement any in-order delivery guarantees ( 3 ).

A possible alternative for the offset field is to use a packet sequence number
instead of a byte offset. This is a design choice made to accomodate the SLMP
file transfer and MPI datatypes applications we will introduce in Section 6.3;
these applications process incoming segments according to their byte offset
in the whole stream. Therefore, by storing the offset number directly in the
SLMP header, we eliminate the need to keep protocol states on the receiver,
allowing a fully stateless receiver for handling the protocol ( 5 ).

We handle the pluggable reliability requirement ( 4 ) through the SYN and
ACK bits in the flags field in the SLMP header. The action rule for the
receiver is simple: each packet that has a SYN bit set in the header needs to
be ACK’ed by sending back the same header with no payload. The sender
decides on what reliability mode the protocol operates in. For no guarantee at
all, the sender omits the SYN bit for all packets. For a guarantee of message
delivery but not individual segments, the sender sets SYN on the first and last
packets of the message. For a guarantee of every single segment, the sender
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sets SYN on all packets it transmits. We do not implement retransmission for
SLMP at the moment for simplicity, but it should be easy to add since our
ACKs carry the message ID and segment offset and thus would allow the
sender to identify a lost segment.

5.1.3 SLMP flow control

If the sender would transmit packets too fast to the receiver, the receiver
would be overwhelmed by incoming packets before it had time to process
them; packets would be dropped once the receive buffer is completely filled.
Flow control throttles the sender to make sure that the receiver is not over-
whelmed. Generally speaking for maximum throughput, the sender needs to
first fill up the receiver’s buffer at a higher send rate, then lower the rate to
the processing speed of the receiver to maintain the occupation rate of the
receiver buffer in order to saturate the receiver’s processing power.

There are two modes of flow control in SLMP, depending on the reliability
configuration selected. When the sender operates without reliable packet
delivery in the form of ACKs from the receiver, a heuristic inter-packet gap
(IPG) is chosen based on the workload, receiver’s capability, as well as
possible buffer state reports from the receiver (see Section 5.2 for more
details). This form of flow control requires almost no collaboration from
the receiver and can be implemented fully on the sender side. However, a
practical configuration would fix the IPG and thus the sending rate, which
must be equal to or lower than the receiver processing speed for long term
stable operation; this would under-utilises the receive buffer and result in
the receiver waiting for data, hurting throughput.

A well-known mechanism that originated from TCP but found its way into
most flow control schemes is a flow control window2. The sender maintains
a fixed window of packets that has not yet been ACK’ed by the receiver
and would only send when the window has free space to fit a new packet,
allowing the sender to automatically throttle down to the speed of the receiver
after the window is filled. Assuming constant sender and receiver speed
vSend and vRecv, we can calculate the ideal window size SWnd for a receiver
buffer size SRecv:

tFill =
SRecv

vSend − vRecv
(5.1)

SWnd = tFill · vSend (5.2)

= SRecv ·
vSend

vSend − vRecv
(5.3)

2This is called the sliding window in TCP due to the additional in-order delivery require-
ment.
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The sender window approach to flow control still requires the window size to
be determined in some manner. For simplicity in implementation, we assume
the suitable window size is relatively fixed for each SLMP conversation and
let the user specify the window size manually. We discuss a possible future
direction of adaptive window selection in Section 7.3.

An interesting side-effect of allowing explicit control of the flow control
window size is that, by setting the window size to 1 packet, the sender can
serialise packet processing on the receiver side, only sending the next packet
of the message after receiving ACK for the previous one. While doing this
severely limits the top throughput available, the serialisation guarantee is
important since sPIN did not specify any concurrency control mechanism
on the scheduler level (discussed later in Section 5.3). We use this method
to avoid packet-level parallelism for the MPI Datatypes demo application in
Section 6.3.2.

5.2 Telemetry

The ability to measure the performance of a system is crucial to further
improve it. While the current sPIN specification formalised performance-
related events to be delivered to the host for further analysis, this is vastly
different from the common practice of implementing performance counters for
detailed system-level inspection. Therefore, we call for a general interface
of host access to various implementation-defined performance counters in
hardware, as well as user-controllable counters updated from the handler
software.

We integrated a prototype of memory-backed general purpose counters for
packet handlers in Section 4.2 to allow intrusive inspection of handler perfor-
mance in the ping-pong demo in Section 6.3.1. For low-overhead updates to
these user-controllable counters, an implementation should make accurate
cycle counters available to user-level handler code. While we recognise the
exposure of accurate timing information is a break of isolation, the current
sPIN specification does not handle multi-tenancy yet; we leave this discussion
for a possible future work that would explore operating system paradigms
on sPIN.

Another compelling use case for telemetry data apart from off-line host
performance analysis is for consuming in the sPIN NIC itself, better known
as introspection. One use case would be for the scheduler to have access to the
handler execution time counter for fair scheduling between multiple ECTXs.
Another possible use case is for a dedicated management core for handling
L3 protocols (Section 5.4) to implement explicit buffer state notification as
described in Section 7.3.
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5.3 Scheduler Concurrency Control

The current sPIN scheduler enforces the dependency between packets in a
message w.r.t. the three categories of packet handlers: the head handler is
guaranteed to be scheduled before all packet handlers, and the tail handler is
guaranteed to be scheduled after them; the packet handlers will be scheduled
in parallel if possible. In some use cases however, the packet processing
routine may require serial execution; the MPI Datatypes demo application
we will introduce in Section 6.3.2 is an example.

With the current sPIN specification, the only viable synchronisation primitive
is spinlocks that would allow one HPU into the critical section for serial
processing. This is far from ideal, since without an effective task switching
method, all other HPUs will busy-loop at the spinlock, effectively reducing
the number of HPUs down to one. A workaround currently used by the MPI
Datatypes demo in Section 6.3.2 is to force the SLMP flow control window
to 1 packet, effectively requiring ACK on every packet and thus serialising
packet processing. Such a workaround is still not ideal, since such a small
window size would mean that the HPU would always have to idle for one
round-trip time (RTT) plus the sender latency for one packet before it can
start processing the next packet. It also forces the developer to put the per-
message state in the globally-shared L2 memory, since there is no guarantee
which HPU the next packet will be scheduled to, making it impossible to use
the cluster-local L1 memory.

We propose the addition of core masks to all sPIN ECTXs for fine-grained
control on the locality and parallelism of sPIN handlers. With the current
FPsPIN architecture, the core masks are installed into the HER generator
and copied into the HER to the scheduler. The scheduler can then schedule
the packet on the subset of cores specified by the core mask in the HER.
This design can support the use case of serially scheduled handlers by
programming a mask that contains one single core; message-level parallelism
can be achieved by installing multiple otherwise identical ECTXs that have
different core masks. Another possible use case is to specify a core mask of
all cores in one cluster to allow the shared states to be stored completely in
the cluster-local L1 memory.

5.4 Network-layer Protocol Handling

So far, sPIN assumes that the packet handlers only process the application
payloads carried by the underlying network protocol. However, as we have
shown in Section 5.1, extra protocol-layer processing is required for a lossy
underlying network like Ethernet. While in some situations protocol handling
itself is the main offloaded workload (e.g. accelerating QUIC), we recognise
that most of the sPIN applications care more about the actual payload instead
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of details in the protocol itself. Examples of such protocol-level handling
include running ARP for outgoing packets, handling connection setup and
teardown in TCP, and sending the explicit buffer state messages in SLMP.

One approach to this issue makes use of the bypass feature of the matching
engine. The user can configure the matching engine to pass incoming protocol
control packets to the host for handling, possibly updating relevant states
in the meantime. Examples where this approach would work include ARP
responses, in which the host updates the IP neighbour table and sends back
the ARP response, and TCP connection setups and teardowns, where the
host handles packets that have the SYN or FIN bit set. This approach would
not work very well for NIC-initiated actions (e.g. an active ARP query for an
outgoing packet from the sPIN NIC) as well as protocol messages on the hot
path (e.g. the buffer state notification of SLMP).

An alternative approach is to introduce a dedicated system-level coprocessor
for handling such protocol requests. This coprocessor would handle network-
layer control-path tasks, freeing the HPUs from these. It would take requests
from the HPUs through a mailbox-like interface, e.g. to run an ARP query or
setup a SLMP or TCP connection with a remote endpoint. It could also run
local periodic tasks such as sending back telemetry data to its link partner,
or take action on specific protocol control messages forwarded from the
scheduler. The coprocessor would also be crucial for potential flow spilling to
the host when the sPIN NIC is overloaded.

5.5 Handler Initialisation

Complicated applications may require dynamic initialisation of application-
level states on the NIC memory. However, the current sPIN specification
would start scheduling packets to ECTXs as soon as they are installed, re-
sulting in a race condition. However, since the installation of an ECTX on
the host would also allocate NIC memory windows and set up memory
protection, it is required before the host can actually perform initialisation.

A potential solution is to separate the installation and activation of ECTXs. The
installation of an ECTX would arm all relevant hardware modules, allocate
memory windows, and set up memory protection; the activation actually
enables the respective matching rule on the matching engine for packets to
arrive and get scheduled. The actual initialisation can happen on either the
host (through NIC memory access) or as a special function in the handler
image to run on a HPU.
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5.6 Host-side Activation

So far sPIN has only been formalised for offloading packet processing tasks
on a receiver; although [4] contemplated a possible sPIN-Out implementation
that would allow the host to offload sending tasks e.g. in AllReduce to a sPIN
NIC, the specification did not formalise on how such an ECTX would be
defined. We propose host-activated ECTXs that are triggered via a special
host-initiated event. With the FPsPIN architecture, this can be implemented
via adding extra configuration registers to the HER generator to inject a HER
whenever the host wants to invoke the ECTX. To avoid confusion, such an
ECTX should always have the corresponding matching rule set to never such
that it never gets invoked from incoming packets.

5.7 Alternative Host DMA Interface

sPIN specifies the host DMA facility in a very simple manner: the HPUs
can read from or write to the exposed flat memory window. While this
abstraction is concise to implement and allows , it is not very helpful for end
users of a sPIN NIC; they would have to implement their own interface on top
of this facility. The fact that sPIN does not specify any memory consistency
semantics on the host memory window makes any user implementations
non-portable and thus impossible to work with other sPIN implementations.

We developed a simple request/response interface on top of the host DMA
window in FPsPIN as we described in Section 4.2; the current design largely
resembles a traditional queue pair design, allowing the HPUs to post requests
in the request queue (RQ) to the host and the CPU to post responses back to
the HPUs in the completion queue (CQ). We propose the addition of higher-
level APIs for communication between the host and sPIN NIC, which would
simplify user programs that make use of host DMA and improve portability.
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Evaluation

Despite the limited scope of that experiment, giving parents greater choice
had a major effect on education quality.

– Milton & Rose D. Friedman, Free to Choose: A Personal Statement

In this chapter, we evaluate the software and hardware implementation of the
proposed FPsPIN platform. We first describe the platform we implemented
FPsPIN on. We then present an analysis of the hardware components pro-
posed in Chapter 3 to identify potential bottlenecks in the hardware design
and implementation. Finally, we demonstrate the overall functionality and
performance of the system through several demo applications.

6.1 Experiment Setup

The experiments are done on the AMD server with the Ryzen 7 2700 CPU and
the PCIe-attached Xilinx VCU15251 Development Kit; more details can be
found in Section 2.3. We run the FPGA board at 16 lanes of PCIe 3.0 clocked
at 8 GT/s. A diagram of the experiment platform is shown in Figure 6.1.
Corundum runs at its native frequency of 250 MHz on the Virtex UltraScale+
FPGA. However, we could only run the application block (FPsPIN) at 40
MHz due to the PsPIN IP not being designed for FPGAs: the PULP RISC-V
cores are designed for an advanced ASIC process node and have long critical
paths on FPGAs. As a result, we clock the processing cluster at 40 MHz.

Networking The two 100 Gbps QSFP Ethernet ports on the FPGA board
are attached via one direct-attached copper (DAC) cable, forming a loop-back
between the two interfaces of Corundum. Since the two interfaces are present
on the same Linux host, we have to isolate the two network interfaces

1https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
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Figure 6.1: The experiment setup. The sPIN and non-sPIN host applications are in two separate
network namespaces to prevent the direct loop-back mechanism in Linux that prevents packets
from actually going through FPsPIN.

into separate network namespaces to avoid a direct loop-back in software.
The exact network topology of the system can be seen in Figure 6.1. A
script, setup-netns.sh, automates the creation and tear-down of network
namespaces and assignment of the interfaces to them.

Toolchain We use Ubuntu 20.04.4 LTS on the host with a slightly modified
Linux 5.15.0-76-generic kernel with the Contiguous Memory Allocator (CMA)
enabled; this allows the FPsPIN kernel driver to allocate arbitrarily large
contiguous DMA areas, as is required by demo applications shown later in
Section 6.3. We use Xilinx Vivado 2020.2 to produce the FPGA bitstream,
the PULP RISC-V toolchain2 to compile the sPIN handlers, and the Ubuntu
system GCC for the host-side applications.

6.2 Design Analysis

To evaluate the implementation quality of the newly introduced data-path
components, we estimate the theoretical latency of these components as
described in Chapter 3 based on the RTL source. Table 6.1 shows the latency
in cycles based on the state machine construction in the Verilog RTL code,
the frequency, and the latency time in nanoseconds. The pspin ingress dma

2https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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Module Cycles Frequency (MHz) Latency (ns)

Matching engine 4 40 100
Allocator 0 40 0
Ingress DMA 8∼70 40 200∼1750
HER generator 0 40 0
Host DMA n/a 250 ∼450

Table 6.1: Latency estimation for various data path modules in cycles and nanoseconds. Note
that as the host DMA goes over PCIe to the host DRAM, the exact latency in cycles is difficult
to estimate; the latency in nanoseconds is measured on real hardware via the Integrated Logic
Analyzer (ILA) on Xilinx platforms.

Resource Category [7] FPsPIN

Clusters 4 2
#MPQ 256 16
L1 Cluster Memory 1 MiB 256 KiB
L2 Program Memory 32 KiB 32 KiB
L2 Packet Memory 4 MiB 512 KiB
L2 Handler Memory 4 MiB 1 MiB
L2 SRAM Latency (cycles) 1 1

Table 6.2: Comparison between the stock PsPIN configuration and that used in FPsPIN. The
MPQ enables parallel in-flight messages; by reducing the number of queues available, we limit
the number of concurrent in-flight messages to 16.

module has a latency linearly related to the packet size due to dependency
requirements as introduced in Section 3.2.1. We show in the later sections
that these latency numbers are negligible compared to other parts of the
system and thus would not have a big impact on overall system performance.

Resource utilisation and timing are very important static insights into FPGA
designs. While we have trimmed the original PsPIN design significantly
compared to the standard configuration [7] as shown in Table 6.2, the design
is still very hard to close timing due to congestion issues. We present in
Table 6.3 data in resource utilisation, timing, and time taken to implement
the design. To ensure that we get acceptable implementation results for each
run, we employ the incremental implementation flow [54] from Xilinx to have
the EDA tool try to reuse routed nets from previous valid implementation
runs. This shortens implementation time and improves the general quality of
results (QoR) of the resulting design.
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QoR Metric Value

LUT 645k 54.5%
FF 490k 20.7%

BRAM 1141 52.8%
URAM 206 21.5%

WNS (ns) -0.057
TNS (ns) -9.945

Impl. Time 6:11:15

Table 6.3: QoR metrics of the hardware implementation of FPsPIN. The first four entries (LUT,
FF, BRAM, URAM; refer to Section 2.3) denote key resource consumption and the percentage
utilisation value on the VU9P device; WNS and TNS measure how much the design has failed
timing.

6.3 Demo Applications on Real Hardware

We present three E2E demo applications to showcase the real-world pro-
grammability and performance of FPsPIN. We show that it is possible to
write arbitrary packet-processing applications for the platform with the first
two applications, ping-pong and the SLMP file transfer. We further charac-
terise the performance of the platform in detail with the MPI Datatypes
demo.

6.3.1 Ping-pong

Motivation We demonstrate the overall system functionality with two clas-
sic types of ping-pong protocols: Internet Control Message Protocol (ICMP) and
UDP. With this demo, we exercise the various data-path and control-path
components newly introduced in FPsPIN to show their basic functionality. In
addition, we evaluate the system E2E RTT under simple packet processing
workloads to compare with pure-CPU processing. We further identify RTT
contributions from different actors in order to evaluate bottlenecks in the
system.

Experiment We implement on FPsPIN the server to respond to client re-
quests; the operation flow of the server is shown in Figure 6.2. Both protocols
operate in the same way that the client sends a request packet and the
server sends back a response. The server needs to swap the source and
destination addresses in the Ethernet, IP, and UDP headers, and recalculate
relevant checksums. For each protocol, we implement three different modes
of operation:

• the baseline a.k.a. host-only case (Host): all processing on the CPU by
setting the FPsPIN matching engine to bypass mode;
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CPU FPsPIN

User
App Datapath MAC PHY

OS Kernel

Host 
DMA 
buffer

RAM

①②

Figure 6.2: Workflow of the two ping-pong applications. 1 ) Normal operation; the cluster
processes incoming ping requests and sends back responses (FPsPIN). 2 ) The cluster can
optionally choose to forward data to the host application for further processing (Host+FPsPIN).

• the FPsPIN-only case (FPsPIN): FPsPIN does all the packet processing
(header processing and checksum calculation);

• the combined case (Host+FPsPIN): FPsPIN swaps the addresses in the
headers and the host CPU calculates checksums.

We use the ping utility from iputils [55] for ICMP and dgping from the stping
suite [56] for UDP. For Host mode, we use the responder in the Linux
kernel for ICMP and the user-space dgpingd for UDP. For both the FPsPIN
and Host+FPsPIN modes, we use the same naive IP checksum algorithm
implementation.

An important difference between the UDP and ICMP ping protocols is that
ICMP requires the entire payload to be included in the calculation of the
checksum field, while UDP only specifies an optional checksum of the UDP
header; we omit this header checksum in our UDP ping server implementation
on FPsPIN. This difference between the two protocols impacts both the server
and client implementation, but is especially significant for the server since
the RTT measurements taken at the client do not include packet preparation
and checksum validation time on the client side.

For both ICMP and UDP and the three modes of operation, we measure
the E2E RTT of the ping-pong process from the client by running the ping
program 20 times, taking 100 measurements in each iteration. This would
take into consideration any possible interference between the ping client
and server that would result in variance in the measurement, as well as to
allow caches to warm up. We plot this E2E RTT with their medians and 95%
confidence intervals calculated with the bootstrap method [57] in Figure 6.3.
In addition in cases that involve FPsPIN, we measure cycle counts in the
handler code to time the mean handler execution time and latency of host
processing. We plot a breakdown of the E2E RTT in these cases in Figure 6.4.
Please note that the high overhead designated as Syscall is due to the lack
of a cycle-count register accessible to user-space handler code; we discussed
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Figure 6.3: E2E RTT of both protocols across the three setups. We plot the median and 95%
confidence interval of the RTT of 20 measurements for each configuration.

this situation and possible solutions in Section 4.2 and Section 5.2.

Data interpretation A key observation we make is that both FPsPIN and
Host+FPsPIN performed significantly better than Host for UDP, with a
largest latency advantage of 50 us in FPsPIN mode. This is mainly due to the
packet data in FPsPIN modes not having to go through PCIe to get DMA’ed
to host memory, go through the Linux UDP network stack, and context
switch to user-mode to reach the UDP responder. The ICMP responder in
Host, in comparison, runs in the Linux kernel and thus does not have the
overhead from the full UDP stack and context-switch to user-mode. This
overhead can be confirmed with a comparison between UDP and ICMP in
Host mode, showing a difference of ∼41 us. As we see in Figure 6.4 in
Host+FPsPIN for UDP, our system reliably achieves a ∼20 us RTT advantage
over the baseline case even with the added latency from host processing. In
addition, we notice that in all four cases with FPsPIN the syscall category
occupies 10∼20 us in the RTT. As we have previously explained in Section 4.3,
this added latency is due to a lack of user-mode accessible cycle counters
and should be easily fixed in future work.

We notice a big divergence in the course of E2E RTT w.r.t. payload size be-
tween ICMP and UDP in Figure 6.3: in the two modes that involve FPsPIN
for ICMP, the RTT increases almost linearly with the payload size; while in
the Host mode for ICMP as well as all three modes for UDP, the RTT remains
relatively constant. This reflects the difference in checksum calculation be-
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Figure 6.4: Breakdown of the E2E RTT into different categories. The timeline at the top shows
the time-series relationship between the various time components (not to scale): Syscall, time
spent reading the cycles counter from trapping into M-mode; Handler, time spent executing the
packet handlers, excluding waiting for host; Host Proc., time spent waiting for host DMA and
processing on the CPU; and Sender, time spent on the Ethernet wire and client side. Baseline
marks the median E2E RTT in Host mode.

tween the ICMP and UDP ping protocols, showing that checksum calculation
time is a significant component of the ICMP response RTT. A comparison
between the Host+FPsPIN and Host modes for ICMP in Figure 6.4 reveals
that the Linux kernel’s ICMP responder uses extremely optimised code paths,
highlighting room of improvement in our IP checksum algorithm.

We further observe that the lower frequency that PULP cores in FPsPIN run
at have a significant impact on packet processing latency. This is confirmed
by Figure 6.4 between Handler on FPsPIN and Host Proc. on Host+FPsPIN
for ICMP. It shows that a single core on FPsPIN is only ∼2.8x slower than a
single CPU core, a gap way smaller than the actual performance difference
between these cores (40 MHz vs 3.4 GHz). Part of this small performance gap
comes from the fact that the host CPU performance in checksum calculation
is far from ideal due to the CPU always issuing uncached requests to the host
DRAM as a result of a lack of cache-coherency over PCIe. In addition, the
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host processing category also includes one PCIe RTT between the host CPU
and FPsPIN and polling latency, both of which are not present on FPsPIN.

Conclusion The RTT advantage from FPsPIN against the CPU-only Host
case shows that FPsPIN allows packet processing with lower latency, thanks
to its proximity to the data and lack of context switch overheads. The ICMP
cases show that FPsPIN still has plenty of potential for higher performance in
packet processing from a faster core built for FPGAs (Section 7.1), optimised
code that reduces handler execution time, and domain-specific accelerators
for compute-heavy workloads like checksum calculation (Section 7.2).

6.3.2 MPI datatypes

Motivation Apart from synthetic benchmarks like the ping-pong demo we
showed in the previous section, we also need to demonstrate the ability of
FPsPIN to run real-world sPIN workloads. MPI Datatypes [58] is a pop-
ular mechanism for exchanging custom messages over the MPI paradigm
commonly used in parallel computing. On the sender side, the datatypes
subsystem in MPI serialises the custom message with non-contiguous memory
blocks (in other words, holes in between) into a contiguous streaming buffer
for transmission on the network; on the receiver side, MPI deserialises the
contiguous message back into the non-contiguous messages for the user
application.

Previous work on sPIN has ported the MPICH dataloop-based single-threaded
implementation of MPI Datatypes to sPIN handlers that run on a simulator-
based platform [4]. By porting these existing sPIN handlers to FPsPIN, we
characterise the throughput of sPIN workloads on FPsPIN with different
levels of handler complexity on the platform. In addition, we showcase the
ability of FPsPIN to achieve almost perfect computation/communication overlap
with a compute-heavy CPU workload that runs simultaneously. Last but not
least, since MPI Datatypes requires to send messages of arbitrary length on
the network, we demonstrate the operation of the SLMP protocol introduced
in Section 5.1.

Experiment We port the handlers in [4] to the FPsPIN platform. A major
difference between the original target platform and FPsPIN is the underlying
network layer: the handlers were designed for InfiniBand-style networks that
offer a reliable message transport with arbitrary length support, while FPsPIN
runs on top of lossy Ethernet; we have analysed this difference in network-
layer guarantees in detail in Section 5.1. For MPI Datatypes, we encapsulate
the serialised buffer in SLMP messages on the sender side and send back
ACK packets in the handler. In addition to the SLMP encapsulation, we
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Figure 6.5: Structure of the two datatypes, Simple and Complex, used for evaluating the
datatypes handlers; each layer builds an intermediate nested datatype until we get the final type.
ctg: contiguous vector; vec: vector with stride in elements; hvec: vector with stride in bytes.

modify the original handlers to call correct host DMA and host notification
functions offered by the FPsPIN runtime.

Due to the single-threaded nature of the dataloop implementation of MPI
Datatypes, we are unable to implement packet-level parallelism and are thus
forced to use a sender window size of 1 packet to ensure serialised packet
processing; this has severe performance implications as we discussed in
Section 5.1. To make use of all the 16 HPUs on FPsPIN, we implement
message-level parallelism, sending multiple messages in parallel. The handler
function stores all per-message states in the shared L2 handler memory and
selects the correct per-message state according to the SLMP message ID. We
evaluate the E2E bandwidth of two different datatype handlers on FPsPIN
in comparison to the reference MPICH datatypes implementation on CPU
with varying degrees of parallelism in Figure 6.6. The structures of the
two datatype workloads, denoted as Simple and Complex, are shown in
Figure 6.5.

To demonstrate the computation/communication overlap capability of FPsPIN,
we run double-precision general matrix multiply (GEMM) from OpenBLAS [59]
on the CPU to simulate a compute-heavy workload that runs simultaneously
with the datatypes deserialisation on FPsPIN. Since the CPU fetches notifica-
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Figure 6.6: Comparison of E2E datatypes and the general matrix multiply (GEMM) throughput
in diverse parallelism and message length setups. Ref. denotes the reference case where the
workload is not overlapped with the other; Ovlp. denotes the overlapped case. We also plot the
throughput of the MPICH reference CPU implementation as baseline for comparison. We plot the
mean value of 20 measurements in each setup; the error bars in black show the 95% confidence
interval.

tions from FPsPIN in poll mode (Section 4.2), it is the best to poll as few times
as possible to avoid wasting CPU cycles that could otherwise be running the
computation workload. The regularity of high-performance computing (HPC)
workloads, which allows estimating the time a communication task takes to
finish. For a meaningful evaluation of computation/communication overlap,
we tune the GEMM size for a balanced setup between computation and com-
munication, i.e. to minimise both datatypes latency and polling overhead.
We show in Figure 6.7 the two opposites of polling frequency, both of which
hurts the performance of either the datatypes or GEMM. By tuning the size
of a single invocation of GEMM, we find the sweet spot to balance between
these two situations. Following [60], we define the overlap ratio as follows:

rOverlap =
TGEMM

TGEMM + TPoll

We plot the overlap ratio and polling overhead from two datatypes in Fig-
ure 6.8.

In order to have correlated timing measurements between datatypes pro-
cessing and GEMM, we measure the time elapsed for both workloads on
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Figure 6.7: Two possible situations of overlap between GEMM and datatypes processing. The
top case overestimates the latency of datatypes processing due to not polling at a high-enough
frequency; the bottom case imposes excessive overhead on the GEMM workload due to polling
too frequently.
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Figure 6.8: Overlap ratio of the two data types as presented in Figure 6.5. The left plot shows
the ratio with a fixed message size of 2160 KB across different parallelism settings; the right
plot shows the ratio with a fixed parallelism of 16 HPUs across different message sizes. For each
configuration, we plot the median values and 95% confidence intervals across 20 samples.
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the receiver side. Since the host application does not get a notification until
the datatypes transfer is finished, we introduce a request to send (RTS) signal
from the receiver to the sender: the receiver application sends RTS to the
sender and starts the GEMM workload on CPU. We take the time between the
notification from FPsPIN and the RTS as the elapsed time for the datatypes
workload.

Data interpretation We report the peak throughput of the two datatypes
under different message-level paralellism and message length setups as we
have shown in Figure 6.6. The highest throughput are achieved at:

• Simple: 1162.4 Mbps with message length of 1944 KB and 16 HPUs

• Complex: 801.2 Mbps with message length of 1080 KB and 16 HPUs

The throughput gain per extra HPU utilised remains relatively constant at
around 73 Mbps for Simple and 50 Mbps for Complex thanks to the message-
level parallelism mechanism. We believe that this difference comes from the
fact that the Complex dataloop representation is more complicated and takes
more handler time to process compared to Simple, manifesting as a lower
throughput.

We note in addition that despite the fact that the Simple datatype has prac-
tically the most simple structure as we have shown in Figure 6.5, the E2E
throughput of the datatype is still way lower than the IPerf3 throughput of
around 8 Gbps. We conjecture that the MPI dataloop software implemen-
tation contributed significantly for a very big overhead in packet handling,
resulting in the overall low throughput. We believe that the limitation of
having to enforce an SLMP flow control window size of 1 also partly im-
pacted the E2E throughput to some degree. We verify these conjectures in
Section 6.3.3 through the comparison of throughput with the synthetic SLMP
file transfer benchmark.

We further observe that the GEMM workload suffers from a moderate 20%-
30% slow-down across different parallelism settings when overlapped with
datatypes processing, as compared to the reference case. We believe that
this slow-down mainly comes from the memory-intensive nature of GEMM,
since overlapped datatypes processing would also compete for CPU memory
bandwidth through host DMA. We conjecture that the slow-down would
be less significant for a more compute-bound CPU workload. A similar effect
of main memory bandwidth competition can also be observed through a
comparison of datatypes processing throughput between the reference and
overlapped cases. We recognise that the overlapping ratio stays relatively
stable across different degree of parallelism and message sizes.

Figure 6.8 showed a stable overlap ratio of over 99% for all parallelism
configurations. We also observe that for shorter messages the overlap ratio
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drops to as low as 94% due to the short message not allowing longer GEMM
workloads within the required number of polls. This is further confirmed
by a comparison of the overlap ratio between the Simple and Complex
datatypes, showing that shorter datatypes have lower overlap ratio across all
message sizes.

Conclusion We confirm that it is capable to implement and run complicated
packet handlers such as the datatypes handler on FPsPIN. The throughput re-
sult leaves much to be desired compared to the base throughput from IPerf3,
mainly due to the limitation from the MPI dataloop implementation. We eval-
uate the throughput capability of FPsPIN under normal operating conditions
through the synthetic SLMP file transfer benchmark in Section 6.3.3.

Despite the suboptimal throughput results, we demonstrated that FPsPIN
allows applications to reliably achieve almost perfect communication/compu-
tation overlap for sufficiently long messages through overlapping datatypes
procesing with a synthetic GEMM workload. This successfully shows off the
offloading capabilities of FPsPIN.

6.3.3 SLMP file transfer

Motivation As we have seen in the MPI datatypes benchmark in Sec-
tion 6.3.2, the throughput of packet processing depends highly on the
complexity of the packet handlers. It is thus difficult to evaluate the real
throughput capacity of FPsPIN with the datatypes handlers due to its various
implementation limits. In this demo application, we show the throughput
of FPsPIN through a simple file transfer: the sender transmits a file encap-
sulated in SLMP and the receiver posts the segments to the host CPU for
storing. With no requirement of serialised access to per-message states, we
evaluate the full potential of packet-level parallelism of FPsPIN.

The MPI datatypes demo forced a flow control window size of 1 packet
due to the serialisation requirements. However, SLMP as discussed in Sec-
tion 5.1 offers flexible window size and sender parallelism configurations.
We evaluate the performance trade-offs of different sender configurations
and identify the best configuration for other applications. In addition, we ex-
plore the consequences on packet processing from unreasonable flow control
configurations.

Experiment We implement packet handlers that, upon receiving a SLMP
segment, DMA the segments to the correct offset in the host memory accord-
ing to the SLMP message offset field in the packet header. After processing
the last packet with the EOM bit, the tail handler posts a notification to
the host application, which then saves the host DMA buffer into a file. The
sender transmits the file with the SLMP and records the elapsed time for
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Figure 6.9: Median throughput of both protocols across different sender-side window size and
parallelism configurations. The top left plot shows the best throughput across different window
sizes; the top right across different thread counts; the bottom two across different file lengths.
Each data point comes from 20 successful SLMP message deliveries; the error bars in black show
the 95% confidence interval. The IPerf3 and Datatypes lines are from Figure 6.6.

throughput calculation; we use an OpenMP-based multi-threaded version of
the slmp sendmsg function offered in libfpspin (Section 4.2). We report the
throughput progressions with diverse file sizes and sender configurations in
Figure 6.9.

As we discussed in Section 5.1, a flow control window too big will result in
packet loss at the receiver and thus a failure in message delivery. To explore
how the flow control settings affect message delivery, we plot the failure
rate of message delivery at different sender settings in Figure 6.10. For each
configuration, we try to acquire 20 successful runs for a consistent definition
of the 95% confidence interval plotted in Figure 6.9; we give up if that takes
more than 200 attempts.
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Figure 6.10: Failure rate of SLMP transmissions under different window size and sender thread
count configurations. We plot the maximum failure rate acquired with each sender configuration
across all file lengths. Note that in the right plot all lines below the window size 1024 overlap
with each other at the bottom of the plot.

Data interpretation We observe from Figure 6.9 that the E2E throughput of
SLMP file transfers increase along with the length of the file transfer; this is
due to the fact that many components in the system require time to setup and
spool up in performance, e.g. sender threads and caches, receiver HPUs, etc.
The peak reliable throughput 6.29 Gbps is achieved with a sender window
size of 512 and 2 threads at a file length of 25 MiB. This is in turn 75.8% of
the mean IPerf3 throughput of 8.3 Gbps. Taking the fact that IPerf3 simply
drops the incoming packets without further action, we recognise that this is
a reasonable performance number for the SLMP file transfer workload.

We notice that the throughput benefits from a larger sender flow control
window size in general. This matches with the theoretical analysis of the flow
control window in Section 5.1: a smaller flow control window would force
the sender to wait for an ACK sooner than the receive buffer is exhausted,
causing the receiver to idle in waiting for packets. In addition, we observe in
Figure 6.9 (bottom right) that a larger window needs more than one sender
thread to achieve the highest throughput possible. This however does not
mean that the more number of sender threads the better, since multiple
threads have higher costs to setup and synchronise; the best throughput
across most window sizes is achieved with 2 threads.

Although a larger window will result in a good sender bandwidth, this
does not always result in a high E2E throughput. We define the failure rate
of a specific sender configuration as the ratio between runs that finished
successfully over all runs sampled. We note from Figure 6.9 (bottom left) that
throughput stops increasing beyond a window size of 256 packets; Figure 6.10
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SLMP (Mbps) Simple (Mbps, %) Complex (Mbps, %)

528 73, 13.8% 50, 9.5%
6290 1162.4, 18% 801.2, 12%

Table 6.4: Comparison of peak throughput between SLMP file transfer and the two datatypes
described in Figure 6.5. The percent value shows the ratio of throughput compared to the SLMP
application.

shows further that the failure rate skyrockets with a higher window size
(1024) and more than one threads (such that the sender can actually saturate
the window). As opposed to the peak reliable throughput of 6.29 Gbps
reported earlier, where the configuration is required to have a 0% failure
rate, the achieved highest throughput is 6.4 Gbps at a 1024-packet window
with 45.9% failure rate. This suggests that the actual window size should be
somewhere between 512 and 1024.

We compare the throughput results of SLMP file transfer with the datatypes
workload introduced in Section 6.3.2. Under different effective degree of
parallelism (number of HPUs), the SLMP file transfer shows consistently
one order of magnitude higher throughput than that of the datatypes, as
shown in Table 6.4. Since these two cases have very different SLMP flow
control window settings, it is unlikely that flow control played a big role in
the low throughput of the datatype handlers. We therefore recognise that the
slow-down is largely due to the complicated packet handlers in the datatypes
demo taking too long to execute, lowering the throughput.

Conclusion The SLMP file transfer demo application demonstrates the
throughput capabilities of FPsPIN under synthetic load, showing throughput
close to the IPerf3 baseline case. Comparing that with the MPI Datatypes
demo in Section 6.3.2, we conclude that better-optimised handlers that can
handle packet-level parallelism would result in higher throughput. Since
the slowness of the datatypes demo is largely due to the highly complicated
packet handlers, we believe that a more performant FPsPIN with higher Fmax
will significantly improve the performance for this case. We discuss about
such an improvement in Section 7.1.

We evaluated the performance implications from the SLMP protocol intro-
duced in Section 5.1, confirming the importance of setting an accurate flow
control window for achieving high E2E throughput. The tedious process of
tuning the window size for highest throughput makes a case for protocol-
level automatic tuning of the flow control window, as we will discuss in
Section 7.3.
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7

Future Work

Don’t look at this too closely - you’ll go mad. The things we do for
performance..

– Linus Torvalds, linux/arch/alpha/lib/csum partial copy.c

While FPsPIN is relatively complete in terms of functionality, many design
choices have been made due to the time constraints of this thesis project. We
describe the possible improvements for future work in this chapter.

7.1 Improving Fmax

A significant component in the current FPsPIN E2E latency as we have
shown in the ICMP and UDP ping-pong demos in Section 6.3.1 is the handler
processing latency. This is due to the fact that the PULP cluster was designed
for ASIC and not optimised for maximum Fmax on FPGAs. We plan to
integrate higher frequency RISC-V cores designed for FPGAs, for example
VexRiscv1, as an attempt to achieve higher overall Fmax. In addition, we
plan to identify and optimise potential critical paths in the FPsPIN hardware
components described in Section 6.2; these components had to run at the
lower 40 MHz with PULP and thus have not been evaluated for critical path.

Another aspect to explore for a better Fmax is the hardware configuration
of the PsPIN cluster used in FPsPIN. Although we have made aggressive
scale-downs in Table 6.2 compared to the original setup in [7], we did not
perform a theoretical analysis of the potential impact to throughput under
different workloads for a more informed decision. Proper allocation of L1 and
L2 memory and relaxation of the static RAM (SRAM) latency requirements
would deliver higher performance with lower resource consumption. This

1https://github.com/SpinalHDL/VexRiscv
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would in turn reduce congestion that the EDA tools have to handle, allowing
a higher Fmax.

7.2 Architectural Exploration for HPUs

One of the reasons PULP was chosen as the HPU cores for PsPIN is the
PULP DSP instruction set, which contains various custom instructions for bit
manipulation and hardware loops. These instructions played an important
role in achieving the performance of PsPIN of 200 Gbps. Although it is
important to use an HPU core design with a high Fmax on FPGAs, the
ISA of the core could also vastly affect the packet processing performance
and should be chosen carefully: a detailed architectural analysis is needed
before investing time into integrating the new core design into the FPsPIN
framework.

We have seen significant HPU overhead from IP checksum calculation in the
ICMP ping benchmark in Section 6.3.1. This raises the important question of
the necessity of domain-specific accelerators in a packet processing scenario like
sPIN. It is important to balance between flexibility and high-performance:
while IP checksum or cryptography accelerators might be useful for almost all
packet handlers, a GEMM accelerator might only be used by few applications,
leading to a waste in resources. The flexibility of FPsPIN on FPGAs would
allow further exploration in finding the right combination of accelerators for
high-performance packet processing.

7.3 Advanced Flow Control in SLMP

We discussed in Section 5.1.3 about the importance of flow control to reli-
able high throughput of application payload. We adopted the approach of
exposing the flow control window size to the end user for simplicity in the
current implementation. However, as we have shown in Section 6.3.3, it is
tedious and error-prone to tune for an accurate window size manually; the
more robust approach, as with TCP and QUIC has adopted, is to develop a
mechanism to automatically adjust the window size as the protocol operates.
Such a mechanism would make the decision to increase or decrease the flow
control window based on various metrics such as per-packet RTT, segment
loss rate, or explicit receiver buffer state messages. A control law algorithm
such as additive-increase/multiplicative-decrease (AIMD) from TCP can then be
used to actually adjust the window size.

One of the important insight from Portals 4 [61] is that flow control events
i.e. receiver buffer overrun should map to an exceptional operation mode
of the programming interface, but nevertheless handled correctly and not
simply fail. This is also an important insight for sPIN, since the use cases
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that sPIN targets could not handle failure well. This prompts the addition of
a robust retransmission and error recovery mechanism in SLMP to serve the
applications on top of it reliably.

7.4 Parallelise Packet DMA and Scheduling

The current PsPIN two-level scheduler makes the decision of the destination
HPU of a packet in one cycle, thanks to the simple round-robin design.
However, the scheduler logic will get more complicated to implement future
fair scheduling requirements; it will also run at a higher clock frequency,
leading to a smaller per-cycle latency budget.

It is thus desirable to parallelise the scheduling decision with the ingress
DMA process (discussed in Section 3.2.1) the packet data to hide the schedul-
ing latency. This can be achieved by splitting the HER into two parts. The
first part would be issued to the scheduler as soon as the matching engine
generates the packet metadata; it contains information necessary for the
scheduler to start the scheduling decision (e.g. the ID of the matching ECTX).
The second part would be generated after the ingress datapath finished allo-
cating buffer space for the packet buffer and DMA-ing the packet data into
the buffer; the scheduler would then actually issue the task to the target HPU.
We anticipate that this design would yield the most benefit for a complicated
scheduler, in which case the scheduling latency can be hidden in the latency
of the ingress datapath.

7.5 Host Notification Queue Pair

The current flag-based host notification mechanism in FPsPIN largely resem-
bles a traditional queue pair between the host CPU and the sPIN NIC, with
the limitation of only allowing one notification from each HPU at a time.
While this limitation is acceptable with the synchronous host notification
interface as discussed in Section 4.2, it would not be with asynchronous host
notifications since newer notifications would then overwrite older ones that
are not yet consumed by the host. It is relatively easy to adapt the current
implementation by adding hardware RQ and CQs between the CPU and
HPUs. The change would not require changing the software interface, since
they already use push/pop semantics.

Another potential improvement is to allow streaming mapping of the host DMA
area. One common use of the host notification interface is to notify the host
about a complete message constructed in the host DMA area. However, the
host application will be limited in memory access performance to the DMA
area due to the current multiple-use DMA mapping. We could implement
another ring buffer that hands out oneshot buffers for the handlers to DMA
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into. The hardware needs to be changed to add the ring buffer and to allow
the HER generator to pop and use a new buffer from the ring buffer for every
new message; the buffer would be returned to the host to be deallocated later
when the HPU sends a host notification.

7.6 More Real-world Applications

In Section 6.3, we showcased the capabilities of FPsPIN through the ICMP
and UDP ping-pong, the MPI Datatypes, and the SLMP file transfer demos;
we found quite a bit of overlooked points in sPIN, of which we discussed in
length in Chapter 5. It would be more beneficial to have more sPIN-enabled
workloads ported to FPsPIN to further explore the practicalities of sPIN
and the FPGA demo, for example ProtoBuf [5] or distributed filesystems [6].
FPsPIN would also become the starting point for developing new sPIN
applications, which would further allow continuous improvement of the
system and standard.

7.7 Explore Functionalities from Corundum

Apart from the host DMA subsystem of Corundum that we used in FPsPIN,
it offers various other features that would be of interest to explore and
possibly integrate into the broader picture of sPIN. One instance is access to
memory other than the BRAM or URAM on the FPGA: some devices offer
High Bandwidth Memory (HBM) or DRAM attached to the FPGA that can be
utilised by the NIC. These could potentially be utilised as large scratch areas
for the offloaded tasks or extra packet buffer. Corundum also offers extensive
support for the Precision Time Protocol (PTP), which may enable fine-grain
profiling of the internal datapaths in Corundum.

7.8 Stability & Bug Fixes

While the FPsPIN system is complete in function for the demo applications
that we implemented and tested in Section 6.3, it is far from bug free. Ap-
pendix B.3 lists the current quirks in the system that required special handling
during the implementation and evaluation of the demo applications; they
should be resolved properly for stable operation of the system in large-scale
applications.
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8

Conclusion

“Begin at the beginning, ” the King said, very gravely, “and go on till you
come to the end: then stop.”

– Lewis Carroll, Alice’s Adventures in Wonderland

We set out to build FPsPIN as a faster evaluation platform for sPIN handlers
that could run the handlers faster than the cycle-accurate simulation from
PsPIN and provide a more complete programming model with host applica-
tions. We presented the detailed design and implementation of the hardware
(Chapter 3) and software (Chapter 4) components of the system. The suc-
cessful implementation and evaluation of the ping-pong, MPI datatypes, and
SLMP file transfer benchmarks (Chapter 6) shows that this goal has been
sufficiently achieved with FPsPIN.

Another important goal of building FPsPIN is to contribute insights and
feedback from actually building a sPIN NIC back to the sPIN specifica-
tion. We identified diverse potential improvements, including reliability
protocols, telemetry requirements, scheduler improvements, and many more
(Chapter 5). We believe that our feedback would help sPIN become more
comprehensive and realistic in achieving its vision for in-network-computing.

Our comprehensive evaluation of FPsPIN through the three benchmarks
systematically characterised its performance in latency, throughput, and
computation/communication overlap. We showed that FPsPIN achieved
stable latency advantage against the baseline host-only case in the ping-pong
demo (Section 6.3.1) and near-perfect overlap in the MPI datatypes demo
(Section 6.3.2). We also showed that the real-world throughput of FPsPIN
in the MPI datatypes benchmark leaves much to be expected compared to
the baseline speed test and synthetic SLMP file transfer demo (Section 6.3.3),
largely due to the low performance of the measly PULP cores currently used
by FPsPIN.
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8. Conclusion

This shortcoming in throughput provides an outlook of possible improve-
ments to FPsPIN through the integration of a better HPU core designed
for FPGAs (Section 7.1). Even more interestingly, it opens up possible fu-
ture research in HPU architecture on domain-specific acceleration in packet
processing (Section 7.2). We are excited to see future progress in this domain.
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Appendix A

Reproducing the Results

Alchemy. The link between the immemorial magic arts and modern science.
Humankind’s first systematic effort to unlock the secrets of matter by
reproducible experiment.

– John Ciardi, Good Words to You

We present in this appendix how to reproduce the artefacts as well as perfor-
mance measurements that we have presented in Chapter 6. Most procedures
that would take more than one command to finish have a script; we therefore
do not go into too much detail explaining the internals of the scripts. The
following repositories have been used throughout the project:

• pspin: 9225886259481853dac0a69c20c7b1ac0b74ce36

• corundum: 5351b5e2a66bc8d96b4cc49680baf28916fa1838

Note that corundum checks in pspin as a submodule. The following steps
assume that the submodule is set up correctly when cloning the repository.

A.1 Building the System

Hardware To build the FPGA bitstream to be flashed onto the VCU1525
board:

1 $ cd corundum/fpga/mqnic/VCU1525/fpga_100g/fpga_pspin/

2 $ source <path to vivado>/settings64.sh

3 $ make

This will take roughly 6 to 7 hours. The resulting fpga.bit is then ready
to be flashed onto the FPGA with Vivado. Note that you would need to
reboot the host PC which the FPGA board was plugged into to get the BARs
correctly recognised and allocated by Linux.
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You can read the synthesis log or open the resulting project in Vivado to
read out the timing and resource utilisation information as presented in
Section 6.2.

You will need a DAC cable to connect the two Ethernet ports on the FPGA
board to proceed; see Section 6.1 for more explanation.

Software The kernel modules can be built and installed with:

1 $ cd corundum/fpga/app/pspin/modules/mqnic

2 $ make && sudo make install

3 $ cd ../mqnic_app_pspin

4 $ make && sudo make install

Once they are installed, they will be loaded automatically if the system boots
with an appropriate bitstream programmed to the FPGA, or if you rescan the
PCIe bus manually:

1 $ sudo bash -c 'echo 1 > /sys/bus/pci/<pcie id>/remove'
2 $ sudo bash -c 'echo 1 > /sys/bus/pci/rescan'

This is useful if you reprogrammed the FPGA with a new bitstream and need
to reload the kernel driver.

The user-space library libfpspin.a will be compiled automatically when
you compile any of the utilities that depend on it.

Utilities Most of the utilities shipped with FPsPIN are scripts that do not
need compiling; however, the Python scripts require setting up a virtualenv

and installing all the dependencies:

1 $ cd $HOME

2 $ python3 -m venv fpspin

3 $ source fpspin/bin/activate

4 $ cd corundum/fpga/app/pspin/utils

5 $ pip install -r requirements.txt

6 $ make # compile the mem.c utility

The mqnic-fw utility offered by Corunudm is useful for programming the
serial peripheral interface (SPI) configuration flash on the FPGA board, booting
the device from the configuration flash, or performing a host reset of the
entire FPGA. To build it (and other utilities from Corundum):

1 $ cd corundum/utils

2 $ make
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A.2 Running the Experiments

To compile the FPsPIN handlers, you need the PULP RISC-V toolchain at
https://github.com/pulp-platform/pulp-riscv-gnu-toolchain. Clone
this and follow their instructions to install; after finishing you should have
riscv32-none-elf-gcc in your PATH available.

The four experiments, icmp ping, udp ping, slmp, and datatypes, follow
roughly the same procedure to acquire the data and plot them:

1 $ cd corundum/fpga/app/pspin/deps/pspin/examples/<experiment>

2 $ ./run_eval.sh

3 $ ./plot.py

The datatypes and SLMP benchmark run eval.sh scripts take arguments to
resume the experiment from a specific setup if the experiment is interrupted.
Read the script to get more information on this.

In the datatypes experiment, the machine may sporadically freeze due to
quirks mentioned in Appendix B.3 and may require the machine to be reset.
You can use the restart functionality built into the run script to restart parts
of the experiment.
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Appendix B

Debug Facilities

In conclusion, reading and writing a file from within the kernel is a bad,
bad thing to do. Never do it. Ever. Both modules from this article, along
with a Makefile for compiling them, are available from the Linux Journal
FTP site, but we expect to see no downloads in the logs. And, I never
told you how to do it either. You picked it up from someone else, who
learned it from his sister’s best friend, who heard about how to do it from
her coworker.

– Greg Kroah-Hartman, Driving Me Nuts–Things You Never Should Do in the
Kernel

A complex system like FPsPIN requires extensive debugging facilities for
diagnosing various issues. We briefly describe the mechanisms we have
developed for this purpose.

B.1 Hardware

One important facility to debug the internals of PsPIN is the Verilator cycle-
accurate simulation. While this was already available from [7], we imple-
mented a new interactive simulation mode that allows the simulation driver
to take action when it has received an outgoing packet from PsPIN. This is
used to simulate the SLMP flow control window in the datatypes application.

In case a suspected hardware issue is difficult to reproduce in simulation
(due to timing or the simulation taking too long), you can use the Xilinx
Integrated Logic Analyzer (ILA) to inspect signals in the design after it has been
implemented and programmed onto the FPGA. Please refer to the Xilinx
user manual UG936 [62] for more details.
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B.2 Software

A basic facility for debugging handlers on FPsPIN is with the stdout capture
as we have introduced in Section 4.2. The programmer can simply invoke
printf in the handler code and then use the cat stdout.py script to read it
back on the host. This facility can be used to implement assertions to check
runtime conditions.

The machine-mode exception handler implemented in the PsPIN runtime
will catch exceptions generated in the user space. It will print a message,
dump the registers in the state of when the fault happened, and hang the
faulting HPU for further investigation. The register dump and program
counter allow a programmer to locate the issue by comparing those with a
disassembly of the handler’s image. It is also possible to read and write to
NIC memory locations with the mem utility.

The Linux kernel has various facilities to debug a kernel panic, including the
netconsole that prints the kernel log a.k.a. dmesg to a remote host over the
network, and kdump that would dump the kernel’s core memory to disk in
the event of a crash. Please refer to the manual of your Linux distribution1

for more information.

B.3 Quirks & Workarounds

Here is a list of the known issues and quirks in FPsPIN that need attention
during operation:

• The stdout capture does not have flow control implemented. This
means that if multiple HPUs try to write a large amount of data to the
FIFO, some characters will be lost when captured on the host.

• The host kernel module, mqnic app pspin.ko, has a bug that might
cause a kernel panic if the driver is detached using mqnic-fw while an
ECTX is active. Please terminate all running ECTX’es before detaching
the driver.

• Due to unidentified bugs in the memory system of PsPIN, handlers
running on FPsPIN would occasionally experience memory corruption
or HPU hangs, leading to timeouts when polling for notifications in
the host application. As a workaround, the developer can reload the
ECTX without restarting the host application by calling fpspin exit

and then fpspin init.

• The FPsPIN ingress datapath does not correctly handle receive buffer
overruns correctly yet; a serious overrun may cause the NIC to stop

1The user guide from Ubuntu: https://ubuntu.com/server/docs/kernel-crash-dump
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receiving packets any more, even in bypass mode. Please use flow
control whenever possible to avoid this situation; otherwise, please use
the mqnic-fw utility to reset the whole device and start over.

• The machine may sporadically freeze at a very low level during the
datatypes experiment and has to be reset through a power cycle. We
suspect that this is due to one or multiple bugs related to low-level
PCIe operation in Corundum2.

• The design is hard to close timing due to the congestion issues we
described in Section 6.2. While the design would still work with a small
WNS, issues in PCIe link training might lead to delayed link training
and a long time for the device to appear to the host. If link training
fails to not complete before the host OS boots, a reboot will be needed
to enumerate the device properly.

2Upstream issue: https://github.com/corundum/corundum/issues/162
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express

PE processing element
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