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Abstract

Study design: Retrospective data analysis.

Objectives: This study aims to develop a deep learning model for the automatic calculation of some important spine pa-
rameters from lateral cervical radiographs.

Methods: We collected two datasets from two different institutions. The first dataset of 1498 images was used to train and
optimize the model to find the best hyperparameters while the second dataset of 79 images was used as an external validation
set to evaluate the robustness and generalizability of our model. The performance of the model was assessed by calculating the
median absolute errors between the model prediction and the ground truth for the following parameters: T1 slope, C7 slope,
C2-C7 angle, C2-C6 angle, Sagittal Vertical Axis (SVA), C0-C2, Redlund-Johnell distance (RJD), the cranial tilting (CT) and the
craniocervical angle (CCA).

Results: Regarding the angles, we found median errors of 1.66° (SD 2.46°), 1.56° (1.95°), 2.46° (SD 2.55), 1.85° (SD 3.93°),
1.25° (SD 1.83°), .29° (SD .31°) and .67° (SD .77°) for T1 slope, C7 slope, C2-C7, C2-C6, C0-C2, CT, and CCA respectively. As
concerns the distances, we found median errors of .55 mm (SD .47 mm) and .47 mm (.62 mm) for SVA and RJD respectively.

Conclusions: In this work, we developed a model that was able to accurately predict cervical spine parameters from lateral
cervical radiographs. In particular, the performances on the external validation set demonstrate the robustness and the high
degree of generalizability of our model on images acquired in a different institution.
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Introduction

The complexity of the cervical spine alignment originates
from the interrelationship between the head, the thor-
acolumbar alignment as a flexible base, and the lower ex-
tremities. The investigation of the cervical spine alignment is
becoming increasingly valuable as the relationship between
proper sagittal alignment and better clinical outcomes is better
understood.1-4 Multiple cervical spine studies have looked at
relationships between cervical alignment and the occurrence
of adjacent segmental disease namely complications of spinal
fusion,5 and studies over the last several years have revealed
the relationship with health-related quality of life (HRQOL).6

Although the cervical spine determines only a local part of the
global spinal alignment, its clinical importance is high.2 One
example of this is given by postoperative dyspnea and dys-
phagia, which are strongly influenced by the angle of the
occipito-cervical junction.7

Currently, surgeons and radiologists primarily perform
cervical spine alignment measurements manually. While
many improvements in the manual cervical spine measure-
ments have been reported owing to the use of computer-
assisted tools, the manual evaluation of medical images can
take several minutes and is prone to human error.8-10

Therefore, there is still room for innovation in cervical
spine image analysis; machine learning has the potential to
solve some of the issues related to manual evaluation.

Automated image analysis in the field of spine surgery is an
active area of research. Initially, the measurement of Cobb
angle was the main focus of interest, but advances in machine
learning and computer vision in recent decades have led to an
increasing number of researchers interested in the automated
measurement of spinal parameters such as lordosis angles, T4-
T12 kyphosis, sacral slope and pelvic incidence.11-13 Schwartz
et al reported that an automated algorithm measures spinal and
pelvic parameters in lateral radiographs of the lumbar spine
with accuracy comparable to that of a surgeon.14 Several
reports also found the intraclass correlation coefficient (ICC)
of the algorithm compared to human raters to be good to
excellent.15,16 In previous work, the authors used a two-step
deep learning model to calculate lumbar spine parameters and
reported absolute median errors of 2.43° for L1-S1 lordosis
and 1.98° for sacral slope.17 These results were good with
respect to the intra-rater variability of such parameters ranging
from .8 to 5 degrees18 When it comes to the cervical spine,
there have been only a few reports about automated image
analysis,19-22 which did not provide a comprehensive mea-
surement of cervical parameters, and are therefore difficult to
apply in clinical use.

The purpose of this study was to develop a new auto-
mated image analysis algorithm for the comprehensive
measurement of cervical spine alignment parameters in
lateral radiographs and to evaluate its accuracy in com-
parison to human examiners on an external validation set.
In particular, starting from the model,17 we developed and
validated a deep learning model to automatically calculate
29 cervical spine landmarks, with the overarching goal to
compute a comprehensive set of cervical spine alignment
parameters from these landmarks.

Materials and Methods

Datasets

Two distinct datasets were used in the present study. The first
dataset consisted of 3466 fully anonymized lateral uncali-
brated x-ray images of the cervical spine acquired from the
database of BLINDED FOR REVIEW. All the images were
from an individual patient. Ethical approval was obtained
from the relevant institutional review board (BLINDED FOR
REVIEW), and informed consent requirement was exempted.
To obtain a sufficiently large number of images for the
subsequent analyses, with/without pathology, and in-
strumented images as well as images of young and elderly
people were included. We used a wide variety of images since
our goal was to build a robust model that could deal with many
different cases. The following 29 landmarks were manually
annotated in the (x, y) coordinates by an experienced or-
thopedic surgeon: four corners of vertebral bodies corre-
sponding to spine level from C2 to C7, two corners of the
upper endplate of T1, two points to draw the McGregor line at
the posterior margin of the hard palate and the lowermost edge
of occiput, and the tip of C2 dens process. The second dataset
consisted of 197 images of individual patients taken from an
existing anonymized dataset from the BLINDED FOR RE-
VIEW. For this dataset, the same 29 points described above
were annotated by the same surgeon that annotated the first
dataset and by three other annotators.

For both datasets, images fulfilling at least one of the
following criteria were excluded: unidentified McGregor line;
unidentified T1 upper endplate; unidentified landmarks due to
fused vertebrae; unphysiological position of the landmarks
due to vertebral fracture. After applying the exclusion criteria,
the remaining images of the first dataset were split into a train
set (80%) and a test set (20%) which were used to train the
model and to optimize its parameters respectively. All images
belonging to the second dataset were used exclusively for the
external validation of the model.
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Deep Learning Model

Landmark localization in computer vision has undergone
significant developments over the years. Initially, standard
algorithms relied on feature extraction and matching tech-
niques to locate landmarks in images.23 However, these
methods had limitations when dealing with complex and
heterogeneous objects such as the spine. The emergence of
deep learning revolutionized landmark localization. Con-
volutional Neural Network (CNN)-based models proved
highly effective by learning the mapping between images and
landmark positions through training on annotated datasets.24

The idea is to process the image through different layers of the
neural network to automatically extract useful features and
patterns from the images. Deep learning approaches provided
superior accuracy compared to traditional algorithms. Further
progress led to heatmap-based approaches in deep learning.
Instead of predicting landmark coordinates directly, these
methods generated heatmaps, highlighting the presence and
location of landmarks within the image.25 Heatmap-based
approaches proved more robust to occlusions and lighting
variations, resulting in even more precise and reliable land-
mark localization.

Today, the field of landmark localization continues to
advance, leveraging the power of deep learning techniques
and heatmap-based strategies to achieve remarkable results in

various computer vision applications.26 For our work, we used
a heatmap-based approach. We developed the deep learning
model starting from the two-step model described in.17 Instead
of using two separate steps, namely two different training
steps aimed at performing a coarse and a fine localization
separately, we developed an end-to-end model that first per-
forms a coarse localization to extract the bounding boxes and
then refines the localization of the landmarks within the
bounding boxes (Figure 1). Finally, the coordinates of the
landmarks computed in the bounding boxes space needed to
be rescaled back to the space of the original image.

This algorithm was applied only to the landmarks from the
upper endplate of T1 to the lower endplate of C2, whereas the
remaining points (upper corners of C2, posterior margin of the
hard palate, lowermost edge of occiput, dens tip) were lo-
calized directly in the original image without using bounding
boxes. Hence, we used six bounding boxes around the in-
tervertebral discs from C7-T1 to C2-C3 to predict 24 out of 29
landmarks (Figure 1). The model for the full image was an
hourglass network25 with two stacked hourglass modules
while each one of the six models used for the refinement is an
hourglass network with only one hourglass module, inspired
by the work of Chandran et al on face points detection.27 For
all the models, on top of the last convolutional layer feature
map we used the DSNT layer28 that was already used in17 to
perform the coordinates regression using a spatial to numerical

Figure 1. Model architecture. The entire images are first processed by the hourglass model to produce a first prediction of the (x, y)
coordinates. The coordinates from the upper endplate of T1 to the lower endplate of C2 are used to extract the bounding boxes from the
images. Then, 6 models are used to predict more precisely the locations of the four corners that surround the intervertebral discs from C7-
T1 to C2-C3. The 24 corners are then projected back to the original images and added to the 5 points from the global model to predict the set
of 29 points. The 24 points locally predicted are displayed in red, while the 5 points globally predicted are displayed in yellow.
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transformation from the spatial heatmaps. To make the net-
work fully differentiable we used the roialign function from
PyTorch29 to extract the bounding boxes using the coarse
localization coordinates.

All the images were scaled to 1024 × 1024 resolution using
bicubic interpolation andwere normalized to have zeromean and
unit variance. The extracted bounding boxes for refinement were
rescaled to 128 × 128 resolution. We applied augmentation
techniques such as rotation (�5 to 5 degrees), scaling (.8 to 1.2 of
original dimension), small translation, and gaussian noise to the
input images to make the model more robust. Regarding training
details, for the coarse localization model we used the Euclidean
distance between the predicted and the ground truth points as the
loss plus a regularization term that computes the divergence
between the heatmaps generated from the ground truth coordi-
nates and the heatmaps predicted by the model (equation (1)),28

since the heatmaps can be seen as probability distributions of the
points’ locations. The loss is calculated as

L1 ¼ kp� gtk2 þ D
�
hmgt, hmp

�
(1)

where p represents the predicted coordinates, gt the ground
truth coordinates, k:k2 is the euclidean distance, and D is the

divergence between the ground truth heatmaps (hmgt) and the
predicted heatmaps (hmp).

For the six refinement models we only used the Euclidean
loss (equation (2)) since the ground truth coordinates in the
bounding box space were not known in advance, making the
computation of the ground truth heatmaps impossible. The
corresponding equation is

L2 ¼ kp� gtk2 (2)

where, as before, p represents the predicted coordinates and gt
the ground truth coordinates.

The total loss was then computed by averaging the global
model loss and the refinement model loss (equation (3)) as

L ¼ L1þ L2

2
(3)

where L1 and L2 are the losses for the first coarse localization
model and the refinement models respectively.

We trained the model for 100 epochs using 20 “warmup”
epochs optimizing only the coarse localization to have a good
starting point for the refinement. We used a batch size of 4 and
a starting learning rate of .001 which was reduced by a factor

Figure 2. ICC of the annotators. The y-axis reports the ICC values and the x-axis reports the name of the parameters.
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of .1 if there was no improvement in the loss after at least 10
epochs.

We implemented the model in PyTorch and the image
augmentation in Albumentations library (https://
albumentations.ai/). The model ran on a Linux workstation
equipped with an NVIDIA GeForce RTX 3080 with 10 GB of
dedicated memory.

Evaluation

The cervical spine parameters that were calculated based on
the coordinates of the landmarks were: C2-C7 and C2-C6
lordosis (“C2-C7” and “C2-C6” in the figures and text below),
C0-C2 angle (“C0-C2”), C7 slope, T1 slope, C2-7 sagittal
vertical axis (“SVA”), the Redlund-Johnell distance (RJD), the
cranial tilting (CT) and the craniocervical angle (CCA). The
lordosis angle is defined as the Cobb angle formed by two
straight lines drawn parallel to the C2 lower endplate and the
C6 or C7 lower endplate, and the C0-C2 is measured between
the McGregor line and the straight line drawn parallel to the
C2 lower endplate. C7 slope and T1 slope are the angles at
which the horizontal line intersects the line drawn at the
superior endplate of C7 and T1, respectively. SVA is the
distance between the plumb line dropped from the centroid of
C2 and the posterior superior corner of C7. The RJD was
firstly developed for evaluating the vertical dislocation in
rheumatoid arthritis patients and is defined as the distance
from the lower endplate of C2 to McGregor’s line.30 The CT,
designed to evaluate craniocervical parameters, was defined as
the angle formed between the line from the center of the T1
upper endplate to the tip of the dens and the sagittal vertical
line from the T1 superior endplate, as in the original paper.31

The CCA was defined as the angle between the line from the
center of C7 to the posterior corner of the hard palate and the
McGregor line, as previously reported.32 For all these pa-
rameters, the predictions of the model were qualitatively and
quantitatively compared to the human annotations.

Moreover, on the external validation set, we performed a
more thorough analysis by also investigating the influence of
surgical implants and the severity of degenerative changes
(recorded for each level) on the performance of the algorithm.
For the evaluation of degeneration, we used the Kellgren-
Lawrence classification (KL) which indicates: grade zero as
definite absence of radiographic changes of osteoarthritis;
grade 1 as doubtful joint space narrowing and possible os-
teophytic lipping; grade 2 as definite osteophytes and possible
joint space narrowing; grade 3 as moderate multiple osteo-
phytes, definite narrowing of joint space and some sclerosis
and possible deformity of bone ends; grade 4 as large os-
teophytes, marked narrowing of joint space, severe sclerosis
and definite deformity of bone ends.8,33 The KL grade was
binarized on a scale of 0-2 and 3-4, with the grade rated by the
majority of the evaluators being adopted.

First, we performed a qualitative evaluation by plotting the
points predicted by the model with respect to the distribution

of the four annotations to observe if the predictions were
consistent with the annotations. Then we represented, for each
parameter, the prediction of the model vs the annotators’ range
to investigate if the parameters predicted by the model were
inside the range of the four annotations. We also used the
annotators’ range plus a tolerance of ±2.5° for the angles and
±1mm for the distances. The range of variability was also used
for a more quantitative evaluation to calculate, for each pa-
rameter, how many predictions were inside the annotators’
range. In this case, we stratified the angles and distances
values in different ranges to investigate if the model makes
more mistakes for higher values of the angles and distances.
The ranges were 0-10°, 10-20°, 20-30°, 30-40°, >40° for the
angles and 0-10 mm, 10-20 mm, 20-30 mm, 30-40 mm, 40-
50 mm, >50 mm for the distances.

The performances were evaluated by computing the errors
as the absolute differences between the ground truth and the
predicted parameters and then by computing the median of the
errors. For the external validation set, we used the mean of the
four annotations as the ground truth. Moreover, for the ex-
ternal validation set, we computed the intra-class correlation
coefficient (ICC) for the parameters both among the anno-
tators to evaluate their agreement and between the mean of the
four annotations and the deep learning model. ICC values less
than .5 were indicative of poor reliability, between .5 and .75
moderate reliability, between .75 and .9 good reliability, while
values greater than .90 indicated excellent reliability.34

Figure 3. Predicted points vs annotations. The sample image shows
that the predicted points (in red) overlap or are very close to the
variability of the annotations’ range represented by the yellowish areas.
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Finally, to evaluate if the instrumentation and the degree of the
generation affected model performances in terms of landmarks
localization, we computed the percentage of points that are
predicted inside a certain distance (in millimeters) from the
ground truth for the set of images with and without instru-
mentation, and those with and without degeneration. All the
analyses and the plots were generated using Python 3.9 with
the seaborn,1 numpy2 and pingouin3 libraries.

Results

After applying the exclusion criteria, 1498 images were kept
from the first dataset and were randomly split into 1198 and
300 images for training and testing the model, respectively. Of
the 197 images of the external validation set, 79 images
(40.1%) could be annotated by all four examiners, one sur-
geon, one neurosurgeon, and two engineers, while the re-
maining images were excluded: 69 (35.0%), unidentified
McGregor line; 44 (22.3%), unidentified T1 upper endplate;
20 (10.2%), unidentified landmarks due to fused vertebrae; 3
(1.5%), significant change in landmarks due to vertebral

fracture. Anterior cervical implants, cages, metal plates, or
artificial disc prostheses were included at 48 (10.1%) inter-
vertebral disc levels of 29 (36.7%) annotated testing images,
whereas posterior cervical implants were included in 3 images
(3.8%). The levels without implants were graded by the KL
classification, with 102 (23.9%) levels classified as grade 3-4.

External Validation

For the external validation set, we first calculated the ICC to
observe the agreement among the four annotators, which
resulted very high for all the cervical spine parameters with
values of .88 (T1 slope), .95 (C7 slope), .94 (C2-C7), .94 (C2-
C6), .99 (SVA), .92 (C0-C2), .99 (CT), .97 (RJD), and .96
(CCA) (Figure 2). The qualitative evaluation showed very
close agreement between the predictions of the model and the
annotations (Figure 3); while the variability of the annotations
was very small, the model was able to precisely locate the
points within or in the proximity of the range of variability of
the manual annotations. By looking at the images with the
overlayed model predictions, good performances were also

Figure 4. T1 slope prediction. The T1 slope predicted by the model
is shown in red. The red line is at the boundaries of the area that
represents the annotators’ range (light blue) and the annotators’
range plus a tolerance (dark blue) indicating a good prediction for
these exemplary cases.

Figure 5. SVA prediction. The horizontal line represents the
magnitude of the SVA. The vertical line is the plumb line that starts
from the center of C2 and the top extremity is inside the
annotations’ variability for the center of C2 (yellowish area at the
center of C2). Even the left extremity of the horizontal line falls
inside the annotations’ variability of the posterior point of the upper
endplate of C7. It should be noted that, for visualization purposes, we
show only the range for the angles while for the distances we only
show the predicted parameters and the variability in landmarks
annotations.
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Figure 6. C0-C2 predictions vs annotations’ range. The y-axes show the percentages of patients, and the x-axes the stratification by ground
truth angles values. The chart on the left shows the number of correct predictions that fall inside the annotators’ range while the chart on
the right shows the correct predictions considering the annotators’ range expanded with a tolerance of 2.5 degrees. Bars showing the correct
predictions are reported in red, and in blue those for the incorrect ones. The numbers at the top of each bar indicate the number of images.
For example, for the range 20°-30° there are a total of 34 images: 26 of them (76%) have the predicted C0-C2 correctly classified
considering the annotators’ range. If we add the tolerance all 34 images have the parameter correctly classified.

Figure 7. Boxplot of the angles for the external validation set. The y-axis shows the errors in degrees and the x-axis the name of the angle
parameters.

Nakarai et al. 7



observed for the specific radiological parameters, such as for
example T1 slope (Figure 4) and SVA (Figure 5).

The quantitative evaluation of the performance of the
model is here exemplarily reported only for C0-C2 for the sake
of brevity. For true values of the angles between 0 and 30
degrees, more than 60% of the model predictions were inside
the range of the human annotations (Figure 6), while for higher
angles between 30 and 40 degrees 3 out of 8 predictions were
correct. Considering a tolerance of 2.5 degrees, almost all the
images (76/79) have a correct prediction for C0-C2 (Figure 6).
Similar figures were found for the other parameters.

The median errors on the external validation set were
generally low for both angles and distances parameters in-
dicating the high robustness and generalization capability of
our model (Figure 7). The maximum errors were found for
T1 slope, C2-C7, and C2-C6 with values around 8°. For all
the angles, the 75th percentiles of the errors were below 4°
with the best performances for the CCA with values below
1°. Indeed, regarding the angles, we found median errors of
1.66° (SD 2.46°), 1.56° (1.95°), 2.46° (SD 2.55), 1.85° (SD
3.93°), 1.25° (SD 1.83°), .29° (SD .31°) and .67° (SD .77°)
for T1 slope, C7 slope, C2-C7, C2-C6, C0-C2, CT and CCA
respectively (Figure 7). As concerns the distances, a gen-
erally better performance was observed with a maximum
error of around 1.6 mm for SVA and almost all the errors
below 1 mm. In detail, we found median errors of .55 mm
(SD .47 mm) and .47 mm (.62 mm) for SVA and RJD re-
spectively (Figure 8).

The good performances of our model were confirmed by
the high ICC between the model predictions and the ground
truth calculated as the mean of the four annotations. In fact,
the ICCs were .90 (T1 slope), .94 (C7 slope), .95 (C2-C7),
.93 (C2-C6), .98 (SVA), .96 (C0-C2), .99 (CT), .98 (RJD),
and .98 (CCA) indicating a high agreement between the
model and the annotations (Figure 9). The analysis of the
influence of the instrumentation and the degeneration on the
model performances shows that there was a slight worsening
in case of instrumented or degenerated spines, with a less
pronounced effect for degeneration (Figure 10). Considering
a threshold distance from the ground truth of 2 mm, more
than 80% of the points had a lower localization error both for
images with and without instrumentation and for images with
and without degeneration. Increasing the threshold to 4 mm,
almost all the coordinates were predicted inside the tolerance
interval. It can be thus concluded that instrumentation and
degeneration only marginally affect the performances of our
model.

Discussion

We developed a new automated imaging analysis algorithm
for measuring cervical spine alignment using a deep learning
model. We used 1498 images for training and optimizing the
algorithm and tested its performance with 79 images from an
external validation dataset annotated by the four examiners.

Within the latter dataset, the absolute median errors for the
angles calculation were generally lower than 2 degrees, with
the exception of C2-C7 (2.46 degrees) (Figure 7), while the
median errors for the distances were lower than .55 mm
(Figure 8). ICCs between the model predictions and the hu-
man annotations exceeded .90 for all the radiological pa-
rameters. The presence of instrumentation as well as the
degeneration did not seem to affect the model performances
much (Figure 10) indicating the high robustness and gener-
alizability of the new tool.

While intra-rater reliability of human raters is inherently
limited, automatic image analysis tools show high reproduc-
ibility; indeed, the systematic error of the algorithm should be
the main point of discussion rather than its intra-rater score. To

Figure 8. Boxplot of the distances for the external validation. The
y-axis shows the errors in millimeters and the x-axis the name of
the distance parameters.
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Figure 9. ICCs between the model predictions with respect to the average of the annotations. The y-axis reports the ICC values and the
x-axis reports the name of the parameters.

Figure 10. Percentage of correct keypoints obtained stratifying the images in the external validation set based on instrumentation and
degeneration. The y-axes show the percentage of correctly predicted landmarks and the x-axes the distance from the ground truth in
millimeters considering all 29 points. The red lines indicate the images with no instrumentation (left image) and with no degeneration (right
image) while the blue lines the images with instrumentation (left image) and with degeneration (right image).

Nakarai et al. 9



assess systematic errors in deep learning models, ideally the
ground-truth should not be defined by a single human evaluator.
However, since there is no golden rule for determining
ground truth without human examiners, the best compro-
mise is to define it by combining the observations of more
human evaluators. Therefore, the inter-rater reliability be-
tween the algorithm and the average of various human raters
would be the most appropriate way to assess the accuracy of
the model at this time.13,15-17,22 Several studies have re-
ported the inter-rater reliability of cervical spine alignment
parameter measurements in human raters; for example, the
ICC of C2-C7 was reported to be .92-.96.8-10,35 Marques
et al reported the inter-rater reliability for T1 slope, SVA,
and occipitocervical tilt of .93, .98, and .91 in terms of ICC.9

As far as our deep learning model is concerned, the accuracy
of the algorithm was .9-.99 in terms of ICCs, which is
considered excellent34 and in the same range of an expert
human evaluator.

A few studies have reported the automated analysis of
cervical spine alignment. Using a deep learning system to
automatically measure the degree of cervical lordosis, Shin
et al reported ICCs of .974-.993 compared to expert radiol-
ogists.20 Similarly, Wang et al reported ICCs of .76-.95 for the
Cobb angle at each level using a newly developed model for
the automatic detection of cervical landmarks.21 With respect
to the present work, these models were dedicated to an in-
dividual parameter and did not provide a comprehensive
measurement of cervical spine alignment. Another study re-
ported ICCs of .83 for C2-C7 and .77 for T1 slope,22 sub-
stantially lower than the present results; it should however be
taken into account that the published model processed images
of the whole trunk rather than of the cervical spine only.
Although it is important to evaluate cervical spine alignment
as part of the whole spinopelvic alignment, we believe that the
present algorithm using lateral cervical spine radiographs has
its own clinical relevance since whole-spine radiographs are
rarely taken in patients who present with symptoms of cervical
origin only. In addition, radiographs of the cervical spine in
clinical practice often contain surgical implants and severe
degeneration, which may prevent even spine surgeons and
radiologists from measuring parameters with confidence. The
strength of this study is that it has shown how surgical im-
plants and the degree of degeneration affect the performance
of the algorithm and has indicated areas where there is room
for improvement before clinical use.

Several limitations associated with the present study
warrant mention. First, the datasets included images ac-
quired with different imaging protocols and variable image
quality. In addition, approximately 60% of the cervical
spine radiographs in our dataset could not be annotated.
Marques et al9 evaluated 758 cervical spine lateral ra-
diographs and reported that T1 slope was not measurable in
54% due to poor image quality and occipitocervical tilt was
not measurable in 43%, consistently with the results here
reported. It should be noted that this issue also affects

measurements conducted by human operators, and is
confirmed by the various attempts of replacing T1 slope
with C7 slope, and C2-C7 with C2-C6.8,36 Second, we
showed that degenerative changes have a slight negative
effect on the accuracy of the algorithm, but there may be
some debate as to which degenerative classification should
be used; the KL grade was first reported by Kellgren et al
and is widely used as a degenerative assessment in the
cervical spine with a reported ICC of .71,8,37 which can be
interpreted as good but not excellent reliability.8 Fur-
thermore, the annotation to train the algorithm was per-
formed by a single examiner, as this is a time-consuming
task. Given that previous studies have reported excellent
inter-rater reliability in measuring cervical spine param-
eters, the impact of this limitation on the results is ex-
pected to be minor.8,9,35 Finally, we believe that this model
should be used as an assisting tool to enhance the speed of
human evaluators during spine parameter assessments. In
fact, the tool takes one second to evaluate a cervical ra-
diograph while the human annotation could take a few
minutes.

Conclusions

With the growing understanding of the value of cervical spine
alignment, the development of algorithms using lateral ra-
diographs of the cervical spine will be in great demand in
clinical and research settings. Using a deep learning model, we
developed a new comprehensive automated tool to accurately
measure cervical spine alignment in cervical lateral radio-
graphs. The ICC values were in the range .90-.99, indicating
an excellent reliability of our model, at least comparable to
those of human evaluators. The model accuracy was mar-
ginally affected by the presence of surgical implants and
severity of degeneration indicating its high robustness. This
study indicates areas for improvement before replacing human
evaluators altogether.
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8. Côté P, Cassidy JD, Yong-Hing K, Sibley J, Loewy J. Apo-
physial joint degeneration, disc degeneration, and sagittal curve
of the cervical spine. Can they be measured reliably on ra-
diographs? Spine. 1997;22(8):859-864.

9. Marques C, Granström E, MacDowall A, Moreira NC, Skeppholm
M, Olerud C. Accuracy and reliability of X-ray measurements in the
cervical spine. Asian Spine J. 2020;14(2):169-176.

10. Jackson BL, Harrison DD, Robertson GA, Barker WF. Chiro-
practic biophysics lateral cervical film analysis reliability.
J Manip Physiol Ther. 1993;16(6):384-391.

11. Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic
cobb measurement of scoliosis based on fuzzy hough
transform with vertebral shape prior. J Digit Imaging. 2009;
22(5):463-472.

12. Wu H, Bailey C, Rasoulinejad P, Li S. Automated compre-
hensive dolescent diopathic coliosis assessment using MVC-et.
Med Image Anal. 2018;48:1-11.

13. Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated
radiological analysis of spinal disorders and deformities: A deep
learning approach. Eur Spine J. 2019;28(5):951-960.

14. Schwartz JT, Cho BH, Tang P, et al. Deep learning automates
measurement of spinopelvic parameters on lateral lumbar ra-
diographs. Spine. 2021;46(12):E671-E678.

15. Orosz LD, Bhatt FR, Jazini E, et al. Novel artificial intelligence
algorithm: An accurate and independent measure of spinopelvic
parameters. J Neurosurg Spine. 2022;37(6):893-901.

16. Grover P, Siebenwirth J, Caspari C, et al. Can artificial intel-
ligence support or even replace physicians in measuring sagittal
balance? A validation study on preoperative and postoperative
full spine images of 170 patients. Eur Spine J. 2022;31(8):
1943-1951. doi:10.1007/s00586-022-07309-5

17. Cina A, Bassani T, Panico M, Luca A, Masharawi Y, Brayda-
Bruno M, et al. 2-step deep learning model for landmarks lo-
calization in spine radiographs. Scientific Reports 2021;11(1).
doi:10.1038/s41598-021-89102-w
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