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Abstract

Experiments integrating ultracold quantum gases and optical cavities provide a ver-
satile platform for exploring emergent collective phenomena, ranging from symmetry-
breaking phase transitions to out-of-equilibrium many-body dynamics. In this the-
sis, we report on a series of experiments employing a 87Rb Bose-Einstein conden-
sate (BEC) coupled to a high-finesse optical cavity, with the goal of investigating
photon-mediated dissipative and coherent spin dynamics. In the dispersive regime of
atom-light interactions, we engineer cavity-assisted Raman transitions that couple
specific internal and external modes of a degenerate quantum gas. This gives rise
to superradiant Raman scattering of cavity photons, a process that is collectively
enhanced by the number of participating atoms.

In a first project, we couple two internal and external modes to realize an ex-
tended Dicke model with tunable coherent and dissipative interactions. The system
undergoes a superradiant phase transition featuring spin-changing self-organization
of the atoms. We experimentally access a dissipation-stabilized phase and a dis-
continuous superradiant transition in an extended region of phase bistability. The
underlying mechanism is a collective decay of the hybrid light-matter excitations,
which we resolve in real time by probing the cavity spectrum.

In a second set of experiments, we engineer dynamical tunneling in a synthetic
lattice in momentum space. Collective hopping between discrete momentum modes
of a two-component BEC is implemented via superradiant Raman scattering, result-
ing in directional lattice dynamics due to the inherent cavity losses. By performing
frequency-resolved measurements of the leaking cavity field, we resolve the individ-
ual tunneling events both in real time and non-destructively. We further extend our
observations to a regime exhibiting mutually stimulating hopping cascades.

In a third project, we demonstrate a mechanism for generating correlated atom
pairs in well-defined spin and momentum modes. The pairs are created within tens of
microseconds following the exchange of virtual cavity photons. We report on the first
observation of coherent pair oscillations involving momentum modes, and achieve
independent optical control of unitary pair processes and competing dissipative su-
perradiant scattering. By characterizing the pair statistics and momentum-space
correlations, we reveal beyond mean-field features and show their correlated nature.

Our results demonstrate a comprehensive approach for studying photon-mediated
magnetic phenomena in quantum gases. Extending the implemented cavity-assisted
spin interactions to Hubbard systems can facilitate experimental access to strongly
correlated magnetic phases, as proposed and theoretically investigated in a dedicated
project. Finally, the observed pair mechanism paves the way for quantum-enhanced
matter-wave interferometry and quantum simulation experiments beyond conven-
tional solid-state systems.
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Zusammenfassung

Experimente, die ultrakalte Quantengase und optische Resonatoren integrieren, sind
eine vielseitige Plattform zur Erforschung emergenter kollektiver Phänomene, die
von Symmetrie-brechenden Phasenübergängen bis hin zur Vielteilchendynamik au-
ßerhalb des Gleichgewichts reichen. In dieser Arbeit berichten wir über eine Reihe
von Experimenten, bei denen ein 87Rb-Bose-Einstein-Kondensat (BEC) an einen op-
tischen Hochfinesse-Resonator gekoppelt wird, um Photonen-vermittelte dissipative
und kohärente Spindynamik zu untersuchen. Im dispersiven Regime der Atom-Licht
Wechselwirkungen erzeugen wir Resonator-vermittelte Raman-Übergängen, die spe-
zifische interne und externe Moden eines entarteten Quantengases koppeln. Dies
führt zu superradianter Raman-Streuung von Resonator-Photonen, ein Prozess, der
kollektiv durch die Anzahl der beteiligten Atome verstärkt wird.

In einem ersten Projekt koppeln wir zwei spezifische interne und externe Mo-
den, um ein erweitertes Dicke-Modell mit einstellbaren kohärenten und dissipativen
Wechselwirkungen zu realisieren. Das System durchläuft einen superradianten Pha-
senübergang, der eine Spin-verändernde Selbstorganisation der Atome aufweist. Wir
beobachten eine dissipationsstabilisierte Phase und einen diskontinuierlichen super-
radianten Übergang in einem ausgedehnten Bereich der Phasen-Bistabilität. Der zu-
grunde liegende Mechanismus ist ein kollektiver Zerfall der hybriden Licht-Materie-
Anregungen, den wir in Echtzeit durch die Untersuchung des Resonator-Spektrums
messen.

In einem zweiten Satz von Experimenten erzeugen wir dynamisches Tunneln in
einem synthetischen Gitter im Impulsraum. Kollektives Tunneln zwischen diskre-
ten Impulsmoden eines zweikomponentigen BEC wird durch superradiante Raman-
Streuung implementiert, was zu gerichteter Gitterdynamik aufgrund der inhärenten
Resonatorverluste führt. Durch frequenzaufgelöste Messungen des austretenden Re-
sonatorfeldes lösen wir die einzelnen Tunnelereignisse, sowohl in Echtzeit als auch
auf eine nicht-destruktive Weise, auf. Wir erweitern unsere Beobachtungen auf ein
Regime, das gegenseitig stimulierende Tunnelkaskaden aufweist.

In einem dritten Projekt demonstrieren wir einen Mechanismus zur Erzeugung
korrelierter Atompaare in wohldefinierten Spin- und Impulsmoden. Die Paare wer-
den innerhalb von wenigen Mikrosekunden durch den Austausch virtueller Reso-
natorphotonen erzeugt. Wir berichten über die ersten Beobachtungen kohärenter
Paaroszillationen, die Impulsmoden einbeziehen, und erreichen eine unabhängige
optische Kontrolle über konkurrierende unitäre Paarprozesse und dissipative super-
radiante Streuung. Durch die Charakterisierung der Paarstatistik und der Impuls-
raumkorrelationen zeigen wir über das Mean-Field hinausgehende Effekte auf und
demonstrieren ihre korrelierte Natur.

Unsere Ergebnisse zeigen eine umfassende Herangehensweise zur Untersuchung
von Photonen-vermittelte magnetischen Phänomenen in Quantengasen. Die Erweite-
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rung der implementierten Resonator-vermittelten Spin-Wechselwirkungen auf Hub-
bard Systeme kann experimentellen Zugang zu stark korrelierten magnetischen Pha-
sen erleichtern, wie es in einem zusätzlichen Projekt vorgeschlagen und theoretisch
untersucht wird. Schließlich ebnet der beobachtete Paarmechanismus den Weg für
quantenverstärkte Interferometrie mit Materiewellen und Quantensimulationsexpe-
rimente, die über konventionelle Festkörpersysteme hinausgehen.
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1 Introduction

Nature is complex. While the fundamental physical laws governing the microscopic
properties of individual particles and their interactions are–to a great extent–well un-
derstood [1], they cannot be easily extrapolated to explain and predict the plethora
of phenomena appearing at macroscopic scales. In his seminal essay “More is dif-
ferent” [2], Philip W. Anderson challenged the reductionist approach in natural
sciences and emphasized the importance of emergent behavior for understanding
interacting many-body systems: the collective properties of a large number of in-
teracting particles are qualitatively different from the behavior of the individual
constituents [3]. Indeed, a central focus of modern condensed matter physics is the
study of emergent self-organization, revealing itself through phenomena like sponta-
neous symmetry breaking and phase transitions [4]. Notable examples include the
formation of crystalline structures out of spatially homogeneous fluids [5], the emer-
gence of spontaneous magnetization associated to quantum critical behavior [6], and
the phenomena of superfluidity and superconductivity due to the condensation of
bound electron pairs [7].

Upon preparing many-body systems in out-of-equilibrium conditions, emergent
phenomena can extend far beyond static self-ordering and become inherently dy-
namical. This can be achieved by exposing the system of interest to external
driving forces or coupling the relevant degrees of freedom to a thermal bath [8].
For example, subjecting paraelectric materials to short infrared laser pulses gives
rise to metastable ferroelectricity [9, 10]. Similarly, transient superconductivity at
high temperatures can be induced by illuminating materials with strong optical
drives [11, 12]. The collective properties of these dynamical systems are typically
inferred through measurements of bulk electric currents or spectroscopic probes [13].
Yet, tracing the observed phenomenology in naturally occurring materials back to
the underlying microscopic processes remains a formidable task, mainly due to the
lack of identical samples, the limited control over inter-particle interactions, and the
difficulty in accessing microscopic observables. Thus, by these criteria, nature often
appears exceedingly complex.

A complementary approach is provided by synthetic many-body quantum systems,
which are meticulously designed and assembled under controlled laboratory condi-
tions. These systems are intrinsically linked to the concept of quantum simulators, a
notion originally introduced by Richard P. Feynman in 1982 [14]. Quantum simula-
tors can be grouped into two broad categories, namely digital and analog [15]. Digital
simulators aim to execute a series of gate operations on a discrete set of qubits (two-
level quantum mechanical systems) to initialize, evolve and measure the dynamics of
the associated many-body quantum system. Some notable experimental platforms
in this category include superconducting qubits [16], trapped ion arrays [17] and
individually addressable Rydberg atoms [18]. Analog simulators, conversely, aim to
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1 Introduction

directly implement model Hamiltonians (or Lindbladians) that encapsulate the es-
sential properties of relevant (open) many-body quantum systems. In this context,
two of the most developed platforms are photonic systems [19, 20] and experiments
with ultracold atoms [21, 22]. Digital simulators are currently limited by scalability
constraints, as they inherently require error-free control over individual qubits [23].
Conversely, analog simulators exploit bulk properties of the underlying physical
system, thereby enabling robust exploration of emergent collective phenomena in
systems consisting of thousands to millions of interacting particles.

Photonic systems are among the most diverse platforms, ranging from coupled
waveguide arrays, to quantum dots and integrated photonic circuits [19, 20]. Their
key strengths lie in the high degree of addressability and mobility: the system of
interest can be encoded in various degrees of freedom of individual photons, such as
their spatial mode or polarization, which can be readily manipulated and detected.
Furthermore, photons can be propagated with ease using waveguides or free-space
optics, facilitating nonlocal couplings and interactions. However, unlike massive
particles, photons do not naturally interact with each other in free space, which
complicates direct investigations of strongly correlated many-body phenomena. To
circumvent this limitation, photons are often coupled to matter degrees of freedom
to engineer effective nonlinear dynamics: parametric processes in optically pumped
nonlinear crystals give rise to entangled photon pairs [24], while quantum walks
of correlated photons have been implemented using optical waveguide arrays [25].
By coupling a semiconductor quantum well to an optical microcavity [20, 26], the
matter and light modes hybridize to form exciton-polariton quasiparticles that ex-
hibit strong nonlinear optical properties [27]. They are well-suited for investigating
collective phenomena such as exciton-polariton Bose-Einstein condensation [28] and
emergent hydrodynamics [29]. Extending these systems to polariton lattices has
proven to be a fruitful approach for studying a variety of tight-binding models [30]
and topological photonics [31]. Photonic platforms are inherently open quantum sys-
tems, as photons are injected into the system of interest using external drives and
irreversibly dissipate towards the environment. Recently, there has been an increased
interest in fostering controlled dissipation channels to engineer non-equilibrium sce-
narios, with prime examples being the observation of exceptional points [32] and
dissipative Mott insulators [33].

Experiments with ultracold quantum gases also constitute a highly flexible plat-
form for exploring many-body quantum systems. They benefit from pristine con-
trol over the potential landscapes and inter-particle interactions experienced by the
atoms, along with an effective isolation from the environment [21]. By cooling
the atoms to their quantum-mechanical ground state, these experiments also of-
fer the possibility to encode the dynamics in a discrete set of addressable modes,
such as the sites of an optical lattice [22] or the different magnetic sublevels (spin
states) of the electronic ground state manifold [34, 35]. Additionally, the micro-
scopic dynamics can be reconstructed using spatially resolved measurements of the
atomic density distribution [36, 37], both in real and momentum space, enabling
the examination of correlation properties to discern collective behavior [38]. Ever
since the observation of the superfluid-Mott insulator transition [39], cold-atom ex-
periments have successfully simulated a variety of emergent phenomena. Key ex-
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perimental observations include the crossover between a molecular Bose-Einstein
condensate (BEC) and Bardeen-Cooper-Schrieffer pairing [40, 41], the emergence
of quantum magnetism in two-component degenerate Fermi gases [42, 43] and the
Berezinskii–Kosterlitz–Thouless quasi long-range order in a two-dimensional Bose
gas [44]. Going beyond equilibrium configurations, cold-atom experiments have
also been recently employed to study quantum transport between mesoscopic reser-
voirs [45, 46] and the onset of universal self-similar dynamics after quenching the
inter-particle interactions [47–49]. However, unlike electrons in solid-state systems
that interact via long-range Coulomb repulsion and fully delocalized photons in op-
tical devices, neutral atoms typically interact through short-range van der Waals
forces. In cold-atom experiments, the associated potentials can be accurately mod-
eled as isotropic contact interactions [50]. Systems conventionally used to incorpo-
rate long-range interactions include dipolar gases, ultracold heteronuclear molecules
and Rydberg atoms [51–56]. Although these systems have shed light on a variety
of emergent phenomena, quantum simulation experiments can sometimes be limited
by comparatively weak long-range interactions, low particle number densities, and
short lifetimes, respectively.

Integrating atomic and photonic systems into hybrid platforms creates unique
opportunities to bolster their strengths and overcome their limitations. Concretely,
experiments combining ultracold quantum gases and high-finesse optical cavities con-
stitute a versatile system to explore collective phenomena, leveraging the strong
and tunable atom-light interactions [57, 58]. The mere presence of an optical cavity
modifies the structure of the electromagnetic vacuum, significantly enhancing the
coupling between the atoms and specific quantized cavity modes. In the dispersive
regime of light-matter interactions, the atoms behave as a polarizable medium and
can scatter photons from external laser drives into the cavity. This yields dynamical
optical potentials that can mediate nonlocal interactions between the atoms.

In a hallmark quantum-simulation experiment, the Dicke superradiant phase tran-
sition [59–61] was realized and observed in our laboratory [62]: two specific motional
states of a quantum degenerate BEC are coupled via cavity-assisted Bragg scattering,
inducing normal mode softening [63]. Above a critical coupling strength, the system
undergoes a symmetry-breaking phase transition [64] and the BEC spontaneously
self-organizes into a crystalline checkerboard structure favored by the interference
potential between the external drive and the emergent cavity field. Since this optical
potential, in turn, self-consistently depends on the atomic density distribution, it
effectively mediates global-range interactions between the atoms. The observation
of the Dicke phase transition has sparked a very active research field [58]: success-
ful extensions have implemented extended Bose-Hubbard models with competing
short-range and global-range interactions [65–67], a supersolid breaking a continuous
translation symmetry [68], tunable-range interactions interfering near-degenerate
cavity modes [69] and, very recently, density-wave order in non-interacting [70] and
unitary Fermi gases [71]. In all these experiments, the different phases can be non-
destructively detected by monitoring the light field leaking from the cavity mirrors.
As a result, these experiments realize driven-dissipative systems where the inherent
cavity losses not only modify the critical exponent of the Dicke transition [72], but
also induce rich out-of-equilibrium dynamics [73–75].
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1 Introduction

Recently, there has been increased interest in addressing the internal spin degrees
of freedom of atoms to explore collective magnetic phenomena induced by cavity-
mediated spin interactions [76]. This can be achieved experimentally by exploit-
ing the vectorial polarizability of the atoms [77] and coupling different magnetic
sublevels through cavity-assisted two-photon transitions, i.e., Raman transitions.
Two prominent examples include the observation of emergent global magnetic or-
dering induced by spin-dependent [78] and spin-changing self-organization [79] in
two-component BECs. In the former, the interplay between coherent atom-light in-
teractions and cavity dissipation can be further controlled to engineer persistent limit
cycles between spin- and density-ordered phases [73]. In a parallel route, experiments
coupling thermal atomic ensembles to optical cavities have also successfully imple-
mented photon-mediated spin-exchange interactions between the atoms [80–83], and
recently demonstrated spatial control over nonlocal spin-mixing dynamics [84]. In
these experiments, the atomic ensemble is deeply confined in a superimposed intra-
cavity lattice to optimize the overlap between the atoms and the cavity mode. Ef-
fective spin models can be derived by performing weighted averages over multiple
thermally occupied external modes [85], yet quantitative comparison with theory
can sometimes be challenging. With a handful of remarkable exceptions [86, 87],
these experiments often focus on implementing asymptotically unitary Hamiltonian
dynamics, rather than harnessing the rich interplay between coherent and dissipative
processes that are intrinsic to optical cavities.

Scope, objectives and projects

In this thesis, we present a comprehensive approach for engineering and experimen-
tally investigating emergent dissipative and coherent spin dynamics in degenerate
quantum gases. In our experiments, we employ a 87Rb BEC dispersively coupled to
a high-finesse optical cavity. We harness strong vectorial atom-light interactions to
induce cavity-assisted Raman transitions between different Zeeman sublevels of the
hyperfine ground state manifold of the BEC. The fundamental building blocks of
the dynamics studied here are superradiant Raman scattering processes: the indis-
tinguishable atoms undergo a dissipative population inversion between two or more
well-defined modes, while collectively scattering photons from external drives into
the cavity. This mechanism yields nonlocal cavity-mediated spin interactions in our
system and closely resembles collective spontaneous emission, also known as Dicke
superradiance [88]. The central objectives of this work are:

• To develop suitable experimental schemes to couple specific internal and ex-
ternal modes of a BEC, and a single mode of an optical cavity.

• To achieve experimental control over collective dissipative and coherent pro-
cesses, and probe the emergent dynamics in an inherently driven-dissipative
setting. Our investigations aim to broaden the scope of our experiment beyond
extensions of the Dicke model and atomic self-organization.

• To understand the observed phenomena at a microscopic level, complementing
extensive theoretical modeling with newly developed experimental protocols
and observables.
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Within this thesis, these goals are pursued through three experimental and one
complementary theoretical project.

In a first project [89], we build upon prior findings on atomic self-organization
and realize a superradiant phase transition with tunable coherent and dissipative
channels. The atoms are illuminated by two standing-wave transverse drives, induc-
ing cavity-assisted Raman transitions, and coupling two spin and motional states
of the BEC. Above a critical coupling, the system undergoes a superradiant phase
transition accompanied by spontaneous spin-changing self-organization. By indepen-
dently controlling the co- and counter-rotating light-matter interactions, we observe
a dissipation-stabilized normal phase and a discontinuous superradiant transition,
which we probe via hysteresis measurements. The mechanism underlying these dissi-
pative phenomena is a collective decay channel of the hybrid light-matter excitations
(polaritons), closely related to superradiant Raman scattering. We develop a cavity-
enhanced Raman spectroscopy technique to monitor the excitation dynamics in real
time: beyond observing the normal mode softening, we also measure increasingly
shorter polariton lifetimes when unbalancing the co- and counter-rotating couplings,
which we connect to the observed dissipative phases.

In a second set of experiments [90], we move beyond extended Dicke models and
engineer dynamical tunneling processes in a synthetic lattice in momentum space.
Using two phase-shifted transverse laser drives, we independently control superra-
diant Raman scattering between discrete momentum states of two spin manifolds.
Within a tight-binding description, we interpret these scattering events as cavity-
assisted hopping in a momentum-space lattice. In this regime, the inherent cavity
losses render the emergent lattice dynamics directional. By employing frequency-
resolved measurements of the leaking cavity field, we resolve individual tunneling
events in real time. We experimentally verify that superradiant Raman scattering is
indeed the underlying mechanism and examine the properties of collective hopping
in our system. By adjusting the energy offset between the two spin manifolds, we
extend our results to a regime exhibiting mutually stimulating tunneling cascades.
These two projects illustrate how the cavity field spectrum is a well suited observ-
able for probing both excitation and out-of-equilibrium dynamics, in real time and
in a non-destructive fashion.

In a final experimental project [91], we engineer and directly observe the forma-
tion of nonlocal spin- and momentum-correlated atom pairs. For this purpose, we
initialize a zero-momentum BEC in the central magnetic sublevel (m = 0) of the
F = 1 hyperfine ground-state manifold, and drive cavity-assisted Raman transitions
using a strong running-wave transverse drive. Correlated atom pairs in m = +1
and m = −1 with opposite net momenta along the drive direction are created
via coherent exchange of virtual cavity photons. Owing to the strong light-matter
interactions, we observe the formation of pairs within tens of microseconds. We
report on the first observation of coherent pair oscillations involving well-defined
momentum modes. While the system remains open due to spurious cavity leakage,
we demonstrate independent control over the coherent pair dynamics and competing
dissipative superradiant scattering. The pair production mechanism resembles para-
metric amplification in nonlinear optics, which we confirm by examining the scaling
of the dynamics with the initial atom number. Our observations are in quantitative
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agreement with truncated Wigner simulations taking the vacuum fluctuations of our
system into account. We characterize the pair quantum statistics and demonstrate
their correlated nature by probing noise correlations in momentum space. Our re-
sults pave the way for a fast generation of entangled matter-wave pairs.

A natural extension of our experiments is to combine cavity-mediated spin in-
teractions and Hubbard physics in optical lattices to explore emergent magnetic
phenomena in strongly correlated regimes. In a dedicated theory project [92], we
propose and theoretically investigate an extended Bose-Hubbard model. We con-
sider a feasible experimental scheme wherein a balanced spin mixture is confined
in an optical lattice and illuminated by a transverse drive with tunable polariza-
tion [78]. This configuration results in photon-mediated interactions favoring either
global density or spin ordering of the atoms. We calculate the mean-field phase
diagram and identify emergent density- and spin-ordered phases both in superfluid
and insulating regimes. Notably, an antiferromagnetic insulator is favored for arbi-
trarily small atom-cavity couplings, and stabilized through the interplay of short-
and global-range interactions. Furthermore, we examine the low-energy spectrum
and discover a spin-exchange excitation branch with a tunable gap. To facilitate
experimental implementation, we address potential challenges related to the immis-
cibility of the two spin components and the inhomogeneous density distributions in
the experiment, while also discussing experimental parameters and observables.

Our results illustrate a comprehensive approach for engineering, controlling, and
detecting emergent many-body spin dynamics in driven-dissipative settings. In par-
ticular, our pair production scheme offers a flexible mechanism to establish nonlocal
correlations between specific modes of a degenerate quantum gas. As discussed in
the outlook of this thesis, two concrete future directions in the context of quantum
simulation include the realization of random spin models in momentum space and
photon-mediated Cooper pairing in bosonic systems.

Outline of this thesis

• In chapter 2, we introduce the relevant theoretical framework to model the
experiments discussed in this thesis. We review dispersive light-matter inter-
actions in cavity systems, and introduce the concepts of the scalar and vecto-
rial polarizability. The latter gives rise to cavity-assisted Raman transitions
and superradiant Raman scattering in spinor BECs, which we theoretically
examine using complementary analytical and numerical methods. To obtain
a microscopic picture, we discuss the role of real and virtual cavity photons
mediating dissipative and coherent processes in our system, respectively.

• Chapter 3 focuses on our experimental setup and the relevant upgrades per-
formed during the course of this thesis. We concisely review the experimental
sequence, summarize the central properties of our high-finesse optical cavity,
and discuss the different preparation and detection techniques. The analysis
methods employed to evaluate the cavity field spectra are also discussed in
detail. Moreover, we characterize the new laser setup, installed for driving
cavity-assisted Raman transitions.
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• In chapter 4, we investigate an extended Dicke model with tunable coherent
and dissipative couplings. We examine the associated superradiant phase tran-
sition leading to emergent spin-changing self-organization. Experimentally, we
access a dissipation-stabilized normal phase and a first order superradiant tran-
sition using hysteresis measurements. To gain a microscopic understanding, we
characterize the evolution of the collective light-matter excitations (polaritons)
using a newly developed cavity spectroscopy technique.

• In the experiments discussed in chapter 5, we engineer and experimentally ob-
serve dynamical tunneling in a synthetic momentum-space lattice. We discuss
the coupling scheme, theoretical model and experimental protocol. By probing
the cavity field spectra, we locally resolve the lattice dynamics. Furthermore,
we experimentally verify that superradiant Raman scattering is indeed the
underlying mechanism and extend our observations to a regime showcasing
mutually stimulating hopping cascades.

• The experiments discussed in chapter 6 demonstrate the generation of spin-
and momentum-correlated atom pairs, mediated by the exchange of virtual
cavity photons. After theoretically modeling the system, we present our obser-
vations of coherent pair oscillations and study the scaling of the pair dynamics
with the atom number. Moreover, we demonstrate independent experimental
control over competing coherent and dissipative processes. We investigate the
pair quantum statistics and momentum-space correlations to gain additional
insights into the pair dynamics. Finally, we address the challenges associated
with observing quantum correlations in our system.

• In chapter 7, we theoretically investigate an extended Bose-Hubbard model
incorporating cavity-mediated spin-dependent interactions. After presenting
the coupling scheme, we map the system to a two-component lattice model.
Using a Gutzwiller ansatz, we calculate the mean-field phase diagram and
identify spin- and density-ordered superradiant phases, both in superfluid and
insulating regimes. Additionally, we characterize the low-lying excitations us-
ing a perturbative approach. Finally, we discuss potential observables and
parameters, and address experimental challenges.

• Finally, in chapter 8, we summarize our findings and outline future directions
for our experiment. We discuss four concrete proposals ranging from Hubbard
models incorporating cavity-assisted Raman transitions, to cavity-based detec-
tion techniques, and quantum simulation experiments leveraging the observed
pair mechanism.

The work presented in this thesis has been carried out together with Fabian Finger,
Francesco Ferri, Nicola Reiter, Panagiotis Christodoulou, Nishant Dogra, Katrin
Kroeger, Jacob Fricke, Matteo Soriente, Oded Zilberberg, Rui Lin, R. Chitra, Leon
Carl, Sebastian D. Huber, Tena Dubcek, Tobias Donner, and Tilman Esslinger.
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2 Dispersive light-matter interactions
and superradiant Raman scattering

Understanding and controlling atom-light interactions is essential for advancing the
field of ultracold atomic gases. Laser cooling and trapping techniques, such as
magneto-optical [93] and optical dipole traps [94], are nowadays routinely employed
in hundreds of experiments to produce and manipulate quantum degenerate atomic
gases. These techniques share the common feature that the incident laser beams
can be approximated as classical fields that do not experience appreciable back-
action from the atomic ensemble [95]. However, the situation is vastly different
when the light fields are confined inside the small mode volume of a high-finesse
optical cavity. The cavity alters the structure of the electromagnetic vacuum and
significantly enhances the electric field of a discrete set of cavity eigenmodes. There,
strong and tunable atom-light interactions can inherently be harnessed, involving
quantized light fields comprising few photons [57].

The field of cavity quantum electrodynamics (cavity QED) has greatly evolved
ever since the first observations of cavity-enhanced spontaneous decay by Purcell in
1946 [96], when probing radio-frequency magnetic transitions. Pioneering experi-
ments using single Rydberg atoms interacting with microwave cavities have facili-
tated the observation of coherent Rabi oscillations [97] and quantum jumps [98] me-
diated by single photons, demonstrating the quantized nature of light. Similar cavity
QED experiments have been conducted with resonant atom-light interactions in the
optical regime, enabling the observation of normal mode splitting induced by the
electromagnetic vacuum (vacuum Rabi splitting) using single atoms [99, 100], and
more recently employing quantum degenerate bosonic [101] and fermionic gases [102].

In recent years, there have been significant advancements in the field of many-body
cavity QED, particularly in the context of quantum simulation [57, 58]. A key focus
of these developments is the engineering of strong and tunable light-matter interac-
tions in the dispersive regime, when the incident light fields are detuned far from the
relevant atomic resonances [95]. By combining dispersive interactions with optical
cavities, the resulting optical dipole potentials become dynamical and mediate effec-
tive long-range interactions between the atoms. In a seminal experiment, the Dicke
superradiant phase transition [59] was realized by exploiting the self-organization of
a Bose-Einstein condensate in the dynamical potential of an optical cavity [62]. Ex-
tensions thereof have successfully demonstrated Hubbard models featuring compet-
ing short- and long-range interactions [65–67], and supersolids breaking continuous
translation symmetries [68].

Recently, there has been a growing interest in utilizing cavity-assisted Raman
transitions to address the atomic spin degrees of freedom and explore long-range
magnetic phenomena with ultracold atoms. Remarkably, experiments have ob-
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served Dicke transitions that involve both spin-dependent interactions [78] and spin-
changing self-ordering processes [79]. These advancements open up new possibilities
for studying dynamical gauge fields, exotic magnetic phases and emergent spin dy-
namics in quantum gases coupled to optical cavities [76].

Outline of the chapter

In this chapter, we review dispersive atom-light interactions in a cavity QED system,
with a specific focus on spin-changing processes induced by cavity-assisted Raman
transitions in Bose-Einstein condensates (BECs). In section 2.1, we derive an ef-
fective description of dispersive atom-light interactions relying on the scalar and
vectorial polarizability. For dominant vectorial interactions, we map the many-body
BEC system to a Tavis-Cummings model featuring two well-defined atomic modes.
In section 2.2, we discuss the role of cavity dissipation, and simulate the emergent
dynamics using complementary numerical and analytic approaches. We identify a
regime exhibiting collectively enhanced population inversion and scattering of cav-
ity photons, referred to as superradiant Raman scattering. This phenomenon is the
building block for the different experiments studied in this thesis. Finally, we dis-
cuss the role of real and virtual cavity photons mediating nonlocal dissipative and
unitary spin-exchange dynamics in our system.

2.1 Light-matter interactions in the dispersive regime

Here, we review the theoretical framework of atom-light interactions in the dispersive
regime. In section 2.1.1, we start by deriving an effective description for multi-level
atoms based on the scalar and vectorial polarizability. In section 2.1.2, we further
discuss the polarizability for the experimentally relevant case of 87Rb atoms in the
F = 1 ground state manifold. We extend our theoretical framework to describe
dispersive atom-light interactions with the quantized field of an optical cavity in
section 2.1.3. Finally, in section 2.1.4, we derive the many-body Hamiltonian for a
two-component Bose-Einstein condensate interacting with a transverse drive and a
single cavity mode, and map it to the paradigmatic Tavis-Cummings model.

2.1.1 From resonant to dispersive atom-light interactions

We consider the interactions between a single multi-level atom and an incident op-
tical field. In its most general form, the Hamiltonian is given by

ĤSP = Ĥat + Ĥlight + Ĥint. (2.1)

The first term describes the bare energy of a multi-level atom

Ĥat =
p̂2

2M
+
∑

e

~ωe |e〉〈e| , (2.2)

and contains both kinetic and internal energy contributions. The operator p̂ de-
scribes the momentum of an atom with mass M . The different excited states |e〉
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2.1 Light-matter interactions in the dispersive regime

have an internal energy of ~ωe above the ground-state manifold |g〉, which we assume
to be degenerate for clarity. The light field can contain both classical and quantized
modes, with the bare energy of the latter given by

Ĥlight =
∑
j

~ωj â†j âj . (2.3)

The operator â†j creates a photon of energy ~ωj in the quantized mode j.
As the size of electronic orbitals (∼ 0.1 nm) is significantly smaller than the typical

optical wavelengths (λd ≈ 800 nm), we can perform the dipolar approximation [103],
and write atom-light interactions as

Ĥint = −d̂ · Ê, (2.4)

with Ê being the light’s electric field operator. When driving the atom at a frequency
ωd, the associated electric dipole operator d̂ can be expanded in terms of the ground-
and excited-state manifolds

d̂ =
∑
e,g

〈e|d̂|g〉 |e〉〈g| e−iωdt + h.c., (2.5)

where 〈e|d̂|g〉 are the corresponding dipole matrix elements. We consider a semi-
classical description of light, comprising a classical drive and multiple quantized light
modes

Ê = Ê(−) + Ê(+) =

Ed

2
f(r)ed +

∑
j

E0,jgj(r)â†jej

 e−iωdt + h.c. . (2.6)

The classical drive has an electric field amplitude Ed, polarization ed and spatial
mode structure f(r). Accordingly, the variables E0,j , ej and gk(r) define the vacuum
electric field, polarization direction and spatial mode of the j-th quantized light
mode. The negative Ê(−) and positive part Ê(+) of the electric field will account for
co- and counter-rotating interactions, respectively.

The Rabi couplings between the different ground- and excited states are defined
as Ωeg = −〈e|d̂|g〉 Ê(+)/~. We perform a unitary transformation to a rotating frame

at the drive frequency ωd using the generator Ĥrot = ~ωd

(∑
e |e〉〈e|+

∑
j â
†
j âj

)
. As

the frequency of the optical drive (ωd ≈ 2π × 400 THz) exceeds by orders of magni-
tude the achievable Rabi couplings (|Ωeg| ≈ 2π × 1 kHz−MHz), we can apply the
rotating-wave approximation [104] and neglect rapidly oscillating terms ∝ e±2iωdt.
Thereby, we obtain a time-independent Hamiltonian

ĤSP =
p̂2

2M
−
∑

e

~δe |e〉 〈e| −
∑
j

~δj â†j âj +
∑
e,g

~Ωeg |e〉〈g|+ ~Ω∗eg |g〉〈e| . (2.7)

In this rotating frame, both the energy of the excited internal states and the quan-
tized light modes are determined by their detunings with respect to the drive field,
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2 Dispersive light-matter interactions and superradiant Raman scattering

i.e., δe = ωd − ωe and δj = ωd − ωj, respectively. The interaction term in Eq. (2.7)
coherently couples the ground |g〉 and excited states |e〉 at a rate |Ωeg| .

In the resonant regime of atom-light interactions, the atomic detunings are small
in comparison to the respective couplings (|δe| . Ωeg), yielding coherent Rabi os-
cillations between the ground- and excited-state manifolds. In this thesis, we will
consider light-matter interactions in the dispersive regime. There, the detuning be-
tween the driving field and the excited state greatly exceeds the Rabi frequency
(|δe| � Ωeg) and the excited-state linewidth (|δe| � γe). The excited electronic
states of the atom |e〉 can be adiabatically eliminated, as their occupation probabil-
ities are negligible [103]. In this off-resonant limit, the atom-light interactions can
then be approximately written as

Ĥint =
∑
j,k

Ê
(−)
j α̂j,kÊ

(+)
k . (2.8)

The polarizability tensor α̂j,k = α̂s + α̂v + α̂t is a matrix (rank-2 tensor), which can
be decomposed in scalar α̂s, vectorial α̂v and tensorial contributions α̂t [77]. These
are given by

α̂s = αsδj,kÎ , (2.9)

α̂v = −i αv
2F

εjklF̂l (2.10)

α̂t = αt
3(F̂jF̂k + F̂kF̂j)− 2F 2Îδj,k

2F (2F − 1)
, (2.11)

with δj,k and εjkl being the Kronecker delta and Levi-Civita symbols, respectively.
We describe the 2F + 1 different levels of the ground-state manifold |g〉 with the
angular momentum operator F̂ of length F . The scalar (αs), vectorial (αv) and
tensorial polarizabilities (αt) are fully determined by the internal structure of the
atom and the frequency of the incident light field ωd = 2πc/λd, with λd being the
corresponding wavelength, as discussed in the next section. The tensorial polariz-
ability is negligible (αt ≈ 0) for 87Rb atoms in the electronic ground-state manifold
and a laser drive at the typical experimental wavelength λd ≈ 785− 790 nm [78].

In this limit, we can write the complete single-particle Hamiltonian as

ĤSP =
p̂2

2M
−
∑
j

~δj â†j âj + αsÊ
(+) · Ê(−) − i αv

2F

(
Ê(+) × Ê(−)

)
· F̂. (2.12)

The Hamiltonian in Eq. (2.12) describes dispersive light-matter interactions in the
ground-state manifold of a spin-F atom. This Hamiltonian encompasses two distinct
types of interactions:

• Scalar processes (∝ αs) are independent of the atom’s spin state and lead to
an AC Stark shift of the ground-state manifold. The shift is proportional to
the intensity of the incident light field (∝ |Ê|2). In the presence of spatial
modulation of the intensity, scalar light-matter interactions can be employed
to confine atoms in optical dipole traps [95] and optical lattices [21].
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2.1 Light-matter interactions in the dispersive regime

• Vectorial processes (∝ αv) depend on the spin state of the atom F̂. They can be
interpreted as a synthetic magnetic field B̂ = iαv(Ê

(+) × Ê(−))/(2FµM) [105]
determined by the electric fields at the position of the atom, with µM being the
atomic magnetic moment. For a quantization axis along the z direction, these
processes can give rise to either spin-dependent potentials (∝ F̂z) [78, 106] or
to two-photon Raman processes (∝ F̂x,y) inducing coherent couplings between
the different spin levels [107].

A detailed derivation of atom-light interactions in the dispersive regime can be also
found in the PhD thesis of Nishant Dogra [108].

2.1.2 Scalar and vectorial polarizability for F = 1 87Rb atoms

In our experiments, we prepare a 87Rb Bose-Einstein condensate in the F = 1
hyperfine manifold of the electronic ground state 52S1/2, and explore atom-light
interactions in the dispersive regime employing the D-line doublet. We consider
large atomic detunings δe that are much greater than the hyperfine splitting of the
ground state (∆HFS ≈ 2π × 6.834 GHz) as well as the splittings of the two relevant
excited states 52P1/2 (∆HFS = 2π × 816.7 MHz) and 52P3/2 excited states (∆HFS <
2π × 266.7 MHz) [109]. The transitions 52P1/2 → 52P1/2 and 52P1/2 → 52P3/2 are
referred to as the D1 and D2 lines of 87Rb, respectively. In this limit, the scalar and
vectorial polarizabilities can be written as

αs =
d2

0

3~

(
2

δ2
+

1

δ1

)
,

αv = −d
2
0

3~

(
1

δ2
− 1

δ1

)
, (2.13)

with d0 = 2.538× 10−29 C m being the dipole transition matrix element of the D1

line [77, 95]. The atomic detunings between the laser drive and the D1 and D2 lines
are given by δ1 = ωd − ωD1 and δ2 = ωd − ωD2 , respectively. In Fig. 2.1(a), we
plot the scalar (αs) and vectorial (αv) polarizabilities for different drive wavelengths
λd = 2πc/ωd. Both αs and αv diverge in the vicinity of the D2 (λD2 = 780.247 nm)
and D1 lines (λD1 = 794.979 nm), where the dispersive treatment of light-matter
interactions becomes invalid. When the detunings are much larger than the fine-
structure splitting between the D2 and D1 lines, |δ1,2| � (ωD2 − ωD1) = ∆FS, the
scalar polarizability simplifies to the expression for a two-level system, given by
αs ≈ d2

0/(~δ), where δ = δ2 ≈ δ1. In this case, the vectorial polarizability becomes
negligible (αv ≈ 0). Conversely, the laser drive should resolve the fine-structure
splitting, in order to induce appreciable vectorial light-matter interactions. This is
indeed the case for the two drive wavelengths employed in our experiments

As shown in Fig. 2.1(a) and Tab. 2.1, the scalar polarizability vanishes at λTO =
790.01858 nm [110], the tune-out wavelength of 87Rb in the F = 1 manifold. This
is due to a complete compensation of the AC Stark shifts arising from the D2 (red)
and D1 lines (blue detuned drive). Since αv retains a finite value at λTO, we can in-
duce cavity-mediated vectorial interactions while minimizing potentially detrimen-
tal effects arising from the scalar polarizability, such as optical dipole traps and
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λd(nm) 784.700 790.019

αs (CV−1m2) −2.298× 10−37 0
αv/2(CV−1m2) 1.066× 10−37 1.025× 10−37

Table 2.1: Scalar (αs) and vectorial polarizabilities (αv) for λd = 784.700 nm (chap-
ters 4 and 5) and λd = 790.019 nm (chapter 6).

cavity-induced atomic self-organization [62]. This is especially important for the
experiments outlined in chapter 6, as the drive is operated at large laser powers.

2.1.3 Cavity QED with dispersive atom-light interactions

In the experiments discussed in this thesis, we couple a 87Rb BEC in the F = 1
ground-state manifold to the fundamental mode of high-finesse optical cavity. The
technical details of the experimental sequence and optical cavity setup can be found
in sections 3.1.1 and 3.1.2, respectively.

In the simplest configuration, the atoms are illuminated by a single far-detuned
transverse laser drive with frequency ωd. The drive propagates in the z direction, has
linear polarization along the y axis, and an electric field amplitude Ed, as depicted
in Fig. 2.1(b). The atoms are coupled to the fundamental mode of an optical cavity
that extends along the x axis and consists of two orthogonal linear polarizations, z
and y. The negative component of the total electric field can be expressed as

Ê(−) =
Ed

2
f(z)e−iωdtey + E0g(x)âzez + E0g(x)âyey, (2.14)

with g(x) = cos(kx) and E0 defining the standing-wave cavity mode and the electric
field per cavity photon. The bosonic operators âz and ây annihilate photons in
the corresponding modes. We assume a common wavenumber for the cavity and
transverse drive modes k = ωd/c, as the drive frequency and the cavity resonance
only differ by ∼ 2π × 10 MHz. The transverse drive mode structure is kept as a
variable f(z), as the drive can be employed both in a running-wave f(z) = eikz and
standing-wave configuration f(z) = cos(kz), see section 3.3.2.

We consider a magnetic field B oriented along the z direction, which defines the
quantization axis. Using Eq. (2.12), we derive the Hamiltonian for a single atom
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2.1 Light-matter interactions in the dispersive regime

dispersively coupled to an optical cavity

ĤSP = Ĥ0 + Ĥs + Ĥv with,

Ĥ0 =
p̂2

2M
+ ~ωzF̂z + ~qF̂ 2

z − ~δc
∑

j={z,y}

â†j âj ,

Ĥs = αsÊ
(+) · Ê(−)

= αs
E2

d

4
|f(z)|2 + αsE

2
0g

2(x)
(
â†zâz + â†yây

)
+ αs

EdE0

2
g(x)

[
f(z)â†y + f(z)∗ây

]
,

Ĥv = −i αv
2F

(
Ê(+) × Ê(−)

)
· F̂

= iαv
EdE0

4
g(x)

[
f(z)â†z − f(z)∗âz

]
F̂x + iαv

E2
0

2
g2(x)

(
â†zây − â†yâz

)
F̂x.

(2.15)

In consists of three different contributions:

• The Hamiltonian Ĥ0 describes the bare energy of atom and cavity field. The
linear and quadratic Zeeman splittings are given by ωz/B = −2π×700 kHz/G
and q/B2 = 2π×72 Hz/G2 [34], respectively, with F̂ = (F̂x, F̂y, F̂z)

T being the
spin operator for the F = 1 manifold. We consider the system in a rotating
frame at ωd, such that the energy of the two cavity modes1 is determined by
their detuning with respect to the drive δc = ωd − ωc.

• The Hamiltonian Ĥs captures atom-light interactions mediated by the scalar
polarizability. Its first contribution describes the AC stark shift induced by
the transverse drive. For a standing-wave configuration, |f(z)|2 = cos2(kz),
this gives rise to an optical lattice at the position of the atom with lattice
depth Vd = −αsE2

d/4. The second contribution yields a dynamical intra-
cavity optical lattice [g2(x) = cos2(kx)] with a lattice depth proportional to
the number of cavity photons. This term can also be interpreted as a dis-
persive shift of the corresponding cavity resonances [108], which is modulated
in space and has a maximal value of U0 = αsE

2
0/~. The third term in Ĥs

describes the interference potential between drive and the y-polarized cavity
mode. For a standing-wave drive, f(x) = cos(kz), this term gives rise to a

dynamical checkerboard potential ∝ (ây + â†y) cos(kx) cos(kz) coupling to the
real quadrature of the y-polarized cavity field. Such scalar light-matter in-
teractions have been successfully employed to realize the Dicke superradiant
phase transition in our experiment [62].

• Finally, the Hamiltonian Ĥv captures the vectorial light-matter interactions.
The first term describes cavity-assisted Raman transitions that change the
internal spin state of the atom (∝ F̂x) while scattering a photon from the

drive into the z-polarized cavity mode (â†z) or vice versa (âz). During such two-
photon transitions, the atom acquires recoil momenta in both the drive and

1For clarity, we neglect here the birefringence between the z-and y- polarized cavity modes, which
is on the order of 2π × 2.2 MHz and consider a common resonance frequency ωc.
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,

,

Figure 2.1: Dispersive atom-light interactions in an optical cavity. (a) Scalar
(αs) and vectorial polarizabilities (αv) for 87 Rb atoms in the F = 1 hyperfine mani-
fold as function of the drive wavelength λd. Our experiments are performed either at
784.700 nm or 790.019 nm, as indicated by the gray lines. For the exact numerical
values, see Tab. 2.1. (a) Schematic representation of the experimental setup, depicting
a quantum gas (black shape) coupled to the fundamental mode of a high-finesse optical
cavity with a spatial mode profile g(x) and two orthogonal linear polarizations (photon
annihilation operators ây,z). The cavity has a resonance frequency of ωc and an electric
field per photon of E0. The atoms are illuminated by a y-polarized transverse drive,
with frequency ωd and electric field amplitude Ed. The drive propagates along z and
has a mode profile of f(z). A magnetic field along z defines the quantization axis.

cavity directions, reflecting the spatial structure of the underlying interference
potential g(x)f(z). Cavity-assisted Raman transitions play a crucial role in
this work and form the basis for the experiments discussed in the following
chapters. The second term in Ĥv accounts for Raman transitions induced
by scattering photons between the y- and z-polarized cavity modes. In our
experiment, these contributions can be neglected since Ed � E0 and |δc| 6=
|ωz| [108].

2.1.4 Many-body description and the Tavis-Cummings Hamiltonian

This section presents the derivation of the effective many-body Hamiltonian of a
spinor Bose-Einstein condensate dispersively coupled to an optical cavity by a trans-
verse laser drive. We neglect scalar atom-light interactions (αs = 0), which can be
experimentally achieved by operating the drive at the tune-out wavelength λTO.
Thereby, we simplify the single-particle Hamiltonian in Eq. (2.15) to

ĤSP = −~δcâ
†â+

p̂2

2M
+ ~ωzF̂z + ~qF̂ 2

z + iαv
EdE0

4
cos(kx) cos(kz)[â† − â]F̂x.

(2.16)

For clarity, we assume standing-wave mode profiles both for the cavity and transverse
drive fields, with g(x) = cos(kx) and f(z) = cos(kz), respectively. In Eq. (2.16),
we disregard the y-polarized cavity mode as it can be only occupied by the scalar
processes (αs = 0), and introduce the shorthand notation â := âz.

We extend our analysis to a many-body system, considering a spinor Bose-Einstein
condensate consisiting of indistinguishable atoms, dispersively coupled to the cavity.
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2.1 Light-matter interactions in the dispersive regime

Figure 2.2: Mapping of the Tavis-Cummings model. (a) Spatial profile of the
relevant modes. The mode |↑〉 is captured by the homogeneous single-particle wave
function ψ0 ∝ 1 in the m = 0 Zeeman sublevel (a1), whereas the mode |↓〉 in m = −1 is
spatially modulated, i.e., ψ−1 ∝ cos(kx) cos(kz) with k = 2π/λd (a2). (b) Level scheme.
In the lab frame, the separation between the two modes ωat arises from the effective
Zeeman splitting ω′z = −ωz + q and the photon recoil frequency ωrec. In a suitable
rotating frame at ωat, the system is described by the Tavis-Cummings Hamiltonian, cf.
Eq. (2.19), which is fully parameterized by the Raman coupling η and the two-photon
detuning δ between a resonant cavity-assisted Raman transition (ω) and the cavity
resonance (ωc). The drive frequency and the decay rate of the cavity field are ωd and
κ, respectively.

We perform a two-mode expansion of the underlying spin-1 atomic field operator

Ψ̂(x) =
(

Ψ̂+1(x), Ψ̂0(x), Ψ̂−1(x)
)T

=
(

0, ψ0(x, z)ĉ↑, ψ−1(x, z)ĉ↓

)T
, (2.17)

fulfilling the commutation relations for indistinguishable bosons [Ψ̂j(x), Ψ̂†k(x
′)] =

δjkδ(x−x′) with j, k = {+1, 0,−1}. For conciseness, we operate at sufficiently large
second-order Zeeman splitting ~q � αvEdE0 [89] and neglect the occupation of the
m = +1 Zeeman sublevel, i.e., Ψ̂+1(x) = 0. As such, we can effectively reduce the
system to an effective spin-1/2 system occupying two well-defined modes, |↓〉 and
|↑〉, in the remaining Zeeman sublevels m = −1 and m = 0. The operators ĉ↓ and
ĉ↑ annihilate atoms in the modes |↓〉 and |↑〉, respectively.

Within our two-mode expansion, we consider a scenario where the BEC is initially
prepared in the m = 0 Zeeman sublevel. The BEC is a quantum degenerate gas,
where all the atoms occupy to very good approximation a zero-momentum single-
particle state [111], which we label as |↑〉 and describe by the homogeneous wave
function ψ0(x, z) = k

2π in the xz-plane. The m = −1 Zeeman sublevel can only be
populated via cavity-assisted Raman transitions from the m = 0 state. During these
processes, the atoms acquire symmetrically photon recoil momentum ±~k along the
drive (kz) and cavity (kx) directions. As a result, the atoms exhibit a spatial modu-
lation associated with the interference potential of the two light fields in real space,
proportional to g(x)f(z) = cos(kx) cos(kz). This motivates the definition of the
single-particle wave function ψ−1(x, z) = k

π cos(kx) cos(kz) for atoms in the m = −1
Zeeman sublevel, which we refer to as mode |↓〉. These wave functions are normalized
within a unit cell of sizeR = [−π/k, π/k)2, and are plotted in Fig. 2.2(a). In momen-
tum space, the two wave functions can be written as ψ0(kx, kz) = |kx = 0, kz = 0〉

17



2 Dispersive light-matter interactions and superradiant Raman scattering

and ψ−1(kx, kz) = 1/2(|+k,+k〉 + |−k,+k〉 + |+k,−k〉 + |−k,−k〉). The latter de-
scribes a symmetric superposition of ±~k-momentum states along the drive and
cavity direction, and inherits its spatial symmetry directly from the drive-cavity
interference potential g(x)f(z) = cos(kx) cos(kz).

Resorting to second quantization [112], we derive the many-body Hamiltonian

ĤMB = −~δcâ
†â

+

∫
R

Ψ̂†(x)

[
p̂2

2M
+ ~ωzF̂z + ~qF̂ 2

z + i
αvEdE0

4
cos(kx) cos(kz)(â† − â)F̂x

]
Ψ̂(x)dx,

= −~δcâ
†â+ ~(−ωz + q + 2ωrec)ĉ

†
↓ĉ↓ + i~η(â† − â)(ĉ†↓ĉ↑ + ĉ†↑ĉ↓),

= −~δcâ
†â− ~ωatĴz + ~η(â† + â)(Ĵ− + Ĵ+). (2.18)

The state in m = −1 with density modulation has a higher energy compared
to its m = 0 counterpart, primarily due to the negative linear Zeeman splitting
ωz < 0. Furthermore, the total energy splitting between the two modes −~ωat =
~(−ωz + q + 2ωrec) includes the kinetic energy resulting from the photon recoil
momenta imparted on the atoms by the Raman process, as sketched in Fig. 2.2(b).
The corresponding photon recoil frequency is given by ωrec = ~k2/(2M). We define
the Raman coupling strength as η =

√
2αvEdE0/8. In the last line of Eq. (2.18), we

introduce the pseudo spin-N/2 algebra Ĵ, with Ĵz = (ĉ†↑ĉ↑ − ĉ
†
↓ĉ↓)/2, Ĵ− = ĉ†↓ĉ↑ and

Ĵ+ = ĉ†↑ĉ↓. These operators satisfy the canonical commutation relations for angular

momentum operators, e.g., [Ĵz, Ĵ+] = Ĵ+. Additionally, we consider a global phase
rotation of the cavity field â → âeiπ/2 and a shift of the zero-point energy of the
system by ~ωat(ĉ

†
↓ĉ↓ + ĉ†↑ĉ↑)/2.

For our experimental parameters, the bare mode splittings ωat ≈ ωz = −2π ×
10 − 50MHz are orders of magnitude larger than the achievable Raman couplings
η . 2π × 1 kHz. As a result, two-photon transitions mediated by a cavity field at
the frequency of the transverse drive ωd are effectively suppressed. However, due to
the finite linewidth of the cavity mode, the cavity field is not restricted to a single
frequency and can accommodate multiple spectral components. To address this,
we shift the cavity field close to resonance with the expected two-photon process.
We introduce a rotating frame transformation induced by the generator Ĥrot =
−~ωat(â

†â+ Ĵz), and derive the many-body Hamiltonian

ĤMB = −~δâ†â+ ~η
(
â†Ĵ− + âĴ+

)
, (2.19)

after performing the rotating-wave approximation. In this rotating frame, the
two atomic modes become degenerate and the many-body Hamiltonian is fully
parameterized by the Raman coupling η and the effective two-photon detuning
δ := δc + ωat = (ωd + ωat) − ωc. As illustrated in Fig. 2.2(b), the variable δ
quantifies the detuning between cavity resonance ωc and the frequency of the cavity
field required to drive resonant two-photon transitions

ω = ωd + ωat. (2.20)

Crucially, the cavity field becomes stationary (time independent) at this frequency
and carries an excess energy of ωat in comparison to the drive field ωd. This ensures
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2.2 Superradiant Raman scattering

total energy conservation in the light-matter system, as the energy of the atoms
changes by −ωat when undergoing a cavity assisted Raman transition between the
modes |↑〉 → |↓〉. The many-body Hamiltonian derived in Eq. (2.19) constitutes a
dispersive implementation of the paradigmatic Tavis-Cummings model [113], which
describes an ensemble of N indistinguishable two-level atoms interacting with a
quantized mode of the electromagnetic field.

2.2 Superradiant Raman scattering

Our considerations so far have treated light-matter interactions as purely unitary
processes generated by suitable Hamiltonians. However, an ensemble of atoms cou-
pled to an optical cavity is inherently a many-body open quantum system. This
is because the associated cavity field leaks from mirrors at a rate κ. Additionally,
atomic dissipation can occur in the form of excited-state decay with a rate Γ.

The Tavis-Cummings model introduced in Eq. (2.19) can operate in two relevant
limits.

• In the strong-coupling limit, the collective atom-light interactions exceed all rel-
evant dissipation scales,

√
Nη � κ,Γ, and quantum mechanical effects become

pronounced. Experiments operating in this regime have resolved the vacuum
Rabi splitting for single atoms [100] and degenerate quantum gases [101, 102].

• In the bad cavity limit, the decay rate of the cavity field significantly exceeds
the strength of atom-light interactions and atomic dissipation, i.e., κ�

√
Nη

and κ� Γ. Experiments operating in this regime are particularly interesting
in the context of cavity-assisted cooling [114] and superradiant lasers [86].

In this thesis, we consider cavity-assisted Raman transitions within the dispersive
regime, with our experiment operating in the bad cavity limit. In this regime, the
cavity decay rate κ = 2π×1.25 MHz greatly exceeds the collectively enhanced atom-
light interactions,

√
Nη . 2π × 0.3 MHz, for typical atom numbers N . 90000 and

two-photon coupling rates η . 2π × 0.001 MHz. Additionally, spontaneous decay
between the different Zeeman sublevels of the electronic ground-state manifold is
negligible (Γ = 0), guaranteeing κ� Γ. It is worth noting that our experiment can
also operate in the strong-coupling limit for individual atoms when considering res-
onant light-matter interactions [115]. In that regime, the large atom-light coupling
rates, g0 ≈ 2π× 10.3 MHz, dominate over κ and Γ = 2π× 6.1 MHz [109], facilitating
the observation of the experimental observation of vacuum Rabi splitting [101].

In this section, we investigate the dynamics of an open Tavis Cummings system
operating in the bad cavity limit. In section 2.2.1, we derive equations of motion
for the open system. We observe superradiant Raman scattering accompanied by
a collective spin decay, which we diagnose by analytically solving the mean-field
equations of motion in Eq. (2.2.2). To further validate our results, we present exact
solutions for small system sizes in section 2.2.3. Finally, in section 2.2.4, we dis-
cuss the role of real and virtual cavity photons mediating dissipative and coherent
nonlocal dynamics in our system.
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2 Dispersive light-matter interactions and superradiant Raman scattering

2.2.1 Equations of motion of the open quantum system

Due to photons leaking out of the cavity, our light-matter system is inherently
coupled to the environment. We assume Markovian dissipation 2, and can describe
the system by means of a Lindblad master equation [116, 117] starting from the
Tavis-Cummings Hamiltonian in Eq. (2.19). We obtain

dρ̂

dt
= − i

~

[
ĤMB, ρ̂

]
+ L[ρ̂, â] = − i

~

[
ĤMB, ρ̂

]
+ κ[2âρ̂â† − {â†â, ρ̂}], (2.21)

with ρ̂ being the density matrix of the atom-cavity system [118], and [Â, B̂] =
ÂB̂ − B̂Â ({Â, B̂} = ÂB̂ + B̂Â) defining the quantum-mechanical commutator
(anticommutator) for arbitrary operators Â and B̂. The Lindblad operator L[ρ̂, â]
describes the dissipative contributions to the dynamics associated with a cavity field
decay rate κ. We do not consider direct atomic decay between the modes ĉ↑ and ĉ↓,
as spontaneous emission between Zeeman sublevels of the same hyperfine manifold
is negligible. In order to model the evolution of relevant observables, we derive
Heisenberg equations of motion (EOMs) for the photonic and atomic operators of
the open system

dâ

dt
=
i

~
[ĤMB, â] + L[â, â] = (iδ − κ)â− iη(Ĵx − iĴy),

dĴx
dt

=
i

~
[ĤMB, Ĵx] = iη(â− â†)Ĵz,

dĴy
dt

=
i

~
[ĤMB, Ĵy] = −η(â+ â†)Ĵz,

dĴz
dt

=
i

~
[ĤMB, Ĵz] = η(â+ â†)Ĵy − iη(â− â†)Ĵx,

(2.22)

where Ĵx = (Ĵ+ + Ĵ−)/2 and Ĵy = i(Ĵ− − Ĵ+)/2 define the x- and y-projection of

the pseudo-spin operator Ĵ.
We introduce normalized expectation values for the cavity field α = 〈â〉 /

√
N and

the different projections of the spin operators jl = 〈Ĵl〉/N , where N is the total
atom number and l ∈ {x, y, z}. In the limit of large particle numbers N → ∞, we
assume a decoupling between the different operators3 〈ÂB̂〉 ≈ 〈Â〉〈B̂〉. In this limit,

2In Markovian processes, the effect of the environment on the system depends only its current
state, and not on its history [116]. This is the case when the characteristic correlation time of the
environment is much smaller than the typical timescales of the system’s evolution.
3This mean-field approximation disregards fluctuations of all operators, such as std(Â)/N → 0,
which we generally expected to vanish in the limit N →∞. For finite N , the fluctuation dynamics
can be quantitatively captured by considering higher-order cumulant expansion [119].
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2.2 Superradiant Raman scattering

we derive mean-field equations of motion for the open Tavis-Cummings model

dα

dt
= (iδ − κ)α− i

√
Nη(jx − ijy),

djx
dt

= i
√
Nη(α− α∗)jz,

djy
dt

= −
√
Nη(α+ α∗)jz,

djz
dt

=
√
Nη(α+ α∗)jy − i

√
Nη(α− α∗)jx.

(2.23)

The collective nature of light-matter interactions in the Tavis-Cummings model is
already visible in Eq. (2.23), as the interaction strength scales with atom number
(
√
Nη), while the normalized expectation values of the spin operator remain of order

O(1) due to j2
x + j2

y + j2
z = 1/4. This

√
N -scaling of the light-matter interactions

is at the heart of collective phenomena, such as Dicke superradiance [88, 120] as
discussed in detail in the next section.

Numerical simulations of equations of motion

We numerically evolve the mean-field equations of motion using the MATLAB built-
in ‘ode45’ solver which is based on a Runge-Kutta (4,5) method [121]. It employs
variable time step sizes and the error tolerance in each step is constrained to 10−8. To
sample the fluctuations on top of the mean-field observables, we assume an initially
small photon field of the form α(t = 0) = [randn(0, 0.5) + i · randn(0, 0.5)]/

√
N

with pseudo-random numbers randn(0, 0.5) sampled from a normal distribution with
(µ, σ)=(0,0.5). This assumption is compatible with an initial coherent vacuum state

for the cavity field, as
〈√

N(α+ α∗)/2
〉

= 0 and varS

(√
N(α+ α∗)/2

)
= 1/4,

where 〈〉S and varS denote the average and variance over a sufficiently large number
of samples S & 200.

2.2.2 Diagnosing superradiant Raman scattering

In this section, we discuss the solutions of the mean-field EOMs in our system. When
initialized in the unstable mode |↑〉, the system exhibits a collectively enhanced
population inversion. We investigate the evolution of the associated superradiant
cavity pulses for different atom numbers, and compare them to an analytic estimate.
The results obtained in this section provide the theoretical foundations to assess
superradiant Raman scattering in our system.

We numerically solve the mean-field equations of motion (EOMs) in Eq. (2.23)
for typical experimental parameters: κ = 2π × 1.25 MHz, η = 2π × 1 kHz, and
an initial state with N = 50, 000 atoms prepared in the |↑〉 state. We choose to
operate at cavity resonance, δ = 0. In this parameter regime, the system is deep
in the bad cavity limit with κ �

√
Nη. In Fig. 2.3(a), we show the time evolution

of the normalized spin imbalance jz(t) and the mean number of cavity photons
nph(t) =

〈
â†â
〉
≈ Nα∗α. We observe a complete population inversion from |↑〉 to

|↓〉 (jz = 1/2 → −1/2) within few milliseconds, accompanied by a transient pulse
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2 Dispersive light-matter interactions and superradiant Raman scattering

Figure 2.3: Superradiant Raman scattering in the open Tavis-Cummings
model. (a) Mean-field simulations of the average photon number nph = 〈â†â〉 (green)

and the mode imbalance 〈Ĵz〉/N (red curve) for N = 5× 104, showcasing a complete
population inversion (|↑〉 → |↓〉) accompanied by a transient cavity pulse. (b) Simulated
photon pulses nph for different atom numbers N . The red dashed curve is an analytic
estimate [Eq. (2.26)], and quantitatively agrees with the simulations. (c) Extracted
peak photon number max(nph) (green) and associated delay tmax (red circles) for dif-
ferent N . The analytic estimates (dashed lines) confirm the scaling max(nph) ∝ N2

and tmax ∝ 1/N , which is the hallmark of superradiant photon scattering [120]. We use
the typical experimental parameters δ = 0, κ = 2π × 1.25 MHz and η = 2π × 1 kHz.

of the cavity field. The photon pulse vanishes (nph → 0) once all the atoms occupy
the steady state |↓〉 (jz = −1/2).

We further investigate the nature of this cavity-mediated spin decay, by numer-
ically simulating the dynamics for different atom numbers N , and otherwise iden-
tical parameters. In Fig. 2.3(b), we show representative nph(t) curves for N =
30000−110000 atoms. For increasingly larger N , we observe stronger photon pulses
occurring earlier in time. We systematically study this behavior by extracting the
peak photon number max(nph) and its associated time delay tmax for different N , cf.
Fig. 2.3(c). Remarkably, we find that the peak photon number scales super-linearly
with N , specifically as max(nph) ∝ N2, while the delay time monotonically decays
as tmax ∝ 1/N .

To elucidate this scaling behavior and the collective nature of the observed dy-
namics, we derive analytic estimates for the different observables. We adiabatically
eliminate the cavity field [122]; this is a valid approximation as the cavity decay rate
significantly exceeds the atomic energy scales, i.e., κ � ωrec and κ >

√
Nη. From

Eq. (2.23), we obtain

d

dt
α = 0⇒ α = − i

√
Nη

δ2 + κ2
(iδ + κ)(jx − ijy). (2.24)

This equation implies that the cavity field is always in a steady state (dαdt = 0)
and instantaneously follows the dynamics of the atomic state. In particular, a non-
vanishing cavity field (α 6= 0) is associated with finite coherences (jx,y 6= 0) between
the two relevant atomic modes |↓〉 and |↑〉. This is compatible with our simulations
in Fig. 2.3(a), as the photon pulse nph(t) vanishes in the steady state with jz = −1/2
and jx,y = 0. We insert Eq. (2.24) in the mean-field EOMs in Eq. (2.23) and obtain
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2.2 Superradiant Raman scattering

an ordinary differential equation for the spin imbalance

d

dt
jz = −2Nγ(j2

x + j2
y) = −2Nγ

(
1

4
− j2

z

)
, (2.25)

where we introduce the effective single-particle dissipative coupling γ = η2κ/(κ2+δ2)
and use the total spin conservation j2

x + j2
y + j2

z = 1/4 in the last step. We consider

an initial state in the vicinity of |↑〉, j(t = 0) = [ε cos θ, ε sin θ,
√

1− ε2]T /2, with
ε � 1 and θ ∈ [0, 2π). For this initial condition, we derive analytic solutions for
jz(t) and nph(t)

jz(t) = −1

2
tanh

(
t− tmax

τ

)
,

nph(t) = Nα∗α =
N2γ

κ

(
1

4
− j2

z (t)

)
= max(nph) · sech2

(
t− tmax

τ

)
, (2.26)

where we introduce the photon pulse width τ = 1/(Nγ) and delay time tmax =
ln
(
4/ε2

)
/(2Nγ) associated with the photon pulse maximum max(nph) = N2γ/(4κ).

In Figs. 2.3(b,c), we also compare the analytic solutions from Eq. (2.26) with the
numerical simulations of the mean-field EOMs. The analytical estimates are in
quantitative agreement with our simulations, both at the level of individual photon
traces [red dashed curve in Fig. 2.3(b)], and the scaling max(nph) [green] and tmax

[red dashed curve in Fig. 2.3(c)].
These results demonstrate the main features of superradiant Raman scattering in

our system. As evident from our analytic calculation, the cavity-assisted population
inversion observed in the open Tavis-Cummings model (|↑〉 → |↓〉) is collectively
enhanced by the number of participating atoms N , resulting in monotonically falling
delay times tmax ∝ 1/N and a super-linear scaling of the peak photon number
max(nph) ∝ N2. This behavior is in direct contrast to spontaneous emission of light,
where an ensemble of N independent two-level atoms decays towards the ground
state while emitting into free-space modes of the electromagnetic vacuum. In that
case, the delay time tmax = 1/ΓSE depends only on the excited-state linewidth ΓSE

and is independent ofN , whereas the peak amplitude max(nph) ∝ N exhibits a linear
scaling with atom number. This can be directly derived from the corresponding
optical Bloch equations [24].

2.2.3 Exact solutions for small systems

The results discussed so far were obtained using mean-field methods to simulate the
dynamics of the open Tavis-Cummings model. This semi-classical approximation is
expected to be valid for the large particle numbers in our experiments (N > 10000),
and neglects the role of quantum fluctuations. In this section, we briefly discuss
exact solutions of the master equation for small particle numbers (N ≤ 40) and
recover the phenomenology discussed in the previous section. These results serve as
a validation of the mean-field techniques discussed in the previous section.

To numerically solve the full master equation in Eq. (2.21), we employ the built-in
Lindblad solver of the QuTiP Python library [123]. The method expands the density
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2 Dispersive light-matter interactions and superradiant Raman scattering

Figure 2.4: Superradiant scattering from exact solutions of the master equa-
tion. (a) Time evolution of the average photon number 〈â†â〉 (green) and the mode
imbalance 〈Ĵz〉/N (red curve) for N = 20, δ = 0 and η/κ = 0.06. Similar to the mean-
field case, the simulations show a complete population inversion |↑〉 → |↓〉 accompanied
by a transient cavity pulse. (b) Husimi distribution Q(α) and (c) Fock state occupation
p(n) of the transient cavity field at three representative times. The former illustrat-
ing the overlap of cavity field with an infinite set of coherent states |α〉. While both
the initial (b1,c1) and steady-state cavity field (b3,c3) are compatible with a coherent
vacuum state with p(n) = 1, close to the photon peak maximum at t = 2/Nγ (b2,c2)
the cavity field shows a broader distribution characterized by the transient occupation
of multiple Fock states. (d) Scaling of the peak photon number max(nph) ∝ N2 and
tmax its delay with atom number for N ≤ 40, demonstrating superradiant scattering
for small systems.

matrix in a basis of Fock states for the cavity field |n〉 and the two atomic modes
|N↓, N↑〉, with {n, N↓, N↑} ∈ N and N = N↓ + N↑. The photonic Hilbert space is
truncated to n ≤ N . As the dimension of the density matrix rapidly increases with
atom number (O(N2)), this method is technically limited to small systems on the
order of N ≈ 40 atoms in conventional desktop computers4.

In Fig. 2.4(a), we plot the expectation values of the photon number 〈â†â〉 and
the normalized population imbalance and 〈Ĵz〉/N obtained by solving the master
equation for N = 20 atoms initialized in |N↓ = 0, N↑ = N〉 ⊗ |n = 0〉. In direct
resemblance to the mean-field dynamics in Fig. 2.3, we observe a complete population
inversion of the system towards the mode |↓〉 (〈Ĵz〉 = −N/2), accompanied by a
transient cavity pulse with the characteristic hyperbolic secants shape.

We further examine the state of the photon field at different instances of the evo-
lution by evaluating the Husimi Q-function Q(α) = 〈α|ρ̂ph|α〉 /π [Fig. 2.4(b1-3)]
and the occupation p(n) of the different Fock states |n〉 [Fig. 2.4(c1-3)]. The Q-

4In our theory work in Ref. [124], we exactly solve the master equation of the Tavis-Cummings
model for up to N ≈ 200 atoms by performing the calculations in a computer cluster.
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function of the reduced density matrix ρ̂ph quantifies the overlap of a given state of
the photon field with a continuous set of coherent states |α〉. As expected, both the
initial and long-time steady state of the photon field are compatible with coherent
vacuum states with p(0) = 1 and a narrow Q-function centered around α = 0, cf.
Fig. 2.4(b1,c1) and (b3,c3), respectively. During the dynamics, the photon field
transiently occupies multiple Fock states and displays a broader Husimi function
centered around α = 0, as shown in Figs. 2.4(b2, c2). The occupation of Fock states
exhibits qualitative similarities to a Bose-Einstein distribution, which describes the
population of discrete energy levels by indistinguishable bosonic particles in thermal
equilibrium. The exact functional form of this distribution is defined in section 6.1.3.
This observation suggests that in the bad cavity limit (κ �

√
Nη), the transient

cavity field evolves in thermal equilibrium with the environment. A more com-
prehensive study of the evolving photon distributions during superradiant decay
behavior is beyond the scope of this thesis.

Finally, we investigate the peak photon number max(nph) and its associated delay
tmax by solving the master equation for up to N = 40 atoms, see Fig. 2.4(d). While
the small system size precludes a quantitative scaling analysis of tmax, we observe
a clear super-linear increase in pulse amplitude with atom number max(nph) ∝ N2.
This agrees with the mean-field results discussed in Fig. 2.3(c), further supporting
the occurrence of superradiant Raman scattering in our system. Due to the large
atom numbers in our experiments (N ≈ 104 − 105), we rely on mean-field methods
as the basis of our theoretical modeling for the various experiments discussed in
chapters 4, 5, and 6.

2.2.4 The role of real and virtual cavity photons

In the final section of this chapter, we provide a microscopic picture for the dissi-
pative and coherent processes in the open Tavis-Cummings model For this purpose,
we introduce the concepts of real and virtual cavity photons.

Real cavity photons

To further interpret the dissipative dynamics, we adiabatically eliminate the cavity
field in the master equation in Eq. (2.21) at an operator level

dâ

dt
= 0⇒ â = − iη

δ2 + κ2
(iδ + κ)Ĵ−. (2.27)

and obtain an effective atom-only Lindblad operator

Leff[ρ̂at] = γ[2Ĵ−ρ̂atĴ
†
+ − {Ĵ+Ĵ−, ρ̂at}]. (2.28)

Here, ρat denotes the reduced density matrix of the atomic system, with effective
single-particle dissipative coupling γ = η2κ/(δ2 + κ2) [89, 124]. The Lindbladian in
Eq. (2.28) is generated by the collective jump operator L̂ = Ĵ− ∝ â, where â is the
cavity photon annihilation operator. From the point of view of the atomic system,
cavity decay acts as a nonlocal dissipation channel : every photon leaked from the
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2 Dispersive light-matter interactions and superradiant Raman scattering

cavity (∝ â) is associated with the inversion of a single spin (|↑〉 → |↓〉), which is
delocalized throughout the atomic ensemble (∝ Ĵ−).

This dissipative channel gives rise to superradiant Raman scattering and popula-
tion inversion of the atomic ensemble towards |↓〉 with collectively enhanced rates
Nγ, as schematically shown in Fig. 2.5(a). As discussed in the previous section,
this process yields a transient cavity field leaking from the cavity mirrors. We
refer to these photons as real cavity photons as they can be directly measured out-
side of the cavity, using single-photon counting modules [101] or heterodyne detec-
tion schemes [89]. Superradiant scattering is at the heart of so-called superradiant
lasers [125, 126], which were first experimentally realized employing Raman tran-
sitions in cold thermal ensembles [86, 127] and more recently exploiting the clock
transition in earth-alkaline atoms [128, 129].

Virtual cavity photons

To facilitate the interpretation of the relevant unitary dynamics, we use Eq. (2.27) to
eliminate the cavity field in the Tavis-Cummings Hamiltonian. Thereby, we obtain
an effective atom-only description

Ĥeff ≈ ~χĴ+Ĵ− = ~χ
(
N2

4
− Ĵ2

z

)
, (2.29)

with the effective single-particle coherent coupling strength χ = η2δ/(δ2 +κ2). Here,
we employ the relation Ĵ+Ĵ− = Ĵ2−Ĵ2

z−Ĵz for the spin operators and transform to a
suitable rotating frame [124] to eliminate linear terms ∝ Ĵz. At a fundamental level,
the Hamiltonian in Eq. (2.29) acts on a pairs of atoms (A,B) and induces a correlated
spin-exchange process, i.e., Ĵ+Ĵ− |↓〉A ⊗ |↑〉B = |↑〉A ⊗ |↓〉B and Ĵ+Ĵ− |↑〉A ⊗ |↓〉B =
|↓〉A ⊗ |↑〉B.

In our system, these coherent interactions are mediated by a higher-order four-
photon scattering process: a first Raman transition changes the spin state of an
atom (|↑〉 → |↓〉) while creating a cavity photon (â†), which can be rescattered
into the drive by a second atom (â) inducing the opposite spin flip (|↓〉 → |↑〉),
see schematic representation in Fig. 2.5(b). We refer to these photons as virtual
cavity photons [130], as they cannot be directly detected outside the cavity. Yet,
they mediate nonlocal spin-exchange interactions with collectively enhanced rates
Nχ. Such interactions have been recently employed to experimentally realize many-
body dynamical phases in cold thermal atomic ensembles [83], and proposed as
a mechanism for synthesizing photon-induced Cooper pairs in degenerate Fermi
gases [131, 132]. Additionally, the effective Hamiltonian in Eq. (2.29) is also a one-
axis twisting Hamiltonian (∝ Ĵ2

z ), which has been successfully implemented in cavity
QED experiments with thermal atoms to generate spin squeezing [133, 134].

We emphasize that the relative rate of coherent and dissipative processes χ/γ =
δ/κ can be controlled by adjusting the two-photon detuning δ, facilitating the exper-
imental access to primarily dissipative (|χ/γ| . 1) and unitary regimes (|χ/γ| � 1)
in our system. Both limits are of central relevance for this thesis. In chapter 5,
we experimentally demonstrate dynamical tunneling in a synthetic lattice in mo-
mentum space induced by real cavity photons. In chapter 6, we observe spin- and
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2.2 Superradiant Raman scattering

Figure 2.5: Real and virtual cavity photons mediating nonlocal dissipative
and coherent interactions. (a) Real cavity photons arise from dissipation of the
underlying light field near the two-photon resonance (|δ| . κ). This results in a su-
perradiant population inversion (|↑〉 → |↓〉) with a collectively enhanced rate Nγ, as
illustrated in the level scheme (upper) and the cavity schematics (lower panel). (b)
Virtual cavity photons arise from unitary Hamiltonian contributions, and dominate the
dynamics away from the two-photon resonance (|δ| � κ). These virtual photons are
transiently created (â†) by an atom undergoing a Raman transition (|↑〉 → |↓〉) and
are subsequently absorbed (â) by a second atom in |↓〉 undergoing the opposite process
(|↓〉 → |↑〉). They mediate nonlocal spin-exchange interactions between atom pairs with
a collective rate Nχ.

momentum-correlated atom pairs in a spin-1 BEC mediated by the exchange of
virtual cavity photons.
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3 Experimental setup and upgrades

All the experiments presented in this thesis were conducted in the Cavity Experiment
at ETH Zurich. The experimental apparatus was constructed between 2002 and 2005
for studying phenomena at the intersection between many-body physics and cavity
Quantum Electrodynamics [57, 58]. The original design of experimental setup can be
found in the PhD theses of Anton Öttl [135] and Stephan Ritter [136]. Throughout
the years, the experimental setup has undergone constant upgrades to meet the
increasing demands of the experiments.

In this chapter, we provide a concise overview of the experimental setup, followed
by a detailed discussion of recent upgrades. We begin with an introduction to
the experimental setup in section 3.1, covering the preparation of a Bose-Einstein
condensate and highlighting the central features of our high-finesse optical cavity.
In section 3.2, we discuss relevant preparation and detection techniques, focusing on
frequency-resolved heterodyne measurements of the cavity field and high-intensity
absorption imaging of the atoms. Finally, in section 3.3, we provide a comprehensive
characterization of the newly installed laser setup for driving cavity-assisted Raman
transitions, which is central to the experiments discussed in this thesis.

3.1 Experimental apparatus

The experimental apparatus is set up on two optical tables. The first one (laser ta-
ble) houses the optical setup to generate and control the laser fields used for cooling,
confining, probing, and detecting the atoms. The laser beams are then transmit-
ted through optical fibers to a second table, referred to as the science table, where
additional optical elements adjust their polarization and precise beam shape. The
science table houses the vacuum system, which consists of two nested chambers, see
Fig. 3.1(a): the high-vacuum prechamber (10−9mbar) is built inside the ultra-high
vacuum main chamber (10−11mbar). The two chambers are connected to indepen-
dent ion pumps, with a differential pumping tube maintaining the high pressure
gradient. In the vacuum chamber, there are several coils used to produce both offset
magnetic fields and gradients required for manipulating the atoms [137].

In section 3.1.1, we provide an overview of the experimental sequence employed
to produce a Bose-Einstein condensate inside the optical cavity. Furthermore, we
discuss the central properties of our high-finesse optical cavity in section 3.1.2.

3.1.1 Route to Bose-Einstein condensation

The experimental sequence starts in the prechamber, where a magneto-optical trap
(MOT) [93] is loaded from the background pressure of 87Rb atoms released from a
dispenser source, see Fig. 3.1(a). The MOT cooler laser is detuned by ∆MOT ≈ −4Γ
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Figure 3.1: Experimental setup. (a) BEC preparation in an optical cavity. The
87Rb atoms are first loaded into a magneto-optical trap (MOT) in the prechamber.
Following a molasses stage and optical pumping to |F = 1,m = 0〉, they are magnet-
ically transported to the main chamber (10−11 mbar). Here, the atoms are confined
in a magnetic QUIC trap and further cooled via radio frequency-assisted evaporation.
After being optically transported into the cavity, the atoms are confined by a crossed
dipole trap and undergo optical evaporation to form a BEC. Adapted from Ref. [138].
(b) 87Rb atoms’ level scheme and laser setup overview. The total angular momentum
of the ground (excited) electronic states is denoted by F (F ′). The MOT cooler laser
addresses the F = 2→ F ′ = 3 transition and is supplemented by a repumper laser ad-
dressing on the F = 1→ F ′ = 3 transition. These lasers are stabilized with respect to
a reference laser locked on F = 2→ F ′ = 2 [108], which is can be adjusted in frequency
to image the atoms on the F = 2 → F ′ = 3 transition. Additionally, the far-detuned
dipole laser (852 nm) and transverse drive (785-790 nm) are used to optically confine
and probe the atoms, respectively. The subfigures (a) and (b) have been adapted from
Refs. [139] and [108], respectively.

from the F = 2 → F ′ = 3 transition, with Γ = 2π × 6.07 MHz referring to the
natural linewidth of the F ′ = 3 manifold. Here, F (F ′) indicates the total angular
momentum quantum number of the electronic ground state 52S1/2 (excited state
52P3/2) of 87Rb, as shown in the 87Rb level scheme in Fig. 3.1(b). Additionally, we
employ a repumper laser addressing the F = 1 → F ′ = 3 transition to suppress
accumulation of atoms in the F = 1 manifold, as the MOT cooling transition is not
closed [109]. Thereby, we cool ∼ 109 atoms from room temperature to hundreds of
µK within 8 to 10 s. The atomic cloud is further cooled to sub-Doppler temperatures
(few µK) via a 20 ms-long optical molasses stage [140].

Next, the atoms are optically pumped to the low-field seeking state |F=1,m=− 1〉,
with m indicating the magnetic (Zeeman) sublevel. The atoms are magnetically
trapped and transported [141] within 1.2 s over ∼ 82 mm to the main chamber.
There, they are loaded into a quadrupole-Ioffe-configuration (Quic) trap [142], and
undergo radio frequency-assisted evaporative cooling to obtain a thermal cloud of
∼ 106 atoms close to quantum degeneracy. This step is the longest in the sequence,
lasting for 18 to 24 s due to the slow thermalization of the remaining 87Rb atoms.
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The atoms are confined by a standing-wave optical potential generated by in-
terfering two counter-propagating beams along the z-direction (transport beams),
cf. Fig. 3.1(a). The transport beams operate at 852 nm and are far red-detuned
from the 87Rb transitions [Fig. 3.1(b)]. By adjusting the relative frequency between
the two beams, the standing-wave potential progressively moves along the −z di-
rection [115]. This optical conveyor belt transports the atoms by ∼ 36 mm into
the optical cavity, where crossed dipole trap formed by one of the transport beams
and an additional orthogonal beam propagating in y direction. After a last step
of optical evaporation (∼ 1 s), we obtain an almost pure Bose-Einstein condensate
(BEC) formed by 2×104 to 105 quantum-degenerate 87Rb atoms (& 0.9 condensate
fraction).

We proceed with the actual experiments, and probe the BEC for variable times
ranging from tens of microseconds to hundreds of milliseconds. To achieve this,
we illuminate the atoms with far detuned transverse drive lasers (see section 3.3)
that induce cavity-assisted two-photon transitions, mediating global-range interac-
tions between the atoms. The photon field leaking from the cavity is continuously
recorded in a non-destructive fashion using a frequency-resolved heterodyne setup,
see section 3.2.1. Finally, we perform a destructive measurement of the atoms’
momentum-space distribution through absorption imaging after free time-of-flight
expansion (see section 3.2.2). Each experimental cycle has a duration of 30 to 35
seconds.

To ensure the successful implementation of the experimental sequence, we require
precise addressing and control of multiple electronic and optical devices and syn-
chronization of the data acquisition. To accomplish this, a central runner computer
generates the necessary analog and digital signals using custom experimental control
software written by Thilo Stoeferle [143]. These signals are then distributed amongst
various devices, such as arbitrary-wave generators, optical shutters, or power sup-
plies for the different coils. After each experimental sequence, the data from the
absorption images and the heterodyne detection are stored and processed on ded-
icated computers. A detailed description of the optimized experimental sequence
can be found in the thesis of Lorentz Hruby [138]. Additionally, Nishant Dogra’s
thesis [108] provides a comprehensive overview of the current laser system and coil
layout.

3.1.2 High-finesse optical cavity

In our experiment, we prepare a Bose-Einstein condensate inside a high-finesse op-
tical cavity to engineer strong and tunable light-matter interactions. In this section,
we provide a concise summary of the main properties of our optical cavity that are
relevant for the experiments discussed in this thesis. A detailed description of its
design and characterization can be found in Ref. [137].

The optical cavity consists of two highly reflective mirrors spaced by l = 176 µm
and coated for 780 ± 40 nm. The mirrors have a large radius of curvature (R =
75 mm� l), forming a quasi-planar symmetric Fabry-Perot resonator. In the chosen
frame of reference, the cavity mirrors are aligned along the x direction, as shown in
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Figure 3.2: High-finesse optical cavity. (a) Schematic representation. Two highly-
reflective mirrors spaced by l = 176 µm are attached to a piezo tube, facilitating adjust-
ment of l. Two pairs of holes in the piezo tube provide optical access along the y and z
directions. The cavity setup is mounted on a vibration isolation stage. (b) Photograph
of the assembled optical cavity setup. Adapted from Ref. [137].

Fig. 3.2(a). The finesse of the optical cavity is given by

F =
2π

2T + 2L
= 3.4× 105, (3.1)

where T = 2.3 ppm and L = 6.9 ppm are the transmission and losses of the mirrors,
respectively. The cavity’s free spectral range is

fFSR =
c

2l
= 852 GHz, (3.2)

with c being the speed of light. From Eqs. (3.1) and (3.2), we derive the decay rate
of the cavity field around 780 nm as

κ =
πfFSR

F
= 2π × 1.25 MHz. (3.3)

In the experiments discussed in this thesis, we exclusively couple the atoms to
the lowest order transverse electromagnetic mode (TEM00), while the contribution
from higher-order modes is negligible. This is due to the large transverse mode
splitting of 18.5 GHz [115]. The TEM00 has a waist of w0 = 25.3 µm yielding a mode
volume of V0 = 8.8× 104 µm3. The corresponding vacuum electric field amplitude is
E0 =

√
~ωc/(2ε0V0), with ωc and ε0 being the resonance frequency of the cavity and

the vacuum permitivity. For the typical values of ωc = 2π×382.047 THz (chapters 4
and 5) and ωc = 2π × 379.477 THz (chapter 6), we obtain E0 = 403 V/m and
E0 = 402 V/m, respectively. The TEM00 mode is split into two orthogonal linearly
polarized eigenmodes, which are tilted by 22◦ with respect to the y- and z-axes,
respectively. Due to the birefringence of the cavity mirrors, the resonance frequency
of the predominantly y-polarized mode is shifted by δB = 2π × 2.2 MHz.

The cavity mirrors are attached to a piezoceramic tube, which allows for precise
adjustment of the cavity length l and consequently the resonance frequency ωc/2π
by . 0.5fFSR (see Fig. 3.2(a)). The latter is actively stabilized by feedbacking on
the reflection of a weak intra-cavity field at 830 nm and acting on the piezo tube.
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Simultaneously, the frequency of this field is stabilized with respect to the transverse
drive frequency (ωd) using a transfer cavity locking scheme. This ensures that the
fluctuations of ωc and ωd become commensurate, and that the cavity detuning ∆c =
ωc−ωd remains a fixed quantity. The field at 830 nm creates an intra-cavity standing-
wave potential with a lattice depth of 0.01Erec, which has negligible influence on the
dynamics of the BEC. A detailed overview of the current locking scheme can be
found in the thesis of Lorenz Hruby [138].

3.2 Preparation and detection techniques

Here, we present the different preparation and detection techniques relevant for
our experiments. In section 3.2.1, we discuss the detection of the cavity field: Af-
ter reviewing the fundamentals of balanced heterodyne detection and providing an
overview of our setup, we discuss how to extract frequency-resolved observables from
our measurements. In sections 3.2.2 and 3.2.3, we provide an overview of our ab-
sorption imaging setup and discuss the improved preparation of atoms in the m = 0
Zeeman sublevel, respectively.

3.2.1 Heterodyne detection of the cavity field

Fundamentals of heterodyne detection

In our experiment, we perform a balanced heterodyne detection [144] of the photon
field leaking out of the cavity, Es = Ese

i(ωst+φs), with electric field amplitude Es,
frequency ωs and phase φs. The cavity field is overlapped with a strong local oscil-
lator (LO) field, ELO = ELOe

i(ωLOt+φLO), on a 50:50 beamsplitter, as illustrated in
Fig. 3.3(a). At the two outputs of the beamsplitter, we obtain the following intensity
beat notes

I± =
1

2

(
|Es|2 + |ELO|2

)
± ELOEs cos(δt+ φ), (3.4)

which are detected on identical photodiodes. Here, δ = ωs − ωLO and φ = φs − φLO

are the relative frequency and phase between the cavity signal and the LO.
In balanced heterodyne detection schemes, the two beat notes I± are subtracted

from each other to obtain the output signal

S(t) = I+ − I− = 2ELOEs cos(δt+ φ), (3.5)

which contains both the frequency, phase and amplitude information of the cavity
field. A central advantage of this detection technique is that the cavity output fre-
quency is down-mixed from the optical domain (ωs ≈ 2π × 400 THz) to the radio
frequency (RF) domain (δ ≈ 2π×50 MHz). This facilitates detection using commer-
cially available photo detectors and RF electronics. Additionally, the large LO field
amplitude (ELO � Es) amplifies the output signal S(t) above technical noise levels,
allowing operation in a regime where photon shot noise becomes dominant [145]. A
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Figure 3.3: Balanced heterodyne detection. (a) Working principle. The signal
ES and local oscillator (LO) ELO fields are overlapped on a beamsplitter (BS) and sent
to the two inputs of a balanced photodiode. The measured intensities I+ and I− are
subtracted from each other to obtain the heterodyne output S. (b) Optical path of the
new heterodyne setup. The signal and LO fields are fiber coupled into a rigid multicube
interferometer comprising multiple polarizing beamsplitters (PBS), which can be used
to perform heterodyne measurements of the y- and z-polarized cavity modes, Sy and
Sz. Adapted from [147].

quantum-mechanical derivation of balanced heterodyne detection can be found in
Ref. [146].

New heterodyne setup

In previous experiments, the heterodyne output S(t) was electronically split and
demodulated from δ ≈ 2π×50 MHz to 2π×47 kHz to extract the relevant quadratures
of the light field. The bandwidth of this old heterodyne setup was limited to Bold =
2π × 250 kHz due to the RF electronics used. A detailed description of this setup
can be found in the theses of Renate Landig [145] and Nishant Dogra [108].

In the experiments discussed in this thesis, we employ the new heterodyne setup
developed by former master student Joshua Maas [147]. In this setup, the cavity
output signal and the local oscillator field are fiber-coupled into a rigid multicube
interferometer, as illustrated in Figure 3.3(b). There, the z- and y-polarized cavity
modes are optically separated and measured using independent balanced photodi-
odes. The corresponding output signals Sz(t) and Sy(t) are sampled by analog-to-
digital converters at a rate of 250 MS/s, yielding a large detection bandwidth of
Bnew = 2π × 125 MHz. To store and process these signals, we employ a custom
Python-based software architecture [147].

One of the central advantages of the new heterodyne setup is its large detection
bandwidth Bnew, which facilitates the simultaneous detection of cavity-assisted Ra-
man processes and intra-spin self-organization of the atoms [64]. When operating
in a single drive configuration at frequency ωd, we typically set the local oscillator
frequency to ωLO − ωd = 2π × 59.55 MHz and operate at large Zeeman splittings
of ωz ≈ −2π × 50 MHz. As discussed in section 2.1.3, cavity-assisted Raman tran-
sitions between the Zeeman sublevels m → m ± 1 are associated with a transient
cavity field at ωs,1 ≈ ωd∓ωz, while self-organization results in a steady-state field at
ωs,2 = ωd [64]. Due to the large detection bandwidth of Bnew = 2π × 125 MHz, we
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can discern the cavity signals associated with Raman processes (ωLO−ωs,1 < Bnew)
and self-organization (ωLO−ωs,2 < Bnew) without requiring hardware modifications.

In the experiments presented in this thesis, we utilize a polarizing beamsplitter at
the cavity output and measure the z- and y-polarized cavity modes using the new and
old heterodyne setups, respectively. Recently, we have removed the old heterodyne
setup for improved experimental access, and the new heterodyne is being used to
monitor both polarizations.

Frequency-resolved evaluation of light-field measurements

In every experimental realization, we use the new heterodyne setup to record the
output S(t) during the probing stage of the experiment, cf. Eq. (3.5). We digitally
demodulate the output signal at the target frequency ωT to obtain

X(t) = S(t) cos(ωT − ωLO) = 2EsELO [cos(δTt+ φ) + cos(ΩTt+ φ))] ,

Y (t) = −S(t) sin(ωT − ωLO) = 2EsELO [sin(δTt+ φ)− cos(ΩTt+ φ))] . (3.6)

The quantities X(t) and Y (t) consist of both low and high frequency components
at δT = ωs − ωT and ΩT = ωs + ωd − 2ωLO, respectively. The fast oscillations can
be suppressed using a suitable digital low-pass filter. We identify X(t) and Y (t)
as the two orthogonal quadratures of the cavity field, with a phase shift of π/2, in
an effective rotating frame defined by the target frequency ωT. We compute the
complex cavity field amplitude as

α(t) = X(t) + iY (t), (3.7)

which contains the complete amplitude and frequency information of the cavity field.
To evaluate the different spectral components, we calculate the discrete fast Fourier
transform (FFT) of α(t) as

FFT(α)(ω) =
dt√
Ñ

∑
j

α∗(tj)e
−iωtj , (3.8)

where tj is the time of the jth step, dt = tj+1− tj and Ñ = T/dt is the total number
of steps in the integration window T [73]. We compute the power spectral density
(PSD) as PSD(ω)=|FFT(α)|2(ω), and construct photon number spectrograms of the
cavity field

ñph(t, ω − ωT) =
PSD(ω)

T
, (3.9)

by dividing the traces into n = tac/T time intervals, each of which overlaps with
the previous one by 50%. Here, tac indicates the total acquisition time during the
probing state.

The photon number spectrogram derived in Eq. (3.9) is extensively used in thesis
to obtain time- and frequency-resolved measurements of the cavity field. Its time
resolution δtR = T/2 is set by the integration time T of the FFTs, which is typically
set to T = 150 − 300 µs. Conversely, the frequency resolution is Fourier limited
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Figure 3.4: Evaluation of photonic and atomic observables. (a) Intra-cavity
photon field associated with spin-changing self-organization. (a1) Photon number
spectrograms ñph at the target frequency ωT = ω̄ obtained for an integration time
T = 250 µs. (a2) Average photon number nph and phase φ of the cavity field at ω̄. See
section 4.2.1 for details on experimental protocol. (b) Representative spin-resolved
momentum distributions in the Zeeman sublevels (m) of F = 1, obtained after Stern-
Gerlach separation and tTOF = 8 ms time-of-flight expansion. The absorption image in
(b1) shows the atomic distribution after a π/2 radio frequency rotation starting from
m = −1, while (b2) shows a m = 0 preparation with an additional cleaning gradient.

to δfR = 1/T ≈ 6.6 − 3.3 kHz. The sensitivity of photon number spectrograms is
experimentally calibrated to δñph ≈ 0.22 at T = 250 µs. Using Eq. (3.9), we can
extract the average number of photons in a specific frequency interval ω−ωT ∈ Ω as
nph(t) =

∑
Ω ñph(t, ω−ωT). Additionally, the relative phase between the cavity field

and the local oscillator at ω = ωT can be determined by evaluating the argument of
the complex-valued field φ(t) = arg[α(t)] [64].

In Fig. 3.4(a), we present an exemplary evaluation of the z-polarized cavity field
associated with spin-changing self-organization of the atoms. As discussed in sec-
tion 4.2, a BEC is illuminated by a two-frequency transverse drive (ωb,r). A super-
radiant phase transition is signaled by a macroscopic cavity field at ω̄ = (ωb+ωr)/2.
This is shown by the representative photon number spectrogram in Fig. 3.4(a1),
where we choose the target frequency ωT = ω̄. For completeness, we present the
average photon number nph integrated over a region Ω = 2π× [−15, 15]kHz and the
phase of the cavity field φ in Fig. 3.4(a2).

3.2.2 High-intensity absorption imaging

At the end of every experimental cycle, we destructively measure the momentum-
space distribution of the atoms by performing high-intensity absorption imaging
after free time-of-flight (TOF) expansion [148]: after the probing stage, all confining
potentials are switched off and the atoms expand for tTOF = 5 − 8 ms, effectively
mapping the initial momentum-space distribution into real space. As our experi-
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ments take place in the F = 1 ground state manifold, the atoms are first transferred
to F = 2 using the repumper laser and the imaged on the nearly closed transition
F = 2→ F ′ = 3, see Fig. 3.1(b).

We image the atoms through the cavity slit along the y-direction1. The attenua-
tion of imaging beam is determined by the Beer–Lambert law

d

dy
I(x, y, z) = −n(x, y, z)σ(I)I(x, y, z), (3.10)

with n(x, y, z) and σ(I) = σ0/[1 + I/Isat] being the density distribution of the
atoms and the resonant absorption cross section, respectively. The latter depends
on the saturation intensity of the imaging transition Isat and on the low-intensity
absorption cross section σ0 [148]. By integrating the Beer-Lambert law, we obtain
the integrated density distribution in the xz plane

n(x, z) =

∫ yf

y0

n(x, y, z)dy = − 1

σ0

[
ln

(
I(yf)

y0

)
− I(yf)− I(y0)

Isat

]
, (3.11)

with I(y0) [I(yf)] being the intensity of the imaging beam before [after] passing
through the atomic cloud. Experimentally, we record first an image with atoms
(IA), a subsequent bright image without atoms (IB) and a final dark image (ID).
The corresponding intensities are estimated as I(yf) = IA− ID and I(y0) = IB− ID,
respectively.

Additionally, during the time-of-flight (TOF) expansion, we apply a strong mag-
netic field gradient along the z direction to perform a Stern-Gerlach experiment.
This gradient spatially separates the atoms occupying different magnetic sublevels
m of the F = 1 manifold, allowing us to obtain spin- and momentum-resolved
atomic distributions. An exemplary absorption image demonstrating this separa-
tion is shown in Fig. 3.4(b1). The magnification of the y-imaging setup is calibrated
to 5.08(3) using Kapitza-Dirac diffraction [149], while its spatial resolution is lim-
ited to ∼ 9 µm due to the narrow separation between the cavity mirrors. For a
detailed characterization of the current imaging setup, refer to the thesis of Lorenz
Hruby [138].

To obtain the correct atomic density from Eq. (3.11), we need to accurately cali-
brate both Isat and σ0. Both quantities depend on the polarization of the imaging
beam [109], which is challenging to estimate a priori at the position of the atoms.
For the experiments discussed in chapters 4 and 5, we calibrate Isat closely following
the procedure discussed in Ref. [145]. We image the BEC at different intensities
I and optimize the free fit parameter Isat to obtain constant total atom numbers
N(I) =

∑
x,z n(x, z) irrespective of I. However, the imaging intensity I can fluctuate

over an order of magnitude at the position of the atoms due to fringes originating
from light scattering at the edges of the cavity mirrors. For the experiments dis-
cussed in chapter 6, we account explicitly for short-scale spatial variations of the
imaging-beam intensity following Ref. [150]. The cross section σ0 enters as a global
proportionality factor in Eq. (3.11) and is calibrated by comparing the measured

1We can also perform simultaneous absorption imaging along z direction, see Ref. [108], which is
currently employed solely for alignment purposes.
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atom numbers N(I) to the results inferred from the dispersive shift of the cavity
resonance in the presence of atoms [108]; this results in a systematic uncertainty of
∼ 15% for the total number of atoms. By recording hundreds of images without
atoms, we calibrate the technical detection noise to σdet = 190(20) atoms in the
regions of interest typically occupied by the BEC. Additionally, we verify that there
are no significant spin-dependent effects affecting the atom counting: we prepare a
polarized BEC in m = −1 Zeeman sublevel of the F = 1 hyperfine manifold, drive
three-level Rabi oscillations and observe a constant total atom number while the
populations in the three m states change.

3.2.3 Improved spin-selective preparation

To generate photon-mediated atom pairs in chapter 6, it was essential to improve
the initial state preparation of the atoms in the |F = 1,m = 0〉 Zeeman sublevel.
In previous experiments [78], BECs in different magnetic sublevels m were prepared
using Landau-Zener sweeps starting from |F = 1,m = −1〉 while optically transport-
ing the atoms into the cavity. However, this approach results in large shot-to-shot
fluctuations, with ∆N0/N0 = 0.14(1) for the atom number in |1, 0〉 compared to
∆N−1/N−1 = 0.039(2) for the initial BEC in |1,−1〉. Here, Nm and ∆Nm are the
mean and standard deviation of the atom number in the different Zeeman sublevels
m obtained from ∼ 50 experimental realizations. These significant fluctuations are
attributed to temporal variations in the bias magnetic field experienced by the atoms
during the Landau-Zener sweeps, as well as shot-to-shot fluctuations in the optical
transport speed.

To improve atom number stability in |1, 0〉, we resort to radio frequency (RF)-
assisted preparation in the optical cavity. Ideally, we would perform RF rotations
of the atomic spin at high bias fields where the quadratic Zeeman splitting q is
much larger than the RF Rabi frequency ΩRF. This would allow us to exclusively
drive RF transitions between the magnetic sublevels |1,−1〉 and |1, 0〉. However, the
electrodes of piezo electric tube surrounding the cavity [Fig. 3.2(a)] shield the atoms
from signals in the radio frequency range ωRF & 2π × 1 MHz [108].

Therefore, we reduce the bias magnetic field to B = 0.64 G, which corresponds
to a small linear Zeeman splitting ωz = −2π × 0.45 MHz, and drive resonant RF
transitions. After t = 25 µs (π/2-pulse), we transfer the atoms to the single-particle
state |φ〉 = (|1,−1〉 +

√
2 |1, 0〉 + |1,+1〉)/2. This state is chosen to maximize the

|1, 0〉 fraction when performing a RF rotation starting from |1,−1〉, assuming a
negligible second-order Zeeman splitting (q � ΩRF). In Fig. 3.4(b1), we show a
typical absorption image after RF preparation and Stern-Gerlach separation during
TOF expansion. To obtain a pure BEC in the |1, 0〉 Zeeman sublevel we apply a
strong magnetic field gradient in the xy plane, effectively removing the magnetically
sensitive atoms in |1,−1〉 and |1,+1〉, as shown in Fig. 3.4(b2).

By employing this RF-assisted preparation technique, we successfully obtained
a Bose-Einstein condensate (BEC) in the |1, 0〉 Zeeman sublevel with significantly
reduced shot-to-shot fluctuations of ∆N0/N0 = 0.045(2). The improved stability
of the initial state preparation is crucial for observing the coherent pair oscillations
discussed in section 6.2. When preparing atoms in |1, 0〉 using Landau-Zener sweeps,
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Figure 3.5: Optical path of transverse drive lasers (laser table). The transverse
drives are derived from a frequency stabilized Toptica DL pro laser, which seeds the
BoosTA tapered amplifier (TA). Its output is split into four paths: local oscillator (LO),
cavity on axis (OA), and two independent transverse drive beams (TD1 in dark red and
TD2 in blue). The frequencies of these beams are adjusted using double-pass acousto-
optical modulators (AOMs). After sending a small fraction of the TDs to photodiodes
for intensity stabilization, they are combined on a polarizing beamsplitter, with a second
one used for polarization matching. Prior to fiber coupling the TDs into the science
table, they can pass through a reflection grating to narrow the broad TA spectrum (see
main text).

the oscillations were fully averaged out by the large shot-to-shot fluctuations.

3.3 Laser setup for driving cavity-assisted Raman transitions

During the course of this thesis, we upgraded the laser setup used to generate the
transverse drive beams inducing cavity-assisted Raman transitions. The upgrade
was motivated by two main factors: increasing the available laser power and ob-
taining two independently tunable drive beams. In section 3.3.1, we present and
characterize the new laser setup. Furthermore, in section 3.3.2, we discuss the vari-
ous configurations employed for the transverse drives and demonstrate experimental
control over their relative spatial phase.

3.3.1 New laser setup

The transverse drive is derived from a Toptica DL pro laser located in the laser
table, providing ∼ 50 mW of laser power at λd = 785 − 790 nm. To increase the
available power, we installed a Toptica BoosTA tapered amplifier (TA), as schemat-
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Figure 3.6: Characterizing the tapered amplifier (TA) of the transverse drive
setup. (a) TA output power PTA as a function of the applied chip current ITA at
λd = 784.7 nm. In our experiments, we typically operate at ITA ≈ 3500 mA. (b) Power
spectral density (PSD) of the TA measured in the science table for a λd = 790.02 nm
seed. The PSD exhibits a broad background spectrum (gray curve) due to amplified
spontaneous emission and includes significant resonant light components. To suppress
these contributions (red curve), we install a reflection grating in the experimental table,
spatially separating different spectral components, and preventing fiber coupling of the
TA background spectrum. The spectra are recorded using the Yokogawa AQ6370C
optical spectrum analyzer.

ically shown in Fig. 3.5. The TA is seeded by ∼ 45 mW of laser light from the DL
pro and is fiber coupled both at the input and output. We characterize the laser
power in the TA output PTA as a function of the current applied to the TA chip
ITA, see Fig. 3.6(a). For ITA > 1000 mA, the tapered amplifier starts lasing, and
the output power monotonically increases until it saturates at PTA = 2.5 W for
ITA = 4500 mA. To increase the TA lifetime, we typically operate it at intermediate
currents ITA = 3500 mA, obtaining PTA = 1.5 W of coherent laser light.

To obtain two independently adjustable transverse drives (TD1 and TD2), we
split the TA output using successive polarizing beamsplitters (PBS), see Fig. 3.5.
We adjust the frequencies of the individual drives using acousto-optical modulators
(AOMs) operated in a double-pass configuration. Two additional AOM paths are
used to adjust the frequency of the local oscillator (LO) for the heterodyne detection
and the on-axis (OA) beam to probe the cavity resonance. After passing through
the AOMs, a small power fraction (5 %) of each transverse is split and sent to a
photodiode used for intensity stabilization2. The two transverse drives are then
combined in a PBS, with a second one used to match their polarization. Finally,
they are sent through a 15 m-long fiber to the science table.

We characterize the spectral composition of the BooTA output. In Fig. 3.6(b), we
measure the TA power spectral density (PSD) when seeding it at λd = 790.02 nm

2In chapter 4, a different intensity stabilization scheme is employed for the experiments. The two
TDs with frequencies ωr,b are overlapped with the local oscillator (LO) at ωLO on a fast photodiode
close to the vacuum chamber in the science table. The beat notes at ωr − ωLO and ωb − ωLO are
electronically separated to stabilize each TD independently. However, it was observed that the drifts
of the TD-LO overlap on the science table were significantly larger than the temporal variations of
the TD fiber coupling. As a result, this scheme was abandoned for later projects.
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(gray curve). We observe a strong peak at λd, accompanied by broad spectral dis-
tribution centered around λd = 780 nm. The latter is attributed to amplified spon-
taneous emission in the TA chip. This broad spectral distribution is particularly
detrimental for our experiments, as it contains non-negligible fractions of light reso-
nant with the D2 (λD2 = 780.02 nm) and D1 lines (λD1 = 797.98 nm) of 87Rb [109],
which give rise to enhanced heating and atom loss [95].

To suppress resonant light, we spectrally filter the TA output. When operating
at λd = 784.7 nm (chapters 4 and 5), we employ a combination of two optical
band-pass filters (Iridian-785nm and Semrock LL01-785-12) to suppress the spectral
components outside a λd± 2 nm transmission window. In chapter 6, we operate the
transverse drive at λd = 790.02 nm, which lies outside the bandwidth of the above
listed optical filters. Instead, we employ a reflection grating (Edmund optics, 18000
Grooves/mm) to spatially separate the desired spectral component at λd from the
broad background in the experimental table, preventing the latter to be fiber coupled
to the science table. The grating is installed ∼ 25 cm away from the optical fiber
and reflects about ∼ 60% of the total laser power in its first order. In Fig. 3.6(b),
we also show the PSD in the science table when including the reflection grating (red
curve). As expected, we observe a suppression of the TA background to noise levels
(PSD . 80 dBm).

When operating the system in a single drive configuration, we produce up to
Pd = 150 mW of frequency and intensity stabilized laser light in the science table.
In the two-drive configuration, we typically obtain up to Pd = 40 mW per TD
beam. The factor of two reduction in power in the latter case is due to the last
polarizing beamsplitter (PBS) used before the fiber to match the polarization of
the two transverse drives. For comparison, before the TA installation, the available
TD laser power in the science table was more than an order of magnitude smaller
(Pd < 10 mW) and insufficient to induce cavity-assisted Raman transitions.

3.3.2 Control over the spatial phase of the drives

In this section, we discuss the experimental control over spatial profile and relative
phase of the transverse drives at the position of the atoms. After being fiber coupled
to the science table, the transverse drive (TD) beams pass through beam shaping
optics and a pair of motorized λ/2- and λ/4-waveplates to adjust their polarization.
The TDs enter the vacuum chamber along the vertical (z) direction, propagate
through the cavity and exit the chamber again. The thesis of Kristian Baumann [151]
provides a complete overview of the TD optical setup in the science chamber, whereas
the TD polarization is characterized in the thesis of Katrin Kroeger [152]. We
calibrate the lattice depths associated with the transverse drives using Kapitza-Dirac
diffraction [149], with the exact calibration procedure being detailed in Ref. [108].

For the experiments discussed in chapters 4 and 5, we operate the TDs in a
standing-wave configuration. In a new optical breadboard placed above the vacuum
chamber [152], we install the required optical elements to retro-reflect the transverse
drives onto the atoms, see illustration in Fig. 3.7. Depending on the desired spatial
phase between the two transverse drives, we employ two different motorized retro-
reflecting mirror R1 and R2, which are placed at a distance of z1 and z2 from the
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Figure 3.7: Optical path of transverse drive (TD) retro reflection (science
table). After exiting the vacuum chamber along z direction, the two TD beams (dark
red lines) can be retro-reflected by the motorized mirrors R2 and R1 which are placed
at a distance z2 and z1 from the BEC, respectively. The combined standing-wave
modulations are either in or out of phase at the position of the atoms, respectively. The
polarization of the retro-reflecting path is adjusted using a pair of motorized waveplates.
To obtain running-wave drive, we can block the retro-reflection using a beam dump.
Adapted from Ref. [152].

BEC, respectively.
To model the combined standing-wave potential at the position of the atoms, we

consider two classical y-polarized fields propagating along z-direction. The negative
part of the total electric field E(−) is

E(−) =
Er
2

cos(krz)eye
−iωrt +

Eb
2

cos(kbz)eye
−iωbt, (3.12)

with Er,b, ωr,b and kr,b = ωr,b/c being the amplitudes, frequencies and wavenumbers
of the two drives. The phase reference for both fields is determined by the position
of the retro-reflecting mirror at z = 0. When considering a quantization axis along
the −z direction and dispersive atom-light interactions [see Eq. (2.12)], this linearly
polarized electric field gives rise to an optical lattice potential

Vtot(z) = αsÊ
(+) · Ê(−) =

αs
4

[
E2
r cos2

(ωr
c
z
)

+ E2
b cos2

(ωb
c
z
)]

= V cos

(
ωb − ωr

c
z

)
︸ ︷︷ ︸

Venv

cos

(
2ω̄

c
z

)
+ V, (3.13)

where αs is the scalar polarizability, ω̄ = (ωb + ωr)/2 and V = −αsE2/4 is the
maximal lattice depth per drive in a balanced configuration, i.e., E = Er = Eb. The
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3.3 Laser setup for driving cavity-assisted Raman transitions

expression in Eq. (3.13) comprises a rapidly varying λ/2-periodic lattice potential,
with λ = 2πc/ω̄, and a slowly changing envelope Venv. In Fig. 3.8(a1), we plot
the envelope potential as a function of the distance z between the retro-reflecting
mirror and the BEC and the frequency difference between the drives ωb − ωr. For
the relevant frequency differences ωb−ωr ≈ 2π ·100 MHz, the envelope function Venv

periodically oscillates in space over a distance of z ≈ 1.5 m.
For the experiments discussed in chapter 4, we employ the retro-reflecting mirror

R2 at a distance of z2 = 1.562 m from the BEC, see Fig. 3.7. For the considered
frequency difference of ωb − ωr = 2π × 96 MHz, the envelope function Venv(z2) = V
becomes maximal as the two optical lattices are in phase at the position of the atoms,
see Fig. 3.8(a2). The resulting in-phase optical lattice motivates the introduction
of identical spatial mode profiles for the transverse drives fr,b ∝ cos(kz), with k =
(kr + kb)/2 , when operating in this configuration. They are used to derive the
extended Dicke model considered in chapter 4, see Eq. (4.1).

For the experiments presented in chapter 5, we also operate the drives at ωb−ωr =
2π × 96 MHz and place the second retro-reflecting mirror R1 at a distance z1 =
0.781 m from the BEC, see Fig. 3.7. The two transverse drives are then fully out of
phase at the position of the atoms yielding a vanishing envelope function Venv(z1) =
0, see Fig. 3.8(a2). Due to the suppressed combined standing-wave modulation, we
refer to this setting as the erased lattice configuration. Since variations of Venv are
negligible within the extent of the atomic cloud (∼ 10 µm), we introduce spatial
mode profiles for the two drives fr(x) = cos(kz) and fb(x) = sin(kz). These mode
profiles are used to derive the Hamiltonian inducing cavity-assisted tunneling in a
momentum lattice in chapter 5.

To experimentally assess the quality of the erased lattice configuration, we place
the mirror R1 at z1 = 0.781(5)m and increase the combined lattice to V = 24.2(1)Erec
within 20 ms. We vary the imbalance between the two drives at a fixed V and mea-
sure the population in the lattice momentum peaks kz = ±2k after time-of-flight
expansion (see insets in Fig. 3.8(b)). By performing complementary measurements
with a single drive, we can convert the measured populations in kz = ±2k into
equivalent lattice depths. In Fig. 3.8, we show the inferred equivalent lattice depth
for different nominal imbalances. For optimally balanced drives with a small imbal-
ance of 0.5(4) Erec, we measure a small residual lattice depth of 0.8(4) Erec, which
indicates a suppression of the total lattice modulation by a factor > 30 compared
to the single-drive case.

Finally, for the experiments discussed in chapter 6, we simplify the transverse
drive setup. We illumine the atoms with a single drive (TD1) at frequency ωd and
block the retro-reflection with a removable beam dump, see Fig. 3.7. Hence, the
drive is operated in a running-wave configuration with a spatial profile given by
f(z) = eikz, with wavenumber k = ωd/c.
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Figure 3.8: Controlling the relative spatial phase of the transverse drives.
(a1) Lattice envelope Venv generated by the transverse drives as a function of their
frequency difference ωb − ωr and the distance z between the retro-reflecting mirror
and the BEC. (a2) Combined standing-wave potential VTot(z) (light green) and lattice
envelope (dark green) for the experimentally relevant difference ωb − ωr = 2π · 96 MHz
[white line in (a1)]. For z1 = 0.781 m (z2 = 2z1), the envelope vanishes (is maximal)
as the two standing-wave modulations are out of phase (in phase) at the position of
the BEC. Here, we set V = 12 Erec and undersample VTot(z) for better visibility.
(b) Experimental verification of the erased lattice configuration for z = z1. We infer
the equivalent lattice depth as a function of drive imbalance for large combined lattices
V = 24.2(1) Erec (see main text). A suppression of the lattice depth by a factor of
> 30 is observed when the two drives are balanced drives. Insets: momentum-space
distributions in m = −1, showing occupation of lattice momentum peaks at kz = ±2k
for finite lattice imbalances, with k being the photon recoil momentum. Adapted from
Ref. [90].
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4 Dissipative phases and transitions in a
superradiant quantum gas

Open many-body systems can challenge the fundamental laws governing the physics
of systems in thermal equilibrium. In the idealized case of an ensemble of particles,
isolated from the environment and at zero temperature, the ground state phases are
solely determined by energy minimization [153, 154]. However, in open systems, the
interplay between coherent dynamics within the system and its interaction with the
environment yields much richer phenomenology [26, 155–159]. Such interaction is
not only unavoidable but can be exploited via the engineering of external drives and
coupling to specific baths [160–163].

Historically, cold-atoms experiments have aimed to isolate interacting many-body
systems from the environment for performing analog quantum simulation [164, 165],
see Fig. 4.1(a1). Close to zero temperature, the ground state properties of these
systems are determined by the competition of different energy scales, such as the
kinetic and internal energies of the atoms, and their effective interaction strength η̄
[153]. When the interactions are increased above a critical value, η̄ > ηc, the system
can undergo a quantum phase transition to a spatially ordered configuration, as
depicted Fig. 4.1(a2). Such phases are characterized by a mean-field order param-
eter assuming non-zero values, Θ 6= 0, each indicating a different symmetry-broken
configuration. Experiments simulating many-body phase transitions with ultracold
atoms are diverse, and include the superfluid-Mott insulator transition [39], the for-
mation of the Fermi-Hubbard antiferromagnet [42, 43] and the superfluid-supersolid
phase transitions [68, 166]. However, these ‘closed systems’ are only in good approx-
imation fully isolated from the environment; they are indeed affected by spurious
dissipative processes, such as atom loss and heating which can prove detrimental to
the accessible phases and dynamics [21].

In recent years, the experimental access provided by ultracold atoms has sparked
a revival of interest in many-body systems interacting with their environment [167,
168]. Observations arising from the system’s openness include the emergence of mul-
tistable phases [169–172], the stabilization of insulators [33, 173] and the appearance
of dissipation-induced limit cycles [73–75]. Besides their fundamental interest, non-
equilibrium phenomena bear the prospect of becoming versatile tools for engineer-
ing new materials ranging from exciton condensates to light-induced superconduc-
tors [174–178]. The properties of these phases emerge from tuning the elementary
excitations by hybridization with the incident light field [179, 180], providing a natu-
ral coupling to the environment in presence of optical drives and losses [181, 182]. To
gain further insight into this phenomenology, it is essential to achieve experimental
control over coherent and dissipative channels and at the same time to gain access
to the microscopic processes underlying the observed macroscopic phases [183].
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Figure 4.1: Engineered coherent and dissipative coupling in a quantum gas.
(a) Closed system implementations. (a1) Conventional cold-atom experiments aim to
isolate an interacting quantum gas, with typical interaction rate η̄, from the environ-
ment. (a2) Mean-field ground states. For sufficiently strong interactions η̄ > ηc, the
system may undergo a symmetry-breaking transition to an ordered phase character-
ized by the macroscopic order parameter Θ 6= 0. However, all feasible experimental
implementations are only approximately fully isolated many-body systems, as they are
subject to spurious dissipative processes (with rate γ). (b) Engineered many-body
open system. (b1) Coupling a degenerate quantum gas to an optical cavity via two
external drives (ηb,r) inherently realizes an open system due to cavity losses at rate κ.
(b2) Schematic coupling mechanism. The drives implement co- and counter-rotating
light-matter interactions, hybridizing two well-defined atomic modes (|0a〉 , |1a〉) with
the cavity field (operator â†). At the same time, the decay rate γ(∆η) of the underlying
light-matter excitations can be controlled via the drive imbalance ∆η = (ηb − ηr)/2.
In such systems, the interplay between controlled coherent and dissipative processes
results in a rich phenomenology.

In this chapter, we engineer an open many-body system with photon-mediated in-
teractions that is subject to tunable coherent and dissipative couplings by preparing
a degenerate quantum gas in a high-finesse optical cavity, see Fig. 4.1. The atomic
system can be accurately captured by two well-defined modes |0〉a and |1〉a, which
incorporate not only two differing internal levels but also homogeneous (|0〉a) and
density-modulated external states (|1〉a), as illustrated in Fig. 4.1(b2). We employ
two laser drives to independently control the strength of co- and counter-rotating
light-matter interactions, ηr and ηb. As we increase the average coherent interac-
tions η = (ηr + ηb)/2, the atomic modes hybridize with the cavity field â to form
polariton modes, giving rise to a superradiant phase transition above a critical cou-
pling, η̄ > ηc. The openness of the system arises from cavity losses at a rate κ and
gives rise a collective decay of the excited polariton modes, γ(∆η), which we control
by adjusting the relative strength of the two drives ∆η = (ηb − ηr)/2. For domi-
nant dissipative couplings, this results in significant qualitative changes of the phase
diagram. Specifically, we observe the appearance of a dissipation-stabilized phase
and a discontinuous phase transition in a bistable region, as pointed out in previous
theoretical works in Refs. [159, 184]. To provide a microscopic description of our
system, we connect our observations to the properties of the underlying polariton
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excitations which we characterize experimentally and theoretically.

Outline of this chapter

In section 4.1, we map cavity-assisted Raman scattering in our system to an ex-
tended Dicke model with tunable co- and counter-rotating light-matter couplings
and discuss the theoretical framework to analyze the open system dynamics. In
section 4.2, we focus on the case of balanced couplings where our system is mapped
to a spinor Dicke model. We present a direct experimental observation of the cor-
responding superradiant phase (SP) transition and discuss the associated technical
challenges. In section 4.3, we investigate the interplay between coherent and dissipa-
tive dynamics by controlling the strength of the co- and counter-rotating couplings,
and demonstrate the emergence of a dissipation-stabilized normal phase (DSNP).
In section 4.4, we show how this interplay further influences the system’s dynamical
behavior, resulting in DSNP-SP bistability and a discontinuous phase transition. In
section 4.5, we present a new protocol for probing of the underlying light-matter
excitation dynamics in real time. By characterizing the excitation dynamics, we
establish a relation between the observed macroscopic phases and the elementary
microscopic processes in our system. Finally, in section 4.6, we summarize our find-
ings and provide perspectives for future experiments.

Parts of this chapter have been published in Ref. [90]:

F. Ferri*, R. Rosa-Medina*, F. Finger, N. Dogra, M. Soriente, O. Zil-
berberg, T. Donner and T. Esslinger. Emerging Dissipative Phases in a
Superradiant Quantum Gas with Tunable Decay. Physical Review X 11,
041046 (2021)
* These authors contributed equally to this work

4.1 Coupling scheme and theoretical description

In this section, we discuss the theoretical framework of our experiments. After a
qualitative discussion of the coupling scheme in section 4.1.1, we map our system to
a generalized Dicke model featuring tunable co- and counter-rotating couplings in
section 4.1.2. We derive the equations of motion and steady-state solutions for the
open system in section 4.1.3. Finally, in section 4.1.4, we discuss the framework for
analyzing the excitation spectrum of our system.

4.1.1 Coupling configuration and qualitative description

In our experiments, we trap a 87Rb Bose-Einstein condensate (BEC) inside our
optical cavity and illuminate it with a two-frequency optical standing-wave drive
perpendicular to the cavity axis, cf. Fig. 4.2(a). The BEC is formed by N ≈ 105

atoms initialized in the m = −1 Zeeman sublevel of the F = 1 manifold. A strong
magnetic field B = 68.3 G along the −z-direction defines the quantization axis and
yields a linear Zeeman splitting ωz = −2π × 48 MHz between the m = −1 and
m = 0 sublevels. The two driving fields at λd = 784.7 nm operate in the dispersive
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regime, with their frequencies ωb and ωr being set on opposite sides of the cavity
resonance ωc and ωb−ωr ≈ 2|ωz|, cf. Fig. 4.2(b). Their standing-wave modulations
are in phase at the position of the atoms, forming a one-dimensional λd/2-periodic
lattice potential. For technical details on the experimental implementation, see
section 3.3.2.

Each transverse drive realizes cavity-assisted Raman transitions between the m =
−1 and m = 0 levels, as depicted in Fig. 4.2(b). The resulting system can be
described by considering two atomic states comprising well-defined spin and mo-
tional modes: the initial ground state of the trapped BEC in m = −1 [state |0a〉]
and an excited-momentum state in the neighboring Zeeman sublevel m = 0 [state
|1a〉 ∝ cos(kx) cos(kz)F̂+ |0a〉], with F̂+ and k = 2π/λd being the F = 1 raising
operator and the photon recoil momentum, respectively. The two Raman drives im-
plement tunable co- and counter-rotating light-matter interactions, with rates ηr and
ηb, respectively. When balanced (ηr = ηb), the many-body system reduces to a dis-
persive implementation of the Dicke Hamiltonian [61] exhibiting superradiant phase
transition above a critical coupling strength. This phase is characterized by a steady-
state cavity field at the intermediate frequency between the drives ω̄ = (ωb + ωr)/2
and by an emergent λd-periodic checkerboard modulation of the atomic transverse
magnetization [79].

Our experiment inherently realizes an open quantum system, as the cavity field
decays at a rate κ. Close to the Dicke limit, cavity losses only result in a small shift
of the critical coupling. However, by adjusting the imbalance between the co- and
counter-rotating couplings, ∆η = (ηb− ηr)/2, we can modify the decay rate γ ∝ ∆η
of the associated light-matter excitations (polaritons). The underlying microscopic
process is superradiant Raman scattering of photons induced by each laser drive and
the dissipatively-broadened density of states of the cavity. As we experimentally
demonstrate in the following sections, this tunable dissipation channel significantly
alters the superradiant phase transition, introducing dissipation-stabilized normal
phases and hysteretic transitions.

4.1.2 Mapping to a generalized Dicke model

We consider two y-polarized transverse drive fields propagating along the z-direction
(with frequencies ωr,b and amplitudes Er,b) and the quantized field of the cavity. The
negative part Ê(−) of the total electric field is

Ê(−) =
Er
2
fr(x̂)eye

−iωrt +
Eb
2
fb(x̂)eye

−iωbt + E0g(x̂)âez. (4.1)

The operator â annihilates z-polarized photons in the TEM00 cavity mode with vac-
uum electric field amplitude E0. Given their small frequency difference ωb − ωr =
2π × 96 MHz, we consider a common wavenumber k = ω̄/c for the standing-
wave drives, with ω̄ = (ωb + ωr)/2. We account for finite-size effects, by con-
sidering the finite transverse extension of the spatial modes fr,b(x̂) = f(x̂) =
exp
[
−2x2/w2

x − 2y2/w2
y

]
cos(kz). Furthermore, the cavity mode profile is given by

g(x̂) = exp
[
−2(y2 + z2)/w2

c

]
cos(kx). The corresponding waist sizes are [wx, wy, wc] =

[24, 27, 25] µm [145].
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Figure 4.2: Experimental setup. (a) Schematics of the experimental setup. A
BEC inside a high-finesse cavity (with resonant frequency ωc and field decay rate κ)
is illuminated by two y-polarized transverse drives with Raman couplings ηb,r and fre-
quencies ωb,r. The two standing-wave drives are in phase at the position of the BEC,
see section 3.3.2. A magnetic field B along −z-direction defines the quantization axis.
(b) Simplified level scheme. The BEC in the m = −1 Zeeman sublevel (mode |0a〉) is
coupled to a spatially modulated state in m = 0 (|1a〉), separated by an energy offset
~ω̃z. In the superradiant phase, a coherent z-polarized cavity field builds up at the
intermediate frequency ω̄ = (ωb+ωr)/2 (green arrows). The corresponding two-photon
transitions at ω̄ are detuned from the bare atomic states |0a〉, |1a〉 by ∓ω0 [dashed lines
in (b)], requiring softening of the underlying excitations.

We consider dispersive atom-light interaction, as derived in the general Hamilto-
nian of Eq. (2.12). We derive the single-particle Hamiltonian

ĤSP = Ĥat + Ĥcav + Ĥs + Ĥv, (4.2)

in a rotating frame induced by the generator Ĥrot = ~ω̄â†â − ~ω′zF̂z, with ω′z =
(ωb − ωr)/2. In this rotating frame, a cavity field oscillating at ω̄ = (ωb + ωr)/2
becomes time independent. The bare atomic Hamiltonian

Ĥat =
p̂2

2M
+ Vext(x̂) + ~δzF̂z + ~qF̂ 2

z , (4.3)

can be written in terms of the F = 1 spin operator F̂ = (F̂x, F̂y, F̂z)
T . The external

trapping potential Vext(x̂) is kept fixed during the experiments. In this rotating
frame, the energy difference between the Zeeman sublevels is determined by the
effective linear shift δz = ωz + ω′z and the quadratic Zeeman splitting ~q > 0. The
Hamiltonian of the bare cavity mode reads

Ĥcav = −~∆câ
†â, (4.4)

with ∆c = ω̄ − ωc defining the detuning with respect to the cavity resonance ωc.
The atom-light interactions comprise scalar and vectorial contributions

Ĥs =
αs
4

(E2
b + E2

r )f(x̂)2 + αsE
2
0 â
†âg(x̂)2,

Ĥv =
αv
8
E0

[
(Eb + Er)

(
â+ â†

)
F̂x + (Eb − Er) i

(
â− â†

)
F̂y

]
f(x̂)g(x̂), (4.5)
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4 Dissipative phases and transitions in a superradiant quantum gas

where we apply a global rotation of the cavity field â → âeiπ/2. The first term of
Ĥs describes a one-dimensional lattice potential created by the drives (z-direction),
with maximal lattice depth Vd = −αs(E2

b + E2
r )/4. The second term in Ĥs is re-

sponsible for the dispersive shift of the cavity resonance due to a weak dynamical
lattice along x, with maximal dispersive shift per atom U0 = αsE

2
0/~. The vectorial

interactions, Ĥv, induce cavity-assisted Raman transition between the Zeeman sub-
levels of the F = 1 manifold. Here, the spin-changing terms F̂x and F̂y are mediated
by orthogonal quadratures of the cavity field, and can be independently controlled
by the amplitude sum and difference of the two drives Er,b, respectively.

Many-body Hamiltonian in a two-mode approximation

We derive the many-body Hamiltonian for a spinor BEC using the formalism of
second quantization

Ĥ = Ĥcav +

∫
Ψ̂†(x)

(
Ĥat + Ĥs + Ĥv

)
Ψ̂(x)dx, (4.6)

where Ψ̂(x) =
(

Ψ̂+1(x), Ψ̂0(x), Ψ̂−1(x)
)T

is a spin-1 atomic field operator. At this

level, we neglect collisional interactions for sufficiently low densities. At the large
magnetic field we operate, B = 68.3 G, cavity-assisted Raman transitions to m = +1
are detuned by ∆+1 ≈ 2q = 2π×0.7 MHz, which determines the fastest timescale of
the atomic evolution. This allows us to adiabatically eliminate the atomic operator
Ψ̂+1, and restrict the dynamics to the Zeeman sublevels m = −1 and m = 0.

We map our system to a generalized Dicke model by further restricting the Hilbert
space to two well-defined spin and momentum modes. In the normal phase, the
m = −1 BEC occupies the ground state of the total trapping potential arising
from the external trap Vext and the attractive lattice potential of the drives Vd,
cf. Eq (4.5). We label this ground state as |0a〉, with corresponding wave function
Φ0a(x). Cavity-assisted Raman transitions couple |0a〉 to a density-modulated state
in m = 0, which we refer to as |1a〉. The correspoding single-particle wave function is
given by Φ1a(x) = NΦ0a(x) cos(kx) cos(kz), with N being a suitable normalization
factor. When increasing the driving strength, the ground state |0a〉 evolves from
a harmonically confined BEC to a stack of pancake-shaped BECs trapped in the
maxima of the standing-wave drives. Within this two-mode description, the spinor
field operator takes the form Ψ̂(x) = (0, Φ1a(x)ĉ1a , Φ0a(x)ĉ0a)T , where ĉ0a and ĉ1a

are bosonic annihilation operators for the respective modes.
Within this two-mode approximation, the many-body Hamiltonian is given by

Ĥ =− ~ [∆c −NI(Vd)U0] â†â+ ~ω0(Vd)Ĵz

+
αv

4
√

2
M(Vd)E0

[
(Eb + Er)(â+ â†)Ĵx + i(Eb − Er)(â− â†)Ĵy

]
, (4.7)

where we introduce pseudo-spin-N/2 operators Ĵx = (ĉ†1a ĉ0a + ĉ†0a ĉ1a)/2, Ĵy =

(ĉ†1a ĉ0a − ĉ†0a ĉ1a)/2i and Ĵz = (ĉ†1a ĉ1a − ĉ†0a ĉ0a)/2. We indicate with ~ω0(Vd) the
energy difference between the bare atomic modes. The different overlap integrals
are defined as I(Vd) = 〈0a| g(x)2 |0a〉 /N and M(Vd) = 〈0a| f(x)g(x) |1a〉 /N . A
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detailed discussion of their scaling can be found in the PhD thesis of Nishant Do-
gra [108].

In the limit of small lattice depths, the many-body Hamiltonian can be simplified
to

Ĥ = −~∆câ
†â+ ~ω0Ĵz + 2~η̄(â+ â†)Ĵx + 2i~∆η(â− â†)Ĵy, (4.8)

where we substitute [∆c−NI(Vd)U0]→ ∆c, and define ηb,r = αv

4
√

2
M(Vd)E0Eb,r and

~ω0 = ~(ω′z−ωz + 2ωrec) for Vd → 0. Additionally, we introduce the average Raman
coupling η̄ = (ηb + ηr)/2 associated with both drives and the coupling imbalance
∆η = (ηb − ηr)/2. A slight rearrangement of terms gives

Ĥ = −~∆câ
†â+ ~ω0Ĵz + ~ηb(âĴ+ + â†Ĵ−) + ~ηr(â†Ĵ+ + âĴ−), (4.9)

with Ĵ± = Ĵx ± iĴy. Here, it becomes apparent that the couplings ηb and ηr con-
trol the strength of the co- and counter-rotating light-matter interactions, respec-
tively. This enhanced level of experimental control over atom-light interactions in
our system stems from coupling two specific spin and momentum modes using two
independently tunable Raman drives, and is not present in conventional cold-atom
implementations of the Dicke model solely relying on external atomic modes [62].

The model introduced in Eq. (4.8) is a generalized Dicke Hamiltonian [159, 184–
187], also referred to as interpolating Dicke Tavis-Cummings model [159, 184]. In the
limit of balanced drives, ∆η = 0, it reduces to of the paradigmatic Dicke model [61,
62], coupling the real quadrature cavity field to the coherence between the two atomic
modes Ĵx. Increasing ∆η > 0 induces a concurrent coupling to the orthogonal atomic
coherence Ĵy mediated by the imaginary quadrature of the cavity field. In the limit
of large imbalances, ∆η = η̄ (ηr = 0), the Hamiltonian in Eqs. (4.8) and (4.9)
converges to the Tavis-Cummings model [113], which we theoretically discuss in the
previous chapter.

The generalized Dicke Hamiltonian in Eq. (4.8) has a Z2×Z2 symmetry [159]. This
symmetry is associated with a simultaneous transformation of the real or imaginary
quadratures of the cavity field together with the corresponding spin operators, i.e.,
[(â + â†), Ĵx]→ −[(â + â†), Ĵx] and [i(â − â†), Ĵy]→ −[i(â − â†), Ĵy]. In the Tavis-
Cummings limit, ∆η = η̄, the system possesses an enlarged U(1) symmetry [159], as
the Hamiltonian is invariant under the continuous phase transformation [â, Ĵ−]→[â,
Ĵ−]eiϕ, with ϕ ∈ [0, 2π).

4.1.3 Equations of motion and solutions of the open system

Our experiment inherently realizes an open quantum system as the cavity field
decays at a finite rate κ = 2π × 1.25 MHz, and the associated dynamics cannot be
fully captured by a many-body Hamiltonian. Starting from the Lindblad master
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4 Dissipative phases and transitions in a superradiant quantum gas

equation discussed in Eq. (2.21), we derive mean-field equations of motion (EOMs)

d

dt
α = i∆cα− i2

√
Nη̄X − 2

√
N∆ηY − κα ,

d

dt
X = −ω0Y − 4

√
N∆ηαImZ − ΓφX ,

d

dt
Y = ω0X − 4

√
Nη̄αReZ − ΓφY ,

d

dt
Z = 4

√
Nη̄αReY + 4

√
N∆ηαImX .

(4.10)

Here, we introduce normalized mean-field observables α = 〈â〉/
√
N andK = 〈ĴK〉/N ,

with K ∈ {X,Y, Z}, and define αRe = Re(α) and αIm = Im(α). In the EOMs,
we further include a phenomenological spin dephasing term with rate Γφ, which
we attribute to the combined effect of atomic collisions and magnetic field fluctu-
ations [72]. This term is compatible with a Lindblad term of the form L[Ĵz] =
Γφ[2Ĵzρ̂Ĵz − {ĴzĴz, ρ̂}] [89].

We set the derivatives of the EOMs to zero, e.g., d
dtX = 0, and solve for the steady-

state solutions of the system. We note that the normal phase with α = X = Y = 0
and Z = −1/2 is always a trivial steady-state solution of the mean-field EOMs. This
phase is characterized by a vanishing cavity field α = 0 and by all atoms occupying
the atomic ground state |0a〉, i.e., Z = −1/2.

The system can also support a superradiant phase exhibiting a non-vanishing
cavity field α 6= 0. By imposing total spin conservation, X2 + Y 2 + Z2 = 1/4, we
obtain the following set of nontrivial steady-state solutions

αRe = ±
√
c

√
2a2

2b1 + a2b22 − 2a2b3(a1 + b1) + 2a1b23 + sgn[∆ηN − η̄N ]a2|b2|
√
b22 − 4(a1 − b1)(a2 − b3)

2(a2
2b

2
1 + a2

1b
2
3 + a1a2(b22 − 2b1b3))

,

αIm =
b22 − sgn[∆ηN − η̄N ]|b2|

√
4(b1 − a1)(a2 − b3) + b22

2b2(a2 − b3)
αRe ,

X = −∆cαRe + καIm

2η̄N
, Y =

∆cαIm − καRe

2∆ηN
,

Z = −

(
η̄2
N + ∆η2

N

)
∆c −

√(
η̄2
N −∆η2

N

)2
∆2
c − 4κ2η̄2

N∆η2
N

16η̄2
N∆η2

N

ω0 = Aω0 ,

(4.11)
where we introduce the normalized couplings η̄N =

√
Nη̄ ,∆ηN =

√
N∆η, and

a1 = 16A2η̄2
N , a2 = 16A2∆η2

N , b1 =
(
κ2/∆η2

N + ∆2
c/η̄

2
N

)
/4 ,

b2 = κ∆c

(
1/η̄2

N − 1/∆η2
N

)
/2 , b3 =

(
κ2/η̄2

N + ∆2
c/∆η

2
N

)
/4 , c = 1/4−A2ω2

0 .
(4.12)

The superradiant phase is characterized by the system occupying a superposition
between the ground |0a〉 and excited state |1a〉, as signaled by the non-vanishing
atomic coherences X 6= 0 and Y 6= 0. For sufficiently large cavity detunings |∆c| > κ,
these coherences are primarily associated with the real (αRe) and imaginary quadra-
tures of the cavity field (αIm), respectively. For ∆c < 0, the system features four
different superradiant solutions with (αRe, X), (−αRe, −X), (αIm, Y ) and (−αIm,
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−Y ) which is a direct consequence of the underlying Z2×Z2 symmetry of the gener-
alized Dicke Hamiltonian, as discussed in the previous section. A detailed derivation
of these steady-state solutions can be found in the PhD thesis of Matteo Soriente in
Ref. [188].

4.1.4 Calculating the energy spectrum of the system

To examine the stability behavior of the steady-state solutions and characterize
the energy spectrum of the open system, we expand the order parameters as α =
α0 + δα,X = X0 + δX, Y = Y0 + δY, Z = Z0 + δZ around the steady-state solutions
(α0, X0, Y0, Z0), chosen to be either the normal or the superradiant phase. A similar
treatment has been used in Refs. [159, 189]. We start from the mean-field EOMs
in Eq. (4.10), consider only linear contribution of the fluctuations (δα, δX, δY, δZ),
and obtain

d

dt


δαRe

δαIm

δX
δY
δZ

 = M0


δαRe

δαIm

δX
δY
δZ

 , (4.13)

with the stability matrix

M0 =


−κ −∆c 0 −2∆ηN 0
∆c −κ −2η̄N 0 0
0 −4∆ηNZ0 −Γφ −ω0 −4∆ηNα

0
Im

−4η̄NZ0 0 ω0 −Γφ −4η̄Nα
0
Re

4η̄NY0 4∆ηNX0 4∆ηNα
0
Im 4η̄Nα

0
Re 0

 . (4.14)

By diagonalizing M0, we obtain both eigenfrequencies of the system and evaluate
the stability of the different steady-state solutions [189]. Specifically, the imaginary
part of the eigenvalues represents the energy cost associated with different excitation
branches, while an eigenvalue with a positive real part indicates that the correspond-
ing steady-state solution becomes unstable against small linear perturbations.

In our system, the underlying excitations are polariton modes [190, 191]. The
collective light-matter excitations either hybridize the cavity field with the atomic
components (photonic branches) or the atomic excitations with the light field of
the cavity (atomic branches). Due to the large separation between the photonic and
atomic energy scales in our experiment, |∆c| � ω0, we can disregard the involvement
of the photonic branches in the dynamics which are associated with eigenfrequencies
ωph
± ≈ ±i∆c [191].

In the normal phase, we can derive an analytic expression for the eigenfrequecies
off the atomic polaritons, after eliminating the cavity field in the limit κ� ω0 and
neglecting spin dephasing Γφ = 0 . Diagonalizing the stability matrix yields

ω± = −N κ

κ2 + ∆2
c

(η2
b − η2

r )± iω0

√(
1− η̄2

η2
c

)(
1− ∆η2

η2
c

)
, (4.15)
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where we additionally introduce the critical coupling strength

ηc =

√
−ω0(∆2

c + κ2)

4N∆c
. (4.16)

In the following sections, we extensively rely on Eq. (4.15) to characterize the
behavior of our system. In section 4.2.1, we analyze the Dicke limit (∆η = 0) and
discuss how the softening of the atomic polaritons leads to a superradiant phase
transition. In section 4.3.1, we investigate how a finite coupling imbalance, ∆η >
0, introduces a tunable decay channel for the polariton excitations, significantly
altering the phase diagram of the open system.

The results presented in this section can also be independently calculated using
a Keldysh action formalism for open quantum systems [89] and taking the limit
κ � ω0. Details on these calculations can be found in the PhD thesis of Matteo
Soriente [188].

4.2 Realizing spin-changing self-organization

In this section, we investigate our system in the limit of balanced Raman couplings
(Dicke limit). As discussed in section 4.2.1, the system undergoes a superradiant
phase transition accompanied by an emergent modulation of the atomic transverse
magnetization, which we refer to as spin-changing self-organization. In section 4.2.2,
we present direct experimental observations of this phase transition, and further
discuss the relevant experimental protocols and limitations.

4.2.1 A superradiant phase transition inducing spin-changing
self-organization

We consider the limiting case of balanced Raman drives, ηr = ηb = η̄, where the
Hamiltonian in Eq. (4.8) takes the form of the Dicke model [59, 61]

Ĥ = −~∆câ
†â+ ~ω0Ĵz + 2~η̄(â+ â†)Ĵx

= −~∆câ
†â+ ~ω0Ĵz + ~ηb

(
âĴ+ + â†Ĵ−

)
+ ~ηr

(
â†Ĵ+ + âĴ−

)
. (4.17)

The Dicke Hamiltonian describes an ensemble ofN indistinguishable two-level atoms,
|0a〉 and |1a〉, coupled to a single mode of a cavity field. The associated atom-light
interactions effectively occur in the ultrastrong coupling regime where the strengths
of co-rotating (∝ ηb) and counter-rotating (∝ ηr) interactions become equal [61]. In
this regime, the system undergoes a second-order phase transition from a normal to
a superradiant phase when the light-matter coupling η̄ exceeds a critical value ηc.

The Dicke model and its associated superradiant phase transition were first re-
alized in our experiment in Ref. [62]: that implementation relies on encoding the
two atomic states in well-defined external modes of a BEC within the m = −1 Zee-
man sublevel, and coupling them via cavity-assisted Bragg scattering. In particular,
the superradiant phase is associated with a superposition of both atomic modes,
resulting in a λ-periodic checkerboard modulation of the atomic density [64]. In our

54



4.2 Realizing spin-changing self-organization

Figure 4.3: Superradiant phase transition in the Dicke model. (a) Eigenfre-
quencies of the excited atomic polariton ω± in the normal phase as a function of the
coupling strength η̄. The imaginary part indicates the energy cost associated with cre-
ating [Im(ω+) > 0] and annihilating [Im(ω−) < 0] an excitation, which softens and
vanishes at the critical coupling ηc. For η̄ > ηc, the positive real part Re(ω−) > 0 indi-
cates a dynamical instability and a second-order transition to the superradiant phase.
(b) Expectation values of the atomic pseudo-spin operators 〈Ĵk〉, with k ∈ {x, y, z},
and the cavity photon number nph (c). For η̄ < ηc, the system is the normal phase, with

all atoms occupying the ground-state mode |0a〉 ( 〈Ĵz〉 /N = −1/2) and nph = 0. The
superradiant phase at η̄ > ηc is characterized by a macroscopic cavity field (nph � 0)
and the atoms occupying a superposition in the two modes (|0a〉, |1a〉) in one of two
symmetry-broken configurations with 〈Ĵx〉 > 0 or 〈Ĵx〉 < 0.

implementation, the two atomic levels |0a〉 and |1a〉 are also associated with two
different internal spin states, encoded in the Zeeman sublevels m = −1 and m = 0.
This key difference results in qualitatively different real-space configurations in the
superradiant phase [79].

To characterize the phases of the system, we begin by examining the behavior of
the underlying excitation spectrum in the normal phase. In Fig. 4.3(a), we plot the
imaginary Im(ω±) and real parts Re(ω±) of the eigenfrequencies ω± associated with
excited atomic polariton, cf Eq. (4.15). For vanishing light-matter coupling, η̄ = 0,
the imaginary part (red curves) reflects the energy cost associated with creating
[Im(ω+) = +ω0] or annihilating [Im(ω−) = −ω0] a single atom in the excited atomic
state |1a〉. When increasing η̄, the eigenfrequencies soften due to hybridization of
|1a〉 with the cavity field. Above the critical coupling, η̄ = ηc, we obtain Im(ω±) = 0
and an eigenvalue with a positive real part Re(ω−) > 0 (black curve). This behavior
signals a dynamical instability of the normal phase [189], and thereby second-order
phase transition to a superradiant phase at η̄ = ηc.

The superradiant phase is characterized by a steady-state cavity field and by the
atoms occupying a superposition in the two modes. We simplify Eqs. (4.11) for
∆η = 0, and obtain the following expectation values

X =
〈Ĵx〉
N

= ±1

2

√
1−

(
ηc
η̄

)4

, Y =
〈Ĵy〉
N

= 0, Z =
〈Ĵz〉
N

= −1

2

(
ηc
η̄

)2

,

α =
〈â〉√
N

=
2η̄

∆c − iκ
X. (4.18)

in the superradiant phase, see also Ref. [61].
In Figs. 4.3(b,c) we plot the steady-state solutions of atomic [Fig. 4.3(b)] and

photonic observables [Figs. 4.3(c)] for typical experimental parameters N = 10 ×
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Figure 4.4: Spatial configurations of spin-changing self-organization. (a) Den-
sity distribution ρ0(x, z) (left) and transverse magnetization 〈Fx(x, z)〉 (right panel) of
the underlying F = 1 system in the normal phase (η̄ < ηc). The homogeneous density
distribution ρ0(x, z) = 1 and vanishing magnetization 〈Fx(x, z)〉 = 0 reflects all atoms
occupying the mode |0a〉. (b) Corresponding ρ0(x, z) and 〈Fx(x, z)〉 distributions in
the superradiant phase for the two symmetry-broken configurations with 〈Ĵx〉 > 0 (b1)
and 〈Ĵx〉 < 0 (b2) for | 〈Ĵx〉| /N = 1/4. The density distributions exhibit a λ/2-
periodic square modulation due to finite occupation of the excited state |1a〉. The two
symmetry-broken configurations are associated with λ-periodic checkerboard modula-
tions of 〈Fx(x, z)〉, shifted by λ/2 with respect to each other.

104, ω0 = 2π × 50 kHz and ∆c = −2π × 5 MHz. In the normal phase, η̄ < ηc,
the system exclusively occupies the ground state mode |0a〉, with Z = 〈Ĵz〉 /N =
−1/2 and a vanishing mean number cavity photons nph = N |α| 2 = 0. In contrast,
the superradiant phase is characterized by a macroscopic cavity field nph > 0 and
occupation of the excited atomic mode |1a〉, i.e., Z > −1/2 and X 6= 0. Due to
the underlying Z2-symmetry of the Dicke Hamiltonian, the system allows for two
distinct symmetry-broken configurations with X > 0 and X < 0, together with a
self-consistent cavity field α ∝ X.

We emphasize that both the Dicke model in Eq. (4.17) and the underlying single-
particle Hamiltonian in Eq. (4.2) are derived in a rotating frame, where the cavity
field oscillates at the intermediate frequency of the two Raman drives, i.e., ω̄ =
(ωb+ωr)/2. Hence, the stationary steady-state cavity field in the superradiant phase
[cf. Fig. 4.3(c)] oscillates at the well-defined frequency ω̄, as schematically depicted
in Fig. 4.2(b). In the next section, we rely on frequency resolved measurements of
the cavity field to directly demonstrate this superradiant phase transition.

Furthermore, we visualize the real-space configuration of the atoms in the different
phases. In the thermodynamic limit N → ∞ [61], we can neglect correlations
between the different modes and approximate the many-body state |ψ〉MB = |ψ〉⊗N
as a product state. The single-particle wave functions ψm(x, z) in the different
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Zeeman sublevels m ∈ {+1, 0,−1} read

|ψ〉 = (ψ+1(x, z), ψ0(x, z), ψ−1(x, z))T

= (0, sign(X)
√
|X|Φ1a(x, z),

√
1− |X|Φ0a(x, z))T . (4.19)

We compute the associated atomic density distribution and transverse magnetization
as ρ(x, z) = |〈ψ|ψ〉| 2 = |ψ−1| 2+|ψ0| 2 and 〈Fx(x, z)〉 = 〈ψ| F̂x |ψ〉, respectively. Here,
F̂x is the corresponding F = 1 spin operator. For illustrative purposes, we consider
the limiting case of small transverse drive lattice depths, Vd → 0, with Φ0a(x, z) = N
and Φ1a(x, z) = N cos(kx) cos(kz). Loading the atoms in deep transverse lattices
Vd 6= 0 does not significantly modify this microscopic picture, as the atomic density
solely acquires a global modulation along the drive direction, i.e., ρ(x, z) ∝ cos2(kz).

In Fig. 4.4, we visualize the density distribution and transverse magnetization
both for the normal [Fig. 4.4(a)] and superradiant phases [Fig. 4.4(b,c)]. The former
is characterized by an homogenous density distribution ρ(x, z) = 1 and a vanish-
ing transverse magnetization, as all atoms occupy the single-particle wavefunction
Φ0a(x, z). In the superradiant phase, the system exhibits a squared λ/2-periodic
density modulation in the xz-plane1 due to concurrent occupation of Φ1a(x, z). The
superradiant phase is associated with a staggered λ-periodic checkerboard modu-
lation of the transverse magnetization 〈Fx(x, z)〉. Specifically, the two symmetry-
broken configurations X > 0 [Fig. 4.4(b)] and X < 0 [Fig. 4.4(c)] are associated
with λ/2-shifted spin textures with 〈Fx(0, 0)〉 > 0 and 〈Fx(0, 0)〉 < 0, respectively.

Due to the emergent ordering of the atomic magnetization and the cavity-assisted
Raman processes that drive the superradiant phase transition, we refer to this phe-
nomenon as spin-changing self-organization of the atomic system.

4.2.2 Observing the superradiant phase transition

Experimental protocol and observables

We prepare a BEC of N ≈ 9×104 atoms in the Zeeman sublevel m = −1, i.e., in the
ground state |0a〉. A magnetic field along the −z-direction defines the quantization
axis, generating a linear Zeeman splitting of ωz ≈ 2π × 48 MHz. To obtain two
standing-wave drives in phase at the position of the atoms, we set their frequency
difference to ωb−ωr = 2π×96 MHz and place the retro-reflecting mirror at a distance
z1 = 1.562 m from the BEC, see section 3.3.2 for technical details. We increase the
associated Raman couplings strengths via smooth s-shape ramps

ηr,b(t) = ηmax
r,b

[
3

(
t

tramp

)2

− 2

(
t

tramp

)3
]
, (4.20)

with ηmax
r,b and tramp being the maximal coupling strength and the ramp duration,

respectively. From the many-body Hamiltonian in Eq. (4.7), we can calibrate the

1It is worth noting that the two relevant atomic modes are encoded in different Zeeman sublevels,
hindering interference terms of the form ψ∗−1(x, z)ψ0(x, z) which would otherwise give rise to a
checkerboard modulation of the atomic density [62].
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corresponding Raman couplings as

ηr,b =
M(Vd)

2
√

2

αv
sgn[αs] · αs

√
−
U0Vr,b

~
, (4.21)

with Vr,b being the lattice depths of the drive at ωr,b and U0 being the dispersive
shift at λd = 784.7 nm.

The BEC is confined in the combined potential of the harmonic trap Vext(x),
with trapping frequencies [ωhx, ωhy, ωhz] = 2π × [220(3), 24.6(8), 170.1(3)] Hz, and
the transverse drive standing-wave potential Vd(x) = −(Vr + Vb)f(x)2 = −Vdf(x)2,
see Eq. (4.2). To calculate the single-particle wavefunction Φ0a , we consider s-wave
scattering and employ a Thomas-Fermi approximation for the interacting BEC [111].
We further consider the transverse drive potential as a succession of independent
harmonic traps; this is well justified since the superradiant phase transition occurs
at large lattice depths Vd & 25 ~ωrec. We find numerically that the overlap inte-
gral M(Vd) converges to Mmax = 0.68 for Vd → ∞, and employ this value when
evaluating Eq. (4.21).

From our heterodyne measurements of the z-polarized cavity field, we construct
photon number spectrograms ñph(ω, t), as described in section 3.2.1. Additionally,
we integrate the spectrograms within a narrow frequency range of ±2π × 2.5 kHz
around ω̄ to obtain the photon traces nph(t) corresponding to the cavity field at the
frequency ω̄ = (ωb+ωr)/2, which is associated with spin-changing self-organization.
The drive at ωr is red-detuned from cavity resonance ωc and may induce spuri-
ous intra-spin self-organization accompanied by the build-up of a y-polarized cavity
field [62, 78]. During our measurements, we continuously monitor such cavity field
with an auxiliary heterodyne setup; we never observe any signal above noise levels.

Measurements

In Fig. 4.5(a), we present a representative experimental realization for a cavity de-
tuning ∆c = −2π × 4.0(2) MHz and excited-state splitting ω0 = 2π × 44(2) kHz.
We increase the average Raman coupling η̄ (solid) within tramp = 10 ms at a negli-
gible imbalance ∆η ≈ 0 (dashed black curve), see Fig. 4.5(a1). Once the coupling
strength reaches a critical value around η̄ & 2π × 0.4 kHz for t & 5 ms, we observe
an abrupt increase of the average number of cavity photons nph(t) (green curve) sig-
naling the onset of a superradiant phase transition. In Fig. 4.5(a2), we present the
corresponding photon number spectrogram ñph(ω, t). Above the critical coupling,
we observe a strong cavity field comprising thousands of photons at the intermediate
frequency of the two drives, ω̄. In the vicinity of the transition, we observe a broad
frequency distribution spreading around (ω − ω̄) = [−20, 15]kHz; we attribute this
to the occupation of excited polariton branches due to spurious non-adiabatic effects
induced by the coupling ramps.

We accumulate multiple experimental realizations for different cavity detunings
∆c, and map out the experimental phase diagram of the system. In Fig. 4.5(b), we
plot the measured photon number nph in the (η̄,∆c) parameter space. For negative
detunings, ∆c < 0, we observe a sharp boundary between the normal (nph = 0) and
superradiant phases (nph > 0) which progressively shifts to larger couplings with
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4.2 Realizing spin-changing self-organization

Figure 4.5: Observing spin-changing self-organization. (a) Experimental pro-
tocol and observations. (a1) We increase the average coupling η̄ (solid) at negligible
imbalances ∆η (dashed line). The superradiant transition is signaled by a macroscopic
intra-cavity field with average photon number nph > 0 (green curve). (a2) Corre-
sponding photon number spectrogram ñph(t, ω), showing that the cavity field locks at
the intermediate frequency between the two drives ω = ω̄. The integration time is set
to T = 150 µs. (b) Phase diagram of the system, showing nph in the (η̄,∆c) parameter
space. We observe a superradiant transition for negative cavity detunings ∆c < 0 in
agreement with the theoretical phase boundary (red curve). At large couplings, the
system departs from the superradiant phase, likely due to heating and atom loss arising
from the large transverse drive lattice depths Vd.

increasing negative detunings. This is due to the larger energy cost associated with
occupying the cavity field at large ∆c [see Eq. (4.17)], and is in reasonable agreement
with the theoretical expectations for the critical coupling (red line) obtained from
Eq. (4.16). At positive detunings, ∆c > 0, the cavity field remains unoccupied
apart from small photon spikes nph . 20. We attribute them to residual oscillations
between the normal and superradiant phases induced by dynamical variations of the
dispersive shift [62].

Our frequency resolved measurements of an emergent z-polarized cavity field at
the well-defined frequency ω̄ = (ωr + ωb)/2, together with the experimental phase
diagram, demonstrate that our system undergoes a superradiant phase transition
via cavity-assisted Raman processes. The first experimental observation of spin-
changing self-organization in a BEC has been reported in Ref. [79].

Technical limitations

The phase diagram in Fig. 4.5(c) shows a clear reduction of nph at large coupling
strengths, until the system eventually exits the superradiant phase. These obser-
vations extend beyond an elementary Dicke model description and are related to
the large transverse lattice depths Vd required to access the superradiant phase in
our system, reaching Vd ≈ 200Erec for η̄ = 2π × 1.7 kHz [cf. Fig. 4.5(c)]. Such deep
lattices can induce significant heating and atom loss [95], thereby limiting the extent
of the superradiant phase.
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4 Dissipative phases and transitions in a superradiant quantum gas

Figure 4.6: Heating and coherence in deep optical lattices. (a) Measuring
heating and atom loss. (a1,a2) Typical time-of-flight images in m = −1 (right panel)
after adiabatically ramping up the transverse lattice to Vmax within tramp = 15 ms and
down to zero in tramp. The distributions are integrated along the cavity axis (left panel)
and fitted with a bimodal distribution (red curve). (a3) BEC fraction NBEC/N and total
atom number N as a function of Vmax, showing significant heating and atom loss with
increasing maximal lattice depths. The atomic ensemble becomes thermal (NBEC/N ≈
0) for Vmax & 50Erec. (b) Probing phase coherence in the system. (b1,b2) Typical
momentum-space distributions after increasing the lattice to Vmax within tramp and
suddenly switching off all confining potentials. The integrated density distributions are
fitted with a bimodal fit complemented by two Thomas-Fermi profiles centered at the
lattice momenta kz = ±2k. (b3) The momentum-peak visibility as a function of Vmax

quantifies the degree of phase coherence in the lattice. We observe transition to an
incoherent phase around V SF

d = 16.6(3) Erec, which is determined by a double linear fit
(line).

To investigate this experimentally, we prepare a BEC in m = −1 and increase
the transverse lattice depths to Vmax within tramp = 15 ms, while keeping ∆c suffi-
ciently large to suppress cavity-assisted Raman transitions. To assess the influence
of heating and atom loss, we adiabatically ramp down the lattice within tramp and
image the atoms after free time-of-flight expansion. In Figs. 4.6(a1) and (a2), we
show exemplary realizations for Vmax = 2.3(1)Erec and Vmax = 100.5(2)Erec (left
panels). We integrate the absorption images along the x direction (right panels)
and perform a bimodal fit [108] to quantify heating and atom loss (red curves): the
first component captures the atoms in the condensate with a Thomas-Fermi profile,
while the second component is a Gaussian distribution encompassing thermal atoms.
We evaluate the condensate fraction as NBEC/N , with NBEC being the total number
of atoms in the condensate. In Fig. 4.6(a3), we plot both NBEC/N and the total
number of atoms N as a function of Vmax. The condensate fraction monotonically
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decreases and reaches NBEC/N = 0 for Vmax ≈ 50 Erec, indicating significant heating
at large lattice depths and the system becoming a thermal gas. Furthermore, we ob-
serve significant atom loss at large Vmax, due to spurious spontaneous emission [95]
and enhanced three-body losses [192] in deep optical lattices.

Hence, we attribute the deviation of the observed phase diagram from the theo-
retical expectations at large lattice depths to the combined influence of atom loss
and heating. Specifically, the critical coupling increases with decreasing atom num-
ber as ηc ∝ 1/

√
N [Eq. (4.16)], whereas the effective atom-light interactions of a

thermal atomic cloud might be reduced due to spurious inhomogeneous broadening
[193, 194].

The presence of deep optical lattices can also significantly alter the phase co-
herence of the BEC wavefunction [195]. To assess this, we suddenly switch off all
confining potentials after ramping the lattice depth to Vmax within tramp, and image
the atoms after free time-of-flight expansion. We present the corresponding results
in Fig. 4.6(b). At small lattice depths Vmax = 6.1(1)Erec [Fig. 4.6(b1)], we observe a
Thomas-Fermi profile centered around kz = 0 and two coherent interference peaks
at kz = ±2k associated with the recoil momenta imparted by the underlying lat-
tice Vd = Vmax cos2(kz). Already at intermediate lattice depths Vmax = 17.5(1)Erec

[Fig. 4.6(b2)], these interference peaks are already entirely washed out, and the
system exhibits a broad momentum distribution. To evaluate these measurements,
we extend our bimodal fit with additional Thomas-Fermi profiles centered around
kz = ±2k [red curves in Figs. 4.6(b1,b2)]. Closely following Ref. [65], we quantify
the degree of phase coherence in our system via the visibility of the different mo-
mentum peaks (NBEC +N+2k +N−2k)/N , with N±2k being the fitted atom number
around the kz = ±2k peaks. In Fig. 4.6(b3), we plot the visibility as a function
of Vmax. For small lattice depths, we observe large superfluid fractions that rapidly
decrease with increasing lattice depths and eventually vanish at intermediate values.
A double linear fit yields V SF

d = 16.6(3) Erec (solid line), indicating a transition from
a phase-coherent superfluid to an incoherent phase in the optical lattice [195, 196].

In our system, the critical coupling ηc & 2π × 0.4 kHz of the superradiant transi-
tion is associated with large lattice depths around V c

d & 20Erec. Since V c
d > V SF

d , the
atoms occupy a phase-incoherent state in the transverse drive lattice when undergo-
ing spin-changing self-organization. Therefore, we refrain from presenting time-of-
flight images in the superradiant phase in this chapter, as they resemble Fig. 4.6(b2)
and do not provide direct insights into the real-space configuration of the atoms2.

4.3 Phase diagram of superradiant quantum gas with
tunable decay

We investigate the phase diagram of our system with imbalanced co- and counter-
rotating couplings. In section 4.3.1, we identify two superradiant Raman scattering

2The observed critical lattice depths V c
d are considerably larger than the typical values for intra-spin

self-organization in our experiment V c
d ≈ 5 Erec [78]. This discrepancy is due to intra-spin self-

organization being induced by scalar light-matter interactions, with |αs| > |αv| for λd = 784.7 nm.
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Figure 4.7: Tunable coherent and dissipative couplings in a superradiant
quantum gas. (a) Detailed coupling scheme. The BEC (|0a〉) couples to a spatially
modulated state |1a〉. In the superradiant phase, a coherent intra-cavity field builds up
at the intermediate frequency ω̄ (green) of the two transverse drives at ωr (red) and
ωb (blue arrow). Cavity losses induce additional superradiant Raman scattering (blue
and red wiggly arrows) with rates γ↓,↑ depending on the density of states of the cavity
(orange curve). (b) Controlling the polariton decay. The atom-light interactions give
rise to two low-energy polaritons |0〉 and |1〉, corresponding to decoupled and coupled
light-matter modes, respectively. Increasing the average coupling η̄ softens the energy of
|1〉 (black line). Concurrently, superradiant Raman scattering induces dissipative decay
(γ↓) and amplification (γ↑) of the excited polariton |1〉. For small coupling imbalances
∆η/η̄, the rates are balanced and mode softening is accompanied by a phase transition
from a normal (gray) to a superradiant phase (green) for η̄ > ηc. By increasing ∆η/η̄,
the growing polariton decay γ↓ leads first to bistability (green-gray hashed) and then
to the suppression of the superradiant transition.

channels as the microscopic processes responsible for polariton decay in our system.
This tunable decay channel significantly modifies the phase diagram of the open
system. In section 4.3.2, we experimentally measure the phase diagram and identify
the presence of a dissipation-stabilized normal phase for arbitrarily large light-matter
couplings.

4.3.1 An extended Dicke model with tunable collective decay

In the previous section, we presented our observations of a superradiant Dicke
phase transition in the limit of balanced Raman couplings ∆η = 0. This second-
order phase transition arises from softening of the excited atomic polariton, as shown
in Fig. 4.3(a). Building upon these results, we now examine scenarios involving
imbalanced co- and counter-rotating Raman couplings with ∆η 6= 0 (ηb 6= ηr),
adding a new layer of complexity to the system. In this regime, the role of cavity
dissipation becomes more prominent.

For imbalanced couplings, the excited atomic polariton acquires a non-vanishing
real part in the normal phase. From the corresponding eigenvalues in Eq. (4.15), we
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obtain

γ = Re(ω±) = −N κ

κ2 + ∆2
c

(η2
b − η2

r ) = −N κ

4(κ2 + ∆2
c)
η̄∆η

= −(γ↓ − γ↑). (4.22)

This expression implies that for an open system (κ > 0) and arbitrarily small positive
coupling imbalances (∆η > 0), the excited polariton decays at a rate of γ < 0 in the
normal phase. The individual contributions can be re-written as

γ↓,↑ = Nη2
b,rρ(ω̄), (4.23)

where we identify ρ(ω̄) = κ/[(ω̄ − ωc)2 + κ2] as the density of states of the cavity
around the frequency ω̄ [189]. This expression indicates that the underlying mecha-
nism for the damping (amplification) γ↓ (γ↑) of the polariton arises from superradiant
Raman scattering of photons from a single drive at ωb (ωr) into the bath of vacuum
modes provided by the cavity. As illustrated in Fig. 4.7(a), the nonlocal dissipa-
tive channels γ↓ (blue) and γ↑ (red wiggly arrow) are controlled by the strength
of the corresponding Raman drives ηb and ηr, respectively, and induce collectively
enhanced population inversion between the modes |1a〉 → |0a〉 (|0a〉 → |1a〉), accom-
panied by the leakage of real cavity photons. For an in-depth theoretical discussion
on superradiant Raman scattering, refer to sections 2.2.2 and 2.2.4 in chapter 2.

The interplay between coherent and dissipative processes significantly impacts
the superradiant phase transition in our system, resulting in the emergence of new
dissipative phases and extended regions of phase bistability, as schematically illus-
trated in Fig. 4.7(b). Close to the Dicke limit (∆η/η̄ = 0), the coherent light-matter
interactions dominate, inducing a complete softening of the excited state polariton
(|1〉) and a second-order transition from the normal (gray) to the superradiant phase
(green area) above a critical coupling ηc. By increasing the imbalance ∆η/η̄, we en-
hance the collective decay of excited polariton γ↓, resulting in an extended region of
phase bistability (green-gray hashed region) and eventually in the dissipative sup-
pression of the superradiant transition. In the following sections, we experimentally
explore the rich phase diagram of this open system by leveraging our experimental
control over coherent and dissipative couplings.

4.3.2 Measuring the phase diagram of the open system

We investigate the phase diagram of our system in the (η̄, ∆η) parameter space. We
restrict the experiments to 0 ≤ ∆η ≤ η̄, as the properties of the system are specular
for 0 ≤ η̄ ≤ ∆η, cf. Eq. (4.8). We prepare a BEC of N = 1.28(8) × 105 in the
mode |0a〉 at ω0 = 2π × 44(2) kHz, and map out the phase diagram by increasing
the Raman couplings within tramp = 10 ms while keeping the ratio ∆η/η̄ fixed. The
onset of a superradiant phase is signaled by the build-up of a coherent cavity field
at frequency ω̄ with average photon number nph > 0, see the inset in Fig. 4.8.
Additional details regarding the experimental protocol and data processing can be
found in section 4.2.2.

In Fig. 4.8, we present experimental phase diagrams for three different cav-
ity detunings: ∆c/2π = −2π × 5.0(2) MHz (a), ∆c/2π = −4.0(2) MHz (b), and
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Figure 4.8: Experimental phase diagrams of the extended Dicke model. Av-
erage photon number nph in the (η̄,∆η) parameter space for different cavity detunings
∆c/2π = −5.0(2) MHz (a), −4.0(2) MHz (b) and −3.0(2) MHz (c). The inset shows
the experimental protocol: we increase the couplings η̄ (solid) and ∆η (dashed black
line) while keeping the ratio ∆η/η̄ constant [gray arrow in (b)]; the superradiant tran-
sition is signaled by the buildup of a strong cavity field with nph > 0 (green curve). For
large imbalances ∆η/η̄ � 0, the superradiant phase is suppressed at large couplings.
The dashed line indicates a fit to determine this phase boundary.

∆c/2π = −3.0(2) MHz (c). The phase diagrams are obtained by combining mea-
surements for 51 different ratios ∆η/η̄, with 5 realizations each. At small imbalances
(∆η � η̄), the system exhibits the phenomenology of the Dicke model. We observe
a superradiant phase transition (nph > 0) when the average coupling η̄ surpasses
a critical value, which is only weakly dependent on ∆η. In contrast, at larger ra-
tios ∆η/η̄, the superradiant phase transition is suppressed, and the system remains
in the normal phase at large couplings η̄. We fit the slope of the observed phase
boundary (∆η/η̄)DSNP (dashed line), with the orange area indicating the fitting er-
ror. Remarkably, we observe that the region where the superradiant phase transition
is suppressed clearly increases at smaller cavity detunings ∆c → 0.

To interpret our observations, we compare the measured phase diagram at ∆c/2π =
−4.0(2) MHz with the expectations obtained from complementary theoretical meth-
ods. The phase diagrams in Figs. 4.9(a) and (b) are obtained from the analytic
solutions in Eq. (4.18) and from numerical simulations of the mean-field equations of
motion in Eq. (4.10), respectively. The analytic phase diagram in Fig. 4.9(a) allows
us to identify three distinct mean-field phases: in addition to the normal phase (NP)
and the superradiant phase (SP), the open system features a dissipation-stabilized
normal phase (DSNP). The existence of a DSNP near the line ∆η/η̄ = 1 is a direct
consequence of the open character of our system. Remarkably, the system remains
in a normal phase even when the coupling strengths greatly exceed the critical value
ηc (blue line), leading to a population inversion scenario, as previously pointed out
in Refs. [159, 184]. At a microscopic level, the DSNP is stabilized against a superra-
diant transition by the dominant decay of the underlying polariton excitations, see
Eq. (4.22). In section 4.5, we provide a comprehensive experimental characterization
of these polariton excitations, further elucidating this relationship.
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Figure 4.9: Comparison of theoretical and experimental phase diagrams.
Theoretical phase diagrams obtained from analytic (a) and numerical mean-field simu-
lations (b) for the parameters in Fig. 4.8(b). The different ground-state configurations
of the system are the normal phase (NP), superradiant phase (SP) and the dissipation-
stabilized normal phase (DSNP). The critical coupling for the closed system ηc is marked
by a blue line. (c) Experimental phase diagram for ∆c = −2π×4.0(2) MHz [Fig. 4.8(b)].
The dots indicate the average critical couplings extracted from a data subset at con-
stant ∆η/η̄. We mark the boundary of the SP obtained from the analytic (solid red)
and numerical calculations (dashed red curve). Inset: critical slope (∆η/η̄)DSNP against
−κ/∆c, showing the DSNP-SP boundary. As |∆c| nears κ, the slope decreases, indi-
cating a larger DSNP region. Our results are captured by the analytical (solid) and
numerical predictions (dashed line).

The different theoretical predictions are in reasonable agreement with the experi-
mental phase diagram, which we plot in Fig. 4.9(c). We extract the critical coupling
ηc (white data points) using piece-wise linear and power-law fits, and compare it to
the analytic (solid red) and numerical phase boundaries (dashed red lines). The small
deviation of the phase boundaries can be attributed to residual non-adiabatic effects
arising from the finite duration of the coupling ramps. In the inset of Fig. 4.9(c),
we plot the critical slopes of the DSNP (∆η/η̄)DSNP as a function of −κ/∆c for
the three phase diagrams presented in Fig. 4.8. The slope decreases with increasing
−κ/∆c signaling a larger DSNP; this is due to the density of states of the cavity
increasing for ∆c → 0, cf. Eq. (4.23). Additionally, our observations agree well with
the slope obtained from the analytic (solid) and numerical estimates (dashed line).
The former can be directly obtained

(∆η/η̄)DSNP = κ/∆c

(
1−

√
1 + ∆2

c/κ
2
)
, (4.24)

by enforcing that the population imbalance Z in Eq. (4.18) is always real valued.
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4.4 Bistability and hysteretic phase transitions

Here, we explore the phenomenon of phase bistability in our system. As discussed in
section 4.4.1, we expect a discontinuous phase transition between the superradiant
and the dissipation-stabilized normal phases. In section 4.4.2, we provide direct ex-
perimental evidence of bistability through comprehensive hysteresis measurements.

4.4.1 Bistability through dissipation

We further investigate the boundary between the superradiant phase (SP) and the
dissipation-stabilized normal phase (DSNP) observed at large coupling imbalances
∆η/η̄. Previous theoretical works [159, 186] predict the existence of an intermediate
region where both phases are stable. Accordingly, we anticipate a discontinuous
first-order phase transition, in contrast to the conventional second-order transition
induced by mode softening in the Dicke model [63].

The existence of bistability can be understood in terms of the competition between
coherent and dissipative processes in our system, as discussed in previous sections.
As the coupling imbalance ∆η/η̄ increases, the dissipative decay rate of the excited
polariton γ enhances population in the ground-state polariton mode |0〉 and coun-
teracts the coherent coupling η̄ responsible for the superradiant phase transition. In
the regime of comparable coherent and dissipative couplings, the phase to which the
system converges depends on its initial preparation. If the BEC is initially prepared
in the DSNP, it remains stable due to the dominant polariton decay. On the other
hand, if the system is prepared in the SP, the dissipative decay is counteracted by
the presence of a large coherent intra-cavity field, which contributes to keeping the
excited polariton mode |1〉 significantly populated. In an intuitive picture, preparing
the system in the symmetry-broken superradiant phase renders it more rigid against
dissipative processes induced by cavity dissipation.

4.4.2 Observing a dissipation-induced hysteretic phase transition

To explore the DSNP-SP boundary, we modify our experimental protocol to include
multiple coupling ramps, as illustrated in Fig. 4.10(a1). We initialize the system
in the DSNP by increasing the coupling η̄ above ηc within tramp = 6 ms at large
imbalance ∆η/η̄ = 0.78 (dotted black arrow). While keeping the average coupling η̄
fixed, we perform subsequent forward (purple) and backward sweeps (orange arrow)
of ∆η, each within tramp = 3 ms. We empirically optimize the duration of the ramps
to mitigate atom loss (< 0.15N) and ensure an adiabatic evolution of the system
(tramp � 1/ω0). To obtain a theoretical estimate of bistability region, we assess the
stability of the different phases using the dynamical matrix derived in Eq. (4.14).
The reference phase diagrams in Figs. 4.10(a1,b1) highlight the regions where only
the normal (white) or superradiant phases (dark green) are stable, together with an
extended region of phase bistability (light green).

In Fig. 4.10(a2), we present a typical trace of the cavity photon number nph when
crossing the boundaries between the DSNP→SP (purple curve) and SP→DSNP (or-
ange curve) in a single experimental realization at η̄ = 2π×0.61(1) kHz. We observe
clear hysteresis behavior, as the system remains in the DSNP (SP) for significantly
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Figure 4.10: Probing hysteresis at the SP-DSNP boundary. (a) Observation of
hysteresis. (a1) Experimental protocol in the (η̄,∆η) phase space, showing the prepa-
ration ramp in the DSNP (black), the forward (purple) and backward ramps (orange
arrow) into the SP. (a2) Exemplary trace of the mean cavity photon number nph. At
intermediate couplings ∆η, we observe hysteresis signaling the region of phase bistabil-
ity (BS). (a3) Mapping bistability BS region. The data points indicate the DSNP-SP
boundary detected during the forward (purple) and backward (orange) path for differ-
ent values η̄. These boundaries are determined by setting a threshold of nph,th = 36
photons [gray line in (a2)]. The reference phase diagrams (a1, a3) highlight the normal
phase (white), the SP (dark green) and BS region (light green). (b) Complementary
hysteresis measurements. (b1) Experimental protocol, showing an initial preparation
in the SR phase. (b2) Typical photon trace and (b3) experimental mapping of the
BS region. Here, we prepare N = 1.10(8) × 105 at ∆c = −2π × 3.0(5) MHz and
ω0 = 2π × 40(5) kHz.

smaller (larger) coupling imbalances ∆η when originally occupying the correspond-
ing phases. This is in agreement with the expected discontinuous character of the
transition [186] and demonstrates the existence of phase bistability (BS) in our sys-
tem. By performing hysteresis measurements at different average couplings η̄ in
Fig. 4.10(a3), we map out an experimentally accessible region where both the SP
and DSNP are stable (gray area). The data points are the mean values of 12 to 18 re-
alizations and indicate the superradiant transition in the forward (purple points) and
backward ramps (orange points). The observed region of phase bistability (shaded
area) is quantitatively captured by our theoretical expectations (light green area).

Our hysteresis measurements are potentially affected by atom loss and heating
during the experimental protocol. These processes affect the collective atom-cavity
coupling, and consequently shift the stability boundaries of the different phases.
To examine this potential limitation, we complement our results with hysteresis
measurements in the opposite direction, see Fig. 4.10(b1). We initialize the system
in the SP by increasing the coupling at moderate imbalances ∆η/η̄ = 0.54 (dotted
black arrow) and perform then analogous forward (purple) and backward sweeps
(orange arrow) of ∆η at fixed η̄. In Fig. 4.10(b2), we present a representative
realization at η̄ = 2π × 0.61(1) kHz where we also observe a clear hysteresis in
the SP-DSNP boundary. For completeness, we map the extension of the observed
bistability region in Fig. 4.10(a3) using this complementary protocol. We attribute
the small shift of the phase boundaries towards smaller values of ∆η/η̄ to excess
atom loss when initializing the system in the SP phase [89].
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Our observations of hysteresis and phase bistability using two complementary
protocols confirm that the effects of atom loss and heating are not significantly
detrimental to our experiments. The observed first-order transition between the
DSNP-SP phases is a result of the open nature of our system and is qualitatively
different from the well-studied second-order transition between the NP-SP phases
in the Dicke model [62, 63]. Previous experiments exploring extended Dicke mod-
els with tunable co- and counter-rotating terms have been conducted using thermal
atomic clouds [193, 194]. While the DSNP has been observed in those experiments,
our results constitute the first experimental observation of dissipation-induced bista-
bility and hysteresis in a generalized Dicke system.

4.5 Probing the microscopic polariton excitations

The observations discussed thus far focus on the ground-state properties of our sys-
tem, revealing dissipation-stabilized phases and hysteretic transitions. One of the
key strengths of cold-atom experiments is the ability to directly access the under-
lying quasiparticle excitations of many-body systems, providing insights into the
elementary microscopic processes responsible for the emergence of macroscopic phe-
nomena. Since the first implementation of Bragg spectroscopy in Bose-Einstein
condensates [197], spectroscopic techniques have found widespread use to study the
excitation spectrum of strongly-correlated systems [198–200]. However, these tech-
niques often require hundreds to thousands of experimental realizations under iden-
tical parameters to scan across narrow resonance features, making them sensitive
to technical drifts and fluctuations. In our system, this limitation can be overcome
by means of cavity-assisted Bragg spectroscopy [63, 201]. This method not only
amplifies Bragg scattering, but also provides real-time access to excitations through
the cavity field.

Here, we investigate the excitation dynamics of our system. In section 4.5.1,
we present a new experimental technique facilitating real-time and non-destructive
probing of the polariton excitations in single experimental realizations. In sec-
tion 4.5.2, we examine the polariton excitations on top of the normal phase for
various coupling imbalances and benchmark our findings through comprehensive
numerical simulations. Notably, we measure polariton lifetimes varying over several
orders of magnitude, which we relate to the observed macroscopic phases.

4.5.1 Implementing cavity-assisted Raman spectroscopy

To measure the evolution of the excitation spectra, we prepare a BEC in |0a〉 and
ramp up the coupling strengths ηr,b(t). While increasing the couplings we inject a
z-polarized excitation field through the cavity with nprobe < 10 photons for 1 ms,
see Fig. 4.11(a). The excitation field is derived from the same laser as the transverse
drives and the local oscillator for the heterodyne setup; its frequency is adjusted to
be close to the bare excited polariton resonance ω̄+ω0. At the end of the excitation
pulse (t = 0), the excited polariton mode evolves freely according to the dynamics
of the open system. We monitor this free evolution in real time by measuring the
spectrum of the cavity field. We refer to this technique as cavity-assisted Raman
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spectroscopy, as the polariton excitations involve also two different internal levels
with m = −1 and m = 0.

Simulations of the experimental protocol

We validate our cavity-assisted Raman spectroscopy protocol by numerically simu-
lating the associated mean-field equations of motion. The probe field is described
by a classical z-polarized electric field propagating along the cavity axis

Eprobe(t, x) = Ẽprobe

√
nprobe(t) cos(kx)e−iωprobet−iφprobe , (4.25)

with frequency ωprobe = ω̄ + ω0 + δprobe. Here, nprobe(t), φprobe and δprobe are the
average intra-cavity photon number, relative phase and detuning with respect to the
cavity field associated with the polariton branch ω+ at low couplings. Additionally,
the probe electric field per photon is given by Ẽprobe. Following an analogous ap-
proach to Eq. (4.8), we obtain a time-dependent many-body Hamiltonian describing
the interactions of the light-matter system with probe field. In a rotating frame at
ω̄, it reads

Ĥexc =ĤMB + 4
√
nprobe(t)

[
~η̄ sin(Φ(t))Ĵx + ~∆η cos(Φ(t))Ĵy

]
, (4.26)

with Φ(t) = (ω0+δprobe)t+φprobe. The probe beam stimulates the atomic coherences

Ĵx and Ĵy via phase-modulated amplitudes∝ sin(Φ(t)) and∝ cos(Φ(t)), respectively,
similar to cavity-enhanced Bragg spectroscopy [63]. Hence, we expect to coherently
transfer non-negligible atomic populations to the excited state if we approach the
low coupling two-photon resonance δprobe = 0. Following the procedure outlined
in section 4.1.3, we derive mean-field equations of motion from the Hamiltonian in
Eq. (4.26), and numerically solve them to simulate our spectroscopy protocol. The
relative phase φprobe drifts between different experimental realizations due to slow
changes in the optical paths, resulting in fluctuations of the total number of atoms
transferred to the excited state. For typical experimental parameters, we excite
between 8% and 12% of the atoms at the end of the probe pulse.

4.5.2 Measuring the lifetime of the excitations through real-time
spectroscopy

We prepare N = 9.6(4) × 104 atoms in |0a〉 for ω0 = 2π × 48(4) kHz and ∆c =
−2π×5.8(1) MHz, and ramp up the coupling strengths ηr,b(t) within tramp = 9.1 ms.
Additionally, we inject a weak 1 ms-probe pulse through the cavity with nprobe =
7.2(1) photons and δprobe = 2π × 2.0(4) kHz, cf. Fig. 4.11(a).

In Figs. 4.11(b), we present representative single-shot spectrograms of the cav-
ity field ñph(ω, t) showing the excitation pulse and the subsequent evolution of
the system for increasingly larger values of ∆η/η̄. In the Dicke limit [∆η/η̄ = 0,
Fig. 4.11(b1)], the main components of the spectrum start around ω̄±ω0 and evolve
towards ω̄ as the coupling η̄ is increased, reflecting the softening of the excited
polariton. At the critical point η̄ = ηc, the energy gap between the ground and
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4 Dissipative phases and transitions in a superradiant quantum gas

Figure 4.11: Real-time spectroscopy of the light-matter excitations. (a) Ex-
perimental protocol. While increasing η̄ (solid black) and ∆η (dashed) at constant
∆η/η̄, we inject a weak probe pulse along the cavity axis (orange) to populate the
excited polariton. (b) Representative experimental spectrograms, showing the number
of photons ñph as a function of time and frequency for different ratios ∆η/η̄. In the
Dicke limit (b1), we observe a complete softening of the long-lived polariton excita-
tions preceding the superradiant phase, indicated by a strong spectral component at
ω = ω̄. When increasing ∆η/η̄ (b2,b3), the polariton modes decay faster, until the
superradiant phase is fully suppressed at large ∆η/η̄ = 0.82 (b4). (c) Correspond-
ing spectrograms obtained from numerical simulations, which accurately reproduce the
observed polariton dynamics. We include spin dephasing with Γφ = 2π × 0.1 kHz.

excited-state polariton vanishes, and the superradiant phase transition occurs in-
dicated by the build-up of a strong coherent field at frequency ω̄. As the relative
imbalance ∆η/η̄ is increased [Figs. 4.11(b1,b2)], the mode softening is accompanied
by a strong decay of the polariton excitations. At the same time, the superradiant
phase transition occurs only at slightly later times until, for large enough ∆η/η̄, the
transition is fully suppressed [Fig. 4.11(b3)].

In Figs. 4.11(c), we present the results obtained from numerical simulations using
Eq. (4.26). The simulated spectrograms reproduce our experimental observations
for different values of ∆η/η̄, showcasing both mode softening in the Dicke limit
[Figs. 4.11(c1)] and the increasingly faster polariton decay with growing coupling
imbalance [Figs. 4.11(c2-c4)]. When increasing ∆η/η̄, the spectrograms show a clear
asymmetry, with the positive spectral component (ω−,S − ω̄ > 0) becoming more
prominent than its negative counterpart (ω+,S− ω̄ < 0). We identify them with the
elementary processes annihilating and creating an excited atomic polariton |1〉, with
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4.5 Probing the microscopic polariton excitations

Figure 4.12: Probing the polariton lifetime. (a) Lifetime τ of the excitations
in the normal phase as a function of the coupling imbalance ∆η/η̄. When increasing
∆η/η̄, the observed lifetime decreases over two orders of magnitude. This is captured
by our analytic (blue) and numerical estimations (red shaded region), assuming a phe-
nomenological spin dephasing between Γφ = 0 (upper bound) and Γφ = 2π × 0.5 kHz
(lower bound). (b) Normal phase excitation spectrum as a function of average cou-
pling η̄. (b1) The imaginary part represents the energy cost associated with creating
[Im(ω+) > 0] and annihilating [Im(ω−) < 0] a single polariton excitation. (b2) The real
part of the spectrum remains negative at large coupling imbalances, Re(ω±) < 0, indi-
cating that polariton damping suppresses the superradiant transition and gives rise to
a dissipation-stabilized normal phase. The different line shapes indicate stable normal
phase (solid) superradiant phases (dotted) or phase bistability (dashed). Here, we set
Γφ = 0.

rates γ↓ and γ↑, respectively. Close to the Dicke limit [Figs. 4.11(b1,c1)] both process
are balanced (γ↓ ≈ γ↑), whereas the annihilation of excited polaritons is strongly
favored when increasing ∆η/η̄, γ↓ > γ↑, giving rise to the observed asymmetry3.

We experimentally determine the lifetime of the polariton excitations τ for differ-
ent coupling imbalances ∆η/η̄. We acquire the photon number traces nph(t) with
a time resolution of 10 µs by integrating the recorded photon number spectrograms
ñph(ω, t) over a broad frequency region of (ω − ω̄)/2π ∈ [−150, 150] kHz. Then,

we numerically compute the cumulative signal s(t) =
∫ t

0 nph(t′)dt′, which takes the

form s(t) = smax(1 − e−t/τ ) when the photon number decays exponentially, i.e.,
nph ∝ e−t/τ . The lifetime τ is determined by the time at which s(t) has reached a
fraction (1− e−1) of its maximal value before entering the superradiant phase. We
exclude experimental realizations where the atomic response during the excitation
pulse falls below the noise level. Empirically, this method proves more robust in
determining τ than relying on exponential fits of nph(t), particularly when evaluat-
ing weak spectrogram signals. As an exception, we extract τ from a fit of s(t) for
∆η/η̄ = 0.

3Notice, that we identify the positive spectral component at ω−,S − ω̄ > 0 with the annihilation of
polaritons which is associated with a negative eingefrequency Im(ω−) ≤ 0, see Fig. 4.3(a). This is a
direct consequence of total energy conservation in the system, as the positive spectral component of
the cavity field at ω−,S > ω̄ acquires the energy excess created by annihilating a polariton excitation.
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4 Dissipative phases and transitions in a superradiant quantum gas

In Fig. 4.12(a), we present the observed lifetimes τ of the polariton excitations as
a function of ∆η/η̄. When modifying the coupling imbalance, the lifetimes change
over orders of magnitude with τ ≈ 2 ms in the Dicke limit (∆η/η̄ = 0) and τ .
0.01 ms in the Tavis-Cummings regime (∆η/η̄ = 1). We compare our findings to
the lifetime of polariton excitations in the normal phase (blue shaded region), τ =
−1/[2Re(ω±)], which we obtain by diagonalizing the stability matrix in Eq. (4.14).
Here, we consider constant coupling strengths at the end of the excitation pulses
as the lifetime does not appreciably change within the duration of the probe pulse.
For a closer comparison to the experiment, we perform numerical simulations for
different values ∆η/η̄ and evaluate them identically to the experimental data (red
shaded region). The systematic uncertainty of the theory estimations (extent of the
shaded regions) is defined by considering variable spin dephasing rates Γφ within the
range 2π × [0, 0.5] kHz. This rate agrees with the estimated concessional dephasing
rate in the total trapping potential, as derived in Ref. [72]. Both methods are in
reasonable agreement with our observations, with the numerical simulations more
accurately reflecting the experimental data for large coupling imbalances.

The direct connection between the decay of polariton excitations and the emer-
gence of a dissipation-stabilized phase can be understood by analyzing the exci-
tation spectrum of the open system, as shown in Fig. 4.12(b). The imaginary
part of the spectrum reflects the energy cost associated with polariton excitations
[Fig. 4.12(b1)], while the real part indicates damping (negative) or amplification
(positive) [Fig. 4.12(b2)]. In particular, the superradiant transition occurs only
when the real part Re[ω±] acquires positive contributions above the critical point
ηc [189, 202, 203]. However, for sufficiently large coupling imbalances ∆η/η̄ & 0.8,
the damping rate of the soft polariton mode γ↓ becomes dominant, counteracting
the coherent build-up of the superradiant phase. This leads to the emergence of a
dissipation-stabilized normal phase for arbitrarily large couplings η̄ > ηc.

Our new cavity-assisted Raman spectroscopy technique facilitates real-time access
to the polariton dynamics in the normal phase. We observe a reduction of the
polariton lifetime over orders of magnitude when increasing the coupling imbalance,
indicating that collective polariton decay is the microscopic process underlying the
observed dissipation-stabilized normal phase.

4.6 Discussion and outlook

In this chapter, we presented an experimental realization of an extended Dicke
model, featuring independently tunable co- and counter-rotating light-matter inter-
actions. Our implementation relies on inducing cavity-assisted Raman transitions
between adjacent Zeeman sublevels of a degenerate Bose gas, and facilitates exper-
imental access to emergent dissipative phases and transitions.

In the limit of balanced couplings, the system can be described by a Dicke Hamil-
tonian exhibiting a superradiant phase transition. This transition is characterized by
spin-changing self-organization of the Bose-Einstein condensate (BEC), resulting in
the formation of symmetry-broken checkerboard patterns of the transverse magne-
tization. We experimentally observed this superradiant transition using frequency-
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resolved measurements of the cavity field. Furthermore, we characterized the as-
sociated phase diagram. As a straightforward technical extension, we could bene-
fit from operating the transverse drives at the tune-out wavelength of 87Rb [110],
λTO = 790.02 nm, as done in chapter 6. This would allow us to suppress spurious
optical lattice potentials (Vd = 0) and induce spin-changing self-organization in a
coherent superfluid regime. By employing time-of-flight images, we could directly
observe and analyze the spatial structure of the emergent magnetic phases [79]. Op-
erating at the tune-out wavelength has the added experimental advantage that it
minimizes off-resonant spontaneous emission at any given Raman coupling rate [204],
mitigating spurious heating and atom losses. Furthermore, it would be interesting
to investigate the superradiant phases at low magnetic fields [193], where all the
Zeeman sublevels of either the F = 1 or F = 2 manifolds become accessible giving
rise to complex real-space magnetization patterns.

We demonstrated that by varying the imbalance of co- and counter-rotating light-
matter interactions, we can induce a tunable competition between coherent and dis-
sipative processes across the superradiant phase transition. This leads to the emer-
gence of a dissipation-stabilized phase and a discontinuous phase transition, which we
experimentally characterized. Through real-time measurements of the excitation dy-
namics, we identified the decay of the polariton modes as the microscopic mechanism
underlying the observed macroscopic phenomena. In future experiments, we could
investigate the regime of dominant counter-rotating couplings, ∆η/η̄ < 0, where
the system is expected to exhibit a plethora of non-equilibrium dynamics, ranging
from limit cycles to spin flip instabilities and chaotic dynamics [186]. Extending
our experiments to a regime with small atom or photon numbers could unveil be-
yond mean-field effects, such as quantum jumps in the bistability region as recently
predicted in Refs. [205, 206]. Furthermore, combining our findings on prominent
dissipative effects with cavity-mediated spin-orbit coupling [207, 208] could open up
new avenues for studying such phenomena in a dissipative regime. Finally, squeezing
of light fluctuations can be achieved over a wide parameter range at the NP-DSNP
boundary. As shown in Fig. 4.12(b), the imaginary parts of the polariton eigenfre-
quencies merge while their real parts bifurcate, giving rise to excitation branches
that either squeeze or broaden fluctuations. Characterizing the normal mode fluctu-
ations in this regime can potentially shed light on the generation of light squeezing
in the vicinity of exceptional points in non-Hermitian systems [209–211].
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5 Dynamical tunneling in a
momentum-space lattice

Experiments with ultracold quantum gases have successfully realized a wide variety
of lattice models, facilitating the exploration of complex out-of-equilibrium phe-
nomena in highly controlled settings [21, 168]. Lattice bonds which dynamically
depend on the local particle configuration are ubiquitous in diverse fields of physics,
ranging from lattice gauge theories in particle physics [212–214] to electron-phonon
coupling in condensed-matter systems [215, 216]. Specifically, lattice experiments
with ultracold atoms featuring density-dependent tunneling hold the potential to
realize correlated many-body phenomena, such as pair superfluidity [217–219] and
quantum scars [220, 221]. So far, density-dependent tunneling in optical lattices
has been implemented via periodic driving [222–227] or dipolar interactions [228],
yet solely inferred from spectroscopic measurements or by indirect comparison to
theory. Additionally, in such real-space implementations it remains challenging to
directly probe particle currents and evolving tunneling rates [229–231], which are
essential to diagnose dynamical hopping.

In recent years, the study of ultracold atoms in synthetic dimensions has garnered
significant interest for quantum simulation of artificial gauge fields and topological
physics [35]. These schemes rely on encoding discrete lattice degrees of freedom in
well-defined spin [232] and momentum modes [233] of degenerate quantum gases.
In Fig. 5.1(a), we illustrate the central idea behind momentum-space lattices: a
Bose-Einstein condensate (BEC) initialized in a zero-momentum state (p = 0) is
illuminated by a pair of counter-propagating laser drives with wavevectors k and
−k [Fig. 5.1(a1)]. One of the lasers has a single frequency ω, whereas the other
contains multiple frequency tones ωj . In the dispersive regime, the BEC undergoes
stimulated Bragg transitions [149] and scatters photons between the two counter-
propagating drives, acquiring discrete recoil momenta in units of ±2~k. As depicted
in Figure 5.1(a2), Bragg scattering becomes resonant when the drive frequencies are
tuned to match the parabolic free-space dispersion relation of the BEC. The discrete
momentum states occupied by the atoms pj = 2j~k (j ∈ Z) can be interpreted as
lattice sites in momentum space. In the resonant case, the dynamics can be described
by a tight-binding Hamiltonian of the form

Ĥ = ~
∑
j

tj ĉ
†
j+1ĉj + h.c., (5.1)

as originally proposed in Ref. [233]. The operator ĉ†j creates an atom in the momen-

tum state pj (site j), and the complex tunneling rate tj = ηje
iφj fully determined by

the two-photon coupling ηj and the relative phase between the drives at ω and ωj ,
see Fig. 5.1(a3). Experiments involving momentum-space lattices have provided a
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versatile platform for studying out-of-equilibrium dynamics in topological [234] and
non-Hermitian systems [235], leveraging on their outstanding control over tunneling
rates and site-resolved access through time-of-flight imaging.

Thus far, these experiments have primarily focused on single-particle physics. In
this chapter, we demonstrate a complementary experimental platform for engineer-
ing dynamical tunneling events in a momentum-space lattice and directly measure
them in real-time. We illustrate the central idea in Fig. 5.1(b): a BEC is coupled
to a high-finesse optical cavity by a laser drive at frequency ω, giving rise to two-
photon transitions that occupy the initially empty cavity mode (â†), see schematics
in Fig. 5.1(b1). Due to the large cavity linewidth ~κ � Erec, a single cavity mode
can accommodate multiple spectral components ωj and induce resonant two-photon
transitions between the momentum states pj → pj+1, as illustrated in the free-space
dispersion in Fig. 5.1(b2). In a tight-binding representation, this can be interpreted
as lattice model featuring dynamical tunneling rates, tj ∝ 〈â†(t) exp(iωjt)〉, which
evolve together with the emergent cavity field 〈â†(t)〉 [Fig. 5.1(b3)]. In particular,
we can locally resolve the hopping events through frequency-resolved measurements
of the different frequency components of the leaking cavity field1.

Our experimental implementation involves a spinor BEC coupled to the funda-
mental mode of our high-finesse optical cavity by a pair of far-detuned transverse
laser drives. Cavity-assisted Raman scattering transfers atoms between two Zee-
man sublevels, m = −1 and m = 0, while imparting momentum to the BEC in
multiples of the photon recoil. This gives rise to spin and particle dynamics in a
two-dimensional momentum grid, which we interpret as photon-assisted tunneling
events in a synthetic lattice [233]. The individual hopping events are mediated by
specific spectral components of the cavity field, which self-consistently evolve with
the local configuration of the atoms. Unlike experiments employing classical drives
to control single-particle hopping rates [236], in our setup, the tunneling rate dy-
namically depends on the formation of coherences between neighboring lattice sites.
The underlying mechanism is superradiant Raman scattering [86, 127], which is fa-
cilitated by cavity losses and collectively enhanced by the number of participating
atoms [237–240]. This makes our system non-Hermitian and renders the tunneling
dynamics highly directional. At the same time, we can make use the cavity leakage
to gain non-destructive, real-time access of the tunneling dynamics. By performing
frequency-resolved measurements of the cavity field, we locally resolve the tunneling
events in the momentum grid. A key feature of our implementation is that tun-
neling processes in opposite directions occur via different quantum paths and are
independently controlled by the two Raman drives, respectively.

Our proof-of-principle implementation demonstrates a flexible platform for explor-
ing non-equilibrium lattice physics, thanks to the possibility to optically engineer
dynamical tunneling events and resolve them via the cavity field.

1Fig. 5.1(b) is intended solely as a schematic representation to emphasize the main differences
compared to conventional momentum-space lattices shown in Fig. 5.1(a). The depicted coupling
scheme in Fig. 5.1(b) would be technically unfeasible since an intra-cavity standing-wave drive
with Vd & 5 Erec would give rise to lattice quasimomentum states and significantly flatten the
associated particle dispersion relation. This in turn would hinder our ability to locally identify
different tunneling events through frequency-resolved measurements of the cavity field.
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Figure 5.1: Implementing momentum-space lattices in a BEC. (a) Conven-
tional momentum lattices. (a1) Experimental scheme showing a zero-momentum BEC
(p0 = 0) illuminated by two counter-propagating drives, containing a single (ω) and mul-
tiple frequency tones (ωj), respectively. (a2) Free-particle dispersion relation. When
the frequency difference of the two drives compensates the kinetic energy cost, the BEC
undergoes resonant Bragg scattering and occupies a discrete set of momentum states
pj = 2j~k, with ~k being the photon recoil momentum. (a3) Momentum-space lattice.
In a tight-binding picture, the discrete momentum states pj are interpreted as lattice
sites connected by photon-assisted tunneling with tunable rates tj . (b) Dynamical
momentum-space lattices in an optical cavity. (a1) Schematic experimental implemen-
tation, showing a BEC (p = 0) coupled to a single mode of an optical cavity (creation
operator â†) and illuminated by a laser drive with frequency ω. (b2) Free-particle disper-
sion, showing multiple cavity-assisted Bragg transitions. Within the cavity linewidth κ,
the cavity mode can support multiple spectral components (wiggly arrows) and induce
resonant two-photon transitions between the states pj → pj+1. (b3) Cavity-assisted
tunneling is inherently dynamical, tj ∝ â†, as it is mediated by the emerging cavity
field. This figure has been adapted from Refs. [233] and [241].

Outline of this chapter

In section 5.1, we discuss the coupling scheme and establish a tight-binding model in
momentum space to describe cavity-assisted Raman scattering involving two phase-
shifted transverse drives. After deriving the corresponding many-body Hamiltonian,
we further discuss the open system dynamics associated with superradiant Raman
scattering. In section 5.2, we present the experimental protocol and the first ob-
servations of dynamical tunneling in a momentum-space lattice. Specifically, we
demonstrate non-destructive and real-time access to the tunneling dynamics via
frequency-resolved measurements of the cavity field. In section 5.3, we investigate
the collective nature of the tunneling dynamics due to the underlying superradiant
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Raman scattering processes. Our experimental observations can be extended to a
regime exhibiting a cascade of lattice currents, as discussed in section 5.4. Finally,
in section 5.5, we summarize our findings and discuss potential extensions of our
experiments.

Parts of this chapter have been published in Ref. [90]

R. Rosa-Medina*, F. Ferri*, F. Finger, N. Dogra, K. Kroeger, R. Lin,
R. Chitra, T. Donner and T. Esslinger. Observing Dynamical Currents
in a Non-Hermitian Momentum Lattice. Physical Review Letters 128,
143602 (2022)
* These authors contributed equally to this work

5.1 Theoretical description

Here, we discuss the theoretical framework to model our experiments on dynam-
ical tunneling in momentum-space lattices. After discussing the coupling scheme
in section 5.1.1, we map our experimental system to a tight-binding Hamiltonian
in momentum space featuring cavity-assisted hopping (section 5.1.2). We analyze
the non-Hermitian lattice dynamics arising from superradiant Raman scattering in
section 5.1.3, and derive an effective few-mode description in section 5.1.4 to numer-
ically simulate the emergent dynamics.

5.1.1 Coupling configuration

Similar to the experiments discussed in chapter 4, we prepare a 87Rb BEC ofN ≈ 105

atoms in the m = −1 Zeeman sublevel of the F = 1 hyperfine ground-state. A bias
magnetic field along the −z-direction generates a Zeeman splitting of ωz = 2π ×
48 MHz and defines the quantization axis. The atomic cloud is illuminated by two
retro-reflected laser fields propagating along the z direction with wavelength λd =
784.7 nm and Raman couplings ηr,b, see Fig. 5.2(a). For our choice of quantization
axis (−z), the relevant cavity mode is π polarized, while the two drives are in a
superposition of the two drive fields can be decomposed into a balanced superposition
of σ+ and σ− polarizations. Their exact frequencies ωr,b lie on opposite sides of the
effective cavity resonance ωc, ωr < ωc < ωb, with ωb − ωc ≈ ωz and ωr − ωc ≈ −ωz.

The key technical difference with respect to the experiments discussed in chap-
ter 4 is that the standing-wave modulations of the two drives are shifted by λd/4
at the position of the atoms. For balanced laser powers, the combined optical lat-
tice potential is fully erased, as illustrated in Fig. 5.2(a). This configuration facil-
itates experimental access to coherent momentum-space atomic distributions using
time-of-flight imaging, in contrast to the project discussed in the previous chapter
[cf. Fig. 4.6(b)]. For technical details on the implementation of the out-of-phase
standing-wave drives, refer to section 3.3.2.

The two incident laser drives induce cavity-assisted Raman transitions between
the two adjacent Zeeman sublevels m = −1 and m = 0, which we refer to as |0〉 and
|1〉, see coupling scheme Fig. 5.2(b). The initial BEC in |0〉 can be described by a
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Figure 5.2: Setup and coupling scheme. (a) Experimental setup. A BEC coupled
to an optical cavity with decay rate κ is illuminated by two x-polarized Raman drives
with frequencies ωr,b and coupling rates ηr,b. Their standing-wave modulations are
shifted by λd/4 with respect to each other at the position of the atoms. (b) Coupling
scheme. Cavity-assisted Raman scattering involving two σ±-polarized drives and the
π-polarized cavity mode induces population transfer between specific momentum states
of two different spin manifolds |0〉 (m = −1) and |1〉 (m = 0); the two drives control the
transitions |0〉 → |1〉 and |1〉 → |0〉, respectively. In a rotating frame at (ωr +ωb)/2, the
different states are split by a tunable spin offset ω0 and multiples of the recoil frequency
ωrec. (c) Momentum-space picture. A cavity-assisted Raman transition induced by the
ηr drive (red arrow) transfers a BEC in |0〉 (central purple circle) to the spin state
|1〉 (orange circles), imparting symmetric recoil momentum ±~k on the atoms along
the cavity (kx) and drive (kz) directions. Successive cavity-assisted Raman transitions
(faint arrows) can be interpreted as photon-assisted tunneling in a two-dimensional
momentum lattice.

zero-momentum state |kx = 0, kz = 0〉 along the drive (kz) and cavity directions (kx),
see central purple circle in Fig. 5.2(c). When scattering σ+-polarized photons from
the Raman drive at ωr into the cavity mode (red arrows), the atoms change their
spin state to |1〉 (orange circles) and obtain symmetric photon recoil momentum
±~k along kx and kz, occupying the well-defined momentum mode |±k,±k〉, see
Figs. 5.2(a,b). The Raman drive at ηb can then scatter σ−-polarized photons into the
cavity (blue arrows), and populate higher-order momentum states such as |0,±2k〉
and |±2k,±2k〉 while changing their spin state back to |0〉 (purple circle). The
splitting between the two spin manifolds |0〉 and |1〉 is given by ω0 in a rotating
frame at the intermediate frequency between the two drives ω̄ = (ωr + ωb)/2.

When considering further sequential cavity-assisted Raman transitions, we can
identify a discrete set of momentum states spaced by integer multiples of the photon
recoil momentum k = 2π/λd along the drive (kz) and cavity (kx) directions, as
schematically depicted in Fig. 5.2(c). In the next sections, we will map such processes
to a two-dimensional tight-binding model in momentum space describing cavity-
assisted dynamical tunneling. Importantly, the linewidth of the underlying cavity
field (κ = 2π× 1.25 MHz) is orders of magnitude larger than both the internal level
splitting (ω0 ≈ 2π × 50 kHz) and the recoil frequency of 87Rb atoms (ωrec = 2π ×
3.73 kHz). Hence, a single cavity mode can support multiple spectral components
and induce resonant cavity-assisted Raman transitions in an extended momentum-
space lattice. Notably, our implementation also comprises two spin sectors |0〉 and
|1〉, resulting in a spin-textured momentum lattice.
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5.1.2 Tight-binding Hamiltonian in momentum space

We derive the single-particle Hamiltonian of the system, adhering to the general
framework outlined in section 2.1.3. The negative part Ê(−) of the total electric
field is

Ê(−) =
Er
2
fr(z)eye

−iωrt +
Eb
2
fb(z)eye

−iωbt + E0g(x)âez. (5.2)

The operator â annihilates z-polarized photons in the fundamental mode of the
cavity with vacuum electric field amplitude E0 = 403 V/m (see section 3.1.2). The
two transverse drives are x polarized and propagate along the z direction. Their
frequencies and electric field amplitudes are ωr,b and Er,b, respectively. Given their
small frequency difference ωb−ωr = 2π×96 MHz, we consider a common wavenumber
k = ω̄/c for the two drives, with ω̄ = (ωb+ωr)/2. We neglect the transverse Gaussian
modulation of the electric fields, and assume mode profiles fr(z) = cos(kz) and
fb(z) = sin(kz) for the two out-of-phase drives at ωr and ωb, respectively. The
cavity mode profile is given by g(x) = cos(kx).

Analogous to section 4.1.2, we derive the single-particle Hamiltonian

ĤSP = Ĥat + Ĥcav + Ĥs + Ĥv, (5.3)

in a rotating frame induced by the generator Ĥrot = ~ω̄â†â−~ω′zF̂z, with ω′z = (ωb−
ωr)/2. In this rotating frame, a cavity field oscillating at ω̄ = (ωb + ωr)/2 becomes
time independent. The bare atomic and cavity Hamiltonians are respectively

Ĥat =
p̂2

2M
+ Vext(x̂) + ~δzF̂z + ~qF̂ 2

z ,

Ĥcav = −~∆câ
†â, (5.4)

with F̂ = (F̂x, F̂y, F̂z)
T being the F = 1 spin operator. The internal energy of the

atom is parameterized by the effective linear splitting δz = ωz + ω′z and the second
order Zeeman shift q. The external trapping potential Vext(x̂) is kept fixed during
the experiments. The detuning ∆c = ω̄−ωc determines the bare energy of the cavity
photons, with ωc being the cavity resonance.

As discussed in section 2.1, dispersive light-matter interactions can be decomposed
into scalar and vectorial contributions. The scalar interactions are given by

Ĥs =
αs
4

[
E2
b f

2
b (z) + E2

rf
2
r (z)

]
+ αsE

2
0g

2(x)â†â. (5.5)

In the limit of balanced drives, E2
r = E2

b , the combined static lattice vanishes at
the position of the atoms due to f2

r (z) + f2
b (z) = 1. In the experiments discussed

in this chapter we opt to use x-polarized transverse drives to suppress contribu-
tions of the y-polarized cavity mode (ây), see Eq. (2.15). Such contributions could
otherwise induce a competing superradiant phase transition associated with atomic
self-organization [62].

The vectorial light-matter interactions are central for our considerations and read

Ĥv = −αvErE0

8
g(x)fr(z)

[
âF̂− + â†F̂+

]
+
αvEbE0

8
g(x)fb(x)

[
âF̂+ + â†F̂−

]
= −~ηr cos(kx) cos(kz)

[
âF̂− + â†F̂+

]
+ ~ηb cos(kx) sin(kz)

[
âF̂+ + â†F̂−

]
,

(5.6)
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5.1 Theoretical description

Figure 5.3: Realizing dynamical tunneling in a momentum-space lattice.
(a) Coupling scheme. Raman scattering, involving absorption from two independent
drives ηr (solid red) and ηb (solid blue arrow), and net emission of photons in the cavity
mode (wiggly arrows, creation operator â†), induces population transfer between spe-
cific momentum states of two different spin manifolds |0〉 (purple) and |1〉 (orange lines).
In a rotating frame at ω̄, these states are offset by the two-photon detuning ω0 and by
multiples of the recoil frequency ωrec, with ωrec ≤ ω0 � κ. (b) Tunneling dynamics
in a momentum lattice. Cavity-assisted Raman scattering couples discrete momentum
states of |0〉 (purple) and |1〉 (orange circles) differing by ±k (recoil momentum) in x
and z directions. The two drives at ωr (red) and ωb (blue arrows) control different
tunneling paths; the hopping rate dynamically depends on the emergent cavity field,
with tSR ∝

〈
â†
〉
.

where we introduce the Raman couplings ηr,b = αvEr,bE0/(8~). The light-matter
interactions in Eq. (5.6) closely resemble the Hamiltonian from the previous chapter,
see Eq. (4.5), with one small yet critical difference. The co- and counter-rotating
contributions of light-matter interactions are associated to different spatial mode
profiles, due to the two standing-wave drives being out-of-phase at the position of
the atoms, with fb(x) = sin(kz) and fr(x) = cos(kz), respectively. This subtle
difference has a significant impact on the dynamics, as the system can no longer be
mapped to a conventional two-mode Dicke model.

Tight-binding description in momentum space

We now map the system to a tight-binding Hamiltonian in momentum space. We
consider a discrete set of two-dimensional atomic plane waves in the xz plane

ψσ(lx,lz)(x̂) =
k

2π
eik(lxx+lzz) ⊗ |σ = m+ 1〉 . (5.7)

Their wavenumbers are multiples (lx,z ∈ Z) of the photon recoil momentum k =
ω̄/c = 2π/λd, and the index |σ〉 refers to the spin state σ ∈ {0, 1} associated with
the Zeeman sublevel m ∈ {−1, 0}. The states are normalized within a unit cell
of size R = [−π/k, π/k)2. We refer to the corresponding single-particle states as
|lx, lz〉σ. As in the previous chapter, we neglect cavity-assisted Raman transitions
to the m = +1 Zeeman sublevel as they are detuned by δ+1 ≈ 2q = 2π × 0.7 MHz
at the large bias magnetic fields B ≈ 68.3 G we operate.

To obtain a many-body description, we exploit the fact that the initial BEC in
m = −1 can be described by a zero-momentum mode with |0, 0〉0, and that each
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5 Dynamical tunneling in a momentum-space lattice

cavity-assisted Raman process simultaneously changes the spin (σ) and momentum
states of the atoms (lx, lz) by ±1. We expand the atomic field operator as

Ψ̂(x̂) =
∑

{jx,jz}∈Z

ψ0
(2jx,2jz)(x̂)ĉ0

(2jx,2jz) + ψ1
(2jx+1,2jz+1)(x̂)ĉ1

(2jx+1,2jz+1), (5.8)

with the operators ĉσ(2jx+σ,2jz+σ) annihilating particles in the mode |2jx + σ, 2jz + σ〉σ.

In second quantization [112], we derive the corresponding as many-body Hamiltonian

Ĥ = Ĥ0 + Ĥt. (5.9)

The diagonal term is given by

Ĥ0 = Ĥcav +

∫
R

Ψ̂†(x̂)
[
Ĥs + Ĥat

]
Ψ̂(x̂)dx

= −~∆̃câ
†â+

∑
{jx,jz}∈Z
σ∈{0,1}

~[σω0 + ωkin(2jx + σ, 2jz + σ)]ĉσ†(2jx+σ,2jz+σ)ĉ
σ
(2jx+σ,2jz+σ),

(5.10)

with ∆̃c = ∆c−NU0/2 being the dispersively shifted cavity detuning. As illustrated
in Fig. 5.3(a), the energy offset between the different atomic modes arises from a
kinetic energy contribution ωkin

(2jx+σ,2jz+σ) = [(2jx+σ)2+(2jz+σ)2]ωrec and a tunable

splitting between the two spin manifolds ω0 = (ωb − ωr)/2 + ωz − q.
For balanced Raman couplings, ηb ≈ ηr, we can neglect scalar interactions as

they result in an erased lattice configuration, see Eq. (5.6). Furthermore, the small
dynamical intra-cavity lattice Vc = −~αsE2

0 〈â†â〉 . 0.3~ωrec has negligible influence
on the observed dynamics for typical cavity photon numbers ( 〈â†â〉 . 20). The
vectorial light-matter interactions couple the different atomic modes and yield

Ĥt =

∫
Ψ̂†(x̂)ĤvΨ̂(x̂)dx

= −
∑

{jx,jz}∈Z
s1,2=±1

[
~ηrâ†√

8
ĉ1†

(2jx+s1,2jz+s2)ĉ
0
(2jx,2jz)− is2

~ηbâ†√
8
ĉ0†

(2jx,2jz)ĉ
1
(2jx+s1,2jz+s2)

]
+h.c..

(5.11)

This Hamiltonian describes cavity-assisted tunneling between neighboring states in a
two-dimensional momentum grid, where even (odd) sites are exclusively populated
by atoms in the spin state |0〉 (|1〉), as illustrated in Fig. 5.3(b). Crucially, each
tunneling process changes the spin state of the atoms and is associated with the
creation (∝ â†) or annihilation of cavity photons (∝ â).

In the limit of balanced Raman couplings η := ηr = ηb, we introduce a dynamical
tunneling rate

tSR(t) = −
η
〈
â†(t)

〉
√

8
. (5.12)
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This hopping rate is not solely determined by the external laser drives (∝ η), but
also self-consistently evolves with the expectation value of the emergent cavity field
(∝
〈
â†(t)

〉
). This is in direct contrast to conventional synthetic lattices engineered

with ultracold atoms [233], where tunneling rates are fully determined by the incident
classical laser drives. As evident from Eq. (5.11), the two laser drives ηr and ηb inde-
pendently control tunneling between the spin manifolds |0〉 → |1〉 [red] and |1〉 → |0〉
[blue arrows in Fig. 5.3(b)], respectively. In the latter case, we obtain sign-changing
hopping rates ∓itSR for tunneling events towards lattice sites with additional ±k
momentum in z-direction; this is a direct consequence of the phase-shifted spatial
modulation of the corresponding drive, i.e., fb(z) = sin(kx) = i(e−ikz−eikz)/2. The
presence of tunneling terms with opposite signs results in observable destructive
interference between different tunneling paths, as discussed in section 5.2.

5.1.3 Superradiant scattering and non-Hermitian lattice dynamics

In our experiments, photon loss at the cavity mirrors makes our system inherently
open and significantly alters the dynamics, leading to a non-Hermitian evolution
within the momentum lattice. The tunneling Hamiltonian Ht in Eq. (5.11) consti-
tutes a multi-level version of the Tavis-Cummings model discussed in chapter 2, see
Eq. (2.19): a single cavity mode (â) mediates transitions involving multiple momen-
tum modes (|lx, lz〉σ) of the two spin levels |0〉 and |1〉. The associated collective
coupling rates are given by ηr,b

√
N/8. Since our experiment operates in the bad

cavity regime (overdamped regime), with κ � ηr,b
√
N/8, we expect the lattice dy-

namics to be strongly dissipative and facilitated by superradiant Raman scattering.

In an illustrative picture, the evolution of the system is primarily determined by
Raman processes that create cavity photons (∝ â†), as the opposite process of ab-
sorbing photons (∝ â) is hindered by cavity losses. Consequently, the non-Hermitian
dynamics in the momentum lattice becomes directional, with preferred tunneling
directions illustrated by the red and blue arrows in Fig. 5.2(c). Furthermore, we
expect that the individual tunneling events are mediated by superradiant Raman
scattering processes, which are collectively enhanced by the number of participating
atoms, as derived in section 2.2.2 of chapter 2. This gives rise to tunneling rates
that evolve self-consistently with the coherences between the sites involved in each
hopping process.

This behavior is fundamentally different from the spin-changing self-organization
phase transition discussed in section 4.2 of the previous chapter. In that case, the
system can be mapped to an extended Dicke model with tunable co- and counter-
rotating interactions due to the matching spatial phase of the two Raman drives. As
also observed in Ref. [79], in that case a low-momentum stable superradiant phase
is created above a critical driving strength.

Frequency characteristics of superradiant photon pulses

In our experiment, the large cavity decay rate κ = 2π × 1.25 MHz leads to a broad
Lorentzian density of states [189] for the cavity field associated with superradiant
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5 Dynamical tunneling in a momentum-space lattice

scattering

ρ(ω) =
κ

(ω − ωc)2 + κ2
, (5.13)

where κ � ω0 and κ � ωrec. As a result, a single cavity mode can accommodate
multiple spectral components and enable tunneling in an extended momentum lattice
via superradiant Raman scattering.

As discussed in section 2.1.4 for a two-mode Tavis-Cummings model, energy con-
servation is expected to hold for the complete system of photons and atoms during
superradiant Raman scattering [120]. We extend this notion to the relevant case of
a multi-level Tavis-Cummings system and obtain the frequency of the cavity fields
associated with superradiant Raman scattering events. These frequencies have to
overcome both the internal and kinetic energy cost to populate different sites in the
momentum lattice

ωr(fx,fz ,ix,iz) = ω̄ − ω0 − [ωkin
(fx,fz) − ω

kin
(ix,iz)],

ωb(fx,fz ,ix,iz) = ω̄ + ω0 − [ωkin
(fx,fz) − ω

kin
(ix,iz)]. (5.14)

The spectral components of the cavity field at the frequencies ωr(fx, fz, ix, iz) and
ωb(fx, fz, ix, iz) induce Raman scattering between the spin levels |0〉 → |1〉 and
|1〉 → |0〉, respectively. In our experiment, these scattering events are selectively
induced by the transverse drives at frequencies ωr and ωb. The global splitting
between the spin levels causes these two transitions to shift in opposite directions,
∓ω0, facilitating the identification of the corresponding tunneling processes. The
indices (ix, iz) and (fx, fz) denote the initial and final lattice sites of a given tunneling
process, respectively.

5.1.4 Few-mode expansion and open system simulations

As discussed in previous sections, we expect the tunneling dynamics to be determined
by the interplay between the tunneling Hamiltonian in Eq. (5.11) and cavity field
decay. To efficiently simulate the dynamics of the first few superradiant processes
and obtain a minimal theoretical description, we consider appropriate superpositions
of different lattice sites. Specifically, we identify four low-energy atomic modes

ψ̂0 = ĉ0
(0,0),

ψ̂1 =
(
ĉ1

(1,1) + ĉ1
(1,−1) + ĉ1

(−1,1) + ĉ1
(−1,−1)

)
/2,

ψ̂2 = i
(
ĉ1

(1,−1) + ĉ1
(−1,−1) − ĉ

1
(1,1) − ĉ

1
(−1,1)

)
/2,

ψ̂3 = i
(
ĉ0

(0,−2) − ĉ
0
(0,2)

)
/
√

2, (5.15)

which are coupled to each other via the Hamiltonian in Eq. (5.11). In real space, the
corresponding single-particle wave functions of these orthonormal modes are ψ0 ∝ 1,
ψ1 ∝ cos(kx) cos(kz), ψ2 ∝ cos(kx) sin(kz) and ψ3 ∝ sin(2kz). In momentum space,
the operator ψ̂0 is associated with the central lattice site |0, 0〉0, cf. Eq. (5.15),
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5.2 Observing cavity-mediated tunneling in a momentum-space lattice

whereas the remaining modes can be expressed as superpositions of specific lattice
sites

ψ̂1 : |±1,±1〉1 =
1

2
(|1,−1〉1 + |−1,−1〉1 + |−1, 1〉1 + |1, 1〉1) ,

ψ̂2 : |±1,∓1〉1 =
i

2
(− |1,−1〉1 + |−1,−1〉1 − |−1, 1〉1 + |1, 1〉1) ,

ψ̂3 : |0,∓2〉0 =
i√
2

(|0,−2〉0 − |0, 2〉0) . (5.16)

Within this momentum-space truncation, the Hamiltonian in Eq. (5.9) can be
simplified to

Ĥcut =− ~∆̃câ
†â+ ~(ω0 + 2ωrec)(ψ̂

†
1ψ̂1 + ψ̂†2ψ̂2) + 4~ωrecψ̂

†
3ψ̂3

− ~η√
2
â†
[
ψ̂†1ψ̂0 −

1√
2
ψ̂†3ψ̂1 +

1√
2
ψ̂†2ψ̂3 − ψ̂†0ψ̂2

]
+ h.c. . (5.17)

To efficiently simulate the open system dynamics, we derive mean-field equations
of motion for the expectation values of the cavity field α = 〈â〉 /

√
N , atomic popula-

tions ρjj =
〈
ψ̂†j ψ̂j

〉
/N , and coherences ρjk =

〈
ψ̂†j ψ̂k

〉
/N , with {j, k} ∈ {0, 1, 2, 3}.

This approach allows us to include a phenomenological spin dephasing rate of ap-
proximately Γφ = 2π× 0.2 kHz between the two different spin manifolds |0〉 and |1〉,
which damps the corresponding atomic coherences. This dephasing is attributed to
the combined effect of atomic collisions and magnetic field fluctuations [89]. The
exact equations of motion are presented in Eqs. (A.2) of appendix A.1.

5.2 Observing cavity-mediated tunneling in a
momentum-space lattice

In this section, we report on the first experimental observations of dynamical tun-
neling in a momentum-space lattice. In section 5.2.1, we present the details of the
experimental protocol. In section 5.2.2, we discuss our experimental observations
and demonstrate how frequency resolved measurements of the cavity leakage can
be employed to perform non-destructive real-time measurements of the tunneling
dynamics. Finally, in section 5.2.3, we access an experimental regime showcasing
multiple tunneling events in an extended momentum grid and discuss the experi-
mental factors limiting the lifetime of the momentum lattice.

5.2.1 Experimental protocol

Our experiments start with a zero-momentum Bose-Einstein condensate initialized
in the m = −1 Zeeman sublevel (state |0〉), i.e., in the central lattice site |0, 0〉0. We
increase the lattice depth of the two standing-wave drives via smooth s-shape ramps

Vr,b(t) = V max
r,b

[
3

(
t

tramp

)2

− 2

(
t

tramp

)3
]
, (5.18)
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5 Dynamical tunneling in a momentum-space lattice

with V max
r,b (t) being the corresponding peak lattice depth and tramp being the du-

ration of the ramp. As detailed in section 3.3.1, we independently stabilize the
intensity of the two Raman drives. The s-shape ramps have been empirically opti-
mized to mitigate spurious heating and atom loss during loading in the transverse
drive potentials [108]. In each experimental run, we maintain fixed values for the
cavity detuning ∆̃c and the offset between the two spin manifolds ω0. These pa-
rameters can be adjusted independently by varying the cavity resonance frequency
ωc and the first-order Zeeman splitting ωz, respectively. While ramping up the
transverse drives, we employ our frequency-resolved heterodyne detection to record
the z-polarized cavity field, see section 3.2.1 for technical details. Additionally, we
perform destructive measurements of the spin and momentum distributions of the
atoms using time-of-flight absorption imaging, as described in section 3.2.2.

5.2.2 Real-time probing of dynamical tunneling

In a first set of experiments, we prepare N = 1.06(2)×105 atoms in the site |0, 0〉0.
We operate at ω0 = 2π× 72.5(5) kHz and ∆̃c = −2π× 0.7(2) MHz. To initialize the
lattice dynamics, we ramp the two Raman drives together to ηr,b = 2π×0.62(2) kHz
within tramp = 1.5 ms, as plotted in Fig. 5.4(a).

In Fig. 5.4(b), we present a representative photon number spectrogram ñph(t, ω)
of the leaking cavity field, see section 3.2.1 for technical details. The spectrogram
reveals three distinct photon pulses at different frequencies, which we attribute to
specific tunneling events in the momentum lattice: |0, 0〉0 → |±1,±1〉1 → |0,∓2〉0 →
|±1,∓1〉1. We directly confirm the involvement of these states by measuring the
spin and momentum distribution of the atoms at different stages of the evolution, as
shown in Figs. 5.4(c). The initial atomic distribution in Fig. 5.4(c1) is consistent with
the system populating the site |0, 0〉0, while the atomic distributions after the first
[Fig. 5.4(c2)] and second superradiant pulses [Fig. 5.4(c3)] indicate the occupation of
the modes |±1,±1〉1 and |0,∓2〉0, respectively. The observed population imbalance
between sites with kz > 0 and kz < 0 is attributed to spurious optical losses in the
retro-reflected path of the standing-wave drives in the −z direction.

We compare the emission frequencies of the three photon pulses with the expec-
tations from total energy conservation (Eq. (5.14)). The gray lines in Fig. 5.4(b)
indicate the corresponding frequencies ωr(±1,±1,0,0), ω

b
(±2,±2,±1,±1), and ωr(±1,±1,±2,±2),

which are in reasonable agreement with our observations. Additionally, we perform
ab initio few-mode numerical simulations following Eqs. (A.2) and plot the obtained
spectrogram in Fig. 5.4(d), which accurately reproduces our experimental obser-
vations. The presence of tunneling terms with opposite signs ±itSR can give rise
to destructive path interference when the atoms tunnel towards inner sites in z-
direction, see Hamiltonian in Eq. (5.11). In our experiments, this effect manifests in
the suppressed hopping |±1,±1〉1 6→ |0, 0〉0 after the first tunneling event, as directly
shown by the atomic distributions in Fig. 5.4(c3).

The strength of the emerging cavity field and the overall tunneling rate depends,
in principle, on the sum of all two-site coherences connected by Raman scattering,
as described by Eq. (5.11). Nonetheless, tunneling events between specific lattice
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Figure 5.4: Real-time observation of dynamical tunneling. (a) Experimen-
tal protocol, showing a typical ramp of the two independent Raman couplings ηr and
ηb. (b) Representative photon number spectrogram ñ(t, ω) displaying three time- and
frequency-resolved superradiant pulses. We choose T = 150 µs as the integration time.
(c) Spin-resolved momentum distributions of the atoms at different stages of the evolu-
tion [see square labels in (b)]. (d) Spectrogram obtained from mean-field simulations.
The horizontal lines in (b) and (d) indicate the pulse frequencies expected total energy
conservation in Eq. (5.14). (e) Experimental tunneling amplitudes |tSR|, integrated in
a δω = 2π × 5 kHz window around the first (solid red), second (solid blue) and third
photon peak (dashed red line) of the spectrogram in (b), respectively. (f) Simulated

two-mode coherences | 〈ψ̂†1ψ̂0〉| , | 〈ψ̂†3ψ̂1〉| and | 〈ψ̂†2ψ̂3〉| . Our observations are in quan-
titative agreement with the theoretical expectations, demonstrating that we can employ
frequency-resolved measurements of the cavity field to resolve the tunneling events in
the momentum lattice in real time.

sites are associated with well-defined cavity spectral components that satisfy total
energy conservation. These spectral components selectively stimulate the formation
of coherences between adjacent sites, provided they are not empty. Importantly, off-
resonant stimulation of further lattice bonds is negligible when the tunneling rates
are sufficiently small, i.e., |tSR| � ω0 and |tSR| � ωrec. This results in local dynamical
tunneling that depends on local occupations, similar to density-dependent hopping in
real-space optical lattices [242]. This behavior is reflected by the simulated evolution
of the coherences between adjacent lattice sites, as shown in Fig. 5.4(f). Therefore,
we can associate each cavity pulse with a specific tunneling event in the momentum
lattice and use Eq. (5.12) to infer the corresponding tunneling amplitudes |tSR|, as
plotted in Fig. 5.4(e).

While the representative atom number distributions in Figs. 5.4(c) are obtained
through multiple destructive measurements under identical experimental conditions,
the cavity field spectrogram in Fig. 5.4(b) is acquired within a single experimental
realization. Hence, our observations in this section demonstrate that we can reliably
utilize frequency-resolved measurements of the leaking cavity field to locally resolve
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tunneling events in real time. Beyond our few-mode simulations, our experimental
results are further validated by independent Gross-Pitaevskii equation simulations
conducted by Rui Lin, as detailed in the Supplemental Material of Ref. [90] and
summarized in appendix A.3.

5.2.3 Multiple hopping events and lifetime in the momentum lattice

In the previous section, we conducted proof-of-principle experiments demonstrat-
ing cavity-assisted tunneling in a momentum-space lattice. However, our obser-
vations were limited to few tunneling events involving small lattices. To explore
tunneling dynamics in larger lattices, we increase the Raman coupling rates to sig-
nificantly larger values, ηr,b = 2π × 1.44(3) kHz, within tramp = 3.6 ms, as plotted
in Fig. 5.5(a). Experimentally, these Raman couplings correspond to the maximally
available laser powers in a two-drive configuration, see section 3.3.1.

In Fig. 5.5(b), we present a representative cavity field spectrogram showcasing
up to seven well-separated photon pulses. We identify the involved lattice sites
by analyzing the frequency of the cavity field and comparing it to the expectation
from Eq. (5.14) (gray lines). Thereby, we identify cavity pulses mediating tunneling
events involving external lattice sites, such as |2, 2〉0. In Fig. 5.5(c), we provide
a schematic representation of the inferred tunneling events. We emphasize that
the tunneling events are not restricted to the processes depicted in Fig. 5.5(c), as
they arise from multiple competing quantum paths. We speculate that even more
lattice sites can be occupied by performing faster coupling ramps. However, this is
technically challenging due to the limited bandwidth of the transverse drive intensity
stabilization setup.

We identify the following experimental limitations to the maximum number of
accessible tunneling events in our system:

• First, the momentum states move out of the grid nodes due to oscillatory
motion in the harmonic trap [236]. For non-interacting systems, this rate is
solely determined by the trap frequencies (ωh ≈ 2π×200 Hz) yielding lifetimes
around TLT ≈ 0.5 ms for the corresponding momentum states after each photon
pulse. To evaluate the influence of the external confinement and contact inter-
actions on the lattice dynamics, we perform supplementary Gross-Pitaevskii
(GP) simulations as a benchmark, see appendix A.3. Our simulations indi-
cate that the repulsive contact interactions in 87Rb atoms effectively increase
the lifetime in the momentum lattice to TLT & 1.0 ms after each tunneling
event, see Fig. A.1 in the appendix A.3 for a detailed discussion. Indeed, this
timescale approximately corresponds to the observed time delay between the
final two photon pulses in Fig. 5.5(b).

• Second, heating of the BEC from off-resonant spontaneous emission progres-
sively melts the momentum lattice when approaching the recoil temperature,
which is around Trec = ~ωrec/kB ≈ 180 nK, with kB being the Boltzmann
constant. However, as the recoil temperature greatly exceeds the initial tem-
perature of our BEC T ≈ 90 nK [108], this effect is negligible within the
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Figure 5.5: Identifying multiple hopping events in the momentum lattice.
(a) Ramp protocol, illustrating a ramp of the Raman couplings ηr,b to the value as-
sociated with the maximum available laser power. (b) Photon number spectrogram
displaying multiple cavity pulses, and (c) schematic representation of the inferred tun-
neling (1-7) in the momentum lattice. The horizontal lines in (b) indicate the pulse
frequencies expected from total energy conservation, see Eq. (5.14), and allow us to lo-
cally resolve multiple tunneling events in a single experimental realization. We operate
at ω0 = 2π × 142(3) kHz and ∆̃c = −2π × 1.2(2) MHz.

duration of our experiments.

5.3 Characterization of collective tunneling

In this section, we further characterize the dynamical nature of cavity-assisted
tunneling in our system. In section 5.3.1, we experimentally demonstrate that the
observed cavity pulses arise from superradiant Raman scattering and are collectively
enhanced by the number of participating atoms. Moreover, in section 5.3.2, we
leverage on this collective behavior to further elucidate the dynamical character of
tunneling in our system.

5.3.1 Collective hopping via superradiant Raman scattering

We systematically characterize the first tunneling event |0, 0〉0 → |±1,±1〉1, which
gives rise to occupation of a symmetric superposition of nearest-neighboring sites
|±1,±1〉1 = 1/2

∑
l,m=±1 |l,m〉1, see Eq. (5.16). We prepare a variable number

of atoms N in the central lattice site |0, 0〉0, and slowly increase the coupling to
ηr,b = 2π × 0.40(1) kHz within tramp = 14 ms. In this regime we always observe a
single cavity pulse, effectively isolating the first tunneling event.

In Fig. 5.6(a), we plot the corresponding coupling ramp together with represen-
tative traces of the cavity photon number nph(t) for different initial atom numbers
N . When increasing N , we observe stronger photon pulses occurring earlier in time.
Following theoretical analysis of superradiant Raman scattering in section 2.2.2, we
rely on Eq. (2.26) and fit the observed photon pulses with a hyperbolic function

nph(t) = max(nph) · sech2

(
t− tmax

τ

)
, (5.19)
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Figure 5.6: Collective hopping via superradiant Raman scattering. (a) Rep-
resentative cavity pulses for different initial atom numbers N = (8.1, 6.6, 4.9, 2.9)× 104

(darker to lighter green curves), together with a typical fit (dashed red) and coupling
ramp η := ηr = ηb (solid black line). (b) Photon pulse amplitude max(nph) and
time delay tmax versus N , with a power-law fits (solid curves) yielding exponents of
p = 1.8(3) and p = −1.3(3), respectively. The super-linear scaling of max(nph) with the
number of atoms indicates that the system undergoes superradiant Raman scattering,
and that the associated tunneling events are collectively enhanced. Here, we operate
at ω0 = 2π × 26(1) kHz and ∆̃c = −2π × 1.4(2) MHz. In this chapter, the error bars
correspond always to the standard error of the mean.

with max(nph), tmax and τ being free fit parameters. An exemplary fit (red dashed
curve) is presented in Fig. 5.6(a) and accurately captures the functional form of the
observed photon pulse.

In Fig. 5.6(b), we present the fitted values for the peak photon number max(nph)
and the corresponding time delay tmax for different initial atom numbers N . The
former exhibits a clear super-linear growth, whereas the latter monotonically de-
creases with increasing N . We fit the experimental data with power-law functions
of the form y(N) = a(N − Nth)p + b. Here, Nth ≈ 30000 represents an experi-
mentally determined threshold atom number above which we observe superradiant
Raman scattering in our system, see Fig. 5.7(a). Our experimental observations of
max(nph) and tmax are well captured by power-law functions with p = 1.8(3) [green
curve] and p = −1.3(3) [red curve in Fig. 5.6(b)], respectively. These fit results are
compatible within errors with the expected scaling max(nph) ∝ N2 and tmax ∝ N−1

of superradiant Raman scattering, see Eq. (2.26).

Indeed, these observations demonstrate that cavity-assisted tunneling in our sys-
tem is induced by superradiant Raman scattering, which is collectively enhanced by
the number of participating atoms N . In contrast, a collection of N independent
emitters undergoing spontaneous scattering would yield a different scaling behavior
with max(nph) ∝ N and tmax ∝ 1, as discussed in detail in section 2.2.2.

5.3.2 The properties of dynamical tunneling in our system

We further characterize the key properties of the tunneling events induced by su-
perradiant Raman scattering in our system. In Fig. 5.7(a), we plot the measured
fraction of transferred atoms to the sites |±1,±1〉1 as a function of the initial atom
number N . We observe that tunneling can occur only above an initial atom number
of approximately Nth ≈ 30000, and the transfer fractions saturates at N1/N ≈ 0.8.
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5.3 Characterization of collective tunneling

This limited transfer clearly goes beyond the fundamental description of the Tavis-
Cummings model, as both mean-field (see Fig. 2.3) and exact numerical simulations
(Fig. 2.4) predict a complete population transfer, i.e., N1/N = 1.

We attribute the observed behavior to the combined influence of residual spin
dephasing and interaction-induced self-trapping in the momentum lattice. Spin de-
phasing arises from spatio-temporal fluctuations of the bias magnetic field B, which
leads to dynamical variations in the offset between the two spin manifolds ω0. At the
same time, repulsive contact interactions in real space result in effective attractive
interactions in the momentum-space picture; this induces self-trapping of atoms at
the initial lattice site |0, 0〉0 [243, 244] when the tunneling rates are below the effec-
tive attractive interaction strength ũ ≈ 2π×0.2 kHz (see appendix A.2 for a detailed
discussion). To capture these effects, we phenomenologically introduce dephasing
term with rate Γφ in our numerical simulations (Eqs. A.2). We find reasonable agree-
ment with our experimental observations when considering dephasing rates around
Γφ = 2π× 0.25 kHz ≈ ũ [black curve in Fig. 5.7(a)], whereas an idealized simulation
with Γφ = 0 (blue curve) fails to reproduce our data.

Furthermore, we extract the photon pulse area 〈Nph〉 = 2κ
∫
nph(t)dt to account

for the total number of photons leaking from the cavity during the tunneling event
|0, 0〉0 → |±1,±1〉1. In Fig. 5.7(b), we observe a one-to-one correspondence between
〈Nph〉 and the number of transferred atoms N1, which we quantify by a linear fit
yielding a slope of 1.09(2) (solid line). This one-to-one correspondence is a direct
consequence of total angular momentum conservation in the system: a tunneling
process transferring N1 atoms from |0, 0〉0 (Zeeman sublevel m = −1) to |±1,±1〉1
(m = 0) changes the atomic angular momentum by +~N1, which is only compen-
sated by scattering N1 σ+-polarized drive photons into the π-polarized cavity field,
see also Fig. 5.2(b).

These observations further confirm the utility of the leaking cavity field as a reli-
able observable for investigating the tunneling dynamics in the momentum lattice.

Coherence-dependent tunneling

Finally, we leverage our observations to gain insight into the properties of the tun-
neling rate in our system. We use the fitted maximal photon numbers max(nph)
in Fig. 5.6(b) to estimate the peak tunneling amplitude |tSR,max| = η

√
max(nph)/8

using Eq. (5.12). In Fig. 5.7(c), we plot |tSR,max| as a function of the initial number
of atoms N . We observe that the peak tunneling rates linearly increase with N ,
reaching values around |tSR,max| . 2π × 0.4 Hz. This behavior further emphasizes
the collective nature of cavity-assisted tunneling in our system, which is inherently
connected to the collective enhancement of superradiant Raman scattering. Impor-
tantly, the inferred values of |tSR,max| consistently exceed the phenomenological spin
dephasing rates Γφ = 2π × 0.15 kHz, enabling tunneling in the momentum lattice
even in the presence of technical imperfections.

Tunneling in our system is dynamical in nature, as it evolves self-consistently with
the emerging cavity field and is collectively enhanced by the number of participating
atoms. When considering only two modes and adiabatically eliminating the cavity
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5 Dynamical tunneling in a momentum-space lattice

Figure 5.7: Probing the nature of dynamical tunneling. (a) Tunneling efficiency
N1/N as a function of atom number N , showcasing a threshold of Nth ≈ 3 × 104 and
a maximal efficiency around N1/N ≈ 0.8. Our results are captured by mean-field
simulations with an effective spin dephasing rate of Γφ = 2π× 0.25 kHz (gray), whereas
dephasing-free simulation with Γφ = 0 (blue line) predicts always optimal tunneling
efficiencies with N1/N ≈ 1. (b) One-to-one relation between the number of atoms N1

in |±1,±1〉1 and the photon pulse area 〈Nph〉, arising from total angular momentum
conservation. A linear fit yields a slope of 1.09(2) (solid), compatible to the theoretical
expectation of 1 (dashed line). (c) Inferred peak tunneling amplitude |tSR,max| as a
function of N , highlighting the collective nature of tunneling in our system.

field ( ddt â = 0), we obtain

|tSR(t)| =
η|〈â(t)〉|√

8
≈ η2

4
√

∆̃2
c + κ2

∣∣∣〈ψ̂†1ψ̂0(t)
〉∣∣∣, (5.20)

with the bosonic operator ψ̂0 (ψ̂†1) annihilating (creating) particles in the initial
(final) lattice site |0, 0〉0 (|±1,±1〉1), see Eq. (5.16). The tunneling rate in the mo-
mentum lattice evolves together with the coherences between neighboring lattice
sites 〈ψ̂†1ψ̂0(t)〉, which in turn dynamically change during a superradiant Raman
scattering. Hence, dynamical tunneling in our system is qualitatively different from
conventional density-dependent hopping in Hubbard systems [242], where the effec-

tive tunneling rates depend on local occupations such as 〈ψ̂†0ψ̂0(t)〉.

5.4 Observing hopping cascades in a momentum lattice

The observations discussed in the previous sections showcase independent tunnel-
ing events occurring sequentially in time. In this section, we discuss an extension
of our experimental scheme to a regime featuring current cascades in the momen-
tum lattice, where the tunneling events between different sites mutually stimulate
each other. To experimentally access this regime, we reduce the offset energy ω0

between the two spin manifolds |0〉 and |1〉 to values comparable to the recoil
frequency ωrec, as illustrated in the coupling scheme in Fig. 5.8(a). Thereby, we
shift multiple states in the momentum lattice close to degeneracy. We prepare
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5.4 Observing hopping cascades in a momentum lattice

Figure 5.8: Cavity-assisted hopping cascade. (a) Coupling scheme. The splitting
between the two spin manifolds ω0 is reduced below the recoil energy ωrec, shifting
several lattice sites close to degeneracy. (b) Representative cavity photon pulse (green).
The couplings ηr,b (red, blue curves) are increased with a small technical imbalance
(ηr − ηb)/(ηr + ηb) = 0.034(3). (c) Photon excess measurement. Photon pulse area
〈Nph〉 (circles) and final number of atoms N1 in |±1,±1〉1 (diamonds) as functions of
the peak emission frequency ωp. Close to the two-photon resonance ωp = ω̄, we observe
a large excess of photons 〈Nph〉 � N1, which is due to a single cavity pulse stimulating
multiple tunneling events in the momentum lattice. (d) Representative time-of-flight
images, with the white and orange crosses denoting the position of the sites |0, 0〉0 and
|0, 0〉1, which are separated by a Stern-Gerlach gradient along z. The purple (orange)
color map indicates regions solely occupied by atoms in |0〉 (|1〉). The square labels
in (c) indicate the data points corresponding to panels (b), (d1) and (d2). Here, we
operate at ∆c = −2π × 3.4(2) MHz and N = 9.1(1)× 104 atoms.

N = 9.1(1)× 104 atoms in the central lattice site |0, 0〉0, and increase the Raman
couplings to ηr,b ≈ 2π × 0.34 kHz within tramp = 2.1 ms.

In Fig. 5.8(b), we plot a representative cavity pulse nph(t). The photon pulse
reaches large peak values max(nph) ≈ 180 and displays an asymmetric shape, clearly
deviating from the hyperbolic secant expected for conventional two-level superradi-
ant scattering, cf. Eq. (2.26). We numerically integrate the photon traces to obtain
the total number of emitted cavity photons 〈Nph〉 and extract the peak frequency of
emission ωp from the corresponding spectrograms ñph(t, ω) for different realizations.
In Fig. 5.8(c), we observe a clear excess of detected photons 〈Nph〉 in comparison
to the number of atoms N1 occupying the mode |±1,±1〉1, in direct contrast to the
results discussed in Fig. 5.7(b). This effect is amplified as the emission frequency ωp

approaches the two-photon resonance ωp − ω̄ → 0. Concurrently, we observe finite
populations in lattice sites with up to 10~ωrec kinetic energy (e.g., |1, 3〉1) in the
corresponding time-of-flight images [see Fig. 5.8(d1)]. For comparison, away from
the two-photon resonance the time-of-flight images solely indicate occupation of the
sites |0, 0〉0 and |±1,±1〉1 [Fig. 5.8(d2)]. The small distance between the cavity
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5 Dynamical tunneling in a momentum-space lattice

Figure 5.9: Gross-Pitaevskii equation simulations of hopping cascade. (a) Nu-
merical results showing the cavity photon number nph(t) and the coherences between
neighboring lattice sites |ξj |2 for the experimental parameters of Fig. 5.8. These simu-
lations help us to discern a cascade of tunneling events, where the next hopping event
is stimulated by the previous one is concluded, and coherences between multiple sites
are simultaneously established. (b) Schematic representation of the relevant two-site
coherences ξj in the momentum lattice, as defined in Eq. (A.11). For details on these
calculations, see Ref. [245]

mirrors L ≈ 175 µm limits the field of view along x-direction to lattice sites with
kx . krec.

To better interpret the observe dynamics, we perform ab initio simulations of
the underlying Gross-Pitaevskii equations, as discussed in the appendix A.3. The
corresponding simulation results are presented in Fig. 5.9(a). We also observe a
strong asymmetric cavity pulse (green curve) accompanied by the buildup of coher-
ences between multiple neighboring lattice sites ζj . These coherences are defined in
Eq. (A.11) of the appendix A.3, and schematically illustrated in Fig. 5.9(b). Within
the duration of the cavity pulse, finite coherences between multiple lattice sites are
simultaneously established, in contrast to the subsequent tunneling events at larger
offsets ω0. We attribute this to the tunneling rate max(tSR) ≈ 2π× 1.5 kHz starting
to become comparable with the splitting between adjacent sites in the momentum
lattice.

Together with the supporting Gross-Pitaevskii simulations, cf. appendix A.3, our
experimental observations in this regime demonstrate a cascade of tunneling events
in an extended momentum-space lattice, where the subsequent hopping event starts
before the previous one is fully concluded.

5.5 Discussion and outlook

We experimentally demonstrated a new scheme for engineering dynamical tunnel-
ing in a momentum-space lattice, which is based on recoil-resolved superradiant
Raman scattering of a spinor BEC coupled to an optical cavity. Due to inherent
cavity losses, the resulting lattice dynamics are non-Hermitian and directional. By
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exploiting energy conservation in the total light-matter system, we locally resolved
the tunneling events in real time through frequency-selective measurements of the
leaking cavity field. Specifically, the tunneling rates evolve in conjunction with the
coherences between the participating lattice sites. Furthermore, we experimentally
demonstrated the superradiant nature of the associated cavity field. We extended
our observations to a regime featuring mutually stimulating tunneling cascades.

As an extension, combining real-time probing and continuous feedback [246] on
the relative phase of the two Raman drives could facilitate the realization of non-
trivial tunneling phases in different plaquettes of the momentum grid [247]. This,
in turn, could pave the way for the observation of synthetic magnetic fields and
topologically protected states in a non-Hermitian system [35, 248, 249]. Addition-
ally, an extension to running-wave Raman drives can result in emergent spin-orbit
coupling in a driven-dissipative setting [208, 250, 251]. Finally, exploring the in-
terplay between cavity-assisted tunneling and Bose-Hubbard physics [65] holds the
potential to realize unconventional strongly-correlated phases and dynamics [252],
such as topological insulators [253] or density-dependent gauge fields [254].
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6 Spin- and momentum-correlated atom
pairs mediated by photon exchange

Understanding and controlling the mechanisms behind the generation of corre-
lated particle pairs is essential for advancing fundamental physics and quantum-
enhanced technologies. Vacuum fluctuations are at the origin of elementary particle-
antiparticle pairs and Hawking radiation in cosmology [255, 256], while quasiparticle
pairing in condensed-matter systems drives strongly-correlated phenomena such as
superconductivity [7] and superfluidity [257]. In the context of quantum technolo-
gies, entangled pairs of photons produced via parametric down-conversion in non-
linear crystals have enabled quantum-enhanced sensing and metrology [24, 258]. A
prominent example is the recent upgrade of the Laser Interferometer Gravitational-
Wave Observatory (LIGO), where the injection of squeezed states of light [259]
has helped to double the detection sensitivity across the bandwidths relevant for
gravitational-wave events [260].

In recent years, approaches resembling nonlinear optical systems have been ex-
plored with ultracold atomic gases to correlate massive particles either in their ex-
ternal or internal degrees of freedom. Atom pairs in multiple momentum modes
have been generated in colliding Bose-Einstein condensates (BECs) [261–270] and
Floquet-engineered systems via parametric amplification [225, 271]. Notably, cor-
related atom pairs in well-defined internal and external modes can be generated
by spin-changing collisions in a spin-1 BEC [34], with three available internal levels
m = {−1, 0, 1}. As illustrated in Fig. 6.1(a), a pair of atoms in the centralm = 0 spin
level can interact via local collisions, and populate the levels m = −1 and m = +1,
conserving both the total center of mass and angular momentum. Since their first
experimental observation [272], collisional spin-mixing dynamics has been success-
fully employed to demonstrate spin squeezing [273–275], probe entanglement be-
tween spatially separated condensates [276–278] and implement quantum-enhanced
atomic interferometry [279, 280]. Yet, spin-changing collisions are associated with
small effective scattering lengths on the order of few Bohr radii, restricting the
dynamics to characteristic timescales around ∼ 100 ms − 1 s [34]. In particular,
atom interferometry for applications in precision magnetometry and gravitometry
could benefit from a faster and more controlled production of correlated pairs in
well-defined spin and momentum modes [281, 282].

Experiments with cold atoms coupled to optical cavities are versatile platforms to
induce strong and tunable light-matter interactions [57, 76], which can be exploited
to synthesize correlated atom pairs. This has been demonstrated in pioneering exper-
iments with circular Rydberg atoms exchanging photons in a microwave cavity [283].
More recently, these techniques have been extended to generate pairs and control
correlations within the effective spin modes of thermal atomic ensembles [80, 81, 84].
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

Figure 6.1: Collisional and photon-mediated spin-mixing dynamics. (a) Spin-
changing collisions. Pairs of spin-1 atoms in the intermediate spin level m = 0 (green)
interact via local s-wave collisions and form correlated pairs of in m = +1 (blue) and
m = −1 (red circles), with momenta k+1 and k−1. This process conserves both total
angular and center of mass momentum (k0,A + k0,B = k+1 + k−1), with k0,A and
k0,B being the initial momenta. (b) Cavity-assisted spin-mixing dynamics. A zero-
momentum atom in m = 0 can scatter a photon from a running-wave drive into the
empty cavity mode, and flip its spin to m = 1 while obtaining effective recoil momentum
along the drive direction (k). This virtual cavity photon is rescattered by a second
m = 0 atom into the drive, which in turn changes its spin to m = −1 and obtains
net recoil momentum −k. This mechanism gives rise to nonlocal spin- and momentum-
correlated atom pairs, also conserving both total angular and center of mass momentum
(ktot = 0 = k− k).

In this chapter, we present the first experimental realization of correlated atom
pairs in well-defined spin and momentum modes created via coherent light-matter
interactions in an optical cavity. The pairs are experimentally generated within tens
of microseconds using a spinor Bose-Einstein condensate and exploiting the coher-
ent exchange of cavity photons. The fast timescales allow us to extricate the pair
dynamics from typical dissipative mechanisms in atomic systems, such as heating,
three-body losses, and trapping effects [95, 192].

We illustrate the central ideas behind the experiments in Fig. 6.1(b): We con-
sider a spin-1 BEC prepared in a well-defined zero-momentum mode in the m = 0
Zeeman sublevel, which is illuminated by a running-wave drive transverse to the
cavity. Far detuned from the cavity resonance, an atom in m = 0 scatters a photon
from the drive into the cavity and flips its spin to m = +1 while obtaining net
photon recoil momentum (k) along the drive direction. Due to the large associated
energy cost, this photon only virtually occupies the cavity and is re-scattered by
a second m = 0 atom into the drive, which in turn flips its spin to m = −1 and
obtains net recoil opposite to the drive direction (−k). In our experiment, we di-
rectly observe such spin-and momentum-correlated pairs in m = ±1, and ±k or ∓k.
Leveraging on the optical control over coherent and dissipative processes, we present
the first observation of coherent pair oscillations involving well-defined momentum
modes. We observe a collective enhancement in pair production, which is directly
related to superradiant Raman scattering in our system. This phenomenon bears
similarities to parametric amplification in nonlinear optics. Our observations are
in quantitative agreement with Truncated Wigner simulations taking the vacuum
fluctuations of the system into account. We examine the quantum statistics of the
pairs and demonstrate their correlated nature by probing inter-spin correlations in
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momentum space. Our results provide prospects for rapid entanglement generation
in quantum degenerate gases and for applications in atomic interferometry.

Outline of this chapter

In section 6.1, we introduce the theoretical framework to model pair production
in our system. We derive the many-body Hamiltonian, discuss the second-order
phase transition giving rise to pair production and present our truncated Wigner
simulations to model the open-system dynamics. In section 6.2, we present the
experimental protocols and the first observations of coherent pair oscillations in-
volving well-defined momentum modes. In section 6.3, we investigate the collective
enhancement of pair production and draw parallels to parametric amplification in
nonlinear optics. In section 6.4, we demonstrate independent experimental control
over the unitary pair dynamics and the leading dissipative channel associated with
superradiant scattering. Furthermore, we investigate the quantum statistics of the
emergent pairs and probe their momentum-space correlations in sections 6.5 and 6.6,
respectively. Finally, in section 6.7, we summarize our findings and discuss possible
routes for the observation of quantum correlations in our system.

Parts of this chapter have been published in Ref. [91]

F. Finger*, R. Rosa-Medina*, N. Reiter, P. Christodoulou, T. Donner,
and T. Esslinger. Spin- and momentum-correlated atom pairs mediated
by photon exchange. arXiv 2303.11326 (2023)
* These authors contributed equally to this work

6.1 Theoretical description

Here, we present the theoretical framework to describe the generation of spin-
and momentum-correlated atom pairs in our system. In section 6.1.1, we discuss
the experimental coupling scheme and the microscopic mechanism underlying pair
production in our system. In section 6.1.2, we derive the associated many-body
Hamiltonian after adiabatically eliminating the cavity field. Additionally, in sec-
tion 6.1.3, we discuss the two competing second-order transitions leading to pair
production via two discernible channels in our system. Finally, in section 6.1.4, we
present our truncated Wigner simulations, which incorporate quantum fluctuations
and model the open system dynamics beyond mean-field effects.

6.1.1 Coupling scheme

In the experiments discussed in this chapter, we initialize a 87Rb BEC in the m = 0
Zeeman sublevel of the F = 1 hyperfine manifold, with a tunable offset magnetic field
B along the z direction defining the quantization axis. The atoms are illuminated by
a y-polarized running-wave drive propagating in the z direction and are dispersively
coupled the z-polarized fundamental cavity mode, see illustration in Fig. 6.2(a). For
our choice of quantization axis, the relevant cavity mode is π polarized while the
drive field can be decomposed in a balanced superposition of σ+ and σ− photons.
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

Figure 6.2: Experimental setup and coupling scheme. (a) Setup. A BEC is
illuminated by a y-polarized running-wave drive with wavenumber k (propagating in z
direction); the atoms are coupled to the z-polarized cavity mode, with the magnetic
field B defining the quantization axis. An atom in the Zeeman sublevel m = 0 (green)
flips its spin to m = 1 (blue) while scattering a σ+ photon into the π-polarized cavity
mode (â†). This photon is rescattered by a second m = 0 atom into the drive (â),
changing its state to m = −1 (red circle). (b) Momentum-space picture. Pair are
generated via two discernible channels χ±, depending on the first atom absorbing a σ±
drive photon and changing its spin to m = ±1. The corresponding spin-momentum
modes |k̃〉m are defined in the main text. (c) Energy diagram. The pair-production
mechanism comprises two coupled Raman scattering processes, each involving a drive
(straight arrows) and a cavity (curly arrows) photon. The intermediate modes are split
by twice the linear Zeeman shift ωz and give rise to two discernible channels. The
corresponding coupling rates χ± depend on the Raman detunings δ± and the cavity
loss rate κ. The offset ω0 is set by the kinetic and internal energy of the pairs.

We operate the drive at the tune-out wavelength of the F = 1 manifold, λd =
λTO ≈ 790.019 nm, in order to suppress spurious scalar light-matter interactions,
see section 2.1.2 for details.

This coupling scheme can convert a pair of zero-momentum atoms in m = 0 into a
correlated pair in m = ±1 with opposite recoil momenta ±~k along z direction, with
k = 2π/λd being the drive’s wavenumber. The underlying mechanism is a photon
exchange involving the drive and the vacuum mode of the cavity [80], as illustrated
in Fig. 6.2(a): During this process, one atom in the mode |kz = 0〉m=0 ≡ |0〉0 scatters
either a σ+- or σ−-polarized photon from the drive into the π-polarized cavity mode
and flips its spin to either m = +1 or m = −1. The atom obtains a recoil momentum
~k along +z occupying the modes |+k〉+1 or |+k〉−1, respectively. The emitted
virtual cavity photon (π-polarized) is rescattered into the running-wave drive by
a second atom in |0〉0, which obtains recoil momentum along −z and populates
the complementary spin state m = −1 or m = +1, i.e., the modes |−k〉−1 or
|−k〉+1. Due to the cavity mode structure [∝ cos(kx)], the pairs additionally occupy
a symmetric superposition with ±~k recoil momentum along the cavity direction
(x), cf. Fig. 6.2(a). In Fig. 6.2(b), we schematically depict the different atomic
modes in momentum space.

Our coupling scheme gives rise to correlated atom pairs in well-defined external
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and internal modes through two distinct channels with coupling rates χ+ and χ−, de-
pending on whether the first atom occupies the mode |+k〉+1 or |+k〉−1. Regardless
of the coupling channel, the pair creation processes conserve both the total cen-
ter of mass and angular momentum of the atoms, similar to collisional spin-mixing
dynamics [34].

6.1.2 Derivation of the effective Hamiltonian

We derive the Hamiltonian of the system following the general framework for dis-
persive atom-light interactions discussed in section 2.1. The negative part of the
total electric field is given by

Ê(−) =
Ed
2
eikze−iωdtey + E0â cos(kx)ez. (6.1)

The operator â annihilates a z-polarized cavity photons in the fundamental mode of
the cavity, with E0 = 402 V/m being the corresponding vacuum electric field. We
consider a classical y-polarized running-wave drive with mode structure f(z) = eikz,
frequency ωd and tunable electric field amplitude Ed, as illustrated in Fig. 6.2(a).
Due to their small detuning, we assume a common wavenumber k = 2π/λd for the
drive and the cavity fields.

Analogously to Eq. (2.15), we derive the single-particle Hamiltonian

ĤSP = Ĥat + Ĥcav + Ĥv, (6.2)

in a rotating frame induced by the generator Ĥrot = ~ωdâ
†â − ~ωzF̂z, with F̂z

being the z component of the spin-1 operator describing the F = 1 manifold, i.e.,
F̂ = (F̂x, F̂y, F̂z)

T . In this rotating frame, the stationary cavity field oscillates at
ωd, while the atomic spin rotates with linear Zeeman splitting ωz. The energy of a
single atom

Ĥat =
p̂2

2M
+ ~qF̂ 2

z , (6.3)

is determined by its kinetic energy and the quadratic Zeeman splitting q = 2πB2 ×
72 Hz/G2. The bare energy of the cavity photons

Ĥcav = −~δcâ†â, (6.4)

is given by their detuning δc = ωd − ωc with respect to the cavity resonance ωc.

In Eq. (6.2), we consider exclusively atom-light interactions Ĥv mediated by the
vectorial polarizability αv, as the trasnverse drive is operated at the tune-out wave-
length λTO, where the scalar polarizability vanishes αs = 0 [110]. This yields

Ĥv = −i αv
2F

(
Ê(+) × Ê(−)

)
· F̂

=
αvE0Ed cos(kx)

8

[(
â†eikz−âe-ikz

)(
F̂+e

iωzt+F̂−e
-iωzt

)]
.

(6.5)
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Mode expansion and many-body Hamiltonian

We derive the many-body Hamiltonian using a six-mode expansion in momentum
and spin space. The considered modes |kz〉m are |0〉0 with a spatially homoge-
neous single-particle wavefunction ψ ∝ 1 in the Zeeman sublevel m = 0, the four
modes |±k〉m=±1 occupied by pairs with ψ ∝ cos (kx)e±ikz, cf. Fig. 6.2(b), and
an additional higher-order momentum mode |±2kx〉0 in m = 0 with ψ ∝ cos2(kx).
The latter can participate in the dynamics due to the interaction between pairs in
m = ±1, as observed in section 6.2. The corresponding spinor field operator is given
by

Ψ̂(x) =
(

Ψ̂+1(x), Ψ̂0(x), Ψ̂−1(x)
)T

=


k√
2π

cos (kx)(eikz ĉ+k,+1 + e−ikz ĉ−k,+1)

k
2π ĉ0,0 +

√
2k√
3π

cos2(kx)ĉ±2kx,0

k√
2π

cos (kx)(e−ikz ĉ−k,−1 + eikz ĉ+k,−1)

 , (6.6)

with the bosonic operators ĉkz ,m annihilating atoms in the modes |kz〉m. The
corresponding single-particle wave functions are normalized in a unit cell of size
R = [−π/k, π/k)2. Within this mode expansion, we can derive the many-body
Hamiltonian in second quantization

Ĥmb = Ĥcav +

∫
R

Ψ̂†(x)
[
Ĥat + Ĥv

]
Ψ̂(x)dx

= −~δcâ†â+
~ω0

2

∑
m̃=±1

(
ĉ†+k,m̃ĉ+k,m̃ + ĉ†−k,−m̃ĉ−k,−m̃

)
+ 4~ωrecĉ

†
±2kx,0

ĉ±2kx,0

+ ~η
[
â†eiωzt

(
ĉ†+k,+1ĉ0 + ĉ†0ĉ−k,−1

)
+ â†e−iωzt

(
ĉ†0ĉ−k,+1 + ĉ†+k,−1ĉ0

)
+ h.c.

]
,

(6.7)

where we use the shorthand notation ĉ0 =
(
ĉ0,0 +

√
2/3ĉ±2kx,0

)
and apply a global

phase rotation â→ âeiπ/2. The Raman coupling rate is given by η = βαvE0Ed/8~,
with β ≈ 0.91 arising from the overlap integrals between the harmonically confined
atomic cloud and the different electric fields, see section 4.1.2. The bare energy of
atoms in the modes |±k〉±1 is determined by the second order Zeeman splitting and
the kinetic energy, ~ω0/2 = ~q+2~ωrec, with ωrec = ~k2/(2M) = 2π×3.73 kHz being
photon recoil frequency. Additionally, the energy offset 4~ωrec of the mode |±2kx〉0
is directly associated to its λd/2-periodic modulation along the cavity direction.

The Hamiltonian derived in Eq. (6.7) constitutes a two-channel Tavis-Cummings
model, cf. Eq. (2.19) in section 6.1.3: as illustrated in the level scheme in Fig. 6.2(c),
we identify two different channels giving rise to cavity-assisted Raman transitions
between the modes |0〉0 → |+k〉+1 and |0〉0 → |+k〉−1. These processes are associ-

ated with the emission of an energy-conserving cavity photons â†eiωzt (orange) and
â†e−iωzt (yellow wiggly arrows) with approximate frequencies ωd + ωz and ωd − ωz,
respectively. As discussed in section 2.2 of chapter 2, such cavity-assisted two-photon
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transitions can give rise to superradiant Raman scattering if the corresponding two-
photon Raman detunings δ+ = −δc − ωz and δ− = −δc − ωz are small compared to
the cavity linewidth κ.

In the experiments discussed in this chapter, we operate the drive in the opposite
limit of large two-photon detunings, |δ±| � κ, where a steady-state occupation of
the cavity mode is strongly suppressed. This motivates us to adiabatically eliminate
the cavity field following the formalism for open quantum systems introduced in
Ref. [122]. We obtain the effective Hamiltonian for the atomic degrees of freedom

Ĥ = Ĥ0 + Ĥ+ + Ĥ−, with

Ĥ0 =
∑
m̃=±1

~ω0

2

(
ĉ†+k,m̃ĉ+k,m̃ + ĉ†−k,−m̃ĉ−k,−m̃

)
+ 4~ωrecĉ

†
±2kx,0

ĉ±2kx,0

Ĥ+ = ~χ+

(
2ĉ†−k,−1ĉ

†
+k,+1ĉ0ĉ0 + ĉ†0ĉ+k,+1ĉ

†
+k,+1ĉ0 + ĉ†−k,−1ĉ0ĉ

†
0ĉ−k,−1 + h.c.

)
,

Ĥ− = ~χ−
(

2ĉ†−k,+1ĉ
†
+k,−1ĉ0ĉ0 + ĉ†−k,+1ĉ0ĉ

†
0ĉ−k,+1 + ĉ†0ĉ+k,−1ĉ

†
+k,−1ĉ0 + h.c.

)
.

(6.8)

The various energy scales of the system are schematically depicted in Fig. 6.2(c).
The first term, Ĥ0, describes the energy cost ~ω0 = 2~q+4~ωrec for creating a single
atom pair occupying the modes |+k〉±1 and |−k〉∓1; for more details see Eq. (6.7).

The effective interaction terms, Ĥ±, describe the two discernible pair-production
channels with the corresponding intermediate states being separated by twice the
linear Zeeman splitting ωz, cf. Fig. 6.2(c). These two channels describe the formation
of spin- and momentum-correlated atom pairs in the modes |+k〉±1 and |−k〉∓1

(ĉ†−k,∓1ĉ
†
+k,±1) out of two atoms in |0〉0 (ĉ0ĉ0), respectively. The corresponding

coherent coupling rates are

χ± = η2 δ±
δ2
± + κ2

. (6.9)

Remarkably, both the strength and the sign of χ± can be independently controlled
by adjusting the two-photon coupling η and the corresponding Raman detunings
δ± = −δc ∓ ωz = ωc − (ωd ± ωz). In the Hamiltonian in Eq. (6.8), we directly
see that negative coupling rates χ± < 0 can energetically favor the formation of
atom pairs in the corresponding modes, when becoming comparable with the pair
energy cost (~ω0). The remaining terms in Ĥ± describe effective spin-exchange
interactions between atoms in the adjacent Zeeman sublevels, i.e., m = 0↔ m = 1
and m = 0 ↔ m = −1. They are also mediated by the exchange of virtual cavity
photons and conserve atomic population in the different modes when disregarding
occupation of |±2kx〉0.

6.1.3 Parametric amplification of pair production

In this section, we discuss the second-order phase transitions underlying the forma-
tion of pairs in our system. Negative coherent couplings χ± < 0 soften the bare
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

pair energy and induce two concurring phase transitions to phases featuring macro-
scopic numbers of pairs in the corresponding channels. Following Refs. [80, 279],
we linearize the many-body Hamiltonian in Eq. (6.8) assuming that the mode |0〉0
remains undepleted1 throughout the dynamics, i.e., occupied by N atoms. We set
ĉ0 =

√
N and obtain

Ĥeff =Ĥ+
eff + Ĥ−eff,

Ĥ±eff =~
(ω0

2
+ 2Nχ±

)(
ĉ†+k,±1ĉ+k,±1 + ĉ†−k,∓1ĉ−k,∓1

)
+~χ±2N

(
ĉ†+k,±1ĉ

†
−k,∓1 + ĉk,±1ĉ−k,∓1

)
(6.10)

=~(ω0 + 4Nχ±)(K̂z,± − 1/2) + 4~Nχ±K̂x,±.

Here, we introduce two sets of Hermitian operators

K̂x,± =
1

2

(
ĉ†+k,±1ĉ

†
−k,∓1 + ĉ+k,±1ĉ−k,∓1

)
,

K̂y,± =
1

2i

(
ĉ†+k,±1ĉ

†
−k,∓1 − ĉ+k,±1ĉ−k,∓1

)
, (6.11)

K̂z,± =
1

2

(
1 + ĉ†+k,±1ĉ+k,±1 + ĉ†−k,∓1ĉ−k,∓1

)
,

which define two independent SU(1,1) algebras {K̂x,±, K̂y,±, K̂z,±} [284]. The oper-
ators K̂z,± count excitations (pairs) on top of the undepleted |0〉0 mode, whereas the

raising K̂+
± = (K̂x,± + iK̂y,±) and lowering operators K̂−± = (K̂x,± − iK̂y,±) create

and annihilate them, respectively. Within the undepleted pump-mode approxima-
tion in Eq. (6.11), the two pair channels χ+ and χ− become fully decoupled from
each other, as they are described by the Hamiltonians Ĥ+

eff and Ĥ−eff, respectively.
Analogously to the generalized Dicke model in section 4.1.4, the excitations can

be examined via linear stability analysis of the corresponding Heisenberg equations
of motion

d

dt

K̂x,±
K̂y,±
K̂z,±

 =
i

~

[Ĥ±eff, K̂x,±]

[Ĥ±eff, K̂y,±]

[Ĥ±eff, K̂z,±]


= M±

K̂x,±
K̂y,±
K̂z,±

 =

 0 −A± 0
A± 0 B±
0 B± 0

K̂x,±
K̂y,±
K̂z,±

 , (6.12)

with A± = ω0 + 4Nχ± and B± = 4Nχ±.
We diagonalize the dynamical matrix M± for each channel and obtain three non-

degenerate complex eigenvalues

λ1,± = 0,

λ2,± =
√
−ω0(ω0 + 8Nχ±) := +λ±,

λ3,± = −
√
−ω0(ω0 + 8Nχ±) := −λ±,

(6.13)

1This undepleted pump-mode approximation is widely used to model optical parametric amplifiers
and is valid as long as the pump laser depletion is small in comparison to the occupation of the
photon pairs [24].
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Figure 6.3: Second-order phase transitions and pair production within the
undepleted pump-mode approximation. (a) Imaginary Im(±λ±) and real part
Re(±λ±) of the system’s eigenfrequencies ±λ± as a function of the coupling strength
for each of the two channels χ±. At small couplings, the imaginary part Im(±λ±) ≈ ±ω0

characterizes the bare energy of the pairs, which progressively softens and vanishes at
the critical coupling χc±. Above this value, the eigenfrequencies obtain a positive real
part Re(+λ±) > 0, indicating a dynamical instability and a second-order transition to
a phase featuring pairs in the corresponding channel. (b) Expected evolution of the
mean pair number 〈Np,±〉 following an instantaneous coupling quench (χ± = 2χc±). The
semi-log scale shows the exponential buildup of pairs within the undepleted pump-mode
approximation, cf. Eq. (6.16).

which we plot in Fig. 6.3(a). In the limit of weak couplings χ± ≈ 0, the eigenvalues
±λ± ≈ ±iω0 are purely imaginary, and reflect the bare energy associated with
creating and annihilating a single pair excitation in the system. For increasingly
large negative couplings χ± < 0, the imaginary part of the eigenvalues Im(±λ±)
progressively softens (black curves), reaching zero at

Nχc± = −ω0

8
, (6.14)

which we identify as the critical coupling of the system. Above this value, the
eigenvalue +λ± obtains a positive real part Re(+λ±) > 0 (red curves), which gives
rise to a dynamical instability amplifying the formation of pairs in the corresponding
modes. This behavior indicates the existence two second-order phase transitions at
χc± in the thermodynamic limit (N →∞). The collective enhancement of atom-light
interactions is manifested in the scaling of the critical coupling χc± ∝ 1/N with the
number of atoms N ; this is similar to the scaling of the critical coupling associated
with Dicke phase transition, cf. Eq. (4.16) in chapter 4.

We emphasize that the spin-exchange processes between the adjacent Zeeman sub-
levelsm = 0↔ 1 andm = 0↔ −1 are essential for inducing the corresponding phase
transitions, see Eq. (6.8). If absent, the dynamical matrix M± would have the entry
A± = ω0 and mode softening would be suppressed in the eigenvalues in Eq. (6.13).
Note that this mechanism bears close similarities to the softening of low-momentum
modes in extended m = 0 Bose-Einstein condensates arising from collisional spin-
exchange interactions; they can be examined using Bogoliubov theory [285] and lead
to spatially modulated magnons occupying the m = ±1 sublevels [286].

To gain further insights into the system’s dynamics, we calculate the matrix of
eigenvectors Λ± of M± and compute the time evolution of the relevant SU(1,1)
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operators

K̂x,±(t)

K̂y,±(t)

K̂z,±(t)

 = Λ±

eλ0,±t 0 0
0 e−λ±t 0
0 0 eλ±t

Λ−1
±

K̂x,±(0)

K̂y,±(0)

K̂z,±(0)

 . (6.15)

As all the atoms are prepared in the m = 0 Zeeman sublevel, we assume that the
pair modes are initially empty and set 〈K̂z,±(0)〉 = 1/2, 〈K̂x,±(0)〉 = 〈K̂y,±(0)〉 = 0.
Additionally, the initial pair occupation is set to 〈K̂z,±(0)〉 = 1/2 to reproduce the
‘quantum one-half’ noise associated with the vacuum fluctuations, see section 6.1.4.
We estimate the evolution of the average number of pairs in the χ± channel as

〈Np,±(t)〉 =
〈
K̂z,±(t)

〉
=

(χ±/χ
c
±)2

16(χ±/χc± − 1)

[
eRe(λ±)t + e−Re(λ±)t − 1

]
+

1

2
, (6.16)

Upon quenching the system above the critical coupling, χ±/χ
c
± > 1, we anticipate

an exponential increase in the number of pairs, proportional to eRe(λ±)t, provided
that the undepleted pump-mode approximation remains valid, i.e., 〈Np,±(t)〉 � N .
In Fig. 6.3(b), we show an exemplary time evolution of 〈Np,±(t)〉 in this regime for
χ±/χ

c
± = 2, highlighting their exponential growth within characteristic timescales

of 1/λ±. Given its similarity to parametric processes in nonlinear optical media [24],
we refer to pair production in this regime as parametric amplification.

Bose-Einstein statistics and two-mode squeezed vacuum states

Within the undepleted pump-mode approximation, the generation of atom pairs via
the two discernible channels χ+ and χ− is described by the sum of two independent
Hamiltonians Ĥeff = Ĥ+

eff + Ĥ−eff, cf. Eq. (6.11). Hence, in this limit, the many-body
state of the system is expected to be in a product state of the two channels. Its
exact form is given by

|ψ〉 = |TMSV〉+ ⊗ |TMSV〉− , with

|TMSV〉± =
1√

1 + 〈Np,±〉

∞∑
Ñ=0

(
〈Np,±〉

1 + 〈Np,±〉

) Ñ
2
∣∣∣Ñ , Ñ〉

±
. (6.17)

The states |TMSV〉± are so-called two-mode squeezed vacuum states (TMSV) [287],
associated with the χ± channel. They describe a weighted superposition of twin-
Fock states |Ñ , Ñ〉± with an equal number of particles Ñ in the relevant modes in
m = +1 and m = −1. The Fock states associated with the two channels are defined
as |N+1, N−1〉± = (ĉ†±k,1

)N+1(ĉ†∓k,−1)N+1 |vac, vac〉±, with |vac, vac〉± denoting the
vacuum state in the corresponding modes. A detailed derivation in the context of
spin-changing collisions using Bogoliubov theory for a single-channel configuration
can be found in appendix C of Ref. [288].

From Eq. (6.17), we can directly evaluate the probability distribution associated
with the occupation of pairs Np in the two channels

p±(Np, 〈Np,±〉) =
〈Np,±〉Np

(1 + 〈Np,±〉)Np+1
. (6.18)
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It resembles a Bose-Einstein distribution, which describes an ensemble of non-
interacting bosonic particles at thermal equilibrium. This thermal-like distribution
features a highly skewed occupation, peaking at the vacuum state with Np = 0 and
gradually decaying towards larger pair numbers. A defining feature of Bose-Einstein
distributions is their large occupation fluctuations, as indicated by the standard de-
viation being equal to the mean pair occupation, i.e., σ(Np,±) = 〈Np,±〉.

We can approximate the distribution in Eq. (6.18) as a thermal Boltzmann dis-
tribution, p± ≈ e−β±Np/Z±, with canonical partition sum Z± = Tr(e−β±Np) [288].
By assuming thermodynamic equilibrium [289] and identifying β± = ~ω0/(kBTeff,±),
we can calculate the effective pair temperature for the two channels

Teff,± =
~ω0 〈Np,±〉

kB
, (6.19)

with kB being the Boltzmann constant.

6.1.4 Open system dynamics and truncated Wigner simulations

Our theoretical discussions so far have focused on the many-body Hamiltonian,
which is responsible for the coherent production of atom pairs in our system. Yet,
due to the decay of the cavity field at rate κ, our experimental setup is inherently an
open quantum system. Starting from Eq. (2.21), we employ the effective operator
formalism presented in Ref. [122] and derive effective Lindblad terms describing the
atomic degrees of freedom of our system. For each of the two channels, we obtain

L± =
√
γ±

(
ĉ†+k,±1ĉ0 + ĉ†0ĉ−k,∓1

)
. (6.20)

In direct correspondence to our discussion of Eq. (2.28) in section 2.2.4, the operators
L± describe superradiant Raman decay processes, where atoms scatter photons into
the cavity mode while irreversibly changing their spin state m→ m±1 and obtaining
net recoil momentum +~k along the drive direction z. These real photons are leaked
from the cavity before they can be further rescattered by a second atom, hindering
the formation of pairs. Accordingly, they can be directly measured outside the
cavity, for instance through our heterodyne detection scheme, see section 3.2.1. The
corresponding single-particle dissipative rates are

γ± =
2κ

δ2
± + κ2

. (6.21)

The dynamics of the open quantum system is determined by the master equation

dρ̂at

dt
= − i

~

[
Ĥ, ρ̂at

]
+
∑

j∈{+,−}

Lj ρ̂atL†j −
1

2

(
L†jLj ρ̂at + ρ̂atL†jLj

)
, (6.22)

with ρ̂at defining the density matrix of the atoms within our six-mode expansion.

In correspondence to our theoretical treatment of superradiant Raman scattering
in section 2.2.1, we define expectation values for the different modes ψk̃,m = 〈ĉk̃,m〉.
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We derive a set of six complex-valued equations of motion (EOMs)

d

dt
ψ0,0 = [−iχ+(2ψ∗0ψ-k,-1ψk,1 + ψ∗k,1ψ0ψk,1 + ψ∗-k,-1ψ0ψ-k,-1)

− iχ−(2ψ∗0ψk,-1ψ-k,1 + ψ∗-k,1ψ0ψ-k,1 + ψk,-1ψ0ψ
∗
k,-1)

+ γ+(ψ∗k,1ψk,1ψ0 − ψ∗-k,-1ψ-k,-1ψ0) + γ−(ψ∗k,-1ψk,-1ψ0 − ψ∗-k,1ψ-k,1ψ0)],

d

dt
ψ±k,±1 = −iω0

2
ψ±k,±1 ± (γ+ ∓ iχ+)(ψ∗0ψ0ψ±k,±1 + ψ∗∓k,∓1ψ0ψ0),

d

dt
ψ∓k,±1 = −iω0

2
ψ∓k,±1 ± (γ− ∓ iχ−)(ψ∗0ψ0ψ∓k,±1 + ψ∗±k,∓1ψ0ψ0),

d

dt
ψ±2kx,0 = −4iωrecψ±2kx,0

+

√
2

3
[− iχ+(2ψ∗0ψ-k,-1ψk,1 + ψ∗k,1ψ0ψk,1 + ψ∗-k,-1ψ0ψ-k,-1)

−iχ−(2ψ∗0ψk,-1ψ-k,1 + ψ∗-k,1ψ0ψ-k,1 + ψk,-1ψ0ψ
∗
k,-1)

+γ+(ψ∗-k,-1ψ0ψ-k,-1 − ψk,1ψ0ψ
∗
k,1) + γ−(ψ∗-k,1ψ0ψ-k,1 − ψk,-1ψ0ψ

∗
k,-1)],

(6.23)

with ψ0 = ψ0,0 +
√

2/3ψ±2kx,0.

Truncated Wigner simulations

We employ truncated Wigner simulations to model the dynamics of our system in the
presence of technical and quantum fluctuations. We closely follow the methodology
originally proposed for interacting Bose gases in Ref. [290]. Within this approx-
imation, the system is truncated to relevant empty excitation modes ĉq that are
represented by stochastic complex variables ψq, with q = {k̃,m} following the nota-
tion of Eqs. (6.23). If the occupation of the different modes is initially uncorrelated,
they can be sampled from suitable Gaussian-shaped Wigner distributions with mean
〈ψq〉 = 0 and variance σ2(ψq) = 1/2. This yields initial occupations of

〈ĉ†q ĉq〉 = 〈ψ∗qψq〉 = 1/2 (6.24)

for the empty excitation modes, which are typically referred to as quantum one-
half fluctuations and interpreted as the degree of vacuum noise in the system [291].
This method has been successfully employed to capture the fluctuation dynamics
associated with spin-changing collisions in Bose-Einstein condensates satisfying the
single spatial-mode approximation [279, 292].

In practice, we initialize all the atoms in the mode ĉ0,0 associated with the zero-
momentum BEC in m = 0 by setting ψ0,0(t = 0) =

√
N . The remaining modes are

sampled S times from complex-valued normal distributions with mean µ = 0 and
variance σ2 = 1/2. The mean-field EOMs in Eqs. (6.23) are then evolved for these
different initial conditions, employing MATLAB’s built-in methods as discussed in
section 2.2.1. Additionally, we incorporate the technical fluctuations of the initial
atom number in our simulations. For this purpose, we sample the atom number for
each simulation from a Gaussian distribution with a mean N and standard deviation

108



6.2 Observing coherent pair dynamics

σ(N) = 0.045N to reflect the experimental conditions described in section 3.2.3. Fi-
nally, we can compute the expectation value 〈Ô(t)〉S , standard deviation σS [Ôj(t)]

and correlations 〈Ôj(t)Ôk(t)〉S of relevant observables Ôj(t) and Ôk(t) at any given
time t by averaging over S realizations. To ensure numerical convergence, we typi-
cally consider S = 500 stochastically sampled initial conditions.

6.2 Observing coherent pair dynamics

Here, we discuss the experimental observation of coherent pair dynamics in our
system. In section 6.2.1, we introduce the relevant protocol and present experi-
mental observations, highlighting the emergence of pairs involving either a single
or two discernible channels. In section 6.2.2, we explore the time evolution of the
pair dynamics, observing coherent pair oscillations involving well-defined spin and
momentum modes.

6.2.1 Experimental protocol and first observations

Our experiments start with a 87Rb Bose-Einstein condensate, consisting of up to
N ≈ 80000 atoms coupled to the fundamental mode of our high-finesse optical cavity.
The atoms are initialized in the m = 0 Zeeman sublevel of the F = 1 hyperfine
ground-state manifold, with a variable magnetic field B along the z direction defining
the quantization axis, cf. Fig. 6.2(a). We quench the laser power of the running-wave
transverse drive for variable evolution time t at a fixed cavity detuning δc. Unlike
the experiments discussed in the previous chapters, we do not actively stabilize
the drive power, which would be technically involved for the relevant timescales
t ≈ 100 µs. The passive stability of the drive power ∆Pd/Pd ≈ 0.01 is incorporated
in the calibration of the corresponding coupling strengths.

Single-channel and two-channel configurations

In a first set of experiments, we prepare N = 5.3(3)× 104 atoms in m = 0 and
quench the drive to χ+ = −2π × 0.54(2) Hz for t = 60 µs at fixed two-photon
detuning δ+ = −2π × 18.7(2) MHz. We consider two representative magnetic fields
B ≈ 10.1 G [Fig. 6.4(a)] and B ≈ 1.45 G [Fig. 6.4(b)], yielding linear Zeeman
splittings of ωz = −2π × 7.09(1) MHz and ωz = −2π × 1.01(1) MHz, respectively:

• For ωz = −2π × 7.09(1) MHz, we only observe the formation of atom pairs in
the modes |+k〉+1 and |−k〉−1, as shown by the exemplary momentum distri-
bution in Fig. 6.4(a1). The large Zeeman splitting results in a substantial two-
photon detuning for the complementary pair channel, δ− = −2π×32.9(2) MHz,
as depicted in the level scheme in Fig. 6.4(b1). This condition predominantly
favors the formation of pairs via the χ+-channel, as the coupling to the com-
plementary χ−-channel remains notably smaller, with χ− = 0.57χ+.

• For ωz = −2π × 1.01(1) MHz, we observe simultaneous occupation of pairs
in the modes |+k〉±1 and |−k〉∓1, as shown by the single-shot momentum
distribution in Fig. 6.4(a2). In this case, the two-photon detunings for both
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Figure 6.4: Observation of atom pairs in single-channel and two-channel
configurations. (a) Exemplary spin-resolved momentum distributions for the single-
channel (a1) and two-channel (a2) configuration. The orange and yellow boxes indicate
the modes |±k〉±1 and |±k〉∓1 associated with the χ+ and χ− channel, respectively.
(b) Energy level diagrams for both configurations. In the single-channel case (b1), the
Raman detunings for the two channels differ significantly, |δ+| � |δ−|, due to the large
first order Zeeman splitting ωz. This setting favors pair production solely via the χ+

channel. In the two-channel configuration (b2), the small values of ωz yield δ+ ≈ δ−
and concurrent pair generation via two discernible channels χ+ (yellow) and χ− (orange
arrows). For a detailed description of the coupling scheme, see Fig. 6.2(c).

channels become comparable, with δ+ = −2π× 18.7(2) MHz and δ− = −2π×
20.7(2) MHz. This results in similar coherent couplings χ− = 0.90χ+, see
Eq. (6.9), and in concurrent occupation of both channels. The level scheme in
Fig. 6.4(b2) illustrates this situation.

In the following, we make extensive use of these two settings, which we refer to as
the single-channel and two-channel configurations, respectively.

6.2.2 Probing coherent pair oscillations

We can gain a deeper understanding of the pair dynamics, and its interplay with
depletion and dissipation effects by investigating the full population evolution of
the different modes. For clarity, we concentrate on the single-channel configuration
involving the modes |+k〉+1 and |−k〉−1. We initialize N = 8.1(3)× 104 atoms in the
mode |0〉0, and quench coupling to χ+ = −2π× 0.59(3) Hz over a variable evolution
time t, while keeping δ+ = −2π×22.7(1) MHz and ωz = −2π×7.09(1) MHz constant.
We infer the number of pairs by counting the atoms in |−k〉−1, as this mode can be
only occupied after the exchange of virtual cavity photons. This is different for the
mode |+k〉+1, which can be also populated following superradiant Raman scattering.

In Fig. 6.5(a), we plot the short-time evolution of the average number of pairs
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Figure 6.5: Coherent pair oscillations. (a) Short-time evolution of the average
number of pair 〈Np〉 for a single-channel configuration. The dashed curve shows the ex-
pected exponential growth for an undepleted pump mode and captures our observations
for t . 60 µs. (b) Long-time evolution of mode occupations for |0〉0 (green), |+k〉+1

(blue) and |−k〉−1 (red data points) exhibiting coherent pair oscillations. The solid
curves show the results from truncated Wigner simulations, and quantitatively agree
with our observations. As shown in the inset, we also observe delayed oscillations of the
higher-order momentum mode |±2kx〉0 (dark green points). For longer times, photon
loss leads to an imbalance between the populations in |+k〉+1 and |−k〉−1. (c) Repre-
sentative momentum-space distribution with large imbalance at t = 138 µs [gray line in
(b)]. Throughout this chapter, the error bars represent the standard error of the mean.

〈Np〉. We observe the onset of pair production around t ≈ 40 µs followed by an
exponential population increase for t . 60 µs which is compatible with the expec-
tations for an undepleted pump mode from Eq. (6.16) [dashed curve in Fig. 6.5(a)].
As time elapses, we observe coherent oscillations redistributing the atoms between
the different available modes, cf. Fig. 6.5(b). These pair oscillations are a direct
consequence of the system being quenched across a second-order phase transition:
in a restricted phase space with N atoms, the system undergoes periodic oscillations
around a new ground-state configuration with finite pair numbers [34]. While simi-
lar to pair oscillations arising from spin-mixing interactions in spinor Bose-Einstein
condensates [272], our observations also demonstrate coherent pair dynamics in-
volving well-defined momentum modes.

To experimentally discern the oscillatory dynamics presented in Fig. 6.5(b), it
was crucial to improve the shot-to-shot atom number stability in the m = 0 Zeeman
sublevel to ∆N/N < 0.05. This is achieved by using the new preparation scheme
discussed in section 2.2.4. Prior to this improvement, we were only able to observe
the initial nonlinear growth of pairs within t . 80 µs, followed by a decay attributed
to superradiant Raman scattering.

For longer times, we observe a gradual accumulation of atoms in |+k〉+1 as shown
by the representative momentum-space distribution in Fig. 6.5(c). This results in an
increasingly large population imbalance between |+k〉+1 and |−k〉−1. Concurrently,
the oscillations are damped on a timescale Tcoh ≈ 150 µs, which we identify as
the coherence time in our system. We attribute both effects to the intrinsic open
nature of our system, as photons are sporadically lost at the cavity mirrors through
superradiant Raman scattering, inhibiting the reabsorption of cavity photons and

111



6 Spin- and momentum-correlated atom pairs mediated by photon exchange

thereby the formation of the second pair constituent |−k〉−1. We account for this
effect in our truncated Wigner simulations [see Eqs. (6.23)], which quantitatively
reproduce the observed population dynamics including the growing mode imbalance,
cf. solid lines in Fig. 6.5(b). The coupling χ+ is the only free parameter of our
simulations and is optimized to χ+ = 0.89η+,exp of the experimentally calibrated
value ηexp via least-square minimization; we attribute this minor discrepancy to the
imperfect alignment between the BEC and the cavity mode.

Importantly, this small deviation is compatible with the systematic uncertainty
of the atom-number calibration in our system (∼ 15%) and thereby the strength
of the collective atom-light interactions Nχ+. Hence, our experimental results are
in quantitative agreement with our truncated Wigner simulations taking vacuum
fluctuations into account. For comparison, the short-time pair dynamics in experi-
ments coupling thermal atomic gases to optical cavities are captured by theory only
after rescaling the collective coupling by a factor of ∼

√
6 [80]; this discrepancy is

attributed to spurious coupling inhomogeneities associated with thermal broadening.

The population oscillations of the mode |0〉0 exhibit a higher contrast than their
counterparts in |±k〉±1. This is due to the pair dynamics coherently occupying
higher-order momentum modes at late times, similar to our observations of superra-
diant tunneling in an extended momentum-space lattice in section 5.2 of chapter 5.
In the inset of Fig. 6.5(b), we show the mode occupation (M.O.) of the density-
modulated state |±2kx〉0 in m = 0 (dark green), which exhibits delayed oscillations
in comparison to the mode |−k〉−1 (orange data points). This behavior is reproduced
by our truncated Wigner simulations (solid lines). The underlying higher-order pair
process involves an atom in |−k〉−1 with symmetric momentum kx = ±k along x,
which scatters a photon from the drive into cavity, flipping its spin state back to
m = 0 and obtaining additional momentum along kx = ±2k the cavity direction
(mode |±2kx〉0); this virtual cavity photon is rescattered into the drive by a second
atom in |+k〉+1 which also occupies |±2kx〉0. The long-time pair dynamics is not
necessarily restricted to the above-mentioned modes, as even higher-order states can
be occupied provided that the total momentum of the system is conserved. Since
our field of view is limited to |kx| . 2.2k due to the small separation between cavity
mirrors (l = 176 µm), the systematic study of higher-order pair dynamics should be
the subject of future experiments.

6.3 Parametric amplification of pair production of atom
pairs in well-defined modes

Here, we discuss the collective enhancement of pair production in our system. In
section 6.3.1, we draw parallels to parametric amplification in nonlinear optical sys-
tems and provide experimental evidence demonstrating the collective enhancement
of pair production. In section 6.3.2, we discuss the various relevant time scales of
our system: the rapid generation of pairs (∼ 40 µs) ensures that the atoms remain
in well-defined momentum modes throughout the course of the dynamics.
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6.3.1 Collectively enhanced pair production via superradiant photon
exchange

Our system bears a close resemblance to χ(3)-parametric amplifiers. In these optical
systems, a strong coherent pump laser beam irradiates a nonlinear crystal. There two
‘pump photons’ are converted into correlated ‘signal’ and ‘idler photon’ pairs through
a four-wave mixing process, as schematically depicted in Fig. 6.6(a). Within the
undpleted pump-mode approximation [24], the Hamiltonian describing the creation
of signal and idler photon pairs reads

ĤPA =
∑
j

~gjNp(â†s,j â
†
i,j + âs,j âi,j), (6.25)

with the operators â†s,j and â†i,j creating signal and idler photons in well-defined
optical modes j, and gj being the corresponding single-particle coupling rates.
Within this approximation, the pump-mode creation operator is approximated as
â†p =

√
Np, with Np being the average number of pump-mode photons. For effi-

cient parametric amplification, the output modes should fulfill the phase-matching
condition and conserve total momentum 2kp = ks,j + ki,j both inside and outside
the nonlinear crystal [293]. A hallmark feature of parametric amplifiers is the am-
plification of vacuum fluctuations resulting in the exponential generation of signal
and idler pairs when increasing the power of the laser beam Ppump ∝ Np above a
loss-dependent threshold, as schematically depicted in Fig. 6.6(b). This behavior
arises from the collectively enhanced pair production rates gjNp when increasing
the number of involved pump photons Np, see Eq. (6.25).

Our system constitutes an atomic parametric amplifier, with the nonlinear in-
teractions induced by the collective exchange of cavity photons: the initial zero-
momentum BEC in m = 0 corresponds to the macroscopically occupied pump
mode, whereas the atoms in m = +1 and m = −1 compare to idler and signal
modes, respectively2. In particular, we expect parametric amplification of signal
and idler pairs when varying the initial atom number N , provided the undepleted
pump-mode approximation remains valid.

To assess this experimentally, we prepare a BEC of variable atom number N in
the mode |0〉0 and quench the coupling χ+ = −2π× 0.64(1) Hz for a fixed evolution
time of tfix = 65 µs. For clarity, we operate in the single-channel configuration with
large Zeeman splitting ωz = 2π × 7.09(1) MHz and set δ+ = −2π × 20.7(3) MHz. In
Fig. 6.6(c), we observe a super-linear increase of the mean pair number 〈Np〉 when
adjusting the initial atom number N . This behavior is due to collective enhancement
of the pair production, which results in coupling rates Nχ± akin to the third-order
susceptibility χ(3). From the analytic solution for an undepleted pump mode in

Eq. (6.16), we expect the number of pairs to scale as 〈Np〉 ∝ eα
√
N with N . This

holds for fixed evolution times tfix and |χ+| � |χc+| , with α ≈ tfix

√
ω0|χ+|. In the

inset of Fig. 6.6(c), we plot the same experimental data using a semi-log scale and
verify the aforementioned scaling with N , both for the experimental data and our

2We note that designating the m = −1 and m = +1 sublevels as signal and idler modes is somewhat
arbitrary. However, we have adopted this nomenclature motivated by the larger internal energy of
m = −1 atoms, mirroring the convention where signal photons have higher frequencies.
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Figure 6.6: Parametric amplification of atom pairs. (a) Schematics of an optical
parametric amplifier, which converts two pump photons with individual momenta kp

(green) into a correlated pair of signal (blue) and idler photons (red circles), with ks

and ki. This process occurs via the nonlinear interactions χ(3), and conserves total
momentum. (b) A hallmark of parametric amplification is the super-linear growth of
photon pairs Np, when increasing the pump power Pp above a loss-dependent threshold
P th

p . (c) Observed mean number of atom pairs 〈Np〉 as a function of the atom number
N at fixed evolution times tfix = 65 µs. We observe a super-linear growth, indicating
parametric amplification. This is captured by our truncated Wigner simulations (solid
line). The inset shows the data in a semi-log scale, highlighting the scaling 〈Np〉 ∝
exp
(√

N
)

and the technical detection noise of σdet ≈ 200 atoms (shaded area), see

section 3.2.2.

truncated Wigner simulations (solid lines). For small atom numbers N . 30000,
the experimentally determined pair number exhibits an offset of 〈Np〉 ≈ 200 pairs
while the simulations continue decreasing and reach the level associated to quantum
fluctuations 〈Np〉 ≈ 1/2 below the critical atom number of N c ≈ 24000. The
deviation from the theoretical expectations at small pair numbers is due to our
technical imaging detection noise, which is also on the order of σdet ≈ 200 atoms
[shaded area in the inset of Fig. 6.6(c)]. For additional details on the imaging
detection limits, see section 3.2.2.

The observed super-linear scaling demonstrates the collective nature of pair pro-
duction in our system. We refer to the underlying mechanism as superradiant pho-
ton exchange, due to the similarities with collectively enhanced superradiant Raman
scattering, which we examined in section 5.3 of the previous chapter.

6.3.2 Relevant time scales of the system

Collective amplification in our system is only possible if the emergent pairs re-
main in well-defined spin and momentum modes throughout the course of the dy-
namics [270, 294], which we can verify by assessing and comparing the different
timescales of our experiments. In our system, the characteristic timescale to pro-
duce pairs, Tint = 2π/(Nmax|χ±|), is determined by the collective couplings Nχ±.
For typical experimental values N = 8 × 104 and χ+ = −2π × 0.5 Hz, we ob-
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tain Tint ≈ 35 µs, which is in agreement with the onset of pair production ob-
served in Fig. 6.5(a). Simultaneously, the lifetime of the modes associated with
the pairs is constrained by the harmonic trapping potential, as the paired states
with ±~k are not its eigenstates. Following Ref. [270], we estimate their lifetime
as TLT = min(Texp, Tsep), with Texp = 2π/max(ωhx, ωhz) and Tsep = RTF/vrec be-
ing the characteristic timescales for the expansion in the harmonic trap and for the
separation between the pairs and the zero-momentum BEC, respectively. Using the
calibrated trap frequencies [ωhx, ωhy, ωhz] = 2π× [204(3), 34(2), 185(1)] Hz, the re-
coil velocity vrec = 0.0058 m/s and a typical Thomas-Fermi radius of RTF ≈ 5.8 µm,
we obtain Texp ≈ 5 ms and TLT = Tsep ≈ 1 ms. Finally, as already discussed in the
context of Fig. 6.5(b), the coherence time of the observed pair oscillations is given
by Tcoh ≈ 150 µs for our typical experimental parameters. For a more systematic
estimation of the pair lifetime, see also the calculations in appendix A.3 regarding
the lifetimes in momentum-space lattices.

The large separation of timescales in our system, quantified as TLT/Tint ≈ 25� 1
and TLT/Tcoh ≈ 6.7� 1, ensures that pairs are produced in well-defined individual
momentum modes and remain in such throughout the dynamics. For compari-
son, the experiments generating correlated momentum pairs through collisions in
metastable helium BECs display a ratio of TLT/Tint ≈ 0.7 [270]. Meanwhile, the
experiments using Floquet engineering in a two-dimensional BEC to create corre-
lated matter-wave jets exhibit TLT/Tint . 3 [294]. These experiments operate in the
spontaneous scattering regime and in the weak collective regime for pair production,
respectively. Conversely, our experiments operate in the so-called strong collective
regime for pair production.

6.4 Controlling coherent and dissipative pair dynamics

Here, we investigate the interplay between unitary pair dynamics and the leading
dissipative processes in our system, which arise from superradiant scattering. We
introduce the corresponding experimental protocol in section 6.4.1 and present our
observations in section 6.4.2. Our results highlight our ability to independently con-
trol coherent and dissipative processes, and to discern them through a combination
of atomic and photonic observables.

6.4.1 Motivation and experimental protocol

In our experiment, we can optically control the coherent interaction rates χ± =
η2δ±/(δ

2
± + κ2) giving rise to pairs by adjusting the Raman coupling η and the cor-

responding detunings δ±, cf. Eq. (6.9). As the pair dynamics takes place within tens
to hundreds of microseconds, we can separate this process from typical dissipation
sources in cold-atom experiments such as heating, three-body losses, and trapping
effects [95, 192]. Additionally, operating the drive at the tune-out wavelength λTO

suppresses spurious optical potentials and minimizes spontaneous emission for any
given Raman coupling η [204]. We experimentally verify that the transverse drive
does not induce significant losses by monitoring the atom-number evolution while
illuminating with the maximum experimentally used laser power (Pd ≈ 120 mW).

115



6 Spin- and momentum-correlated atom pairs mediated by photon exchange

Figure 6.7: Protocol for controlling the coherent and dissipative dynamics.
(a) Expected scaling of the ratio between dissipative γ+ and coherent couplings χ+,
when adjusting the two-photon detuning δ+. (b) Experimental protocol. For larger
values of |δ+| , we also increase the drive laser power Pd (blue) in order to obtain constant
coherent couplings rates χ+,fix = −2π × 0.64(1) Hz (purple data points). Concurrently,
the dissipative coupling γ+ (red points) monotonically decreases with |δ+| , facilitating
independent control over the dissipative dynamics.

The measured 1/e lifetime of 47(7) ms for the atoms in the trap is orders of magni-
tude larger than the relevant experimental timescales of t . 200 µs.

Nonetheless, the dynamics is purely unitary only in the asymptotic limit of large
two-photon detunings, with |δ±| /κ → ∞. For finite δ±, the system inherently fea-
tures competing superradiant Raman scattering, which leads to a dissipative popu-
lation transfer towards the modes |+k〉±1 at rates γ± = 2η2κ/(δ2

±+ κ2), as derived
in Eq. (6.21). Due to their different scaling

γ±
χ±

=
2κ

δ±
,

we can experimentally adjust the ratio between dissipative and coherent processes by
varying δ±. In particular, we can strongly mitigate superradiant Raman scattering
by operating the drive at |δ±| � 2κ, as plotted in Fig. 6.7(a).

In order to examine this competition, we modify the experimental protocol to
maintain the coherent coupling rate χ+ constant over a broad range of two-photon
detunings, δ+, as demonstrated in Fig. 6.7(b): given that the coupling rate scales
as χ+ ≈ η2/δ+ ∝ Pd/δ+, with Pd ∝ η2 being the drive laser power, we progressively
increase Pd for larger |δ+| (blue data points). This results in equal coherent cou-
plings χ+,fix = −2π× 0.64(3) Hz for a wide range of detunings (purple data points).
Simultaneously, the dissipative coupling scales as γ+ = 2χ+,fixκ/δ+ and gradually
decreases with increasing |δ+| (red data points).

6.4.2 Investigating the interplay between coherent and dissipative
dynamics

We experimentally study the relationship between the coherent and dissipative dy-
namics of our system in a single-channel configuration with ωz = −2π×7.09(1) MHz.
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As discussed in the previous section, we quench the coherent coupling to a fixed value
χ+,fix = −2π × 0.64(3) Hz for t = 80 µs. We initialize N = 5.3(3)× 104 atoms and
monitor the dynamics for different two-photon detunings δ+, see Fig. 6.8. The mea-
sured mean number of pairs 〈Np〉 remains small close to the two-photon resonance
(δ+ = 0) and increases monotonically for large detunings |δ+|/(2κ)� 1, as shown in
Fig. 6.8(a). Simultaneously, the mean population imbalance 〈Nimb〉 between |+k〉1
and |−k〉−1 (gray data points) exhibits the opposite trend and gradually decreases
towards zero for large detunings, cf. Fig. 6.8(b).

In Fig. 6.8(b), we also present the total number of photons 〈Nph〉 leaked from the
cavity (orange data points), as estimated from our heterodyne detection, see sec-
tion 3.2.1 for technical details: we estimate it as 〈Nph〉 = 2κ

∫
nph(t)dt, with nph(t)

being the mean number of photons at the characteristic frequency ωd − ωz associ-
ated with superradiant Raman scattering between the modes |0〉0 → |+k〉+1. The
qualitative agreement between 〈Nph〉 and 〈Nimb〉 verifies that superradiant Raman
scattering is indeed the primary dissipation source in our system within the relevant
timescales. The experimental results are well captured by our truncated Wigner
simulations [solid lines in Figs. 6.8(a,b)]. The discrepancy of the simulated pair
number 〈Np〉 at |δ+|/(2κ) . 1 is attributed to the limited validity of the adiabatic
cavity field elimination in this regime (dashed line).

Furthermore, we monitor the time evolution of the different modes at fixed co-
herent coupling χ+,fix for three representative detunings δ+. For the largest value
δ+/(2κ) = −6.3 [Fig. 6.8(c1)], we observe high-contrast coherent oscillations of the
pump-mode occupation |0〉0 (green data points). These oscillations become less pro-
nounced at the intermediate detuning δ+/(2κ) = −4.3 [Fig. 6.8(c2)], and are almost
completely suppressed for the smallest value δ+/(2κ) = −2.3, cf. Fig. 6.8(c3).
Conversely, the accumulation of atoms in the mode |+k〉+1 (blue data points)
due to superradiant Raman scattering is accelerated close to the two-photon res-
onance. It is worth noting that the number of atoms within our field of view does
not remain constant through the course of the dynamics. We estimate an upper
bound NH(t) = max(N)−N(t) for the ‘hidden modes’3 outside of our field of view
(|kx| . 2.2k), cf. gray datapoints in Figs. 6.8(c1-3). For all examined detunings,
NH(t) monotonically increases and follows the same qualitative trend as |+k〉+1.
This behavior suggests that the occupation of higher-order momentum modes is
primarily due to irreversible superradiant Raman scattering. A likely candidate is
the m = +1 mode with kz = +k and symmetric momentum kx = ±3k along the
cavity axis, which can be occupied through superradiant Raman scattering following
transient pair production in |±2kx〉0. For all the two-photon detunings considered
in Fig. 6.8(b), the total number of photons leaking out of the cavity 〈Nph〉 exceeds
the imbalance 〈Nimb〉 after t = 80 µs. However, the former is approximately equal
to 〈Nph〉 ≈ 〈Nimb〉+NH(80 µs), further supporting this conjecture.

3In these considerations, we implicitly neglect atom loss due to the large 1/e-lifetime of the trapped
atoms, 47(7) ms. As the measured atom numbers do not depend on the spin composition (see
section 3.2.2), we can associate NH(t) with the occupation of modes outside our field of view.
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Figure 6.8: Experimental control over coherent and dissipative dynamics.
(a) Mean number of pairs 〈Np〉 as a function of the two-photon detuning δ+, for
t = 80 µs and fixed coherent couplings χ+,fix = −2π × 0.64(3) Hz. (b) Corresponding
mode imbalance 〈Nimb〉 (gray) and average number of photons leaked from the cavity
〈Nph〉 (orange data points). The formation of pairs becomes pronounced (suppressed)
at small (large) cavity detunings δ+, which is attributed to the dominant coherent (dis-
sipative) dynamics in this regime, see illustrations in (a). The solid lines are obtained
from truncated Wigner simulations, with the dashed line in (a) indicating the regime
where the adiabatic cavity field elimination becomes invalid, i.e., |δ+| < 2κ. (c) Evolu-
tion of the mode occupation (M.O.) for three representative detunings δ+/(2κ) = −6.3
(c1), −4.3 (c2) and −2.3 (c3) [gray lines in (b)], showing a suppression of coherent
pair oscillations at small |δ+| . The gray data points NH indicate occupation of modes
outside our field of view due to superradiant Raman scattering.

6.5 Characterizing the pair quantum statistics

Our results so far have provided experimental evidence for the coherent oscillations
and parametric amplification of atom pairs in well-defined spin and momentum
modes. These findings can be captured within mean-field approaches, as they orig-
inate directly from the system’s nonlinear equations of motion [cf. Eq. (6.23)] and
rely on estimating the expectation values of different operators, such as the mean
pair number. However, it is often challenging to detect beyond mean-field effects in
many-body cavity QED systems with degenerate Bose gases [58]. The fluctuations
of relevant observables tend to be suppressed by 1/N when the steady state of the
atomic ensemble resembles a coherent state with N atoms.

In this section, we experimentally investigate the emergent pair statistics and
observe distributions that are fundamentally different from the expectation for semi-
classical coherent states. In section 6.5.1, we present our experimental observations
both for the single-channel and two-channel configurations. We observe wide pair
histograms resembling thermal Bose-Einstein distributions and infer the associated
temperature of the pairs. In section 6.5.2, we estimate the relative importance of
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Figure 6.9: Pair statistics. (a) Histograms of the pair number for a single-channel
configuration, showing the distributions associated with the χ+ channel (a1) and the
absence of pairs via χ− (a2). (b) Histograms for the two-channel case, showing the
concurrent pair distributions via χ+ (b1) and χ− processes (b2). The solid lines show
the fitted Bose-Einstein distributions convolved with our Gaussian detection noise. The
purple bin and black arrow indicate the mean 〈Np〉 and standard deviation σ(Np),
respectively, demonstrating large fluctuations σ(Np) ≈ 〈Np〉. The Gaussian fit (dashed
line) in (a2) is consistent with a zero-pair distribution, see main text. For (a) and (b),
the exact evolution times are t = 60 µs and 62 µs, respectively. In (a3) and (b3), we
present representative time-of-flight images, highlighting the modes giving rise to pairs
for both configurations.

thermal and quantum fluctuations for the emergent pair dynamics.

6.5.1 Measuring the pair statistics

To characterize the pair statistics, we accumulate hundreds of realizations under
equal experimental conditions for the single-channel [Fig. 6.9(a)] and two-channel
configurations [Fig. 6.9(b)]. Based on our analysis of the population dynamics in
section 6.2.2, we choose an evolution time of t ≈ 60 µs to ensure that pair produc-
tion occurs in a regime of parametric amplification. The remaining experimental
parameters are the same as in Fig 6.4. For both configurations, we present the pair
statistics associated with χ+ and χ− processes in orange [Figs. 6.9(a1,b1)] and yel-
low histograms [Figs. 6.9(a2,b2)], respectively. When a channel becomes active, we
observe large shot-to-shot fluctuations of the pair occupations. The skewed distribu-
tions peak close to Np = 0 and slowly decay for higher pair numbers. As discussed
in section 6.1.3, we expect the pair statistics to be captured by a Bose-Einstein
distribution, cf. Eq. (6.18), provided the undepleted pump-mode approximation re-
mains valid. To assess this, we need to consider the technical detection noise which
is on the order of σdet ≈ 200 atoms, see section 3.2.2. This uncorrelated noise is
well-captured by a Gaussian distribution G(Np, σG, µ), with mean µ and standard
deviation σG. We fit the pair histograms in each occupied channel with a convo-
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lution of a Bose-Einstein distribution p±(Np, 〈Np,±〉) and a normalized Gaussian
distribution to account for detection noise

P±(Np, 〈Np,±〉 , σG, µ) = p±(Np, 〈Np,±〉) ∗G(Np, σG, µ). (6.26)

These thermal fits accurately capture the form of the observed histograms, as shown
by the solid curves in Figs. 6.9(a1, b1, b2), indicating that the underlying pair distri-
butions are compatible with Bose-Einstein statistics. For the case of an unoccupied
pair channel in Fig. 6.9(a2), the distribution is captured by a Gaussian fit (dashed
curve) and yields σG ≈ σdet.

For a more quantitative comparison, we estimate the mean and standard deviation
of the pair occupation in our system. Assuming uncorrelated physical and techni-

cal fluctuations, we calculate the standard deviation as σ(Np) =
√
σ2

exp(Np)− σ2
G,

where σexp(Np) is the experimentally measured standard deviation. For the single-
channel configuration, we obtain 〈Np,+〉 = 1150(50) and σ(Np,+) = 1400(50), as in-
dicated by the dark bin and arrow in Fig. 6.9(a1), respectively. Additionally, for the
two-channel configuration, we obtain 〈Np,+〉 = 1750(50) and σ(Np,+) = 1800(50)
[Fig. 6.9(b1)], and σ(Np,−) = 1100(50) [Fig. 6.9(b2)] for the two active pair chan-
nels. Hence, for all the observed configurations we infer large standard deviations,
σ(Np) ≈ 〈Np〉, which are consistent with a Bose-Einstein distribution and greatly

exceed the expectation for semi-classical coherent spin states σ(Np)|coh = 〈Np〉1/2.
As the pair statistics follows a thermal-like distribution, we can estimate an ef-

fective temperature using Eq. (6.19) and assuming thermal equilibrium. For the
characteristic bare pair energies of ω0 ≈ 2π×15 kHz and the typical average number
of pair numbers 〈Np〉 ≈ 1000, we obtain

Teff ≈ 500 µK. (6.27)

For comparison, the effective pair temperature in our system greatly exceeds the spin
temperature for a comparable number of pairs produced by spin-changing collisions,
with Teff . 10 nK [288]. It is also significantly higher than the temperature T ≈
100 nK of the external degrees of freedom in our harmonically trapped BEC. This
disparity originates from the lower energy scales associated with the latter systems,
ω0 . 2π×1 Hz and ωTrap ≈ 2π×100 Hz, respectively. In future experiments, it will be
interesting to explore systematically the time evolution of the pair distributions both
at short and long times [295]; this could help to elucidate the pair thermalization
dynamics in the presence of tunable coherent and dissipative channels.

Our observations of the pair statistics are consistent with the many-body system
occupying a two-mode squeezed vacuum state, i.e., a superposition of twin-Fock
states in the corresponding modes as shown by Eq. (6.17). Multimode parametric
amplification in the two-channel configuration is not expected to alter the resulting
distributions for an undepleted pump mode as long as the different channels remain
discernible [296].

6.5.2 The role of thermal and quantum fluctuations

As an atomic parametric amplifier, our system is capable of enhancing both thermal
and quantum fluctuations, giving rise to states featuring macroscopic pair occupa-
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tions [297]. In this section, we make a quantitative estimation of the initial thermal
occupation of the relevant momentum modes and conclude that the pair dynamics
indeed primarily amplifies quantum fluctuations.

We estimate an upper bound for the thermal occupation of the different momen-
tum modes forming the pairs in our system. By considering N ≈ 8 × 104 and an
average trap frequency ω̄ = (ωhxωhyωhz)

1/3 = 2π × 109 Hz, we obtain a critical
condensation temperature of Tc ≈ 210 nK [111]. Thus, for typical experimental
temperatures of T . 100 nK, we expect a condensate fraction of Nc/N & 0.9 [298].
The momentum-space width of the initial BEC and the momentum modes associ-
ated with pairs is on the order of δk = 2π/RTF ≈ 0.12k, with RTF ≈ 5.8 µm being
the Thomas-Fermi radius of the harmonically confined BEC. The momentum modes
|±k〉±1 in the Zeeman sublevels m = ±1 associated with pairs are localized around
(kx, kx, kz) = (±k, 0,±k), with k being the photon recoil momentum. Taking into
account their finite spread δk, the probability to thermally occupy one of these
modes is

P = 2

∫ k+δk

k−δk

∫ δk

−δk

∫ k+δk

k−δk
p(k, T ) dkx dky dkz ≈ 2.8× 10−4, (6.28)

with p(k, T ) = N
[
exp
(
E(k)
kBT

)
+ 1
]−1

being the momentum-space probability dis-

tribution for the thermal 87Rb atoms of mass M at T = 100 nK. Here, E(k) =
~2k2/(2M) is the kinetic energy associated with the momenta ~k = ~(kx, ky, kz),
kB is the Boltzmann constant and N a normalization factor. The factor of 2 in
Eq. (6.28) accounts for the two momentum states kx = k and kx = −k contributing
to form a pair.

In our experiments, we prepare the initial BEC in the m = 0 Zeeman sublevel by
applying a strong magnetic-field gradient to clean spurious atoms in m = ±1 [78].
Making a conservative estimate, we assume that the spurious occupation of these
Zeeman sublevels, N±1, is less than 3σdet ≈ 600 atoms which lies within the 99.7%
confidence interval of our technical detection noise, see section 3.2.2. The corre-
sponding upper bound for the number of thermal atoms in m = ±1 is obtained as
NT
±1 <

(N−Nc)
N × 3σdet = 60.

Hence, we estimate an initial thermal occupation of 〈NT 〉 = PNT
±1 < 0.016 for

the relevant spin and momentum modes |±k〉±1 that form pairs in our system.
This upper bound for thermal fluctuations is orders of magnitude smaller than the
expected occupation associated with quantum fluctuations 〈NQF〉 ≈ 1/2, which is
estimated using the truncated Wigner approximation [290], cf. Eq. (6.24). This
comparison strongly suggests that the emergent spin and momentum pairs in our
BEC primarily result from parametric amplification of vacuum fluctuations.

6.6 Probing momentum-space correlations

Here, we move beyond the studies of individual modes and investigate the corre-
lated nature of the pairs by probing their momentum-space noise correlations. In
section 6.6.1, we discuss the evaluation protocol for examining noise correlations in
our experiment. In section 6.6.2, we provide extensive experimental observations
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

that showcase the correlated formation of atom pairs in both the single-channel and
two-channel configurations.

6.6.1 Extracting momentum-space correlation maps

Since first proposed in Ref. [38], noise correlations have been successfully employed
to probe and diagnose many-body physics in cold-atom experiments. Examples
range from the observation of bosonic bunching [299] and fermionic antibunching in
optical lattices [300], to measurements of out-of-equilibrium dynamics in quenched
many-body quantum systems [301, 302]. To evaluate the correlations between atoms
in the m = +1 and m = −1 sublevels, we introduce the inter-spin noise correlation
map

C+1,−1(kz+1, k
z
−1) =

〈n+1n−1〉 − 〈n+1〉 〈n−1〉
σ(n+1)σ(n−1)

=
〈δ(n+1)δ(n−1)〉
σ(n+1)σ(n−1)

, (6.29)

with nm ≡ nm(kzm) indicating the momentum-space density distribution of spin
state m along the relevant z direction. The corresponding momentum-space coor-
dinates are kzm. We define σ(nm) =

〈
n2
m

〉
− 〈nm〉2 and δ(nm) = nm − 〈nm〉. If the

occupations in m = ±1 fluctuate in an uncorrelated fashion around their respective
expectation values, i.e., 〈δ(n+1)δ(n−1)〉 = 0, we expect C+1,−1(kz+1, k

z
−1) = 0. Con-

versely, correlated density fluctuations at specific momenta (kz+1, k
z
−1) give rise to

positive inter-spin correlations C+1,−1(kz+1, k
z
−1) > 0, whereas anticorrelated fluctua-

tions result in C+1,−1(kz+1, k
z
−1) < 0. The normalization factor in Eq. (6.29) ensures

that the correlations are bounded to C+1,−1 ∈ [−1, 1].

To experimentally evaluate the correlation map, we first extract the two-dimensional
density distributions nm(kx, kz) in m =∈ {+1,−1} by imaging after Stern-Gerlach
separation, see section 3.2.2. We obtain one-dimensional momentum-space distribu-
tions along the relevant z direction

nm(kzm) =
∑
kx∈R1

nm(kx, k
z
m) +

∑
kx∈R2

nm(kx, k
z
m), (6.30)

by integrating the distribution along kx within two regions of interest R1 = [0.8, 1.2]k
and R2 = [−1.2, 0.8]k. Thereby, we neglect the central unoccupied region kx ∈
(−0.8, 0.8)k in m = ±1, which would otherwise propagate additional spurious tech-
nical fringes into the correlation analysis. After calibrating the recoil momentum k in
the time-of-flight images, we extract the inter-spin correlation map using Eq. (6.29)
and averaging over S ≈ 500 experimental realizations. For the typical times of
flight, tTOF ≈ 6 ms, we obtain a momentum-space resolution of δkz ≈ 0.018k which
is limited by the effective pixel size of our imaging system.

6.6.2 Correlated generation of spin and momentum pairs

We study the correlations in our system both for the single-channel and two-channel
configurations. For this purpose, we prepare N = 7.2(6)× 104 atoms in |0〉0 and
quench the coupling to χ+ = −2π × 0.41(1) Hz for t = 62 µs at large two-photon
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Figure 6.10: Inter-spin correlations. (a,b) Momentum-space correlation maps
C+1,−1(kz+1, k

z
−1) for the single-channel (a) and two-channel configuration (b), demon-

strating the correlated nature of the emergent pairs. The lower panels show one-
dimensional cuts along kz−1 = −kz+1, and indcate correlation widths ∼ 0.4k (FWHM).
c) Anticorrelation peaks C+1,−1(±k,±k) = [C+1,−1(k, k) + C+1,−1(−k,−k)]/2 for real-
izations with Np > Nmin

p for a single-channel (light blue) and two-channel configuration

(dark blue). The anticorrelations increase with Nmin
p due to pump-mode depletion. The

inset displays a representative correlation map for Nmin
p = 7×103. The solid lines show

the results from our truncated Wigner simulations and the error bars are obtained via
jackknife resampling [303].

detunings δ+ = −2π×25.7 MHz. For the two configurations, the linear Zeeman split-
tings are set to ωz = −2π× 7.09(1) MHz and ωz = −2π× 0.90(1) MHz, respectively.
The corresponding correlation maps C+1,−1(kz+1, k

z
−1) are shown in Figs. 6.10(a) and

(b), and are obtained by averaging over S = 563 and S = 569 realizations, respec-
tively. In the single-channel configuration, we observe large positive correlations
on the order of C+1,−1(+k,−k) ≈ 0.96 around (kz+1, k

z
−1) = (+k,−k), demonstrat-

ing that pairs occupy the modes |+k〉+1 and |−k〉−1 in a correlated fashion, cf.
Fig. 6.10(a). When the two channels become active we find comparable positive
correlation peaks around (+k,−k) and (−k,+k) [Fig. 6.10(b)], indicating the cor-
related generation of m = ±1 pairs via the two discernible channels χ+ and χ−.

For both configurations, the correlation maps have an asymmetric structure and
exhibit a smaller width along the diagonal (kz+1, k

z
−1) = (kz+1,−kz+1). This asym-

metric behavior is intrinsic to our evaluation, as the two finite-sized clouds are being
displaced from each other in opposite directions when modifying their coordinates
along this diagonal. In the lower panels of Figs. 6.10(a) and (b), we present the
corresponding cuts of the correlation maps C+1,−1(kz+1,−kz+1). In both cases, we
observe correlation widths around 0.4k (FWHM), which are compatible with the
observed momentum spread of the corresponding modes ∼ 0.3k. We attribute the
additional side patterns beside the correlation peaks to residual density-dependent
imaging artifacts associated with intensity fringes of the imaging beam when passing
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

through the narrow slit of our optical cavity (l = 176 µm), see section 3.2.2.

We re-evaluate the correlation maps after post-selecting the experimental data
for realizations above a minimum pair number Nmin

p , see Fig. 6.10(c). For the
two-channel configuration (dark blue data points), we observe more pronounced an-
ticorrelation peaks around equal momenta (+k,+k) and (−k,−k) when increasing
Nmin

p ; this is also directly shown by the exemplary correlation map in the inset of
Fig. 6.10(c). This trend is quantitatively captured by our truncated Wigner sim-
ulations (solid line). In contrast, the correlations around equal momenta remain
negligible for the single-channel case (light blue data points). We attribute the
emergent anticorrelations to the competition between the two channels in the pres-
ence of pump-mode depletion, which inhibits large simultaneous occupation of these
modes. This trend indicates that the many-body state cannot be merely expressed
as a product state of two-mode squeezed vacuum states in the individual channels

|ψ〉 6= |TMSV〉+ ⊗ |TMSV〉− , (6.31)

especially in a regime of large pair occupations.

In future studies, it will be important to carefully characterize the nature of
these mode anticorrelations and to examine whether the non-separability of the two
channels can give rise to metrologically useful quantum entanglement in our system.
Such a task is challenging, as analytically calculating the exact many-body state
of the system beyond the undepleted-pump approximation might require to exactly
diagonalize the system in a regime of large pair numbers, i.e., Np > Nmin

p ≈ 2000.

6.7 Discussion and outlook

In this chapter, we have experimentally demonstrated the creation of spin- and
momentum-correlated atom pairs via superradiant photon-exchange processes in a
degenerate Bose gas. Our scheme primarily amplifies vacuum fluctuations to induce
nonlocal spin-mixing dynamics within tens of microseconds. Different from previous
implementations [80, 81], our experiments give rise to atom pairs in well-defined
spin and momentum modes via two discernible coupling channels. We reported on
the first experimental observation of coherent pair oscillations involving momentum
modes. Our results are in quantitative agreement with truncated Wigner simu-
lations taking vacuum fluctuations into account. Furthermore, we demonstrated
independent control over coherent and dissipative processes, and discerned them via
combined measurements of atomic and photonic observables. Crucially, the dynam-
ics remains coherent for long times (Tcoh ≈ 150 µs) in comparison to the typical
pair generation timescales (Tint ≈ 35 µs). Hence, our system constitutes a very good
candidate for applications in atomic interferometry [258]. As both the sign and
strength of the photon-mediated interactions can be optically controlled, our ex-
periments offer prospects for implementing time-reversal protocols in SU(1,1) atom
interferometers [279, 304]. Additionally, our results showcase a new mechanism that
can be potentially employed for fast entanglement generation in spatially separated
atomic clouds [305, 306]. In particular, combining two-channel pair production
with mode-selective spin rotations offers a promising route for performing Bell tests
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with massive particles [307, 308]. Finally, inducing pair production through mul-
tiple transverse laser drives offers a pathway to extend the experiments presented
in chapter 5 to a unitary regime. This approach could facilitate the observation of
cavity-assisted correlated tunneling in extended momentum-space lattices.

6.7.1 Towards the detection of quantum correlations

The pair mechanism in our experiments closely resembles the production of entan-
gled pairs of signal and idler photons in optical parametric amplifiers [24]. However,
our observations in section 6.6 do not discern if the observed pair correlations are
of classical or quantum-mechanical origin. To establish the presence of genuine
quantum correlations in our system, it is essential to identify suitable criteria and
examine their experimental feasibility. This endeavor is associated with additional
technical challenges that need to be addressed in future experiments.

A straightforward approach could be to examine relative number squeezing, as
also studied in experiments employing spin-changing collisions to generate corre-
lated pairs of m = ±1 atoms in single-mode BECs [275, 309]. For a single-channel
configuration, we can define the corresponding spin squeezing parameter [310] as

ζ2
s =

σ2(Ĵz)

σ2(Ĵz)|coh

=
2σ2(Ĵz)

〈Np〉
=⇒ G =

1

ζ2
s

=
〈Np〉

2σ2(Ĵz)
, (6.32)

with the population imbalance defined as Ĵz = (N̂+1 − N̂−1)/2, and the operators
N̂+1 and N̂−1 counting the atoms in the two correlated modes |+k〉+1 and |−k〉−1,
respectively. An uncorrelated coherent spin state is associated with the variance
σ2(Ĵz)|coh = 〈N̂+1 + N̂−1〉 /4 = 〈Np〉 /2, with 〈Np〉 being the total number of atom
pairs. Conversely, squeezing is signaled by the relative number fluctuations σ2(Ĵz)
becoming smaller than the value for a coherent state, i.e., ζ2

s < 1. Equivalently,
we define the metrological gain as G = 1/ζ2

s in Eq. (6.32), which diagnoses relative
number squeezing for G > 1.

An alternative criterion involves examining the violation of the Cauchy-Schwarz
inequality. This approach has been pioneered by Clauser to demonstrate entan-
glement in two-photon cascades [311], and has been recently employed to probe
quantum-correlated atom pairs arising from binary collisions in metastable Helium
BECs [270, 312]. For a single-channel configuration, the Cauchy-Schwarz ratio is
defined as

C =
〈: N̂+1N̂1 :〉√
〈: N̂2

+1 :〉 〈: N̂2
−1 :〉

, (6.33)

with 〈: :〉 denoting the quantum-mechanical expectation value after normal ordering.
The Cauchy-Schwarz ratio quantifies the relation between average inter- and average
intra-spin correlations in our system. For classically correlated systems we expect
C ≤ 1 as a direct consequence of the mathematical Cauchy-Schwarz inequality. In
contrast, values of C > 1 indicate the presence of quantum correlations [313]. As
discussed in Ref. [314], this criterion only entails genuine quantum entanglement
in the sense of non-separability the underlying many-body state, if the system is
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6 Spin- and momentum-correlated atom pairs mediated by photon exchange

composed by indistinguishable particles. This is indeed the case for our system,
which consists of a spinor Bose-Einstein condensate initialized in a single well-defined
mode |0〉0.

We assess the viability of these two criteria using our truncated Wigner sim-
ulations. For the single-channel configuration, we numerically simulate the pair
dynamics using typical experimental parameters N = 50000, ωz = −2π× 7.09 MHz,
δ+ = −2π × 25 MHz. In Fig. 6.11(a), we observe an exponential increase of the
mean pair number 〈Np〉 (purple curve) for t ≈ 50 µs, which later saturates due to
pump-mode depletion. Concurrently, the average imbalance 〈Nimb〉 = 〈N̂+1 − N̂−1〉
also increases, indicating spurious superradiant Raman scattering. Our simulations
indicate that on average χ+/γ+ = δ+/(2κ) ≈ 10 pairs are created before the first
photon is lost from the cavity around t ≈ 25 µs ( 〈Nimb〉 ≈ 1).

In Fig. 6.11(b), we plot the metrological gain G as a function of the average
number of pairs 〈Np〉. For small pair numbers, we observe a rapid increase of
quantum correlations peaking at G ≈ 10 around 〈Np〉 ≈ 10, i.e., at the average
time when the first photon is lost from the cavity. For larger pair numbers and
evolution times, we observe a monotonic decrease of G, reaching classical values
G < 1 for 〈Np〉 & 100. We attribute this decay to parasitic photon loss, as shown
by the growing imbalance 〈Nimb〉 in this regime. In Fig. 6.11(c), we evaluate the
Cauchy-Schwarz ratio C as function of 〈Np〉 using our numerical simulations (solid
curve) and an analytic estimate for a two-mode squeezed vacuum (TMSV) state
(dashed curve). At small pair numbers 〈Np〉 ≈ 100, we observe a clear violation of
the Cauchy-Schwarz inequality with C ≈ 1.005. The monotonic reduction of C for
intermediate pair numbers ( 〈Np〉 . 1000) is primarily caused by a 1/Np scaling of
quantum correlations [314]. Indeed, we observe CTMSV ≈ 1 + 0.5/ 〈Np〉 for a TMSV
state indicating asymptotically classical correlations CTMSV → 1 for 〈Np〉 → ∞. At
large pair numbers ( 〈Np〉 & 1500), our numerical simulations show C < 1 signaling
the onset of classical correlations. This is attributed to photon loss in our system,
as the Cauchy-Schwarz ratio for a TMSV state remains always CTMSV > 1.

Establishing quantum correlations in our experiment using these two criteria
presents considerable challenges, mainly associated with the technical limitations
in the atom number detection. As shown in Fig. 6.11, we can obtain a large metro-
logical gain G ≈ 10 and a measurable 2%-violation of the Cauchy-Schwarz inequality
C > 1.01 only for small 〈Np〉 < 50. However, such small pair numbers currently lie
below the imaging detection noise that is around σdet ≈ 200 atoms, see section 3.2.2.
To address this limitation, we are currently upgrading the absorption imaging setup
to improve the detection sensitivity by at least an order of magnitude. This would
involve replacing the current CCD camera, which has a limiting quantum efficiency
of around 0.25 [138]. A complementary approach could involve increasing the avail-
able drive laser power to induce pair production at even larger two-photon detunings,
further suppressing competing superradiant scattering. On a theoretical level, it is
crucial to continue searching for suitable entanglement witnesses for our experiment.
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,

Figure 6.11: Towards the detection of quantum correlations. (a) Evolution of
the average pair number 〈Np〉 and mode imbalance 〈Nimb〉 obtained from our truncated
Wigner simulations for a single-channel configuration. (b) Simulated metrological gain
G associated with relative number squeezing of the pair constituents. For 〈Np〉 � 100,
we expect quantum correlations as signaled by G > 1. (c) Cauchy-Schwarz ratio C
obtained from simulations (solid) and analytic estimations for a TMSV state (dashed
line). It shows a 1/〈Np〉-decay of quantum correlations (C > 1) with increasing 〈Np〉.
For large pair numbers, both criteria indicate a crossover to a classical regime G < 1
and C < 1, which is attributed to spurious photon losses.
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7 Antiferromagnetic phases in a
Bose-Hubbard model with
cavity-mediated interactions

Experiments with ultracold atoms in optical lattices have greatly extended the scope
of quantum simulation of many-body systems [39]. Two key strengths are the high
degree of tunability of the different energy scales, and the possibility to address
and probe the atoms’ motional and spin degrees of freedom. This has enabled ex-
perimental access to strongly correlated phenomena, such as quantum magnetism
and complex out-of-equilibrium dynamics [21]. While contact interactions naturally
occur in ultracold atomic samples [315], long-range interactions are more elusive.
Nonetheless, systems that are traditionally used to engineer long-range interactions,
such as dipolar quantum gases, heteronuclear molecules, and Rydberg atoms, suf-
fer from small long-range interaction strengths, low densities, and short lifetimes,
respectively [51–56].

Quantum gases coupled to optical cavities provide an alternative experimental
platform to create photon-mediated global-range interactions between the atoms,
whose strength and sign are controlled by tailored driving fields [57, 58]. They
have enabled theoretical [316–324] and experimental [65–67] investigations of lat-
tice supersolid and charge density wave phases in single-component spin systems.
The atomic ground-state phases and excitation spectrum can be accessed non-
destructively in real time by the light leaking from the cavity [67]. Recently, it has
become experimentally feasible to include the internal atomic spin degree of freedom
in such systems, which has resulted in the observation of spin-dependent [78] and
spin-changing self-organization [79, 89]. In combination with optical lattices, this
approach can pave the way for realizing strongly correlated magnetic phases with
photon-mediated interactions.

In this chapter, we propose and theoretically investigate an extended two-component
Bose-Hubbard model with cavity-mediated global-range interactions − the lattice
counterpart of the experiments performed in Ref. [78] with a bulk Bose gas. In
Fig. 7.1(a), we illustrate the key ideas behind our approach to engineer cavity-
mediated interactions that have a ‘density’ and a ‘spin’ contribution. We consider
a balanced spin mixture comprising the spin states |↑〉 and |↓〉, which is confined in
a deep two-dimensional λd/2-periodic optical lattice to form a Mott insulator. The
atoms are coupled to a high-finesse optical cavity and illuminated by a transverse
drive (TD) propagating in z direction, with a tunable polarization angle φ in the xy
plane.

Deep in the dispersive regime, the drive can scatter photons into the y-polarized
cavity mode (operator ây) and mediate two distinct types of global-range interactions
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Figure 7.1: A Bose-Hubbard model with cavity-mediated density and spin
interactions. (a) A two-component Mott insulator (spin states |↑〉 and |↓〉) is confined
by a deep λd/2-periodic optical lattice inside a high-finesse optical cavity. The atoms can
scatter photons from a transverse drive (TD) field with a tunable polarization angle φ
into the y-polarized cavity mode (ây). (b) Cavity-mediated global-range interactions.
(b1) Scalar light-matter interactions dominate for TD polarizations aligned close to
the y axis, coupling atoms to the real quadrature of the cavity mode [Re(ây)]. The
interference potential between the TD and cavity fields induces a dynamical λd-periodic
checkerboard modulation, which can overcome the repulsive contact interactions and
induce density-modulated states. (b2) Vectorial light-matter interactions dominate for
nearly x-polarized TD fields, coupling the atoms to the imaginary quadrature of the
cavity mode [Im(ây)]. This gives rise to λd/2-shifted interference potentials for the
two spin states |↑〉 and |↓〉, facilitating the formation of λd-periodic antiferromagnetic
phases.

between the atoms:

• When the drive polarization is aligned close to the y axis (φ = 0), scalar
light-matter interactions dominate and couple the atomic density to the real
quadrature of the cavity field [Re(ây)]. The interference potential between the
TD and cavity fields induces a common λd-periodic checkerboard modulation
for the atoms, independently of their spin degree of freedom. In the insulating
regime, this favors the formation density-modulated charge density waves, as
schematically depicted in Fig. 7.1(b1).

• For a polarization angle close to the x axis (φ = π/2), vectorial atom-light
interactions become dominant and couple the atomic spin to the imaginary
quadrature of the cavity field [Im(ây)]. The dynamic interference potential
gives rise to λd/2-shifted checkerboard modulations for the atoms in the two
spin states |↑〉 and |↓〉, which preferably occupy lattice sites of opposite par-
ity, favoring a global antiferromagnetic ordering in the system. This effect is
illustrated in Fig. 7.1(b2).

The interplay of these two adjustable global-range interaction scales with tunnel-
ing and contact interactions in the optical lattice gives rise to a rich phase diagram.
Using a mean-field Gutzwiller approach at unity filling, we calculate the phase dia-
gram of the system and identify density-modulated and magnetically ordered phases,
both in the superfluid and insulating regimes of the Hubbard model. Notably, the
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interplay between short- and vectorial global-range interactions induces the forma-
tion of an antiferromagnetic Mott insulator at arbitrarily small coupling strengths.
To further elucidate the nature of this magnetically ordered phase, we construct an
effective perturbative Hamiltonian for its low-energy excitations, and identify a spin-
exchange branch with a tunable energy gap. Finally, we provide a detailed route for
the experimental implementation of this model in our experiment. We discuss how
to control the different energy scales via experimental parameters, and address suit-
able observables and open technical challenges. While some magnetically ordered
phases have been discussed in bosonic [325, 326] and fermionic systems [327, 328],
our comprehensive theoretical study of the different phases and excitations in an
experimentally accessible regime constitutes an important stepping stone for their
successful experimental realization.

Outline of this chapter

In this chapter, we discuss a feasible proposal to engineer extended Bose-Hubbard
models with cavity-mediated global-range interactions, addressing both the atoms’
density and spin degrees of freedom. In section 7.1, we present the relevant experi-
mental scheme and map our system to an extended two-component Hubbard model.
In section 7.2, we calculate the mean-field phase diagram using a Gutzwiller ansatz
at unity filling. Furthermore, in section 7.3, we study the low-lying excitations above
this phase and discover a spin-exchange branch featuring a tunable energy gap. We
discuss a route towards experimental implementation in section 7.4, highlighting the
control over the system’s parameters, the different experimental observables, and the
technical challenges. Finally, in section 7.5, we summarize our findings and discuss
future directions.

This work originated from the master thesis project of Leon Carl [329], which was
jointly supervised by Tena Dubcek, Rodrigo Rosa-Medina, Tilman Esslinger, and
Sebastian D. Huber. Parts of this chapter have been published in Ref. [92]

L. Carl, R. Rosa-Medina, S. D. Huber, T. Esslinger, N. Dogra*, T. Dubcek*.
Phases, instabilities and excitations in a two-component lattice model
with photon-mediated interactions. Physical Review Research 5, L032003
(2023).
* These authors contributed equally to this work

7.1 Coupling scheme and mapping to an extended Hubbard
model

Here, we discuss the theoretical framework to map our experimental system to an
extended Bose-Hubbard model. In section 7.1.1, we present the relevant coupling
scheme and derive the associated single-particle Hamiltonian. When eliminating
the cavity field, the system can be mapped to an extended Bose-Hubbard model
featuring tunable density- and spin-dependent global-range interactions, as discussed
in section 7.1.2. A detailed derivation can be also found in the master thesis of Leon
Carl in Ref. [329].
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TD

λd/2

Figure 7.2: Coupling scheme. A two-component BEC comprising the spin states
|↑〉 and |↓〉 is confined by a two-dimensional optical lattice in the xz plane, with lattice
spacing λd/2; a bias magnetic field B along the z direction defines the quantization axis.
The atoms are coupled to a high-finesse optical cavity and illuminated by a standing-
wave transverse drive (TD) field with a tunable polarization angle φ in the xy plane.
The TD propagates in the z direction and scatters photons into the the y-polarized
cavity mode, mediating global-range interactions between the atoms.

7.1.1 Coupling scheme

We consider a balanced spin mixture of two Bose-Einstein condensates (BECs) cou-
pled to the fundamental mode of our high-finesse optical cavity. The two spin
components |↑〉 = |F = 1,m = 1〉 and |↓〉 = |F = 1,m = −1〉 belong to the F = 1
hyperfine ground-state manifold of 87Rb, with the quantization axis defined by a
magnetic field B in the z-direction. The mixture is loaded into a two-dimensional
λd/2-periodic square optical lattice extending in the xz plane, as schematically de-
picted in Fig. 7.2.

The lattice arm along the z-direction has a tunable linear polarization in the
xy-plane, which is controlled by the angle φ, cf. Fig. 7.2. As in the experiments
discussed in the previous chapters, it also fulfills a dual role as a transverse drive
(TD) field. The negative part of the total electric field is given by

Ê(−) = Ed cos(kz) [cos(φ)ey + sin(φ)ex] e−iωd + E0 cos(kx)eyây. (7.1)

The first contribution describes the standing-wave TD field with amplitude Ed,
frequency ωd and spatial profile f(z) = cos(kz); the second term describes a y-
polarized cavity field (annihilation operator ây), with vacuum field strength E0 and
spatial mode profile g(x) = cos(kx). Due to their small frequency difference, we
assume a common wavenumber k = 2π/λd for both fields. For sufficiently large Zee-
man splitting, we can neglect spin-changing processes due to cavity-assisted Raman
transitions and thereby the involvement of the z-polarized cavity mode in Eq. (7.1).

We consider a transverse drive with wavelength λd = 784.7 nm, in order to induce
concurring scalar and vectorial light-matter interactions in the dispersive regime, cf.
Tab. 2.1. At this wavelength, the ratio between the corresponding polarizabilities
is ξ = αv

2αs
= −0.464. Closely following Eq. (2.12), we derive the single-particle

Hamiltonian of the system in a rotating frame at the frequency of the transverse
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drive ωd

Ĥsp = Ĥat + Ĥcav + ĤLM. (7.2)

The atomic and cavity Hamiltonian are given by

Ĥat =
p̂2

2M
+ V̂lat(x, z) =

p̂2

2M
− V2D

[
cos2

(
2π

λd
x

)
+ cos2

(
2π

λd
z

)]
Ĥcav = −~

[
∆c − U0 cos2

(
2π

λ
x

)]
â†yây.

(7.3)

The bare atomic Hamiltonian, Ĥat, describes 87Rb atom with mass M and momen-
tum p̂ = (p̂x + p̂z) moving in the 2D square attractive lattice potential with depth
V2D > 0. The bare energy of the cavity field, Ĥcav, is determined by the drive-cavity
detuning ∆c = ωd−ωc < 0, with ωc being the cavity resonance frequency. Addition-
ally, the presence of an atom dispersively shifts the cavity resonance [108], where
U0 = −2π × 56 Hz is the maximal dispersive shift at λd.

The light-matter interactions comprise scalar and vectorial contributions

ĤLM = αsÊ
(+) · Ê(−) − i αv

2F

(
Ê(+) × Ê(−)

)
· F̂

= ~ηs cos

(
2π

λd
x

)
cos

(
2π

λd
z

)
X̂ + ~ηv cos

(
2π

λd
x

)
cos

(
2π

λd
z

)
P̂ F̂z.

(7.4)

The scalar component couples the atomic motional degrees of freedom to the real

quadrature of the cavity field, X̂ =
(
ây + â†y

)
/
√

2. This gives rise to a dynamical

λd-periodic density modulation, which is independent of the atomic spin degree
of freedom. Concurrently, the vectorial component is mediated by the imaginary

quadrature of the cavity field, P̂ = i
(
â†y − ây

)
/
√

2, and gives rise to phase-shifted

λd-periodic modulations for atoms in the two spin states. This is due to F̂z |↑〉 =
+ |↑〉 and F̂z |↓〉 = − |↓〉, with F̂z being the z-component of the F = 1 atomic spin
operator F̂. The associated coupling strengths are ηs = η cos(φ) and ηv = ηξ sin(φ),
respectively, with the two-photon scattering rate defined as η =

√
2αsE0Ep/~ =

sgn(αs)
√

2|U0V2D|.
Importantly, both the two-photon coupling rate η and the relative contributions

of vectorial and scalar processes, ηv/ηs = ξ tan(φ), can be independently adjusted
by means of the TD lattice depth V2D and the polarization angle φ, respectively. As
illustrated in Fig. 7.1(b), a y-polarized (φ = 0) TD field exclusively induces scalar
light-matter coupling (ηv = 0), while in the limit of an x-polarized drive (φ = π/2),
only vectorial light-matter interactions prevail (ηs = 0).
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7.1.2 Mapping to an extended Bose-Hubbard Hamiltonian

We derive the many-body Hamiltonian for two-component Bose-Einstein conden-
sate. From Eq. (7.2), we obtain the many-body Hamiltonian in second quantization

ĤMB =

∫
Ψ̂†
(

p̂2

2m
+ V̂lat(x, z)

)
Ψ̂ dxdz −

∑
m∈{↑,↓}

µm

∫
Ψ̂†mΨ̂m dxdz

+
1

2

∑
m∈↑,↓

g2D,m

∫
Ψ†mΨ†mΨmΨm dxdz + g2D,↑↓

∫
Ψ†↑Ψ

†
↓Ψ↑Ψ↓ dxdz

+

∫
Ψ̂† cos(kx) cos(kz)

(
ηsX̂ + ηvP̂ F̂z

)
Ψ̂ dxdz

−
∫

Ψ̂†U0 cos(kx)2â†âΨ̂ dxdz −∆câ
†â,

(7.5)

where Ψ̂(x, z) = [Ψ̂↑(x, z), Ψ̂↓(x, z)]
T is the bosonic field operator associated with

the spin mixture. For each spin state m ∈ {|↑〉 , |↓〉}, we introduce the associ-
ated chemical potential µ↑(↓). The terms in the second line account for on-site
contact interactions. Closely following the experiments discussed in Ref. [65], we
consider an additional λy/2 = 670 nm/2 periodic deep optical lattice propagating
in the y-direction. This lattice confines the dynamics to the xz plane, effectively
modifying the strengths of contact interaction. This is accounted by integrating

over the corresponding localized Wannier function w
(y)
0 (y), see Ref. [319]. The con-

tact interaction strengths in Eq. (7.5) are given by g2D,m = 4πam
M

∫
|w(y)

0 (y)|4 dy and

g2D,↑↓ =
2πa↑↓
M

∫
|w(y)

0 (y)|4 dy for intra- and inter-spin species collisions, respectively.
Here, am and a↑↓ denote the corresponding s-wave scattering lengths.

For sufficiently deep lattice potentials [330], we can expand the many-body func-
tion in a localized basis consisting of Wannier functions the lowest energy band

Ψ̂m(x, z) =
∑
i

wi(x, z)b̂i,m, (7.6)

with wi(x, z) and b̂i,m representing the Wannier function localized at site i = (ix, iz)
and the corresponding bosonic annihilation operator for the spin state m. Consid-
ering only nearest-neighbor tunneling, we derive the following lattice Hamiltonian

ĤMB =− ~t
∑

m∈{↑,↓},〈i,j〉

(b̂†i,mb̂j,m + b̂†j,mb̂i,m) +
∑

m∈{↑,↓},i

~Um
2

n̂i,m(n̂i,m − 1) + ~U12

∑
i

n̂i,↑n̂i,↓

−
∑

m∈{↑,↓},i

µmn̂i,m − ~∆̃câ
†
yây + ~ηsM0Θ̂DX̂ + ~ηvM0Θ̂SP̂ ,

(7.7)

where 〈i, j〉 denotes a pair of neighbouring sites. The corresponding tunneling rate

~t =

∫
wi(x, z)

(
− 1

2m

(
∂2

∂2
x

+
∂2

∂2
y

)
+ Vlat(x, z)

)
wj(x, z) dxdz (7.8)
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is independent of the spin and tunneling direction, as the underlying square lattice
V̂lat(x, z) is spin-insensitive and symmetric along x and z. The intra- and inter-spin
contact interactions are given by

~Um = g2D,m

∫
|w0(x, z)|4 dxdz,

~U12 = g2D,↑↓

∫
|w0(x, z)|4 dxdz,

(7.9)

respectively. The scalar and vectorial components of light-matter interactions couple
to the operators

Θ̂D =
∑
i

(−1)|i| (n̂i,↑ + n̂i,↓) ,

Θ̂S =
∑
i

(−1)|i| (n̂i,↑ − n̂i,↓) ,
(7.10)

respectively. Finally, the presence of N atoms in the cavity yields a collective disper-
sive shift ∆̃c = (∆c − U0M1N) of the cavity resonance. The corresponding overlap
integrals are defined as

M0 =

∫
w0(x, z) cos(kx) cos(kz)w0(x, z) dxdz,

M1 =

∫
w0(x, z) cos(kx)2w0(x, z) dxdz.

(7.11)

Extended Bose-Hubbard model

To obtain an atom-only description, we adiabatically eliminate the cavity field [122].
This is valid for the typical parameters of our experiment, as the cavity losses κ =

2π × 1.25 MHz and detuning
∣∣∣∆̃c

∣∣∣ & 2π × 5 MHz significantly exceed the atomic

energy scales (t, Um, U12), which are all on the order of . 2π × 5 kHz [108]. We set
the corresponding Heisenberg equation of motion to zero and obtain

d

dt
ây = i∆̃cây − i

M0√
2

(
ηsΘ̂D + iηvΘ̂S

)
− κây

!
= 0

⇒ ây =
M0√

2

1

∆̃c + iκ

(
ηsΘ̂D + iηvΘ̂S

)
.

(7.12)

By inserting this expression into the many-body Hamiltonian in Eq. (7.7), we
obtain an effective extended Bose-Hubbard model

Ĥ = ĤBH + ĤLM, with

ĤBH = −~t
∑

m,<i,j>

(b̂†i,mb̂j,m + h.c.) +
~U
2

∑
i,m

n̂i,m (n̂i,m − 1) + ~U12

∑
i

n̂i,↑n̂i,↓,

ĤLM = −~Us
K

Θ̂2
D − ~

Uv
K

Θ̂2
S .

(7.13)
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The first term, ĤBH, describes a two-component Bose-Hubbard model with tunneling
rate t > 0 and repulsive intra- and inter-spin contact interactions, U > 0 and
U12 > 0. We assume the former to be identical for |↑〉 and |↓〉, as is the case for 87Rb
in the F = 1 manifold. As we will operate at fixed unity filling, we set the chemical
potential to µ↑ = µ↓ = 0.

The second term, ĤLM, consists of spin-independent (‘scalar’) and spin-dependent
(‘vectorial’) global-range interactions that are mediated by the intra-cavity field. The
former are associated with the operator Θ̂2

D; its expectation value is maximized if
the atoms arrange in spin-independent density modulation with all atoms occupying
either even or odd lattice sites, cf. Eq. (7.10). The latter are associated with the
operator Θ̂2

S [cf Eq. (7.10)]; its expectation value is in turn maximized for a global
antiferromagnetic ordering, with all atoms in |↑〉 occupying even sites and all atoms
in |↓〉 occupying odd sites, or vice-versa. The corresponding interaction strengths
Us = UL cos2(φ) and Uv = ULξ

2 sin2(φ) can be tuned with respect to each other
via the TD polarization angle φ. The overall interaction strength of global-range
interactions is given by

UL
K

= − M2
0 ∆̃c

κ2 + ∆̃2
c

η2, (7.14)

for a system comprising K lattice sites, and can be experimentally controlled by
adjusting the effective cavity detuning ∆̃c.

The extended Bose-Hubbard Hamiltonian in Eq. (7.13) possess several symme-
tries. First, it is invariant under a global spin-flip b̂i,↑ → b̂i,↓, and two global con-

tinuous phase transformations, b̂i,m → eiφm b̂i,m for each spin state m ∈ {↑, ↓}.
Furthermore, the scalar and vectorial global-range interactions introduce an addi-
tional Z2-symmetry associated to the two sublattices defined by even and odd sites.
Henceforth, the Hamiltonian has a U(1)× U(1)× Z2 × Z2-symmetry.

7.2 Ground state phase diagram

We discuss the mean-field phase diagram of the extended Bose-Hubbard model de-
rived in Eq. (7.13). In section 7.2.1, we introduce a Gutzwiller mean-field ansatz
and define the corresponding order parameters of the system. The phase diagrams
are calculated in section 7.2.2 for the relevant case of unity filling. Remarkably, we
observe an emergent antiferromagnetic Mott insulator for arbitrarily small photon-
mediated interactions, which arises due to their cooperation with repulsive contact
interactions. The corresponding calculations were carried out by Nishant Dogra and
Leon Carl.

7.2.1 Gutzwiller ansatz and order parameters

To explore the zero-temperature phase diagram, we consider Gutzwiller mean-field
approach at fixed lattice fillings [331–333]. This is well justified for our experiment,
as we typically operate at large particle numbers around N ≈ 104 [65, 78]. The
extended Bose-Hubbard Hamiltonian in Eq. (7.13) remains invariant under a dis-
placement by λd both in x and z directions. Hence, we consider a translationally
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SF

SS

AF-SS

CDW

AFM

Figure 7.3: Mean-field order parameters and ground-state phases. The order
parameters θD and θS characterize the global density and spin modulation, respectively.
The degree of superfluidity in the system is quantified by ψ. When the tunneling rates
t dominate over the contact interactions U , the system occupies a superfluid phase (SF)
with ψ > 0. As the cavity-mediated scalar interactions (Us/U) or vectorial interactions
(Uv/U) are increased, we expect lattice supersolid (SS) or antiferromagnetic lattice
supersolid (AF-SS) phases, respectively. They are characterized by θD > 0 and θS > 0.
Decreasing t/U leads to insulating configurations (ψ = 0), with the system occupying
either a charge density wave (CDW) or an antiferromagnetic Mott insulator (AFM).
The arrows indicate the two spin states, while the circles represent the spin-insensitive
density configurations.

invariant ground state on each of the even (e) and odd (o) sublattices,

|ΨG〉 =

K/2∏
e=0

K/2∏
o=0

|φe〉 |φo〉 . (7.15)

For each site i ∈ {e, o}, we introduce the corresponding wavefunction

|φi〉 =

nmax∑
n=0

mmax∑
m=0

ai(n,m) |n,m〉i (7.16)

where |n,m〉i =
(b̂†i,↑)

n

√
n!

(b̂†i,↓)
m

√
m!
|0〉 is the local Fock state with n ≤ nmax atoms in

the spin state |↑〉 and m ≤ mmax atoms in state |↓〉 on a single site. Within our
Gutzwiller ansatz, the real coefficients ae ≡ (ae(n,m))n,m and ao ≡ (ao(n,m))n,m
are optimized to minimize the effective mean-field energy density

E(ae,ao) =
〈ΨG|Ĥ|ΨG〉

K/2
, (7.17)

with K being the total number of lattice sites.

Mean-field order parameters

In order to diagnose the different phases of our system, we introduce various mean-
field order parameters, see Fig. 3.4. First, we define average superfluid order param-
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eter as

ψ =
1

4

∑
i,m

ψi,m =
1

4

∑
i,m

| 〈ΨG|b̂†i,m|ΨG〉 |, (7.18)

with m ∈ {↑, ↓} and i ∈ {e, o}. This order parameter differentiates between insulat-
ing (ψ = 0) and phase-coherent superfluid phases (ψ > 0). Starting from Eq. (7.10),
we introduce density and spin order parameters

θD = | 〈ΨG|(n̂e,↑ + n̂e,↓)− (n̂o,↑ + n̂o,↓)|ΨG〉 |,
θS = | 〈ΨG|(n̂e,↑ − n̂e,↓)− (n̂o,↑ − n̂o,↓)|ΨG〉 |.

(7.19)

The operator n̂i,m = b̂†i,mb̂i,m counts the number of particles in the site i ∈ {e, o}
with m ∈ {↑, ↓}. As illustrated in Fig. 7.3, the scalar global-range interactions Us(φ)
favor a finite density order parameter (θD > 0); this order parameter indicates global
occupation imbalance between even and odd lattice sites. Concurrently, the vectorial
interactions Uv(φ) favor a finite spin order parameter (θS > 0). It is associated with
the atoms in the spin state |↑〉 (|↓〉) preferably occupying even (odd) lattice sites or
vice versa, signaling global antiferromagnetic ordering in our system [cf. Fig. 7.3].

Numerical methods

To calculate the phase diagram of the system, we consider the Gutzwiller ansatz
introduced in Eq. (7.15) and truncate the local occupation per spin state to nmax =
mmax = 3. Using the built-in MATLAB function fmincon, we minimize the energy
functional in Eq. (7.17) under the constraint of fixed density for each spin state.
This results in a total of 28 variational parameters. Through empirical analysis,
we find that density and spin orders do not coexist in our system, allowing us to
choose simpler ansatzes for the corresponding ground-state phases. This reduces the
number optimization parameters to 15-18 depending on the phase of the system. A
detailed discussion of this approach can be found in Ref. [92].

7.2.2 Phase diagram at unity filling

We calculate the phase diagram of the system for a balanced spin mixture at unity
filling, by imposing the constraint

ρm =
Nm

(K/2)
= 〈φe|n̂e,m|φe〉+ 〈φo|n̂o,m|φo〉 = 1, (7.20)

with m = {↑, ↓}. The choice to operate at fixed density is motivated by cold-
atom experiments, although a qualitatively similar phase diagram arises in a grand
canonical ensemble [325].

For clarity, we consider equal intra- and inter-spin contact interactions (U = U12),
which is a reasonable approximation for 87Rb atoms in the F = 1 manifold with
U12/U ≈ 1.0093 [334]. In Fig. 7.4, we present the different mean-field order param-
eters in the (zt/U, UL/U) parameter space, where z = 4 is the number of nearest
neighbors in the square lattice. We consider two qualitatively different scenarios:
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Figure 7.4: Mean-field phase diagrams at unity filling, displaying the order pa-
rameters ψ, θD, and θS in the (zt/U , UL/U) parameter space. We consider two represen-
tative ratios between the scalar and vectorial global-range interactions: Us/Uv ≈ 4.64
(a, b) and Us/Uv ≈ 0.33 (c, d). The superfluid order parameter ψ (a, c) indicates the
transition between insulating and phase-coherent configurations. The density θD and
spin order parameter θS (b, d) characterize the globally ordered phases arising from
scalar and vectorial interactions, respectively. (e-g) Cuts along the phase diagrams for
Us/Uv ≈ 4.64 at constant UL/U = 0.59 (e) and UL/U = 1.41 (f), and for Us/Uv ≈ 0.33
at UL/U = 1.3 (g), as indicated by the horizontal lines in (a, c). In the insulating
regime, we identify an antiferromagnetic Mott insulator, which is stabilized for arbi-
trarily small values of UL/U . The solid lines in (a, c) are perturbative estimations,
which accurately capture second-order transitions in our system, cf. Ref. [92].

one with dominant scalar interactions Us/Uv ≈ 4.64 [Fig. 7.4(a,b)] and another
with larger vectorial interactions Us/Uv ≈ 0.33 [Fig. 7.4(c,d)]. For our experimental
parameters, they can be achieved by choosing TD polarization angles of φ = π/4
and φ = 5π/12, respectively. The different mean-field phases are also schematically
depicted in Fig. 7.3.

For Us > Uv [Fig. 7.4(a,b)], we observe two distinct Mott insulating phases (ψ = 0)
at low tunneling rates zt/U : for large global-range interactions UL, we obtain a
spin-degenerate charge density wave (CDW), with θD > 0 and θS = 0. For small
values of UL, the system arranges in an antiferromagnetic Mott insulator (AFM),
with θS > 0 and θD = 0. Remarkably, the system favors an AFM for arbitrarily
small vectorial interactions Uv, which we attribute to their interplay with the contact
interactions U . The latter prevent the formation of a CDW and overcome the kinetic
energy cost to form a unity filling Mott insulator (MI); in this regime, the AFM
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configuration is favored among all possible MIs by the global-range interactions Uv.
Additionally, we identify a discontinuity in θD and θS when modifying UL/U at fixed
zt/U , signaling a first order AFM– CDW phase transition around UL/U ≈ 1.27. As
tunneling increases, the system becomes superfluid (ψ > 0). We observe a first-order
AFM-SF phase transition at small UL/U , signaled by a discontinuous jump in the
corresponding order parameters, cf. horizontal cut in Fig. 7.4(e). For large UL,
the system can simultaneously exhibit superfluidity (φ > 0) and density ordering
(θD > 0), which we denote as a lattice supersolid (SS) phase. When increasing
the tunneling rate zt at large UL/U , we observe a continuous second-order SS-SF
transition, as shown by the cut in Fig 7.4(f).

In the regime Uv > Us [Fig. 7.4(c,d)], the system exhibits solely spin ordered
phases with θS > 0, and θD = 0, as the vectorial global-range and the contact
interactions dominate over their scalar counterpart. For small global-range interac-
tions UL/U < 0.8, we identify a first-order AFM– SF phase transition, signaled by
a discontinuous jump of ψ and θS . For larger values of UL, we observe a second-
order transition from AFM to a spin-ordered superfluid phase, which we denote as
antiferromagnetic lattice supersolid phase (AF-SS) [Fig. 7.4(g)]. The second-order
phase transitions from AFM to AF-SS and CDW to SS are supported by pertur-
bative estimations [335], cf. black lines in Fig. 7.4(a,c) and Ref. [92] for detailed
calculations.

As the global-range interactions couple every pair of lattice sites, they are captured
well by our mean-field Gutzwiller ansatz [336]. However, we expect the method to
progressively lose validity as the tunneling is increased, since the local-basis trunca-
tion (nmax = mmax = 3) disregards large local occupations which are present deep in
the superfluid regime [333]. This is reflected by the saturation of the corresponding
order parameter ψ in Figs. 7.4(e-g). In the Supplemental Material of Ref. [92], we
further validate our results using two complementary approaches. First, we consider
a self-consistent mean-field method in a grand canonical ensemble [337] and obtain
a comparable ground-state phases. Second, the qualitative behavior of the different
transitions observed in Figs. 7.4(e-g) also agrees with exact diagonalization calcula-
tions, which are however limited to small system sizes with N = K ≤ 10 due to the
increasing computational cost.

7.3 Excitations above the antiferromagnetic Mott insulator

In this section, we investigate the low-energy excitations of the system above the
antiferromagnetic Mott insulator state. In section 7.3.2, we examine the excitation
branches in the zero-tunneling limit: in addition to the well-known particle-hole
excitations in Hubbard systems, we also identify a tunable spin-exchange branch.
Furthermore, in section 7.3.2, we present the results of perturbative calculations at
finite tunneling, which showcase the softening of the different excitation branches.
These calculations were carried out by Tena Dubcek.
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Figure 7.5: Excitations on top of the antiferromagnetic Mott insulator
(AFM). (a) Unit cell of the λd-periodic AFM ground state containing two atoms
(red box) and spanned by the unit vectors a1 and a2. (b) The excitations in the
zero-tunneling limit involve two neighboring unit cells and can be grouped into two
particle-hole branches PH1 (blue) and PH2 (green), as well as a gapped spin-exchange
excitation SE (yellow). The gap of the latter can be independently controlled by ad-
justing Uv. (c) Delocalization of the two components (quasiparticles) of each excitation
branch at finite tunneling. (d) Exemplary band structure for t/U = Uv/U = 0.05 at
quasimomenta qx = −qz. The dashed lines indicate the bands when mixing of the
particle-like components is considered, cf. Ref. [92].

7.3.1 Excitation branches in the zero-tunneling limit

The low-energy excitations of strongly correlated many-body systems provide im-
portant insights their microscopic behavior, as they define their dynamical response
to external forces and drive transitions between different macroscopic ground-state
phases. In the previous section, we identified an emergent antiferromagnetic Mott
insulator (AFM), stabilized by the interplay of contact and global-range interactions.
Here, we study the excitations on top of the AFM phase which have no counterpart
neither in single-component BH models [65, 319] nor in bulk spinor Bose gases [78].

Due to its underlying periodicity, we can define the AFM ground state and the
different elementary excitations on a square superlattice, with unit vectors a1 =
(ex + ez)λd/2 and a2 = (ex − ez)λd/2. As illustrated in Fig. 7.5(a), the unit cell
associated with an AFM ground state contains two spins, either at [R↑ = 0, R↓ =
λd/2ex] or [R↓ = 0, R↑ = λd/2ex], depending on the way the global site symmetry is
broken. In this framework, the excitations on top of the AFM can be understood as
two correlated quasiparticles, which are always created in pairs within two adjacent
unit cells.

In the limit of vanishing tunneling, zt/U → 0 , we identify three different low-
energy branches, see Fig. 7.5(b). We identify two first particle-hole branches PH1
and PH2, which are composed by a particle (P) and hole (H) quasiparticle created in
lattice sites with the same and opposite parity, respectively. For clarity, we consider
the case of vanishing scalar interactions (Us = 0). By evaluating the many-body
Hamiltonian in Eq. (7.13) for t = 0, we obtain the energy gaps of these excitations

∆EPH1 = ~U,
∆EPH2 = ~(U + 4Uv).

(7.21)

In addition, we identify a spin-exchange (SE) excitation, which involves a pairwise
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exchange of two atoms with different spins occupying neighboring lattice sites, as
shown in Fig. 7.5(b). This excitation breaks the global antiferromagnetic order in
the system and is associated with an energy gap of

∆ESE = 8~Uv (7.22)

for t = 0. Importantly, the energy gap of the SE excitation can be independently
controlled with respect to the gaps of the particle-hole excitations (PH1 and PH2)
by adjusting the strength of the vectorial long-range interactions Uv.

7.3.2 Spectrum at finite tunneling rates

At finite tunneling rates, the quasiparticles forming each excitation branch (such as
particles and holes) can independently tunnel and delocalize within the lattice, shift-
ing their energies compared to the t = 0 limit. This phenomenon is schematically
depicted in Fig. 7.5(c) for the different excitation branches.

Using a perturbative approach, we derive an effective excitation Hamiltonian

Heff =
∑
n′,n

∑
β

hβnn′
(
b̂βn′
)†
b̂βn + h.c., (7.23)

describing the delocalization of the different qusiparticles β within doublets of adja-
cent spin sites n. The corresponding annihilation operators are b̂βn. The coefficients
hβnn′ characterize the effective tunneling strengths (n′ 6= n) and energies (n′ = n)
of the quasiparticles. They are obtained via first-order perturbation theory, by in-
cluding up to fourth-order tunneling processes between nearest and next-nearest
neighbors. The detailed calculations can be found in the Supplemental Material of
Ref. [92]. Our approach is quantitatively valid, as long as the tunneling rate t is
small compared to the energy gaps between the initial/final states and each of the
adiabatically eliminated virtual states, i.e., for t� 4Uv and t� U .

We diagonalize the excitation Hamiltonian in the reciprocal quasimomentum space
(qx, qz). In Fig. 7.5(d), we present a representative band structure at finite tunneling
t/U = 0.05 for commensurate quasimomenta qx = −qz. The bandwidth of the
SE branches (yellow curve) scales as ∼ t4, resulting in an extremely flat band in
the considered regime, t ≈ Uv << U . The bandwidths of the two PH branches
scale as ∼ t2 (blue and green curves), and increase if weak mixing through a first-
order tunneling process is considered (dashed lines). All these bands are eight times
degenerate, four times due to the C4 symmetry invariance of the two quasiparticles
(e.g. particle left, right, above or below the hole) and two times due to the underlying
Z2 symmetry of the AFM phase.

From our perturbative calculations, we find that the SE excitation energy obtains
a second-order leading correction at finite tunneling. At vanishing quasimomenta
qx = qz = 0 (long-wave limit), we obtain

∆ESE(t)

~U
= 8

[
Uv
U
− 2(3− 4Uv/U)

(1− 4Uv/U)(1 + 4Uv/U)

(
t

U

)2
]
. (7.24)
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Specifically, this equation indicates that the SE branch progressively softens with
increasing tunneling rates (∆ESE(t > 0) < ∆ESE(0)), provided the global-range
interactions are sufficiently small (Uv/U < 1/4).

In future projects, it would be particularly interesting to explore the interplay
between the spin-exchange excitations and the different macroscopic phases of the
system. In particular, we should investigate whether a complete (partial) softening
of the SE branch in the vicinity of the superfluid phase is the microscopic mechanism
underlying a second (first) order AF-SS to SF (AFM to SF) transition observed in
Fig. 7.4(d). However, due to the large tunneling rates in this regime (t/U & 0.5), it
would be necessary to consider higher-order interaction terms in Eq. (7.23), which
can give rise to additional mixing and level crossing between the different excitation
branches.

7.4 Experimental feasibility and challenges

Here, we discuss the technical details regarding a potential experimental implementa-
tion of the extended Bose-Hubbard model discussed in this chapter. In section 7.4.1,
we examine how the different energy scales of the system can be independently con-
trolled in the experiment and outline the methods to infer the various order param-
eters by combining photonic and atomic observables. In section 7.4.2, we address
various technical challenges associated with the inhomogeneous density distribution
of the trapped BEC and the immiscibility of the two spin components. We propose a
feasible potential experimental protocol to overcome potential limitations and access
the different ground-state phases in our experiment.

7.4.1 Experimental parameters and observables

The proposal discussed in this chapter can be directly implemented and explored in
our experiment, by leveraging on the experimental procedures and observables devel-
oped in previous works [65, 67, 78]. Specifically, we can prepare a balanced mixture of
atoms in the |F = 1,m = +1〉 and |F = 1,m = −1〉 Zeeman sublevels [78] by means
of radio-frequency spin rotations starting from a BEC in the state |F = 1,m = 0〉,
cf. section 3.2.3. As shown in Fig. 7.6(a), we can proceed by confining the spin mix-
ture in a deep optical lattice (Vy & 25 Erec,y) with a periodicity of λy/2 = 670 nm/2
along the y-direction [65]. Thereby, we split the BEC in a stack of independent two-
dimensional pancakes in the xz-plane, which solely interacting via cavity-mediated
global range interactions. To initialize the different phases of the system, we can
then adiabatically increase the depth V2D of the square optical lattice in the xz plane
at fixed cavity detunings ∆̃c.

Controlling the different energy scales of the system

We can independently control the relevant energy scales of the extended Bose-
Hubbard Hamiltonian derived in Eq. (7.13) by adjusting complementary experi-
mental parameters. In a single experimental realization, we can control the ratio
between the tunneling and contact interactions by modifying the lattice depth V2D.
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Figure 7.6: Towards experimental implementation. (a) Proposed experimental
scheme. The two-component BEC is confined in a stack of two-dimensional pancakes in
the xz plane using an auxiliary λy/2-periodic optical lattice. To initialize the dynamics,
we increase the depth V2D of a λd/2-periodic square lattice and monitor the leaking
cavity field with our heterodyne (HD) detection. (b) Unity filling phase diagram in the
experimental parameter space (V2D, ∆̃c) for Us/Uv = 4.64 (φ = π/4) and N = 20000
atoms. We plot the corresponding density (θD) and spin order parameters (θS) in
(b1), and the superfluid order parameter ψ in (b2). The gray arrows in (b1) indicate a
proposed two-step protocol (paths I and II) to access the CDW and AFM phases in a
single experimental realization. For the abbreviations, see Fig. 7.3.

In the limit of deep lattices V2D � Erec, we can approximate the Wannier functions
in Eqs. (7.8) and (7.9) as localized Gaussian wave packets [338], and obtain

t

U
=

√
2

asky

(
V2D

Erec

)1/4( Vy
Erec,y

)−1/4

e−
√

2V2D/Erec , (7.25)

with as and ky = 2π/λy being the s-wave scattering length and the wavenumber
associated with the auxiliary lattice in y direction. As expected, the ration t/U
is reduced by increasing V2D, facilitating access to superfluid-Mott insulator phase
transition [39].

Furthermore, for any given value of V2D, we can independently tune the overall
strength of cavity-mediated interactions UL by modifying the effective cavity de-
tuning ∆̃c, see Eq. (7.14). Specifically, they scale as UL ∝ 1/∆̃c for |∆̃c| � κ.
Finally, we can control the relative strength of scalar and vectorial interactions,
Us = UL cos2(φ) and Uv = ULξ

2 sin2(φ) by changing the TD polarization angle φ at
the beginning of each experimental realization.

To exemplify the high degree of experimental tunability, we calculate the mean-
field phase diagram for N = 20000 atoms at unity filling in the (V2D, ∆̃c) parameter
space for φ = π/4 (Us = 4.64Uv). In Figs. 7.6(b1) and (b2), we present the corre-
sponding density and spin order parameters (θD and θS), as well as the superfluid
order parameter (ψ). At large negative cavity detunings ∆̃c, we observe a superfluid-
insulator phase transition around V2D & 6 Erec [Fig. 7.6(b2)], accompanied by the
formation of an antiferromagnetic Mott insulator (AFM) with θS > 0 [Fig. 7.6(b1)].
As ∆c is decreased (UL increased), we observe emergent density-ordered lattice su-
persolid (SS) and charge-density-wave (CDW) phases with θD > 0.
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Experimental observables

The different ground-state phases can be detected by a combination of atomic and
photonic observables in our experiment. As discussed in see section 3.2.2, we can
measure the momentum-space distribution of the atoms via absorption imaging after
free time-of-flight expansion. Specifically, we can count the number of coherent
atoms Ncoh in the different momentum peaks following an analogous evaluation to
Fig. 4.6(b) in chapter 4. The superfluid order parameter can be then estimated as
ψ ≈

√
Ncoh/N [196].

Additionally, we can directly assess density and spin ordering in our system by
leveraging on our heterodyne detection of the leaking cavity field, cf. section 3.2.1.
By eliminating the y-polarized cavity field using Eq. (7.12), we obtain the following
relations for the density and spin order parameters

θD =
〈Θ̂D〉
N

≈ ∆̃2
c + κ2

ηsNM0∆̃c

Re (〈ây〉) ,

θS =
〈Θ̂S〉
N
≈ ∆̃2

c + κ2

ηvNM0∆̃c

Im (〈ây〉) ,
(7.26)

for |∆̃c| � κ. From Eq. (7.26), we conclude that the density and spin order pa-
rameters are directly proportional to the real and imaginary quadratures of the
y-polarized cavity field, θD ∝ Re(〈ây〉) and θS ∝ Im(〈ây〉), respectively.

This relation allows us to discern spin- and density-ordered superradiant phases in
single experimental realizations. To probe these phases, we propose to first increase
the lattice depth V2D at small cavity detunings ∆̃c to access the CDW phase (ramp
I), see Fig. 7.6(b1). Using our heterodyne detection, we can measure the phase φ
of the leaking cavity field. In a second step (ramp II), we can then access the AFM
phase by increasing ∆̃c at fixed values of V2D. From Eq. (7.26), we expect the first
order CDW-AFM transition to be signaled by an abrupt jump of the phase of the
cavity field to either φ + π/2 or φ − π/2, depending on the Z2-symmetry broken
configuration. A similar technique has been successfully employed in Ref. [339] to
diagnose the discontinuous phase transition between two emergent centro-symmetric
crystals in a Bose-Einstein condensate coupled to an optical cavity.

7.4.2 Experimental challenges and future directions

Inhomogeneous density distributions

The calculations performed in this chapter were carried out for an idealized exper-
imental system with homogeneous density distributions at unity filling. However,
the harmonically trapped BEC in our experiment inherently follows a parabolic
Thomas-Fermi distribution [111]. For our typical trap frequencies [ωhx, ωhy, ωhz] =
2π× [200, 30, 180] Hz and atom numbers N = 20000, we calculate the site occupa-
tion n(x, y) of the central pancake layer in the xy plane and present it in Fig. 7.7(a).
We observe a rapidly varying Thomas-Fermi distribution extending over ∼ 15 sites
in each direction, with the occupation peaking around n(0, 0) ≈ 9.5 at the central
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Figure 7.7: Spatial inhomogeneities and immiscibility. (a) Thomas-Fermi distri-
bution of the central 2D pancake (y = 0) for N = 20000 atoms and typical trap frequen-
cies [ωhx, ωhy, ωhz] = 2π×[200, 30, 180] Hz. The density distribution is integrated within
λd/2× λd/2 regions to obtain the average site occupation n(x, y), which peaks around
n(0, 0) ≈ 9.5 at the trap center. (b, c) Mean-field phase diagrams at unity filling for dif-
ferent ratios of inter- and intra-spin interactions, U12/U = 0.9 (b) and U12/U = 1.1 (c).
As in Fig. 7.4, we consider Us/Uv = 4.64 (b1, c1) and Us/Uv = 0.33 (b2, c2). For the ex-
perimentally relevant case of U12 > U (c), the two spin components become immiscible,
giving rise to phase-separated (PS) phases in SF, SS, and CDW configurations. Addi-
tionally, the global-range interactions introduce an extended instability region within
the AF-SS phase.

lattice site1.
For a conventional Bose-Hubbard system, featuring solely tunneling and contact

interactions, the spatial inhomogeneities can be considered within a local-density
approximation. Within this approach, we can assume a spatially varying chemi-
cal potential µ(x, z) to capture the phases in regions with different average occu-
pations [36, 37]. However, cavity-mediated global-range interactions invalidate the
local-density approximation, as they directly couple regions of the lattice with differ-
ent average occupations. In a spinless extended Bose-Hubbard system, the interplay
between UL and the harmonic trapping potential can give rise to coexistence of Mott
insulating (MI) and CDW phases, as discussed in Ref. [67]. In an intuitive picture,
the system has to pay an additional energy cost to arrange the atoms away from
the trap center, which has to be compensated by the energy gain associated with
the formation of a CDW. In a spin mixture, we conjecture that a similar mechanism

1In the experiments discussed in Ref. [65], the peak occupation was reduced to n(0, 0) ≈ 2.8 atoms
by relaxing the harmonic confinement and magnetically levitating the BEC in the Zeeman sublevel
m = −1. However, this approach is not feasible for our proposal as a homogeneous spin mixture
in m = ±1 cannot be magnetically levitated. An alternative approach to reduce both n(0, 0) and
spatial inhomogeneities, could be to confine the BEC in a spin-independent optical box trap at the
center of the cavity [340].
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might give rise to coexistence between the different insulating phases, such as the
AFM, CDW and MI.

Immiscibility of the spin mixture

In the phase diagrams presented in section 7.2, we explicitly assume equal inter-
(U12) and intra-spin (U) contact interactions. This assumption is only approximately
valid for a spin mixture of 87Rb atoms in the |F = 1,m = +1〉 and |F = 1,m = −1〉
Zeeman sublevels, which features U12/U = a↑↓/as ≈ 1.0093 [334, 341]. Indeed, due
to U12 > U > 0, we expect that the m = ±1 mixture becomes immiscible and give
rise to fully phase separated states [342–344]. These states are characterized by the
two spin components occupying opposite regions of the trapping potentials, as first
observed in Ref. [345].

To incorporate phase separation in our calculations, we modify the Gutzwiller
ansatz presented in Eq. (7.15). Specifically, the system is divided into halves (A,B)
which have higher spin-up (ρA↑ > ρA↓ ) or spin-down densities (ρB↓ > ρB↑ ), respectively.

We further impose total atom number conservation in each half (ρ ≡ ρA,B↑ +ρA,B↓ = 2)
to ensure unity filling. Besides homogeneous and phase separated configurations
(PS) [346], our system can also exhibit phase instabilities (PI) due to the interplay
of short- and global-range interactions [322]. Such PI are signaled by a negative
compressibility, ∂ρµ < 0 [347], where µ(ρ) = ∂ρE(ρ) is the chemical potential as
a function of the density ρ. We calculate the derivative numerically by using the
energy densities E(ρ) extracted from Eq. (7.17) and allowing for density variations.
A detailed discussion of this approach can be found in Ref. [92].

In Figs. 7.7(b,c), we present the phase diagrams for different inter- to intra-spin in-
teraction ratios U12/U , and scalar to vectorial global-range interaction ratios Us/Uv
at unity filling:

• The phase diagrams for U12 < U [Figs. 7.7(b)] are qualitatively similar to
the uniform mixture at U12/U = 1 discussed in Fig. 7.4. For dominating
scalar interactions [Figs. 7.7(b1)], we find extended SF, AFM, CDW and SS
phases. Additionally, we observe a scattered region of PI in the SS phase.
Our observations of PI are qualitatively different from the results for spinless
systems [322, 347], which predict stable SS phases at integer filling in 2D
systems. Meanwhile, for dominating vectorial interactions [Figs. 7.7(b2)], we
find extended regions of PI in the AF-SS phase.

• When considering stronger inter-spin interactions, U12 > U , several fully phase
separated (PS) ground-state configurations arise, cf. Figs. 7.7(c). For domi-
nating scalar interactions [Fig. 7.7(c1)], we observe a fully PS CDW and PS
SS. Moreover, for larger vectorial interactions [Fig. 7.7(c2)], we also observe
shrinkage of the AF-SS region with increasing U12/U , explained by the growing
local cost of double site occupation with atoms of opposite spin. Additionally,
we find a fully PS SF for all Us/Uv ratios.

We note here a limitation of our numerical simulations. The identification of the
different phases relies on minimization in a high-dimensional parameter space. This
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can lead to spurious solutions, such as the scattered instability points in Fig. 7.7(b1)
and the irregular phase boundaries in Figs. 7.7(b2,c2).

Towards experimental implementations

In our experiment, the m = ±1 spin mixture can be readily initialized in a shallow
two-dimensional lattice (V2D . 5 Erec), giving rise to a superfluid phase. Due to
the m = ±1 immiscibility and the large tunneling rates, we expect the atoms to
arrange themselves in a phase separated superfluid (PS SF) configuration, as shown
in Figs. 7.7(c). Phase separation can be particularly detrimental for the experimental
observation of spin-ordered phases. For the protocol (gray arrows) suggested in
Fig. 7.6(b1), the system would be prepared in a PS CDW, with the atoms in m = +1
and m = −1 occupying opposite regions of the trap. When ramping then the cavity
detuning towards the AFM phase, we expect the system to remain trapped in a
metastable PS CDW phase [67], as the system is in an insulating configuration and
multiple hopping events are required to rearrange the atoms towards a magnetically
ordered AFM.

To overcome this potential limitation and study the AFM-CDW phase transition,
we propose a complementary experimental protocol. Initially, we create a Mott
insulator state in the m = 0 Zeeman sublevel by increasing the lattice depths V2D

while maintaining large cavity detunings ∆̃c. Then, we employ a resonant radio
frequency pulse [78] to prepare a homogeneous m = ±1 mixture within the lattice.
As tunneling is suppressed deep in the insulating regime, we expect to access the
AFM phase before the atoms in m = ±1 significantly separate. Finally, we can probe
the AFM-CDW transition by adiabatically ramping the cavity detuning towards
∆̃c → 0.

7.5 Discussion and outlook

In this chapter, we theoretically investigated an experimentally feasible two-component
spin Bose-Hubbard model, featuring tunable vectorial and scalar cavity-assisted
global-range interactions. Employing a Gutzwiller ansatz at unity filling, we ob-
tained a rich phase diagram showcasing density- and spin-modulated phases, both
in superfluid and insulating regimes. Notably, we identified an emergent antiferro-
magnetic Mott insulator (AFM) that is stabilized even for arbitrarily small vectorial
interactions, owing to their interplay with repulsive contact interactions. Further-
more, we investigated the low-lying excitations above the AFM phase and identified
a spin-exchange branch with an independently tunable energy gap. At finite tunnel-
ing strengths, the different excitation branches delocalize in the lattice, which was
examined using an effective perturbative Hamiltonian. To gain deeper insights into
the mechanisms underlying the various phase transitions of our system, future in-
vestigations could incorporate higher-order quasiparticle interactions in the effective
theory.

The different ground-state phases can be readily detected in our experiment by
combining cavity field heterodyne detection and time-of-flight absorption imaging,
as the density- and spin-modulated phases couple to orthogonal quadratures of the
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cavity field. The larger inter-spin contact interactions for 87Rb atoms in the F =
1 manifold give rise to phase separated superfluid and density-modulated phases,
which pose additional challenges to the experimental protocols required to access
the magnetically ordered AFM and AF-SS phases.

As a direct extension, it would be interesting to systematically investigate the first-
order CDW-AFM transition. Two key questions there are the lifetime and decay of
metastable states [67] and the spread of correlated quasiparticle excitations, which
might exhibit an unbounded velocity due to global-range interactions [348, 349].
Moreover, regions of phase coexistence could arise when considering the harmonic
trapping potential [316, 321]. In the absence of optical lattices, cavity dissipation
directly couples the density- and spin-modulated states, leading to chiral instabilities
and limit cycles [108, 350, 351]. Our lattice system offers experimentally tunable
access to the boundary between density- and spin-modulated insulating phases, and
can help clarify the fate of these instabilities in the Hubbard regime. This could
provide deeper insights into non-Hermitian dynamics in strongly correlated quantum
systems. Finally, the inclusion of spin-changing processes, such as cavity-mediated
Raman transitions [89, 90], can introduce another competing energy scale in the
system and give rise to exotic magnetic phases like spin-density waves or chiral
states [76].
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Throughout the course of this dissertation, we successfully harnessed vectorial atom-
light interactions to induce cavity-assisted Raman transitions in a degenerate Bose
gas. This approach proved to be a rich experimental playground for exploring emer-
gent spin dynamics induced by superradiant Raman scattering. We developed sev-
eral experimental schemes to selectively address well-defined external and internal
modes of a Bose-Einstein condensate (BEC) and monitor the emergent phases and
microscopic dynamics through complementary measurements of the cavity field and
the atomic density distribution. We conducted three experimental projects, demon-
strating our ability to control dissipative and coherent dynamics in our system.

In the first project, we realized a Dicke superradiant phase transition induced
by cavity-assisted Raman transitions. By independently controlling the co- and
counter-rotating interactions, we observed a dissipation-induced phase and a discon-
tinuous superradiant transition in an extended bistability regime. The underlying
mechanism is a collective decay of the light-matter excitations, which we resolved
by probing the cavity spectrum. In the second project, we moved beyond Dicke
physics and engineered dynamical tunneling in a synthetic lattice in momentum
space. Collective hopping is implemented via superradiant Raman scattering in a
non-Hermitian setting. By employing frequency-resolved measurements of the leak-
ing cavity field, we locally resolved individual tunneling events . Our results highlight
the cavity field spectrum as a suitable observable for monitoring collective excitations
and out-of-equilibrium dynamics in real time, and in a non-destructive fashion. In
the final experimental project, we engineered spin- and momentum-correlated atom
pairs through the exchange of virtual cavity photons. We observed coherent pair
oscillations within tens of microseconds and demonstrated the collective character of
the dynamics. Our scheme offers the possibility to independently control the coher-
ent pair dynamics and competing dissipative superradiant scattering. Furthermore,
we characterized the pair quantum statistics and verified their correlated nature by
probing momentum-resolved noise correlations. These observations pave the way for
the fast generation of entangled matter-wave pairs.

Our results demonstrate a comprehensive approach for engineering, controlling
and probing many-body spin dynamics in driven-dissipative settings, opening new
exciting possibilities for cavity QED experiments. In the following sections, we
discuss some of the potential directions for future experiments.

In section 8.1, we present an experimental scheme that combines cavity-assisted
Raman transitions and Hubbard physics in optical lattices. This setting is expected
to give rise to emergent spin-wave phases both in superfluid and insulating regimes.
To address current technical limitations, in section 8.2, we propose a cavity-based
detection scheme to resolve small atom numbers in different Zeeman sublevels by
exploiting the vectorial polarizability of the atoms. Finally, in section 8.3, we discuss
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two possible extensions of the coherent pair dynamics. First, we consider the for-
mation of pairs in an optical lattice to obtain control over the underlying dispersion
relation and potentially simulate random spin models in momentum space. Second,
we present preliminary observations of cavity-assisted spin-exchange dynamics in a
two-component BEC, and discuss the possibility to implement a quantum simulator
for photon-mediated Cooper pairing.

8.1 Extended Hubbard models with cavity-assisted Raman
transitions

In chapter 7, we proposed and theoretically investigated an extended Bose-Hubbard
model showcasing spin-dependent global-range interactions mediated by cavity pho-
tons. An important aspect of such lattice systems is that they provide access to
phases and transitions in a strongly correlated regime, where inter-particle interac-
tions become significant [21]. Specifically, the interplay between short- and global-
range interactions stabilizes an antiferromagnetic insulator for the system considered
in chapter 7, even for arbitrarily small cavity-mediated interactions.

To further explore emergent magnetic phases in Hubbard systems, we propose to
combine them with cavity-assisted Raman transitions. We consider a scenario anal-
ogous to the experiments discussed in chapter 4, as illustrated in Fig. 8.1(a). A BEC
in the Zeeman sublevel m = −1 (spin state |↓〉) is confined in the fundamental mode
of the cavity by a two-dimensional optical lattice in the xz plane, with site spacing
λd/2. The quantization axis is defined by a magnetic field in −z direction. The
atoms are illuminated by two y-polarized standing-wave drives propagating along
z, with frequencies ωr,b and Raman couplings ηr,b. As discussed in section 4.2.2,
this coupling configuration induces spin-changing self-organization mediated by the
z-polarized cavity mode (â). The corresponding superradiant phase is characterized
by a self-consistent cavity field at ω̄ = (ωr + ωb)/2 and by the atoms occupying
a superposition of the Zeeman sublevels m = −1 (|↓〉) and m = 0 (|↑〉), see level
scheme in Fig. 8.1(b).

For a sufficiently deep optical lattice V2D [65], we can expand the atomic field
operators in Wannier states and obtain a tight-binding representation. Following
an analogous approach to section 7.1.2, we derive an extended Bose-Hubbard model
incorporating cavity-assisted Raman transitions, Ĥ = ĤBH + ĤR, with

ĤBH =− ~t
∑
m,〈i,j〉

(b̂†i,mb̂j,m + h.c.) +
~U
2

∑
i,m

n̂i,m (n̂i,m − 1) + ~U12

∑
i

n̂i,↑n̂i,↓

+~∆µ
∑
i

(n̂i,↑ − n̂i,↓)

ĤR =− ~
UR

K

[∑
i

(−1)|i|
(
b̂i,↑b̂i,↓ + b̂i,↓b̂i,↑

)]2

.

(8.1)

The operators b̂†i,m and n̂i,m = b̂†i,mb̂i,m create and count atoms on the site i =

(ix, iz) and spin state m ∈ {↓, ↑}, respectively. The first term, ĤBH, describes
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Figure 8.1: Extended Bose-Hubbard models with cavity-assisted Raman
transitions. (a) Experimental setup. A BEC in the spin state |↓〉 (m = −1) is confined
in the cavity by a λd/2-periodic 2D optical lattice (xz plane). The atoms are illumi-
nated by two standing-wave drives propagating along z (y polarization), with Raman
couplings ηr,b and frequencies ωr,b. (b) Coupling scheme. The drives induce cavity-
assisted Raman transitions between the levels |↓〉 (m = −1) and |↑〉 (m = 0), which
are offset by ωz. When entering the superradiant phase, a coherent z-polarized cavity
field builds up at the intermediate frequency ω̄ = (ωb + ωr)/2. (c) Expected phases
and order parameters. The order parameter ψ quantifies the degree of superfluidity,
while θSW describes the global transverse spin-wave order. When the tunneling rate t
is small compared to the contact interactions U , the system occupies a spin-polarized
Mott insulator (MI) with ψ = 0. As t is increased, the system enters a superfluid
(SF) phase (ψ > 0). When increasing the cavity-mediated interactions UR, we expect a
spin-density wave insulator (SDW) or a spin-wave lattice supersolid (SWF) depending
on t/U . They both exhibit θSW 6= 0, and ψ = 0 or ψ > 0, respectively.

a two-component Bose-Hubbard model with nearest-neighbor tunneling rate t >
0, and repulsive intra- and inter-spin contact interactions U > 0 and U12 > 0.
They are defined in Eqs. (7.8) and (7.9), respectively. For uniform fillings, the
relative chemical potential between the two spin states, ∆µ = (ωb−ωr)/2−ωz, can
be experimentally controlled by adjusting the linear Zeeman splitting ωz. This is
analogous to the energy offset ~ω0 in the bulk system, cf. Eq. (4.8).

The second term, ĤR, arises from cavity-assisted Raman transitions and induces
spin-changing global-range interactions. When the two drives are balanced, η =
ηr = ηb, the corresponding coupling

UR

K
= η2M2

0

(−∆̃c)

κ2 + ∆̃2
c

, (8.2)

can be independently controlled via the effective cavity detuning ∆̃c = ω̄−ωc, with
ωc being the dispersively shifted cavity resonance. The overlap integral M0 is defined
in Eq. (7.11), while K indicates the total number of sites. For positive couplings,
UR > 0, the global-range interactions favor the formation of two Z2 symmetry-
broken transverse spin waves: the atoms on even and odd lattice sites preferably
occupy symmetric superpositions of the two spin states with opposite orientations,
i.e., |→〉 = (|↑〉+ |↓〉)/

√
2 and |←〉 = −(|↑〉+ |↓〉)/

√
2, or vice versa.

Following the theoretical investigations in Refs. [325, 327], we introduce the mean-
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field order parameter

θSW =
1

N

〈
b̂i,↑b̂i,↓ + b̂i,↓b̂i,↑

〉
≈ ∆̃c

2
+ κ2

ηNM0∆̃c

Re(〈â〉), (8.3)

which quantifies the degree of transverse spin-wave order in the system. Importantly,
θSW can be measured in real time by monitoring the real quadrature Re(〈â〉) of the
leaking cavity field, with Re(〈â〉) > 0 and Re(〈â〉) < 0 being associated with the two
symmetry-broken configurations.

As also studied in Ref. [325], we conjecture the existence of four different ground-
state phases depending on the relative ratios between the tunneling rate, global-
and short-range interactions. They are illustrated in the schematic phase diagram
in Fig. 8.1(c). For negligible global-range interactions, UR/U → 0, the system is ex-
pected to remain in |↓〉 and occupy either a spin-polarized superfluid (SF) or a Mott
insulator (MI). These phases are characterized by the superfluid order parameter ψ
in Eq. (7.18) assuming either finite or vanishing values, respectively. Increasing UR

above a critical value should favor the emergence of transverse spin-wave order in
the system, as indicated by θSW 6= 0. Depending on the value of t/U , we anticipate
that the system will either organize in a spin-wave lattice supersolid (SW-SS) or a
spin-density wave insulator (SDW), characterized by ψ > 0 and ψ = 0, respectively.
The latter is reminiscent of a charge-density wave in long-range interacting spinless
systems [65]. As also discussed in section 7.4.2, the harmonically trapped BEC in our
experiment inherently follows an inhomogeneous density distribution, see Fig.7.7(a)
in chapter 7. Similar to a spinless system [67], such inhomogeneities can potentially
stabilize extended regions of phase coexistence involving MI and SDW phases.

Experimentally, it might be advantageous to operate the transverse drive close
to the tune-out wavelength of 87Rb in the F = 1 manifold, which is approximately
λTO ≈ 790.019 nm, cf. Fig. 2.1(a). Thereby, the vectorial polarizability becomes
dominant, |αv/αs| � 1, and we can gain controlled access to extended SW-SS
regions at small lattice depths. Additionally, it would be interesting to induce either
controlled polariton damping or superradiant Raman scattering between the two
spin levels, as explored in chapters 4 and 5 for bulk systems. This could shed light
on collective dissipative dynamics in strongly correlated systems.

8.2 Cavity-based detection schemes

In future experiments, it would be extremely beneficial to accurately measure the
number of atoms in the different Zeeman sublevels m of the F = 1, especially in the
context of the pair production experiments presented in chapter 6. As discussed in
section 6.7, we require to accurately measure Np . 100 pairs in the levels m = +1
and m = −1 to access a regime exhibiting significant quantum correlations. For this
purpose, it is essential to reduce our current technical detection noise ( ∼ 200 atoms)
by at least one order of magnitude. To complement the current efforts to upgrade
the absorption imaging setup, we discuss here preliminary ideas for cavity-based
detection schemes. Atom counting protocols in cavity-QED experiments typically
rely on probing the dispersive shift of a given cavity resonance in the presence of
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Figure 8.2: Cavity-assisted detection scheme of atoms in different spin states.
(a) Experimental setup. We prepare atoms in the Zeeman sublevels m = 0 (green),
+1 (blue) and −1 (red) inside the cavity, with a magnetic field B along z defining the
quantization axis. The y-polarized cavity mode (operator ây, resonance frequency ωc)
is probed using a weak beam with frequency ωp. By a combination of beamsplitters
(BS) and circular polarizers (CP), the cavity output is separated into σ±-polarized
components (â±) that are detected in two interdependent heterodyne setups HD±.
(b) Vectorial dispersive shift. The cavity transmission spectrum nph(δp) is probed by
adjusting the probe-cavity detuning δp. Apart from a common scalar shift, −NU0/4,
the transmission spectra of σ+ (blue) and σ− photons (red curve) exhibit a relative
vectorial shift, δf+−, which scales with the atom number imbalance N+1 − N−1 in
m = ±1. For these calculations, we choose N=50000, N+1 − N−1 = 50 and a cavity
detuning of δD2

= −2π × 1 GHz from the D2 line.

atoms [352, 353], which arises from the scalar atom-light interactions. In this sec-
tion, we present a scheme exploiting the vectorial polarizability of the atoms to
achieve spin-resolved atom number measurements in m = ±1. The proposed tech-
nique shares similarities with free-space Faraday rotation schemes, which have been
successfully employed to monitor the dynamics of spinor BECs in a non-destructive
fashion, as detailed in Refs. [354, 355].

We prepare atoms in the three different Zeeman sublevels m = 0 (green), m = +1
(blue) and m = −1 (red shape) of the F = 1 manifold and probe the y-polarized
cavity mode (ây), as schematically depicted in Fig. 8.2(a). For clarity, we first neglect
the birefringence of our optical cavity which can induce additional complications that
we address in the end of this section. For a quantization axis along the z direction,
the negative part of the electric field associated with the y-polarized cavity mode

Ê(−) = E0ây cos(kx)ey =
E0√

2
(â+e+ + â−e−) cos(kx) (8.4)

can be decomposed in a superposition of σ±-polarized photons. The corresponding
unit vectors and photon annihilation operators are e± and â±, respectively, while E0

represents the vacuum electric field. The wavenumber of the cavity mode is given
by k = ωc/c, with ωc being the cavity resonance frequency. We probe the cavity
resonance using a weak y-polarized laser at frequency ωp and separate the leaking
field in σ± components using a suitable combination of beamsplitters and circular
polarizers [101]. These components can be detected using independent heterodyne
setups HD±, as depicted in Fig. 8.2(a).

We assume dispersive light-matter interactions and use Eq. (2.12) to derive the
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corresponding single-particle Hamiltonian

ĤSP =

[
~ωc +

(
αsE

2
0

2
− αvE

2
0

2
F̂z

)
cos(kx)

]
â†+â+

+

[
~ωc +

(
αsE

2
0

2
+
αvE

2
0

2
F̂z

)
cos(kx)

]
â†−â−,

(8.5)

with F̂z being the z projection of the F = 1 spin operator. In Eq. (8.5), we directly
see that the scalar polarizability αs induces a common dispersive shift of the cavity
resonance frequencies for σ+ and σ− polarizations, irrespective of the atomic spin
state; the corresponding maximal dispersive shift is given by U0/2 = αsE

2
0/(2~),

with the factor of 1/2 arising from the decomposition of the cavity mode into two
circular polarizations. In contrast, the vectorial polarizability αv is associated with
the atoms in m = +1 ( 〈F̂z〉 = 1) and m = −1 ( 〈F̂z〉 = −1) interacting differently
with σ+ and σ− photons. Specifically, an atom in m = ±1 shifts the cavity resonance
of the σ+- and σ−-polarized mode by ∓Uv and ±Uv, respectively, with the maximal
vectorial dispersive shift being defined as Uv = αvE

2
0/(2~).

To obtain a many-body description, we consider the exemplary situation of pair
production in a single-channel configuration discussed in section 6.1.2. Using the
mode expansion in Eq. (6.6), we derive the many-body Hamiltonian in a rotating
frame at the frequency of the probe beam ωp

ĤMB ≈
[
−~δp +

~U0

4
N̂ − 3~Uv

8

(
ĉ†1ĉ1 − ĉ†−1ĉ−1

)]
â†+â+

+

[
−~δp +

~U0

4
N̂ +

3~Uv
8

(
ĉ†1ĉ1 − ĉ†−1ĉ−1

)]
â†−â−.

(8.6)

Here, we introduce the probe-cavity detuning δp = ωp − ωc, use the shorthand

notation ĉ†m for the operators creating atoms in the corresponding modes of the
different Zeeman sublevels m and define N̂ =

∑
m ĉ
†
mĉm. From Eq. (8.6), we expect

the resonance condition for σ±-polarized photons to be shifted as

δ̃± = −U0

4
N ± 3

8
Uv(N1 −N−1), (8.7)

with N±1 being the number of atoms in m = ±1. Apart from a common dispersive
shift scaling with the total atom number N , we obtain a differential frequency shift
for σ+ and σ− photons

δf+− = δ̃+ − δ̃− = −3

4
Uv(N1 −N−1), (8.8)

which can differentiate between atoms in m = +1 and m = −1, as it scales with
their difference N1 −N−1.

To obtain an experimentally resolvable differential signal, it is important that
δf+− becomes comparable with the cavity linewidth, i.e., |δf+−| & κ = 2π ×
1.25 MHz. This can be achieved by probing a cavity mode close to atomic reso-
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8.3 Quantum simulation using photon-mediated atom pairs

nance. For an atomic detuning1 of δD2 = ωc − ωD2 = −2π × 1 GHz with respect
to the D2 line of 87Rb, we obtain U0 ≈ −2π × 161 kHz and Uv ≈ −2π × 161 kHz.
In Fig. 8.2(b), we plot the Lorentzian-shaped cavity spectra for σ+ (blue) and σ−
photons (red) for N = 50000 atoms. There, we directly see that the relative split-
ting δf+− ≈ 2π × 3 MHz is clearly discernible for small m = ±1 imbalances of
N1−N−1 = 50 atoms. For comparison, the y-polarized cavity mode (green) is solely
affected by the scalar dispersive shift.

A key strength of this technique is that the frequency shift δf+− is a differential
signal that is obtained by simultaneously monitoring the spectra of σ+- and σ−-
polarized photons. Hence, it is robust against long-term drifts of the cavity resonance
frequency ωc and the total atom number N . As δf+− scales with the atom number
difference N1 − N−1, this observable is particularly suitable to diagnose relative
number squeezing in m = +1 and m = −1. For more details on this criterion, see
discussion in section 6.7.1. In the derivation of δf+−, we implicitly assume that
all linearly polarized cavity eigenmodes are degenerate. This is not the case for our
experiment [137], as the two linearly polarized eigenmodes of our birefringent cavity,
â1 and â2, are split by δB = 2π × 2.2 MHz and rotated by φ = 22◦ with respect to
the y and z axes, respectively. As the y-polarized cavity field is not an eigenmode,
birefringence would lift the degeneracy between σ+- and σ−-polarized photons and
further admix them with π-polarized light. To circumvent this complication, we
could rotate the bias magnetic field by φ in the yz plane and thereby also the
quantization axis. In this setting, pair production would be mediated by the cavity
eigenmode â2 (π polarization), while we could probe the eigenmode â1 (superposition
of degenerate σ+ and σ− photons) to examine the differential shift δf+−.

To integrate such cavity-based detection schemes in our experiment, we plan to in-
stall an additional laser system to produce a stabilized probe beam at frequency ωp,
which will be operated at small atomic detunings with respect to the D2 line. At the
same time, we will continue exploring different cavity-based detection techniques.
One promising approach might involve using co-propagating Raman beams to selec-
tively shelve the atoms in a given Zeeman sublevel |F = 1,m〉 in the F = 2 hyperfine
manifold. Given the large ground-state hyperfine splitting, ∆HFS = 2π×6.835 GHz,
we expect to be able to measure the dispersive shift in F = 2, regardless of occupa-
tion in F = 1.

8.3 Quantum simulation using photon-mediated atom pairs

This section outlines future directions for quantum simulation experiments that
build upon the cavity-mediated correlated atom pairs discussed in chapter 6. In sec-
tion 8.3.1, we discuss a feasible scheme to engineer random spin models in momen-
tum space. Our proposal combines correlated atom pairs with well-defined quasi-
momentum states in an optical lattice. Furthermore, in section 8.3.2, we present
preliminary direct observations of photon-mediated spin-exchange interactions in a

1This detuning is at the boundary of the dispersive regime’s validity, since the excited state hyperfine
splitting (∆HFS’ = 2π×0.5 GHz) starts to become comparable with δD2 , as shown in Fig. 3.1(b). In
future experiments, we will also explore similar schemes in the resonant regime of cavity QED [101],
where we expect larger differential mode splittings for σ±-photons.
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two-component Bose gas. The underlying mechanism could facilitate the simulation
of photon-mediated Cooper pairs in our experiment.

8.3.1 Implementing random spin models in momentum space

The Sachdev-Ye-Kitaev (SYK) model [356, 357] is one of the most prominent exam-
ples of random spin models. The corresponding Hamiltonian

ĤSYK =
∑
jklm

~Jjklmd̂†md̂
†
l d̂kd̂j , (8.9)

describes an ensemble of N all-to-all coupled fermions with creation operators d̂†l
and l ∈ {1, ..., N}. The random couplings Jjklm are sampled from Gaussian dis-
tributions with 〈Jjklm〉 = 0, var(Jjklm) = J /N2/3 and disorder strength J . This
model is characterized by the lack of quasiparticle excitations due its exponentially
dense low energy spectrum, and was first introduced in the context of non-Fermi liq-
uids and strange metals [358]. Due to their all-to-all connectivity, such random spin
models inherently describe a zero-dimensional system. Recently, the SYK model has
also attracted substantial interest as a minimal model for holographic quantum grav-
ity [357, 359], owing to the exponentially fast scrambling of quantum correlations
and the AdS/CFT correspondence [360]. As natural materials do not conventionally
feature such properties, there are growing efforts to simulate random spin models
in different platforms, ranging from nuclear-spin chains [361] to cavity-QED exper-
iments with cold atoms [362].

Here, we discuss an experimental scheme to realize a bosonic spin model with
pseudo-random, all-to-all interactions. The fundamental idea relies on distributing
the occupation of a Bose-Einstein condensate (BEC) among multiple quasimomenta
q of the band structure associated with an optical lattice, which we interpret as
‘sites’ in our system. For a sufficiently filled Bloch band, the cavity-assisted pair
production mechanism induces correlated hopping of atoms from the sites q and
q′ into the sites q + k and q′ − k, respectively. The corresponding hopping rates
Jq,q′ depend on the initial momenta, q and q′, while the tunneling distance k is
determined by an external laser drive, as illustrated in Fig. 8.3(a).

Following the experiments described in chapter 6, we consider a BEC initialized
in the m = 0 Zeeman sublevel and additionally confined in a one-dimensional optical
lattice with site spacing λL/2, wavenumber kL = 2π/λL and lattice depth VL, as
depicted in Fig. 8.3(b). The atoms are illuminated by a running-wave transverse
drive propagating along the z direction with wavenumber k, which induces cavity-
assisted pair production. As illustrated in the dispersion relation in Fig. 8.3(c), this
coupling scheme converts two atoms in m = 0 (green) with quasimomenta q and q′

into correlated atom pairs in m = +1 (blue) and m = −1 (red) with quasimomenta
q + k and q′ − k, respectively. The associated coupling rates Jq,q′ depend on the
initial quasimomenta, q and q′, due to the varying overlap integrals between different
Bloch states and the laser drive.

To obtain a quantitative description, we start from the single-particle Hamiltonian

158



8.3 Quantum simulation using photon-mediated atom pairs

Figure 8.3: Random spin model in momentum space. (a) Proposed lattice
model. Atoms in two arbitrary sites q and q′ interact via the coupling term Jq,q′ ,
which pairwise transfers them to different sites q + k and q′ − k at the distance k.
(b) Experimental setup. A BEC in the spin state m = 0 is confined in a 1D optical
lattice, with lattice depth VL and site spacing λL/2 = π/kL. The atoms are coupled
to the cavity by a running-wave drive with wavenumber k. Pairs of atoms in m = +1
(blue) and m = −1 (orange spheres) are created by the exchange virtual cavity photons
(operator â). (c) Coupling scheme, depicting the generation of m = ±1 pairs out of
atoms in m = 0 (green spheres) with different quasimomenta q and q′. The dispersion
relation ω(q) for atoms in m = ±1 (black) is offset by ωoff from that of m = 0 (green
curve). (d) Preliminary calculations. (d1) Jq,q′ distribution for VL = 3Erec and k =
2kL. (d2) The corresponding histogram peaks at Jq,q′ = 0 and decreases at larger
couplings. Notably, the sign of the distribution can be controlled by the sign of the
corresponding coherent coupling χ+, with Jq,q′ < 0 (red) or Jq,q′ > 0 (blue histogram).

in Eq. (6.2), and expand the F = 1 field operator into Bloch functions

Ψ̂(x) =
(

Ψ̂+1(x), Ψ̂0(x), Ψ̂−1(x)
)T

=


k√
2π

cos (kx)
∑

q e
iqzuq(z)ĉq,+1

k
2π

∑
q e

iqzuq(z)ĉq,0
k√
2π

cos (kx)
∑

q e
iqzuq(z)ĉq,−1

 , (8.10)

where the bosonic operators ĉ†q,m create atoms in spin state m ∈ {−1, 0, 1} with
quasimomenta q in the lowest Bloch band (s-band). The orbitals uq(z) = uq(z +
2π/kL) are 2π/kL-periodic in real space. The single-particle states in m = ±1 are
modulated along the x direction according to the cavity mode structure [∝ cos(kx)].
Following Ref. [122], we adiabatically eliminate the cavity field and obtain an atom-
only description, Ĥ = Ĥ0 + Ĥint, with

Ĥ0 =
∑
q∈BZ

~ωq(VL)ĉ†q,0ĉq,0 + ~ [ωq(VL) + ωoff]
(
ĉ†q,+1ĉq,+1 + ĉ†q,−1ĉq,−1

)
Ĥint =

∑
q,q′∈BZ

~Jq,q′(VL, k)
(
ĉ†q+k,+1ĉ

†
q′−k,−1ĉq,0ĉq′,0 + h.c.

)
.

(8.11)

The first contribution, Ĥ0, describes the offset energy of the atoms. While the
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atoms in m = 0 directly follow the lowest-band dispersion relation ωq(VL), the
atoms in m = ±1 are additionally offset by ωoff = ωrec(k) + q, with q and ωrec(k)
being the quadratic Zeeman splitting and the recoil frequency associated with the
cos(kx) density modulation, respectively. The interaction Hamiltonian, Ĥint, de-
scribes cavity-assisted pair production in quasimomentum space, with coupling rates
Jq,q′(VL, k) = 2χ+Mq+k,qMq′−k,q′ . Here, we consider a single-channel configuration
with bulk coupling rate χ+ and neglect additional spin-exchange terms for clarity,
see Eqs. (6.9) and (6.8). The interactions further depend on the overlap integrals
Mq+k,q = 〈q + k| eikz |q〉 between the initial and final Bloch states which are coupled
by the running-wave transverse drive. The exact form of Mq+k,q(VL, k) also depends
on details of the experimental implementation, such as the lattice depth VL and the
drive wavenumber k.

We numerically examine the coupling distribution Jq,q′ for a typical lattice depth
of VL = 3Erec and select a drive wavevector of k = 2kL, as shown in Fig. 8.3(d1).
For this specific scenario, we obtain a coupling distribution Jq,q′ that is highly con-
centrated at the boundaries of the Brillouin zone, q = ∓kL = ∓k/2 and q′ = ±kL =
±k/2, and rapidly decays for varying quasimomenta. The larger couplings at these
boundaries arise because the corresponding final quasimomenta q + k = kL and
q′ − k = −kL are the only ones situated within the first Brillouin zone. For larger
lattice depths VL, we observe a broadening of the distributions due to hybridization
between the s- and p-bands at the edges of the Brillouin zone. To visualize the
coupling distribution, we present the histogram of Jq,q′/|χ+| in Fig. 8.3(d2) [red
histogram]. This distribution has its peak at Jq,q′ = 0 and monotonically decreases
for larger Jq,q′ . Unlike the SYK model presented in Eq. (8.8), the couplings in
Fig. 8.3(d2) consistently maintain the same sign, which can be globally adjusted by
changing the sign of the bulk pair coupling χ+ < 0 (red) or χ− < 0 (blue histograms).

In future experiments, we plan to initialize a partially filled lowest Bloch band
in the vicinity of the superfluid–Mott insulator phase transition [363]. Close to the
phase transition, the superfluid features strong onsite repulsive interactions spread-
ing its momentum distribution among different quasimomenta q. This can be po-
tentially combined with Bloch oscillations under a gradient potential [364] in order
to precisely control the initial momentum distribution in the lattice. Furthermore,
we aim to explore methods to control the coupling distribution Jq,q′ and establish
genuine bosonic random spin models. Specifically, a distribution with expectation
value

〈
Jq,q′

〉
= 0 and significant fluctuations can be obtained by exposing the atoms

to two transverse drives with opposite two-photon detunings δ+ and −δ+. This
results in commensurate coupling distributions with different signs, χ+ ∝ δ+ < 0
(red) and −χ+ ∝ −δ+ > 0 (blue histogram), leading to

〈
Jq,q′

〉
= 0 for the entire

system, as shown in Fig. 8.3(d2).

There are many open questions that present opportunities for collaboration be-
tween theory and experiment. While random spin models with bosonic degrees of
freedom are known to exhibit rapid scrambling dynamics [365], their relevance in
the context of holographic duality is still unclear. On a more pragmatic note, it
is also uncertain whether stringent Gaussian coupling distributions are required to
obtain exponential scrambling dynamics, as suggested in a recent cavity-QED pro-
posal [366]. The early-time scrambling dynamics and late-time chaotic behavior in
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random spin models can be diagnosed via exponentially decaying out-of-time-order
correlators (OTOCs) and long-range spectral correlations [366, 367], respectively.
Experimentally, accessing such observables is far from trivial and will require the
development of suitable protocols.

8.3.2 Engineering and observing spin-exchange processes

The cavity-assisted pair production scheme introduced in chapter 6 provides a flex-
ible mechanism to control photon-mediated spin interactions involving well-defined
internal and external modes. In this section, we propose and experimentally demon-
strate a straightforward extension facilitating the direct observation of photon-
mediated spin-exchange interactions.

We consider a two-component Bose-Einstein condensate (BEC) initialized in the
Zeeman sublevels m = −1 and m = 0 of the F = 1 hyperfine manifold, with a
magnetic field B along z defining the quantization axis, see illustration in Fig. 8.4(a).
From now on, we refer to them as the spin levels |↓〉 and |↑〉, respectively. The
atoms are coupled to the cavity by a running-wave drive propagating in z direction
with wavenumber k and linear y polarization. Similar to the scheme discussed in
section 6.1.1, a zero-momentum atom in |↓〉 (mode |kz = 0〉↓) can scatter a σ+-

polarized drive photon into the π-polarized cavity mode (â†) and flip its spin to
|↑〉 while obtaining net photon recoil momentum +~k along z (mode |+k〉↑). This
virtual cavity photon is rescattered by a second atom in |↑〉 (mode |0〉↑) into the
drive, which in turn changes its spin to |↓〉 and obtains −~k momentum along z,
occupying the mode |−k〉↓. Due to the drive polarization, the complementary process
of an atom in |0〉↑ first scattering a σ−-polarized drive photon is also possible, and
yields correlated occupation of the modes |+k〉↓ and |−k〉↑. As the total population
in |↑〉 and |↓〉 is conserved [80], we refer to them as photon-mediated spin-exchange
processes.

To obtain a quantitative description, we expand the F = 1 field operator as

Ψ̂(x) =
(

Ψ̂+1(x), Ψ̂0(x), Ψ̂−1(x)
)T

=

 0
k

2π ĉ0,↑ + k√
2π

cos (kx)(e−ikz ĉ−k,↑ + eikz ĉ+k,↑)
k

2π ĉ0,↓ + k√
2π

cos (kx)(e−ikz ĉ−k,↓ + eikz ĉ+k,↓)

 , (8.12)

with the bosonic operators ĉkz ,m annihilating atoms in the modes |kz〉m, with m ∈
{↑, ↓} and kz ∈ {0,−k,+k}. The corresponding single-particle wave functions are
normalized within an unit cell of size [−π/k, π/k)2, while the additional modulation
[∝ cos(kx)] is inherited from the cavity mode structure. Following the experiments
discussed in chapters 4 and 5, we operate at large magnetic fields B to suppress
superradiant scattering and pair production involving the Zeeman sublevel m = +1.
Accordingly, we set Ψ̂+1(x) = 0. To obtain an effective many-body description, we
start from the single-particle Hamiltonian in Eq. (6.2). By using the mode expansion
in Eq. (8.12) and adiabatically eliminating the cavity field [122], we obtain the atom-
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Figure 8.4: Observation of photon-mediated spin-exchange (SE) interactions.
(a) Experimental setup. A two-component BEC in the Zeeman sublevels m = −1
(|↓〉) and m = 0 (|↑〉) is coupled to the cavity by a running-wave drive propagating
in z direction (wavenumber k). SE processes are mediated by virtual cavity photons
(operator â). (b) Energy diagram. The SE mechanism comprises two coupled Raman
scattering processes, each involving a drive (straight) and a cavity (curly arrows) photon.
The intermediate modes are split by twice the linear Zeeman shift ωz, giving rise to two
discernible channels. The corresponding coupling rates χ± depend on the two-photon
detunings δ± and the cavity loss rate κ. The final state is offset by 4~ωrec, with ωrec

being the recoil frequency. (c-e) Representative spin-resolved momentum distributions.
(c) The system is prepared in a balanced mixture in m = −1 (red) and m = 0 (green
colormap). When quenching the coupling, we observe correlated occupation of the
modes |+k〉↑ and |−k〉↓ (d) or |+k〉↓ and |−k〉↑ (e). This indicates SE interactions
via the χ+ and χ− channels, respectively. (f) Towards quantum simulation of the
BCS pairing mechanism. We consider a linear dispersion relation ω(q) in an optical
lattice, occupied by atoms in |↑〉 (green) and |↓〉 (red line). The photon-mediated SE
interactions resonantly pair atoms at opposite quasimomenta −q and q, which emulates
essential features of phonon-mediated Cooper pairs in solid-state systems.

only Hamiltonian

Ĥ =
∑

k̃∈{k,−k}

2~ωrec

(
ĉ†
k̃,↑ĉk̃,↑ + ĉ†−k̃,↓ĉ−k̃,↓

)
+ ~χ+

(
ĉ†−k,↓ĉ

†
+k,↑ĉ0,↑ĉ0,↓ + h.c.

)
+ ~χ−

(
ĉ†−k,↑ĉ

†
+k,↓ĉ0,↓ĉ0,↑ + h.c.

)
.

(8.13)

The first term describes the bare energy associated with spin-exchanged pairs, which
amounts to 4~ωrec and is fully determined by the photon recoil frequency ωrec. The
second and third terms describe two spin-exchange channels with coupling rates χ±
that can be independently controlled via of the corresponding two-photon detunings
δ±, see Eq. (6.9). For χ± < 0, the two channels favor the correlated occupation of
the modes |±k〉↑ and |∓k〉↓. The different energy scales of the system are visualized
in the energy level diagram in Fig. 8.4(b).

Preliminary experimental observations

To investigate photon-mediated spin-exchange interactions in our experiment, we
initialize a balanced spin mixture comprising N/2 = 3.5(2)×104 atoms in each of the
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modes |0〉↓ and |0〉↑. This is shown by the exemplary momentum-space distribution
of the atoms in Fig. 8.4(c). We operate at large linear Zeeman splitting ωz ≈
−2π × 20 MHz to suppress pair production and induce spin-exchange interactions
in a single-channel configuration. In a first experiment, we set the relevant two-
photon detuning to δ+ = −2π × 16 MHz (δ− = −2π × 36 MHz) and quench the
coupling to χ+ = −2π × 0.5 Hz for t = 65 µs. In the representative momentum
distribution in Fig. 8.4(d), we observe correlated occupation of the modes |+k〉↑ and
|−k〉↓, signaling spin-exchange interactions via the χ+ channel. To complement these
observations, we set the two-photon detuning to δ− = −2π × 10 MHz (δ+ = +2π ×
10 MHz) and perform an analogous quench experiment. As shown in Fig. 8.4(e),
we observe correlated occupation of the modes |+k〉↓ and |−k〉↑, indicating spin-
exchange interactions via the complementary χ− channel.

These preliminary observations demonstrate our ability to optically engineer and
directly observe spin-exchange processes mediated by virtual cavity photons.

Towards the simulation of photon-mediated BCS pairing

Controlling spin-exchange interactions can be particularly useful in the context of
quantum simulation experiments. We propose a scenario similar to section 8.3.1,
where the atoms are loaded in a one-dimensional lattice along the drive direction.
We consider a tunable dispersion relation ω(q) for the atoms in the different quasimo-
mentum states q. Specifically, we assume a linear dispersion ω(q) ∝ q and initialize
the atoms in |↑〉 and |↓〉 solely at positive (q > 0) and negative quasimomenta (q < 0),
respectively, as illustrated in Fig. 8.4(d). While experimentally involved, such asym-
metric band structures have been recently Floquet-engineered using two-tone phase
modulation in an optical lattice [368].

We expand the system in Bloch waves [Eq. (8.10)] and consider a single-channel
configuration with |χ+| � |χ−|. We derive the corresponding many-body Hamilto-
nian in quasimomentum space

Ĥ ≈
∑
q

~ω(q)
(
ĉ†q,↑ĉq,↑ + ĉ†q,↓ĉq,↓

)
+
∑
q<0

~χ+

(
ĉ†−q−k,↓ĉ

†
q+k,↑ĉ−q,↑ĉq,↓ + h.c.

)
,

(8.14)

where we retain only resonant spin-exchange terms. The Hamiltonian in Eq. (8.14)
is a bosonic version of the paradigmatic Barden-Cooper-Schrieffer (BCS) model [7],
which provided the first microscopic theory of conventional superconductivity and
superfluidity. This model describes a system of two-spin electrons with effective
attractive interactions χ+ < 0 mediated by the exchange of virtual phonons. They
give rise to bound electron pairs of opposite spin (|↑〉, |↓〉) and momenta (q + k,
−q − k) in the vicinity of the Fermi surface [369]. The emergent Cooper pairs are
protected by a self-consistent pairing gap ∆BCS = χ+

∑
q 〈ĉ−q,↑ĉq,↓〉 < 0.

In future experiments, we aim to employ our system as an analog quantum sim-
ulator of the BCS pairing mechanism. As first proposed in Ref. [132], cavity-QED
experiments with ultracold atoms offer a high degree of control over the single-
particle dispersion ω(q) and the spin-exchange coupling rate χ+. Furthermore, both
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ground-state paired states and dynamical superfluid phases can be experimentally
accessed by adiabatic preparation and quench experiments, respectively. The ob-
servation of such dynamical phases has been recently reported in Ref. [370]; that
experiment relies on controlling spin-exchange interactions in a thermal atomic cloud
and encoding the Cooper pairs in effective pseudospins of the ensemble. In contrast,
our system offers the possibility to naturally encode photon-mediated Cooper pair-
ing in well-defined spin and momentum modes of a degenerate quantum gas. A
central question to investigate in future experiments is to what extent the underly-
ing bosonic character of the unpaired atoms in |↓〉 and |↑〉 gives rise to qualitatively
different emergent phenomena, as compared to conventional Cooper pairs in electron
systems.

8.3.3 Further directions

The future directions of our experiment are not limited to the previously discussed
proposals. As a final thought, the correlated spin- and momentum-pairs can also
serve as a suitable input state for matter-wave interferometry [371]. A promising
direction could be to employ time-reversal protocols to implement active SU(1,1)
atomic interferometers [304, 372]. For this endeavor, we could benefit from generat-
ing pairs in the F = 2 hyperfine manifold [372], given that the associated negative
quadratic Zeeman splitting q < 0 facilitates access to both positive and negative
pair energy offsets ~ω0 = 2~q+4~ωrec. By simultaneously quenching ω0 → −ω0 and
the coupling χ+ → −χ+ in a single-channel configuration, we can evolve the system
with the negative Hamiltonian −Ĥ effectively realizing a time-reversal operation,
see Eq. (6.8). To perform quantum-enhanced sensing [281], it will be essential to
generate and accurately resolve few hundreds of atom pairs featuring genuine quan-
tum correlations, as discussed in section 6.7.1. A remaining experimental challenge
is to devise suitable interferometric protocols to detect relative phase shifts of the
atomic wave functions in the different spin states, in the presence of conservative
forces such as gravity or magnetic field gradients. For this purpose, we can poten-
tially leverage the opposite motion of the paired atoms in the m = +1 and m = −1
Zeeman sublevels along the drive direction.

In conclusion, while this dissertation has shed light on various aspects of coher-
ent and dissipative collective phenomena using cavity-assisted Raman transitions, it
offers only a glimpse into the vast landscape that awaits exploration.
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A Complementary theoretical calculations
for momentum-space lattices

Here, we present complementary theoretical calculations for our experiments on
dynamical tunneling in a momentum-space lattice, discussed in chapter 5. In ap-
pendix A.1, we derive the mean-field Langevin equations of motion in a four-mode
expansion which are used to model the first few tunneling events in our system. In
appendix A.2, we discuss the role of repulsive contact interactions which give rise
to effective attractive interactions in momentum space and self-trapping in the mo-
mentum lattice. Finally, in appendix A.3, we discuss the Gross-Pitaevskii equation
simulations used to benchmark the dynamics in our system.

This appendix has been adapted from the Supplemental Material of Ref. [90]

R. Rosa-Medina*, F. Ferri*, F. Finger, N. Dogra, K. Kroeger, R. Lin,
R. Chitra, T. Donner and T. Esslinger. Observing Dynamical Currents
in a Non-Hermitian Momentum Lattice. Physical Review Letters 128,
143602 (2022)
* These authors contributed equally to this work

A.1 Equations of motion of the open system

We derive mean-field equations of motion (EOM) for the expectation values of the

cavity field α = 〈â〉 /
√
N , atomic populations ρjj =

〈
ψ̂†j ψ̂j

〉
/N and atomic co-

herences ρjk =
〈
ψ̂†j ψ̂k

〉
/N , with {j, k} ∈ {0, 1, 2, 3}. Using the master equation

describing photon loss in Eq. (2.21) and the few-mode Hamiltonian in Eq. (5.17),
we obtain a set of eleven complex coupled EOM

d

dt
α = −(κ− i∆̃c)α+ i

√
Nη

(
1√
2
ρ∗01 −

1√
2
ρ02 −

1

2
ρ∗13 +

1

2
ρ23

)
,

d

dt
ρ00 = i

√
N

2
η (αρ01 − α∗ρ∗01 + αρ∗02 − α∗ρ02) ,

d

dt
ρ11 = i

√
Nη

(
− 1√

2
αρ01 +

1√
2
α∗ρ∗01 −

1

2
αρ13 +

1

2
α∗ρ∗13

)
,

d

dt
ρ22 = i

√
Nη

(
− 1√

2
αρ∗02 +

1√
2
α∗ρ02 −

1

2
αρ∗23 +

1

2
α∗ρ23

)
,

d

dt
ρ33 = i

√
N

2
η (αρ13 − α∗ρ∗13 + αρ∗23 − α∗ρ23) , (A.1)
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d

dt
ρ01 = −[Γφ + i(ω0 + 2ωrec)]ρ01 + i

√
Nη

[
1√
2
α∗ (ρ00 − ρ11) +

1√
2
αρ∗12 −

1

2
αρ03

]
,

d

dt
ρ02 = −[Γφ + i(ω0 + 2ωrec)]ρ02 + i

√
Nη

[
− 1√

2
α (ρ00 − ρ22)− 1√

2
α∗ρ12 +

1

2
α∗ρ03

]
,

d

dt
ρ03 = −(Γφ + i4ωrec)ρ03 + i

√
Nη

(
−1

2
α∗ρ01 +

1

2
αρ02 −

1√
2
α∗ρ13 +

1√
2
αρ23

)
,

d

dt
ρ12 = i

√
Nη

(
− 1√

2
αρ02 −

1√
2
αρ∗01 +

1

2
α∗ρ13 +

1

2
α∗ρ∗23

)
,

d

dt
ρ13 = −[Γφ + i(2ωrec − ω0)]ρ13 + i

√
Nη

[
1

2
α∗ (ρ33 − ρ11)− 1√

2
α∗ρ03 +

1

2
αρ12

]
,

d

dt
ρ23 = −[Γφ + i(2ωrec − ω0)]ρ23 + i

√
Nη

[
−1

2
α (ρ33 − ρ22) +

1√
2
α∗ρ03 −

1

2
α∗ρ∗12

]
.

Here, we employ the mean-field decoupling
〈
âψ̂†j ψ̂k

〉
≈ N3/2αρjk and set ρ∗jk = ρkj .

Importantly, by explicitly simulating the evolution of the atomic coherences, we
can additionally incorporate spin dephasing between the two manifolds |0〉 and |1〉.
We estimate its rate to be on the order of Γφ = 2π × 0.2 kHz in our experiment,
which we attribute to the combined effect of atomic collisions and magnetic field
fluctuations [89].

Numerical simulations

Similar to the procedure outlined in section 2.2.1, we numerically evaluate the mean-
field EOMs derived in Eqs. (A.2). We employ the built-in MATLAB solver ‘ode45’
which is based on a Runge-Kutta (4,5) method [121], choose adaptive time steps and
constrain the relative error tolerance in each step to 10−8. To initialize the mean-field
dynamics, we sample small fluctuations on top of the expectation value of the cavity
field. This sampling ensures an initial cavity field at t = 0 compatible with a coherent
vacuum state. For the simulations presented in Figs. 5.4 and 5.7, we initialize the
atoms in a zero-momentum BEC in the central lattice site |0, 0〉0 (ρ00 = 1) and
increase the smooth s-shaped ramps, identical to the experimental protocol, see
Eq. (5.18). Additionally, we choose spin dephasing rates of Γφ = 2π× 0.15 kHz and
2π × 0.25 kHz, respectively.

A.2 Role of contact interactions in momentum-space
lattices

Here, we discuss the influence of the repulsive contact interactions of a 87Rb BEC
on the dynamics in a momentum-space lattice. We assume that all atoms in each
momentum state occupy the same spatial mode. We employ the mode expansion
in Eq. (5.8), and obtain a momentum-space representation of the Hamiltonian de-
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scribing contact interactions

Ĥu = g

∫
R

Ψ̂†(x̂)Ψ̂†(x̂)Ψ̂(x̂)Ψ̂(x̂)dx = u
∑

j1,j2,j3,j4

ĉ†j1 ĉ
†
j2
ĉj3 ĉj4 , (A.2)

where we introduce the short-hand notation ĉj = ĉσ(2j+σ,2k+σ), with {j, k} ∈ Z and

σ ∈ {0, 1} for the operators in the momentum grid. Momentum conservation is
ensured by j1 + j2 = j3 + j4. The strength of the contact interactions g = 4π~2as/M
depends on the s-wave scattering length of 87Rb atoms in the F = 1 hyperfine
manifold as = 100.4aB [34], with aB being the Bohr radius. The effective interaction
strength in the momentum grid (u = gρ/N) scales with the average atomic density
ρ.

Closely following the approach of previous works on momentum-space lattices
in Refs. [243, 244, 373], we neglect four-wave mixing processes [261] and retain

only mode-conserving contributions of the form ĉ†j ĉ
†
kĉjĉk, ĉ†j ĉ

†
kĉkĉj and ĉ†j ĉ

†
j ĉjĉj. By

employing the standard bosonic commutation relations, we can obtain a simplified
Hamiltonian

Ĥu ≈ u
∑
j

[
n̂j(n̂j − 1)/2 +

∑
k 6=j

n̂jn̂k

]
= uN̂(N̂ − 1/2)− u/2

∑
j

n̂2
j , (A.3)

where we introduce the density n̂j = ĉ†j ĉj and total particle number operators N̂ =∑
j n̂j. For repulsive contact interactions u > 0, as it is the case for the F = 1

manifold of 87Rb (as > 0), the Hamiltonian of Eq. (A.3) yields effective on-site
attractive interactions in the momentum grid. This term can induce dephasing of
the population dynamics [373] or give rise to self-trapping in the initial state of the
momentum lattice [243, 244], if it becomes dominant over the effective tunneling
strength t of the system (uN > 4t).

In our experiment, we estimate the effective interactions in the momentum grid to
be on the order of uN/~ = gρ/~ ≈ 2π×0.8 kHz, where ρ is the typical average density
of 2.1× 1020 m−3. As the self-consistent tunneling rates in Eq. (5.12) can reach larger
values, i.e., ~ · max(|tSR|) > uN/4, we expect that the BEC does not remain self-
trapped in the initial momentum state |0, 0〉0, which is consistent with our experi-
mental observations. To phenomenologically capture the influence of contact interac-
tions, we consider spin dephasing rates on the order of Γφ = uN/(4~) = 2π×0.2 kHz
in the mean-field simulations using Eqs. (A.2).

A.3 Gross-Pitaevskii equation simulations

Here, we present ab initio Gross-Pitaevskii (GP) equation simulations to benchmark
the dynamics in the momentum lattice. We present the corresponding equation of
motion and employ them to assess the lifetime of the momentum lattice due to
oscillatory dynamics in the harmonic trap. A detailed derivation and discussion
of the GP equations of motion for our system can be found in the Supplemental
Material of Ref. [90] and in the PhD thesis of Rui Lin [245].
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A.3.1 Equations of motion and numerical simulations

We consider the two-component mean-field Hamiltonian

Ĥ = N

∫
Φ†Ĥ(1)Φdxdz +

g0

2
N(N − 1)

∫
|φ0 + φ1|4dxdz, (A.4)

with Φ = (φ0, φ1)T describing the mean-field wavefunctions of the spin levels |0〉
[φ0(x, z)] and |1〉 [φ1(x, z)]. The two-dimensional wavefunctions are normalized as∫

Φ†Φdxdz = 1. The second term in Eq. (A.4) describes contact interactions be-
tween the atoms, where we assume identical inter- and intra-spin coupling constants
g0. This is a good approximation for 87Rb atoms in the F = 1 manifold [34]. Addi-
tionally, the first term integrates over the single-particle Hamiltonian, which is given
by

Ĥ(1) =

[
p̂2

2M
+
M

2
(ω2
hxx

2 + ω2
hzz

2)

]
− ω0σz (A.5)

+η(α+ α∗) cos(kx) cos(kz)σy + iη(α− α∗) cos(kx) sin(kz)σx,

where σj refer to the Pauli matrices, with j ∈ {x, y, z}. This Hamiltonian contains
the same contributions as the one presented in Eq. (5.3), but further considers
the harmonic confinement and omits the constant term arising from scalar light-
matter interactions. Specifically, the first line includes the kinetic term, the harmonic
trap with typical experimental trapping frequencies [ωhx, ωhz] = 2π × [218, 172] Hz,
and the splitting between the two spin levels (∝ ω0). The second line describes
cavity-assisted Raman transitions between the two spin levels, and coincides with
the Hamiltonian in Eq. (5.6) in the limit of balanced drives η := ηr = ηb. The contact
interaction strength Ng0 = 1210~2/m is optimized, such that the initial Thomas-
Fermi radii coincide with the experimental values [rTF,x, rTF,z] = [4.3, 5.5]µm. The
cavity field is treated as a coherent light field and represented by a complex number
α. The corresponding GP equation of motion reads

∂tα = [i∆̃c − κ]α− iηNθ, (A.6)

θ =

∫
Φ† [cos(kx) cos(kz)σy + i cos(kx) sin(kz)σx] Φdxdz.

To numerically evolve the GP equations of motion, we employ the Multiconfigura-
tional Time-Dependent Hartree Method for Indistinguishable Particles [374], which
is implemented in the MCTDH-X software [375]. We prepare the system in a slightly
perturbed BEC state in a harmonic trap, which we empirically choose such that the
first superradiant pulse occurs at a time comparable to the one observed in the
experiment.

A.3.2 Dynamics due to harmonic confinement and contact interactions

Harmonically confined Bose-Einstein condensates exhibit oscillatory motion when
prepared away from their equilibrium configuration [111], for example through ex-
cited breathing modes [376]. As the states in the momentum lattice differ from the
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Figure A.1: Lifetime in the momentum lattice. From our GP simulations, we
extract the overlap ζ between the mode associated with the lattice sites |±1,±1〉1 and
the instantaneous state evolving in an harmonic trap. As shown in the purple (orange)
curve, the overlap vanishes at TLT ≈ 1 ms (TLT ≈ 0.5 ms) for the experimentally relevant
(weaker) contact interactions indicating the lifetime in the momentum lattice.

equilibrium Thomas-Fermi distribution, we expect them to oscillate in real space
in the trap. This moves the corresponding momentum components out of the grid
nodes at integer multiples of the recoil momentum k, progressively rendering the
tight-binding picture invalid. Naively, we expect the lifetime in the momentum
lattice to be comparable with the inverse trap frequency. Nevertheless, our Gross-
Pitaevskii simulations indicate that contact interactions can increase this lifetime.

To quantify the role of contact interactions where we prepare an initial wavefunc-
tion

φ(x, z) = ψ(x, z) cos(kx) cos(kz). (A.7)

The envelop function ψ(x, z) describes a Thomas-Fermi profile or a Gaussian pro-
file, depending on whether contact interactions are considered or not. This state
resembles the atomic state after the first tunneling event in the momentum lattice,
i.e., |±1,±1〉1. We evolve the state in the harmonic trap while enforcing a vanishing
cavity field. The same simulation is performed for both the experimentally rele-
vant contact interaction strength Ng0 = 1210 ~2/m and for a significantly smaller
value Ng0 = 121 ~2/m. During the simulation, we extract the overlap between the
instantaneous wavefunction and the initial one

ζ =

∣∣∣∣∫ dkxdkzφ
∗(kx, kz; t = 0)φ(kx, kz; t)

∣∣∣∣ =

∣∣∣∣∫ dxdzφ∗(x, z; t = 0)φ(x, z; t)

∣∣∣∣ ,(A.8)

and show it in Fig. A.1. For the relevant interaction strength, we infer a lifetime
of TLT ≈ 1 ms, which is approximately twice longer than for a system with weak
contact interactions. In Fig. A.2, we show representative real- and momentum-
space distributions for the two cases at different stages of the evolution. Contact
interactions effectively diffuse the lattice peaks in momentum space, which slows
down the evolution of the atomic distribution away from the grid nodes of the
momentum-space lattice. The lifetime TLT is compatible with the maximal time
delay observed between subsequent superradiant pulses in Figs. 5.4 and 5.5.
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Figure A.2: Representative snapshots of the evolution of the real-and
momentum-space distributions. We consider 2D harmonically confined atomic
cloud initialized in the state φ(x, z) for the experimentally relevant trap frequencies
[ωhx, ωhz] = 2π · [218, 172] Hz [cf. Eq. (A.7)]. The purple (orange) colormap corre-
sponds to the experimentally relevant (smaller) contact interactions, which are on the
order of Ng0 = 1210 ~2/m (Ng0 = 121 ~2/m).
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A.3.3 Cascaded hopping in the momentum lattice

Finally, we introduce the atomic coherences between different lattice sites in order
to simulate and visualize the cascaded dynamics in Fig. 5.9. The atomic order
parameter θ associated with the GP equations of motion can be evaluated as

θ =
∑
j,l∈Z

s1,2=±1

θj,l,s1,s2 (A.9)

Nθj,l,s1,s2 = − 1√
8

[ 〈
ĉ1†

(2j+s1,2l+s2)ĉ
0
(2j,2l)

〉
− is2

〈
ĉ0†

(2j,2l)ĉ
1
(2j+s1,2l+s2)

〉 ]
,

which is a sum of local two-site coherences 〈ĉ1†
(2j+s1,2l+s2)ĉ

0
(2j,2l)〉 in the momentum

lattice. As the GP simulations operate in the continuum, we approximate these
coherences by integrals over the the corresponding Brillouin zones〈
ĉ1†

(2j+s1,2l+s2)ĉ
0
(2j,2l)

〉
=

∫
k

−k

∫
k

−k
dkxdkzφ

∗
1(kx − (2j + s1)k, kz − (2l + s2)k)φ0(kx − 2jk, kz − 2lk),

(A.10)
Finally, we scale the coherences by a factor of ηN/(∆̃c + iκ) to obtain a result
commensurate with the cavity field α, and group them according to the associated
tunneling events in the momentum lattice

ξ1 =
ηN

∆̃c + iκ
(θ0,0,+1,+1 + θ0,0,+1,−1 + θ0,0,−1,+1 + θ0,0,−1,−1) ,

ξ2 =
ηN

∆̃c + iκ
(θ0,2,+1,−1 + θ0,2,−1,−1 + θ0,−2,+1,+1 + θ0,−2,−1,+1) ,

ξ3 =
ηN

∆̃c + iκ
(θ2,2,−1,−1 + θ2,−2,−1,+1 + θ−2,2,+1,−1 + θ−2,−2,+1,+1) ,

ξ4 =
ηN

∆̃c + iκ
(θ2,0,−1,+1 + θ2,0,−1,−1 + θ−2,0,+1,+1 + θ−2,0,+1,−1) ,

ξ5 =
ηN

∆̃c + iκ
(θ0,2,+1,+1 + θ0,2,−1,+1 + θ0,−2,+1,−1 + θ0,−2,−1,−1) .

(A.11)

These two-site coherences are schematically illustrated in Fig. 5.9(b), and mutually
stimulate each other in the parameter regime where we observe hopping cascades,
see Fig. 5.8.
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[75] D. Dreon, A. Baumgärtner, X. Li, S. Hertlein, T. Esslinger, and T. Donner.
Self-oscillating pump in a topological dissipative atom–cavity system. Nature
608, 494–498 (2022).

[76] F. Mivehvar, H. Ritsch, and F. Piazza. Cavity-Quantum-Electrodynamical
Toolbox for Quantum Magnetism. Phys. Rev. Lett. 122, 113603 (2019).

[77] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel. Dynamical polarizability
of atoms in arbitrary light fields: general theory and application to cesium.
The European Physical Journal D 67, 92 (2013).

[78] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, and T. Esslinger.
Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity. Phys.
Rev. Lett. 120, 223602 (2018).

[79] R. M. Kroeze, Y. Guo, V. D. Vaidya, J. Keeling, and B. L. Lev. Spinor
Self-Ordering of a Quantum Gas in a Cavity. Phys. Rev. Lett. 121, 163601
(2018).

[80] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-Smith. Photon-
Mediated Spin-Exchange Dynamics of Spin-1 Atoms. Physical Review Letters
122, 010405 (2019).

[81] E. J. Davis, A. Periwal, E. S. Cooper, G. Bentsen, S. J. Evered, K. Van Kirk,
and M. H. Schleier-Smith. Protecting Spin Coherence in a Tunable Heisenberg
Model. Physical Review Letters 125, 060402 (2020).

[82] M. A. Norcia, R. J. Lewis-Swan, J. R. K. Cline, B. Zhu, A. M. Rey, and
J. K. Thompson. Cavity-mediated collective spin-exchange interactions in a
strontium superradiant laser. Science 361, 259–262 (2018).

[83] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J. R. K. Cline,
A. M. Rey, and J. K. Thompson. Exploring dynamical phase transitions with
cold atoms in an optical cavity. Nature 580, 602–607 (2020).

178

http://dx.doi.org/10.1038/s41586-023-06018-3
http://dx.doi.org/10.1073/pnas.1306993110
http://dx.doi.org/10.1073/pnas.1306993110
http://dx.doi.org/10.1126/science.aaw4465
http://dx.doi.org/10.1103/PhysRevLett.127.043602
http://dx.doi.org/10.1038/s41586-022-04970-0
http://dx.doi.org/10.1038/s41586-022-04970-0
http://dx.doi.org/10.1103/PhysRevLett.122.113603
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1103/PhysRevLett.120.223602
http://dx.doi.org/10.1103/PhysRevLett.120.223602
http://dx.doi.org/10.1103/PhysRevLett.121.163601
http://dx.doi.org/10.1103/PhysRevLett.121.163601
http://dx.doi.org/10.1103/PhysRevLett.122.010405
http://dx.doi.org/10.1103/PhysRevLett.122.010405
http://dx.doi.org/10.1103/PhysRevLett.125.060402
http://dx.doi.org/10.1126/science.aar3102
http://dx.doi.org/10.1038/s41586-020-2224-x


BIBLIOGRAPHY

[84] A. Periwal, E. S. Cooper, P. Kunkel, J. F. Wienand, E. J. Davis, and
M. Schleier-Smith. Programmable interactions and emergent geometry in an
array of atom clouds. Nature 600, 630–635 (2021).

[85] E. Davis. Engineering and imaging nonlocal spin dynamics in an optical cavity.
Doctoral thesis, Stanford University (2020).

[86] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K.
Thompson. A steady-state superradiant laser with less than one intracavity
photon. Nature 484, 78–81 (2012).

[87] M. A. Norcia and J. K. Thompson. Cold-Strontium Laser in the Superradiant
Crossover Regime. Phys. Rev. X 6, 011025 (2016).

[88] R. H. Dicke. Coherence in Spontaneous Radiation Processes. Phys. Rev. 93,
99–110 (1954).

[89] F. Ferri, R. Rosa-Medina, F. Finger, N. Dogra, M. Soriente, O. Zilberberg,
T. Donner, and T. Esslinger. Emerging Dissipative Phases in a Superradiant
Quantum Gas with Tunable Decay. Phys. Rev. X 11, 041046 (2021).

[90] R. Rosa-Medina, F. Ferri, F. Finger, N. Dogra, K. Kroeger, R. Lin, R. Chi-
tra, T. Donner, and T. Esslinger. Observing Dynamical Currents in a Non-
Hermitian Momentum Lattice. Physical Review Letters 128, 143602 (2022).

[91] F. Finger, R. Rosa-Medina, N. Reiter, P. Christodoulou, T. Donner, and
T. Esslinger. Spin-and momentum-correlated atom pairs mediated by photon
exchange. arXiv preprint arXiv:2303.11326 (2023).

[92] L. Carl, R. Rosa-Medina, S. D. Huber, T. Esslinger, N. Dogra, and T. Dubcek.
Phases, instabilities and excitations in a two-component lattice model with
photon-mediated interactions. Phys. Rev. Res. 5, L032003 (2023).

[93] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard. Trapping of
Neutral Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 59, 2631–
2634 (1987).

[94] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental Observation
of Optically Trapped Atoms. Phys. Rev. Lett. 57, 314–317 (1986).

[95] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps
for Neutral Atoms. Advances In Atomic, Molecular, and Optical Physics 42,
95–170 (2000).

[96] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance Absorption by
Nuclear Magnetic Moments in a Solid. Phys. Rev. 69, 37–38 (1946).

[97] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond,
and S. Haroche. Quantum Rabi Oscillation: A Direct Test of Field Quantiza-
tion in a Cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

179

http://dx.doi.org/10.1038/s41586-021-04156-0
http://dx.doi.org/10.1038/nature10920
http://dx.doi.org/10.1103/PhysRevX.6.011025
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevX.11.041046
http://dx.doi.org/10.1103/PhysRevLett.128.143602
http://dx.doi.org/https://doi.org/10.48550/arXiv.2303.11326
http://dx.doi.org/10.1103/PhysRevResearch.5.L032003
http://dx.doi.org/10.1103/PhysRevLett.59.2631
http://dx.doi.org/10.1103/PhysRevLett.59.2631
http://dx.doi.org/10.1103/PhysRevLett.57.314
http://dx.doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRevLett.76.1800


BIBLIOGRAPHY

[98] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune,
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[247] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman. Light-induced
gauge fields for ultracold atoms. Reports on Progress in Physics 77, 126401
(2014).

[248] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda.
Topological Phases of Non-Hermitian Systems. Phys. Rev. X 8, 031079 (2018).

[249] W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway, W. Yi, and B. Yan.
Tunable Nonreciprocal Quantum Transport through a Dissipative Aharonov-
Bohm Ring in Ultracold Atoms. Phys. Rev. Lett. 124, 070402 (2020).

[250] C.-M. Halati, A. Sheikhan, and C. Kollath. Cavity-induced spin-orbit coupling
in an interacting bosonic wire. Phys. Rev. A 99, 033604 (2019).

[251] S. Ostermann, H. Ritsch, and F. Mivehvar. Many-body phases of a planar
Bose-Einstein condensate with cavity-induced spin-orbit coupling. Phys. Rev.
A 103, 023302 (2021).

[252] C.-M. Halati, A. Sheikhan, and C. Kollath. Cavity-induced artificial gauge
field in a Bose-Hubbard ladder. Phys. Rev. A 96, 063621 (2017).

[253] T. Chanda, R. Kraus, G. Morigi, and J. Zakrzewski. Self-organized topological
insulator due to cavity-mediated correlated tunneling. Quantum 5, 501 (2021).

[254] E. Colella, A. Kosior, F. Mivehvar, and H. Ritsch. Open Quantum System
Simulation of Faraday’s Induction Law via Dynamical Instabilities. Phys. Rev.
Lett. 128, 070603 (2022).

190

http://dx.doi.org/10.1103/PhysRevA.72.043804
http://dx.doi.org/10.1088/1367-2630/15/11/113041
http://dx.doi.org/10.1088/1367-2630/15/11/113041
http://dx.doi.org/10.1103/PhysRevLett.120.040407
http://dx.doi.org/10.1103/PhysRevLett.127.130401
http://dx.doi.org/10.1088/1367-2630/ab73cc
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1103/PhysRevX.8.031079
http://dx.doi.org/10.1103/PhysRevLett.124.070402
http://dx.doi.org/10.1103/PhysRevA.99.033604
http://dx.doi.org/10.1103/PhysRevA.103.023302
http://dx.doi.org/10.1103/PhysRevA.103.023302
http://dx.doi.org/10.1103/PhysRevA.96.063621
http://dx.doi.org/10.22331/q-2021-07-13-501
http://dx.doi.org/10.1103/PhysRevLett.128.070603
http://dx.doi.org/10.1103/PhysRevLett.128.070603


BIBLIOGRAPHY

[255] S. W. Hawking. Black hole explosions? Nature 248, 30–31 (1974).

[256] R. Bousso and S. W. Hawking. Pair creation of black holes during inflation.
Physical Review D 54, 6312–6322 (1996).

[257] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase tran-
sitions in two-dimensional systems. Journal of Physics C: Solid State Physics
6, 1181 (1973).

[258] C. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of
Modern Physics 89, 035002 (2017).

[259] . LIGO scientific collaboration. Enhanced sensitivity of the LIGO gravitational
wave detector by using squeezed states of light. Nature Photonics 7, 613–619
(2013).

[260] L. McCuller, C. Whittle, D. Ganapathy, K. Komori, M. Tse, A. Fernandez-
Galiana, L. Barsotti, P. Fritschel, M. MacInnis, F. Matichard, K. Mason,
N. Mavalvala, R. Mittleman, H. Yu, M. E. Zucker, and M. Evans. Frequency-
Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 124, 171102
(2020).

[261] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne,
J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips. Four-wave
mixing with matter waves. Nature 398, 218–220 (1999).

[262] J. M. Vogels, K. Xu, and W. Ketterle. Generation of Macroscopic Pair-
Correlated Atomic Beams by Four-Wave Mixing in Bose-Einstein Conden-
sates. Physical Review Letters 89, 020401 (2002).

[263] G. K. Campbell, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E.
Pritchard. Parametric Amplification of Scattered Atom Pairs. Physical Review
Letters 96, 020406 (2006).

[264] A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D. Boiron, A. Aspect,
and C. I. Westbrook. Observation of Atom Pairs in Spontaneous Four-Wave
Mixing of Two Colliding Bose-Einstein Condensates. Physical Review Letters
99, 150405 (2007).

[265] R. G. Dall, L. J. Byron, A. G. Truscott, G. R. Dennis, M. T. Johnsson, and
J. J. Hope. Paired-atom laser beams created via four-wave mixing. Physical
Review A 79, 011601 (2009).

[266] V. Krachmalnicoff, J.-C. Jaskula, M. Bonneau, V. Leung, G. B. Partridge,
D. Boiron, C. I. Westbrook, P. Deuar, P. Ziń, M. Trippenbach, and K. V.
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[283] E. Hagley, X. Mâıtre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond,
and S. Haroche. Generation of Einstein-Podolsky-Rosen Pairs of Atoms. Phys-
ical Review Letters 79, 1–5 (1997).

[284] B. Yurke, S. L. McCall, and J. R. Klauder. SU(2) and SU(1,1) interferometers.
Physical Review A 33, 4033–4054 (1986).

[285] J. D. Sau, S. R. Leslie, M. L. Cohen, and D. M. Stamper-Kurn. Spin squeezing
of high-spin, spatially extended quantum fields. New Journal of Physics 12,
085011 (2010).

[286] G. E. Marti, A. MacRae, R. Olf, S. Lourette, F. Fang, and D. M. Stamper-
Kurn. Coherent Magnon Optics in a Ferromagnetic Spinor Bose-Einstein
Condensate. Phys. Rev. Lett. 113, 155302 (2014).

[287] B. L. Schumaker and C. M. Caves. New formalism for two-photon quantum
optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31,
3093–3111 (1985).

[288] B. Evrard. Coherent dynamics, relaxation and fragmentation of a spinor Bose-
Einstein condensate. Theses, Université Paris sciences et lettres (2020).
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