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Propagating Sentinel-2 Top-of-Atmosphere
Radiometric Uncertainty Into Land Surface

Phenology Metrics Using a Monte Carlo Framework
Lukas Valentin Graf , Javier Gorroño , Andreas Hueni , Achim Walter , and Helge Aasen

Abstract—Time series of optical imagery allow one to derive
land surface phenology metrics. These metrics are only complete
with a statement about their uncertainty. A source of uncertainty
is the radiometry of the sensor. We propagated radiometric un-
certainties within a Monte Carlo framework into phenological
metrics using the TIMESAT approach based on time series of
the normalized difference vegetation index (NDVI), three-band
enhanced vegetation index (EVI), and green leaf area index (GLAI)
derived from radiative transfer modeling. In addition, we studied
the effect of propagated uncertainties on scene preclassification.
We focused on Sentinel-2 multispectral imager top-of-atmosphere
data since quantitative estimates of radiometric uncertainties are
available. Propagation was carried out for a growing season over an
agricultural region in Switzerland. Propagated uncertainties had
little impact on the classification except for spectrally mixed pixels.
Effects on the spectral indices and GLAI were more pronounced.
In detail, the GLAI was more uncertain due to the ill-posedness
of radiative transfer model inversion (median relative uncertainty
for all crop pixels and Sentinel-2 scenes: 4.4%) than EVI (2.7%)
and NDVI (1.1%). Regarding phenology, metrics exhibited largest
uncertainties in the case of GLAI. The magnitude of uncertainty in
the metrics depends on the interscene error correlation, which we
assumed to be either zero (uncorrelated) or one (fully correlated)
since the actual correlation is unknown. If uncertainties are fully
correlated, uncertainties in metrics are small (two to three days)
but take values up to greater ten days under the uncorrelated as-
sumption. Thus, our work provides guidance for the interpretation
of phenological metrics.
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I. INTRODUCTION

SATELLITE remote sensing is of paramount importance for
studying global environmental changes. More than four

decades of optical remote sensing have generated a wealth of im-
age and time-series data that have made a significant contribution
to the understanding of vegetation dynamics [1], [2], [3]. From
local to global scales, remote-sensing-based canopy greenness
proxies [4] and derived functional traits [5], [6] provide the
ability to quantify the effects of environmental factors on plant
physiology over time [7], [8], [9], [10]. Seasonal patterns of
remote sensing data of vegetation are mostly summarized under
the term “land surface phenology” (LSP [11]). LSP has been
extended to a set of metrics linking observed temporal changes in
the spectral properties of vegetation to distinctive physiological
transition phases [12]. Examples of these are start of season
(SOS) and end of season (EOS) [13], [14], which mark the
onset of the growing season after winter and its end, respectively.
Both the metrics have, therefore, been used intensively in agri-
cultural [15], [16], [17], [18], [19], forestry [7], [20], [21], [22],
and ecological studies [23], [24], [25], [26]. For agriculture, such
metrics are of increasing importance since different crops have
strongly differing phenologies. Partly, the phenology depends
on intrinsic properties of the crop. For example, winter wheat
often is sown in October in the northern hemisphere, whereas
maize or other summer crops are sown in spring. Moreover, field
management and environmental conditions (drought, hail, etc.)
affect the crops’ development, and the precise analysis of crop
phenology is an important tool for insurance assessments or for
decision support when it comes to management issues, such as
finding the right time for fertilization.

In the past, sensors, such as MOderate Resolution Imaging
Spectroradiometer (MODIS) or Advanced Very High Resolution
Radiometer were mainly used for LSP studies. These have a high
temporal but only a low spatial resolution (≥ 250 m), which
leads to spectral mixing effects [27] and lack of spatial detail.
With the Copernicus Sentinel-2 (S2) mission, in addition to
enhanced spatial resolution (up to 10 m), the twin constellation
of Sentinel-2A (S2A) and Sentinel-2B (S2B) has improved tem-
poral resolution remarkably (up to three days at midlatitudes),
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making S2 data a valuable data source for LSP studies and agri-
cultural applications [8], [10], [26], [28], [29]. The multispectral
imager (MSI) onboard the S2 satellites has 13 spectral bands,
ten of which are suitable for remote sensing of land surfaces.
By placing three spectral bands in the red edge, two bands
in the near infrared, and two short-wave infrared bands, the
S2-MSI instrument is suitable for vegetation studies [30], [31]
and the accurate derivation of plant ecophysiological traits, such
as the green leaf area index (GLAI). This extends vegetation
mapping capabilities beyond widespread spectral indices of
canopy greenness, such as the normalized difference vegetation
index (NDVI [32]) or the enhanced vegetation index (EVI [33]).
S2 data are, for instance, used operationally to derive the Coper-
nicus Pan-European High-Resolution Vegetation Phenology and
Productivity layer.1

Despite the clear importance and widespread use of remote
sensing data, our understanding of uncertainty in remotely
sensed products, such as LSP, is still poor albeit White and
Nemani [34] already stressed the lack of remote sensing un-
certainty estimates more than one decade ago. Furthermore, the
Quality Assurance Framework for Earth Observation endorsed
by the Committee on Earth Observation Satellites (CEOS),
which has recently been extended by a joint effort of ESA
and NASA [35], highlights the need for uncertainty assessment
of earth observation (EO)-derived products, such as LSP. Only
with a quantification of the sources of uncertainty (uncertainty
budget), traceable and complete data products can be generated
that allow users to evaluate the products for their fitness for
purpose and indicate the uncertainty of their own analyses. Here,
we focus on a source of uncertainty in LSP metrics derived from
S2-MSI data, which, to the best of our knowledge, have hardly
been considered so far: uncertainty in the top-of-atmosphere
(TOA) at-sensor-radiance values (Lat_sensor). Any remote sensing
product necessarily builds on TOA radiances. Uncertainties in
the radiometry are translated all the way down to the LSP
metrics and define the limits of the achievable uncertainty. Mittaz
et al. [36] concluded that no uncertainty propagation from raw
data to higher level products has been conducted so far along
an EO data processing chain. Moreover, the authors called for
advancing EO practice using approaches from metrologia. A
first step toward closing this gap is, therefore, taken with this
article on the propagation of radiometric uncertainty.

Radiometric uncertainty is influenced by a set of uncertainty
sources that derive from different contributions, including both
the instrument and the ground processing chain. Some of these
contributions include, for example, the instrument noise or the
solar diffuser used for onboard calibration [37]. In turn, these
contributions can affect pixel-based uncertainty with different
levels of correlation in the spatial, temporal, and spectral do-
mains [38]. Uncertainties of 0.1–1.5 K are known from remote
sensing of sea surface temperature [39], for example, while
relative radiometric uncertainties of up to 5% have been found
in remote sensing of ocean color due to random effects [40],
[41]. It is, therefore, reasonable to assume that uncertainties in

1[Online]. Available: https://land.copernicus.eu/pan-european/biophysical-
parameters/high-resolution-vegetation-phenology-and-productivity

the radiometry of S2-MSI, which take about 1–2% [38], also
have an impact on derived data products, such as LSP metrics.

The objective of this article is to propagate radiometric un-
certainty from S2-MSI TOA (L1C) data into LSP metrics (L3)
using widely used image processing resources focusing on an
intensively farmed agricultural study area in Switzerland for
a single growing season (see Section III). Swiss agriculture
operates with small field sizes (average farm size 2020: 21 ha)
of a larger number of crops next to each other. This high
diversity is difficult to manage, and satellite-based solutions
for management decision support are, therefore, urgently re-
quired. Spatial, temporal, and spectral uncertainty contributors
are propagated using a Monte Carlo (MC) framework as rec-
ommended in Supplement 1 to the Guide to the Expression
of Uncertainty in Measurement (GUM [42]) and implemented,
for example, by Gorroño et al. [38], [43]. Starting with the
L1C data, we propagate the radiometric uncertainty through the
atmospheric correction (AC) into bottom-of-atmosphere (BOA,
i.e., processing level L2A) reflectance factor values. From the
BOA reflectance factors, we derive the two most widely used
spectral vegetation indices (VIs): NDVI and EVI. Furthermore,
we estimate the ecophysiological development of plants using
GLAI, which we determine from the inversion of a radiative
transfer model (RTM). Based on the uncertainties in NDVI,
EVI, and GLAI, we construct vegetation time series and derive
SOS and EOS and their uncertainty in days. In addition, we test
the effect of propagated uncertainties on the scene classification
layer (SCL) output by the L2A processor. The complete method
outline is presented in Section IV followed by a presentation
(see Section V) and discussion of the results obtained (see
Section VI).

II. TERMS AND DEFINITIONS

To avoid ambiguity in terms, we provide definitions here: we
define the term “uncertainty” as the degree of doubt about the
reported TOA reflectance values, which is referred to as the
best estimate. “Error,” in contrast, is the difference between the
measured value and the true unknown TOA reflectance value and
splits into random and systematic components. Systematic errors
can be minimized by pre- and postlaunch calibration activi-
ties [44], while random errors can be suppressed by a sufficiently
large sample size. Residual, i.e., uncorrected random and sys-
tematic errors, contributes to the overall radiometric uncertainty
budget. Following the specification of the GUM, uncertainty
estimates represent a confidence interval for a given probability
distribution function (PDF) whose mean corresponds to the mea-
sured TOA reflectance value. Standard uncertainty is defined
as the interval around the mean of the uncertainty PDF that
provides a coverage of 68.27% (k = 1) of possible realizations.
In equations, we denote the standard uncertainty with the Greek
letter μ to be consistent with the GUM. All the findings in
this article are reported as standard uncertainties. To obtain
uncertainty values with a higher coverage factor k (i.e., multiple
standard deviations), the uncertainties must be multiplied by k,
for example, to obtain uncertainties for k = 2 used in instrument
certification.

https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-vegetation-phenology-and-productivity
https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-vegetation-phenology-and-productivity
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Fig. 1. (a) Map of the study area with the field parcel geometries buffered 20 m inward and their main crop types in 2019. (b) Location of the S2 tile T32TMT
and the study region in Western Europe.

III. STUDY AREA AND DATA

A. Study Area

We selected an intensively farmed study area located around
the agricultural research station at Eschikon (8.69E, 47.45N)
operated by ETH Zürich, northeast of the city of Zürich, Switzer-
land (see Fig. 1). The study area is bound by a square with
an approximated area of 100 km2 [see Fig. 1(a)]. With an
average annual precipitation of 1241 mm and an air temperature
of 10.1 ◦C (reference period 2004–2022, based on a weather
station2 located at Strickhof-Lindau placed in the northwestern
part of the study area), the study region is representative not
only for cropping conditions in the Swiss Central Plain but
also for geographically adjacent areas in Central and Western
Europe.

A crop-type map showing the main crop per field parcel
for the year 2019 was available from the administration of the
canton of Zürich. The parcel boundaries and their crop type are
shown in Fig. 1(a). To avoid spectral mixing effects at the parcel
boundaries, all the geometries were buffered 20 m inwards.
Parcels too small for the buffering operation were dropped from
the database. In total, 2021 field parcels with nine different crop
types and two types of grassland were available. Most parcels
are small; the median parcel size was about 0.19 ha (0.44 ha
on average). Table I shows the approximate area per crop type
in hectares with winter wheat (228.8 ha) occupying the largest
area.

B. Data

We acquired 34 S2-MSI TOA scenes (L1C product) over the
study area [S2 granule 32TMT, Fig. 1(b)] from the Data and

2[Online]. Available: https://www.agrometeo.ch/

TABLE I
AREA PER CROP TYPE IN HECTARES IN THIS STUDY AFTER BUFFERING ALL

THE FIELD PARCELS 20 M INWARD TO AVOID SPECTRAL MIXING EFFECTS

Information Access Service (DIAS) CREODIAS3 covering a
time period from February 1 to October 15 2019. All the scenes
had a scene-wide cloud coverage of ≤ 20%, which was used
as a filtering criterion. This threshold is lower than reported in
the literature for phenology retrieval. It was chosen to ensure
that cloud and shadow contamination did not affect uncertainty
propagation. Fig. 2 shows the S2 scenes used and their cloudy
pixel percentage derived from the metadata. The spacecraft
(S2A or S2B) are denoted as blue and red dots, respectively. The
PDGS (S2 Payload Data Ground Segment) processing baseline
of the S2 scenes was 02.07 (N0207) for all the scenes before July
16 2019, and 02.08 (N0208) after that date. According to the

3[Online]. Available: https://finder.creodias.eu/

https://www.agrometeo.ch/
https://finder.creodias.eu/
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Fig. 2. S2 scenes used plotted against their scene-wide cloudy pixel percentage. Red dots denote observations made by S2B, and blue dots represent S2A scenes.
The two different PDGS processing baselines are separated by the gray dashed line.

technical guide,4 the change in baseline only affected the
formatting of the instrument telemetry metadata. Therefore, we
do not assume an impact of the baseline change on radiance
values.

IV. METHODS

In the following, the manuscript is structured along the work-
flow in Fig. 3. Fig. 3 shows the entire radiometric uncertainty
propagation chain—starting from the L1C TOA S2 scenes to
uncertainties in the LSP metrics (CEOS processing level L3).
The individual steps from Fig. 3 are explained in detail in
the following Sections IV-B–IV-E. Complementary to the un-
certainty propagation workflow, the total uncertainty budget
of the LSP metrics is shown in an uncertainty tree diagram
in Fig. 4. The diagram visualizes the context the radiometric
uncertainty propagation chain is embedded into, as explained in
Section IV-A.

A. Uncertainty Tree Diagram

Uncertainty tree diagrams represent the uncertainty budget
of a measurement and trace back sources of uncertainty to

4[Online]. Available: https://sentinels.copernicus.eu/web/sentinel/technical-
guides/sentinel-2-msi/processing-baseline

their causing effects [36], [45]. Uncertainty tree diagrams are
complementary to workflow illustrations, such as the one in
Fig. 3 depicting the origin and entanglement of uncertainties.
Fig. 4 shows an uncertainty tree diagram for the LSP metrics.
Starting from the final product (LSP metrics in the large blue box
in Fig. 4), sources of uncertainty are plotted along paths. Partial
derivatives represent sensitivity coefficients. For example, ∂LSP

∂NDVI
represents the sensitivity of uncertainty in the LSP metrics to
uncertainty in the NDVI. Sources of uncertainty that cannot be
quantified at this time are included in the total budget with μ(0),
i.e., these contributions are set to zero, although their actual
contribution is most likely > 0.

Uncertainty in the LSP metrics depends not only on the
parameterization of the time-series model (light blue colored
parts in Fig. 4) but also on uncertainties in the spectral indexes
(EVI or NDVI) or biophysical parameters (GLAI, pink colored
parts in Fig. 4) used. Here, it should be noted that EVI, NDVI, and
GLAI are alternative ways to derive the LSP metrics. All these,
in turn, depend on the uncertainty in the L2A product, which
includes uncertainties in the L2A BOA reflectance factors, as
well as the resulting uncertainties in the scene preclassification
(green colored parts in Fig. 4). The uncertainty in the L2A
product ultimately results from the uncertainty in the L1C TOA
reflectance factors (dark blue parts in Fig. 4). Their uncertainty
can be determined by means of the S2 Radiometric Uncertainty

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/processing-baseline
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/processing-baseline
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Fig. 3. Overview of the workflow for uncertainty (µ) propagation. (a) Using the S2 RUT, radiometric uncertainties are propagated from TOA reflectance factors
through AC into NDVI, EVI, and GLAI as well as SCL uncertainty in a first MC framework working on single S2 scenes. (b) Multiple (n) S2 scenes acquired
over an entire growing season are processed to obtain LSP metrics from a trait (e.g., NDVI) time series. Uncertainties obtained in the first MC framework are fed
into (b) for a second MC sampling to derive LSP uncertainty. Interscene (i.e., multitemporal) error correlation is set to (c) full correlation and (d) zero correlation
to include two possible extreme cases for LSP uncertainty retrieval.

Toolbox (S2-RUT, [37], dashed border in Fig. 4, upper left).
The uncertainty sources shown in the S2-RUT include effects
whose uncertainties are, thus, propagated through the entire EO
processing pipeline.

Besides the radiometric uncertainty propagation path, there
are other effects that contribute uncertainties to the uncertainty
budget of the LSP metrics. Examples are uncertainties in the
GLAI retrieval due to uncertainty in the RTM used or the
uncertainty of the AC in the L2A data. Therefore, all the con-
tributions except the radiometric uncertainty derived from the
S2-RUT are set to zero, since the quantification of the other
uncertainties is far beyond the scope of this article (see also
Section VI-C).

B. S2 Radiometric Uncertainty

We calculated the pixel-based uncertainty in the S2 TOA
reflectance factor values using the S2-RUT, which is an exten-
sion to the Sentinels Application Platform. The S2-RUT takes
an S2 L1C product as input and returns the relative standard
uncertainty of each implemented contributor for each pixel in
each spectral band in its native spatial resolution [see Fig. 3(a)].
Overall, 11 uncertainty contributors were considered (see Fig. 4,
dashed box in the top left corner) based on [38]. Other sources
of error in the PDGS process chain, at the end of which is the
L1C product, were not considered, such as polarization error
(denoted byμ(0) above the “PDGS” box in Fig. 4). For a detailed
explanation of the error sources used in the S2-RUT, as well as
the effects of those not considered, the reader is referred to [37]
and [38].

C. MC Simulation of S2 TOA Reflectance Factors

To convert the radiometric uncertainty obtained per spectral
band and contributor from the S2-RUT into higher level prod-
ucts, we implemented an MC framework for error propagation
working on single S2 scenes [seeFig. 3(a)]. The goal is to
generate L1C TOA reflectance factor scenarios from random
samples, which include the determined radiometric uncertainty
and the known error correlations in the spectral, spatial, and
temporal domains. The domains differ in their definition from
the common remote sensing terminology, except for the spectral
domain. The spatial component comprises the pixels along a
scan line of the MSI detector array. This domain corresponds
to the across-flight direction, which is approximately east–west
direction. The temporal domain, in turn, denotes consecutively
scanned lines along the sensor flight direction, i.e., approxi-
mately north–south direction (see also Section II).

The MC-derived error in a single pixel i from uncertainty
contributor j in MC iteration (scenario) t (δt,j,i) is a linear
combination of uncorrelated (δucorr_i) and correlated (δcorr_i)
error terms

δt,j,i = (1− α) · μRUT
j,i · xucorr

t,j,i + α · μRUT
j,i ∗ xcorr

t,j . (1)

The left-hand side of (1) denotes the uncorrelated error term,
where μRUT

j,i is the pixel-based uncorrelated radiometric uncer-
tainty (see Section IV-B) and xucorr

t,j,i is a sample drawn from a
Gaussian N (0, 1) or uniform U(−1, 1) distribution for each
contributor j. The right-hand side denotes the correlated error
term, where a single sample xt,j is drawn for all the pixels
and scaled by the S2-RUT derived uncertainty. The correlation
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Fig. 4. Uncertainty tree diagram of uncertainty in LSP metrics derived from multitemporal S2 data (blue box). Processing levels defined by the CEOS are
color-coded starting at L1C (dark blue) and ending at the LSP metrics (L3). Partial derivatives represent sensitivity coefficients showing how uncertainty propagates
from certain source effects into the end product. Uncertainty contributors not considered in this study are indicated by µ(0).

coefficient α takes values between 0 and 1, where α = 0 means
that the error is completely independent. When α is 1, then
an error is fully correlated between pixels and spectral bands.
The values for α within the three domains for the single uncer-
tainty contributors are based on correlation coefficients reported
by [38, Table I].

While the MC framework is rather easy to implement, a
sufficiently high number of realizations (scenarios) are essential
to obtain reliable results. Running Sen2Cor on a single scene
took approximately 15 min on a powerful workstation running
under Linux Fedora 34 (16 Core AMD Ryzen Threadripper PRO
3955WX 3.9 GHz, 128-GB DDR4 3200 MHz, SSD drives).
To determine the necessary number of scenarios in the MC
framework, we selected three S2 scenes at different times of
the year and created 1000 L1C scenarios for each of the scenes
using the aforementioned MC framework. Then, we applied the
image processing chain (see Section IV-D). Next, we calculated
the uncertainty in each of these variables. We started calculating
the uncertainty using two scenarios and iteratively increased the
number of scenarios up to 1000. Then, we plotted the retrieved
absolute uncertainty values (per target variable and different crop
types) against the number of scenarios considered. We deter-
mined a number of 300 scenarios as an optimum threshold after
which the derived uncertainty converged against a fixed value.

D. S2 Processing Chain

Each L1C TOA scenario is processed using classical remote
sensing image processing, which underlies most LSP studies.
First, AC is performed to minimize atmospheric influences.
The atmospheric-corrected data are then used in a second step
to determine the NDVI, EVI, and GLAI [see Fig. 3(a)]. The
standard deviation of these across all the scenarios of an S2
scene gives its standard uncertainty (k = 1). This is determined
from all the scenes and used to generate time-series scenarios
from which the LSP metrics are calculated. Besides AC, all
the processing steps were carried out using the open-source
Python Earth Observation Data Analysis Library [46]. The
code required to rerun the uncertainty propagation chain and
subsequent is available publicly under GNU 3.0 license.5

1) Atmospheric Correction: All the scenes and their MC
scenarios in L1C processing level were converted to BOA (L2A)
reflectance factors using Sen2Cor v2.9 [47], [48]. While there
are many software packages available for AC of S2 scenes, we
selected Sen2Cor because it is integrated by the operational
Copernicus S2 ground segment and some of the DIAS platforms.

5[Online]. Available: https://doi.org/10.5281/zenodo.6669854

https://doi.org/10.5281/zenodo.6669854
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TABLE II
KEY CROP GROWTH PERIODS DEFINED BASED ON AGRONOMIC KNOWLEDGE TO CONSTRAIN THE TEMPORAL RANGE CONSIDERED PER CROP TYPE BETWEEN A

START AND END DATE (YYYY-MM-DD)

In addition, the widely used Google Earth Engine [49] platforms
provide Sen2Cor-processed S2 L2A data.

It is important to note that we used the default configuration
of Sen2Cor for all runs. Thus, we propagated the radiometric
uncertainty through the AC without introducing uncertainty
of the AC itself (see Fig. 4). Therefore, we do not further
address the uncertainties of the AC and its parameters (water
vapor and aerosol optical depth). Quantifying the uncertainty
of the AC itself is a complex task far beyond the scope of this
article. Currently, a follow-up paper describing AC uncertainty
quantification is in preparation by Gorronõ et al. The source
code is already available online.6

2) Uncertainty of the SCL: For each L1C MC scenario, an
SCL result is available after AC (see Section IV-D1). Again,
we focus on the effect of propagated radiometric uncertainty
and do not consider, e.g., the design and parameterization of the
classifier.

For each MC scenario of an S2 scene, the percentage of
pixels belonging to one of the 12 SCL classes was computed.
Then, the mean and standard deviation across all MC scenarios
of a scene was calculated per SCL class giving a quantitative
estimate how radiometric uncertainty influenced the number of
pixels belonging to a certain class. In addition, for each pixel,
a confidence score Ci was provided for the SCL class i the
majority of the MC runs (N = 300) voted for. A confidence
score of 100% for SCL class i of a pixel indicates that all N MC
scenarios had the same SCL class, whereas lower percentages
indicate that a certain share of j (0 ≤ j ≤ N ) MC scenarios
resulted in different SCL classification outputs

Ci =
N − j

N
. (2)

3) VIs and Parameters: Using the Sen2Cor-derived L2A
BOA reflectance factors, we calculated two widely used spectral
VIs, which were recently reported to have been used in more
than 80% of 445 LSP studies [2]. Using the SCL product,

6[Online]. Available: https://www.researchgate.net/publication/371653323_
A_software_tool_for_the_estimation_of_uncertainties_and_spectral_error_
correlation_in_Sentinel-2_Level-2A_data_products

pixels were masked if not classified as Class 4 (vegetation) or 5
(nonvegetated, linked to bare soil and brown vegetation).

The most common index is the NDVI [32], which is sensitive
to canopy greenness. We calculated the NDVI using S2 bands
B04 (red) and B08 (near-infrared), which both have a spatial
resolution of 10 m

NDVI =
B08−B04

B08 +B04
. (3)

In addition, we calculated the three-band EVI [33] that uti-
lizes the blue band (B02) in addition (spatial resolution 10 m).
In contrast to the NDVI, the EVI is less prone to saturation
effects for high biomass values and has reduced sensitivity to
background and atmospheric effects. However, this comes at the
price of empirical coefficients, which are an additional source
of uncertainty (see Fig. 4, denoted as “representativeness of
model”)

EVI = 2.5
B08−B04

B08 + 6B04− 7.5B02 + 1
. (4)

Both the NDVI and the EVI are canopy greenness proxies
whose development is linked to changes in plant physiology [8],
[50]. The NDVI and EVI take values between −1 and +1. The
higher the value, the more green (i.e., healthy) vegetation is.

For GLAI retrieval, we developed a lookup table (LUT)-based
inversion approach of the four-stream RTM PROSAIL [51]
using PROSPECT-D as leaf model [52]. We created a large LUT
for each S2 scene with 50 000 entries using a Latin hypercube
sampling scheme. The range of input leaf and canopy parameters
were limited to upper and lower bounds suggested by Danner
et al. [53]. Sun and observer angles were set to scene-specific
values. By comparing the PROSAIL-simulated S2 BOA spectra
in the LUT with satellite observations by means of the root-
mean-square error (RMSE), we retrieved the LAI as the median
of the 100 best-fitting solutions.

As with the previous steps in the processing chains, there are
further sources of uncertainty that cannot be addressed within
the scope of this work: PROSAIL, for instance, has an inherent
uncertainty, while the size of the LUT as well as the underlying
sampling strategy most likely has an influence on the inversion

https://www.researchgate.net/publication/371653323_A_software_tool_for_the_estimation_of_uncertainties_and_spectral_error_correlation_in_Sentinel-2_Level-2A_data_products
https://www.researchgate.net/publication/371653323_A_software_tool_for_the_estimation_of_uncertainties_and_spectral_error_correlation_in_Sentinel-2_Level-2A_data_products
https://www.researchgate.net/publication/371653323_A_software_tool_for_the_estimation_of_uncertainties_and_spectral_error_correlation_in_Sentinel-2_Level-2A_data_products
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Fig. 5. Example GLAI time series from a single pixel in daily resolution (blue solid line) derived from raw GLAI values (blue dots) showing SOS (gray solid
line), EOS (gray dashed line), and LOS (red horizontal line) for a single sunflower pixel using a threshold of 20% seasonal amplitude (bold vertical red line). The
area colored in cyan between the GLAI curve and the LOS line represents the actual growing season.

result like the inversion strategy itself. Likewise, another RTM
could have been used instead of PROSAIL. These effects are
denoted with μ(0) in Fig. 4.

4) Time-Series Generation and Phenology Extraction: For
each crop, growing periods were defined based on agronomic
knowledge, since the period studied (February to October) is
longer than the growing period of most of the crops consid-
ered. For example, winter wheat and barley are harvested in
Switzerland by mid to late July at the latest, whereas maize
or soybean are not sown before mid-April. Therefore, S2 ob-
servations before or after the main crop growth period were
discarded. Table II shows the chosen crop growing periods
for all crop types available. In addition to agronomic knowl-
edge, start and end dates were adjusted manually based on
S2 data availability (see Fig. 2) to ensure that sufficient data
points were available at the beginning and end of the growing
season.

For the time-series analysis, an approach based on the widely
used TIMESAT software [54] (v3.3) was chosen, which ensures
the comparability of this work with other LSP studies [see
Fig. 3(b)]. We used the Python package “phenolopy” available
under Apache-2.0 license that implements the TIMESAT v3.3
approach in Python [55]. Subsequently, a simple outlier de-
tection was performed with a moving median with a window
width of five subsequent observations. Data points that deviate
more than the user-defined cutoff value from the median of the
window and are also smaller than the mean of the immediate two
neighbors minus the cutoff value are identified as outliers. In this
case, the cutoff value was set to two standard deviations. The
remaining data points were interpolated linearly to obtain daily
values. The outlier removal was applied after filtering by SCL.
Overall, the number of outliers can be considered low (≤ 10% of

all data points), since mainly cloud-free scenes were used. In a
further step, the time series was smoothed with a Savitzky–Golay
filter [56], using a window size of 11 days and a first degree
polynomial. Savitzky–Golay is a widely used method in remote
sensing studies for smoothing time series [57], [58], [59]. Again,
the uncertainty arising from the outlier removal and curve fitting
is denoted with μ(0) (see Fig. 4).

The LSP metrics SOS and EOS were calculated using a
20% threshold in seasonal amplitude. The seasonal amplitude
is defined as the difference between the maximum value of
the time series and a baseline. The baseline is given by the
mean value of the minimum before and after the maximum
of the time series. The SOS is the date when the time series
reaches 20% of the amplitude and the EOS is the date when
the time series falls below this value after the maximum for
the first time [2], [60]. The length of season (LOS) can be
calculated as the difference between the timing of SOS and
EOS in days. Of course, the choice of seasonal amplitude is
also a source of uncertainty which we set to zero in this study
(see Fig. 4).

Fig. 5 exemplifies the concept of the seasonal amplitude for
a single sunflower pixel in the study area. The blue dots denote
the raw GLAI values derived from ProSAIL, whereas the blue
solid line shows the result after outlier removal and smoothing
using Savitzky–Golay in daily resolution.

E. Time-Series Scenarios

The methodology described in Section IV-D4 was embedded
into a second MC framework [see Fig. 3(c) and (d)] to generate
time-series scenarios. MC sampling was performed to create the
time-series scenarios (N = 1000) for propagating radiometric
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Fig. 6. (a) RGB L1C TOA true-color composite, (b) SCL majority vote, and (c) SCL class assignment confidence scores for an S2A scene acquired on May
30, 2019. The more greenish the color in (c), the higher the confidence score and the lower the uncertainty. A small-scale detail plot [red rectangle in (a)–(c)]
highlighting the higher uncertainties at class boundaries is depicted in (d)–(f).

uncertainty into LSP metrics. Pixel time series were generated
using the original EVI, NDVI, and GLAI values and their
uncertainty derived from Section IV-D3.

For scenario generation, two different types of error correla-
tion (see also Section IV-C) were assumed. Since it is currently
unknown to what extent systematic effects have an impact be-
tween the individual S2 scenes, two different approaches were
run, reflecting the two possible extreme cases:

1) full correlation (α = 1) between the S2 scenes, i.e., the
determined uncertainty in the VIs or the GLAI affects all
dates equally per pixel [see Fig. 3(c)];

2) zero interscene correlation (α = 0) where the single S2
scenes are completely uncorrelated and the uncertainties
of the dates of a pixel are, thus, stochastically independent
[see Fig. 3(d)].

Errors can be correlated due to systematic effects such as
straylight during the sensor (re)calibration. Instrument noise or
analog-to-digital quantization, in turn, are uncorrelated between
scenes and, therefore, favor the uncorrelated assumption.

V. RESULTS

A. SCL Uncertainty

Radiometric uncertainty imposed uncertainties in SCL class
assignment. Fig. 6 shows a true color representation of the study

area taken by S2A on May 30, 2019 [see Fig. 6(a)] and the
corresponding SCL calculated from the majority vote of all
300 MC realizations [see Fig. 6(b)]. Fig. 6(c) shows that the
SCL class membership was mostly close or equal to 100%, i.e.,
the pixel-based classification was the same in all 300 scenarios.
In particular, areas with homogeneous spectral properties, such
as vegetated areas, but also the central regions of the cumulus
clouds and their shadows had a high confidence (100%), thus
a low classification uncertainty. At the transition area of two
classes, e.g., at the transition from cloud to cloud shadow or
cloud shadow to vegetation, lower confidence values (smaller
than 48% in some cases) and thus higher uncertainty due to
spectral mixing effects caused by the spatial resolution of 20 m
of the SCL product and adjacency effects were shown. This is
clearly evident from the small-scale detail plot in Fig. 6(d)–(f).
Depending on the cloudiness of a scene the relative number of
pixels where the class assignment confidence was <100% was
88.2% (2019–05–30, cloudy pixel percentage: 17%) to 94.6%
(2019–06–19, cloudy pixel percentage: 0.6%).

Throughout the entire season, average class confidence was
highest for vegetation (99.3± 0.8%), clouds with high proba-
bility (96.4± 1.7%), nonvegetated pixels (95.9± 1.7%), and
thin cirrus (95.6± 3.8%) followed by clouds with medium
probability (92.0± 2.3%). Also, the water (95.1± 1.8%), un-
classified (91± 2.4%), and dark area pixel class (93.3± 2.2%)
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TABLE III
MEAN PERCENTAGE OF PIXELS FOR SELECTED SCL CLASSES ± STANDARD DEVIATION DERIVED FROM 300 MC REALIZATIONS FOR FIVE S2 SCENES

Fig. 7. Kernel density based distributions of MC-derived relative uncertainty values in EVI (left), NDVI (middle) and GLAI (right) considering all available crop
pixels and S2 scenes excluding pixel observations not classified as “vegetated” (SCL class 4) or “nonvegetated” (SCL class 5). Contributions to relative uncertainty
per crop type are color coded. To improve readability, the x-axis has been log-scaled.

scored high on average. These classes, however, were less
abundant in the S2 scenes (see, for instance, Fig. 6). Cloud
shadows (84.9± 2.6%) had the lowest average confidence
score.

Looking at the relative uncertainty in the percentage of pixels
(%) assigned to an SCL class per S2 scene, we noted cloud
classes (medium and high probability) to have a higher relative
uncertainty of up to 4% than vegetation (≤ 0.1%) and bare soil
(≤ 1.5%). Table III shows the uncertainty in the relative number
of pixels per class in relation to all S2 pixels (360 000 pixels,
20-m spatial resolution) for five selected scenes including the
scene from May 30 (see Fig. 6). The complete table can be
found in Table IV in the appendix. The scenes were selected to
represent different important times in vegetation development,
such as the end of winter dormancy, advanced spring, early and

mid-summer, and incipient fall. Pixels from one of the two cloud
classes often only change from medium to high cloud probability
and vice versa, whereas vegetation pixels are classified as cloud
shadows in some scenarios. This is significant because unrecog-
nized cloud shadows are among the main causes of outliers in
vegetation time series.

B. NDVI, EVI, and GLAI Uncertainty

Fig. 7 shows the kernel-density-based distributions of MC-
derived relative uncertainty values for EVI (left), NDVI
(middle), and GLAI (right) per crop type (color-coded). All
pixels marked as SCL class 4 (vegetated) or 5 (nonvegetated)
have been included. To improve readability, the x-axis in Fig. 7
has been log-scaled.
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Fig. 8. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as winter wheat (228.8 ha).
For each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow
based on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatiotemporal variability in the actual EVI, NDVI, and GLAI derived
from the S2 scenes. In the mid row, the absolute uncertainties derived from the MC simulations are depicted. The bottom row shows the uncertainties in relative
terms.

Overall, NDVI was less uncertain than EVI. The spectral
indices exhibited lower relative uncertainties than GLAI. More-
over, uncertainty distributions of EVI and NDVI revealed a
narrow spike and delta-like shape with little dispersion, while the
maximum of the uncertainty distribution in GLAI was flatter and
less pronounced. The distribution of NDVI relative uncertainties
(see Fig. 7, middle) showed a sharp peak for all crop types
between 0% and 1%. Values greater than 10% did not occur.
Median uncertainty in NDVI for all crops was about 1.1%
ranging from 0.8% for permanent grassland to 2.4% for potato.
In contrast, the uncertainties in EVI were slightly higher (see
Fig. 7, left) as the spike was shifted in positive x-direction.
In detail, the maximum of the EVI uncertainty distribution
laid between 1% and 10%. Median uncertainty in EVI for
all crops was about 2.7%, ranging from 2.4% for permanent
grassland to 3.8% for potato. Isolated outliers, however, as-
sumed uncertainties larger than 10%. GLAI (see Fig. 7, right)
exhibited a higher share of uncertainty values greater than 10%,
while the peak of the distribution was located between 1%
and 10%. The median of the uncertainty distributions for all
crops was about 4.4% ranging from 4.1% for extensively used
grassland to 5.0% for potato, which is again the crop with highest
uncertainties.

For all crop types, the relative uncertainty was lowest when
the canopy was greenest (high EVI or NDVI values) or reached
the largest leaf area values (GLAI). Fig. 8 shows the spatiotem-
poral variability in observed EVI, NDVI, and GLAI values and
their uncertainties for winter wheat (228.8 ha). In the top row in
Fig. 8, the median (blue line), central 50% (red fill), and central
90% percentile (orange) of all pixels not classified as cloud,
cirrus, cloud shadow or snow was shown for each S2 scene.
In the same way, the MC-derived absolute uncertainties were
displayed in the mid-row of Fig. 8 alongside relative uncertainty
values in the bottom row. Plots for the other crops were available

in the Appendix (see Figs. 12–21) as well as pixel time series
from randomly selected pixels (see Fig. 13).

Throughout the growing season, median EVI (see Fig. 8,
upper left) showed a moderate increase through spring until
maximum EVI values were reached in early June. This increase
was followed by a steeper decline to median EVI values below
0.2 at the end of July. Subsequently, the median EVI increased
again. A similar picture was shown in median NDVI (see Fig. 8,
top center), which started with higher values (between 0.7 and
0.5) and remained almost constant at a high level (median NDVI
> 0.8) indicating saturation between mid-April and the end of
June. GLAI (see Fig. 8, upper right) showed low values at the
beginning of the growth period (median GLAI around 1 m2 m−2)
and a maximum (4.5 m2 m−2) at the beginning of June. The
gradient before and after this maximum was more symmetrical
than for EVI and NDVI.

Absolute uncertainties of the winter wheat pixels (see Fig. 8,
middle row) showed a temporal pattern, which partly re-
flected vegetation development. In the case of EVI (left), the
absolute uncertainties decreased first and increased moderately
until the end of June (median uncertainty at the beginning of
June about 0.019). Consistent with the EVI values, the uncer-
tainty reached a minimum at the end of July (median about
0.0075) and then increased again. In NDVI (middle), absolute
uncertainties decreased steadily, reaching a minimum in early
June (median uncertainty around 0.005) and then increasing
again, reaching lower values than at the beginning of the growing
season (around 0.009). The GLAI (right) showed a different
behavior: The absolute uncertainty curve increased similarly to
the median GLAI values from 0.05 m2 m−2 in February to the
beginning of June (around 0.17 m2 m−2 median uncertainty)
and then decreased to values lower than 0.05 m2 m−2 in August.
From September on-wards, the uncertainties increased again.
The spatial variability of the absolute uncertainties was also
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Fig. 9. Kernel-based relative uncertainty distributions in SOS for EVI (left column), NDVI (middle column), and GLAI (right column) color-coded by crop type.
The top row shows the results of the MC runs with zero interscene correlation; the bottom row the results assuming full interscene correlation.

variable over time. Moreover, the spatial variability in abso-
lute uncertainty was lowest in NDVI and EVI, followed by
GLAI.

Relative uncertainties (see Fig. 8, bottom row) were lowest in
NDVI, followed by EVI. Regarding NDVI, the median relative
uncertainty was constantly below 5% and reached the 1% mark
at the end of May. At this stage, the S2 band B08 dominated
the ratio [see (3) and (4)]. The spatial variability of the relative
uncertainty of NDVI was largest at the beginning of the growth
period (February to the end of March) and declined to less than
1% until the beginning of July. The spatiotemporal pattern of
relative uncertainty in EVI was similar, but relative uncertainties
were higher on median than in NDVI and exceeded the 5% mark
in August. In GLAI, the relative uncertainties were consistently
higher than in the spectral indices, and median values were
around the 5% mark. The spatiotemporal pattern was less evident
in GLAI than in the spectral indices and did not show a clear
decrease as the growth period progresses.

C. LSP Metrics Uncertainty

1) Start of Season: Relative standard uncertainty distribu-
tions for SOS are shown in Fig. 9 color-coded by crop type. The
top row denotes the results when the interscene correlation is
set to α = 0, whereas the bottom row shows the results for full
interscene correlation (α = 1). Overall, the assumption of zero
interscene correlations causes SOS uncertainties to be clearly
higher and more dispersed than in the case of full interscene
correlation.

In zero interscene correlation (see Fig. 9, top row), the uncer-
tainty distributions showed two distinct properties for all crop

types and time-series sources. First, the uncertainty distributions
showed a peak shifted from zero in the magnitude of two to
five days. Median uncertainties ranged from one (NDVI in
Soybean and GLAI in Potato) to eight days (EVI in rapeseed
and sunflower). Second, a secondary, although less pronounced,
peak with a maximum around 60 days was apparent in all three
plots. In contrast to the more pronounced main peak, which had
a steep right flank, the secondary peak had very flat shoulders
that taper off to uncertainties of 80 days and greater.

In full interscene correlation (see Fig. 9, bottom row), only a
single peak at 0 was evident, which was accompanied by a very
steep right slope. The median uncertainty was less than one day
except for the grasslands and sunflower in the GLAI, where
the median was one day. 95% of all uncertainty values were
between 24 days (EVI in potato) and 59 days (NDVI in extensive
grassland, winter wheat, and silage maize). The second peak,
which was evident in the uncorrelated case, was also evident
here, although it was much less pronounced and had a maximum
between 40 and 50 days.

2) End of Season: Analogous to SOS, the propagated uncer-
tainty in EOS is shown in Fig. 10. As for SOS, the uncertainty
in the fully correlated case (see Fig. 10, bottom row) was
clearly smaller than in the uncorrelated case (see Fig. 10, top
row).

The uncertainty distribution in the uncorrelated case (see
Fig. 10, upper row) showed a singular peak, which had a
maximum between two and 20 days depending on crop type
and time-series source. The median uncertainty varied between
two days (GLAI in winter barley) and 16 days (EVI in soy-
bean). The secondary peak evident in SOS (see Fig. 9) was not
present. It follows that 95% of the uncertainty values ranged
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Fig. 10. Kernel-based relative uncertainty distributions in EOS for EVI (left column), NDVI (middle column), and GLAI (right column) color-coded by crop
type. The top row shows the results of the MC runs with zero interscene correlation; the bottom row the results assuming full interscene correlation.

Fig. 11. Kernel-based relative uncertainty distributions in LOS for EVI (left column), NDVI (middle column), and GLAI (right column) color-coded by crop
type. The top row shows the results of the MC runs with zero interscene correlation; the bottom row the results assuming full interscene correlation.

from 45 days (GLAI in sunflower) to 101 days (NDVI in silage
maize).

Under the fully correlated assumption (see Fig. 10, bottom
row), the uncertainty distributions showed a sharp peak at zero
with a very steep right shoulder. EOS uncertainties were on
median smaller than one day in all cases. The 95% percentile
values ranged from zero days in the case of potato from EVI to

51 days for the same crop in GLAI. GLAI 95% percentiles were
significantly higher for all crops than in the case of NDVI and
EVI.

3) Length of Season: Uncertainty in LOS (see Fig. 11) re-
flected shifts in SOS and EOS due to propagated uncertainties.
Again, in the fully correlated case (see Fig. 11, bottom row),
uncertainties were low, and hence, the number of days the



GRAF et al.: PROPAGATING SENTINEL-2 TOA RADIOMETRIC UNCERTAINTY INTO LAND SURFACE PHENOLOGY METRICS 8645

seasons gets longer or shorter was small, whereas the larger
uncertainties in case of zero interscene correlation caused larger
shifts in LOS (see Fig. 11, top row).

In the uncorrelated case (see Fig. 11, top row), all three
time-series sources showed a peak between one and 20 days
with median uncertainties ranging from nine days (NDVI in
potatoes) to 28 days (EVI and GLAI in the grasslands). The
right shoulder of the uncertainty distributions was broad and
declined only smoothly toward zero. Thus, 95% of the un-
certainties were between 60 days (EVI in sunflower) and
78 days (EVI in permanent grassland and sugar beet). The
secondary peak evident in SOS and EOS uncertainty dis-
tributions was pronounced in GLAI but not in EVI and
NDVI.

LOS uncertainties were low in case of full interscene error
correlation. The uncertainty distributions (see Fig. 11, bot-
tom row) showed a peak close to zero with a broader dis-
persion of values toward higher uncertainties in the case of
GLAI. Median uncertainties were less than one day for all
crops for the two spectral indices and one day in the case
of GLAI. The values of the 95% percentile ranged from
24 days (EVI in potatoes) to 59 days (NDVI in permanent
grassland).

VI. DISCUSSION

A. Interpretation of Results

1) SCL Uncertainty: The SCL product is robust to radiomet-
ric uncertainty. High uncertainties only occur at class boundaries
(see Fig. 6). Namely, the cloud shadow class showed the lowest
confidence score, i.e., the highest class assignment uncertainties.
We assume that the spectral indices and thresholds used were
selected so that a broad number of different spectra are assigned
to a class [47]. The class “Vegetation” (SCL class 4), for in-
stance, includes contrasting vegetation types such as coniferous
forests or crop canopies. The modification due to the radiometric
uncertainty is smaller than the spectral within-class variability.
Consequently, radiometric uncertainty has little influence. Only
at the transition between classes, where spectral mixing effects
are expected or vegetation is overlaid by translucent clouds does
uncertainty cause changes in class assignments. Although the
uncertainty analysis does not provide an indication of the accu-
racy of the SCL product, the areas identified as uncertain in the
S2 scenes are consistent with findings from validation studies:
Louis et al. [61] attested only limited accuracy of Sen2Cor in
more complex scenarios, especially for cloud shadow detection,
and thus under conditions where uncertainty is also higher. Liu
et al. [62] compared different cloud detection algorithms in S2
data and found that the SCL product gave inadequate results
when it comes to cloud delineation. For example, translucent
cloud edges were misclassified, which is consistent with the find-
ing that pixels in these regions have high SCL uncertainty. This
suggests that applying a spatial buffer around cloud and shadow
pixels might lower the occurrence of undetected atmospheric
artifacts.

2) VIs and GLAI Uncertainty: EVI and NDVI (see Figs. 7
and 8) have clearly lower relative uncertainty and show smaller
spatiotemporal variability compared to GLAI.

In the NDVI, we assume band rationing [see (3)] to cancel
out random errors, such as those from sensor noise, to a large
degree. Still, normalization is accompanied by saturation at
high biomass levels [63]. Nonrationing indices like EVI avoid
saturation and have an increased sensitivity at high biomass
values [33]. However, a basic assumption of the EVI is that the
satellite data are mostly noise-free. Due to inherent radiometric
uncertainties in the blue, red, and infrared channels, this assump-
tion is not fully met. Over vegetated areas, random sources of
uncertainty dominate in the blue and red bands, where systematic
effects play a smaller role due to the low radiance level. System-
atic effects originate, for example, from straylight during sensor
calibration. In the NIR band, systematic and random effects
occur nearly equal due to the higher radiance level of green
vegetation. Therefore, the EVI is influenced by both systematic
and random sources of uncertainty. Consequently, the higher
relative uncertainties in EVI compared to the NDVI can be
explained. In the NDVI, the saturation effect at high biomass
values causes the uncertainty of the NIR band alone to dominate
during this phase. For low biomass levels, the red band addi-
tionally contributes to the systematic uncertainty component.
Thus, relative uncertainty in the NDVI reaches a minimum and
maximum at the time of maximum and minimum green biomass
accumulation, respectively. In the EVI, all three bands contribute
to the total uncertainty during the period of maximum greenness.
The decrease of the absolute uncertainty in the EVI before and
after the greenness maximum (see Fig. 8, middle row left) can
be explained by the removal of the canopy background targeted
in the EVI formula [see (4)], which increasingly dominates the
spectral properties as the plants mature. In mathematical terms,
the numerator becomes smaller and the denominator bigger.
This limits the overall impact of uncertainties since the resulting
EVI values are small in any case when the canopy is not at its
greenness peak.

GLAI is a physiological parameter derived from the inversion
of a physically based RTM. It is, therefore, based on the entire
spectral information and, hence, the uncertainties from all S2
bands. Furthermore, the inversion of the radiative transfer equa-
tion is ill-posed [64]. Using the median of the 100 simulated
pixel spectra with the lowest spectral RMSE is an approach
to solve the inverse problem. We assume to eliminate random
sources of uncertainty to some extent. Still, the RMSE is a
similarity measure that gives equal weight to all spectral bands.
Thus, bands dominated by random uncertainty effects (low
radiance levels) are weighted the same as bands where random
and systematic effects occur to similar degrees (red edge and
NIR bands). We hypothesize that the increase in reflectance in
the red-edge and NIR bands as the growing season progresses
conditions a greater weighting of the systematic uncertainties
of these, synchronously increasing the absolute uncertainty in
GLAI.

Differences found between the crops revealed that potato
exhibited the highest median uncertainty values, while the
grasslands showed lowest median uncertainties. This can be
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explained by the number of observations that include plant and
soil background, which in case of potatoes is high because the
plants are grown in dams that are separated by trenches with
usually little green canopy cover. Simply put, row crops such as
potatoes violate the assumptions of the turbid medium PROSAIL
model. As explained by the example of uncertainty dynamics in
wheat (see above), the relative uncertainty is higher at higher
biomass levels. This is also evident in the plot of spatiotemporal
variability of uncertainty in potato (see Fig. 22). Grassland (see
Figs. 15 and 16) is always green, so relative uncertainties are
constantly low.

3) LSP Uncertainty: Interscene correlation determines LSP
uncertainty. If uncertainties are uncorrelated among S2 scenes,
LSP uncertainties are higher if they are fully correlated. In other
words, if uncertainties are fully correlated, the LSP retrieval
approach based on seasonal amplitude thresholds is robust
against propagated radiometric uncertainty, and the impact on
LSP metrics is small.

Full interscene correlation (α = 1) biases the time series. The
series is shifted in either positive or negative y-axis direction
by a constant factor [up- and downward arrows in Fig. 3(b)].
Although the absolute amount of the shift scales for each data
point differently because uncertainties in the spectral indices
and GLAI are not constant over time (see Section V-B), the
shape of the curve is largely preserved. Furthermore, the impact
on the LSP metrics is dampened by using a relative threshold
instead of absolute numbers. In contrast, when assuming zero
error correlation (α = 0) among the S2 scenes, each data point
in the time series can be shifted in a different direction along the
y-axis. In addition, the shift is not by a constant factor for the
entire time series. Consequently, different values for the seasonal
amplitude may be obtained, and the timing of the LSP metrics
can differ between MC scenario runs.

A closer look at Figs. 9–11 shows differences between the
crop types and between EVI, NDVI, and GLAI. Depending on
the shape of the growth curve, even small changes can have larger
effects on the LSP calculation: Soybeans, for example, have
a well-defined growth curve whose ascending and descending
branches have a steep gradient. In contrast, the ascending branch
of winter cereals is less well defined in the spectral indices, since
the actual growth period starts in autumn of the previous year
and the canopy appears green early in spring. Thus, if the growth
curve is well accented, uncertainty has less influence because
small changes in the time series values have less influence on
LSP estimation.

This points to a problem with the TIMESAT approach: The
seasonal amplitude is meaningful if the green-up and brown-
down branches are symmetric and a single clear maximum
exists. However, the approach reaches its limit in the pres-
ence of strong asymmetries and, thus, can produce implausible
results for SOS and EOS. This could be an explanation for
the secondary peak evident in the SOS and EOS uncertainty
distributions (see Figs. 9 and 10): If time series are asym-
metric or have multiple peaks, uncertainty can cause shifts in
SOS and EOS by several tens of days, which is reflected in
the uncertainty distribution. Since the secondary peak occurs

in all time series and all crops, we assume that incorrect la-
bels (main crop reported by the farmer was wrong) of the
parcels as well as spectral mixed pixel effects could have an
influence.

4) Educated Guess About Interscene Error Correlation: The
question that follows from Section VI-A3 is which of the two in-
terscene error correlation assumptions is closer to reality. While
we cannot give a definitive answer at this point, considerations
of the multitemporal behavior of the uncertainty contributors in
the S2-RUT (see box in Fig. 4, top left) allow a first guess based
on [38] and [43].

For example, some sources of uncertainty are not corre-
lated between scenes. These include the instrument noise, as
well as the analog-to-digital quantization and the L1C image
quantization into a 12-bit floating point (radiance measurement)
and 16-bit integer system (stored reflectance factors), respec-
tively. Furthermore, we assume that crosstalk and the stability of
the dark signal are uncorrelated between the scenes as residuals
of signal correction.

This contrasts with effects that are correlated between scenes.
It is known that the random part of the out-of-field (OOF)
straylight has a pattern on the scan line of the MSI detector
array, which should be independent of the scene. Likewise, the
systematic part of the OOF straylight is partially correlated
between scenes, since the OOF only changes partially over
time. For the diffuser absolute knowledge, there is a strong
correlation over the entire time span since the preflight Bidi-
rectional Reflectance Distribution Function (BRDF) model is
common to all scenes. The interpolation of the BRDF at different
solar angles is considered not to significantly modify the error
correlation between scenes. In contrast, for the diffuse cosine
effect associated with microvibrations and thermal cycling, the
interscene correlation is broken with recalibration, which occurs
approximately every 18 days. The gamma correction, which
includes corrections for nonlinearity and nonuniformity, exhibits
high correlation between scenes that are radiometrically similar
because the uncertainty budget of this contributor depends on
the radiance level. Consequently, the effect is less correlated
for scenes that are radiometrically less similar. Therefore, the
interscene correlation of gamma correction depends on the
development of vegetation over time.

In summary, we assume that uncertainties between scenes
tend to be correlated rather than uncorrelated. The actual un-
certainties in the LSP metrics might, therefore, be more likely
in the range of values from the MC run of the zero interscene
correlation. Still, the degree of interscene correlation is most
likely a function of time. This means interscene correlation
might not be constant over the growing season and be coupled
with the phenological development of vegetation. Thus, our
assumption needs to be further investigated.

B. Significance of Radiometric Uncertainty in LSP Studies

As shown in Section V-C, the interscene error correlation
has an impact on the uncertainty in the LSP metrics. In case
of full error correlation among the S2 scenes, the uncertainties
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are mostly small. In case of uncorrelated errors, the uncertain-
ties are clearly higher. Especially for fast growing crops like
maize, uncertainties in SOS of the order of ≥ 10 days imply
large physiological differences between the determined SOS
dates. This is important when LSP metrics are used to detect
phenological shifts, for example, to study the effects of climate
change on plant growth [65] or to quantify differences in the
onset of phenological stages for wider areas [66] or among
varieties of the same crop. If the uncertainties are of a similar
order of magnitude or even significantly larger than the expected
phenological shifts, in the worst case, no reliable statement can
be made. For example, using MODIS time series for China for
the period 2001–2014 as an example, Luo and Yu [67] were
able to show that the variability in SOS and EOS expressed as
a single standard deviation at the pixel level ranges from 0 to
greater than 30 days. This is in the order of magnitude of the
uncertainty for the case without error correlation (see Figs. 9 and
10, top row). Furthermore, the identified uncertainties in LOS
are not negligible, especially when LOS is used as a proxy for
vegetation productivity. For instance, Park et al. [68] reported an
increase in LOS of 2.6 days per decade for continental-scale LSP
retrieval in Northern America from Global Inventory Modeling
and Mapping Studies NDVI. This increase in LOS is slightly
larger than the uncertainties in the fully correlated case (see
Fig. 11, bottom row) but clearly smaller than uncertainty es-
timates from the uncorrelated scenario runs (see Fig. 11, top
row).

In addition, comparing radiometric uncertainty to other
sources of uncertainties in LSP retrieval that have already been
investigated is important. For example, the authors of [69]
and [70] found that changes in spatial aggregation can cause
differences in LSP metrics greater than 60 days, using mangrove
forests and agricultural cropland, respectively. This exceeds the
uncertainties identified from radiometry. In this regard, Hel-
man [27] highlights the effect of spectral mixing due to coarse
spatial resolution: Changes in species composition could cause
a similar change in the spectral properties of a pixel as an actual
change in LSP [71]. Another source of uncertainty is introduced
by the choice of the time series model: Lara and Gandini [72]
were able to show, using crop and grassland phenology from
MODIS data, that uncertainties in SOS and LOS can range from
20 to 50 days based on the choice and parameterization of the
time series model.

C. Limitations

As shown in Fig. 4, radiometry is one out of many sources
of uncertainty that make up the total uncertainty budget of LSP
metrics. Since radiometric uncertainty affects all steps of EO
processing chains, such as AC or scene classification, quanti-
fying and propagating radiometric uncertainties is an important
first step. However, this also means that in further steps, sources
of uncertainty have to be quantified, which are currently ignored
(μ(0) in Fig. 4).

In terms of computational requirements, the proposed MC
framework is rather slow and resource intensive. Prefer-
ably, uncertainties would be propagated analytically using

the chain rule of uncertainty propagation. However, this re-
quires knowledge about error covariance matrices and sensi-
tivity coefficients. Currently, this information is hardly avail-
able in the EO domain, thus hampering the advancement of
EO as a measurement science, as claimed by Mittaz et al.
[36].

Furthermore, the link to agronomically relevant estimates
of phenological development in crops such as the BBCH
scale—a decimal scale for crop development comparable to
the scale developed by Zadoks et al. [73]—is currently not
given. Therefore, future research should focus on the impact of
radiometric uncertainty on more advanced phenological metrics
such as the start of heading in wheat [74]. With the present
work, we provide a baseline to address these points thoroughly.
Therefore, we published the calculated uncertainties in the
L2B products (EVI, NDVI, and GLAI) as a dataset for this
study.

VII. CONCLUSION

In this article, we proposed a framework for propagating
radiometric uncertainties in S2 L1C TOA reflectance fac-
tors along an EO data processing chain into LSP metrics.
The framework follows GUM specifications and demonstrates
how uncertainty output from the S2-RUT can be propagated
into higher level EO products. Not only did we trace radio-
metric uncertainties but also showed how radiometric uncer-
tainty is embedded in the overall uncertainty budget of LSP
metrics.

Our results for various agricultural crops reveal that NDVI
and EVI are more robust to radiometric uncertainty than GLAI
from RTM inversion. Still, this is not yet a statement on the
suitability of spectral indices or physically based crop traits for
phenology assessment. This applies to all crops suggesting that
no crop-specific uncertainty exists. The S2 SCL product was
mostly invariant to radiometric uncertainty, except for spectrally
mixed pixels. These occur, for example, at cloud shadow edges
or with translucent clouds. Furthermore, our results show that
propagated radiometric uncertainty influences the timing of LSP
metrics in the order of a few days. In extreme cases, uncertainties
can take up to a few weeks. Uncertainties in LSP metrics
should be taken into account when interpreting LSP data or
when comparing remotely sensed phenology estimates to ground
observations. However, more in-depth research on interscene
error correlation is needed to further assess the magnitude of
uncertainty in LSP metrics. In addition, sources of uncertainty
not addressed in this study—e.g., from the AC—should be
quantified.

Finally, we would like to emphasize that the methods and
findings of our research are fully reproducible as code and L2B
data products are freely available. Thus, future research can
follow up our approaches and elaborate on open questions—
also with regard to other disciplines and geographical
regions.
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APPENDIX

TABLE IV
MEAN PERCENTAGE OF PIXELS PER SELECTED SCL CLASS ± STANDARD DEVIATION DERIVED FROM 300 MC REALIZATIONS FOR ALL 33 S2 SCENES

Fig. 12. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as rapeseed (70.4 ha). For each
S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based on
the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.
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Fig. 13. Sample time series of different crop types from randomly selected pixels showing EVI (blue), NDVI (orange), and GLAI (green). The curves have been
outlier-filtered and interpolated to daily values using Savitzky–Golay. (a) Rapeseed. (b) Permanent grassland. (c) Grain maize. (d) Silage maize. (e) Winter wheat.
(f) Winter barley. (g) Extensively used grassland. (h) Sugar beet. (i) Sunflower. (j) Soybean. (k) Potato.

Fig. 14. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as grain maize (41.3 ha). For
each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based
on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.
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Fig. 15. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as extensively used grassland
(62.9 ha). For each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or
snow based on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from
the S2 scenes. In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative
terms.

Fig. 16. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as permanent grassland (168.9 ha).
For each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow
based on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2
scenes. In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.

Fig. 17. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as silage maize (175.6 ha). For
each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based
on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.
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Fig. 18. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as soybean (7.8 ha). For each
S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based on
the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.

Fig. 19. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as sugar beet (65.4 ha). For each
S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based on
the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.

Fig. 20. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as sunflower (7.9 ha). For each
S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based on
the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.
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Fig. 21. Spatiotemporal variability of EVI (left column), NDVI (mid column) and GLAI (right column) for all pixels annotated as winter barley (63.4 ha). For
each S2 scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based
on the SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes.
In the mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.

Fig. 22. Spatiotemporal variability of EVI (left column), NDVI (mid column), and GLAI (right column) for all pixels annotated as potato (4.7 ha). For each S2
scene, the median value (blue line), central 50% (red), and 90% spread (orange) across all pixels is shown not classified as cloud, shadow, or snow based on the
SCL data of the original S2 outputs after Sen2Cor. The top row shows the spatial variability in the actual EVI, NDVI, and GLAI derived from the S2 scenes. In the
mid row, the absolute uncertainties derived from the MC simulations are depicted, whereas the bottom row shows the uncertainties in relative terms.

Code Availability: Code used for the data processing and
analysis is available online.7

Data Availability: We provide standard uncertainties for
NDVI, EVI, and GLAI (L2B products) for an entire growing
season as an output of the radiometric uncertainty propagation
chain. The data are available online.8
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