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Summary 

A typical Swiss fattening pig inherits 70% of its genes from animals 

of the dam and sire line of the Swiss Large White (SLW) breed, i.e., two 

domestic lines that are bred in Switzerland to meet the pork market 

requirements and societal expectations. Although knowledge on breed-

specific sequence variants is essential for genomic breeding and detection 

of deleterious alleles, the Swiss pig populations have not yet been 

thoroughly genetically characterized.  

 

In Chapter 2, key ancestors from two SLW lines were sequenced 

using short reads to assess genetic differentiation between the breeds. 

Sequencing the genomes of 70 boars with an average coverage of 16.69-

fold allowed for the assessment of sequence variation in the form of single 

nucleotide and small insertion and deletion polymorphisms. Principal 

component, admixture, and fixation index analyses indicated significant 

genetic differentiation between the lines. Genomic inbreeding, quantified 

through runs of homozygosity, was found to be higher in the sire line 

compared to the dam line. Additionally, 51 signatures of selection were 

detected using two complementary approaches, although only six 

overlapped between the lines. By using the sequenced haplotypes of the 70 

key ancestors as a reference panel, genotypes were called in 175 low-

coverage sequences using the GLIMPSE software. The genotype 

concordance of 97.60%, non-reference sensitivity of 98.73%, non-

reference discrepancy of 3.24% between the inferred genotypes and those 

obtained from Illumina PorcineSNP60 BeadChip demonstrated high 
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accuracy. These findings shed light on the genetic diversity within and 

between the SLW pig lines, providing insights into the potential of low-

pass sequencing. 

 

Chapter 3 explored genetic correlations between complex traits and 

applied genome-wide association studies (GWAS) to detect trait-associated 

markers. By considering array-derived genotypes and phenotypes for 24 

reproduction, production, and conformation traits, the study aimed to 

compare the outcomes of multivariate association testing and multi-trait 

meta-analysis with single-trait GWAS. A cohort of 5,753 pigs from the 

SLW breed was examined, analyzing genotypes at 44,733 SNPs. Single-

trait association analyses identified eleven quantitative trait loci (QTL) 

influencing 15 traits. The two multi-trait methods revealed between 3 and 

6 QTL within each of the three trait groups. The results demonstrated that 

both methods produce similar outcomes, though each had unique 

advantages. The investigation of single-trait association studies proved 

valuable in identifying specific QTL, while multi-trait methods provided 

an overview of pleiotropic loci. Array-derived genotypes were imputed to 

sequence level using a reference panel of 421 pigs, yielding imputed 

genotypes for 16 million sequence variants with high accuracy. Fine-

mapping of six QTL with the imputed sequence variant genotypes 

highlighted four previously proposed causal mutations among the top 

variants. 

 

In Chapter 4, the branch point sequence, a degenerate intronic 

heptamer critical for spliceosome assembly during pre-mRNA splicing, 

was examined. Despite its functional importance, the branch point 
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sequence is often omitted from genome annotations, including the pig 

annotation. The study aimed to predict branch point sequences in 30 plant 

and animal species, including pigs, and assess their evolutionary 

constraints using public variant databases. Our analysis revealed an 

irregular distribution of variants in public databases that affected 16 out of 

30 species investigated, predominantly due to biased or erroneous variants. 

In 14 species with largely unbiased databases, from which three (pig, goat 

and sheep) had in-house whole-genome sequence variants, evolutionary 

constraint analysis demonstrated that the fourth and sixth positions of the 

branch point sequence were stronger constrained than coding nucleotides. 

The study highlighted the need to scrutinize public variant databases for 

potential biases before relying on them for genomic analyses. 

 

Overall, this doctoral thesis provides insights into genetic analysis, 

trait variation, and evolutionary constraints within the SLW pig breed. 

Specifically, this research highlights the necessity of understanding genetic 

diversity, the benefits of employing different analytical approaches and 

variation sources, and the importance of accurate annotation and analysis 

of genetic variants in evolutionary studies. 
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Zusammenfassung 

Ein typisches Schweizer Mastschwein erbt 70% seiner Gene von 

Tieren der Mutter- und Vaterlinie der Rasse Swiss Large White (SLW), d. 

h. von zwei heimischen Linien, die in der Schweiz gezüchtet werden, um 

die Anforderungen der Konsumenten und die gesellschaftlichen 

Erwartungen zu erfüllen. Obwohl die Kenntnis rassespezifischer 

Sequenzvarianten für die genomische Zucht und die Erkennung schädlicher 

Allele wichtig ist, sind die Schweizer Schweinepopulationen noch nicht 

umfassend genetisch charakterisiert. 

 

In Kapitel 2 wurden die wichtigsten Vorfahren aus den beiden Linien 

der Rasse Swiss Large White mit kurzen DNA Fragmenten genomweit 

sequenziert. Die Sequenzierung der Genome von 70 Ebern mit einer 

durchschnittlichen Abdeckung von 16,69-fach ermöglichte es, 

Sequenzvariation in Form von Einzelnukleotid- und kleinen Insertions- 

und Deletionspolymorphismen zu charakterisieren. Verschiedenen 

populationsgenetische Analysen zeigten eine signifikante genetische 

Differenzierung zwischen den Linien. Die genomische Inzucht, 

quantifiziert durch sogenannte «runs of homozygosity», war in der 

Vaterlinie höher als in der Mutterlinie. Darüber hinaus wurden mit zwei 

komplementären Ansätzen 51 Selektionssignaturen festgestellt, von denen 

allerdings nur sechs zwischen den Linien überlappten. Unter Verwendung 

der sequenzierten Haplotypen der 70 wichtigsten Vorfahren als 

Referenzpanel wurden mit der GLIMPSE-Software Genotypen in 175 

Sequenzen mit geringer Abdeckung bestimmt. Eine Übereinstimmung von 

97,60 %, die Nicht-Referenz-Sensitivität von 98,73 % und die Nicht-
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Referenz-Diskrepanz von 3,24 % zwischen den abgeleiteten Genotypen 

und den aus dem Illumina PorcineSNP60 BeadChip gewonnenen 

Genotypen belegen eine hohe Genauigkeit dieses Vorgehens. Diese 

Ergebnisse geben Aufschluss über die genetische Vielfalt innerhalb und 

zwischen den Rassen der Schweizer Large White Schweine und liefern 

Einblicke in das Potenzial der Low-Pass-Sequenzierung. 

 

Kapitel 3 untersuchte genetische Korrelationen zwischen komplexen 

Merkmalen und berichtet über genomweiter Assoziationsstudien (GWAS) 

zur Erkennung von Merkmals-assoziierten Markern. Unter 

Berücksichtigung der von Arrays abgeleiteten Genotypen und Phänotypen 

für 24 Reproduktions-, Produktions- und Exterieur-Merkmale, werden die 

Ergebnisse von multivariaten Assoziationstests und Meta-Analysen für 

mehrere Merkmale mit GWAS für einzelne Merkmale zu vergleichen. Eine 

Kohorte von 5.753 Schweinen der Rasse Swiss Large White wurde 

untersucht, wobei Genotypen an 44.733 SNPs analysiert wurden. Die 

Assoziationsanalysen einzelner Merkmale identifizierten elf quantitative 

Merkmalsloci (QTL), die 15 Merkmale beeinflussen. Die beiden 

Mehrmerkmals-Methoden spürten in den drei Merkmalsgruppen zwischen 

3 und 6 QTL auf. Die Ergebnisse zeigten, dass beide Methoden zwar 

ähnliche Ergebnisse liefern, aber jede ihre Vorteile hat. Die Untersuchung 

von Single-Trait-Assoziationsstudien erwies sich als wertvoll für die 

Identifizierung spezifischer quantitativer Merkmalsloci (QTL), während 

Multi-Trait-Methoden einen Überblick über pleiotrope Loci lieferten. Die 

von den Arrays abgeleiteten Genotypen wurden mit Hilfe eines 

Referenzpanels von 421 Schweinen auf Sequenzebene imputiert, was zu 

imputierten Genotypen für 16 Millionen Sequenzvarianten mit hoher 
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Genauigkeit führte. Die Feinkartierung von sechs QTL unter Verwendung 

von imputierten Sequenzgenotypen spürte vier zuvor vorgeschlagene 

kausale Mutationen unter den Top-Varianten auf. 

 

In Kapitel 4 wurde die Branch-Point-Sequenz, ein degeneriertes 

intronisches Heptamer, das für den Zusammenbau des Spleißosoms 

während des Spleißens der prä-mRNA entscheidend ist, untersucht. Trotz 

ihrer funktionellen Bedeutung wird dieses regulatorische Element meist 

vernachlässigt, so auch in der Annotation des Schweinegenoms. Ziel der 

Studie war die Vorhersage der Branch-Point-Sequenz in 30 Pflanzen- und 

Tierarten, einschließlich Schweinen, und die Bewertung ihrer Variabilität 

anhand öffentlich zugängiger Variantendatenbanken. Unsere Analyse 

ergab, dass 16 der 30 untersuchten Variantendatenbanken verzerrt oder 

unvollständig waren, was in erster Linie auf verzerrte oder fehlerhafte 

Varianten zurückzuführen ist. In 14 Arten mit weitgehend unverzerrten 

Datenbanken, von denen für drei (Schwein, Ziege und Schaf) auch 

genomweite Sequenzdaten zur Verfügung standen, waren sowohl die vierte 

wie auch sechste Position der Branch-Point-Sequenz weniger variabel als 

kodierende Nukleotide. Die Studie unterstreicht die Notwendigkeit, 

öffentliche Variantendatenbanken auf mögliche Verzerrungen hin zu 

überprüfen, bevor man sich bei genomischen Analysen auf sie verlässt. 

 

Insgesamt bietet diese Doktorarbeit Einblicke in die genetische 

Architektur, die Merkmalsvariation und die evolutionären Zwänge 

innerhalb einer Schweizer Schweinepopulation. Die Forschung 

unterstreicht die Bedeutung des Verständnisses der genetischen Vielfalt, 

die Vorteile des Einsatzes verschiedener analytischer Ansätze und 
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Variationsquellen sowie die Bedeutung einer genauen Annotation und 

Analyse genetischer Varianten in der Evolution. 
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Résumé 

Le patrimoine génétique d’un porc d'engraissement suisse typique 

provient pour 70% des lignées maternelle et paternelle de la race Swiss 

Large White (SLW), c'est-à-dire de deux lignées domestiques élevées en 

Suisse pour répondre aux exigences du marché de la viande porcine et aux 

attentes de la société. Bien que la connaissance des variants de séquence 

spécifiques à la race soit essentielle pour la sélection génomique et la 

détection des allèles délétères, les populations porcines suisses n'ont pas 

encore été caractérisées génétiquement de manière approfondie. 

 

Dans le Chapitre 2, des ancêtres clés des deux lignées de la race SLW 

ont été séquencés à l'aide de « courtes lectures ». Le séquençage des 

génomes de 70 verrats avec une couverture moyenne de 16,69X a permis 

d'évaluer les variants génétiques sous forme de polymorphismes 

nucléotidiques (SNP - Single Nucleotide Polymorphism -) et de petits 

polymorphismes d'insertion et de délétion. L’analyse en composantes 

principales, l’analyse des mélanges et l'indice de fixation ont indiqué une 

différenciation génétique significative entre les lignées. La consanguinité 

génomique, quantifiée par les profils d'homozygotie, s'est avérée plus 

élevée dans la lignée des pères que dans celle des mères. En outre, 51 

signatures de sélection ont été détectées à l'aide de deux approches 

complémentaires, bien que seules 6 d'entre elles se chevauchaient entre les 

lignées. En utilisant les haplotypes séquencés des 70 ancêtres clés comme 

panel de référence, les génotypes ont été appelés dans 175 séquences à 

faible couverture à l'aide du logiciel GLIMPSE. La concordance 

génotypique de 97,60 %, la sensibilité non référentielle de 98,73 %, et la 
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divergence non référentielle de 3,24 % entre les génotypes inférés et ceux 

obtenus à partir de la puce Illumina PorcineSNP60 BeadChip, ont démontré 

une grande précision de l’imputation. Ces résultats mettent en lumière la 

diversité génétique au sein de la race porcine SLW et entre les deux lignées, 

et donnent un aperçu du potentiel du séquençage à faible couverture. 

 

Le Chapitre 3 explore les corrélations génétiques entre caractères 

complexes et l'application des études d'association pangénomiques 

(GWAS - Genome-Wide Association Study -) pour détecter les marqueurs 

associés aux caractères. À l’aide de génotypes dérivés des puces et de 

phénotypes de 24 caractères de reproduction, de production et de 

conformation, l'étude visait à comparer les résultats des tests d'association 

multivariés et des méta-analyses multi-caractères avec ceux des GWAS à 

caractère unique. Une cohorte de 5 753 porcs de la race SLW, génotypée 

sur 44 733 SNP, a été analysée. Les analyses d'association à un seul 

caractère ont permis d'identifier 11 loci de caractères quantitatifs (QTL - 

Quantitative Trait Locus -) influençant 15 caractères. Les deux méthodes 

multi-caractères ont révélé dans les trois groupes de caractères entre 3 et 6 

QTL. Les résultats ont montré que les deux approches donnaient des 

résultats similaires mais présentaient des avantages uniques : les études 

d'association à un seul caractère se sont avérées utiles pour identifier des 

QTL spécifiques, tandis que les méthodes à plusieurs caractères ont permis 

d'obtenir une vue d'ensemble des loci pléiotropiques. Les génotypes dérivés 

des matrices ont été imputés au niveau de la séquence en utilisant un panel 

de référence de 421 porcs, permettant d'obtenir des génotypes imputés pour 

16 millions de variants de séquence avec une grande précision. La 

cartographie fine de 6 QTL utilisant des génotypes de variants de séquence 
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imputés a mis en évidence 4 mutations causales précédemment proposées 

parmi les variants les plus importants. 

 

Le Chapitre 4 examine la séquence du point de branchement, un 

heptamère intronique dégénéré essentiel à l'assemblage du splicéosome 

pendant l'épissage des ARN pré-messagers. Malgré son importance 

fonctionnelle, la séquence du point de branchement est souvent omise des 

annotations du génome, comme c’est le cas chez le porc. L'étude visait à 

prédire les séquences du point de branchement chez 30 espèces végétales 

et animales, dont le porc, et à évaluer leurs contraintes évolutives à l'aide 

de bases de données publiques de variants. Notre analyse a révélé une 

distribution irrégulière des variants dans les bases de données publiques 

pour 16 des 30 espèces étudiées, principalement en raison de variants 

biaisés ou erronés. Chez 14 espèces dont les bases de données sont 

largement exemptes de biais, et dont 3 (porc, chèvre et mouton) disposaient 

également de variants internes de séquence du génome entier appelés à 

partir d'alignements de lectures de séquences, l'analyse des contraintes 

évolutives a démontré que les 4ème et 6ème positions de la séquence du point 

de branchement étaient soumises à des contraintes plus fortes que les 

nucléotides codants. L'étude a mis en évidence la nécessité d'examiner 

minutieusement les bases de données de variants publiques pour y déceler 

des biais potentiels avant de s'y fier pour des analyses génomiques. 

 

En conclusion, cette thèse de doctorat donne un aperçu de la diversité 

génétique, de la variation des caractères et des contraintes évolutives au 

sein de la race porcine SLW. Elle met en évidence l'importance de la 

compréhension de la diversité génétique, les avantages de l'utilisation de 
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différentes approches analytiques et sources de variation, et l'importance 

de l'annotation et de l'analyse précises des variants génétiques dans 

l'évolution de la race porcine. 
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Thesis Outline 

The thesis is structured as follows: 

 

Chapter 1 provides a literature review to introduce the Swiss pig 
breeds, ways of studying genomic diversity, and applications of genotypic 
data. 

 

Chapter 2 characterizes the genomic diversity within and between 
two Swiss pig lines. This chapter has been published in BMC Genomics: 

https://doi.org/10.1186/s12864-021-07610-5  

 

Chapter 3 reports on associations between genotype markers and 
economically relevant traits relevant to the dam line and evaluates different 
statistical frameworks underlying the association analyses. This chapter has 
been published in BMC Genomics: 

https://doi.org/10.1186/s12864-023-09295-4  

 

Chapter 4 reports on missing feature in current annotation of 
genomes of different species, including Sus scrofa. This chapter has been 
deposited at the Biorxiv: 

https://doi.org/10.1101/2023.03.27.534366  

 

Chapter 5 provides a general discussion and outlook for future 
research. 

 

https://doi.org/10.1186/s12864-021-07610-5
https://doi.org/10.1186/s12864-023-09295-4
https://doi.org/10.1101/2023.03.27.534366


 

1 General Introduction  

1.1 Reference genome 

Reference genomes are the cornerstone of modern genomics [1]. In 

farmed animal species — such as the domestic pig (Sus scrofa) — genome 

sequences have been crucial to the discovery of molecular genetic variants 

and the development of single nucleotide polymorphism (SNP) chips [2], 

which have enabled efforts to dissect the genetic underpinnings of complex 

traits [3]. Livestock and companion animals were among the first species 

to have reference genomes assembled and published: chicken (2004), dog 

(2004), cattle (2009), rabbit (2009), horse (2009), sheep (2010), pig (2012), 

and goat (2013) [4]. These high-quality genomes differed from draft 

genomes with their completeness (low number of gaps), low number of 

errors, and high percentage of sequence assembled into chromosomes. 

A previously published draft pig reference genome sequence 

(Sscrofa10.2), developed by the Swine Genome Sequencing Consortium 

[5], had several deficiencies. For example, ∼10% of the pig genome was 

not represented or incompletely represented in the assembled scaffolds, 

including some important genes (e.g., CD163 and IGF2) [6]. The 

Sscrofa10.2 assembly had a scaffold N50 (i.e., the length cutoff for the 

longest scaffolds that contain 50% of the total genome length) value of 0.5 

million bp across 9,906 scaffolds. The first major revision after the 

completion of the reference genome was published in 2019 as Sscrofa11.1. 

This current reference genome significantly improved the continuity to a 

scaffold N50 of 88 million bp across 706 scaffolds. Equally, the annotation 
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of the genome improved by doubling the number of annotated gene 

transcripts from 30 to 63 thousand [7]. 

1.2 Genomic markers and 

technologies 

DNA technology has been applied to commercial pig breeding since 

the 1990s [8] in the form of a marker test. Since then, developments in 

sequencing technology have driven new methodologies and applications in 

basic and applied science. Microarray-derived genotypes are now used for 

improving accuracy of genomic selection [9], association testing, and fine-

mapping of quantitative trait loci (QTL), which consequentially provides 

genomic information for phenotypes that would be cost prohibitive to 

measure in industry herds [10]. Examples of this would be genetic 

evaluation of detailed meat quality traits on production animals [11], 

anestrus behavior in gilts or postpartum sows, ovulation rate in sows [12], 

or viral disease challenges [13]. SNP chips can be also used to produce 

and/or validate new reference resources, for instance, in constructing a new 

high-density genetic linkage map [14] or assessing the completeness of the 

new reference sequence [7]. 

1.2.1 Arrays - low/high density 

With the introduction of next generation sequencing platforms by 

Sanger in 1975 [15], high-throughput SNP discovery began in livestock 

species [16, 17] to create panels suitable for genotyping large numbers of 

DNA markers on a commercial scale [18]. The first commercial genome‐

wide SNP array (Illumina BovineSNP50 BeadChip) became available for 

cattle in 2008 [17]. Since then, a series of medium and high-density SNP 

chips have been developed for other livestock species such as pig, sheep, 
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horse, goat, and buffalo (Figure 1.1). These comprehensive panels 

generally contained SNP markers that are equally distributed across the 

genome with neutral (> 5 %) minor allele frequencies (MAF). The SNP 

content of these arrays is further adapted as information on individual SNP 

performance, thereby improving genome assemblies. The number of SNPs 

on one array can vary between 10,000 (e.g., low-density chip) and 777,000 

(e.g., Bovine High Density [HD] chip).  

 

Currently, the most common porcine SNP panel interrogates 

genotypes for 64,232 markers, with most loci lacking a known biological 

function [19]. Parameters, such as estimated MAF, or spacing and number 

of the SNPs on each chromosome, were considered during the array 

development. The chip contains genome-wide loci with a range of MAFs, 

though proprietary SNPs (i.e., any SNP linked to a patent) were excluded. 

The DNA samples used to select SNPs on the chip were obtained from the 

Duroc, Piétrain, Landrace, and Large White commercial breeds from 

Europe and North America, and wild boar from Japan and Europe. The 

Figure 1.1: First publicly available microarrays of livestock. 

Porcine 60K 
SNP chip 

Caprine 50K 
SNP chip 

Bovine HD 
Chip (777K) 

2008 2009 2010 2012 2017 

Bovine 50K 
SNP chip 

Ovine 50K 
SNP chip 

Buffalo 90K 
SNP chip 

Chicken 60K 
SNP chip 
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resulting PorcineSNP60 Genotyping BeadChip was released at the end of 

2008 [2]. 

1.2.2 Sequencing technologies 

With the development of sequencing technologies and subsequent 

reductions in costs, use of whole-genome resequencing emerged as an 

alternative to SNP chips [20]. There are important advantages in having 

full-sequence compared to array-derived genotypes, including: removing 

SNP ascertainment bias [21], uncovering all extant variability [22–24], 

recovering the full unbiased demographic history of populations [22, 25], 

etc. Advancements in next-generation sequencing technology allowed the 

sequencing of larger cohorts and enabled the development of more reliable 

and cost-effective methods for identifying SNP variants [26] and QTLs 

associated with traits of economic importance (e.g., [8, 27]).  

Sequencing technology can broadly be divided into three distinct 

generations:  

i. First-generation technology, such as Sanger sequencing [15], was 

characterized by the use of fluorescently labeled chain-terminating 

dideoxy nucleotides, which were detected in sequencing machines.  

ii. Second-generation sequencers (or high-throughput DNA next-

generation sequencing; NGS) rely on shorter reads (between 75 and 

400 bp) with higher error rates relative to the Sanger sequencing, but 

high sequence coverage (“massively parallel sequencing”). These 

methods generally use a solid support containing micro channels or 

wells in which sequencing by synthesis occurs. During synthesis, 

labeled nucleotides are incorporated, which produces signals 

allowing for imaging [20]. 
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iii. Third-generation sequencers capable of analysing long DNA 

fragments rely on single-molecule real-time sequencing. They read 

longer stretches of DNA or RNA in a single pass, providing 

advantages such as longer read lengths and real-time data. A feature 

of third-generation sequencing technology is that the native DNA is 

sequenced directly without amplification. This has the advantage of 

removing nucleotide biases and alterations in relative abundance of 

DNA templates that are observed in some short-read sequence data 

[20]. 

In addition to the characterization of common variants typically 

included on SNP chips, use of whole-genome sequencing offers several 

supplemental benefits, including the characterization of rare variants and 

identification of other sources of variation, specifically structural and copy 

number variants. As mentioned by Mathieson and McVean [28], whole-

genome sequencing supports studies of low frequency and rare variants, 

which are on average younger than common variants with high frequencies. 

Hence, minor polymorphisms are more powerful for distinguishing closely 

related populations and more informative with respect to recent 

demographic history [29, 30]. Copy number variants are a type of 

intermediate-scale structural variants with copy number changes involving 

a DNA fragment that is typically greater than 1 kb and less than 5 Mb. The 

importance of these repeats has been realized by their association to 

resistance/susceptibility to some diseases [31]. Structural variations are 

chromosomal rearrangements which include insertions, deletions, 

duplications, inversions, and translocations. 

Next-generation sequencing coverage describes the average number 

of bases (i.e., read depth) that align to, or "cover," known reference bases. 
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Major factors that determine the required read depth in a genome 

sequencing study are the error rate of the sequencing method, the assembly 

algorithms used, the repeat complexity of the particular genome under 

study and the read length. Although increasing the sequencing coverage 

might add statistical power [32] or enable investigating very rare variants 

[33], it also increases the cost [34]. Therefore, low-pass sequencing has 

been proposed as a compromise between the cost of sequencing and the 

demand for millions of variants genotyped across the whole genome. It 

provides an affordable cost per sample, which makes it more accessible for 

large-scale studies [35]. Additionally, low-pass sequencing allows for high 

sample throughput, enabling the analysis of a large number of samples 

within a reasonable timeframe. Furthermore, it returns genotypes for both 

common and low-frequency variants, providing comprehensive genetic 

information [36]. However, low-pass sequencing has certain 

disadvantages. First, genotype calls obtained through low-pass sequencing 

may have low confidence due to the imputation process (i.e., predicting 

missing genetic data using known reference data), as direct genotyping is 

not possible, and genotypes are inferred [37]. Consequently, obtaining 

high-accuracy genotypes for specific loci is not possible, unlike in the case 

of array genotyping [36]. Furthermore, genotype calls are limited to 

variants present in the imputation reference panel [38]. These factors 

should be considered when utilizing low-pass sequencing for genotyping 

purposes. 

Throughout this thesis, we explore several sequencing approaches in 

the Swiss Large White population that offer the optimal balance between 

cost and meeting the broad range of needs. 
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1.3 Imputation 

Although the cost of genotyping has decreased by over 10,000-fold 

since 1990 [19], the number of markers and animals in-demand for 

genotyping is quickly growing. While the use of chips with higher SNP 

densities was shown to result in higher selection accuracies in genomic 

selection [39–41], the increased cost relative to low-density chips presented 

a barrier to widespread use. Much of this was resolved by the imputation 

methodology, where low-density genotypes are scaled up to high-density 

ones. Imputation to either higher array density [42] or to sequence level 

[43–45] has been applied in different livestock populations. As a result, 

genotyping strategies in large breeding schemes often involve the use of 

three or more densities of SNPs [46], which makes imputation for non-

genotyped animals from genotyped relatives also possible [47]. 

Imputation of genotypes to the sequence level typically involves two 

steps. First, a phasing step that involves resolving haplotypes of high-

density genotyped animals. Second, an imputation step where low-density 

genotypes are used together with linkage disequilibrium information to 

determine the combinations of haplotypes that are carried by animals not 

genotyped or genotyped at low-density. However, due to the lack of higher 

density genotypes available for a representative number of animals, direct 

imputation from medium-density genotypes to whole-genome sequence 

level had also been explored [48–50]. Imputation can be performed using 

several different programs (e.g., Beagle [51], Fimpute [52], AlphaImpute 

[47], STITCH [53], GLIMPSE1 [38] and GLIMPSE2 [54] etc.). 

The accuracy of imputation is influenced by several factors, 

including the number of markers on the low-density genotyping panel, the 
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number of individuals that are genotyped at high-density, the local linkage 

disequilibrium (LD) between each low-density genotype and its 

surrounding high-density genotypes, and the number of high-density 

genotyped relatives of the individuals to be imputed [44, 55–57]. In 

pedigreed populations, the key factors that impact the accuracy of 

imputation are the density of genotypes of immediate ancestors and the 

density of genotypes in the reference panel used for reconstructing the 

haplotypes [47, 58]. This stresses the need of a densely genotyped reference 

population. Several population-based initiatives help to achieve a high-

quality reference populations. The best-known large-scale resequencing 

initiative in livestock genomics is the 1000 Bull Genomes Project [59], 

though other large sequencing projects are being conducted by academic 

groups and breeding companies (PHARP [42], GENCOVE [35]). These 

efforts are largely inspired by the human 1,000 Genomes Project and hope 

to achieve deep characterization of the genetic variation between and 

within populations [60]. The availability of whole-genome sequence 

information for tens-to-hundreds of animals from specific breeds has 

proved useful to pinpoint the causative mutations underlying monogenic 

defects and facilitates fine-mapping and identification of causative variants 

for QTL detected by genome wide association studies (GWAS) [61, 62]. 

1.4 Genome annotation 

Genome annotation is a crucial step in deciphering the genetic code 

of an organism. With a well-annotated genome, scientists can identify key 

regulatory regions and gene networks. Finding features of DNA is known 

as structural annotation [4] and includes annotating coding regions (open 

reading frames and genes) and non-coding regions (repeat sequence 

regions, pseudogenes, regulatory regions, etc.). The functional annotation 
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is a combination of the structural annotation to other forms of data that can 

be used to describe the products and roles of particular genomic elements 

[4, 63–65]. 

Gene refers to a genomic region that produces a polyadenylated 

mRNA, which encodes a protein. Eukaryotic genes often contain introns – 

‘intervening sequences’ of bases that must be removed from the RNA 

transcript to make functional mRNA. Due to the presence of introns, gene 

prediction is a complex process. The annotation program reads DNA 

segments in all six possible reading frames (three reading frames on each 

of the two strands of DNA), searching for sequences of amino acids 

uninterrupted by 'stop' codons. A random sequence of triplets will include 

a stop codon approximately once in every 21 codons. If it finds a sequence 

of 240 bases without a stop codon, it is likely to contain genetic message. 

This sequence is called an open reading frame (ORF) and is considered a 

gene or a part of a gene [66]. Identifying genes is challenging, as an ORF 

may only represent a portion of a gene. The start and stop codons, promoter, 

and other regulatory elements can be separated from an ORF by multiple 

introns and exons [63, 66–68]. Additionally, the varying sizes of introns 

and alternative splicing further complicate gene structure prediction [69, 

70].  

Splicing is a crucial process where introns are removed from a pre-

mRNA primary transcript and flanking exons are ligated [70]. Each intron 

contains three obligate spliceosome recognition signals: a 5′splice site, a 

branch site, and a 3′splice site [67, 71, 72]. Splicing occurs through a two-

step mechanism. In the first step, the 2′-hydroxyl group of the branchpoint 

adenosine attacks the phosphodiester bond at the 5′splice site and displaces 

the 5′ exon while creating an RNA lariat; in the second step, the 3′-hydroxyl 
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group of the 5′ exon attacks the phosphodiester bond at the 3′ splice site 

and displaces the RNA lariat intron [68, 70, 72, 73]. This is catalyzed by a 

spliceosome, a complex of five small ribonucleic protein particles (U1, U2, 

U4, U5 and U6 snRNP) and other proteins [74, 75]. The motif 

encompassing the branch point has a consensus sequence ‘nnyTrAy’, 

where ‘A’ is the branchpoint residue, ‘y’ denotes pyrimidine (C or T), ‘r’ 

denotes purine (A or G), and ‘n’ denotes any nucleotide [73, 76–78]. The 

motif is recognized by U2 snRNP and undergoes imperfect base-pairing 

with its GUAGUA sequence [74, 79]. This imperfect interaction is 

characterized by a bulged nucleotide in the pre-mRNA that is activated as 

a branch point site [77]. In humans, nearly all protein-coding genes undergo 

splicing, and any disruption in this process can lead to the development of 

rare genetic diseases [80–84]; this emphasizes the significance of proper 

splicing for the accurate formation of functional proteins[82].  

Exons can be spliced together differently, known as alternative 

splicing. This enables regulated generation of multiple mRNA and protein 

products from a single gene, and thus increases the diversity of the 

proteome [69]. For example, although the mouse and human genomes 

contain a similar number of genes, alternative pre-mRNA splicing occurs 

in >95% of human genes, compared to only ∼63% of mouse genes [69, 80, 

85]. However, these numbers might be overestimated due to splicing errors, 

meaning the actual numbers of biologically relevant alternatively spliced 

genes are much lower [80]. 

Functional products of genes are RNAs and proteins. Genes that lead 

to the production of proteins are called protein-coding genes. Other genes 

that do not code proteins, but instead functional RNA molecules, are called 

noncoding genes. Noncoding RNA genes include genes for ribosomal RNA 

(rRNA), transfer RNA (tRNA), microRNA (miRNA), small nuclear RNA 
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and nucleolar RNA (snRNA and snoRNA, respectively), and long 

noncoding RNA (lncRNA). The rest (~ 95%) of the genome is non-coding. 

That consists of non-functional “junk DNA” and potentially biologically 

meaningful regions, such as regulatory elements, non-coding genes, 

introns, pseudogenes, or transposable elements [86]. 

1.5 Genetic diversity 

Genetic diversity is a commonly used term referring to the set of 

differences between individuals, breeds, and species in their DNA. 

Variable alleles and haplotypes are important parts of this genetic diversity 

and can be detected more precisely with the new genomic tools. Reliable 

sets of genotypes obtained by whole-genome sequencing or through 

imputation provide useful insights into variation within or between 

populations. This information can be used to reveal population history of 

bottlenecks, admixture, migration, estimation of current genetic diversity, 

and links to phenotypic variation. For instance, diversity attributed to 

variable patterns of domestication and geographic distributions of livestock 

revealed differences between populations and signatures of selection, 

which assisted with the identification candidate genes (e.g.,[87]).  

Genetic diversity is essential for populations to respond to 

environmental changes, with implications in terms of, for example, human 

health, breeding strategies in crops and farm animals, management of 

infectious diseases and conservation of endangered species. Natural 

populations of sufficiently interbred animals can gradually adapt to the 

specific conditions in which the population lives, e.g., high altitude, rough 

climate, or tropical conditions. In 1930, Fisher [88] formulated the 

following theorem: “The rate of increase in fitness of any organism at any 
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time is equal to its genetic variance in fitness at that time”. This aspect of 

natural selection for adaptive traits has a new importance from the 

perspective of climate change because agricultural species will need to 

adapt to increasingly rapid changes in environmental conditionals [89]. The 

genetic diversity differs considerably between species as well as between 

chromosomes [90]. 

Prior to the investigation of DNA, it was only known that there is a 

50% chance that two offspring would inherit the same allele from the 

parent, and on average two offspring would share 50% of their DNA. The 

outcome of these chance events during meiosis is that two full siblings may 

share substantially more or substantially less than 50% of inherited DNA 

[91, 92]. With the possibility of genotyping, genetic differences and 

similarities between siblings can be established soon after conception. 

The genetic diversity within domesticated species is primarily found 

among the various breeds that have been developed. ‘Breed’ can be defined 

as a subgroup of a species with a common history whose members are 

treated in a common manner with respect to genetic management [93]. In 

genomics, the breed can be defined based on sufficiently dense SNP chips 

with a range of techniques (e.g., principal components or multi-

dimensional scaling), which separate breeds into discrete clusters displayed 

in two or three dimensions. These analyses can go beyond this and separate 

breeds into sub-groups with limited gene flow between each other. In such 

approaches the use of diverse samples is desirable in order to gain the 

perspective in clustering the animals. It is questionable whether all breeds 

significantly contribute to the genetic diversity of their species and 

consequently whether all these breeds must be included in utilization 

schemes (breeding programs) to maintain the within-breed diversity, or if 
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all breeds should be conserved in national conservation plans or gene 

banks. 

The "key ancestor approach" refers to a method in genetic studies 

where a subset of individuals from a population, known as "key ancestors," 

is selected for genomic sequencing. These key ancestors are chosen 

strategically to represent the genetic diversity and variability present in the 

entire population [94]. 

1.5.1 Measures of diversity 

Different molecular measures of genetic diversity are used in 

literature: percentage of polymorphic sites, distribution of allelic 

frequencies, expected heterozygosity, observed heterozygosity, and allelic 

diversity [93]. The genetic diversity can be found within breeds as well as 

between breeds, i.e., deviations from breed mean or between different 

breed means.  

In population genetics, the most used measure of differentiation 

between populations is the Fixation Index of Wright (FST) [95]. It can be 

defined as the proportion of total diversity that appears between breeds. It 

provides a simple way of calculating the contribution of each breed to the 

total genetic diversity in the species. 

A measure of genetic diversity within populations is nucleotide 

diversity (p) [96], or the average proportion of nucleotides that differ 

between any randomly sampled pair of sequences. This measure 

incorporates information regarding the extent of differentiation between 

sequences as well the relative frequencies of the sequences in the sample. 

Nucleotide diversity is similar to the classic measure of heterozygosity and 

is not greatly influenced by rare alleles. Another within-population 
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parameter is runs of homozygosity (ROH), long haplotypes within the same 

individual that are identical (i.e., homozygous for all the loci within) [97, 

98]. Detection of these segments is performed in ‘sliding windows’, or 

predefined blocks moved along the genome. The proportion of the genome 

included in ROH is a measure of inbreeding (FROH) [99, 100]. 

ROH mainly reflect identity by descent (IBD) [98], as it is highly 

unlikely to carry two identical long haplotypes if they are not copies of an 

ancestral one. Therefore, the expectation is that long ROH comes from a 

recent ancestor and reflects recent inbreeding while shorter ones are from 

more distant ancestors [98, 100, 101]. However, the precise distribution of 

the length of ROH is still poorly understood and its interpretation varies 

considerably between studies [102–104]. This is due to the different 

parameters being considered for ROH, specifically SNPs, the minimum 

density SNPs within the segment, the number of missing genotypes 

allowed, and the number of heterozygous positions allowed (to allow for 

genotyping errors). Ferenčaković et al. [100] performed a sensitivity 

analysis using genomic data on three cattle breeds and showed how the 

appropriate length for ROH is also a function of the coverage of the SNP 

chip used, with less dense panels detecting false ROH when pursuing for 

short segments.  

1.5.2 Population demographic 

Demographic events — such as bottlenecks, migrations, admixture, 

and selected crossbreeding — have largely shaped the genome of 

domesticated species and contributed to considerable diversity among 

populations [105–109]. During these events the number of breeding 

individuals in a population is changing, e.g., is dramatically reduced in 

bottlenecks, or genetically diverged from its original source population 

during admixture. Reducing the species to a few hundred greatly and 
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rapidly reduces the number of rare alleles, and thus, the genetic diversity 

of population. This has been observed during the domestication of cattle 

[22], and in milder form in sheep [110] and horse [111]. 

Selection acts in three modes (positive, negative, and balancing) 

during which one or more alleles are favored or disfavored [19, 112–116]. 

Each mode leaves a specific signature on genomic variation and 

architecture, while the level of evolutionary constraint is a function of 

effective population size. For example, deleterious allele, which was not 

meant to be tolerated, drifts during bottleneck to a high frequency [117]. 

Signatures of selection can be investigated at the population level or 

across breeds to highlight potentially relevant functional polymorphisms 

[118–122]. Positive selection on the DNA reduces local variability, and 

through hitchhiking, the effect increases homozygosity in regions [115]. 

This has been considered in several measures: ROH (viz. above); ‘extended 

haplotype homozygosity’, which detects selection signatures by comparing 

a high frequency and extended homozygosity based haplotype with other 

haplotypes at the selected locus [115]or in ‘integrated haplotype score’, 

which is a measure of the amount of extended haplotype homozygosity at 

a given SNP along the ancestral allele relative to the derived allele, 

typically standardized to the distribution of observed iHS scores over a 

range SNPs with similar derived allele frequencies [123]. 

Several statistical tests, which are based on predicted effects relative 

to the standard neutral model, have been proposed for inferring “selective 

sweeps”. These include (1) an excess of rare alleles compared to the 

standard neutral model with Tajima’s D [124] and (2) method to test the 

significance of a local reduction of variation and a skew of the frequency 
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spectrum caused by a hitchhiking event using ‘composite likelihood ratio’ 

test [125, 126]. 

Possible validation of selection scans is combining the selection 

analysis and GWAS. Several studies demonstrated that genomic regions 

that exhibit selection signatures are also enriched for genes associated with 

biologically important traits [118, 122, 127]. Both estimators rely on the 

underlying LD between the causal variant and the genotyped SNP. If 

regions showing evidence of positive selection are present in the QTL 

regions, they would be excellent candidates for containing the causative 

alleles influencing the trait of interest. For example, Qanbari et al. [128] 

showed a perfect overlap between selection candidates for appearance traits 

with major coat color QTLs in cattle. However, the co-localization of a 

selective sweep and a QTL for a relevant phenotype does not necessarily 

mean that the two signals are correlated and might require very special 

biological conditions. 

LD is the non-random association of alleles at two separate loci 

within a population [129]. LD patterns across the genome can be influenced 

by various evolutionary forces, including migration, mutation, genetic drift, 

natural selection, population structure, and recombination rates [130]. 

Consequently, LD maps serve as valuable tools for studying genetic 

diversity, identifying selective sweeps in livestock populations [131], and 

estimating effective population sizes [104]. The most commonly used 

measure is the squared correlation coefficient (r2), which quantifies the 

strength of LD. 
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1.6 Genomic selection  

Genomic selection is a quantitative genetic method that utilizes 

molecular markers to predict an individual's breeding value for a trait of 

interest [132]. It has been extensively applied in various agricultural 

species, including livestock [133] and crops [134].  

Traits used in pig breeding are typically chosen based on a number 

of factors, including the requirements of the pork industry and the needs of 

individual producers [135]. Quantitative traits, such as growth rate and feed 

efficiency, are often prioritized for their economic impact, while qualitative 

traits, such as meat quality and disease resistance, may also be important 

for meeting consumer demand and ensuring animal welfare [19]. 

Selection of animals involves ranking according to estimated 

breeding value. It is calculated by analyzing the animal's own performance 

data, as well as performance data from its relatives and represents the 

portion of an animal's genetic makeup that can be passed on to its offspring 

and used to improve the performance of the next generation [19, 47].  

Since the development of best linear unbiased prediction (BLUP) 

methodology [136] up to recent advanced methods for genomic evaluation 

[137], the estimation of breeding values relies on an additive genetic 

relationship matrix. It exploits information on relatives to account for the 

genetic (co)variance structure among individuals in the population. The 

relationship matrix contains coefficients of relationship that reflect kinship 

between the individuals by calculating the probability of sharing identical 

alleles by descent. This measure, as defined by Falconer and Mackay [138], 

determines the additive genetic relationship between two individuals, 

which is double their kinship. 
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Marker-assisted selection was first applied in commercial pig 

breeding in the early 1990s when the Hal-1843 marker test became 

available for selection against a mutation in the RYR1 gene that lead to poor 

meat quality in stressful conditions [8]. By the early 2000s, quantitative 

geneticists had proposed new methods for developing the marker-assisted 

selection, which required genotyping multiple markers across the genome 

to identify any unknown loci with a causative effect on the phenotype 

[132]. This development led to the demand for SNPs to be incorporated 

into a chip for efficient genotyping of multiple sets of markers and 

estimation of genomic breeding values based on cumulative SNP effects 

[139]. The advancements in livestock genomics have resulted in a greater 

understanding of the genetic architecture of livestock species. These 

technologies are now used in almost all major livestock species in 

developed countries [140]. 

1.7 Swiss pig breeding 

Commercial Swiss pig breeding follows a pyramidal structure with 

three units (nucleus, multiplication, and production). Approximately 

10,000 sows and 500 boars are bred in the nucleus unit to enable the genetic 

improvement of paternal and maternal breeds. The purebred animals from 

two maternal breeds are crossed in the multiplication unit to produce fertile 

and resilient gilts. These crossbred sows are eventually inseminated with 

terminal boars from paternal breeds in the production unit to produce 

roughly 2.5 million fattening pigs every year. 

One of the main breeds used in the core breeding program is Swiss 

Large White (SLW). In the early 2000s, animals with desirable traits were 

selected from this initially purely maternal breed to form the base of a sire 
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line. Further enhancements continued for several generations until a closed 

breeding population was established roughly ten generations ago. 
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2.1 Abstract 

2.1.1 Background 

The key-ancestor approach has been frequently applied to prioritize 

individuals for whole-genome sequencing based on their marginal genetic 

contribution to current populations. Using this approach, we selected 70 

key ancestors from two lines of the Swiss Large White breed that have been 

selected divergently for fertility and fattening traits and sequenced their 

genomes with short paired-end reads. 

2.1.2 Results 

Using pedigree records, we estimated the effective population size of 

the dam and sire line to 72 and 44, respectively. In order to assess sequence 

variation in both lines, we sequenced the genomes of 70 boars at an average 

coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the 

genetic diversity of the breeding populations of the dam and sire line, 

respectively. Reference-guided variant discovery using the GATK revealed 

26,862,369 polymorphic sites. Principal component, admixture and 

fixation index (FST) analyses indicated considerable genetic differentiation 

between the lines. Genomic inbreeding quantified using runs of 

homozygosity was higher in the sire than dam line (0.28 vs 0.26). Using 

two complementary approaches, we detected 51 signatures of selection. 

However, only six signatures of selection overlapped between both lines. 

We used the sequenced haplotypes of the 70 key ancestors as a reference 

panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at 

very low coverage (1.11-fold) using the GLIMPSE software. The genotype 

concordance, non-reference sensitivity and non-reference discrepancy 

between thus inferred and Illumina PorcineSNP60 BeadChip-called 

genotypes was 97.60, 98.73 and 3.24%, respectively. The low-pass 
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sequencing-derived genomic relationship coefficients were highly 

correlated (r > 0.99) with those obtained from microarray genotyping. 

2.1.3 Conclusions 

We assessed genetic diversity within and between two lines of the 

Swiss Large White pig breed. Our analyses revealed considerable 

differentiation, even though the split into two populations occurred only 

few generations ago. The sequenced haplotypes of the key ancestor animals 

enabled us to implement genotyping by low-pass sequencing which offers 

an intriguing cost-effective approach to increase the variant density over 

current array-based genotyping by more than 350-fold. 

2.2 Background  

Swine production follows the classical breeding pyramid. Genetic 

gain is generated in nucleus herds and transmitted via the multiplier to the 

production unit. Swiss pig production relies on maternal and paternal Swiss 

Large White (SLW) lines at the top level of the breeding pyramid. For 

decades, the SLW breed has been maintained as a universal breed, selected 

for production and fertility traits. In 2002, the population was divided into 

sire and dam lines that have been divergently selected for fattening and 

reproduction since then. Approximately 32.5% and 30% of the genes of 2.5 

million fattening pigs slaughtered in 2020 in Switzerland originate from the 

dam and sire line, respectively [1]. Both lines are maintained in purebred 

nucleus herds. However, little is known about the genetic diversity within 

the lines. 

The SLW breeding boars are selected based on genome-based 

breeding values that are predicted using genotypes obtained with a 
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customized version of the Illumina PorcineSNP60 BeadChip. Apart from a 

small number of putatively causal variants that are included in the custom 

part, the content of the currently used microarray was designed in a way 

that it is useful for mainstream breeds [2]. However, the genetic 

constitution of the SLW breed beyond the microarray-derived SNP remains 

largely unknown. The sequencing of key ancestor animals has been 

proposed as a cost-efficient way to assess sequence variation within a 

population. The genomes of key ancestor individuals maximally represent 

the genetic diversity of the target population [3, 4]. Due to the use of 

individual boars in artificial insemination and intense selection in nucleus 

herds, the effective population size of most pig breeding populations is low. 

Thus, most common polymorphic sites segregating in the population can 

be traced back to the genomes of important contributors to the current 

population [5, 6]. The key ancestor approach was frequently applied to 

identify the most important contributors to current cattle breeding 

populations [6]. Recently it was also used to prioritize animals for 

sequencing in commercial pig breeding lines [7].  

The availability of sequence variant genotypes from key ancestor 

animals enables imputing sequence-level genotypes for animals that had 

been genotyped at lower density [8–10]. In livestock populations that are 

routinely genotyped using 60K genotyping arrays, sequence variant 

genotypes are typically imputed using stepwise imputation [11]. In a first 

step, 60K genotypes are imputed to higher density (e.g., 700K) using 

animals that have been genotyped with high-density genotyping arrays. In 

a second step, the partially imputed high-density genotypes are imputed to 

the sequence level based on a sequenced reference panel. The accuracy of 

imputing 60K genotypes directly to the sequence level is low, particularly 

for rare variants, rendering most of them uninformative for downstream 
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analyses such as genomic prediction and association testing [12, 13]. 

Reference-guided variant phasing and imputation from low-pass 

sequencing data offers an intriguing alternative approach to the two-step 

imputation approach in pedigreed populations [14]. This approach utilises 

a sequenced haplotype reference panel that represents the diversity of the 

target population. Sequence variant genotypes of animals sequenced at very 

shallow coverage are then inferred conditional on the observed haplotypes 

of the reference panel. This method is particularly useful in species for 

which dense microarray-derived genotypes are not available. Recent 

investigations [8, 15, 16] suggest that a sequencing coverage less than 1-

fold is sufficient to accurately infer genotypes at known loci - provided an 

informative haplotype reference panel is available.  

Here we obtain whole-genome sequencing data from key ancestor 

animals to characterize genetic diversity, population structure, and 

signatures of selection in two divergently selected commercial pig breeds. 

Using the haplotypes of the key ancestor animals as a reference panel, we 

accurately genotype more than 22 million variants in animals that have 

been sequenced at low coverage. 

2.3 Results  

Using pedigree records, the average inbreeding coefficients of the 

active breeding animals of the sire and dam line were 0.06 ± 0.02 and 0.05 

± 0.01, respectively. Based on these values and the inbreeding coefficients 

of the parents, we estimated the effective population size of the sire and 

dam line of the Swiss Large White (SLW) breed to 44 and 72, respectively. 

In order to assess sequence variation within the two lines, we prioritized 70 

boars for whole-genome sequencing based on their marginal genetic 
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contributions to the active breeding populations with a key ancestor 

approach. Of the 70 boars, 38 and 32 represent the sire and dam line, 

respectively, explaining 95.35 and 87.95% of the genetic diversity of the 

active breeding populations.  

Following quality control (removal of adapter sequences, reads and 

bases of low sequencing quality), between 81.15 and 377.01 million read 

pairs (2 x 150 bp) per sample (mean: 165.55 ± 60.32 million read pairs) 

were aligned to the SSC11.1 assembly of the porcine genome. Using reads 

with high mapping quality (reads with mapping quality < 10 and SAM 

bitwise flag 1796 were not considered), the average sequencing coverage 

of the 70 boars was 16.69 ± 5.93-fold across all autosomes. Raw sequence 

read data of 70 pigs have been deposited at the European Nucleotide 

Archive (ENA) of the EMBL at BioProject PRJEB38156 and 

PRJEB39374.  

A reference-guided multi-sample variant discovery and genotyping 

approach yielded genotypes at 28,407,060 sites (22,191,375 biallelic SNP, 

4,379,470 biallelic INDEL, and 1,836,215 others, Table 2.1). We applied 

GATK’s VariantFiltration module for site-level hard filtration using 

parameters recommended in the best practice guidelines [17]. 

Subsequently, we applied Beagle (version 4.1; [18]) phasing and 

imputation to improve the genotype calls from GATK and to impute 

sporadically missing genotypes. Following the imputation, we retained 

26,862,369 variants including 21,592,583 SNP and 5,269,786 INDEL. The 

number of polymorphic sites that were seen in the heterozygous 

(singletons) and homozygous (doubletons) state only once was 2,026,088 

(7.54%) and 72,100 (0.27%), respectively. To prevent bias resulting from 

flawed genotypes in repetitive regions, we excluded 1,710,337 variants for 

which an excess of sequencing coverage was evident for downstream 
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analyses. The transition/transversion (Ti/Tv)-ratio estimated from filtered 

and imputed variants was 2.28. 

The resulting data were separated into two datasets containing 

23,774,053 and 23,531,919 autosomal variants detected in 32 and 38 boars 

from the dam and sire line, respectively. Of the variants, 1,049,689 and 

1,594,775 were fixed for the alternate allele in the dam and sire line, 

respectively. On average, we detected 11,119,760 ± 176,113 biallelic 

variants per animal (Figure 2.1A), of which 6,258,456 ± 280,127 and 

4,861,304 ± 135,524 were heterozygous and homozygous for the reference 

allele, respectively. The average nucleotide diversity (π) across 452,444 

overlapping windows (10 kb in size with 5 kb steps), spanning 22,840,217 

and 22,529,446 biallelic variants, respectively, was 2.81 x 10-3 in the dam 

and 2.72 x 10-3 in the sire line. 
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Table 2.1: Variants detected in 70 sequenced key ancestor animals. 
 Raw Filtered & 

imputed Dam line Sire line 

Number of 
animals 70 70 32 38 

Sequence 
coverage1 

16.69 (8.72 - 
36.85) 

18.02 (9.31 - 
36.85) 

15.57 (8.72 
- 27.73) 

Number of 
variants 

All 28,407,060 26,862,3
69 

24,358,0
47 

24,093,0
52 

Biallelic 
SNP 22,191,375 21,209,7

25 
19,456,0

00 
19,232,6

92 
Biallelic 
INDEL 4,379,470 4,339,94

7 
3,960,97

6 
3,928,68

4 

Others2 1,836,215 1,312,69
7 941,071 931,676 

Autosomal 
variants 

All 27,582,843 26,198,5
87 

23,774,0
53 

23,531,9
19 

Biallelic 
SNP 21,553,323 20,715,3

54 
19,015,0

58 
18,808,2

94 
Biallelic 
INDEL 4,248,742 4,211,01

2 
3,846,00

8 
3,817,62

2 

Others2 1,780,778 1,272,22
1 912,987 906,003 

1 estimated from the autosomes 
2 this category contains multi-allelic SNP, multi-allelic INDEL, as well as sites 
that may contain both SNP and INDEL 

 

2.3.1 Comparison between array-called and sequence-

called genotypes 

Sixty-eight boars (32 and 36 from the dam and sire line, respectively) 

that had average sequencing coverage between 8.72 and 36.85-fold 

(average: 16.79-fold) also had Illumina PorcineSNP60 BeadChip-called 

genotypes. Using the array-called genotypes at 54,600 autosomal SNP for 

which we were able to determine reference and alternate alleles as a truth 

set, we calculated genotype concordance, non-reference sensitivity and 

non-reference discrepancy between array-called and sequence-called 
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genotypes as proposed by DePristo et al. [19]. Of the 54,600 SNP, 6,376 

and 1,029 were fixed for the reference and alternate allele, respectively, 

and 47,195 were polymorphic in the array-called genotypes of the 68 pigs.  

Of the 48,224 SNP that were either polymorphic or fixed for the 

alternate allele in the array-called genotypes, 46,009 (95.41%) and 45,951 

(95.29%) were also present in the raw and filtered sequence variants, 

respectively. 1,232 SNP of the Illumina PorcineSNP60 BeadChip 

complement were missing in the sequenced set because they were either 

genotyped as INDEL or multiallelic sites using GATK and thus excluded 

from the comparison due to incompatible alleles. 983 and 1,041 SNP were 

not among the raw and filtered sequence variants, respectively, although 

the frequency of the minor allele was > 5% in the array-called genotypes 

for most (> 80%) of them. It is likely that these variants could not be 

matched with the sequence set due to either incompatible or ambiguous 

map coordinates. 

Non-reference sensitivity was greater than 99% and non-reference 

discrepancy around 1% for the raw genotypes called by the GATK, 

suggesting that the high sequencing coverage facilitated accurate variant 

discovery (Table 2.2). The concordance between sequence- and array-

called genotypes improved slightly after applying site-level hard filtration. 

Beagle phasing and imputation further increased the concordance and non-

reference sensitivity as well as decreased the non-reference discrepancy of 

the filtered sequence variant genotypes. 
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Table 2.2: Comparison between sequence- and array-called genotypes at 
corresponding positions. 

Dataset Genotype 
concordance (%) 

Non-reference 
sensitivity (%) 

Non-reference 
discrepancy (%) 

Raw 99.18 99.75 1.11 
Filtered 99.19 99.77 1.09 
Filtered & 
imputed 99.82 99.95 0.24 

 

2.3.2 Population structure and genetic diversity 

To investigate the population structure, ancestry and genetic diversity 

among the 70 sequenced pigs, we performed principal component, 

admixture and fixation index (FST) analyses. The principal components 

were extracted from a genomic relationship matrix constructed from 

23,691,198 autosomal sequence variants that had minor allele frequency 

greater than 0.01.  



 

41 

The first principal component of the genomic relationship matrix 

explained 8.61% of the variation and separated the animals by lines (Figure 

2.1B). The second principal component explaining 2.68% of the variation 

revealed variability within the sire line. Five outlier animals along the 

second axis of variation descended from imported Large White boars.  
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Figure 2.1: Sequencing of key ancestor animals from two pig lines. 

(A) Number of polymorphic sites detected in the 70 boars as a function of depth of 
coverage based on imputed and filtered non-imputed data (transparency). (B) Plot of 
the first two principal components showing the separation of animals by breed and the 
relationship between both lines. Blue and orange symbols indicate 38 and 32 boars 
from the sire and dam line, respectively. 
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We performed an admixture analysis using 1,207,189 independent 

biallelic SNP to assess gene flow between both lines. As expected, K = 2 

was the most plausible number of genetically distinct clusters 

(Supplementary Fig. S2.1). The cross-validation error for K = 1, K = 2 and 

K = 3 was 0.561, 0.546 and 0.564, respectively. 

In order to investigate if pronounced allele frequency differences 

exist between both lines, we performed a SNP-based genetic differentiation 

analysis. We observed multiple 10 kb sliding windows scattered throughout 

the genome with FST values greater than 0.25, indicating genetic divergence 

of both lines (Supplementary Fig. S2.2, Additional file 3.2). The average 

weighted FST value across all windows was 0.07. 

We estimated runs of homozygosity (ROH) for 19,146,365 biallelic 

SNP to investigate genomic inbreeding in both lines. In total 111,201 ROH 

with an average length of 391.28 kb (ranging from 50 kb to 11.1 Mb) were 

detected (Phred-scaled likelihood > 70). The ROH contained an average 

number of 3,176 SNP (ranging from 29 to 87,699). The boars from the dam 

and sire line had 1,604 ± 133 and 1,575 ± 91 ROH with an average size of 

377,928 and 402,731 bp, respectively. The genomic inbreeding (FROH, i.e., 

the fraction of the autosomal genome covered by ROH), was 0.26 ± 0.03 

and 0.28 ± 0.03 for the dam and sire line, respectively. We classified the 

ROH into short (50 - 100 kb), medium (100 kb - 2 Mb) and long ROH 

(above 2 Mb) (Figure 2.2). Most ROH belonged to the medium length 

class. The average FROH was similar in both lines for small and medium 

ROH. However, FROH was higher for long ROH in the sire line.  
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FROH in dam and sire line, estimated for three groups of ROH classified based 
on their length: small (50 kb – 100 kb), medium (100 kb – 2 Mb) and long (> 2 
Mb).  

 

2.3.3 Variant annotation 

In 32 boars from the dam line, we annotated 23,774,053 (19,087,807 

SNP; 4,038,170 INDEL) variants, including 2,567,754 variants that were 

not detected in the sire line. In 38 boars of the sire line, we annotated 

23,531,919 (18,881,067 SNP; 4,009,043 INDEL) variants, including 

2,325,620 that were not detected in the dam line. When compared to 

63,832,658 germline variants listed for Sus scrofa in the Ensembl database 

(release 101), 5,745,790 (24.17%, dam line) and 5,693,068 (24.19%, sire 

line) variants were novel, of which the majority were INDEL and 14.66% 

and 14.64% were biallelic SNP. 

We used the Ensembl Variant Effect Predictor software (VEP, 

release 98; [20]) to predict functional consequences for the sequence 

 
Figure 2.2: Genomic inbreeding in the two lines. 
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variants (Table 2.3). In total, 2.96% (dam line) and 2.94% (sire line) of the 

variants were in exons. Putative impacts of missense variants on protein 

function were predicted using the SIFT (sorting intolerant from tolerant) 

scoring algorithm [21] as implemented in the VEP software. The scoring 

algorithm classified 12,024 and 11,958 amino acid substitutions in the dam 

and sire line, respectively, as “deleterious” (SIFT score < 0.05).  

Table 2.3: Predicted consequences of variants segregating in two lines. The table 
shows only the most sever consequence for a variant. 
Consequence type (most severe) Dam line Sire line 
Splice donor variant 1,396 1,421 
Splice acceptor variant 1,126 1,096 
Stop gained 1,615 1,604 
Frameshift variant 10,912 11,043 
Stop lost 595 587 
Start lost 423 421 
Inframe insertion 990 987 
Inframe deletion 1,164 1,186 
Protein altering variant 62 62 
Missense variant 70,758 69,983 
Splice region variant 22,493 22,148 
Incomplete terminal codon variant 12 11 
Synonymous variant 76,977 75,279 
Stop retained variant 149 135 
Start retained variant 4 4 
Coding sequence variant 98 96 
Mature miRNA variant 12 16 
5’ - UTR variant 168,000 164,866 
3’ - UTR variant 348,135 344,514 
Non-coding transcript exon variant 277,002 275,909 
Intron variant 12,213,614 12,092,056 
Non-coding transcript variant 11 10 
Upstream gene variant 878,779 869,207 
Downstream gene variant 757,364 750,548 
Intergenic variant 8,942,362 8,848,730 
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2.3.4 Known trait-associated variants 

The catalogue of Mendelian traits in Sus scrofa curated in the OMIA 

database (https://omia.org/home/, [22]) contained records of 47 likely 

causal variants (as of September 2020). However, the genomic coordinates 

were available for only 33 likely causal variants. Using functional 

annotations and sequence coverage analyses, we detected OMIA-listed 

variants affecting the KIT, MC1R and FUT1 genes in the sequenced key 

ancestor animals that occurred at alternate allele frequencies between 0.013 

and 1 (Supplementary Table S2.1, Additional file 3.3). 

A duplication of the KIT gene and a splice site variant in intron 17 of 

the KIT gene are associated with the dominant white phenotype [23, 24]. 

Because the genotyping of larger structural and copy number variants from 

short-read sequencing data is notoriously difficult, we visually inspected 

the depth of sequencing coverage at the SSC8 region encompassing KIT. 

An increase in coverage between 41.22 and 41.78 Mb confirmed the 

presence of a previously reported 560 kb duplication (DUP1; 

Supplementary Fig. S2.3, Additional file 3.4, [25, 26]. The duplication also 

encompasses a copy of KIT that carries a splice donor site variant (SSC8: 

41486012G>A, rs345599765) which manifests in a dominant white 

phenotype [23, 24]. The splice variant segregated at a frequency of 0.49 

and 0.42 in the sire and dam line, respectively. Seven animals that carried 

either one or two copies of DUP1 did not carry the splice site variant and 

all others were heterozygous carriers. Because this variant is located within 

the 560 kb duplication, we observed allelic imbalance in heterozygous 

animals. 

We detected three OMIA-listed pigmentation-associated variants in 

the MC1R gene in the sequenced pigs. All boars were homozygous carriers 

https://omia.org/home/
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of a 2-bp insertion (SSC6: 182,120 - 182,121 bp), that causes a frameshift 

and premature translation termination, which is associated with recessive 

white color [27]. All animals were also homozygous carriers of two 

missense variants in the MC1R gene (SSC6: 181461T>C, 

ENSSSCP00000027395.1: p.Thr243Ala and SSC6: 181697A>G, 

ENSSSCP00000027395.1: p.Val164Ala), for which the reference alleles 

had been associated with red color in the Duroc breed [28]. 

A missense variant (SSC6: 54079560T>C; 

ENSSSCP00000062180.1: p.Thr102Ala; rs335979375) in the FUT1 gene 

enables adhesion of enterotoxigenic Escherichia Coli F18 fimbriae (ETEC 

F18) to receptors at the brush border membranes of the intestinal mucosa 

[29]. The allele that facilitates ETEC F18 adhesion causes diarrhea in 

neonatal and recently weaned piglets. Since a strong selection against the 

ETEC F18 susceptible allele takes place in both SLW lines, we observed 

the disease-associated allele only in one boar from the sire line in the 

heterozygous state. 

2.3.5 Signatures of selection 

We detected signatures of past selection using the composite 

likelihood ratio (CLR) test. Signatures of ongoing selection were identified 

by the integrated haplotype score (iHS) test. For both analyses, we used 

biallelic autosomal SNP (Ndam = 19,015,058, Nsire = 18,808,294) that were 

grouped into non-overlapping 100 kb windows. For the CLR tests, we 

considered an empirical 0.5% significance threshold to identify putative 

signatures of selection (Figure 2.3A). The number and length of candidate 

selection regions was higher in the dam than the sire line (14 vs. 7; 38.1 

Mb vs. 26.1 Mb). Two regions on SSC3 (from 122.6 to 124.9 Mb) and 

SSC13 (from 140.0 to 146.1 Mb) showed evidence of selection in both 

lines. For the iHS analyses, we used an empirical 0.1% significance 
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threshold to detect putative signatures of selection (Figure 2.3B). We 

detected 14 and 16 candidate regions of selection in the dam and sire line, 

respectively, encompassing 28.5 Mb and 32.5 Mb. Four regions on SSC1 

(from 51.1 to 53.7 Mb, from 142.7 to 146.2 Mb), SSC6 (from 64.9 to 69.3 

Mb) and SSC13 (from 148.0 to 150.6 Mb) were shared between both lines. 

Considering both statistics, we detected more signatures of selection 

in the dam than sire line (28 vs. 23). Only 6 regions, detected by either CLR 

or iHS, overlapped between both lines. A strong signature of selection was 

detected in both lines with both methods on SSC13 between 140 and 152.4 

Mb. The candidate region encompassed 125 genes (Supplementary Table 

S2.2, Additional file 3.5), as well as 63,480 and 55,835 polymorphic sites 

in the dam and sire line, respectively, precluding to readily prioritize 

candidate genes and variants responsible for the sweep.  

Signatures of selection detected in the sire and dam line of the SLW breed using 
CLR (A) and iHS (B) Dotted lines indicate the empirical 0.5 (CLR) and 0.1% 

 
Figure 2.3: Signatures of selection detected in the sire and dam line of the 
SLW breed. 
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(iHS) thresholds. Blue, orange and grey vertical bars highlight signatures of 
selection detected in the sire, dam and both lines, respectively. 

 

2.3.6 Reference-based genotyping from low-

coverage sequencing data 

In order to investigate if the 70 sequenced key ancestor animals may 

serve as a reference panel for genotyping by low-coverage sequencing, we 

sequenced the genomes of 175 pigs (84 from the sire line and 91 from the 

dam line) at low coverage using Gencove’s low-pass sequencing solution. 

The pigs also had Illumina PorcineSNP60 BeadChip-called genotypes. A 

principal component (Supplementary Fig. S2.4, Additional file 3.6) 

analysis of a genomic relationship matrix constructed from microarray-

derived genotypes showed that the 175 pigs cluster with the 70 key ancestor 

animals.  

Following quality control, we aligned a median number of 

16,153,314 (between 5,950,534 and 21,168,683) read pairs (2 x 150 bp) to 

the porcine reference genome, achieving an average depth of coverage of 

1.11-fold (from 0.38 to 1.51). On average, 54% of the reference nucleotides 

were covered with at least one read. Following the reference-guided low-

pass sequence variant genotyping approach (GLIMPSE) proposed by 

Rubinacci et al. [8], we utilized the haplotypes of the 70 sequenced key 

ancestor animals as a reference panel to call genotypes at 22,618,811 

polymorphic sites in the 175 low-pass sequenced samples.  

We assessed the accuracy of genotyping by low-pass sequencing 

based on Illumina PorcineSNP60 BeadChip-called genotypes at 54,600 

SNP, for which we were able to determine reference and alternate alleles. 

Of the 54,600 SNP, 6,176 and 965 were fixed for the reference and alternate 

allele, respectively, in the 175 pigs according to the array-called genotypes. 
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Of 48,424 SNP that were either polymorphic or fixed for the alternate 

allele, 46,001 (94.99%) were also among the GLIMPSE-imputed 

genotypes. 2,423 SNP had microarray-derived genotypes but were missing 

in the GLIMPSE-imputed genotypes because these SNP were missing in 

the haplotype reference panel constructed from the key ancestor animals. 

The genotype concordance, non-reference sensitivity and non-

reference discrepancy between GLIMPSE-imputed and array-called 

genotypes at 46,001 autosomal SNP was 97.60, 98.73 and 3.24% in 175 

low-pass sequenced pigs (Table 2.4, Figure 2.4A). When the sequence 

variant calling of the 175 samples was performed together with the 70 key 

ancestor animals using the multi-sample approach implemented in the 

GATK, all concordance metrics were considerably worse. Although, 

Beagle imputation improved the genotype calls of GATK for the low-pass 

sequenced samples, the genotype concordance and non-reference 

sensitivity was lower and non-reference discrepancy higher using GATK 

than GLIMPSE. Using the GLIMPSE approach improved the genotype 

concordance over GATK filtered & Beagle imputed variants by 13.83% 

and this improvement is mostly due to a lower non-reference discrepancy 

(Table 2.4). 

 

Table 2.4: Accuracy of sequence variant genotyping in low-coverage (1.11-fold) 
sequencing data. 

Variant genotyping approach Genotype 
concordance 

Non-
reference 
sensitivity 

Non-reference 
discrepancy 

GLIMPSE 97.60 98.73 3.24 
GATK raw 75.90 52.35 30.20 
GATK filtered 75.89 52.36 30.22 
GATK filtered & imputed 85.74 96.56 19.34 
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We constructed genomic relationship matrices (GRM) from the 

microarray-derived and GLIMPSE-imputed genotypes of the 175 

sequenced pigs based on a subset of 44,268 SNP that were detected at 

minor allele frequency greater than 0.01 in both datasets. Both the off-

diagonal and the diagonal elements of the GRM constructed from array-

derived genotypes had greater variance (σ2diag = 3.37 x 10-3, σ2off = 9.34 x 

10-3) than corresponding elements of the GRM constructed from low-pass 

sequencing data (σ2diag = 3.30 x 10-3, σ2off = 9.15 x 10-3). While the 

correlation of the off-diagonal (r = 0.99) and diagonal (r = 0.96) elements 

was high between both GRMs, the values of the diagonal elements were 

higher for all samples using the GLIMPSE-imputed than microarray-

derived genotypes (Figure 2.4B and 4C). The average value of the diagonal 

elements of the GRM was 1.01 ± 0.06 and 1.05 ± 0.06 for the microarray- 

and low-pass sequencing-derived genotypes, respectively. On average, the 

175 boars were homozygous for 65.58 ± 1.39% and 67.27 ± 1.49% of the 

44,268 SNP when the genotypes were called from the microarray and low-

pass sequencing data, respectively. 
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(A) Concordance between array-called and sequence-called genotypes at 46,001 
biallelic autosomal SNP in 243 pigs that had been sequenced at either low (N = 
175; < 1.5-fold) or medium to high (N = 68; 8.88 - 37.60-fold) coverage. 
Correlations of (B) diagonal (r = 0.96) and (C) off-diagonal (r = 0.99) elements of 
genomic relationship matrices constructed from array- and GLIMPSE-called 
genotypes at 44,268 SNP that had minor allele frequency > 0.01. 

 

2.4 Discussion 

We applied a key ancestor animal approach to prioritize 38 and 32 

boars that accounted for 95.35 and 87.95% of the genetic diversity of the 

SLW sire and dam line, respectively. The contributions of the SLW key 

ancestor animals to the current populations are considerably higher than 

reported for other populations. For instance, 43 key ancestor animals 

 
Figure 2.4: Accuracy of genotyping by low-coverage sequencing. 
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explained 69% of the genetic diversity of the Fleckvieh cattle population 

[5]. Neuditschko et al. [30] selected 41 and 55 key contributors, 

respectively, that explained 78% and 75% of the genetic relationship 

structure of the Swiss Franches-Montagnes horse and Australian Holstein-

Friesian cattle population. The effective population size of the SLW sire 

and dam line is 44 and 72, respectively, which is less than half the effective 

population size of the Fleckvieh cattle and Swiss Franches-Montagnes 

horse population [31, 32]. Thus, a few animals that are selected based on 

their marginal genetic contribution to the active breeding population, 

account for a large fraction of the population’s haplotype diversity. It is 

worth mentioning that approaches other than the key ancestor animal 

approach may increase the haplotype diversity among the sequenced 

animals [33]. Nevertheless, the catalogue of 26.86 million polymorphic 

sites detected from the 70 sequenced boars of our study contains most 

alleles that segregate in the SLW populations, particularly those that occur 

at not too low frequency. A Ti/Tv-ratio of 2.28 indicates that the variants 

were of high quality [34]. In spite of the low effective population size, the 

nucleotide diversity (π) was high in both lines (πdam = 2.24 x 10-3; πsire = 

2.23 x 10-3), which agrees well with estimates obtained in other European 

pig populations [35–37]. The nucleotide diversity in the SLW populations 

is higher than in cattle (1.77 x 10-3 – 1.90 x 10-3) and human (0.98 x 10-3 – 

1.41 x 10-3) populations that have considerably larger current effective 

population sizes [38]. 

Although our sequencing cohort contained more animals from the 

sire line, we detected somewhat more autosomal variants in the dam line 

(Nsire = 23,531,919; Ndam = 23,774,053). While the average number of 

heterozygous variants detected per animal was higher in the dam line (Nsire 

= 6,180,048; Ndam = 6,351,565), the number of variants homozygous for 



 

53 

the alternate allele was higher in the sire line (Nsire = 4,873,994; Ndam = 

4,646,236). Because the average depth of sequencing was similar in the sire 

and dam line, these differences are unlikely to be due to uneven coverage 

between the lines. These differences are likely attributable to a smaller 

effective population size and higher genomic inbreeding in the sire line. 

The presence of many long ROH (> 2 Mb) suggests that recent inbreeding 

is higher in the sire than the dam line. Small effective population size and 

increasing inbreeding make both lines susceptible to the phenotypic 

manifestation of recessive alleles. For instance, a recessive sperm defect 

has recently been discovered in the sire line [39]. The management of an 

ever-increasing number of recessive traits is a challenge to domestic animal 

breeding populations [40–42]. Efficient and sustainable strategies are 

required to prevent the frequent manifestation of recessive diseases in 

populations with low effective population size.  

Surprisingly, Cai et al. [43] detected fewer variants (between 20.68 

and 22.11 million variants) in a considerably larger cohort of pigs (between 

61 and 89) from three commercial Danish lines. Considering that Cai et al. 

also sequenced key ancestor animals, this difference to our study suggests 

higher genetic diversity in SLW. However, the depth of coverage, 

sequencing strategy, sequence variant genotyping and filtration approaches 

have major impacts on detecting polymorphic sites [44, 45]. While the 

effective depth of coverage realized by Cai et al. [43] is unknown to us, our 

samples were sequenced at an average depth of coverage greater than 16-

fold. This depth of coverage enabled us to accurately detect both 

homozygous and heterozygous sites as evidenced by high non-reference 

sensitivity and genotype concordance at low non-reference discrepancy.  
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The principal components of a genomic relationship matrix 

constructed from whole-genome sequence variants revealed a separation of 

the animals by line. While the differentiation between the two populations 

might be less evident if diverse samples or an outgroup were considered in 

the analysis [7, 37, 46, 47], an average FST value of 0.07 corroborated that 

both lines diverged considerably. In fact, the average FST value observed 

between two SLW lines is similar to values reported between distinct 

European pig breeds [37, 43, 48]. The differentiation between the sire and 

dam line might result from distinct breeding objectives with negative 

genetic correlations [49]. While the sire line is mainly selected for meat and 

fattening traits, the dam line is mainly selected for reproduction traits. 

Using CLR and iHS, we detected 51 candidate signatures of selection, of 

which only six overlapped between both lines, suggesting that different loci 

are under selection in the sire and dam line. However, previous research 

indicates that selection for complex traits, such as production and 

reproduction, acts on many loci, thus barely leaves strong footprints in the 

genome [50, 51]. Moreover, both lines diverged only few generations ago, 

rendering limited time for shifts in allele frequency due to selection. We 

suspect that the strong differentiation between the SLW sire and dam line 

is also a result of genetic drift [52–54] due to very small effective 

population size and pronounced founder effects resulting from the 

unbalanced use of individual boars in artificial insemination. 

A reference panel of less than 70 sequenced key ancestor animals 

facilitated imputing sequence variant genotypes at high accuracy and 

detecting trait-associated nucleotides using genome-wide association 

testing in cattle populations [6, 55]. Sequence variant genotypes are 

typically inferred using two-step imputation approaches. This requires the 

presence of a representative number of animals that had been genotyped at 
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high density [11]. However, routine genotyping in the SLW populations is 

performed using a customized PorcineSNP60 BeadChip. Genotypes from 

high-density microarrays (e.g., 600K) are not available. Thus, precluding 

the accurate imputation of sequence variant genotypes from the key 

ancestor animals using the well-established stepwise imputation approach 

[13]. This limitation prompted us to investigate an alternative approach to 

reference-guided sequence variant imputation. We considered the 70 key 

ancestor animals as a reference to call genotypes from low-pass sequencing 

data (1.11-fold) of genetically similar pigs. In agreement with previous 

studies in human and cattle populations, the genotyping accuracy from the 

low-pass sequencing data was very high [8, 15, 56]. Moreover, the low-

pass sequencing-derived genomic relationship coefficients were highly 

correlated with those obtained using microarray genotyping. This suggests 

that the low-pass sequencing-derived imputed genotypes may readily be 

used for genomic prediction [56, 57]. However, the diagonal elements of 

the genomic relationship matrix were higher and had less variance using 

the genotypes from low-pass sequencing than microarray genotyping, 

likely because the sequenced key ancestor animals do not represent the full 

haplotype diversity of the SLW populations which precludes the 

imputation of rarer sites that predominantly occur in the heterozygous state. 

High-coverage sequencing of few additional animals that carry rare 

haplotypes may mitigate this ascertainment bias [49] and increase the 

accuracy of genotyping by low-pass sequencing, particularly for rare 

alleles. While a subset of the 22.62 million variants obtained is sufficient 

to accurately predict genomic breeding values, the full variant catalogue, 

once available for a large mapping cohort, will facilitate powerful genome-

wide association studies at nucleotide resolution. 
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2.5 Conclusions 

The high-coverage sequencing of 70 key ancestor animals from two 

SLW lines and subsequent reference-guided variant discovery revealed 

26,862,369 polymorphic sites. Population-genetic analyses suggest 

considerable genetic differentiation between both lines. Our results indicate 

that the key ancestor genomes may serve as a haplotype reference panel for 

genotyping by low-pass sequencing at high accuracy in the Swiss pig 

breeds. Using genotyping by low-pass sequencing increases the variant 

density over the currently used microarray by > 350-fold, thus providing a 

valuable resource for powerful genome-wide association testing.  

2.6 Methods 

2.6.1 Animals and whole‑genome sequencing  

Whole genome sequence data were generated for 70 boars. Sixty-five 

boars (32 from the dam line and 33 from the sire line) were selected based 

on their marginal genetic contribution to the current breeding populations 

using a key ancestor approach [3, 4]. The marginal genetic contribution was 

estimated based on a numerator relationship matrix that was constructed 

using the PyPedal python package [59]. The effective population size of 

the sire and dam line was estimated based on the difference in pedigree-

derived inbreeding coefficients between active breeding animals and their 

parents following equation (3) presented in Leroy et al. [60]. The 

inbreeding coefficients were extracted from the numerator relationship 

matrix. Animals born after 01.01.2018 were considered as active breeding 

animals. In addition, we considered whole-genome sequence data from five 

boars from the sire line that were generated previously [39]. DNA was 

prepared from preserved blood samples that were provided by SUISAG 
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(the Swiss competence center for pig breeding). No animals were specially 

sampled for the present study. Illumina TruSeq PCR‐free libraries with 

insert sizes of 350 bp were prepared and sequenced with an Illumina 

NovaSeq6000 instrument using 2 ×150 bp paired-end reads.  

2.6.2 Alignment quality, read mapping and depth of 

coverage 

We used the fastp software [61] to remove adapter sequences and 

reads that had Phred-scaled quality less than 15 for more than 15% of the 

bases. Subsequently, the filtered reads were aligned to the SSC11.1 

assembly of the porcine genome [62] using the mem-algorithm of the BWA 

software [63]. The Picard tools software suite [64] and Sambamba [65] 

were applied to mark duplicate reads and sort the alignments by 

coordinates, respectively. To calculate depth of coverage, we extracted the 

number of reads covering a genomic position using the mosdepth software 

[66]. For the coverage calculation, we discarded reads with mapping 

quality < 10 and SAM bitwise flag value of 1796. 

2.6.3 Variant calling 

We used the BaseRecalibrator module of the Genome Analysis 

Toolkit (GATK - version 4.1.0; [19]) to adjust the base quality scores while 

supplying 63,881,592 unique positions from the porcine dbSNP version 

150 as known variants. We applied the HaplotypeCaller, 

GenomicsDBImport and GenotypeGVCFs modules from the GATK to 

discover and genotype SNP and INDEL in the 70 SLW pigs together with 

28 samples from various breeds that were sequenced earlier. Subsequently, 

we applied the VariantFiltration module of the GATK according to best 

practice recommendations for site-level hard filtration to retain high-
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quality variants. Beagle (version 4.1; [18]) haplotype phasing and 

imputation was applied to impute sporadically missing sites and improve 

the primary genotypes obtained using the GATK.  

The concordance between sequence- and array called genotypes was 

calculated for 68 pigs that also had Illumina PorcineSNP60 BeadChip 

microarray-derived genotypes. We considered only autosomal SNP. We 

converted the TOP/BOT alleles of the microarray-derived genotypes to 

REF/ALT allele coding to make them compatible with the sequence-

derived genotypes. This was possible for 54,600 SNP. Sequence variant 

genotyping accuracy was quantified using genotypic concordance, non-

reference sensitivity and non-reference discrepancy [19, 44]. 

Invariant sites and variants within regions with an excessive depth of 

coverage (> mean coverage + 2 * SD) were removed using VCFtools (v. 

0.1.16; [67]). The resulting data were split into two datasets containing 

23,774,053 and 23,531,919 variants segregating in 32 boars from the dam 

line and 38 boars from the sire line, respectively.  

2.6.4 Functional annotation 

Functional consequences of the variants (including SIFT scores [21] 

for missense variants) were predicted with the Ensembl Variant Effect 

Predictor (VEP, version 91.3; [20]) using local cache files from Ensembl 

release 98. The transition to transversion ratio (Ti/Tv) was calculated using 

BCFtools command stats (version 1.8; [68]). 

2.6.5 Detection of mendelian trait-associated variants and 

coverage analysis 

We downloaded genomic coordinates of 47 likely causal variants 

from the Online Mendelian Inheritance in Animals (OMIA) database [22]. 

Genes harboring likely causal variants for which the genomic coordinates 
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were not annotated according to SSC11.1 were manually inspected. Read 

alignments and sequence coverage in regions harboring known larger 

structural variants were manually inspected. 

2.6.6 Population structure and genetic diversity analysis 

The structure of the two lines was investigated using ADMIXTURE 

(v1.3.0; [69]). To avoid confounding due to extensive linkage 

disequilibrium (LD), we removed correlated loci based on high levels (r2 > 

0.6) of pairwise LD using PLINK (version 1.9; [70]) with the "--indep-

pairwise 100 25 0.6" option before running the ADMIXTURE analysis. 

The number of ancestral clusters (K) was set from 1 to 3, and five-fold 

cross-validation was performed to determine the K value with the lowest 

cross-validation error. 

A genomic relationship matrix was built using 23,691,198 autosomal 

sequence variants that had a minor allele frequency higher than 0.01 using 

PLINK. The principal components of the genomic relationship matrix were 

calculated using the GCTA (version 1.92.1; [71]) software. We applied the 

GCTA flag "--grm-singleton" to identify four pairs of animals with 

relationship coefficients ranging from 0.32 to 0.37. One animal from each 

pair was removed for the FST and signature of selection analyses (1 from 

the dam line and 3 from the sire line). 

We calculated the weighted genome wide fixation index (FST, [72]) 

based on pairwise differences in the variances of allele frequencies using 

24,926,366 biallelic variants. FST values were calculated in 10 kb sliding 

windows with an overlap of 5 kb using the "--weir-fst-pop" flag of 

VCFtools (v.1.2.11; [67]). The manhattan plot was constructed using the R 

package qqman [73]. 
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Nucleotide diversity (π) was calculated over all biallelic autosomal 

variants in 10 kb sliding windows with an overlap of 5 kb using VCFtools. 

Runs of homozygosity (ROH) were estimated with BCFtools/ROH 

[74] using the GATK-derived genotypes (containing the Phred-scaled 

likelihoods). We considered biallelic SNP that had non-missing genotypes 

in all animals (maximal missing count per site was set to 0). According to 

Tortereau et al. [75], we assumed a constant recombination rate of 0.7 

cM/Mb along the chromosomes. Average genomic inbreeding (FROH) was 

calculated assuming an autosomal genome length of 2,265,774,640 bases. 

Following a recent study by Bhati et al. [76], we classified the ROH based 

on their length (short: 50 - 100 kb, medium: 100 kb - 2 Mb, long: > 2 Mb).  

2.6.7 Signatures of selection (CLR and iHS) and 

candidate regions 

Putative signatures of selection were detected using integrated 

Haplotype Scores (iHS) and composite likelihood ratios (CLR). The iHS 

[77] reveals ‘soft sweeps’, i.e., signatures of selection where selection for 

beneficial alleles is still ongoing. The CLR [78] reveals ‘hard sweeps’, i.e., 

signatures of selection where beneficial alleles recently reached fixation. 

We considered 24,926,366 autosomal biallelic SNP from 31 and 35 boars 

from the dam and sire line, respectively. The genotypes were phased using 

Beagle (version 5.1; [79]) with disabled imputation and effective 

population size set to 50. The CLR statistic was calculated chromosome-

wise with the SweepFinder2 software [80] using a pre-computed 

empirical allele frequency spectrum and 100 kb spacing between test 

sites (-lg 100000). Using the R package rehh 2.0 [81], we applied the 

function scan_hh to estimate the integrated extended haplotype 

homozygosity (EHH) on variants with MAF > 0.05 for each chromosome 
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separately. Subsequently, we applied the function ihh2ihs to obtain 

standardized iHS values in 100 kb non-overlapping windows. 

The function calc_candidate_regions from the rehh 2.0 package [81] 

was applied to select candidate signatures of selection in 100 kb windows 

using the parameters "window_size = 1E6", "overlap = 1E5", "pval = F" 

and "min_n_extr_mrk = 1". Empirical significance thresholds were chosen 

after visual inspection of the distribution of the test statistics (0.1% in iHS 

and 0.5% in CLR). Genes overlapping with candidate signatures of 

selections were determined based on the Ensembl (release 98) annotation 

of the porcine genome.  

2.6.8 Analysis of low-pass sequence data 

A median number of 16,131,419 paired-end (2x150bp) reads were 

generated for 96 pigs from the dam line and 96 pigs from the sire line. 

Adapter sequences and bases and reads with low sequencing quality were 

removed with fastp [61]. Subsequently, the reads were aligned to the 

porcine reference genome (SSC11.1) using the mem-algorithm of BWA 

[63] and duplicate reads were marked using Samblaster [82]. Following the 

read alignment, six samples were excluded because the mapping rate and 

the proportion of properly paired reads was less than 70 and 75%, 

respectively. Additionally, we excluded 10 samples for which the average 

coverage was less than 0.2-fold and one sample for which ancestry could 

not be verified. 

To compile the reference haplotypes, we retained 22,618,811 

biallelic autosomal SNP that were polymorphic (minor allele count ≥ 1) 

among the 70 key ancestor pigs. Following the approach proposed by 

Rubinacci et al. [8], we used the mpileup and call commands of BCFtools 
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[68] to calculate genotype likelihoods at the 22,618,811 polymorphic sites 

in the 175 low-pass sequenced and reference-aligned samples. 

Subsequently, we applied the phasing and imputation algorithm 

implemented in GLIMPSE_phase [8] to refine the BCFtools-derived 

genotype calls using the previously established haplotype reference panel. 

This approach produced genotypes at 22,618,811 sites for the 175 low-pass 

sequenced samples. A genomic relationship matrix among the low-pass 

sequenced animals was constructed from the low-pass sequencing data-

derived genotypes using GCTA [71]. 

2.7 List of abbreviations 

CLR: Composite likelihood ratio; FST: Fixation index; iHS: 

Integrated haplotype score; INDEL: Insertions and deletions; LD: Linkage 

disequilibrium; MAF: Minor allele frequency; OMIA: Online Mendelian 

Inheritance in Animals; PCA: Principal component analysis; QTL: 

Quantitative trait loci; ROH: Run of homozygosity; SLW: Swiss Large 

White; SNP: Single nucleotide polymorphism; Ti/Tv: 

Transition/transversion ratio; WGS: Whole-genome sequencing 
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Ancestry of 70 pigs with K = 2 ancestral populations estimated using 1,207,189 
biallelic SNPs after LD pruning. Ancestry proportions were estimated using the 
ADMIXTURE software. Each bar represents an individual and the colors indicate 
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Supplementary Fig. S2.1: Admixture analysis. 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07610-5#Sec20
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07610-5#Sec20


 

71 

the proportion of genes originating from K ancestral populations. The animals are 
ordered by population. 

 

 

 
 

Weir and Cockerham FST estimates were calculated in 10 kb sliding windows 
between 31 dam and 35 sire boars. Black dotted line indicates a value of 0.25. 

 
Supplementary Table S2.1: List of variants listed in the OMIA database and 
their corresponding frequency in the two pig lines. 

 

 

Supplementary Fig. S2.2: Manhattan plot of FST values. 
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Representative plots of different depth of coverage detected in the sequenced pigs 
at a large duplication (DUP1 - SSC8: 41,223,212 - 41,783,660 bp) encompassing 
the KIT gene. Grey vertical bars represent the absolute coverage observed in four 
animals. The green dotted lines represent the median and 2*median coverage 
along SSC8. In order to determine the number of extra copies, we divided for each 
sequenced animal the average coverage observed at SSC8 by the average coverage 
observed at DUP1 (chr8: 41,223,212 - 41,783,660 bp). The number of additional 
copies ranged from 1 to 4. 16, 27, 4, 20, 2 and 1 animal had 1.5 - 1.9x, 2x, 2.1 - 
2.4x, 2.5 - 2.9x and 3x the average coverage of SSC8 at DUP1, respectively. The 
average copy number was 2.07 and 2.19 in the dam and sire line, respectively. The 
560 kb duplication (DUP1) encompasses two smaller duplications DUP2 and 
DUP3/4. DUP2 is 4.3kb long and upstream, while DUP3 and DUP4 are 23kb and 
4.3kb duplications downstream of the KIT gene. 

 
Supplementary Table S2. 2: Candidate signatures of selection based on CLR 
and iHS analyses. Genes annotated to the region are given for each signature of 
selection. 
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Supplementary Fig. S2.3: Depth of coverage at a region on SSC8 
encompassing the KIT gene. 
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Plot of the first two principal components showing the relationship of 96 dam and 
96 sire animals sequenced at low (< 1.5-fold) coverage and 32 dam and 38 sire 
animals sequenced at high (~ 16.5-fold) coverage.  

 

  

Supplementary Fig. S2.4: Principal components analysis of key ancestor and 
low-pass sequenced animals.  
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3.1 Abstract 

3.1.1 Background 

Genetic correlations between complex traits suggest that pleiotropic 

variants contribute to trait variation. Genome-wide association studies 

(GWAS) aim to uncover the genetic underpinnings of traits. Multivariate 

association testing and the meta-analysis of summary statistics from single-

trait GWAS enable detecting variants associated with multiple phenotypes. 

In this study, we used array-derived genotypes and phenotypes for 24 

reproduction, production, and conformation traits to explore differences 

between the two methods and used imputed sequence variant genotypes to 

fine-map six quantitative trait loci (QTL).  

3.1.2 Results 

We considered genotypes at 44,733 SNPs for 5,753 pigs from the 

Swiss Large White breed that had deregressed breeding values for 24 traits. 

Single-trait association analyses revealed eleven QTL that affected 15 

traits. Multi-trait association testing and the meta-analysis of the single-

trait GWAS revealed between 3 and 6 QTL, respectively, in three groups 

of traits. The multi-trait methods revealed three loci that were not detected 

in the single-trait GWAS. Four QTL that were identified in the single-trait 

GWAS, remained undetected in the multi-trait analyses. To pinpoint 

candidate causal variants for the QTL, we imputed the array-derived 

genotypes to the sequence level using a sequenced reference panel 

consisting of 421 pigs. This approach provided genotypes at 16 million 

imputed sequence variants with a mean accuracy of imputation of 0.94. The 

fine-mapping of six QTL with imputed sequence variant genotypes 

revealed four previously proposed causal mutations among the top variants. 
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3.1.3 Conclusions 

Our findings in a medium-size cohort of pigs suggest that 

multivariate association testing and the meta-analysis of summary statistics 

from single-trait GWAS provide very similar results. Although multi-trait 

association methods provide a useful overview of pleiotropic loci 

segregating in mapping populations, the investigation of single-trait 

association studies is still advised, as multi-trait methods may miss QTL 

that are uncovered in single-trait GWAS. 

3.2 Background 

Genome-wide association studies (GWAS) combine genotype and 

phenotype information to identify trait-associated variants. Genotypes at 

polymorphic loci are tested for association with phenotypes to determine 

their impact on traits of interest. Multi-trait GWAS can increase the 

statistical power over single-trait GWAS because they exploit cross-

phenotype associations at pleiotropic loci [1–3].  

Several methods have been developed to detect pleiotropic variants. 

These methods can be divided into two groups based on their underlying 

statistical framework [4, 5]. First, multivariate methods jointly model all 

traits of interest. This group of methods requires that all individuals 

included in the study have phenotypic records for all traits analysed, 

although there are exceptions (e.g., single step GWAS [6], imputation of 

phenotypes [7]). These methods exploit the genetic covariance between 

traits, thereby increasing statistical power over their univariate counterparts 

[5, 8, 9], unless all traits are highly correlated [9, 10]. Second, the meta-

analysis of summary statistics enables to combine results from single trait 
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GWAS, which means that the analyses can be carried out with different 

sets of individuals for each trait [1, 11–13]. 

The power to detect trait-associated variants increases as the marker 

density increases [14–17]. Low-pass sequencing is a cost-effective 

approach to provide high marker density [18–21]. The imputation from 

medium-density arrays to the whole-genome sequence level using a 

sequenced reference panel is another approach to provide sequence variant 

genotypes for large cohorts. Large and diverse porcine haplotype reference 

panels facilitate imputing sequence variant genotypes at high accuracy for 

animals from various breeds [22]. Medium-sized breed-specific reference 

panels may enable similar accuracy while reducing computational costs 

[23]. Imputation from medium-density genotypes to the whole-genome 

sequence level has been explored when high-density array-derived 

genotypes were not available [16, 24–26]. 

Only few genome-wide association studies have been conducted in 

the Swiss Large White (SLW) population. Becker et al. [27] performed 

association tests between 26 complex traits and 60K SNPs genotyped in 

192 breeding boars. This effort revealed only 4 QTL likely because the 

sample size was too small. Large-scale association testing had been 

conducted in other pig breeds (e.g., [27, 28, 29]). Fat deposition and weight 

gain-related traits have been considered frequently in these GWAS as they 

are economically relevant and highly heritable. Previous GWAS led to tens 

of proposed candidate genes affecting these traits, including MC4R, BMP2, 

IGF2, and CCND2 [31–36]. 

In this paper, we compare single-trait, multivariate and meta-GWAS 

in 5,753 genotyped pigs from a Swiss breed to investigate the genetic 

architecture of 24 traits. We inferred sequence variant genotypes from a 
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sequenced reference panel to identify candidate causal variants for six 

pleiotropic QTL. 

3.3 Results 

3.3.1 Single-trait association studies between array 

genotypes and 24 traits 

 A detailed description of the 24 traits considered in our study 

including their grouping into four categories (reproduction, production, 

conformation, all) is shown in Table 3.1. Marked pairwise correlations 

exist between the drEBV of the 24 traits (Additional file 3.3.1). The SNP-

based heritability estimates of the drEBV (Table 3.1) were between 0.04 

and 0.67. 

Table 3.1: Traits with their abbreviations, full descriptions, corresponding trait group 
and descriptive statistics of the drEBV. 
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The false discovery rate (FDR) and genomic heritability based on drEBV (h2) 
were based on array genotypes. 
1 before filters 
2 after filters 
† raw phenotypes for conformation traits are recorded on a scale from 1 to 7, 
where 4 represents the optimum value, but phenotypes for genetic evaluation and 
hence (deregressed) breeding values reflect the deviation from the optimum 

Trait group Acr. Full name [unit of raw records] N1 N2 
Mean ± 
SD2 

Min, Max2 h2 ± 
SE1 FDR 

Re
pr

od
uc

tio
n 

 PSP Stillborn piglets [%] 2,886 2,610 0.4 ± 3.57 -9.46,19.63 0.07 ± 
0.01 - 

PUP Underweight (< 1 kg) piglets 
[%] 2,886 2,554 0.88 ± 3.20 -13.83,18.29 0.09 ± 

0.01 2.50 

NBA Piglets born alive [number] 2,886 2,697 2.46 ± 1.46 -4.04,8.35 0.13 ± 
0.01 - 

GL Gestation length [days] 2,886 2,866 0.55 ± 0.88 -2.77,5.18 0.29 ± 
0.02 5.00 

Pr
od

uc
tio

n 

MAS Meat surface in longissimus 
dorsi [cm2] 5,457 3,829 -3.71 ± 

3.35 -15.17,12.13 0.53 ± 
0.02 5.00 

IMF Intramuscular fat content in 
MAS [%] 5,422 3,335 0.23 ± 0.53 -1.99,2.92 0.52 ± 

0.01 1.67 

DRL Drip loss [%] 5,515 3,595 0.86 ± 1.57 -6.12,7.32 0.43 ± 
0.02 - 

LMC Lean meat content [%] 5,468 5,155 0.19 ± 1.87 -10.34,8.53 0.46 ± 
0.02 0.18 

PH24 pH 24 h postmortem in the loin 4,615 2,729 0 ± 0.05 -0.20,0.20 0.06 ± 
0.01 - 

ADFI Average daily feed intake 
[kg/day] 5,467 5,109 0 ± 0.15 -0.67,0.62 0.37 ± 

0.01 0.10 

DWG Daily weight gain on test 
[g/day] 5,467 5,008 10.72 ± 

68.15 -256.1,347.5 0.24 ± 
0.02 0.15 

LDWG Lifetime daily weight gain 
[g/day] 5,468 5,399 14.27 ± 

31.06 -113.3,168.0 0.23 ± 
0.02 0.11 

MT Loin muscle thickness [mm] 5,467 3,944 -2.25 ± 
1.74 -8.07,5.58 0.09 ± 

0.01 5.00 

BFT Back fat thickness [mm] 5,468 5,120 -0.87 ± 
1.95 -8.96,7.7 0.47 ± 

0.01 0.25 

Co
nf

or
m

at
io

n 

WSFH Week to steep fetlock, hind 
legs † 5,434 2,274 0.06 ± 0.19 -0.82,0.81 0.05 ± 

0.01 - 

GAIT Gait 5,434 2,025 0.39 ± 0.22 -0.83,1.45 0.08 ± 
0.01 - 

BFL Bent to pre-bent curve of 
forelegs † 5,434 2,581 0.14 ± 0.14 -0.55,0.87 0.41 ± 

0.01 2.50 

NEIH 
Narrowed (reduced) to 
enlarged inner hoof, hind 
claws † 

5,430 2,564 0.18 ± 0.13 -0.45,0.64 0.06 ± 
0.01 - 

SCH Sword- to chair-legged, hind 
legs † 5,434 2,361 0.17 ± 0.17 -0.65,0.91 0.06 ± 

0.01 - 

XOH X- to O-legged (knocked-
kneed to bow-legged), hind † 5,434 2,516 0.04 ± 0.12 -0.6,0.67 0.04 ± 

0.01 - 

CL Carcass length [cm] 5,433 3,638 4.11 ± 2.66 -5.25,14.64 0.67 ± 
0.01 0.17 

NT Number of teats (both sides) 5,433 5,419 2.19 ± 0.78 -0.72,5.03 0.41 ± 
0.01 0.25 

NIT Number of inverted teats 5,427 2,721 -0.28 ± 
0.21 -1,0.96 0.09 ± 

0.01 5.00 

NUT Number of underdeveloped 
teats 5,433 2,234 0.01 ± 0.09 -0.27,0.45 0.09 ± 

0.01 2.50 
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Mixed model-based single-trait genome-wide association studies 

(stGWAS) between 40,382 SNPs and deregressed estimated breeding 

values (drEBV) for 24 traits in 5,753 Swiss Large White (SLW) pigs 

revealed 237 significantly associated variants (P < 1.24 × 10−6). Fifteen out 

of 24 traits had at least one significantly associated variant (Table 3.1; 

Additional file 3.3.2; Additional file 3.3.3). 

The number of variants that exceeded the Bonferroni-corrected 

significance threshold was between 1 for GL, NIT, MAS and MTF, and 49 

for ADFI (Table 3.1). The inflation factors of the stGWAS were between 

0.85 for NT and 1.03 for SCH with an average value of 0.95 ± 0.04 across 

all 24 stGWAS indicating that population stratification was properly 

considered.  

The 237 associations were detected at 99 unique SNPs located at 11 

QTL on SSC1, 5, 11, 15, 17 and 18. The two strongest associations were 

detected between the number of teats (NT) and a variant on SSC7 

(MARC0038565 at 97,652,632 bp, P: 3.35 × 10−35), and between lifetime 

daily weight gain (LDWG) and a variant on SSC1 (ASGA0008077 at 

270,968,825 bp, P: 3.28 × 10−28). 57 SNPs were significantly associated 

with more than one trait (two SNPs, ALGA0123414 and ASGA0008077, 

were associated with six traits) suggesting that pleiotropic effects are 

present and detectable in our dataset.  

3.3.2 Comparison of multi-trait studies using array 

genotypes 

In order to exploit genetic correlations among the traits to detect 

pleiotropic loci, we conducted multivariate linear mixed model-based 

(mtGWAS) association testing and performed a multi-trait meta-analyses 
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of the single-trait GWAS (metaGWAS1) for traits within the four trait 

categories. For unbiased investigation of differences between both 

methods, we considered between 1,074 and 2,689 individuals with 

complete phenotypic records for all traits within a trait category (Table 3.2) 

for the multi-trait analyses. 

 

1 performed in pigs with complete records in the trait groups 
2 performed in GWAS conducted in between 2,025 and 5,419 pigs 
* based on array-derived genotypes at 40,382 SNPs 

 

Both methods yielded similar results, but the metaGWAS1 revealed 

more significantly associated variants as well as QTL (Table 3.2; Figure 

3.1; Additional files 3.4-3.6). Across the four trait categories, the 

metaGWAS1 revealed slightly more significant SNPs (Figure 3.1A) 

resulting in a 18% smaller FDR than mtGWAS. The metaGWAS1 revealed 

65 unique variants that were significantly associated with at least one trait 

category, of which 41 were also detected using mtGWAS. The mtGWAS 

revealed only associations that were also detected by metaGWAS1 (Figure 

Table 3.2: Number of QTL in trait groups revealed by each of the methods. 
Group Reproduction Production Conformation All 
Number of traits 4 10 10 24 
Number of animals with 
records for all traits 2,553 1,927 2,689 1,074 

Mean correlation between 
drEBV (± SD) 0.14 ± 0.18 0.32 ± 

0.24 0.17 ± 0.19 
0.10 

± 
0.16 

QTL - stGWAS1* (in N 
traits) 2 (2) 5 (8) 4 (5) 11 

(15) 
QTL - mtGWAS1* 0 5 3 4 
QTL - metaGWAS1* 0 7 3 4 
QTL - metaGWAS2* 0 6 3 7 
QTL - metaGWAS2 
(imputed WGS) 0 6 3 6 
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3.1B). The P-values of lead SNPs were highly correlated (r = 0.8), but 

slightly lower (i.e., more significant) in the metaGWAS1 than the mtGWAS 

(Figure 3.1C).  

Neither of the multi-trait methods detected significantly associated 

SNP for the reproduction trait category. For the conformation trait 

category, mtGWAS and metaGWAS1 revealed 15 and 18 associated SNPs, 

respectively. The associated SNPs defined three QTL on SSC7, 10, and 17. 

For the production trait category, the mtGWAS and metaGWAS1 revealed 

26 and 46 associations, respectively. Both methods revealed QTL at SSC1, 

16, two QTL at SSC17, and SSC18. The metaGWAS1 revealed two 

additional QTL at SSC1 and SSC11. When all 24 traits were combined for 

1,074 pigs, the mtGWAS and metaGWAS1 revealed only 5 and 7 

associated SNPs, respectively. These SNPs spanned four QTL on SSC5, 7, 

17, and 18.  

Seven QTL detected by mtGWAS and metaGWAS1, were also 

detected by stGWAS (Figure 3.1D). Both multi-trait methods detected 

three QTL on SSC11, 16 and 17 that were not detected in the stGWAS. 

Four QTL detected in the stGWAS were not revealed by either of the multi-

trait methods: these were QTL on SSC7, 11, and 15 that were slightly above 

the Bonferroni-corrected significance threshold for one trait (GL with P = 

5.03 × 10−7, NIT with P = 1.06 × 10−6, PUP with P = 2.66 × 10−7, 

respectively), and one QTL on SSC10 that was associated with MT (P = 

5.60 × 10−7) and MES (P = 8.44 × 10−7). From the seven QTL detected by 

both multi-trait and single-trait methods, six were associated with more 

than one trait in stGWAS. For the six pleiotropic QTL, at least one single 

trait analyses revealed more associated variants, and smaller P-value of the 

top SNP, than the mtGWAS or metaGWAS1 (Additional file 3.7). 
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Using summary statistics from stGWAS for a multi-trait metaGWAS 

facilitates including data from animals with partially missing phenotypes. 

In order to maximize the power to identify trait-associated pleiotropic 

variants, we reran the metaGWAS using summary statistics from stGWAS 

with all available animals per trait (Additional file 3.8), denoted as 

metaGWAS2. 

Compared to the previous metaGWAS1 that was based on fewer 

individuals that had phenotypes for all traits, the number of SNPs 

exceeding the Bonferroni-corrected significance threshold (P < 1.24 × 10−6) 

increased by 10, 14 and 48 to 28, 60 and 55 in the conformation, 

production, and all groups, respectively (Additional file 3.9). No significant 

markers were detected for the reproduction trait category. Across the four 

trait groups, the metaGWAS2 revealed 86 variants, from which 34 were 

also detected by both other methods, while 21 were detected only by the 

metaGWAS1 (Figure 3.1B). Including all available samples into the 

metaGWAS2 did not reveal any additional QTL (Figure 3.2A). 
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Figure 3.1: Comparison of variants associated with 24 traits from 3 multi-
trait GWAS methods. Multivariate (mtGWAS), meta-analyses with complete 
dataset (metaGWAS1), and meta-analyses including samples with missing trait 
records (metaGWAS2) were based on array-derived genotypes. (A) Proportions of 
significantly associated variants discovered across chromosomes, groups of traits 
and multi-trait methods. (B) Overlaps between the associated variants revealed by 
each of the methods. Sum across all four trait-groups. (C) QQ plot between -
log10(P) of variants (N = 41) associated in both mtGWAS and metaGWAS2. The 
line denotes a correlation of 1. (D) QTL detected by different methods across all 
trait groups.  

 

3.3.3 Reference panel and imputation of array genotypes 

to sequence level 

Whole-genome sequence-variant genotypes from 421 pigs were used 

to impute the medium-density genotypes of 5,753 pigs to the whole-

genome sequence level. The principal components analysis (PCA; 

Additional file 3.10) of a GRM built from 16 million biallelic SNP 

genotypes confirmed that the sequenced reference panel is representative 

for our GWAS cohort. Five-fold cross-validation indicated high accuracy 
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of imputation (Additional file 3.11) with values of 0.92, 0.97 and 0.95 for 

the squared Pearson’s correlation (R2) between true and imputed allele 

dosages, cross-validated proportion of correctly imputed genotypes 

(concordance ratio – CR) and model-based accuracies from Beagle5.2 

(Beagle DR2), respectively. Although the model-based estimate from 

Beagle was highly correlated with the Pearson R2 (0.81), the Beagle DR2 

values were consistently higher. 

3.3.4 Imputed sequence-based association studies 

The stGWAS between 24 traits and the 16,051,635 imputed variants 

revealed 45,288 variants exceeding the Bonferroni-corrected significance 

threshold in 7 QTL regions which largely agreed with the results from the 

array-based GWAS (Additional file 3.12). Two QTL on SSC5 and SSC12 

were detected in stGWAS for BFT and NT, respectively, while the other 

five QTL were associated with multiple traits. The sequence-based GWAS 

revealed one additional QTL (on SSC12) but did not detect significant 

association at 5 previously detected QTL likely due to a more stringent 

Bonferroni-corrected significance threshold resulting from a 350-fold 

denser marker panel.  

A metaGWAS using the summary statistics from stGWAS between 

the 16,051,635 imputed whole-genome sequence variants and 24 traits 

using all animals revealed six QTL on SSC1, 5, 7, 17 and 18 (Figure 3.2, 

Table 3.3) with a total of 9,774 variants exceeding the Bonferroni-corrected 

significance threshold. When the six lead imputed SNPs were fitted as fixed 

effects in stGWAS, the peaks in the metaGWAS Manhattan plot 

disappeared (Additional file 3.13), indicating that the lead SNP accounted 

for the QTL variance. Four QTL revealed by metaGWAS were 

significantly associated in stGWAS exclusively with production traits, 
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whereas two QTL (on SSC7 and SSC17) were associated with traits from 

both the production and conformation categories (Figure 3.2C). The total 

trait variance explained per QTL ranged from 0.18 to 11.02 % (Figure 

3.2C).  

 

* Minor allele in the genotyped dataset; Reference alleles were determined 
according to the Sscrofa11.1 genome assembly. 

 

Table 3.3: Imputed lead variants in pleiotropic QTL revealed by a multi-trait meta-
analyses. 

Start (bp) Stop (bp) Lead SNP P-value MAF Ref|Alt #traits Candidate 
gene(s) 

157,732,172 162,736,434 1_159637589 5.26 × 10-13 0.31 G* | C 3 MC4R 
270,331,332 272,315,496 1_270599319 2.85 × 10-36 0.14 C | CT* 6 na 
65,753,637 66,210,538 5_65997650 5.40 × 10-10 0.41 G | A* 1 CCND2 

93,119,538 99,261,691 7_97636980 8.09 × 10-45 0.34 A* | C 4 VRTN, 
ABCD4 

10,801,927 20,928,904 17_15643342 1.19 × 10-84 0.20 C* | T 5 BMP2 

10,024,756 10,904,242 18_10678235 
18_10678293 2.00 × 10-19 0.32 C | A* 

A | G* 2 na 
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(A) Manhattan plots from array (upper) and imputed sequence (bottom) variants 
in metaGWAS with 24 traits. (B) Linkage disequilibrium between the lead SNPs 
and all other variants. Black circles mark array SNPs, arrows point to previously 
proposed causal variants. The red line indicates the genome-wide Bonferroni-
corrected significance threshold. (C) Variation explained (in % of the drEBV 
variance) by alternative alleles of the lead SNPs in the single traits. Production 
traits are in blue scale (ADFI - Average daily feed intake; DWG - Daily weight 
gain on test; LDWG - Lifetime daily weight gain; LMC - Lean meat content; BFT 
- Back fat thickness; IMF - Intramuscular fat content in loin), and conformation 
traits in red scale (CL - Carcass length; NT - Number of teats - both sides; NUT - 
Number of underdeveloped teats; BFL - Bent to pre-bent, front legs; XOH - X- to 
O-legged). 

 

 
Figure 3.2. Fine mapping of six QTL detected by metaGWAS.  
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3.3.5 QTL 1 with lead SNP 1_159637589 

A QTL on SSC1 was between 157.73 and 162.74 Mb and 

encompassed 34,312 imputed sequence variants including 1,157 that were 

significantly associated in the sequence-based metaGWAS (-log10(P) > 

8.5). The QTL was associated with ADFI, DWG, and LDWG, and 

explained 5.16, 3.45, and 4.49% of the trait variance, respectively. The lead 

SNP at this QTL was an imputed intergenic sequence variant 

(rs692827816) located at 159,637,589 bp (P = 5.26 × 10-13). rs692827816 

was in high LD (R2 > 0.90) with 935 variants that had similar P values. One 

of the variants in high LD was a missense variant (rs81219178) at 

160,773,437 bp within the MC4R gene, which has previously been 

proposed as candidate causative variant for growth and fatness traits [37]. 

rs81219178 segregated at MAF of 0.36 in the SLW population and was 

imputed from the reference panel with high accuracy (DR2 = 1).  

3.3.6 QTL 2 with lead SNP 1_270599319 

Another QTL on SSC1 was between 270.33 and 272.32 Mb and 

encompassed 21,683 imputed sequence variants including 3,765 that were 

significant in the sequence-based metaGWAS (Additional file 3.14). The 

QTL was associated with ADFI, DWG, LDWG, LMC, BFT, and IMF, and 

explained 4.57, 1.77, 4.69, 2.70, 2.35, and 1.40% of the trait variance, 

respectively. The lead variant was an imputed insertion polymorphism 

(C>CT) located at 270,599,319 bp (P = 2.85 × 10-36), approximately 13 kb 

downstream from ASS1 and 53 kb upstream from FUBP3. The lead variant 

was in high LD (R2 > 0.90) with 747 variants. The MAF of the lead variant 

was 0.14 and its genotypes were imputed from the reference panel with 

high accuracy (DR2 = 0.98).  
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3.3.7 QTL 3 with lead SNP 5_65997650 

A QTL on SSC5 was located between 65.75 and 66.21 Mb and 

encompassed 5,065 imputed sequence variants, from which eight were 

significantly associated with BFT (Additional file 3.15). The QTL 

explained 1.16% of the phenotypic variance of BFT. The lead SNP was an 

imputed sequence variant located in an intergenic region at 65,997,650 (P 

= 5.40 × 10-10; rs346219461) which was in high LD (R2 > 0.90) with seven 

other variants. rs346219461 was 7.60 kb downstream the fibroblast growth 

factor 6 (FGF6) encoding gene and it had MAF of 0.41, and it was imputed 

from the reference panel with high accuracy (DR2 = 0.99). The 

rs346219461 was in LD (R2 = 0.82) with a non-coding variant (rs80985094 

at 66,103,958 bp, P = 6.41 × 10-10) in the third intron of CCND2, that was 

previously proposed as putative causal variant for backfat thickness [36].  

3.3.8 QTL 4 with lead SNP 7_97636980 

A pleiotropic QTL on SSC7 was between 93.12 and 99.26 Mb and it 

encompassed 31,013 imputed sequence variants including 2,341 that were 

significant in the sequence-based metaGWAS. The QTL was associated 

with BFT from the production group (0.37% variance explained), and CL, 

NT, and NUT from the conformation group, where it explained 6.11, 5.00, 

and 3.32% of the trait variance, respectively. The lead SNP was an imputed 

variant (rs333375257 at 97,636,980 bp, P =8.09 × 10-45) located 12.7 kb 

downstream VRTN. The rs333375257 had MAF of 0.34 and was imputed 

from the reference panel with high accuracy (DR2 = 0.99). The 

rs333375257 was in high LD (R2 > 0.90) with 424 sequence variants. A 

previously described candidate causal variant (rs709317845 at 97,614,602 

bp, P = 6.71 × 10-44) for the number of thoracic vertebrae [38] was in LD 

(R2 > 0.99) with the rs333375257. In addition, 334 significant variants in 
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the ATP binding cassette subfamily D member 4 (ABCD4) gene were 

detected. This gene was proposed to impact NT in a Duroc population [39] 

with top SNP rs692640845 at position 97,568,284. In our study, the 

rs692640845 was highly significantly associated (P = 1.49 × 10-42) with 

CL, NT and NUT, and in almost complete LD (R2 = 0.98) with the lead 

SNP. 

3.3.9 QTL 5 with lead SNP 17_15643342 

A pleiotropic QTL on SSC17 encompassed 82,132 imputed sequence 

variants including 2,112 that were significantly associated residing 

between 10.80 and 20.93 Mb. The QTL was associated with DWG, 

LDWG, and BFT from the production group (explaining 1.56, 1.36, and 

0.97% of the trait variance, respectively), and with BL, BFL, and XOH 

from the conformation group (explaining 11.02, 5.48, 0.18% of the trait 

variance, respectively). The strongest association was from an imputed 

sequence variant (rs342044514 at 15,643,342, P = 1.19 × 10-84) in an 

intergenic region 106 kb upstream the BMP2 gene. The variant had MAF 

of 0.2 and it was imputed from the reference panel with high accuracy (DR2 

= 0.97). The lead SNP was in high LD (R2 > 0.90) with two other variants. 

One of them was a previously proposed candidate causative variant for 

carcass length [35] (rs320706814 at 15,626,425, P = 8 × 10-82) in an 

intergenic region upstream of the BMP2 gene, 17 kb away from the lead 

SNP. 

3.3.10 QTL 6 with lead SNP 18_10678235 

A QTL on SSC18 between 10.03 and 10.90 Mb encompassed 5,790 

imputed sequence variants including 408 that were significant. The QTL 

was associated with LMC and BFT, explaining 2.34 and 2.62% of the 

phenotypic variance, respectively. The QTL had two lead SNPs (P = 2 × 
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10-19) in complete LD, which were imputed sequence variants located at 

10,678,235 bp (rs338817164) and 10,678,293 bp (rs334203353). Both 

variants had MAF of 0.32. The imputation accuracy was 0.80. They were 

in high LD (R2 > 0.90) with other 11 intergenic variants.  

3.4 Discussion 

Single- and multi-trait genome-wide association studies involving 

array-derived and imputed sequence variant genotypes from 5,753 SLW 

pigs enabled us to investigate the genetic architecture of 24 complex traits 

from three trait groups. The response variables for the association tests 

were deregressed breeding values because the genotyped pigs had progeny-

derived phenotypes. Progeny-derived phenotypes have been frequently 

used to perform association studies in animals that lack own performance 

records for the traits of interest. To avoid false-positive associations arising 

from the accumulation of family information in the progeny-derived 

phenotypes [40], we used the deregressed breeding values and weighed 

them according to equivalent relatives’ contributions.  

The single-trait association analyses revealed 26 trait ´ QTL 

associations at eleven QTL of which seven were associated with at least 

two traits. Exploiting genetic correlations among the traits in a multi-trait 

framework revealed association for six out of the seven pleiotropic QTL 

detected in the stGWAS. Despite considering up to 10 phenotypes in the 

mtGWAS and up to 24 phenotypes in the metaGWAS, the multivariate 

methods applied in our study revealed three QTL, that were not detected 

by the single-trait association studies. The multi-trait methods did not 

reveal association at four QTL that were revealed by stGWAS. These QTL 
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had low P-values, and perhaps because of higher penalty for multiple 

testing their effects were too small to be detected in our medium-sized 

cohort. The phenomenon that associations detected by stGWAS might 

disappear in multi-trait analyses has been reported earlier [12, 41]. 

The mtGWAS and metaGWAS1 detected largely the same associated 

SNPs for almost all trait-groups. However, the metaGWAS1 revealed more 

associated SNPs, and lower P-values for the lead SNPs. Combining all 24 

traits in the mtGWAS revealed five associated SNPs, and the metaGWAS1 

conducted with the same individuals detected association of seven SNPs. 

Multivariate linear mixed models may suffer from over-parametrisation 

and loss of power when more than ten traits are considered [42]. The low 

number of detected QTL might also result from low genetic correlations 

between the 24 traits, or from a small sample size (N = 1,074 pigs with non-

missing records for all 24 traits).  

The metaGWAS approach enabled us to establish a larger sample 

size by considering summary statistics from stGWAS that were conducted 

with a various number of individuals (i.e., some pigs had missing records 

for some of the traits). In this setting, the number of associated SNPs 

detected by the metaGWAS2 increased to 55 (10-fold higher than before). 

According to Bolormaa et al. [1], in situations where each stGWAS is 

performed on partially different set of individuals, the metaGWAS 

approach still appropriately considers variances and covariances among the 

t-values. It is worth mentioning that there are also frameworks that enable 

considering samples with partially missing phenotypes in multi-trait 

GWAS [43–45], but these avenues were not explored in the current study. 

Our comparisons between GWAS approaches considered 

microarray-derived SNP genotypes. The imputation of array-derived 

genotypes up to the sequence level provides more statistical power to 
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identify associated loci because causal variants are in the data and directly 

tested for association with traits of interest [24, 26]. The pigs in our study 

were genotyped at 44,733 SNPs. No samples were genotyped with denser 

(e.g., 600K) arrays precluding the stepwise imputation of genotypes up to 

the sequence level. The imputation of sequence variant genotypes into 

sparsely genotyped samples may be inaccurate particularly for rare alleles 

[16]. However, imputation in our mapping cohort with a haplotype 

reference panel of 421 sequenced animals was accurate. This is likely 

because the haplotype reference panel mainly contained animals from the 

target breed.  

The imputed sequence variants were used in metaGWAS to fine-map 

QTL and prioritise candidate causal variants. The top associated variants in 

four QTL were variants that had been previously identified as candidate 

causal variants [35–39], indicating that they might also underpin these QTL 

in the SLW breed. However, none of the proposed candidate causal variants 

was the top variant in our association studies possibly indicating sampling 

bias [46], presence of multiple trait-associated variants in linkage 

disequilibrium [47, 48], or that the top variants were inaccurately imputed 

[49]. It is also possible that the previously reported candidate causal 

variants are not causal. Further in-depth functional investigations are 

required to determine and validate the molecular mechanisms underpinning 

the QTL identified in our study. 

Our meta-analyses approach using imputed sequence variants 

revealed six QTL of which five were associated with multiple traits. 

Several porcine pleiotropic loci are underpinned by heterozygous loss-of-

function alleles that may have fatal consequences in the homozygous state 

[50–52]. Pleiotropic QTL have also been described in pigs for highly 
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correlated traits [32, 53]. The meta-analyses of 24 traits conducted in our 

study revealed six QTL, that were significantly associated in one to six 

stGWAS. These results emphasize the importance of the single-trait 

analyses for dissecting the pleiotropic effects. A QTL on SSC17 which is 

associated with traits belonging to distinct trait categories. This QTL is 

associated with carcass length (P = 1 × 10-62) and daily weight gain (P = 6 

× 10-13). These two traits are barely correlated with each other (r = 0.02 - 

0.05). Another pleiotropic QTL on SSC1 at ~ 270 Mb was associated with 

six traits ADFI, DWG, LDWG, LMC, BFT, and IMF, that were moderately 

to highly correlated (mean r ± SD = 0.37 ± 0.27). This chromosomal region 

harbours QTL for backfat thickness and feed efficiency-related traits in 

other pig populations [34, 54]. However, candidate causal variants 

underpinning this QTL had not been proposed so far. The lead SNP in our 

study was at position 270,599,319 bp, which is 13 kb downstream from the 

ASS1 gene. Expression of ASS1 has been associated with digestive tract 

development, cell adhesion, response to lipopolysaccharide, and arginine 

and proline metabolism in pigs [55, 56]. Considering its putative role in 

energy metabolism, we propose ASS1 as a positional and functional 

candidate gene for a pleiotropic QTL at ~ 270 Mb. Further functional 

annotations of the trait-associated variants in the non-coding regions might 

help elucidating the genetic mechanism underpinning this pleiotropic QTL. 

3.5 Conclusions 

Multi-trait associations analyses provide strength of evidence for the 

presence or absence of a QTL segregating in populations. Here, we 

compared the multivariate linear model with meta-analyses of single-trait 

summary statistics using real data. Both approaches performed similarly in 

correlated groups of traits with complete datasets. The ability of meta-
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analyses to include different sets of individuals and unrestricted number of 

traits promoted the detection power. Thus, we recommend using the meta-

analyses for getting overview of pleiotropic QTL in cohorts with more than 

10 traits. For analyses of reduced and correlated groups of traits, the choice 

of the method seems to provide indifferent results. Yet, we stress the 

importance of the single-trait analyses for accurate interpretation of the 

pleiotropic effects and for the assignment of the affected traits. 

The reference-guided imputation to whole-genome sequence level 

assigned genotypes to 22 million variants with high accuracy. Putative 

causal variants found in literature were among the top variants in the fine-

mapped QTL. Our analyses provide overview of the QTL affecting 

economically important traits in Swiss Large White and might serve as 

catalogue for future research examining the causal variants for complex 

traits. 

3.6 Methods 

3.6.1 Animals and phenotypes 

Deregressed estimated breeding values (drEBV) with their 

corresponding degrees of determination (r2drEBV) and weights (wdrEBV) for 

24 traits were provided by the Swiss breeding company SUISAG for 5,753 

pigs of the SLW breed. Breeding values were estimated using BLUP 

multiple trait animal models neglecting genomic information and 

subsequently deregressed according to Garrick et al. [57]. For all our 

analyses, we considered drEBV which had r2drEBV > 0.3 and were within 

five standard deviations from the mean values. We considered only traits 

for which at least 2,000 genotyped animals had records. The final number 
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of animals with phenotypes was between 2,025 for gait (GAIT) and 5,419 

for number of teats (NT). Up to 37 % of the pigs had missing records for at 

least one trait. The traits were assembled in four trait groups (Table 3.1): 

reproduction (4 traits), conformation (10 traits), production (10 traits) and 

all (24 traits). 

3.6.2 Genotypes 

Microarray-derived genotypes were available for 17,006 pigs from 

different breeds. The genotypes were obtained with five SNP panels with 

medium density. There were 2,970 pigs genotyped with the Illumina 

PorcineSNP60 Bead Chip comprising either 62,163 (v. 1) or 61,565 (v. 2) 

SNPs; 13,342 pigs were genotyped using customized 60K Bead Chips 

comprising either 62,549 (v. 1) or 77,119 (v. 2) SNPs; and 546 pigs had 

genotypes at 68,528 SNPs obtained with the GeneSeek Genomic Profiler 

(GGP) Porcine 80K array. 

We used PLINK (v. 1.9; [58]) to merge the genotypes from the five 

SNP panels based on the physical positions of the SNPs according to the 

Sscrofa11.1 assembly [59] of the porcine genome. Then, we performed a 

quality control for the combined dataset. We retained unique autosomal 

SNPs that did not deviate from Hardy-Weinberg proportions (P < 0.00001), 

had SNP- and individual-level genotyping rates above 80%, and minor 

allele frequency (MAF) greater than 0.5%. Finally, sporadically missing 

genotypes for the resulting 44,733 variants were imputed for 14,292 

animals using Beagle (v. 5.0; [60]).  

For the array-based GWAS and for the comparison of the multi-trait 

GWAS methods, we considered 40,382 SNPs that had MAF greater than 

5% in 5,753 animals of the SLW breed. 
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3.6.3 Genomic heritability 

We used the Fisher-scoring algorithm implemented in the GREML 

module of GCTA (v. 1.92.1; [61]) to estimate variance components while 

considering the inversed weight of drEBV (wdrEBV). The genomic 

relationship matrix was built for 14,292 individuals with 44,733 SNPs, but 

only up to 5,753 SLW animals were used to estimate genomic heritability.  

3.6.4 Imputation to whole-genome sequence level 

Whole-genome sequence (WGS) data were available for 421 SLW 

pigs that had been sequenced at an average read depth of 7.1x, ranging 

between 2.35x and 37.5x. This panel also included 32 key ancestors of the 

genotyped SLW pigs that explained a large fraction of the genetic diversity 

of the current breeding population [19]. 

Raw sequence data were trimmed and pruned for low-quality bases 

and reads with default parameter settings of the fastp software (v. 0.20.0; 

[62]) and subsequently mapped to the Sscrofa11.1 reference genome using 

the mem-algorithm of the BWA software (v. 0.7.17; [63]). Duplicated reads 

were marked with the Picard tools software suite (v. 2.25.2; [64]), followed 

by sorting the alignments by coordinates with Sambamba tool (v. 0.6.6; 

[65]). The read depth at each genomic position was calculated with the 

mosdepth software (v. 0.2.2; [66]), considering reads with mapping quality 

> 10. Variant calling and filtering followed Genome Analysis Toolkit 

(GATK - v. 4.1.0; [67]) best practice recommendations. Base quality scores 

were adjusted using the BaseRecalibrator module while considering 

63,881,592 unique positions from the porcine dbSNP (v. 150) as known 

variants. The discovery, genotyping, and filtering of SNPs and INDELs in 
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the 421 pigs was done using the HaplotypeCaller, GenomicsDBImport, 

GenotypeGVCFs and VariantFiltration modules of the GATK. 

The filtered WGS dataset containing 421 pigs and 22,018,148 

variants (18,839,630 SNPs and 3,178,518 INDELs) with MAF greater than 

0.01 was used for the imputation of sequence variant genotypes into the 

array dataset. The reference panel was pre-phased using SHAPEIT4 (v. 4.2; 

[68]) using the --sequencing parameter. The target array dataset was pre-

phased with SHAPEIT4 using the phased sequence data as the reference. 

Sequence variant genotypes were imputed with Beagle (v. 5.2; [60]) with 

an effective population size of 50. The effective population size was 

estimated using SneP [69]. 

The accuracy of imputation was assessed empirically by five-fold 

cross-validation in the 421 animals as follows: 40 animals which were 

sequenced at high coverage (>10x), were used as target panel. The 

remaining 381 animals served as the reference panel. The SNP density in 

the target panel was reduced to 44,733 SNP chip genotypes and 

subsequently imputed to the sequence level based on 381 reference animals 

as described above. The imputed and actual genotypes of the target samples 

were compared to derive concordance ratio (CR; proportion of correctly 

imputed genotypes) and squared correlation (R2) between imputed and true 

genotypes. 

Relationship between the animals included in the reference panel and 

the target animals was assessed with a principal components (PC) analysis. 

First, a genomic relationship matrix (GRM) was built among 14,629 pigs 

that had 16,387,582 (partially) imputed biallelic SNPs with MAF > 5% 

(421 reference animals and 14,208 animals with imputed sequence variant 

genotypes) using GCTA [61]. Then, the first 10 principal components (PC) 

of the GRM were obtained with PLINK (v. 1.9). 
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Post-imputation quality control excluded SNPs with MAF < 5%, 

model-based accuracy of imputation (Beagle DR2) < 0.6, and deviations 

from Hardy-Weinberg proportions (P < 10-8), resulting in a total of 

16,051,635 biallelic variants (13,773,179 SNPs and 2,278,456 INDELs) 

which were used for association analyses and the fine-mapping of QTL in 

5,753 SLW pigs. 

3.6.5 Single-trait genome-wide association analysis 

(stGWAS) 

Single marker-based GWAS were conducted between 24 traits (see 

Table 3.1 for more information about the traits and the number of 

individuals with records) and either 40,382 array-derived or 16,051,635 

imputed sequence variant genotypes using the mixed model-based 

approach implemented in the GEMMA software (v.0.98.5; [70]).  

The linear mixed model fitted to the data was in the following form: 

y = W𝛼 + x𝛽 + u + 𝜖, where y is a vector of phenotypes of n animals; W 

is a vector of ones; 𝛼 is a vector of corresponding coefficients; x is a vector 

of marker genotypes, coded as 0, 1 and 2 for genotype A1A1, A1A2 and 

A2A2; 𝛽 is the effect of the A2 allele; 𝑢	~	MVN!(0, Gσ"#) is a random 

polygenetic effect with G representing the n × n -dimensional genomic 

relationship matrix (GRM); σ"# is the additive genetic variance; 

𝜖	~	MVN!(0, Iσ$#) is a vector of errors, with I representing an identity 

matrix; and σ$# is the residual variance. 𝑀𝑉𝑁! denotes the n-dimensional 

multivariate normal distribution. 

The centred GRM was calculated with GEMMA (--nk 1) using either 

array-based or imputed sequence variant genotypes. The P-value of each 

SNP was estimated by the score test implemented in GEMMA (-lmm 3). 
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The stGWAS was run with either all available individuals or 

considering only preselected individuals that had non-missing phenotypes 

within a group of traits. The markers were separately filtered for MAF > 

5%. Thus, in the latter run, the stGWAS for the reproduction traits included 

41,242 variants typed in 2,553 samples; the stGWAS for the production 

traits included 40,557 variants typed in 2,689 samples; the stGWAS for the 

conformation traits included 41,168 variants typed in 1,927 samples, and 

the stGWAS for the 24 traits together included 41,152 variants typed in 

1,074 samples with non-missing records. 

3.6.6 Multi-trait genome-wide association analyses 

(mtGWAS) 

Multi-trait association tests (mtGWAS) were conducted using a 

multivariate mixed model-based approach implemented in the GEMMA 

software (v.0.98.5; [42]). The multivariate linear mixed model was 

parameterised similar to the stGWAS model (y = W𝛼 + x𝛽 + u + 𝜖), 

except that y, 𝛼, u, 𝜖 are matrices with d (number of traits) columns, and 𝛽 

is a vector with length d. σ"# and σ$# are d × d symmetric matrices of genetic 

and environmental variance components, respectively. Because 

multivariate association testing as implemented in GEMMA requires 

phenotype data for all individuals and traits, we considered only 2,553, 

1,927, 2,689 and 1,074 individuals, respectively, for the reproduction (4 

traits), conformation (10 traits), production (10 traits), and all-trait (24 

traits) mtGWAS. The GRM, used during the mtGWAS, was the one from 

the stGWAS. 
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3.6.7 Meta-analyses multi-trait genome-wide association 

(metaGWAS) 

A multi-trait meta-analysis (metaGWAS) was conducted with the 

summary statistics from stGWAS as suggested by Bolormaa et al. [1]. 

Briefly, the t-values for each marker-trait combination were calculated 

based on the allele substitution effect and corresponding standard error 

obtained from the stGWAS. The multi-trait χ2 statistic was subsequently 

calculated as χ%&'%# =	 𝑡(%𝑉)*𝑡(, where t is a j × d matrix of signed t-values 

at the jth marker across d traits, and V-1 is the inversed d × d variance-

covariance matrix.  

P-values for the j markers were calculated with pchisq function with 

d-1 degrees of freedom, as implemented in R. We carried out the meta-

analyses with the 24 traits classified into the same four trait categories as 

in mtGWAS (reproduction, production, conformation, and all). First, to 

enable unbiased comparison between the metaGWAS and the mtGWAS 

results, we considered summary statistics obtained from stGWAS based on 

individuals with complete records within the respective trait-group. 

Second, to increase the power of the association tests through maximizing 

the volume of entering information, hence exploiting the benefit of the 

metaGWAS approach, we used the stGWAS summary statistics based on 

all available individuals for the trait (the first run). For clarity we denote 

the first and second meta-analyses as metaGWAS1 and metaGWAS2, 

respectively. The latter approach was repeated for the fine-mapping of the 

QTL with imputed sequence variant genotypes. 
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3.6.8 Comparison of the association methods  

We used a 5 % Bonferroni-corrected significance threshold (1.24 × 

10−6 and 3.11 × 10−9 for array and imputed sequence variant genotypes, 

respectively) to consider multiple testing. Genomic inflation factors were 

calculated to compare the distributions of the expected and observed test 

statistics.  

The statistical power was assessed using false discovery rate (FDR). 

Following Bolormaa et al. [71], the FDR was calculated as 
+	∗	(*)!")
!
"	∗	(*)+)

, 

where P is the significance threshold (e.g., 1.24 × 10−6 or 3.11 × 10−9), A is 

the number of significant variants and T is the total number of variants 

tested.  

3.6.9 Fine mapping of detected QTL  

We defined QTL as a region of 1 Mb non-overlapping windows, 

containing at least one significantly associated marker. The marker with the 

smallest P-value within a QTL was defined as lead variant. Linkage 

disequilibrium (LD) between the lead variant and all other variants was 

calculated with the PLINK (v. 1.9) --r2 command. Variants within QTL 

were annotated with Ensembl’s Variant Effect Predictor (VEP; [72]) tool 

using local cache files from the Ensembl (release 104) annotation of the 

porcine genome. The deleteriousness of missense variants was predicted 

with the SIFT scoring algorithm [73] implemented in VEP.  

The proportion of drEBV variance explained by a QTL was estimated 

with #0	(*)0)1
#

2#
, where p is the frequency of the minor allele of the lead SNP 

and 𝜎# is the drEBV variance; 𝛽 is the regression coefficient of the lead 

SNP. To avoid overestimating the variance explained by a lead variant, we 

followed the approach described in Kadri et al. [74] and estimated the 
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regression coefficients jointly for all QTL from the stGWAS, i.e., the lead 

variants of those QTL, that were significantly associated in the stGWAS, 

were fitted as covariates.  

3.7 List of abbreviations 

EBV: Estimated breeding value; drEBV: Deregressed estimated 

breeding value; GWAS: Genome-wide association study; INDEL: 

Insertion and deletions; LD: Linkage disequilibrium; MAF: Minor allele 

frequency; metaGWAS: meta-analyses GWAS; mtGWAS: Multi-trait 

GWAS; PCA: Principal component analysis; QTL: Quantitative trait loci; 

r2drEBV: Reliability of the drEBV; SD: standard deviation; SLW: Swiss 

Large White; SNP: Single nucleotide polymorph; SSC: Sus scrofa 

chromosome; stGWAS: Single-trait GWAS; wdrEBV: weight of the drEBV; 

WGS: Whole-genome sequencing;  
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3.9  Additional files 

Additional files are available at 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-023-

09295-4#Sec25  

 

Additional file 3.1: Correlations between the 24 traits.  
In the upper and lower triangles are correlations between signed t values, and 
between deregressed breeding values, respectively. Shades of purple and orange 
indicate positive and negative correlation coefficients, respectively. The three 
rectangulars are defining reproduction, production, and conformation groups of 
traits.  

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-023-09295-4#Sec25
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-023-09295-4#Sec25


 

111 

 

 

Additional file 3.3: Results of single-trait GWAS based on array genotypes. 
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the single-trait abbreviation. 
 
 
 
 

Additional file 3.2: Manhattan plots of single-trait GWAS based on array 
genotypes. 
Each page contains 4, 10 and 10 plots for traits from reproduction, conformation 
and production groups, respectively. Blue suggestive line is at 5.9.  

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PS
P

PU
P

N
BA

G
L

M
AS

AD
FI

IM
F

D
R
L

LD
W
G

M
T

LM
C

DW
G

PH
24

BF
T

W
SF

H
G
AI
T

BF
L

N
EI
H

SC
H

C
L

N
IT

XO
H

N
T

N
U
T

PSP
PUP
NBA
GL

MAS
ADFI
IMF
DRL

LDWG
MT

LMC
DWG
PH24
BFT

WSFH
GAIT
BFL
NEIH
SCH
CL
NIT
XOH
NT

NUT



 112 

Additional file 3.4: Manhattan plots of multi-trait GWAS (upper) and meta-
analyses GWAS (bottom) based on array genotypes.  
Suggestive line is at 5.9.  
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Additional file 3.5: Results of multi-trait GWAS based on array genotypes. 
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the trait-group.  

 

Additional file 3.6: Results of meta-analyses GWAS based on array genotypes 
and complete dataset.  
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the trait-group.  

 

Additional file 3.7: Comparison of pleiotropic QTL across methods based on 
array genotypes.  
Summary table of P-values and number of significantly associated variants within 
the 6 pleiotropic resulting from single-trait GWAS, meta-analyses GWAS with 
complete datasets and multi-trait GWAS.  

 

Additional file 3.8: Results of meta-analyses GWAS based on array genotypes 
and dataset including missing phenotypic records.  
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the trait-group.  
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Additional file 3.9: Number of significantly associated pleiotropic variants in 
the meta-analyses GWAS within groups using all possible samples and 
stGWAS of individual traits.  
The groups are denoted as $ (production group) and ¥ (conformation group). The 
single traits are: BFL - Bent to pre-bent curve of forelegs; NUT - Number of 
underdeveloped teats; IMF - Intramuscular fat content in MAS; BFT - Back fat 
thickness; NT - Number of teats (both sides); LMC - Lean meat content; CL - 
Carcass length; LDWG - Lifetime daily weight gain; DWG - Daily weight gain 
on test; ADFI - Average daily feed intake.  
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Additional file 3.10: PCA plot of reference panel samples (red and blue) and 
the target samples with array-genotypes (black +).  
First and second principal components captured 7.55 and 0.83% of the genomic 

variation. 
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Additional file 3.11: Accuracy of imputation to whole-genome sequence 
versus minor allele frequency.  
Dosage R2 values from Beagle, and empirical measures of concordance and 
accuracy (R2) derived in 5 cross-validation sets, were assessed in 421 animals 
based on 44,733 downsampled chip genotypes.  

 
 
 
Additional file 3.12: Results of single-trait GWAS based on imputed sequence 
variants.  
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the single-trait abbreviation.  
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Additional file 3.13: Manhattan plot of multi-trait meta-analyses GWAS of 
all 24 traits after fitting the 6 QTL as covariates, which resulted in loss of the 
peaks. 
Suggestive line is at 8.5.  

 
 
 
Additional file 3.14: Results of meta-analyses GWAS based on imputed 
sequence variants and dataset including missing phenotypic records.  
Table contains numbered QTL regions, chromosome, start and stop positions of 
the QTL, lowest P-value, top SNP with MAF, number of significantly associated 
variants within the QTL and the trait-group.  
 
 
Additional file 3.15: List of genes ID and genes symbols within the 6 
pleiotropic QTL. 
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4.1 Abstract 

The branch point sequence is a degenerate intronic heptamer required 

for the assembly of the spliceosome during pre-mRNA splicing. Disruption 

of this motif may promote alternative splicing and eventually cause 

phenotype variation. Despite its functional relevance, the branch point 

sequence is not included in most genome annotations. Here, we predict 

branch point sequences in 30 plant and animal species and attempt to 

quantify their evolutionary constraints using public variant databases. We 

find an implausible variant distribution in the databases from 16 of 30 

examined species. Comparative analysis of variants from whole-genome 

sequencing shows that biased or erroneous variants that are widespread in 

public databases cause these irregularities. We then investigate 

evolutionary constraint with largely unbiased public variant databases in 

14 species and find that the fourth and sixth position of the branch point 

sequence are more constrained than coding nucleotides. Our findings show 

that public variant databases should be scrutinized for possible biases 

before they qualify to analyze evolutionary constraint. 

4.2 Introduction 

Precursor messenger RNA (pre-mRNA) splicing is executed by the 

spliceosome, a large ribonucleoprotein complex that assembles at the 

intron-exon boundary [1]. Intronic features involved in the recognition and 

assembly of the spliceosome include the splice sites, polypyrimidine tract 

and branch point sequence (BPS). A degenerate heptamer containing the 

branch point residue constitutes the BPS [2]. This motif resides within 50 

bases upstream of the 3′ splice site in most of the introns across all 
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eukaryotes. The heptamer includes highly conserved thymine and adenine 

residues, but the adenine itself acts as branch point during pre-mRNA 

splicing [3–5].  

Mutations in BPS can promote alternative splicing and manifest 

phenotype variation [6]. However, despite their functional relevance, BPS 

are not readily accessible in most gene transfer files. Lack of 

experimentally proven branch points [7, 8] and the degenerate nature of the 

sequence encompassing the branch point complicate systematic annotation 

of this regulatory motif. 

Computational methods have been developed to predict BPS [4, 9–

11]. Recently, Kadri et al. [12] quantified evolutionary constraint on 

computationally predicted BPS in the human and bovine genomes using 

exhaustive variant catalogues established from whole-genome sequencing 

(WGS). Their analyses showed that the BPS encompasses evolutionarily 

conserved thymine and adenine residues that are more strongly depleted for 

variants than coding sequences, suggesting that they are under extreme 

purifying selection. Recovery of strongly constrained nucleotides within 

predicted BPS also shows that the motif can be localized in silico with high 

accuracy. Recent analyses in human genomes suggest that the fourth 

nucleotide of the heptamer might be more strongly depleted for variants 

than the branch point itself [13, 14]. However, it remains an open question 

if this constraint pattern is consistent across evolutionarily distant species. 

Here we predict BPS in 30 plant and animal species and attempt to 

study their constraint using public variant databases. We uncover 

implausible variant distributions in 16 out of 30 public databases 

precluding such a study in all species. Investigation of variability of the 

BPS using unbiased public databases of genomic variation reveals strong 
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evolutionary constraints on both the branch point and on the position two 

base pairs upstream in 14 species investigated. 

4.3 Results 

Purifying selection against deleterious mutations manifests as a 

depletion of variation overlapping constrained nucleotides. Our previous 

study showed that constraints can be quantified at nucleotide resolution by 

counting the number of variable sites within functional classes of 

annotations [12]. We hypothesized that this approach is applicable to 

validate and quantify evolutionary constraints on the branch point sequence 

(BPS) for any species for which an annotated reference genome and a large 

and unbiased variant database are available.  

4.3.1 Bovine public variant database is biased 

We conducted a proof-of-concept study with 89,118,442 biallelic 

SNPs from the bovine EVA database (release 4; [15]) to investigate 

evolutionary constraints on BPS in the bovine genome. We calculated 

nucleotide-wise constraint - hereafter referred to as ’variability’ - for each 

position of the BPS relative to the average genome-wide density of variants 

per 100 bp. Contrary to findings in a catalogue of variants established 

through WGS [12], the branch point was the least constrained nucleotide 

in the heptamer when variants from the public database were used (Figure 

1C). Implausible constraint patterns were also evident for other well 

annotated features of the genome. For instance, we found intergenic regions 

to be less variable than coding regions (Figure 4.1A), and excessive 

variability at the splice sites (Figure 4.1B). These findings suggested that 

the bovine EVA database contains biased or erroneous variants. 
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In fact, the proportion of coding variants was 4-fold higher in the 

bovine EVA database than a variant catalogue established from WGS 

(Table 4.1). An excess of coding variants in the EVA database indicated it 

contains variants discovered from exome sequencing. However, an 

implausibly low transition to transversion (Ti/Tv) ratio of 0.55 for variants 

overlapping exons also showed that the database is contaminated with 

false-positive variants. These irregularities were mainly due to a large batch 

of variants (n = 38,008,641) from one submitter that included many 

(7.45%) coding variants with very low Ti/Tv ratio (0.45). Most of these 

variants (83%; Supplementary Figure S4.1) were unvalidated, i.e., they 

were not confirmed by another submission. Once all variants private to this 

batch were removed, a subset of 57,875,698 SNPs largely recovered the 

expected variability of the investigated features (Figure 4.1DEF). 

However, high variability of nucleotides overlapping the 5’ splice site and 

a relatively low Ti/Tv ratio (1.69) suggested that this subset is still biased. 

We repeated the analyses with 34,551,781 variants that were submitted to 

EVA at least twice. Variants within this subset had a Ti/Tv ratio of 2.20. 

These variants recovered a pattern of evolutionary constraint that matched 

previous findings from WGS-derived variants (Figure 4.1GHI;Table 4.1). 

However, this subset contained fewer coding variants (0.49%) than the 

WGS-derived catalogue which suggests that strict filtration removed true 

rare coding variants from the data. 
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(A, D, G) Variability of nine bovine genomic features. Nucleotide-wise constraint 
in and around the splice-sites (B, E, H) and predicted branch point sequences (C, 
F, I). Constraint was quantified relative to average genome-wide variability using 
(A-C) all 89,118,442 SNPs, (D-F) a subset of 57,875,698 SNPs that did not 
contain variants only submitted by the 
COFACTOR_GENOMICS_CFG20140112 project, and (G-I) a subset of 
34,551,781 SNPs that contained only SNPs that were submitted at least twice. Red 
and blue lines denote average genome-wide and exome variability, respectively. 

 
Figure 4.1: Variation in genomic features quantified through a public bovine 
variant database. 
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4.3.2 Public variant databases reveal expected constraints 

in pig, sheep, and goat  

We quantified constraint patterns in the same genomic features of 

three additional species to investigate if other public variant databases 

suffer from similar biases. These analyses were performed in pig, sheep, 

and goat for which exhaustive variant catalogues were available from both 

WGS and public databases. The predicted BPS in 192,744 pig, 168,025 

sheep, and 174,407 goat introns had a “nnyTrAy” consensus sequence that 

contained two conserved nucleotides at the branch point itself (position 6) 

and two bp upstream (position 4) (Figure S4.2A). The branch points were 

at a median distance of 26 bp upstream of the 3’ splice site (Figure S4.2B). 

Table 4.1: Datasets used for analysis. 

Species N SNPs 
(Ti/Tv) 

% 
Codin

g 
(Ti/Tv) 

Predicte
d BPS 

Aver
age 
vari

abilit
y 

Ref. 
genome Source 

Cow 266 29,227,950 
(2.21) 

0.91 
(3.00) 179,476 1.18 ARS-

UCD1.2 [12] 

Cow - 89,118,442 
(1.09) 

3.27 
(0.55) 179,476 3.58 ARS-

UCD1.2 EVA rs4 

Cow 
(filtered) - 34,551,781 

(2.20) 
0.49 

(3.33) 179,476 1.39 ARS-
UCD1.2 EVA rs4 

Cow (all 
COF.) - 34,580,719 

(0.55) 
7.35 

(0.45) 179,476 1.39 ARS-
UCD1.2 EVA rs4 

Pig 139 24,074,441 
(2.36)  

0.73 
(3.28) 192,744 1.04 Sscrofa11.

1 
this 

study 

Pig - 56,883,886 
(1.96) 

0.91(2.
38) 192,744 2.47 Sscrofa11.

1 
Ensembl 
variation 

Sheep 161 16,198,123 
(2.59) 

0.54 
(4.35) 168,025 0.60 Oar_ramb_

v1.0 [16] 

Sheep - 48,541,784 
(2.45) 

0.82(3.
53) 168,025 1.80 Oar_ramb_

v1.0 
Ensembl 
variation 

Goat 157 13,364,058 
(2.48) 

0.66 
(3.95) 174,407 0.53 ARS1 [17] 

Goat - 31,517,363 
(2.40) 

0.68(3.
88) 174,407 1.26 ARS1 Ensembl 

variation 
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Most BPS had a canonical ‘TnA’ motif at position 4-6 (88, 90 and 89% in 

pigs, sheep, and goats, respectively). 

Variant discovery in WGS data of 139 pigs, 161 sheep and 157 goats 

yielded 24,074,441, 16,198,123 and 13,364,058 biallelic SNPs with Ti/Tv 

ratios between 2.36 and 2.59 (Table 4.1). Variability in the genomic 

features differed as expected and confirmed previously established patterns 

of constraint (Figure 2). We observed a striking depletion of variation on 

the positions 4 and 6 of the predicted BPS. The constraint on both 

nucleotides was stronger than on coding sequences but did not differ 

significantly between them (Fisher’s exact test P-values 0.06, 0.79, 0.50 for 

pig, sheep and goat, respectively). 

The public pig, sheep, and goat databases contained more than twice 

the number of variants we established through WGS but between 28% and 

36% overlapped between the databases and WGS for the respective species 

(Table 4.1). Because the public databases aggregate variant information 

from many individuals from multiple breeds, the Ti/Tv ratios, proportion 

of coding variants, and constraints in functional features differed from 

those established with the smaller WGS subset but were within plausible 

ranges (Table 4.1; Figure 4.2). Nucleotide-wise constraint in the BPS was 

also consistent with the pattern obtained from variants established through 

WGS (Figure 4.2E). As observed with variants from WGS, the constraint 

did not differ between positions 4 and 6 (Fisher’s exact test P-values 0.48, 

0.67, 0.47 for pig, sheep and goat, respectively). 
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Variability of the nine features of the (A) pig, (B) sheep, and (C) goat genomes. 
Nucleotide-wise variation relative to average genome-wide variability in and 
around (D) splice sites and (E) branch point sequence.  

 

4.3.3 Variant bias is widespread in public databases 

Exhaustive variant information from four public databases confirmed 

evolutionary constraints that were similar to those established from WGS. 

This encouraged us to conduct a comparative analysis of constraint on the 

BPS in 26 additional species (18 animals from 13 orders and 8 plants from 

4 orders) for which at least one million SNPs were available through EVA 

(n = 8) or Ensembl (n = 18) databases. We evaluate the quality of these 

databases prior to the comparative constraint analyses to ensure they are 

free from erroneous and biased variants.  

Two public databases were excluded prior to the comparative 

analysis because variant density was too low. Variants from 13 databases 

were incongruent with properties of genome-wide variants and thus were 

not suitable for an unbiased comparative assessment of evolutionary 

constraint across species (Table S1, File S1). The variability in intergenic 

 
Figure 4.2: Variation in pig, sheep, and goat genomic features quantified 
through variants from whole-genome sequencing and public databases. 

A B C

D E
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regions was lower than the average genome-wide variability in 12 excluded 

databases possibly indicating biased variant distribution due to exome 

sequencing. An excess of exonic variants in five of these databases is 

further evidence that the variants fail to represent genome-wide variability. 

The well-established constraint at the four positions overlapping the 3’ and 

5’ splice sites was absent in five databases (File S1). 

Other variant characteristics such as the proportion of coding variants 

or the Ti/Tv ratio were not abnormal for many excluded databases, 

indicating that these parameters are not suitable to assess the plausibility of 

such databases. For instance, a Ti/Tv ratio of 1.96 and 1.11% coding 

variants in the Equus caballus database are compatible with expectations 

for genome-wide variants (Table S1). Yet, variants from this database 

revealed an implausibly high variability at both splice sites and downstream 

the BPS at intronic positions overlapping the polypyrimidine tract (File 

S1). A plausible Ti/Tv ratio (1.87) and percentage of coding variants 

(2.89%) may pretend that the Gallus gallus variant database is 

representative for whole-genome variability in chicken. However, an 

excess of variability of the nucleotides overlapping the 5’ splice sites is 

implausible. Variants from this database also uncovered a constraint pattern 

in the BPS which deviates from what we established in unbiased variant 

catalogues.  

Only 11 public variant databases (File S1, Table S1) fulfilled our 

criteria, i.e., they contained on average at least one variant per 1000 base 

pairs, variant density was higher in intergenic regions than genome-wide 

(Figure 4.3B) and constraints on the 3’ and 5’ splice sites were evident 

(Figure 4.3A). These databases contained between 4,486,640 and 

69,472,724 variants of which between 0.61% and 16.51% overlapped 
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coding sequences. We subsequently conducted a comparative analysis of 

BPS variation in these species. 

A vast majority of the predicted BPS for these 11 species contained 

the canonical ‘TnA’ motif overlapping positions 4-6 of the heptamer 

(between 90% in Pan troglodytes and 98% in Phaseolus vulgaris; Table 

S1, Figure S4.3). The predicted branch points were primarily between 14 

and 145 bp upstream of the 3’ splice site with median distance of 27 bp 

(Figure S4.4), consistent with BPS placement in other species. The 

comparative analysis of BPS variation in these 11 species revealed strong 

constraint on positions 4 and 6 (Figure 3C, Table S1). The constraint 

between these two positions differed significantly in four of the 11 species 

investigated. In three of those four species, the constraint was stronger on 

the position 4 than on the position 6 (Bonferroni corrected Fisher’s exact P 

< 4.5 x 10-3). 
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Boxplots of nucleotide-wise variability relative to average genome-wide 
variability in and around (A) splice sites and (C) predicted branch point 
sequences. (B) Violin plots of variability in nine genomic features. Means and 
medians are indicated with black and white circles, respectively. 

 

4.4 Discussion 

Our comparative analysis of branch point sequence (BPS) variation 

relied on computationally predicted BPS because exhaustive catalogues of 

experimentally proven branch points were not available for the species 

considered. While the length of the reported consensus sequence 

encompassing the branch point varies from five bases in humans [18] to ten 

bases in plants [5], all BPS in our study were heptamers that contained the 

branch point at the 6th position. Constraints on positions 4 and 6 were 

 
Figure 4.3: Variation in genomic features across 11 species quantified using 
public variant databases. 

 

A
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striking in all species investigated, corroborating a pivotal role of both 

residues for spliceosome assembly during pre-mRNA splicing [7]. 

However, we did not find conclusive evidence for higher constraint on 

position 4 of the heptamer, as reported for human BPS [13, 14]. Our 

findings confirm that an adenine residue is the most preferred branch point, 

and that thymine is the most preferred residue at 2 bp upstream of the 

branch point [19]. High evolutionary conservation of these nucleotides 

across distant eukaryotic species reiterates the need to consider them in 

search for trait-associated variants. 

We use public variant databases to assess evolutionary constraints on 

different genomic features. However, contamination of these databases 

with erroneous or biased variants can cause flawed interpretation of results 

[20–22]. Our study corroborates that variants from public databases need 

to be evaluated carefully due to their partly unknown origin and lack of 

curation [20, 22–25]. Strict filtration, such as the removal of variants that 

were submitted only once, was required to recover expected constraint 

patterns from a public bovine variant database. This approach is only 

possible with accompanying metadata, which is not always available. 

Moreover, this approach also removes true rare variants enriched in 

evolutionary constraint signatures, and as such is not generally advisable. 

Assessment of constraint patterns in annotated genomic features is 

more useful to evaluate the quality of variant databases than inspecting 

other widely used parameters such as Ti/Tv ratio. We show that the 

constraint on the splice sites and the proportion of variants in intergenic 

regions are the most informative for such an assessment. By using a simple 

and straightforward approach of counting variable sites overlapping 

genomic features, we show that erroneous and biased variants contaminate 

16 of the 30 investigated public variant databases. Since these constraint 
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patterns are so widespread, such an approach may provide quality 

assessment for existing or even purely predictive annotations. 

4.5 Material and methods 

4.5.1 Whole-genome sequence variant databases 

We used whole-genome sequencing (WGS) data of 139 pigs that 

were sequenced at an average read depth greater than 8x. Sequence reads 

were processed and aligned against the Sscrofa11.1 reference sequence as 

detailed in [26]. We called variants with DeepVariant (version 1.3.0, [27, 

28]), producing a gVCF file per sample. The gVCF files were then merged 

and filtered using GLnexus (version 1.4.1, [29]) with the DeepVariantWGS 

configuration, followed by imputation with Beagle 4.1 [30]. Sequence 

variants were called previously for 266 cattle, 161 sheep and 157 goats 

(Table 4.1). We considered only biallelic sequence variants for our 

analyses. 

4.5.2 Public variant databases 

We downloaded reference sequences and their annotations including 

non-coding RNAs, as well as a VCF file with polymorphic positions for 30 

species from EVA (release 4, [15]), Ensembl (release 107, [31]), or 

Ensembl Plants (release 55, [32]). Access information for all data is 

provided in Table S2. 

We used these data to evaluate the number of variants, proportion of 

variants in protein-coding regions, average genome-wide variability (in 

variants per 100 bases) and transition to transversion (Ti/Tv) ratio. Variants 

overlapping exons, start codons and stop codons were considered as coding 

variants.  
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4.5.3 Prediction of branch point sequences 

We followed the approach of Kadri et al. [12] to predict BPS in 30 

species using BPP [9]. In short, we obtained coordinates of introns in 

protein-coding genes from GTF files of each species, mindful of gene-

strand orientation. We used species-specific weighted octanucleotide 

frequencies estimated as suggested by Zhang et al. [9] and the position 

weight matrix of predicted human BPS for model training [9]. For the 

analysis of constraint, we only considered the most probable BPS within 

each intron.  

The variability between positions 4 and 6 of the heptamer was 

compared for each species with Fisher’s exact test. We applied Bonferroni-

correction to account for multiple testing (number of species tested). 

4.5.4 Variation in genic features 

Variability was calculated as the number of variants per 100 bp 

divided by the respective species’ genome-wide variability for variants 

overlapping nine annotated genomic features (3’ and 5’ splice sites, start 

and stop codons, 3’ and 5’ UTR, introns, exons, intergenic regions) and 

predicted BPS. Genome-wide variability, i.e., average number of variants 

per 100 bp, was calculated as total number of variants divided by the size 

of the genome. The genome size was the total length of all chromosomes 

considered but undetermined bases (“N”) were excluded. 

4.5.5 Genomic variant database analysis 

Based on the analyses of WGS datasets we established three criteria 

to assess the quality of public databases. The criteria were (i) genome-wide 

variability of minimum 1 variable site per 1000 bp; (ii) variability in 

intergenic regions above the average genome-wide; (iii) depletion of 

variation at the 4 bases overlapping splice sites. Databases not fulfilling all 
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criteria were excluded from further analyses (Table S1, File S1). Eleven 

species that satisfied these criteria were considered to estimate constraint 

patterns. 
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4.7 Supplementary files 

 

Top four contributors submitted 84 % of all (N = 51,359,349) singletons. 
The largest batch (N = 31,580,941) of unvalidated variants was submitted 
by COFACTOR_GENOMICS_CFG20140112.  

 

Figure S4.1: Main contributors of single-entry variants. 
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(A) Motif logos of predicted branch point consensus sequences and (B) 
their placement (distance from 3’ splice site in base pairs) in the sheep, 
pig and goat genomes.   

Figure S4.2: Predicted branch point sequences in sheep, pig and goat. 
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Figure S4.3: Predicted branch point consensus sequences in 26 species. 
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Figure S4.4: Placement of predicted branch points in 26 species. 
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5 General discussion 

This thesis investigated two populations of the Swiss Large White 

(SLW) pig breed at the whole-genome sequence (WGS) level. Analyses of 

between- and within-population genetic diversity showed that the two lines 

are genetically distant enough to be considered as separated populations, 

despite each originating from the same ancestral breed. Genome-wide 

association studies (GWAS) of the dam line revealed quantitative trait loci 

(QTL) affecting economically important traits, such as fattening traits (e.g., 

average daily feed intake or back fat thickness) and conformation traits 

(e.g., carcass length or number of teats). The sequence-derived variants 

from 35 dam line key ancestors enabled imputation from array-derived 

genotypes up to the WGS level with sufficient accuracy to pinpoint 

candidate causal mutations. These results widely rely on proper structural 

and functional annotation of the porcine reference genome. However, the 

current annotation is missing important genic features, such as branch point 

sequences, for which this thesis now also provides the predicted positions 

(Supplementary Table S5.1).  

Furthermore, this thesis explored several methods with potential use 

in breeding programs beyond the pig industry. These approaches were 

mainly focused on increasing the number of variants through imputation. 

GLIMPSE-based imputation was shown to enable implementation of low-

pass sequencing into populations with existing whole-genome haplotype 

panels. Its favorable cost facilitates the sequencing of large cohorts of 

animals when compared to the higher costs for high-throughput 

sequencing, and thus opens the door for shifting from routine array- to 

sequencing-based genotyping. Direct imputation from array genotypes to 
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the WGS level was also explored, which allowed the fine-mapping of 

multi-trait QTL. To consider the scenario where no variant set would be 

available from whole-genome sequencing, public variant databases were 

investigated for various species while intending to enhance current 

annotation files with prediction of branch point sequences. This approach 

turned out to be incorrect for many species and highlights the need for 

critical examination of public variant databases prior to use in genomic 

studies. 

The results of this thesis can be directly utilized by the Swiss pig 

breeding industry and can serve as a base for a follow-up research. 

Moreover, the approaches applied here can be easily adapted in other 

livestock populations.  

5.1 Genotyping methods 

Various sources of genotypic data were available for analysis. 

Medium density (~ 50’000) array-derived variants were available for both 

dam and sire line SLW animals. By analysing the pedigree of these 

populations, 35 key ancestors were selected from each population, for 

which high-coverage were generated sequences. Low-pass sequences were 

available for another dam line. 

Microarrays offer high-quality genotype data, have a low cost per 

sample, and provide accurate genotyping for common or specific variants. 

However, they are limited in their ability to identify de novo variants, as 

they rely on pre-defined set of variants. Benefits of WGS include 

generation of high-quality genotypes, discovery of novel variants, 

increased power to detect rare variants, and high accuracy in genome-wide 
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genotyping [1, 2]. However, there are certain disadvantages associated with 

WGS. First, it has a high cost per sample, making large-scale studies 

financially challenging. Consequently, a lower number of analyzed 

samples limits its application in studies requiring a large cohort. Therefore, 

careful selection of the target animals is desirable. Secondly, data analysis 

for WGS can be complex due to the vast amount of information generated 

[3]. 

Genotyping through low-pass sequencing has several advantages 

over WGS, as it is affordable and allows for high sample throughput. It 

provides genotypes for both common and low-frequency variants and 

demonstrates high genome-wide imputation accuracy for minor allele 

frequency (MAF) greater than 1% with a minimum coverage of 1x [4]. 

Furthermore, it can be used as a low-cost and low-accuracy variant 

discovery tool, making it an accessible option for genetic studies [5]. 

However, there are some disadvantages associated with low-pass 

genotyping. The imputation accuracy of rare variants is typically low, and 

genotyping accuracy is also compromised in difficult regions [6]. 

Additionally, genotype calls are limited to variants present in the 

imputation reference panel, which may restrict the scope of analysis [4]. 

Another drawback demonstrated in Chapter 2 is that heterozygous loci may 

be called as homozygous for the reference allele («undercalling»). This 

phenomenon was noticeable from the diagonal elements of the genomic 

relationship matrix (Figure 2.5). Imputation is expected to improve the 

usefulness of low-coverage data for the analysis of dominance variation by 

increasing the amount of genotypic information [7]. 
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5.2 Generation of variant catalogues 

The WGS variants used in the chapters 2-4 were called and imputed 

using different tools. Each variant calling approach has its own advantages 

and disadvantages, which must be considered when designing the study. 

Equally, the imputation tools and strategies varied in computational 

performance and the resulting imputation accuracy. These variant calling 

approaches allowed for comprehensive analysis of genetic variation across 

different sample sets and read depths. 

5.2.1 Variant calling approaches 

Variant calling tools play a crucial role in genomic analysis as they 

identify and genotype genetic variations from raw sequencing data. Two 

widely used variant calling tools are GATK (Genome Analysis Toolkit) 

and DeepVariant. GATK is a comprehensive software package that 

provides a suite of tools for variant discovery and genotyping. It employs 

algorithms and statistical models to accurately detect single nucleotide 

polymorphisms (SNPs), short insertions, and deletions. GATK 

incorporates best practices for variant calling and follows a robust 

workflow that includes data preprocessing, variant discovery, and variant 

quality score recalibration [8]. On the other hand, DeepVariant utilizes 

deep learning algorithms to call variants from sequencing data. It employs 

convolutional neural networks to make highly accurate variant calls by 

modeling the sequencing data patterns and capturing subtle variations. 

DeepVariant has demonstrated impressive performance in terms of 

sensitivity and precision, particularly for complex genomic regions [9].  

GATK is a widely used tool that has been extensively applied for 

identifying and genotyping sequence variants in diverse livestock 
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populations [10, 11]. The accuracy of variant calling is affected by 

sequence quality, uniformity of coverage, and the threshold of false-

discovery rate that is used. Recent studies have suggested that DeepVariant 

exhibits superior accuracy in genotyping compared to GATK [12, 13]. 

However, it is important to note that DeepVariant has been less frequently 

employed for variant calling in species other than humans. 

In this thesis, variant calling was performed using both tools. GATK 

was used in Chapters 2 and 3 to call SNPs, and short insertions, and 

deletions from high-coverage WGS data and from 421 samples with mixed 

coverages, respectively. DeepVariant was used in Chapter 4 with high-

coverage data. The number of genotyped SNPs was comparable between 

Chapter 2 and Chapter 4 despite their similar read depths and Chapter 4 

containing twice the number of samples. This suggests that the 70 key 

ancestors sequenced in Chapter 2 already capture a large proportion of the 

genetic variation present in the two populations. Consequently, the 

inclusion of additional animals in Chapter 4 did not result in a significant 

increase in new genetic variants being discovered.  

5.2.2 Imputation 

Genotype imputation is a pivotal process in genomic studies, 

enabling the estimation of missing genotypes and the inference of 

unobserved variants. Various imputation approaches were used in this 

thesis to enhance the genotyping accuracy and completeness of the 

datasets.  

In Chapter 2, Beagle v.4.1[14] was used for refining and imputation, 

leveraging the high-coverage sequences of 70 key ancestors to impute 

almost 27 million short variants, including SNPs, insertions, and deletions. 

This informative haplotype reference panel facilitated both subsequent 
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imputations presented in Chapter 2 and Chapter 3. Specifically, in Chapter 

2, genotypes at 23 million biallelic SNPs were inferred using GLIMPSE1 

[4] method in 175 low-coverage samples (on average 1-fold), and in 

Chapter 3 SHAPEIT4 tool [15] was used to pre-phase the reference panel 

followed by Beagle v.5.2 [16] for direct imputation of medium-density 

array-derived genotypes from 14 thousand samples to the WGS level, 

leveraging 22 million SNPs with MAF above 1%. The proportion of 

correctly imputed genotypes, i.e., concordance ratio, was equally 97% for 

both GLIMPSE and SHAPEIT4 + Beagle v.5.2, and lower (85%) for 

GATK + Beagle v.4.1. Earlier studies have also found superior imputation 

accuracy of GLIMPSE over Beagle v.4.1 for low-coverage data and of 

phasing performance over SHAPEIT4 [4]. 

Both imputation approaches rely on haplotype phasing, which 

involves assigning genotypes to their two paternal origins. The accuracy of 

imputation is greatly influenced by the size and diversity of the reference 

panel used. A larger and more diverse reference panel increases the chances 

of capturing a wide range of genetic variation, leading to improved 

imputation accuracy [17–19]. This is particularly important for rare (MAF 

< 0.5%) and low-frequency (0.5% < MAF < 5%) variants. Large reference 

panels have the capability to accurately impute variants with frequencies as 

low as 0.1–0.5% and can already encompass thousands of putative loss-of-

function alleles [17]. This is especially true if the reference panels include 

animals from the target population [20]. The reference panels in Chapters 

2 and 3 were based on samples from the target population. The inclusion 

of key ancestors, which captured the majority of the genetic diversity in 

both lines, led to strong LD between imputed and reference variants and 

consequently to high imputation accuracy.  



 146 

5.3 Dam and sire lines are diverged 

The WGS data from the key ancestors were directly employed in 

Chapter 2 to assess the separation of the dam and sire lines. Weir and 

Cockerham FST values above 0.25 throughout the genome (Supplementary 

Fig. S2.2) and the separation of the two SLW lines by the top principal 

components (Supplementary Fig. S2.4) showed that the populations 

diverged. Although the exchange of genes between the lines stopped only 

few generations ago, specifically the use of dam line animals in breeding 

population of the sire line, all samples were separated into clusters. The 

principal components plot in Chapter 3 (Additional file 3.10) was based on 

SLW animals that were genotyped with arrays during routine screening by 

the breeding company. This plot also included animals born before 2018, 

which was different from Chapter 2. It showed that some animals did not 

fully belong to one of the lines; however, these animals were mostly labeled 

as dam line animals. Most of the admixed animals were born before the 

year 2000, therefore before the separation of the lines (Figure 5.1). 

Admixture analyses that considered genes from key ancestors revealed 

only one admixed sample, which had a maximum proportion of 80:20 

(Supplementary Fig. S2.1). 
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Figure 5.1. Principal component analyses plot (extension of Additional file 
3.10). Animals are categorized based on birth year: in black and red are dam and 
sire line animals born before 2001, and in purple and green are dam and sire line 
animals born after 2015, respectively. In grey are all others, i.e., born in years 
2001-2015.  

 

The distance between clusters is relative; including animals from 

genetically different breeds reduces the distance between SLW 

populations. Plotting them together with genetically more distant breeds 

would scale the principal components and the two lines would cluster much 

closer. To demonstrate this, I randomly selected 100 animals from each of 

four breeds (the dam and sire lines from SLW, Pietrain, and Duroc), which 

had array-derived genotypes (Figure 5.2). The principal components were 

calculated as described in Chapter 2. Only genotypes with a frequency 

above 0.5% were used. The first and second principal components 

effectively separated the breeds into three clearly distinguishable clusters. 

Additionally, the analysis brought the two lines closer together, resulting 
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in partial overlap between them. However, it is important to note that the 

lines still exhibit some separation and are not entirely overlapping. 

 

Figure 5.2. Principal component analyses plot of four breeds. Analyses of 100 
randomly sampled animals from each breed puts in perspective the separation of 
the dam and sire lines. 

 

5.4 Consequences of small effective 

population size 

5.4.1 Effective population size is smaller in sire line 

The Swiss Large White breed was originally one population, from 

which the sire line was gradually bred. Creation of the sire line resulted in 

population reduction, which implied a change in the effective population 

size [21]. Indeed, effective population sizes (estimated based on pedigree-

derived inbreeding coefficients) of both lines were relatively small, 

especially in the sire line with 44 individuals. This size was smaller than in 

other pig breeds [22–26] and other livestock species [22, 27, 28]. In chicken 

lines divergently selected for high and low body weight, Márquez et al. [29] 
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found lower effective population sizes (~ 35) after long-term divergent 

breeding and concluded that this is expected in closed lines. The estimation 

of effective population size is expected to be close to the true value if the 

pedigree is complete [30], which was the case for this study. Lower 

effective population size of the sire line may indicate that some boars were 

more widely used than others, likely due to artificial insemination [29].  

5.4.2 Inbreeding levels are higher in sire line 

The effective population size is a useful measure to evaluate also the 

inbreeding levels in animal populations [31]. Thus, a few animals, selected 

based on their marginal genetic contribution to the active breeding 

population, account for a majority of the population’s haplotype diversity. 

The sire line, which is characterized by a smaller effective population size, 

has fewer segregating haplotypes within the population, which in turn leads 

to higher levels of inbreeding. As observed in Chapter 2, the results 

corroborated the higher inbreeding level of the sire line compared to the 

dam line. 

Inbreeding was evaluated using two approaches: runs of 

homozygosity (FROH) and the genetic relationship matrix derived from the 

pedigree (FPED). The FPED values were 0.05 ± 0.01 for the dam line and 0.07 

± 0.02 for the sire line, which were lower than the values estimated through 

runs of homozygosity (FROH, 0.26 ± 0.03 for the dam line and 0.28 ± 0.03 

for the sire line). Indeed, the sire line exhibited a significantly higher 

proportion of long runs of homozygosity compared to the dam line (Figure 

2.3). This finding aligns with the shorter time for the development of the 

sire line and its smaller effective population size. 
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A moderate Pearson's correlation coefficient between the FPED and 

FROH estimates (r = 0.34) is consistent with the results of a study on Large 

White by Shi et al. [23]. It is important to note that the FPED estimate 

represents the statistical expectation of the probable genomic proportion of 

alleles that are identical by descent (IBD). However, it does not account for 

the stochastic recombination events that occur during meiosis. As a result, 

FPED underestimates the true relatedness among individuals [32]. On the 

other hand, genomic estimates based solely on genetic markers, such as the 

genomic relationship matrix (FGRM) or homozygosity level (FHOM), do not 

differentiate between alleles that are identical by state (IBS) and those that 

are IBD. This can lead to overestimation of inbreeding levels [33]. FROH, 

on the other hand, helps mitigate these issues [34]. 

Fisher [35] reported that the expected length of a DNA segment that 

is IBD follows an exponential distribution with a mean derived from 

centimorgan, which represents the average number of recombination 

events occurring in one generation. Recombination events have the 

potential to disrupt long chromosome segments, so the presence of long 

runs of homozygosity indicates recent inbreeding, while short runs of 

homozygosity are indicative of more distant ancestors. Therefore, the 

higher presence of long runs of homozygosity in the sire line suggests a 

greater occurrence of recent inbreeding compared to the dam line. 

5.5 Genome-wide association studies 

and fine-mapping of multi-trait QTL 

5.5.1 Use of LD in imputation and GWAS 

The LD between causative variants and genetic markers is a 

fundamental assumption in genomic studies investigating the relationship 
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between phenotypes and genotypes. Correspondingly, the accuracy of 

standard imputation techniques is strongly affected by the similarity of LD 

patterns in the target and reference populations [36]. 

In Chapter 3, the imputation proved to be rather accurate due to the 

use of a reference panel comprised of animals from the same population as 

the target population (Additional file 3.10). Despite the limited availability 

of high-density array-derived genotypes, which resulted in relatively high 

LD blocks (Figure 3.2 B), previously identified candidate causal variants 

were successfully recovered among the top variants in four out of six multi-

trait QTL.  

5.5.2 Single- and multi-trait GWAS with 24 traits reveal 

in total 15 QTL 

The association analyses in Chapter 3 incorporated 24 economically 

relevant traits and 40K chip genotypes of 5,753 pigs. Single-trait 

association analyses revealed eleven QTL, and various settings of the 

multi-trait or meta-analyses GWAS revealed between three and seven 

QTL.  

There are several reasons that may contribute to the scarcity of 

GWAS signals. First, the significance threshold influences what is deemed 

a QTL. As discussed by van den Berg et al. [37], there is a growing need 

for an appropriate method to adjust for the number of independent tests 

because of increased marker density, which results in stronger LD and 

population stratification. In this thesis was used a Bonferroni correction 

with the total number of SNPs (1.24 × 10−6 and 3.11 × 10−9 for array 

genotypes and imputed sequence variants, respectively). Becker at al. [38] 

conducted association analyses on the same population but identified four 
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QTL with the two traits by defining a moderate-significance threshold at 

P-value = 5 × 10-5. The QTL regions identified by Becker et al. [38] were 

nearly significant but failed to pass the stringent significance threshold. 

Secondly, the density of the array genotypes may be insufficient. LD 

decay between a SNP and the causative mutation, due to recombination 

events, can weaken the association signal. Genotyping the causative 

mutation directly or increasing the chances of capturing it would help 

address this issue. 

5.5.3 SNP heritabilities agree with those routinely 

evaluated 

Genetic architecture of the traits plays another important role in 

success of the GWAS. Genomic heritability measures the amount of 

variation that would be explained by GWAS when the sample size is so 

large that all associated variants would be statistically significant [39]. 

Classical estimation of total narrow-sense heritability (estimated from 

phenotypic records of samples that include family members) captures the 

total amount of additive genetic variance in the population irrespectively of 

the joint distribution of allele frequency and effect size [40]. In contrast, 

SNP heritability (estimated from genotype data) captures only the 

proportion of additive genetic variance due to LD between the SNPs and 

the unknown causal variants.  

SNP heritability estimates of the deregressed breeding values of the 

traits are shown in Table 3.1. To analyze the traits’ SNP heritability, a 

model with the weights as implemented in GCTA was used. The GCTA 

algorithm for estimating variance components uses average information 

(AI) methods, i.e., likelihood-based iterated inference procedure. By 

including weights, the diagonal elements of the residual correlation matrix 
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in REML were corrected. The resulting SNP heritability estimates were 

highly correlated (r2 = 96%) to those obtained from routine evaluation 

while using raw phenotypes (narrow-sense heritability).  

The SNP heritability estimates while using weights were on average 

2x lower than when estimating without the weights. Despite the magnitude 

of this difference, the effect of weights is assumed to be minimal, as shown 

on breeding value estimation by Wang et al. [41]. Supporting the use of 

weights, other studies found similar or only slightly different heritability 

estimates with pedigree-based model in different Large White populations 

[42–44]. However, Hong et al. [45] found substantially lower SNP-based 

heritability estimates than reported in the Chapter 3 (for body length by 

0.42 and number of teats by 0.19). 

5.5.4 Only fraction of the total variance was captured by 

QTL 

The multi-trait QTLs identified in Chapter 3 only accounted for a 

fraction of the overall variation in the traits (Figure 3.2C). Proportion of the 

total phenotypic variation explained by alternative alleles of the lead SNPs 

was on average 6.5 %. Potential lies in rare variants with MAF < 1% [46], 

structural variants [47], tandem repeats [48, 49], or long non-coding RNA 

[49]. Particularly reproduction traits, with which I did not reveal any 

associations in this thesis, have been reported to be affected by structural 

variation [50]. However, the detection of structural variations spanning 

longer fragments remains challenging when using array-derived genotypes 

or short reads [49, 51], they were not considered in this thesis. 
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5.5.5 Largest effect sizes revealed for carcass length 

Cumulatively the most explained total variation was from 17 % for 

trait from conformation group ‘carcass length’. The two loci were on 

chromosomes 7 and 17, both with previously proposed causal genes VRTN 

and BMP2, respectively. Apart from those two genes, there are other 

potentially causal, large effect genes segregating in pig populations. Two 

loci, PLAG1 and LCORL, together explained 18.4% of the residual 

variance in body length in an intercross between Large White pigs and wild 

boar [52]. 

A locus with a large effect on a favorable trait tends to be strongly 

selected and fixed in domestic animals [53]. For example, in cattle, several 

major loci explained more than a third of genetic variance [54]. In horses, 

only the LCORL region explained 11% and 18% of the phenotypic 

variance in Franches-Montagnes and German Warmblood, respectively 

[55, 56]. Makvandi-Nejad et al. [57] reported that four loci explained 83% 

of size variance in the 48 horses from 16 breeds and two loci explained 

59% of the variance in thoroughbred size, although these estimates are 

likely to be upwardly biased by the small and selected sample. In contrast, 

adult human height explains ~0.3% to ~0.5% of the phenotypic variance 

[58], 

5.6 Functional and structural 

annotation needs to be improved 

It is increasingly recognized that most of the genetic variation 

responsible for complex traits, such as common complex diseases in 

humans or economically significant traits in plants and animals, can be 

attributed to regulatory variants rather than coding variants [59, 60]. In the 
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Chapter 3 were used imputed both SNPs and short insertions and deletions 

to reveal the associations. The meta-analyses multi-trait GWAS of 24 traits 

yielded 9,774 significantly associated variants in 159 genes across six QTL. 

I annotated these variants using VEP (cache v. 104; [61]) allowing for 

multiple consequence predictions (Table 5.1). Indeed, vast majority (73 %) 

of the significantly associated variants were located in the intronic regions, 

including all the top variants (Chapter 3).  

Introns, non-coding segments of DNA or RNA, were once considered 

as "junk DNA". However, increasing evidence [62–64] highlights their 

crucial involvement in genomic regulation. Intronic regions play a direct 

role in alternative splicing, gene expression, mRNA transport, chromatin 

assembly, and nonsense-mediated decay [62, 65]. Moreover, they have 

indirect implications, such as influencing the functional characteristics of a 

gene based on its position in the sequence, impacting evolutionary 

processes, providing a source of new genes, and harboring non-coding 

functional RNA genes [62].  

 

Table 5.1: Predicted consequence types and counts of 9,774 significantly 
associated variants in the 6 multi-trait QTL detected by meta-analyses GWAS. 

Consequence type (all) Number of 
occurances 

Intron variant 42,484 
Upstream gene variant 4,123 
Intron variant and non-coding transcript variant 3,597 
Downstream gene variant 3,408 
Intergenic variant 3,174 
3` prime UTR variant 446 
Synonymous variant 307 
Non-coding transcript exon variant 241 
5` prime UTR variant 106 
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Missense variant 83 
Splice region variant and intron variant 79 
Frameshift variant 11 
Stop gained 11 
Frameshift variant and splice region variant 3 
Frameshift variant and splice region variant and 
intron variant 3 

Splice region variant and non coding transcript 
exon variant 2 

Splice region variant and synonymous variant 2 
Stop gained and frameshift variant 1 
Coding sequence variant 1 

 

Genome annotation can be done as large-scale similarity 

comparisons on the genome sequence, taking note of repeated regions at 

different scales, and then looking for function in the genome by mapping 

the 'read-out' from experiments onto sequence elements [66–68]. Thus, 

separating the analysis into comparative and functional. Annotation can be 

a manual or automated process [69]. While predicting the consequences of 

alleles on overlapping transcripts can help narrow down potential causal 

variants, it is important to note that automated annotation is not always 

reliable [70, 71]. Automated annotation of large, fragmented “draft” 

genomes remains difficult; in addition, errors and contamination in draft 

assemblies lead to errors in annotation that tend to propagate across species. 

Human and other vertebrate genome annotations are provided by 

reputable sources, such as Ensembl or GENCODE. These resources offer 

annotations for protein-coding genes, long non-coding RNAs (lncRNAs), 

small non-coding RNAs (sRNAs), pseudogenes of protein-coding genes, 

as well as immunoglobulin, and T-cell receptor segments. They continually 

update the annotation by (i) identifying novel protein-coding genes, 

lncRNAs, and pseudogenes, (ii) capturing newly discovered alternatively 
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spliced transcripts in protein-coding and lncRNA regions, (iii) iteratively 

reassessing existing genes and transcripts to ensure accuracy, and (iv) 

integrating novel biological features into the annotation to enhance its 

comprehensiveness [72].  

Gene transfer files (GTF) contain information about gene structure. 

The features included in Ensembl GTF file for the Sscrofa11.1 pig 

assembly (v. 107) are shown in Figure 5.3. Known positions of the start 

and stop codons of the genes enabled determination the positions of splice 

sites, intronic, and intergenic regions (Chapter 4). Next, a missing genic 

feature - branch point sequence (BPS) was annotated in 30 species, 

including the pig (the 192,744 predicted BPS positions in the pig genome 

are listed in Supplementary Table S5.1). The annotation approach 

employed in this thesis included prediction of the positions built upon 

detection of BPS in human genome and recognition of the motif similarity 

across species [73]. 

 

 

Figure 5.3: Genic features included in gene transfer file from Ensembl for 
Sscrofa11.1 assembly (v.107). 
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The prediction of the genic features included in splicing machinery 

is necessary for a correct assessment of the consequences of variants 

located in these sequences. Another intronic feature not included in the 

annotation file is the polypyrimidine tract. These poly-A stretches, located 

in proximity of 3’ end of the intron, promote the assembly of the 

spliceosome [74]. The sequence between the branch point and the 3’ splice 

site, which encompass the polypyrimidine tract, is devoid of AG 

dinucleotides, creating a so-called ‘AG exclusion zone’ [75]. The 

mutations creating AG result in mis-splicing events with pathogenic 

consequences [76, 77]. 

Many prediction tools of various features are being currently 

developed [67–69, 78–82]. On the other hand, these approaches yield some 

false positives and overlook sequences located in exceptional positions, 

i.e., distant branch points further from the splice site than the majority [83]. 

Therefore, experimental methods are therefore still needed for verification 

of the computational predictions [84]. The false positive predicted BPS in 

each intron were reduced by including only the predictions with the highest 

score. On the other hand, this approach might remove some of the true BPS. 

Intergenic regions also harbor features affecting the gene regulation. 

To facilitate the identification of regulatory variants and to assess their 

impact on gene expression, the animal genomics community has initiated 

the creation of epigenome maps [82]. These maps primarily rely on 

techniques such as ChIP-Seq [85] (chromatin immunoprecipitation 

followed by sequencing), DNase-Seq [86] (DNase I hypersensitive site 

sequencing), and ATAC-Seq [87] (assay for transposase-accessible 

chromatin using sequencing). The international Functional Annotation of 

Animal Genomes (FAANG) project plays a key role in coordinating most 

of these initiatives [82]. Liver-specific comparative enhancer maps, 
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utilizing histone modification data, have already been constructed for 20 

mammals, including pig, cow, and rabbit [88]. 

The findings from Chapter 3 and other association studies indicate 

that most genetic variants associated with disease susceptibility are not 

situated in protein-coding regions [89, 90]. Instead, over 90% of disease-

associated, non-coding SNPs in humans are located within regulatory 

elements [91, 92]. Thus, improvement of the genome annotation is crucial 

for uncovering the new causal variants of both quantitative and qualitative 

traits. 

5.7 Conclusion and future directions 

This thesis aimed to resolve major genetic questions related to the 

two lines of SLW pig breed. To tackle them, a variety of genomic data were 

generated and considered, including arrays and short read sequences. 

Imputation enabled analyses with larger sample sizes. The population 

structure and selection signatures within and between the lines were 

examined, the single- and multi- trait associations were detected, and 

positions of a genic feature for enhancement of the current annotation were 

predicted.  

 

Economically relevant traits in livestock can be in linkage 

disequilibrium with deleterious alleles that cause recessive disorders. One 

approach to detect the association is to use proxy-phenotypes, such as 

lactation or growth and developmental traits, and GWAS in non-additive 

inheritance mode. For example, this approach was successfully applied in 

a large cohort of New Zealand dairy cattle [93]. It yielded five novel QTL 
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associated with large recessive impacts on three milk yield traits. This 

method can be implemented in any breeding population because routinely 

collected phenotypes can be used as proxy for rare disorders, for which the 

data are often missing. In this thesis, direct phenotypes were not utilized, 

but they could be easily incorporated into the GWAS approach used here. 

Additionally, the exploration of changing to a non-additive inheritance 

mode is a possibility and could be worthwhile to investigate. 

 

Further research can be conducted to improve annotation. Chapter 4 

of this thesis closely examined the branch point sequences. Other genomic 

features, such as DNA repeats or methylation pattern, are of interest due to 

next layer influence on the inheritance and appearance of the traits. For 

example, short tandem repeats in swine genome have been associated with 

breed identity at a greater extent than SNPs [48]. Tackling these topics 

requires generation of new data. Specifically, this requires long read 

sequencing to detect structural variation, RNA-seq to precisely quantify the 

transcriptome and study allele-specific expression, or ChIP-Seq to 

characterize the epigenome. An improved annotation can help uncover the 

underlying genetic mechanism behind some traits. Fine-mapping with 

inclusion of functional annotations as well as transcriptomic data can be 

done, for example, in GPA-MDS – multivariate GWAS simultaneously 

modeling for annotation [94]. 

 

The genomic variants analyzed in this thesis focused on SNPs and 

short insertions and deletions located on the 18 porcine autosomes. 

However, the inclusion of other types of genomic variation may uncover 

new associations. For example, chromosomal abnormalities, and 
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particularly structural chromosome rearrangements, that are remarkably 

prevalent in the domestic pig relative to other species [95]. There are 

reports describing chromosome abnormalities associated with physical 

malformations in SLW [96] or lower litter sizes [97, 98]. The litter size 

losses caused by chromosome rearrangements are variable among carriers 

and are dependent on a variety of factors, including the morphology of the 

rearrangement [98]. Another example of chromosomal rearrangements are 

chromosomal aneuploidies. These numerical chromosomal aberrations are 

usually lethal when occurring in autosomes, hence aneuploidy is rarely 

seen in living individuals, except for aneuploidy in sex chromosomes and 

down syndrome in humans [99]. Although it is a rare phenomenon in 

liveborn individuals, it is observed in livestock breeding populations [100]. 

Preliminary analyses have shown that the chromosome rearrangements 

might be heritable [101]. 

SLW populations are routinely genotyped, and the genotype intensity 

data from SNP arrays can be utilized to identify aneuploidy [102, 103]. 

However, this identification process is time-consuming and costly, 

typically involving visual inspection of the data per chromosome through 

plots of intensity data by an expert. One approach to streamline this process 

is to incorporate the identification of SNPs closely linked to chromosome 

rearrangements into cytogenomics analyses. This can serve as a control 

effort to identify boars at risk of producing carrier offspring. Alternatively, 

a recent development by Bouwman et al. [100] offers a more efficient 

solution. They developed a deep learning Convolutional Neural Network 

(CNN) classification model that operates based on chromosome-level plots 

of SNP array intensity data. This innovative model can accurately classify 

images into disomic, monosomic, and trisomic cases. By employing this 
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classification model, routine screening becomes more effective. These 

approaches have the potential to improve efficiency and accuracy in 

identifying aneuploidy cases, ultimately benefiting breeding programs and 

the overall management of SLW populations. 
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5.9 Supplementary files 

The Supplementary Table S5.1 is available at 
https://doi.org/10.5281/zenodo.8202363.  
The table includes 192,744 branch point sequence positions predicted from the 
Susscrofa11.1 assembly. The table lists the gene name, strand, transcript, intron 
number, chromosome, intron start and end positions, branch point sequence 
(heptamer with the branch point at position 6), distance from the 3’ splice site, and 
prediction score from the BPP tool. 
  

Supplementary Table S5.1: Predicted branch point positions. 

https://doi.org/10.5281/zenodo.8202363
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