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“In conclusion it may be said that the combustion of fossil fuel ...
is likely to prove beneficial to mankind in several ways ...

Small increases of mean temperature would be important at the northern margin
of cultivation, and the growth of favourably situated plants is directly proportional to the

carbon dioxide ... In any case the return of the deadly glaciers should be delayed indefinitely.”

Guy Callendar (1938)

Line plot and data of atmospheric CO2 from NOAA Global Monitoring Laboratory (2023).
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Abstract

A wide range of meteorological and climatological phenomena shape atmospheric variability

on different timescales. For example, convection in thunderstorms leads to intense precipitation

within minutes, while stationary anticyclones often cause multi-day heat waves. In contrast,

only few atmospheric phenomena operate on the seasonal timescale, where climate variability

has a very strong impact on many natural and socioeconomic systems. Moreover, seasonal

climate variability is relatively more affected by global warming than shorter-term variability,

making these systems particularly vulnerable to ongoing global warming.

Therefore, the aim of this thesis is to improve our understanding of seasonal climate variability,

which is crucial for the development of timely adaptation and preparedness strategies. To

achieve this goal, our approach adopts a “weather perspective”, i.e., we investigate how shorter-

term atmospheric variability aggregates to form seasonal anomalies and extremes. We also

focus on three selected components of the climate system that show remarkable sensitivity

to seasonal variability. First, we examine the meteorological precursors of low forest vitality

events in Europe during summer (June–August; JJA) using satellite observations of forest

greenness. Although these events are indicative of the observed drought-related forest dieback,

they have not been systematically assessed from the weather perspective yet. Second, we

examine extremely high vapor pressure deficit (VPD) in JJA, which is a major contributor to

plant water stress and thus crop failure and wildfire risk. Extreme seasonal VPD can be caused

by a combination of air temperature anomalies (T′) and humidity anomalies (q′), which we

investigate for the first time over the northern mid-latitudes. Finally, we examine the increase

in summer melt of the Greenland Ice Sheet (GrIS) over the 21st century, which is expected

to contribute significantly to global sea-level rise. In particular, we quantify the role of melt

expansion and intensification, and changes in synoptic circulation patterns.

In Chapter 3, low-forest-greenness events in 2002–2022 are identified separately for the

European temperate and Mediterranean forest biomes as widespread (on spatial scales of

50 × 50 km2) negative anomalies of the Normalized Difference Vegetation Index (NDVI) over

most of JJA. First and foremost, according to these criteria, forest greenness was negatively

affected in the summer of 2022 (the hottest on record) to an extent unprecedented in the study

period. Low-NDVI events covered 37% of the forests in both biomes, exceeding previous

records of around 24% coverage. Meteorological precursors to all events are then identified as

90-day meteorological signals that are statistically significantly different from climatology and

shared among the events occurring in a biome. The summers of the low-NDVI events were

unusually hot and dry. Negative precipitation anomalies (P′) reached statistically significant

v
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levels already in the winter preceding Mediterranean events. In temperate forests, the previous

summer was also anomalously warm and dry, indicating potential negative legacy effects of

drought. Notably, the persistence of dry periods (P′ < 0) was significantly increased for at

least ∼2 and ∼3 years before low-NDVI events in the temperate and Mediterranean biomes,

respectively. However, the persistence of hot periods (T′ > 0) was significantly increased only

in the temperate biome, but not in the Mediterranean biome, over about the same 2-year period.

Unusually large T′ and P′ were associated with significant changes in the frequency of weather

systems, with less frequent cyclones relevant for dry periods in Mediterranean forests and more

frequent anticyclones for dry periods in temperate forests. The analyses take into account the

uneven distribution of events over the study period, and further shed light on spatial variations

in the importance of the two weather systems for low-NDVI events.

In Chapter 4, we apply a novel framework to identify spatial objects of extremely high VPD

in JJA (VPDJJA+) from the exceedance of the local 40-year return level, and decompose their

intensity (I) into contributions from seasonal mean T′ and q′. After detrending seasonal mean

VPD, we identify about 100 VPDJJA+ with a center of mass in 30–60◦N in ERA5 reanalysis

covering the 1979–2020 period, and 2’500 such VPDJJA+ in 105 × 10 years of large-ensemble

CESM1 simulations. The decomposition of I in the mid-latitudes shows a high agreement

between the two datasets. On average, positive T′ makes a significant contribution of ∼75% to

the I ≈ 0.3 kPa. However, this warm anomaly also leads to a moistening resulting from the

climatological co-variability of T and q, which reduces the I. Anomalous circulation dynamics

causing negative q′ during VPDJJA+ are responsible for the remaining ∼31% of I. Furthermore,

we reveal robust spatial variations in these three contributions in the large set of CESM1

VPDJJA+. Chapter 4 also demonstrates the consequences of the nonlinear dependence of VPD

on T. First, VPD is underestimated when calculated from seasonal mean T and q compared to

instantaneous values. However, this underestimation does not affect the VPD anomaly and

thus the I of VPDJJA+. Second, the contribution of T′ to I is expected to increase in a warmer

climate, which is confirmed by ERA5 VPDJJA+. A final analysis of six observed high-impact

VPDJJA+ illustrates how individual heat waves and dry spells aggregate over a JJA season, and

how periods of high VPD thereby interact with partly extreme drought conditions.

In Chapter 5, we attribute the summer melt increase of the GrIS from 2005–2015 to 2085–2095 to

changes in melt area, melt intensity, and atmospheric circulation. The latter is quantified using

the Self-Organizing Map method to identify specific synoptic circulation patterns and changes

in their occurrence frequency. We consider the ∆ms = +501 Gt JJA−1 summer melt increase in

the upper-elevation zone (≥ 1′200 m), where melt estimates from the surface energy balance

of our CESM2 ensemble can be considered adequate. The ∆ms can fully be attributed to melt

expansion (51%) and intensification (17%), their concurrent change (24%), and an increase in the

daily covariance of melt area and intensity (8%). Changes in mid-tropospheric circulation occur

mainly between synoptic flow patterns with a similar melt increase and thus do not contribute

to the projected melt increase. Despite its irrelevance for mean melt changes, daily atmospheric

variability will become more important for the inter-annual and intra-seasonal variability of

melt and hence for the temporal evolution of mass loss from the GrIS.
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Taken together, the results presented in the three chapters demonstrate the diversity of pro-

cesses that can shape the climate system on the seasonal timescale. We present novel tools

that are useful for systematically studying the impact of short-term weather variability on

seasonal climate anomalies. Moreover, the thesis highlights how terrestrial ecosystems and the

cryosphere are currently undergoing profound changes due to global warming. The insights

gained into the forest-meteorology interaction, on the characteristics of extreme VPD seasons,

and on the processes leading to the projected increase in GrIS melt not only represent progress

at the weather-climate interface, but it is hoped that this thesis will also stimulate new research

that benefits from the methodological advances developed here.





Zusammenfassung

Ein breites Spektrum meteorologischer und klimatologischer Phänomene prägt die atmo-

sphärische Variabilität auf unterschiedlichen Zeitskalen. So führt beispielsweise Konvek-

tion in Gewittern innerhalb von Minuten zu intensiven Niederschlägen, während stationäre

Hochdrucksysteme oft mehrtägige Hitzewellen verursachen. Auf der saisonalen Zeitskala

beeinflussen nur wenige atmosphärische Phänomene die Klimavariabilität, welche einen sehr

grossen Einfluss auf viele natürliche und sozioökonomische Systeme hat. Darüber hinaus

ändert sich die saisonale Klimavariabilität relativ gesehen stärker durch die globalen Erwär-

mung als kurzfristigere Variabilität, was die betroffenen Systeme besonders anfällig für die

fortschreitende Klimaerwärmung macht.

Ziel dieser Arbeit ist es daher, unser Verständnis der saisonalen Klimavariabilität zu verbessern,

was für die Entwicklung frühzeitiger Anpassungs- und Bereitschaftsstrategien von entscheiden-

der Bedeutung ist. Um dieses Ziel zu erreichen, wählen wir eine “Wetterperspektive”, d.h. wir

untersuchen, wie kurzlebige atmosphärische Prozesse zu saisonalen Anomalien und Extremen

beitragen. Ausserdem konzentrieren wir uns auf drei ausgewählte Komponenten des Klimasys-

tems, die besonders sensitiv gegenüber saisonalen Schwankungen sind. Zunächst untersuchen

wir die meteorologischen Vorläufer von Ereignissen reduzierter Waldgesundheit in Europa

während des Sommers (Juni–August; JJA) anhand von Satellitenbeobachtungen des Waldgrüns.

Obwohl diese Ereignisse ein Zeichen der beobachteten erhöhten Waldsterblichkeit sind, wurden

sie bisher noch nicht systematisch aus der Wetterperspektive ausgewertet. Zweitens unter-

suchen wir extrem grosses Dampfdruckdefizit (vapor pressure deficit; VPD) im Sommer, das

wesentlich zum Wasserstress von Pflanzen und damit zu Ernteausfällen und erhöhter Wald-

brandgefahr beiträgt. Extremes saisonales VPD kann durch eine Kombination von Temperatur-

(T′) und Feuchteanomalien (q′) verursacht werden, deren Beiträge wir zum ersten Mal über

die nördlichen mittleren Breiten hinweg quantifizieren. Schliesslich untersuchen wir die Zu-

nahme der sommerlichen Schmelze des grönländischen Eisschildes (GrIS) im Laufe des 21.

Jahrhunderts, die erheblich zum globalen Meeresspiegelanstieg beitragen wird. Insbesondere

quantifizieren wir die Rolle der räumlichen Ausdehnung und Intensivierung der Schmelze,

sowie die von Veränderungen der synoptischen Zirkulation.

In Kapitel 3 werden Ereignisse geringen Waldgrüns von 2002 bis 2022 getrennt für die eu-

ropäischen gemässigten und mediterranen Biome identifiziert, als weit verbreitete (auf räum-

lichen Skalen von 50 × 50 km2) negative Anomalien des Normalized Difference Vegetation

Index (NDVI) über den grössten Teil des Sommers. Nach diesen Kriterien war das Waldgrün

im Sommer 2022 (der heisseste seit Beginn der Aufzeichnungen) in einem für den Unter-

ix
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suchungszeitraum noch nie dagewesenen Ausmass beeinträchtigt. Sogenannte low-NDVI-

Ereignisse bedeckten 37% der Wälder in beiden Biomen und übertrafen damit frühere Rekorde

mit einer Ausdehnung von rund 24%. Meteorologische Vorläufer aller Ereignisse werden

als 90-tägige meteorologische Signale identifiziert, welche sich statistisch signifikant von der

Klimatologie unterscheiden und welche die Ereignisse in einem Biom gemeinsam haben. Die

Sommer der low-NDVI-Ereignisse waren ungewöhnlich heiss und trocken. Negative Nieder-

schlagsanomalien (P′) erreichten bereits im Winter vor mediterranen Ereignissen statistisch

signifikante Werte. In den Wäldern des gemässigten Bioms war der vorangegangene Sommer

ebenfalls ungewöhnlich warm und trocken, was auf einen negativen Legacy-Effekt (“Erbe”)

früherer Trockenperioden hindeutet. Bemerkenswert ist, dass Trockenperioden (P′ < 0) im

gemässigten Biom über ∼2, und im mediterranen über rund 3 Jahre vor low-NDVI-Ereignissen

unüblich lange andauerten. Die Persistenz von Hitzeperioden (T′ > 0) war jedoch nur im

gemässigten Biom signifikant erhöht, nicht aber im mediterranen, und zwar über rund densel-

ben Zweijahreszeitraum. Besonders grosse T′ und P′ gingen mit signifikanten Änderungen der

Häufigkeit der Wettersysteme einher. Dabei waren weniger häufige Tiefdruckgeiebte für Trock-

enheit in mediterranen Wäldern und häufigere Hochdruckgeiebte für solche in den gemässigten

Wäldern ausschlaggebend. Die Analysen berücksichtigen u. a. das unregelmässige Auftreten

der Ereignisse zwischen 2002 und 2022 und geben Aufschluss über räumliche Variationen in

der Bedeutung der beiden Wettersysteme für low-NDVI-Ereignisse.

In Kapitel 4 wenden wir eine neuartige Methode an, um räumliche Objekte mit extrem grossem

VPD in JJA (VPDJJA+) aus der Überschreitung des lokalen 40-Jahres-Wiederkehrniveaus zu

identifizieren, und orden deren Intensität (I) den Beiträgen von saisonal gemittelten T′ und

q′ zu. Nach der Trendbereinigung von saisonalem VPD identifizieren wir etwa 100 VPDJJA+

mit einem Massenzentrum in 30–60◦N in der ERA5-Reanalys (Zeitraum 1979–2020), und 2’500

solcher VPDJJA+ in 105 × 10 Jahren von large-ensemble CESM1-Simulationen. Die Zuordnung

von I in den mittleren Breiten zeigt eine hohe Übereinstimmung zwischen den beiden Daten-

sätzen. Durchschnittlich trägt positives T′ mit ∼75% signifikant zu I ≈ 0, 3 kPa bei. Diese

Warmanomalie führt jedoch auch zu einer Anfeuchtung, die sich aus der klimatologischen

Kovariabilität von T und q ergibt, welche somit I teils reduziert. Anomale Strömungsdynamik,

die zu negativer q′ führen, sind für die restlichen 31% von I verantwortlich. Ausserdem zeigen

wir robuste räumliche Variationen dieser drei Beiträge im grossen Set von VPDJJA+ in CESM1.

Kapitel 4 zeigt auch die Folgen der nichtlinearen Abhängigkeit des VPD von T. Erstens wird

VPD unterschätzt, wenn es aus saisonal gemittelten statt zeitlich höher aufgelösten Werten von

T und q berechnet wird. Diese Unterschätzung beeinflusst die VPD-Anomalie der VPDJJA+ und

damit I jedoch nicht. Zweitens wird erwartet, dass der Beitrag von T′ zu I in einem wärmeren

Klima zunehmen wird, was unsere ERA5 VPDJJA+ bestätigen. Eine abschliessende Analyse von

sechs beobachteten VPDJJA+ mit grossen sozioökonomischen Auswirkungen veranschaulicht,

wie sich einzelne Hitzewellen und Trockenperioden über eine JJA-Saison summieren können

und wie Perioden hohen VPDs dabei mit Dürre interagieren.

In Kapitel 5 ordnen wir die erwartete Zunahme der Sommerschmelze des GrIS von 2005–

2015 bis 2085–2095 der Veränderung der Abschmelzfläche, der Schmelzintensität und der
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atmosphärischen Zirkulation zu. Letztere wird mit Hilfe der Self-Organizing Map Methode

quantifiziert, um spezifische synoptische Zirkulationsmuster und Veränderungen in deren

Häufigkeit zu identifizieren. Wir betrachten die Schmelzzunahme von ∆ms = +501 Gt JJA−1

welche in Eisregionen über 1′200 m Höhe anfällt, da dort unsere Schätzungen der Schmelze

aus der Enenergiebilanz des verwendeten CESM2-Ensembles als adäquat angesehen werden

können. Das ∆ms kann vollständig auf die räumliche Ausdehnung (51%) und Intensivierung

(17%) der Schmelze, deren gleichzeitige Änderung (24%) und eine Zunahme der täglichen

Kovarianz von Abschmelzfläche und Intensität (8%) zurückgeführt werden. Änderungen in der

mittel-troposphärischen Zirkulation treten hauptsächlich zwischen Strömungsmustern mit einer

ähnlichen Schmelzzunahme auf und tragen daher nicht zum vorhergesagten Gesamtanstieg bei.

Trotz ihrer Irrelevanz für die durchschnittliche Schmelzzunahme wird tägliche atmosphärische

Variabilität für die interannuelle und intra-saisonale Schmelzvariabilität und somit für den

zeitlichen Verlauf des grönländischen Massenverlusts an Wichtigkeit gewinnen.

Zusammengenommen zeigen die vorgestellten Ergebnisse die Vielfalt der Prozesse, die das

Klimasystem auf der saisonalen Zeitskala beeinflussen. Wir stellen neue Methoden vor, die

für die systematische Untersuchung der Auswirkungen kurzfristiger Wetterschwankungen

auf die saisonale Zeitskala nützlich sind. Darüber hinaus zeigt die Dissertation auf, wie sich

terrestrische Ökosysteme und die Kryosphäre aufgrund der globalen Erwärmung derzeit

tiefgreifend verändern. Die gewonnenen Erkenntnisse über die Wechselwirkung zwischen

Wald und Meteorologie, über die Eigenschaften extremen saisonalen VPDs und über die

Prozesse, die zum erwarteten Anstieg der Grönland-Schmelze führen, stellen nicht nur einen

Fortschritt an der Schnittstelle zwischen Wetter und Klima dar. Es ist auch zu hoffen, dass

diese Dissertation neue Forschung anregen wird, die von den hier entwickelten methodischen

Fortschritten profitieren kann.





Chapter 1
Background and introduction

1.1 An example of atmospheric variability

Atmospheric variability results from a variety of meteorological and climatological phenomena

operating over a wide range of timescales (e.g., Wallace and Hobbs, 2006). Meehl et al. (2001) de-

scribed a “continuum of process-related interactions” in which phenomena at longer timescales

set the stage for shorter timescale phenomena, which, in turn, influence and modify the longer

timescales again. For an exemplary demonstration of the range of phenomena involved, we

consider the temperature T in Zurich, Switzerland (Fig.1.1). During summer, the diurnal cycle

of T is driven by solar radiation, with additional short-lived fluctuations due to turbulence at the

scale of seconds and local wind systems (Fig.1.1a). A convective cell developed over the course

of the afternoon due to strong solar surface heating and an approaching upper-level shortwave

trough (not shown), resulting in a rapid 10◦C T drop after 18:00 local time of the exemplary

day (Fig.1.1a). The days preceding the approach of the upper-level disturbance were notably

warm (Fig.1.1b) due to strong solar heating and adiabatic warming associated with a blocking

anticyclone located over Switzerland (not shown; Zschenderlein et al., 2020). This example

demonstrates how synoptic-scale weather systems such as anticyclones (Pfahl and Wernli,

2012a; Zschenderlein et al., 2019) and cyclones (Wernli and Schwierz, 2006; Pfahl and Wernli,

2012b) determine the extratropical atmospheric variability on the daily to weekly timescale.

The change of T from season to season primarily stems from the seasonal solar cycle (Earth’s

axial tilt), while inter-annual T variability in Zurich is shaped by various factors, including the

sum of shorter-term phenomena as well as more slowly varying components of the climate

system such as regional soil moisture, winter snow cover, and sea surface temperature (SST)

patterns in the North Atlantic (Fig.1.1c). The combination of multiple processes and phenomena

can lead to extreme events at one or the other timescale, such as the extremely hot summer

experienced in (mostly northern) Europe in 2018 (NE2018). It arose due to a combination

of SST preconditioning, a positive phase of the North Atlantic Oscillation (NAO), dry soils,

and persistent anticyclones (Rousi et al., 2023). Both NE2018 and the summer of 2022 were

exceptionally hot over much of Europe (e.g., Peters et al., 2020; Copernicus Climate Change

1
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Figure 1.1: The red lines denote 10-minute temperature (T) on the CHN building of ETH Zürich on (a)
20 July 2022, and (b) on 16–22 July 2022. The red line in (c) shows 10-day running mean T from ERA5 in
the Zurich region (47.5◦N, 8.5◦E) from 1 September 2011 to 31 August 2022. Vertical lines in (b) enclose
the 20th July. Purple shading in (c) mark the summer season. Purple dots (dashed purple line) denote
the summer mean T (in 2022). The solid black line shows the trend in daily T (linear fit).

Service, 2022; Rousi et al., 2023), including Zurich (Fig.1.1c). Lastly, on longer timescales, we

observe a trend in T that is predominantly driven by the radiative effect of anthropogenic

greenhouse gas (GHG) emissions (black line in Fig. 1.1c).

In summary, atmospheric variability at a single location is shaped by a wide range of phenomena

from turbulence to rising atmospheric GHG concentration, each operating on a distinct timescale.

When these phenomena are strongly pronounced or occur in combination or sequence, they can

give rise to extreme events at different timescales, as exemplified by the extremely hot summer

seasons in 2018 and 2022. Ultimately, at longer timescales, anthropogenic global warming

becomes the dominant signal of variability. In this thesis, we will study three selected cases

of seasonal variability and extremes, partly including their response to global warming. The

cases are selected based on (i) their impact at the seasonal timescale (Sect. 1.4), and (b) as they

are rapidly affected by global warming (see next section), and include (1) recent events of low

summer forest greenness in Europe, (2) summers of extremely high vapor pressure deficit in

reanalysis and climate model data, and (3) mechanisms governing the increase in Greenland

summer melt over the course of this century. Our analyses will, thereby, focus specifically on

how shorter-term variability forms such seasonal (extreme) anomalies, as will be introduced in

Sect. 1.3.
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1.2 Global warming

The unequivocally human-caused global warming (+1.1◦C in 2011–2020 compared to pre-

industrial levels) has amongst others increased the severity of weather and climate extremes,

and led to numerous adverse impacts on human health, food production, and natural ecosys-

tems (IPCC, 2021). One way to identify human-caused changes in the climate system, and

regions that will be affected earliest by anthropogenic global warming is by detection and

attribution (National Academies of Science Engineering and Medicine, 2016). Specifically, the

robust identification of systematic changes in the climate system in the context of the internal

climate variability is a matter of identifying a (forced) signal emerging from the noise (e.g.,

Hasselmann, 1979). Nowadays, this framework is also frequently used to detect and quantify

the human influence on individual extreme events, such as in the European heatwave in sum-

mer 2003 (Stott et al., 2004). Early efforts successfully attributed the increase in global mean

surface temperature to anthropogenic GHGs (Barnett and Schlesinger, 1987; Hegerl et al., 1996).

With continued anthropogenic GHG emissions the temperature signal also emerged from the

noise at regional scales (e.g., Stott, 2003). With increasing availability of climate projections and

historical reference simulations, the level of global warming necessary to reveal anthropogenic

influence could be identified for longer-term mean T and precipitation (P), and the correspond-

ing extreme events at different temporal scales, as elaborated in the following. The emergence

of climate from its historical variability is a matter of great concern, indicating that it no longer

encompasses the niche in which numerous natural and social systems have evolved, and is

thus a critical process regarding the required pace of their adaptation (e.g., Williams et al., 2007).

Moreover, as specified in the following, the emergence of a new climate typically occurs earlier

in low-income countries, whose adaptive capacity is also below average (Mahlstein et al., 2011;

Mora et al., 2013).

The time of emergence (ToE) denotes the initial period when a given climatic change emerges

from the noise of its (historical) internal variability (Hawkins and Sutton, 2012). Figure 1.2

shows an illustrative example of the ToE from Tan et al. (2018) for the annual maximum daily

maximum T (TXx) at a single grid cell in the North Atlantic. The noise (N) is estimated from

the standard deviation of TXx in the reference period (1971–2005), and the signal (S) is equal

to the trend of TXx relative to a historical reference year, which was chosen as 2000 by the

authors (Tan et al., 2018). Another commonly used approach including climate modeling infers

the historical noise and reference value of a given climate index from simulations without

anthropogenic GHG forcing, often pre-industrial control runs (e.g., Hawkins and Sutton, 2012).

In our illustrative case (Fig. 1.2), the signal emerges from the noise between ToE1 = 2016 (84%

confidence) and ToE2 = 2031 (98% confidence). The ToE is thus an estimate of how early

climate change can be detected in a given variable of interest, and also represents the level of

anthropogenic warming necessary to robustly detect and attribute the respective effect.
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Figure 1.2: Example of the time of emergence (ToE) for the annual maximum daily maximum T (TXx)
for a grid cell in the North Atlantic. The black (blue) line denotes the historical (projected) TXx. The
green and pink lines denote TXx trend estimates (differences are neglected here). The TXx signal (S) is
the magnitude of change of the TXx trend relative to the historical reference (year 2000). The noise (N)
is derived from the historical internal variability, i.e., standard deviation, of TXx. The ToE1 and ToE2
denote times when S/N exceed 1 and 2, respectively. Figure adapted from Tan et al. (2018).

Estimation of the exact ToE is often hampered by short observational records (Mahlstein et al.,

2011), and inter-model differences in simulating internal variability, resulting in a typical ToE

uncertainty of 30 to 60 years (Hawkins and Sutton, 2012). The identified patterns, however,

are largely consistent for a given metric, and imply that the ToE of boreal summer mean T
(Mahlstein et al., 2011), monthly T (Mora et al., 2013), annual maximum daily T (Kirchmeier-

Young et al., 2019), and of other magnitude-based T extreme indices (Fischer and Knutti, 2015;

Tan et al., 2018) is earliest in the tropics, where internal variability is comparatively small.

Moreover, high latitudes show an earlier ToE than mid-latitudes because of a strongly amplified

T increase, especially for cold extreme events (Tan et al., 2018). Changes in P associated with

the observed and projected external forcing (until 2100) show – regardless of the direction of

change – a much smaller signal-to-noise ratio S/N and hence a later ToE than for changes of T –

if emerging at all from the noise (Fischer and Knutti, 2015; Angélil et al., 2018; Tan et al., 2018;

Kirchmeier-Young et al., 2019; IPCC, 2021). So, relatively low levels of global warming can be

robustly detected in T-based metrics and in regions with low internal variability, such as the

tropics, while anthropogenically induced trends in P are mostly detectable at higher levels of

anthropogenic GHG forcing.

For extreme climate indices and events, and also mean T and P, the spatial and temporal scale

under consideration is of great relevance for the ToE (Fischer and Knutti, 2015; Angélil et al.,

2018; Kirchmeier-Young et al., 2019). The S/N increases due to the damping of the “weather

noise” at larger spatial and longer temporal scales, especially so for P (Kirchmeier-Young et al.,

2019). The fundamental reason for this effect is that the historical distribution is narrower,

e.g., for monthly or seasonal mean values compared to daily values (Fischer and Knutti, 2015).
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Consequently, an imprint of anthropogenic warming can be detected and attributed earlier for

longer-term variables such as seasonal or annual mean T and P (Mora et al., 2013; Kirchmeier-

Young et al., 2019). In this context, frequency-based climate metrics, which often relate to

profound adverse impacts, pose an interesting contrast to the above-mentioned global patterns

of magnitude-based indices. For example, the annual maximum number of consecutive dry

days, and the longest heatwave per year can be detected earlier for many parts of the mid-

latitudes compared to high and low latitudes (Tan et al., 2018). In summary, climate change

manifests itself in a variety of ways, with distinct global patterns, but generally earlier at larger

spatial and temporal scales.

This section highlighted the regions and metrics where global warming is most pronounced.

Particularly prominent is global warming in the tropics due to small N, polar regions due to

large S, frequency-based metrics in the mid-latitudes, and T-influenced metrics as compared

to P. In addition, seasonal atmospheric variability emerges relatively early from the historical

range compared to shorter-term variability. It is, therefore, of great interest to understand the

mechanisms that shape these metrics and signals, as they require adaptation measures at the

earliest.

1.3 A weather perspective on (extreme) seasonal anomalies

The previous section discussed how global warming exhibits pronounced effects at the sea-

sonal timescale, which meteorologically spans a 90-day period and, thereby, falls between

the commonly recognized timescales of weather (shorter) and climate (longer). However, as

introduced in Sect. 1.1, it is important to note that the segregation of these timescales is artificial,

as the phenomena in the climate system occur seamlessly across all timescales (Hoskins, 2013).

Right at the seasonal timescale, however, there are very few meteorological phenomena to

understand variability on that timescale – mainly the land surface-atmosphere coupling be-

tween precipitation and soil moisture (e.g., Betts et al., 1996). Therefore, investigating seasonal

atmospheric variability from either a shorter or longer timescale perspective serves as two

equally valuable starting points for research. The “climate perspective” primarily focuses on

inter-annual to multi-decadal climate variability, encompassing phenomena like the NAO,

the El Niño-Southern Oscillation (ENSO), and the Atlantic Multi-decadal Oscillation (AMO).

On the other hand, the “weather perspective” encompasses sub-daily to weekly phenomena

such as atmospheric convection, synoptic-scale weather systems like extratropical cyclones,

and recurrent Rossby-wave packets (see also Sect. 1.1). In this thesis, we investigate seasonal

atmospheric variability mostly from the “weather perspective” while fully acknowledging and

partly addressing the value and additional insights of the “climate perspective”.

The “weather perspective” on seasonal anomalies is concerned with how shorter-term vari-

ability aggregates to seasonal anomalies, and how weather systems thereby interact with other

climatic processes. Due to their profound socioeconomic impact, most research has focused on
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case studies of exceptionally anomalous seasons, i.e., of extreme seasons. The study of individ-

ual extreme seasons (storyline approach) is further motivated by the existence of numerous

potential substructures that lead to the same seasonal mean anomaly (Röthlisberger et al., 2020).

A pioneering study by Namias (1978) found not only El Niño and specific SST patterns in

the vicinity of North America to be responsible for the “abnormal” winter 1976/77, but also

stronger fronts and cyclones. Further, the clustering of cyclones resulted in an extremely stormy

winter in Europe in 1999/2000 (Ulbrich et al., 2001), an recurrent cyclones and upper-level

troughs led to the extremely wet winter in the UK in 2013/14 (Davies, 2015). On the other hand,

blocking anticyclones are responsible for multi-day heatwaves by bringing about adiabatic

warming and clear-sky conditions (Pfahl and Wernli, 2012a; Zschenderlein et al., 2020; Kautz

et al., 2022; Röthlisberger and Papritz, 2023), which can be further amplified by enhanced

sensible heating owing to the soil moisture-atmosphere feedback (Seneviratne et al., 2010).

These two phenomena led to sequentially occurring and long-lived heatwaves that culminated

in the extremely hot summers in Central Europe in 2003 (Fischer et al., 2007), in Russia in 2010

(Dole et al., 2011), and NE2018 (Rousi et al., 2023). These case studies illustrate how particularly

strong or recurrent weather phenomena can result in an extreme event at the seasonal timescale,

hereafter referred to as an extreme season.

Recently, the substructure of extreme seasons has been studied more systematically and re-

vealed substantial diversity across regions. Röthlisberger et al. (2020) showed that in many parts

of the globe extremely hot summers are sensitive to that part of their substructure that exerts the

greatest climatological variability. So, that is, hot summers in India arise when the warmest days

are particularly hot (i.e., a late monsoon onset), while summers in California become extremely

hot due to a suppression of cold days (i.e., less cold air advection from slow-moving upper-level

troughs). Moreover, extremely wet seasons are formed by the presence (and sometimes absence)

of weather phenomena such as cyclones, warm conveyor belts, and tropical moisture exports

(Flaounas et al., 2021). In the Arctic, weather systems shape extreme seasons with regard to T, P,

and the surface energy balance, e.g., the positioning and persistence of cyclones (Hartmuth et al.,

2022). Moreover, as discussed in Sect. 1.2, extreme seasons in the Arctic are rapidly moving out

of their historical niche, i.e., show a strong and early imprint of global warming (Hartmuth

et al., 2023). As indicated earlier, the term “niche” designates the range of historical climate

variability in the absence of pronounced anthropogenic changes, which local communities and

ecosystems are adapted to. Given the relevance of global warming for extreme seasons, the

methodological framework by Röthlisberger et al. (2021) provides a valuable tool for investi-

gating how the extreme seasons’ substructure and dynamics more generally – i.e., also from

a “climate perspective” – will change towards a warmer climate. So far, the framework has

been comprehensively applied to reanalysis data to globally identify extremely hot, cold, windy,

calm, wet, and dry seasons from 1950 to present (Boettcher et al., 2023). In summary, weather

systems and short-term variability are key to understanding extreme seasons, and offer a vast

potential for further research when put into the perspective of climatic change.
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Lastly, one has to keep in mind that the definition and quantification of “extremeness” is non-

trivial due to several reasons. In general, a meteorological or climatological extreme event is

characterized at least by its spatial extent, duration, and intensity (Cattiaux and Ribes, 2018).

While our focus on extreme seasons sets the duration to approximately 90 days, the spatial

extent and intensity is subjectively chosen and, therefore, not consistent among the above-

cited literature. As the spatial extent is affecting the S/N (Sect. 1.2), it also matters for the

identification of extremes and has to be chosen carefully with regard to the research question.

In terms of intensity, a seasonal mean value can be deemed extreme when exceeding a certain

threshold (e.g., T > 20◦C in Fig. 1.1c), as one of the n largest observed values in a given period

(e.g., Röthlisberger et al., 2020; Flaounas et al., 2021), or when exceeding a given return period

estimated from its climatological distribution (e.g., Röthlisberger et al., 2021; Boettcher et al.,

2023). The latter approach specifying “extremeness” by rarity is particularly valuable as it is

established in relation to the local climate and allows for comparisons across different spatial

and temporal contexts. However, accurately estimating the return period of seasonal mean

values in observational data poses considerable challenges, as the estimates based on a small

sample (with only one value per season and year) suffer from to the so-called “regression to

the mean” or “conditional bias” (e.g., Stigler, 1997). A further consequence of the very few

observed extreme seasons is that regional pooling (Fischer et al., 2013), and/or extensive climate

model simulations (Röthlisberger et al., 2021; Hartmuth et al., 2023) are frequently used to more

robustly and more systematically study extreme seasons. Lastly, a season can also be regarded

extreme in terms of its socioeconomic impact (impact-oriented extreme season) instead of its

meteorological anomaly (meteorological extreme season). For example, the winter 1976/77 can

be regarded extreme as it “dramatically illuminated Man’s vulnerability” (Namias, 1978), and

the growing season in 2015 was extreme in terms of vegetation greening (Bastos et al., 2017).

Also, the cold and rainy summer in western Europe in 1816 can, irrespective of meteorological

anomalies, be seen extreme as it led to famine and potentially mass migration (Luterbacher

and Pfister, 2015; Brönnimann and Krämer, 2016). So while there is no rigorous protocol to

identify extreme seasons, the applied definition crucially determines the subsequent analyses

and conclusions drawn.

1.4 Three hotspots of seasonal meteorology and global warming

In this section, we build upon the previous two sections and highlight three (partly related)

components of the Earth system that are (i) profoundly affected by global warming, and (ii)

particularly sensitive to the seasonal aggregation of shorter-term atmospheric variability. We,

thereby, introduce the central motivation for the three research foci of this thesis. Each overview

is further detailed in the introductory sections of Chapters 3–5.

1.4.1 Reduced forest vitality in Europe

The aforementioned hot-dry extreme season NE2018 has impaired forest ecosystems in an

unprecedented extent. Stem dehydration (Salomón et al., 2022), reduced forest growth (Trotsiuk
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et al., 2020), and hydraulic failure (Schuldt et al., 2020) were reported and contributed to the

ongoing trend of increasing tree mortality in Europe (Allen et al., 2010; Hansen et al., 2013).

Forests in Europe are typically able to tolerate multi-day heatwaves and dry periods, but the

sequencing and persistence thereof over an entire season can mark the onset of tree mortality

(Allen et al., 2010). While persistent heat drives the loss of soil and plant water due to an

increased atmospheric water demand, i.e., vapor pressure deficit (VPD; Grossiord et al., 2020),

low precipitation not sufficiently replenishes the soil water storage, and the combined effect of

so-called hot droughts is particularly damaging (Allen et al., 2015). Secondary disturbances

like bark beetles (Biedermann et al., 2019; Jakoby et al., 2019) and fire (Turco et al., 2017) are

fostered by hot and dry conditions, thereby aggravating the impact of such extreme seasons

over the following months to years (Seidl et al., 2014). Furthermore, by reducing tree resilience,

hot-dry extreme seasons can have a negative legacy effect on trees in a following drought

period, thereby enhancing the impact of the second drought period (Anderegg et al., 2020; Bose

et al., 2020). Although forests in parts of Europe are adapted to low water availability, e.g., in

the summer-dry Mediterranean, their vitality and mortality are also adversely affected by more

frequent, longer, and hotter droughts (Tague et al., 2019; Ogaya et al., 2020).

With global warming, more intense heat waves (Meehl and Tebaldi, 2004; IPCC, 2021), meteoro-

logical droughts (Trenberth et al., 2014), and hot droughts (Allen et al., 2015) are expected to

strengthen future forest dieback (Brodribb et al., 2020). In analogy to Sect. 1.2, as forests are

long-lived organisms that are used to the climate of the past decades, their decreasing vitality

could be an early warning of the climate moving out of its niche, i.e., of an emerging climate

change signal (Seidl et al., 2017; McDowell et al., 2020). Altogether, the meteorological condi-

tions of NE2018 as well as their impact on forests were in many regards unprecedented (Schuldt

et al., 2020; Bastos et al., 2020b; Peters et al., 2020; Rousi et al., 2023), and hence designate a

meteorological as well as impact-oriented extreme season. As discussed in Sects. 1.1 & 1.3, there

is a multitude of meteorological processes that are able to cause extreme seasons relevant for

forest dieback. It is, therefore, of great importance to better and more systematically understand

the meteorological history of the observed dieback events.

1.4.2 Seasons of extremely high vapor pressure deficit

A second focus of this thesis lies on VPD, which is a central quantity in plant hydrology and

thus a major control of the terrestrial water balance. It is defined as the difference between

saturation (es) and actual water vapor pressure (ea), respectively, in air at the leaf interface (e.g.,

Grossiord et al., 2020):

VPD = es − ea (1.1)

The importance of VPD arises from its impact on surface evapotranspiration, more specifically

on plant transpiration, which is the water loss of plants through leaf stomata that necessarily

accompanies the uptake of carbon dioxide for plant growth. Particularly, increasing VPD first
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boosts water loss from transpiration, and then limits the conductance of leaf stomata and thus

transpiration to prevent the plant from water stress (Franks et al., 1997; Oren et al., 1999). Given

this protection mechanism that limits the gas exchange across leaf stomata, extremely high

VPD increases the risk of carbon starvation and growth reduction independent of other climatic

variables (Breshears et al., 2013; Grossiord et al., 2020). Hence, VPD in the summer season has

been identified as the most important meteorological predictor of global (wheat) crop failure

(Vogel et al., 2021). Moreover, extremely high VPD fosters bark beetle outbreaks (Williams

et al., 2013), and reduces the moisture content of fuel available for wildfires (Dios et al., 2021),

therefore increasing wildfire activity (Williams et al., 2013; Seager et al., 2015; Williams et al.,

2019). The importance of summer VPD has also been evident in NE2018, which constituted a

meteorological extreme season in terms of high VPD (Schuldt et al., 2020).

The variability of VPD is highly important on impact-relevant timescales such as the summer

(growing) season. Further, as VPD depends nonlinearly on T, its variability strongly responds

to global warming. The short-term variability is driven by processes that determine T (thus es)

and specific humidity (q thus ea), i.e., mainly ocean evaporation and the atmospheric circulation

(Wallace and Hobbs, 2006; Byrne and O’Gorman, 2016). The past warming trend has increased

VPD mainly through a larger es, which has negatively affected the drought sensitivity of maize

crops (Lobell et al., 2014). With the ongoing increase of T globally, the negative impact of high

VPD on soy bean (Sun et al., 2023) and maize crop yields (Hsiao et al., 2019), as well as on forest

water stress (Williams et al., 2013; Brodribb et al., 2020) are expected to become stronger. While

a few studies have addressed the effect of short-term variability in ea and es on VPD (Seager

et al., 2015; Ficklin and Novick, 2017), an understanding of summer mean VPD from a weather

perspective is lacking. This is clearly unsatisfactory given the increasing importance of VPD in

a warming climate (Yuan et al., 2019), and the pronounced impact of extremely high seasonal

VPD on terrestrial ecosystems and crops (Lesk et al., 2022).

1.4.3 Future increase of Greenland surface melt

The third focus of this thesis lies on melt of the Greenland Ice Sheet (GrIS), whose mass loss

has been accelerating since the mid 1990s and has led to a total of ∼11 mm of global sea-level

rise (IMBIE Team, 2020). Global warming is thus not only emerging quickly in Greenland, but

might also lead to the crossing of the tipping point beyond which the GrIS becomes unstable

(Boers and Rypdal, 2021; Noël et al., 2021). The most important contributors to the total mass

balance (TMB) of the GrIS are composed in the following way:

TMB = SMB − D (1.2)

SMB = P − M (1.3)

where SMB and D denote the surface mass balance and ice discharge, i.e., mass loss by calv-

ing of ocean-terminating glaciers, respectively. The SMB is composed of the GrIS-integrated

precipitation (P) minus melt-water runoff (M), whereby we neglect the smaller mass fluxes
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from sublimation, evaporation, and dew/hoar formation (Eq. 1.3). Besides GrIS surface melt,

M includes the effect of melt-water refreezing and retention in the GrIS firn layer (e.g., van

den Broeke et al., 2016). The recent decrease in TMB was largely due to increasing D (Enderlin

et al., 2014; Mouginot et al., 2019), and a decreasing SMB (van den Broeke et al., 2016). Recently,

the TMB as well as its inter-annual variability has been increasingly dominated by the SMB,

specifically, surface melt (Fettweis et al., 2013a; van den Broeke et al., 2016).

Atmospheric variability dictates surface melt of the GrIS, which occurs almost exclusively in the

summer season. In the past two decades, a series of summers with positive geopotential height

anomalies over and around Greenland have fostered surface melt (Fettweis et al., 2013b), mainly

by stronger down-welling shortwave radiation (Hofer et al., 2017) and anomalous horizontal

air mass transport (Hermann et al., 2020). During atmospheric blocking over Greenland, down-

ward shortwave radiation is enhanced in the eastern GrIS, while in the central and western

GrIS melt intensifies due to enhanced longwave cloud forcing (Bennartz et al., 2013; Wang et al.,

2019; Izeboud et al., 2020). From the 1980s to 2005–2014, 17% in the melt increase was attributed

a shift in atmospheric circulation, 75% to an intensification of melt during the same synoptic cir-

culation, and the remainder to a concurrent change of both (Mioduszewski et al., 2016). Strong

anticyclonic circulation, low GrIS albedo, and little snowfall caused extremely widespread melt

events in the summers of 2012 (Nghiem et al., 2012) and of 2019 (Tedesco and Fettweis, 2020;

Velicogna et al., 2020). In contrast, little melt was observed in the cold summers of 2017 and 2018

(Velicogna et al., 2020). Thus, in the current climate, daily to weekly atmospheric variability is

a key factor determining the inter-annual variability in mass loss from the GrIS. Thereby, sur-

face melt is determined by the interplay of atmospheric circulation and associated melt intensity.

Mass loss from the GrIS is expected to increase strongly in the coming decades, whereby the

occurrence frequency of different synoptic circulation patterns is among the largest sources of

uncertainty (Delhasse et al., 2018; Hofer et al., 2019; IPCC, 2021). In general, the synoptic drivers

of strong melt are well-understood (Mioduszewski et al., 2016; Hermann et al., 2020; Preece

et al., 2022). However, the change in their occurrence frequency over this century is a matter

of debate, as recent observations are not in line with climate model simulations (Belleflamme

et al., 2013; Hanna et al., 2018; Delhasse et al., 2021). This is amongst the reasons why climate

model predictions are not yet settled on the future SMB, e.g., CMIP6 (SSP5-8.5) models project

an almost two-fold lower SMB (and thus greater sea-level rise contribution) over the course

of this century compared to previous CMIP5 (RCP8.5) estimates (Hofer et al., 2020). A main

challenge regarding future mass loss from the GrIS is, therefore, to understand how the impact

of short-term atmospheric variability on summer surface melt responds to global warming.

1.5 Research questions

This chapter has motivated three research foci that deserve special attention when using a

seasonal weather perspective in a warming climate. First, we examined global warming, which,
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among other things, is particularly early on the seasonal timescale. We also highlighted the

enormous range of timescales and processes of atmospheric variability that shape seasonal

anomalies and their extremes. The thematic focus of this thesis is on components of the Earth

system that are highly sensitive to seasonal meteorology and are profoundly affected by global

warming. Terrestrial ecosystems and crops grow over time and are, thereby, affected by weather

over several months to years. In this context, we identified two topics of interest: (1) the

increasing dieback and disturbance of European forests on a large scale, which are related to

the magnitude and sequence of hot and dry conditions, and (2) extremely high VPD in the

summer season, which is of great relevance for forest water stress and crop yields. The final

topic of interest is (3) the increase in summer melt of the GrIS in this century, especially also

the role of potential shifts in synoptic circulation patterns. To this end, we pose overarching

research questions here, while more specific research questions are raised in the following

chapters. The three overarching research questions addressed in this thesis from a seasonal

weather perspective are as follows:

1. What were meteorological precursors of reduced forest vitality in Europe in the summers

of the past two decades?

2. What is the meteorological composition of extremely high summer mean VPD in the

present-day climate?

3. Which mechanisms govern the summer melt increase of the GrIS in this century?

This thesis is organized as follows: Chapter 2 introduces the data used for many of the following

chapters, in particular introducing the climate model simulations performed. The following

chapters are thematically distinct and each addresses one of the above research questions,

while also introducing chapter-specific datasets. First, Chapter 3 identifies widespread events

of low forest vitality in Europe in summers 2002–2022 using a remote-sensing vegetation

index, and systematically analyzes their meteorological history. Next, we identify seasons

of extremely high VPD in reanalysis and climate model data to examine and evaluate their

meteorological composition and substructure (Chapter 4). The final result chapter applies

and extends a framework to attribute the large increase in GrIS surface melt in this century to

various processes, including the change in occurrence frequency of certain synoptic circulation

patterns (Chapter 5). We conclude the thesis with a summary and by putting our results into

context in Chapter 6.





Chapter 2
Reanalyses and climate model data

2.1 ERA5 reanalysis

To analyze the state of the atmosphere over about the past four decades, we use the fifth

generation reanalysis (ERA5) from the European Centre for Medium-Range Weather Forecasts

(ECMWF; Hersbach et al., 2020). Like any modern reanalysis, the ERA5 data represents the

three-dimensional state of the atmosphere in a spatiotemporally complete manner, resulting

from the assimilation of vast amounts of observations across the globe using the ECMWF

Integrated Forecast System (IFS). The horizontal resolution of the IFS used in the ERA5 data

assimilation is 31 km. Here we use hourly output on a horizontal 0.5◦ grid and on 137 vertical

hybrid sigma/pressure levels with an atmosphere top at 0.01 hPa (≈ 80 km). ERA5 data used

in this thesis dates back to 1979 and is considered a “full-input” reanalysis. It uses, amongst

others, also observations from radiosondes, aircraft, and satellites, which is why ERA5 used

here is limited to roughly the satellite era. In contrast, so-called “surface-input” reanalyses such

as the Twentieth Century Reanalysis (20CR; Compo et al., 2011) use only surface observations

(no upper-air observations) and, therefore, date back nearly 200 years (Fujiwara et al., 2017).

Both are extremely valuable resources for investigating the atmospheric variability of the recent

past.

Based on ERA5 sea-level pressure (SLP), we identify cyclones and anticyclones as the two most

fundamental weather systems (Fig. 2.1). These two not only determine vertical and horizontal

atmospheric transport of heat, momentum, and moisture but are also of great importance to the

temperature and humidity structure of the atmosphere. Cyclones (anticyclones) are identified

according to Wernli and Schwierz (2006) and Sprenger et al. (2017) as objects of low (high)

SLP and are thus identified from the outermost closed SLP isoline around local SLP minima

(maxima). Minima (maxima) of SLP are excluded if the outermost SLP isoline has a length

outside the range 100–7’500 km (1’500–15’000 km) to account for the typical size of cyclones

(anticyclones). Further, we exclude minima (maxima) over orography exceeding 1’500 m due

to substantial artefacts arising from extrapolating temperature from the surface to sea-level,

13
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Figure 2.1: Contours denote ERA5 sea-level pressure (SLP) at 18 UTC on 7 July 2010. The dashed (solid)
contours denote SLP in 5 hPa intervals below (above) 1’013 hPa. Beige (turquoise) shading in (b) denote
the identified anticyclones (cyclones).

used in computing SLP in ERA5. The identification is illustrated at an exemplary time at 18

UTC on 7 July 2010 in Fig. 2.1. By and large, we see that the two weather systems mainly occur

in the extra-tropics (Fig. 2.1b). There is high SLP over most of Europe and the central North

Atlantic with two distinct SLP maxima that are identified as separate anticyclones. Several

SLP minima are identified as cyclones, e.g., one over the Canadian Arctic and another one

over Iceland. In addition to extratropical weather systems, there are some surface heat lows

identified as cyclones over the Sahara (Fig. 2.1b). Moreover, the extrapolation of temperature to

sea-level leads to some artefacts over elevated orography, e.g., the anticyclone identified over

the Asir Mountains in the southwestern Arabian Peninsula (Fig. 2.1b). Although we exclude

SLP minima and maxima above 1’500 m, cyclones and anticyclones might still cover such areas

if their centers lie below 1’500 m, and the extrapolation in regions up to 1’500 m elevation

is potentially still spurious. Due to these artefacts, orography has to be kept in mind when

interpreting the two weather systems.

A summary of the basic ERA5 variables used in the following chapters is provided in Table 2.1.

Furthermore, the temporal scale as well as the further processing of the variables used are

typically unique to each chapter and are thus introduced there.

2.2 Community Earth System Model climate simulations

We use two versions of the Community Earth System Model (CESM), a widely recognized

general circulation model (GCM) developed by the U. S. National Center for Atmospheric

Research (NCAR; Hurrell et al., 2013). Both model versions used in this study, version 1.12

(CESM1; Hurrell et al., 2013) and version 2.1 (CESM2; Danabasoglu et al., 2020), are used in

the respective large-ensemble projects by NCAR (e.g., Kay et al., 2015) and are also part of the

Coupled Model Intercomparison Project 5 and 6 (CMIP5/CMIP6). For both model versions,

6-hourly output is generated with a horizontal resolution of 1.25◦ longitude × ∼0.9◦ latitude on

30 vertical levels. These GCM simulations are freely running except for the external radiative

forcing. The radiative forcing is determined based on observations for a specific historical

period and subsequently relies on future scenarios, predominantly influenced by the projections

of anthropogenic GHG emissions (e.g., O’Neill et al., 2014). A highly valuable application
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Figure 2.2: Each line denotes a single CESM member. In (a) CESM1, black lines denote the CESM-LENS
macro ensemble and colored lines denote the simulations performed for this thesis. In (b) CESM2, the
bold grey line denotes the pre-industrial control run (pre-industrial forcing from 1850) and black lines
the individual macro ensembles computed for this thesis. The grey time axis in (b) refers to the control
run. Colored vertical bars denote the study periods (a) historical (hist; 1990–1999) and end-of-century
(eoc; 2091–2100), and (b) present-day (PD; 2005–2015), mid-century (MC; 2045–2055), and late-century
(LC; 2085–2095). Colored horizontal bars show the forcing used in the respective period. More details
are provided in the text.

of GCMs is to simulate multiple trajectories of the atmospheric evolution in a given climate,

while we can only observe a single one in reality (reanalysis data). Through such ensemble

simulations, we can explore and statistically assess the internal variability of the atmosphere

(and the climate system as a whole). This capability is particularly crucial for investigating

extremes at the seasonal timescale, as the limited number of such events in available reanalyses

hinders robust statistical evaluation at the local scale. In this thesis, we will utilize CESM

simulations based on two distinct approaches, each applied to one of the two model versions,
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as outlined in the following two paragraphs.

The configuration of CESM1 (see Fig.2.2a) is designed to simulate a large number of realizations

for both a historical (hist) period and an end-of-century (eoc) period, specifically the years

1990–1999 and 2091–2100. To achieve this, we use CESM1-LENS, which consists of an ensemble

of 35 macro members spanning the years 1920–2100 (Kay et al., 2015). Macro member 1 was

integrated from 1850 onwards, while macro members 2–35 were generated by introducing

small perturbations at the round-off level in the oceanic (for macro member 2) and atmospheric

conditions (for macro members 3–35) in 1920 (Fig. 2.2a; see Kay et al., 2015). These minute

perturbations occurring at branch-off typically lead to distinct atmospheric states within a

few weeks (Lorenz, 1963; Kay et al., 2015). Additionally, however, a part of climate variability,

mostly that due to different oceanic states, responds only at the timescale of years to centuries

and is hence not fully represented in this ensemble configuration (e.g., Meehl et al., 2001). These

35 macro members were integrated using historical forcing until 2005, followed by RCP8.5

forcing thereafter. Atmospheric fields are available either at sub-daily temporal resolution (on a

few vertical levels) or in the full vertical column (with lower temporal resolution), but not both.

Thus, for our study, these 35 members were rerun for the period 1 January 1990 to 31 December

1999 (hist), and 1 January 2091 to 31 December 2100 (eoc), in order to obtain spatiotemporally

high-resolution model output. Two separate micro ensembles were created, each consisting

of 35 micro members, by re-running the original macro members 1 and 2 with perturbed (by

O(10−13)K) atmospheric temperature fields from 1 January 1980 and at 1 January 2081 onward

(Fig. 2.2a). As a result, our CESM1 data essentially includes 105 members each covering the

10-year-long hist and eoc periods. By employing a combination of micro and macro members

initialized several years and decades before the study periods, respectively, this configuration

captures a large part of atmospheric internal variability – the degree to which it captures at-

mospheric internal variability related to more slowly varying ocean dynamics is questionable.

In summary, the CESM1 configuration provides three-dimensional and 6-hourly output span-

ning 1050 years in both hist and eoc climates. This setup is particularly valuable for assessing

seasonal extremes as in Chapter 4, as it includes 1050 realizations of each season in both climates.

The configuration of CESM2 (see Fig.2.2b) aims at assessing internal variability continuously

over the course of the 21st century and with different macro members (having variable oceanic

states). Therefore, as for CESM2-LENS (Rodgers et al., 2021), several macro members were

branched of from a 2’000-year long pre-industrial (PI) control run that constantly uses the

radiative forcing of 1850 and thus is in a stable climate (Danabasoglu et al., 2020). Four macro

members were computed with restart files provided by NCAR, which were branched off from

the PI control run at time instances that are 100 years apart (Fig.2.2b). Hence, they were ini-

tialized with different atmospheric and oceanic states, and were integrated forward using the

historical forcing until 2014, and that of the SSP3-7.0 scenario thereafter. In contrast to our

CESM1 dataset, there are much fewer members, whose output is available continuously in

1850–2100. The CESM2 simulations were further designed to allow better opportunities for
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Table 2.1: Name, description, and unit(s) used of the variables used from ERA5, CESM1, and CESM2.

Name Description (respective dataset) Unit

T
2-meter temperature (ERA5)

temperature at reference height (CESM1)
[K], [◦C]

Ts surface temperature (CESM2) [K]

q
2-meter specific humidity (ERA5)

specific humidity at reference height (CESM1)
[g kg−1]

P convective plus large-scale precipitation (ERA5, CESM1) [mm]

p (surface) pressure (ERA5, CESM1) [hPa]

SLP sea-level pressure (ERA5) [hPa]

Z500 geopotential height at 500 hPa (CESM2) [m]

SH surface sensible heat flux (CESM2) [W m−2]

LH surface latent heat flux (CESM2) [W m−2]

SWnet net surface shortwave radiation (CESM2) [W m−2]

LWnet net surface longwave radiation (CESM2) [W m−2]

model evaluation and hence have a long temporal overlap with ERA5. Moreover, the CESM2

output covers almost the entire time range of internal variability, because (a) the individual

macro ensembles were each initialized with different oceanic states, and (b) the branching-off of

the members happened more than 100 years before the time period we consider here. In Chap-

ter 5, we make use of the CESM2 setup and use its output in three time windows referred to

as present-day (PD; 2005–2015), mid-century (MC; 2045–2055), and late-century (LC; 2085–2095).

Overall, both CESM configurations provide valuable insights for our research goals. First,

they allow us to analyze the future climate, and, second, they provide a more comprehensive

exploration of the internal atmospheric variability compared to ERA5, thanks to multiple

realizations of the atmospheric evolution within a given climate. Specifically, the CESM1 data is

highly advantageous for the identification of extreme VPD seasons, as we will demonstrate in

the analysis of the hist climate simulations (Chapter 4). On the other hand, CESM2 data will be

crucial for assessing the rate of change in Greenland surface melt throughout this century and

has the advantage of covering the full range of climate variability (Chapter 5). The availability

of 6-hourly output in both datasets is pivotal for our research, as this thesis focuses on capturing

atmospheric variability on the sub-daily to daily timescale, which is strongly influenced by

weather systems. As for ERA5, Table 2.1 provides the nomenclature of the basic CESM variables

used in the following chapters, with all further processing introduced in the respective chapters.





Chapter 3
Meteorological history of low-forest-greenness
events in Europe in 2002–2022

3.1 Introduction

European forest ecosystems have typically been in balance with their climatic environment and

are thus largely adapted and acclimated to meteorological variability on a larger scale. This

balance is increasingly disturbed by anthropogenic climate change, and expected to be further

affected by pervasive shifts in forest dynamics (see furher elaborations in Sect. 1.4.1; Seidl et al.,

2017; McDowell et al., 2020). This trend manifested in the recent two decades (Seidl et al., 2014),

when forests have been affected on up to the continental scale, e.g., in the summer of 2018

(Bastos et al., 2020b), whereby drought was continuously linked to such excess forest mortality

(Senf et al., 2020). In the context of drought, forest greenness as measured by satellites is an

effective measure of forest vitality in order to monitor the drought-related forest dieback in

Europe (Orth et al., 2016; Buras et al., 2020, 2021).

While forests can endure short-term weather extremes (e.g., an individual multi-day heat wave),

they are more susceptible to longer-term extreme conditions. Particularly harmful long-term

extremes include persisting or sequentially occurring droughts, whereby additional negative

legacy effects are mediated through reduced tree resilience (Anderegg et al., 2015, 2020; Bose

et al., 2020). However, drought legacy effects have also been suggested to provide acclima-

tion to following droughts (Gessler et al., 2020). Furthermore, a stormy winter followed by

a hot-dry growing season allows bark beetles to spread out and attack damaged and dying

trees (Temperli et al., 2013; Biedermann et al., 2019; Jakoby et al., 2019). Additionally, persisting

heat and/or precipitation deficits can – given fuel availability – trigger forest fires year-round,

occurring most intensely in the Mediterranean (Turco et al., 2017). In strongly fuel-limited

regions, however, forest fires can in the long run negatively feed back on fire activity (Pausas

and Ribeiro, 2013). Lastly, beneficial conditions in the past can exert a negative legacy on forest

Parts of this chapter have been published in Hermann et al. (2023).
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vitality in following dry periods through soil moisture depletion and structural overshoot, i.e.,

an excessive canopy buildup relative to average climatic conditions (Bastos et al., 2020a; Zhang

et al., 2021). These examples highlight that in addition to the (co-)occurrence, magnitude, and

duration of heat and drought, the position of such meteorological precursors in the longer-term

history likely modulates their impact on forest greenness.

In the context of interaction and legacy effects the point in time when such meteorological pre-

cursors are relevant to forest greenness is intensively discussed in the literature. Meteorological

impact has often been investigated by considering the mean over the current growing season

(e.g., Hlásny et al., 2017; Seftigen et al., 2018; Seidl et al., 2020). Senf et al. (2020) revealed that

hot-dry conditions are particularly harmful for canopy mortality in March to July. Neumann

et al. (2017) identified warm summer temperatures and high variability in seasonal precipi-

tation as meteorological drivers of tree mortality. In a drought-prone region, forest drought

stress was about equally determined by temperature in summer and the previous autumn, and

precipitation during the cold season (Williams et al., 2013). More generally, drought-induced

partial or complete tree mortality shows a threshold behavior (Brodribb et al., 2020; Senf et al.,

2020); however, water stress is not equally harmful at all times. Especially outside or at the

bounds of the growing season there are complicating factors such as growth compensation, soil

moisture coupling, and snowmelt (e.g., Harpold et al., 2015; Bastos et al., 2020a).

The meteorological processes that are relevant for low forest-greenness cover a wide range

of timescales, whereby short-term variability can aggregate to longer-term extremes (see

Sects. 1.3 & 1.4.1). In addition to blocking (Sect. 1.3) and on somewhat longer timescales,

recurrent and quasi-stationary Rossby wave patterns may lead to co-occurring hot and dry

conditions (Wolf et al., 2018; Röthlisberger and Martius, 2019; Ali et al., 2021). In central Europe,

summer heat waves can also arise from weak synoptic forcing, which, in combination with a

Scandinavian blocking, allowed for widespread hot-dry conditions in 2018 (Spensberger et al.,

2020). During heat waves with no or reduced precipitation, the soil moisture-atmosphere cou-

pling exacerbates the near-surface warming over drying soils (Fischer et al., 2007; Seneviratne

et al., 2010). Accordingly, and especially in the Mediterranean, an extremely hot summer is more

likely in years of a winter/spring precipitation deficit (Russo et al., 2019). As Europe hardly

experiences drought over a longer (multi-annual) timescale (Schubert et al., 2016), seasonal

meteorology, which is strongly linked to weather system dynamics, is of particular interest for

forest greenness, and, therefore, in the focus of the present study.

Despite great progress in understanding the eco-hydraulic mechanisms linking drought to

events of reduced forest greenness (Brodribb et al., 2020), a systematic analysis of the meteoro-

logical history of such events is still lacking (see also Sect. 1.4.1). The purpose of this study is to

systematically document and characterize significant aspects of these meteorological histories

in Europe’s temperate and Mediterranean forests. Specifically, this study seeks to identify

meteorological precursors over the 3 years prior to reduced forest greenness in Europe. Hereby
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“precursors” are features in the meteorological histories that occur at a statistically significantly

higher rate preceding reduced forest greenness events than in climatology, and that are shared

among many events. We focus on the evolution of 90 d moving average 2-m temperature (T90d)

and precipitation (P90d) as key variables and quantitatively address the following research

questions:

1. When and how did T90d and P90d deviate significantly from climatology during the meteo-

rological history of low-forest-greenness events in Europe?

2. Which anomalies in weather system frequencies went along with the meteorological

precursors identified in (1)?

To identify low-forest-greenness events, generally characteristic for low productivity, crown

defoliation and tree mortality (Buras et al., 2021), we use persistently low values of the Nor-

malized Difference Vegetation Index (NDVI) in the summer of 2002−2022 (Sects. 3.2.2 & 3.2.3).

Based on a sub-sampling of the resulting low-NDVI events in combination with a bootstrapping

test, we then identify meteorological precursors along their meteorological history, and further

investigate the spatial variation of weather system frequencies in Sect. 3.3. Finally, we critically

discuss our results and the limitations of our analyses in Sect. 3.4.

3.2 Data and methods

We differentiate broadly between the temperate and Mediterranean biome according to Schultz

(2005) in the domain extending from 10°W to 45°E and 35°N to 65°N, excluding all boreal forests

(Fig. 3.1a).

Figure 3.1: (a) Forest grid cells (FA0.5 ≥ 10%) in the study domain, separated into temperate and
Mediterranean forests by the dashed black line. The boreal biome is cropped by the second dashed line
in northern Europe. (b) An example of the identification of low-NDVI grid cells, where (1) forest pixels
are flagged if at least four out of six time steps show negative NDVI’, and (2) 0.5◦ × 0.5◦ forest grid cells
are flagged if more than 80% of the forest pixels within are flagged (details provided in the text).
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3.2.1 Forest cover data

Land surface cover observations are available from the Corine Land Cover (CLC) dataset

from the Copernicus Land Monitoring Service at 100 m horizontal resolution from the year

2012 (Büttner et al., 2004). For comparison with the other datasets introduced below, we first

interpolate the surface cover to 250 m resolution by nearest-neighbor interpolation. Following

that, we mask all pixels except forest land cover classes (coniferous, broad-leaved, and mixed

forest) to retain only forest pixels. We then coarse-grain fractional forest area to 0.5◦ × 0.5◦ grid

cells, which is the spatial resolution of the meteorological dataset used here (ERA5, see Sect. 2.1),

hereafter denoted as FA0.5. For our analysis we only consider grid cells with a significant

fraction of forest cover, defined here as FA0.5 ≥ FAmin = 10%, and hereafter refer to these grid

cells as “forest grid cells”. According to this definition, there are 1’260 and 544 forest grid cells

in the temperate and Mediterranean biome, respectively (Fig. 3.1a).

3.2.2 Normalized Difference Vegetation Index

We use the 16-day Normalized Difference Vegetation Index (NDVI) at ∼250 m horizontal

resolution from March 2002 to August 2022 from NASA MODIS Terra (Didan, 2015). As

mentioned in Sect. 3.2.1, we only use NDVI at forest pixels according to CLC in order to

minimize noise from other land cover types. The NDVI is based on the red (RED) and near-

infrared (NIR) spectral irradiance:

NDVI =
NIR − RED
NIR + RED

(3.1)

The greener a forest pixel is, the closer its NDVI is to +1 (Tucker, 1979). The NDVI serves

as a measure of vegetation greenness and has previously been used to assess drought

impact on ecosystems (Anyamba and Tucker, 2012; Orth et al., 2016; Buras et al., 2020).

The Application for Extracting and Exploring Analysis Ready Samples (AppEEARS; https:

//appeears.earthdatacloud.nasa.gov, last accessed 26-September-2022) additionally pro-

vides MODIS pixel quality. In addition to masking non-forest land cover, we mask NDVI values

that are of poor quality due to snow and clouds, and only retain NDVI values with good and

marginal quality according to MODIS pixel quality. The resulting NDVI time series contain

missing values, which we linearly interpolate from neighboring time steps as in Buras et al.

(2021). Finally, we perform a linear detrending of the entire time series as in Buras et al. (2020)

due to a detected greening trend (Bastos et al., 2017).

After this post-processing, at every pixel j at time step t in year n we consider NDVI anomalies

(NDVI’j,t,n) from the median in June−August (JJA). To later compare anomalies at different

pixels, we standardize the anomalies by the local interquartile range IQRj(NDVI):

NDVI’j,t,n =
NDVIj,t,n − NDVIj

IQRj(NDVI)
(3.2)

https://appeears.earthdatacloud.nasa.gov
https://appeears.earthdatacloud.nasa.gov
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The climatological median NDVIj and IQRj(NDVI) are both calculated from all 126 NDVI

anomalies in JJA 2002−2022.

3.2.3 Identification of low-NDVI grid cells

The aim of the approach presented here is to identify persistently low NDVI in JJA at the

relatively large 0.5◦ scale of the meteorological reanalysis data, i.e., widespread low NDVI. In

essence, the approach (1) considers all forest pixels j within a forest grid cell J and flags them if

at least four out of the six NDVI’ values in JJA are negative, and (2) identifies an event at forest

grid cell J (i.e., a 0.5◦ × 0.5◦ grid cell with at least 10% forest cover) if at least 80% of forest pixels

inside J are flagged (Fig. 3.1b). Our identification scheme thus features 3 tuning parameters:

(1) the FAmin, (2) the minimum count of negative NDVI’ per JJA at the pixel level (cmin
ev ), and

(3) the fraction of affected forest pixels per forest grid cell. An extensive sensitivity analysis to

reasonable variations in these parameters is presented in Appendix A.1. Hereafter we detail the

technical implementation of the approach.

In the first step (1 in Fig. 3.1b), we count the number of negative NDVI’j,t,n values for the six 16

d values during JJA in year n (cn,ev). At every forest pixel j, an event flag evj,n is determined

according to the following criterion:

evj,n =

1 if NDVI’j,t,n < 0 for cn,ev ≥ cmin
ev = 4,

0 otherwise.
(3.3)

In the second step (2 in Fig. 3.1b), the total area of forest pixels with evj,n = 1 in J (Aev
J,n) has to

be at least 80% of the total forest pixel area in J (A f or
J ) – for which we use the term minimum

affected ratio ARmin = 80% hereafter:

EVJ,n =

1 if Aev
J,n ≥ 0.8·A f or

J ,

0 otherwise.
(3.4)

Lastly, for the identified low-NDVI grid cells, we calculate a measure of event intensity as the

average of JJA minimum NDVI’j,t,n over all flagged forest pixels (evj,n = 1), hereafter termed

NDVI’min
J,n . Subscripts are omitted whenever possible without loss of clarity.

The resulting low-NDVI grid cells (EVJ,n = 1) are publicly available (Hermann, 2022) and were

tested for their sensitivity to the 3 threshold parameters ARmin, FAmin, and cmin
ev in Appendix A.1.

Our choice of ARmin = 80% and FAmin = 10% was guided by compromising between sufficient

low-NDVI grid cells for statistical evaluation and reasonable peculiarity of the low-NDVI

events, which represent a form of extreme event. Furthermore, the main results of this study

demonstrate a very low sensitivity to variation in these two threshold parameters, as to a

reduction in cmin
ev . A substantial change of the identified low-NDVI grid cells results only when

increasing cmin
ev to 5, i.e., almost uninterruptedly negative NDVI in JJA. While these most extreme
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events would be worth studying, a robust statistical evaluation thereof would not be possible

as the number of low-NDVI grid cells diminishes drastically (by almost a factor of 10).

3.2.4 ERA5 data

Atmospheric fields are used from the ERA5 reanalysis (Hersbach et al., 2020) at 0.5◦horizontal

resolution as described in Sect. 2.1.

a) Normalized meteorological 90 d anomalies

Our analyses focus on 90 d moving average values of 2-m temperature (T90d), total precipitation

(P90d), cyclone frequency ( f90d(C)), and anticyclone frequency ( f90d(A)). The T90d and P90d can

directly be averaged from T and P, while cyclones and anticyclones are identified from hourly

sea-level pressure (SLP) fields as described in Sect. 2.1. These two most central weather systems

are of interest to the low-NDVI events’ meteorological history as they are of great importance to

the temperature and humidity structure of the atmosphere. For all four variables, we calculate

90 d mean values as a right-aligned moving average. Each 90 d mean value, therefore, is labelled

by the time step of the last value that contributes to the average. Leap days are discarded from

the analysis to maintain consistency in each calendar day’s climatology and the length of the

meteorological histories. The climatologies of the four variables cover 90 d moving averages

from 1 September 2001 to 31 August 2022.

Based on these 90 d mean values, we compute normalized anomalies at every forest grid cell

for variables X ∈ {T90d, P90d, f90d(C), f90d(A)} as follows:

X′ =
X − X

σX
(3.5)

where X′ denotes the normalized anomaly, and X and σX denote the climatological seasonal

mean and standard deviation in the considered 21 years, respectively, i.e., are calculated over

21 values. Note that the normalization of X anomalies is used merely for scaling with local

variability. The scaling enables the spatiotemporal comparison of these anomalies and is not

used to estimate the anomalies’ return period or likelihood.

For better interpretability of individual meteorological histories, we express f90d(C) and f90d(A)

also as anomalies relative to the climatological mean. These relative anomalies are calculated as

follows, e.g.,

f ′rel
90d (C) =

f90d(C)− f90d(C)
f90d(C)

(3.6)

b) Significance assessment

We conduct a bootstrapping test to identify statistically significant meteorological precursors

that are shared among the low-NDVI grid cells. The details of how the test is conducted are
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described in Appendix A.2. Broadly, the bootstrapping produces 1’000 synthetic samples of

meteorological histories with a sample size equal to the number of low-NDVI grid cells under

consideration. These samples correspond to many realizations of meteorological histories that

are expected in the climatological reference period of 2002−2022, and are used to construct

the null distributions for our statistical tests. We test the following null hypothesis H0,EV at

different time lags ∆t prior to the event time tev with a significance level of α = 5%:

H0,EV : The meteorological history at tev − ∆t is equal to a randomly sampled meteorologi-

cal history.

We use different test statistics (with corresponding null distributions) to investigate different

aspects of the meteorological history under consideration. These statistics are the sample

mean T′
90d, P′

90d, f ′90d(C) and f ′90d(A) and the fraction of ∆t that is on average covered by warm

(T′
90d > 0) and dry periods (P′

90d < 0). Moreover, our statistical procedure is designed to retain

the spatial correlation of the original meteorological fields (for details see Appendix A.2). In the

bootstrapping test, p values are estimated from the percentiles of the 1’000 reference values.

Values of the meteorological history under consideration that lie outside the range of the 1’000

corresponding synthetic values of the reference meteorological histories receive a p value of 0

(Röthlisberger et al., 2016). We reject the above null hypothesis if an observed value lies outside

the 2.5th to 97.5th percentile of the null distribution (defined by the 1’000 values obtained from

the bootstrapping). That is, we reject the null hypothesis at the 5% significance level. At time

lags ∆t when the meteorological history of the low-NDVI grid cells lies outside the confidence

interval, H0,EV is rejected for time lag ∆t.

3.3 Results

3.3.1 Low-NDVI events in JJA 2002–2022

Low-NDVI events covered substantial parts of both biomes in JJA 2002−2022, and were by far

the most frequent in 2022 (Fig. 3.2a,d; Appendix A.3). In the temperate biome, the years with

most low-NDVI grid cells – in descending order – were 2022, 2019, 2018, and 2020 (Fig. 3.2a,d).

It is noteworthy that these 4 years all lie in the last 5 years of the study period. In 2022, 37% of

temperate forests were affected by the low-NDVI event, which far exceeded the previous record

years 2019 and 2018 by 13% and 15%, respectively (Fig. 3.2d). The top years in terms of affected

forest grid cells in the Mediterranean biome were 2022, 2008, 2005, and 2007, again sorted by

decreasing area affected. Low-NDVI grid cells were on average almost twice as frequent in the

Mediterranean biome (9% yr−1) compared to the temperate biome (5% yr−1; Fig. 3.2d). Lastly,

most low-NDVI events in each biome go along with increased disturbance area as measured

by forest canopy mortality according to Senf and Seidl (2021a, Appendix A.4). More specifi-

cally, in the overlap period of the two datasets, most low-NDVI grid cells are among the top

4 and five 5 regarding the disturbance area in temperate and Mediterranean forests, respectively.
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Figure 3.2: Maps of (a) years with a low-NDVI event (Appendix A.3), and (c) total number of events.
(b) Histogram of event intensity as measured by NDVI’min

J in the two biomes, and (d) time series of
the biome-integrated area of low-NDVI grid cells relative to all forest grid cells (in %). Years with few
low-NDVI grid cells are shown in white in (a). In (a) each grid cell is split into four quads, showing the
event year of up to the four most intense events. Dashed lines in (d) show the average over all years.
Dashed lines in (a,c) delineate the temperate and Mediterranean biome.

Mediterranean forests faced more but typically less intense events, as measured by the grid-

cell-wide average of summer minimum NDVI’ (Fig. 3.2b, Sect. 3.2.3). NDVI’min
J was usually

between −1 and −2, whereas it was about 0.5 lower for temperate forests. Hotspot regions with

3 or more events during the 21 years were northeastern Germany, the Balkans, and large parts

of the Mediterranean biome (Fig. 3.2c). In the latter, we find many low-NDVI grid cells in Spain

in 2005, in Turkey in 2007 and 2008, in Italy in 2017, and in 2022 in the northern Mediterranean

(Appendix A.3). Central Europe was largely affected in the past 5 years, while the 2018−2019

events extended further to Scandinavia and the Baltic, and 2020 and 2022 affected also parts of

southern France and eastern Europe, respectively. Note that 26% of the forest regions in the

study domain never experienced an event in JJA 2002−2022 (Fig. 3.2c). These grid cells are

in northeastern Europe or in mountainous regions including the Alps, the Carpathians, the

southern Dinaric Alps, and the Eastern Black Sea Mountains.

3.3.2 Examples of meteorological histories

Low-NDVI events affected different forest regions all over Europe with varying intensity, each

with its own meteorological history. We first present 3 examples of low-NDVI events that

affected regions in Spain in 2005 (SPA05), in the Balkans in 2013 (BAL13), and in France in
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Figure 3.3: (a-c) Low-NDVI grid cells and (d-f) the event intensity measured by NDVI’min
J in (a,d) Spain

in 2005, (b,e) the Balkans in 2013, and (c,f) France in 2022. The focus regions of SPA05, BAL13, and FRA22
are framed with white boxes.

2022 (FRA22; Fig. 3.3). First, these examples illustrate that the low-NDVI events identified in

this study not necessarily featured a very low NDVI’min
J , i.e., a strong magnitude of negative

NDVI’. For example, some grid cells of the SPA05 region were identified as low-NDVI grid

cells with NDVI’min
J just above −1, while others with NDVI’min

J < −1.75 in northern Spain

were not identified (Fig. 3.3a,d). In fact, this is an expected behavior of our identification

scheme as low-NDVI grid cells are meant to indicate that a very large fraction of forest pixels in

that grid cell experienced persistently low NDVI (Sect. 3.2.3). In many cases, however, event

intensity as a JJA-integrated quantity was increased at low-NDVI grid cells, compared to their

event-unaffected surrounding, illustrated in the example of France in 2022 (Fig. 3.3c,f). Lastly,

another interesting case (not shown) occurred in 2014 in Slovenia, where an ice storm in the

previous winter caused a few low-NDVI grid cells (Appendix A.3; Buras et al., 2021; Senf and

Seidl, 2021c).

We now introduce the concept of a 3-year meteorological history prior to low-NDVI events

for these 3 examples. For SPA05, the meteorological history was characterized by a shift from

a precipitation surplus during SON-21m to JJA-12m to a precipitation deficit during the year
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prior to the low-NDVI event (Fig. 3.4a). Note that seasons MAM, SON, and DJF refer to the

periods March–May, September–November, and December–February, respectively, and that

we here use a notation for seasons (e.g., SON-21m) that indicates their negative time lag to the

events (i.e., SON-21m is the autumn 21 months prior to the low-NDVI event summer, termed

JJA-ev). While the cyclone frequency was more than doubled during the former wet period,

the period with negative P′
90d featured almost no cyclones at all. The relative cyclone frequency

anomaly f ′rel
90d (C) was most negative (−50% to −100%) in the climatological cyclone season

from SON to MAM (Fig. 3.4a). For example in early MAM-3m, P′
90d = −1.5 coincided with

f ′rel
90d (C) of close to −75%. The meteorological history of SPA05 further featured strong cold

spells in MAM-15m to JJA-12m and in DJF-6m to MAM-3m with T′
90d as low as −2.6 (Fig. 3.4b).

Warm periods occurred in JJA-ev and DJF-18m and coincided with an increased frequency of

anticyclones, i.e., positive f ′rel
90d (A). In the second example, BAL13, the magnitude of negative

P′
90d was also a dominant feature of the meteorological history with even more distinctive

persistence over the 3 years (Fig. 3.4c). Similarly to SPA05, a precipitation deficit was often

related to negative f ′rel
90d (C) with some exceptions, e.g., in SON-9m. JJA-12m was characterized

by the largest T′
90d = +2.9 of all examples and did not coincide with substantial changes in

f ′rel
90d (A) or in f ′rel

90d (C) (Fig. 3.4c,d). Despite continuously positive T′
90d from JJA-12m to JJA-ev,

the meteorological conditions became less dry and less hot than in JJA-12m, when, interestingly,

the BAL13 region was mostly unaffected by low-NDVI events (Appendix A.3). The most recent

event FRA22 had again a different meteorological history. It stands out with anomalously

high T′
90d over the 6 months preceding the event that was related to negative f ′rel

90d (A) over

considerable portions of that period (Fig. 3.4f). Moreover, P′
90d during most of these 6 months

was only slightly negative, and strongly positive when going further back in the meteorological

history, e.g., in JJA-12m (+2.6; Fig. 3.4e). One last noteworthy disparity of FRA22 compared to

BAL13 is that JJA-12m was persistently colder alongside negative f ′rel
90d (A).

While they are illustrative, these exemplary meteorological histories of SPA05, BAL13, and

FRA22 reveal great variability and clearly do not allow to draw any causal inferences about

how certain aspects of these histories alter the likelihood of low-NDVI events. The events’

meteorological histories share certain characteristics but clear disparities also emerge, for

example, P′
90d in JJA-ev or T′

90d in the last year before the event. Thus, in the next section, we

systematically analyze the meteorological history of all identified low-NDVI events, and use our

sub-sampling and bootstrapping procedure to identify statistically significant meteorological

precursors to these events. Again recall that these precursors are features of the low-NDVI

events’ meteorological histories that were significantly more frequent than during any random

meteorological history in the climatology.

3.3.3 Meteorological precursors of low-NDVI events

The previous two sections have illustrated that (i) low-NDVI events were unequally distributed

over the study period – especially in temperate forests –, and (ii) a more systematic analysis

of meteorological histories is needed to assess their relevance for the low-NDVI grid cells.
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Figure 3.4: The 3-year evolution of (a,c,e) P′
90d and (b,d,f) T′

90d leading up to low-NDVI events in (a,b)
Spain in 2005, (c,d) the Balkans in 2013, and (e,f) France in 2022. The relative anomaly of (a,c,e) cyclone
frequency, and of (b,d,f) anticyclone frequency is shaded and their climatological mean is shown as grey
line in the heatmap panels.

To account for the uneven distribution of events across years, we investigate the average

meteorological history of a random sub-sample of low-NDVI grid cells in the temperate and

Mediterranean biome separately. The sub-sample includes a maximum of 10 randomly selected

low-NDVI grid cells per year. Given the 21-year-long study period, there is a maximum of

210 contributing low-NDVI grid cells. For years with fewer than or exactly 10 low-NDVI grid

cells, all events of the respective year contribute to the sub-sample. The resulting average

meteorological history of the temperate and Mediterranean biome is a mean over 170 and 164

low-NDVI grid cells, respectively (see Appendix A.1). Due to the randomness involved in

the sub-sampling, we repeat the procedure nsamp = 10 times to create a variety of average

meteorological histories that account for the variability in years when many low-NDVI grid

cells were identified. Our bootstrapping test (significance level α = 5%) is then applied

to the anomalies of the averaged meteorological histories to identify statistically significant

meteorological precursors of the low-NDVI events in 2002−2022 (Sect. 3.2.4b). In the first part

of this section, we analyze the magnitude of T′
90d, P′

90d, f ′90d(C), and f ′90d(A) during the 3 years

leading to low-NDVI events – similarly to Fig. 3.4. Second, we investigate the persistence of

dry (P′
90d < 0) and hot (T′

90d > 0) meteorological anomalies.
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a) Magnitude of meteorological anomalies

The most remarkable meteorological precursors of low-NDVI events in the temperate biome

are significantly negative P′
90d and positive T′

90d during the 4 months preceding the events (bold

lines in Fig. 3.5a,c). Note that the 90 d anomaly 4 months prior to the event represents the

conditions during the 6 to 4 months prior to JJA-ev: i.e., the time instances denoted here and in

the following mark the end of the anomalous time periods. Furthermore, the meteorological

history of low-NDVI events in temperate forests showed significantly reduced P′
90d in JJA-12m

(Fig. 3.5a). In between JJA-12m and JJA-ev, P′
90d remained mostly negative but not with a

statistically significant magnitude. Similarly to P′
90d, also for T′

90d significant signals along the

meteorological history were always of the same sign (positive in the case of T′
90d). Further warm

peaks occurred in MAM-3m, SON-9m, JJA-12m, SON-21m, and DJF-30m (Fig. 3.5c). Many

of the highlighted periods when the magnitude of meteorological conditions were unusual

coincided with larger spread of the ten low-NDVI grid cell sub-samples. For example, P′
90d in

JJA-12m ranged between −0,2 and −0.4, indicating that the years with many low-NDVI grid

cells (e.g., 2022, 2019, and 2018) showed increased variability at that point in time (Fig. 3.5a).

That is, some NDVI grid cells showed a stronger, and others a weaker or no precipitation deficit

in JJA-12m, respectively.

In Mediterranean forests, the magnitude of hot and dry anomalies in JJA-ev was comparable to

that in temperate forests, with the difference that significantly negative P′
90d emerged already 8

months before low-NDVI events during DJF-6m (Fig. 3.5b,d). One more dry period in DJF-18m

was significantly different from climatology, as was a wet and warm anomaly in DJF-30m

(Fig. 3.5b). Apart from the few mentioned anomalies, the meteorological anomalies further back

than 3 seasons (before SON-9m) were within the variability expected from the climatology. Sim-

ilar to temperate forests, the uncertainty induced by the random sub-sampling is larger when

anomalies were of greater magnitude. This applies in particular for the anomalies preceding

the low-NDVI events by more than 1 year.

Most of the highlighted anomalies in surface meteorology went along with significant anomalies

in the occurrence frequency of weather systems (Fig. 3.5e-h). Note that we here explore the

median history of f ′90d(C) and f ′90d(A), i.e., of normalized anomalies that are comparable across

space and time, and not of f ′rel
90d (C) and f ′rel

90d (A) as in Sect. 3.3.2, which are more meaningful

in a local context (Sect. 3.2.4). In the temperate biome, the hot-dry conditions leading up to

JJA-ev related to a concurrent positive f ′90d(A) (Fig. 3.5g). Already in JJA-12m, negative P′
90d

went along with significantly increased f90d(A). These positive anomalies thereby occurred

in the season when anticyclones are climatologically the least frequent. Further back in time,

negative f ′90d(C) in MAM-15m had no direct connection to anomalies in surface meteorology,

and the DJF-30m warm anomaly related to persistently negative f ′90d(A). In the Mediterranean

biome, there were 4 periods of significantly negative f ′90d(C): two of them, in DJF-18m and

during the 8-month long dry period before the event, coincided with P′
90d < 0 (Fig. 3.5f). Note

that these were during periods when cyclones are climatologically the most frequent. Moreover,
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Figure 3.5: Average 3-year evolution of (a,c) P′
90d and (b,d) T′

90d at low-NDVI grid cells (olive lines).
The range spanned up by the nsamp = 10 sub-samples (of nev low-NDVI grid cells each) is dotted,
their median is solid. The confidence interval (CI), i.e., the 2.5th − 97.5th percentile of the reference
climatology is shaded in grey (see Sect. 3.2.4b). The normalized (e,f) cyclone and (g,h) anticyclone
frequency anomalies f ′90d(C) and f ′90d(A), respectively, as median over the 10 samples are shaded in
colors. The 90 d climatology of the weather system frequencies is displayed as a solid line. Plots apply
to events in the (a,c,e,g) temperate and (b,d,f,h) Mediterranean biome. Statistically significant median
values outside the 95% CI are marked by colored dots at the bottom of each panel.

in the drier than usual DJF-18m, f ′90d(A) was persistently positive (Fig. 3.5h). To summarize,

significant changes in weather system frequencies often occurred simultaneously with the time

periods when the magnitude of P′
90d and T′

90d were identified as meteorological precursors of

low-NDVI grid cells.

The systematic assessment of meteorological histories across all low-NDVI grid cells in

2002−2022 has revealed several meteorological precursors of low-NDVI events in temper-

ate and Mediterranean forests. In addition to the mere magnitude of T′
90d and P′

90d, some of

these anomalies have co-occurred with a significantly altered frequency of cyclones and/or
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Figure 3.6: The average fraction of the integration period with a (a,c) dry (P′
90d < 0) and (b,d) warm

period (T′
90d > 0) for decreasing integration period ∆t prior to low-NDVI events. The range spanned by

the nsamp = 10 sub-samples (of nev low-NDVI grid cells per biome) is dotted, and their median is solid.
The grey shading displays the 95% confidence interval (CI) of the reference climatology. Statistically
significant median values outside the 95% CI are marked by colored dots at the bottom of each panel.

anticyclones. At the biome scale, anticyclones went along with locally drier conditions across

all low-NDVI grid cells, e.g., in JJA-ev and in JJA-12m (temperate), and in DJF-18m (Mediter-

ranean). Further, the lack of cyclones in the Mediterranean in their climatological peak season

was linked to significantly reduced P′
90d. Figure 3.5 reveals that some T′

90d and P′
90d signals

were not significantly unusual in their magnitude; however, seem to have been of unusual

persistence. For example, warm anomalies in temperate forests were hardly ever interrupted

during the entire meteorological history (Fig. 3.5c). Therefore, we next analyze the persistence

of dry and warm anomalies.

b) Persistence of dry and warm periods

The previous subsection pointed to not necessarily intense but unusually persistent dry and

warm periods, which we investigate in more detail in Fig. 3.6. To do so we take the data dis-

played in Fig. 3.5 and compute the fraction of positive and negative T′
90d and P′

90d, respectively,

from a single 90 d average to 3 years prior to the low-NDVI events. This is done, again, for the 10

sub-samples individually, for which we calculate a median time series. Moreover, analogously to

Fig. 3.5, we contrast the respective fractions to values expected under the null hypothesis H0,EV

that the fraction of dry/warm periods preceding the low-NDVI events (i.e., during ∆t) was not

different from a randomly sampled meteorological history (grey shading in Fig. 3.6; Sect. 3.2.4b).

In the temperate biome, when going back more than 8 months prior to low-NDVI events,

the persistence of warm and dry anomalies was each a statistically significant meteorological

precursor to low-NDVI grid cells in 2002−2022 (Fig. 3.6a,c). While T′
90d and P′

90d prior to this

period were only briefly of significant magnitude (Fig. 3.5a,c), their persistence was unusually

farther back along the meteorological history. When considering 2 years before events, dry
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periods accounted for 82−99% of that time period, where the range is spanned up by the 10

random sub-samples, which is significantly more than the climatological expectation (Fig. 3.6a).

Similarly, the persistence of warm anomalies during 81−90% of the preceding 2 years were

significantly anomalous (Fig. 3.6c) for 9 out of the 10 sub-sample meteorological histories (not

shown). When considering all 10 sub-samples separately, we find that the persistence of dry

periods and warm periods was significantly different from climatology at least over 26 and 25

months prior to low-NDVI events, respectively. This is also the integration period when these

two meteorological precursors were most distinct – i.e., when H0,EV is most clearly rejected.

So an accumulation of both warm and dry periods over the approximately 2 previous years

comprised peculiarities of events in the temperate biome.

In the Mediterranean biome, warm periods were more frequent than usual but not significantly

so compared to the reference climatology (Fig. 3.6d), which is an interesting contrast to the

temperate biome. None of the 10 sub-samples indicate that positive T′
90d values were unusually

persistent for any ∆t during the meteorological history. Similarly to the temperate biome, dry

periods accumulate to a highly unusual degree when going back more than 8 months (Fig. 3.6b).

The lowest p value is reached 28 months prior to events, when dry periods persisted over

81−95% of the time afterwards. Again considering each of the 10 sub-samples individually, we

conclude that the persistence of dry periods was increased over at least 34 months preceding

low-NDVI events, which is longer than for low-NDVI events in temperate forests. In contrast,

the persistence of warm conditions does not emerge as a significant precursor to low-NDVI

events in the Mediterranean.

3.3.4 Spatial patterns of weather system anomalies

Additionally to the biome-wide averages shown in Fig. 3.5e-h, anomalies in weather system

frequencies exert some typical spatial patterns along the meteorological history, which we

illustrate in the example of the past year prior to JJA-ev. Based on our set of low-NDVI grid cells,

we identify common patterns in the anomalies of weather system frequencies in the grid cells’

meteorological history. Note, however, that the robustness of such an analysis is inherently

low at the local scale due to the rarity of low-NDVI events (Sect. 3.3.1). Figure 3.7 shows the

consistency in the sign of f ′rel
90d (A) and f ′rel

90d (C) for the 90 d periods of approximately JJA-ev

(Fig. 3.7a,b) and MAM-3m (Fig. 3.7c,d), respectively, for all forest grid cells that experienced at

least two low-NDVI events in 2002−2022. The results for DJF-6m and SON-9m are shown in

Appendix A.5.

In the temperate biome, changes in weather system frequencies that were consistent among most

or all low-NDVI events at one location occurred in 66−81% and in 54−64% of the considered

forest grid cells in JJA-ev and MAM-3m, respectively. Most prominently, northeastern Europe

showed a consistent increase of anticyclones and decrease of cyclones in JJA-ev (Fig. 3.7a,b).

Negative f ′rel
90d (C) was consistent among all low-NDVI events at the southern edge of the storm

track, i.e., south of the region of climatologically high f90d(C) (Fig. 3.7b). In MAM-3m, how-
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Figure 3.7: The consistency in the sign of (a,c) f ′rel
90d (A), and (b,d) f ′rel

90d (C) for all forest grid cells with
at least two low-NDVI events in 2002−2022. Maps are shown for the last day of (a,b) JJA-ev, and (c,d)
MAM-3m. Stippling indicates absolute averages over all anomalies of the same sign of ≥ 25%. Two-
dimensional Gaussian-smoothed (2σ) climatological f90d(A) and f90d(C) are shown in beige contours.

ever, positive f ′rel
90d (C) occurred simultaneously with positive f ′rel

90d (A) in Germany and parts of

northwestern Europe. Positive f ′rel
90d (A) in northern Europe was prevalent not only in JJA-ev,

but also in MAM-3m (Fig. 3.7a), in DJF-6m, and partly in SON-9m (Appendix Fig. A.5). In

MAM-3m this signal further extended towards the Balkans (Fig. 3.7b). Southern France showed

an opposite signal of increased cyclone frequency and negative f ′rel
90d (A) in JJA-ev. Farther back

in the meteorological history in DJF-6m and SON-9m f ′rel
90d (C) was negative for most or all of

the low-NDVI events in 56−58% of the considered forest grid cells (Fig. A.6). To summarize,

positive f ′rel
90d (A) and negative f ′rel

90d (C) were prominent features in northern Europe in the warm

and cold season, respectively. Other regions, such as southern France, show interesting differ-

ences from this prominent signal.

The Mediterranean showed overall greater spatial coherence than its temperate counterpart.

First of all, as with Germany in MAM-3m, the Iberian Peninsula was a region of generally

increased weather system activity in JJA-ev. There was a dipole pattern of consistently positive

f ′rel
90d (C) in the West, and a mostly to consistently positive f ′rel

90d (A) in the East (Fig. 3.7a,b). This

synoptic pattern fosters more frequent southerly advection. Note that the Iberian Peninsula was

also a hotspot of low-NDVI events, i.e., results there were consistent among up to six events

(Fig. 3.2c). The typical signal of positive f ′rel
90d (A) and negative f ′rel

90d (C) occurred in the central

Mediterranean in JJA-ev and in most Mediterranean forest grid cells in MAM-3m (Fig. 3.7c,d)

and in DJF-6m (Figs. A.5 & A.6). In these two seasons, only 5% and 6% of considered forest

grid cells showed mostly or consistently positive f ′rel
90d (C). Also in SON-9m, cyclones were
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mostly less frequent than usual (Fig. A.6). Thus, Mediterranean low-NDVI grid cells very often

experienced negative f ′rel
90d (C) in the past year of the meteorological history, consistent with the

results in Fig. 3.5f. Low-NDVI events in the western Iberian Peninsula hotspot region, however,

experienced the opposite change in cyclone frequency in JJA-ev, which might be a signal of

intensified Iberian thermal lows (Santos et al., 2015).

3.4 Discussion

3.4.1 Low-NDVI events

The low-NDVI grid cells identified in this study typically represented summers with a heat-

and/or drought-induced loss of forest greenness (Anyamba and Tucker, 2012; Orth et al., 2016;

Buras et al., 2020). Known drought and heat events were identified as low-NDVI events, e.g.,

the Iberian drought in 2005 (Gouveia et al., 2009), a 2-year-long drought in 2007−2008 in Turkey

(Varol and Ertuğrul, 2016), the 2011−2013 drought in the Balkans (Cindrić et al., 2016), the hot

summer of 2017 in Italy (Rita et al., 2020), and the Central European hot drought in 2018 (Schuldt

et al., 2020; Senf and Seidl, 2021b). Additionally, we identify 2022 as record-breaking year of

the most widespread low-NDVI events covering 37% of the Mediterranean and temperate

forest biome each. In 2022, Europe experienced its hottest JJA on record alongside dry soils

(Copernicus Climate Change Service, 2022), and the largest carbon emissions from wildfires

since 2007 were recorded (Copernicus Atmosphere Monitoring Service, 2022). Specifically,

among the countries with most low-NDVI grid cells were also those that faced extreme anoma-

lies in wildfire activity: the burned area in Romania, Germany, France, Spain, and Croatia

was 11, 10, 7, 4, and 3 times larger in 2022, respectively, than the 2006−2021 average (EFFIS,

2022). First observations of early leaf senescence as in 2018 are mentioned by Kittl (2022). The

regions spared by the low-NDVI event in 2022 – mainly Scandinavia, parts of France, and a belt

from the Austrian Alps to the Baltic – were the only regions that showed a surplus in surface

soil moisture compared to 1991−2020 conditions (Copernicus Climate Change Service, 2022).

Our approach to identify low-NDVI events, therefore, identifies not only events due to heat

and drought but also events due to positively interacting disturbances such as fire and insect

outbreaks. Finally, however, there was at least one example of a drought-unrelated low-NDVI

event, namely an ice storm that hit Slovenia in February 2014 (Senf and Seidl, 2021c; Buras

et al., 2021). Consequently, we cannot rule out that other disturbances that were not necessarily

linked to heat or drought, e.g., also late frost (Bascietto et al., 2018; Vitasse et al., 2019), have

impacted some of the low-NDVI grid cells.

As our approach identifies persistent and widespread NDVI losses, more localized and poten-

tially more extreme reductions in forest greenness are often not captured (Appendix A.3), e.g.,

logging in France in 2009 (Senf and Seidl, 2021a), or low NDVI following the winter windstorm

Gudrun in southern Sweden in 2005 (Buras et al., 2021). Interestingly, the hot drought in 2003

also hardly lead to low-NDVI grid cells in Europe. The NDVI reduction in that summer was
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most prominent for grassland and crops but less so for forests (Buras et al., 2020). Forests

are capable of resisting a temporally limited drought much better than grassland, as they can

respond with reduced evapotranspiration and increased water use efficiency (Wolf et al., 2013).

Note, however, that grassland typically recovers better after long-lasting droughts than forests

(Stuart-Haëntjens et al., 2018). The only forest regions that were affected by a low-NDVI event

in 2003 are in southern France and Italy, where strongest growth reductions in forests were

observed (Ciais et al., 2005). Our results, therefore, suggest that – compared to the events since

2018 – the impact of the 2003 drought on forest greenness was generally limited and scattered

in space.

3.4.2 Meteorological histories and their inter-biome differences

The purpose of systematically analyzing meteorological histories of low-NDVI events was to

identify statistically significant meteorological precursors to these events. Hereby, it should be

noted that this statistical analysis alone does not allow to infer causation between the precursors

and the low-NDVI events, but identifies unusual co-occurrence of these precursors and the

low-NDVI events. The causation surmised in our interpretation of these precursors below is

inferred from the large body of process-focused literature we cite. We neither identify a univer-

sally valid meteorological history leading to low-NDVI events nor establish hitherto unknown

causal links between seasonal timescale meteorology and low-NDVI events. Rather, the value

of our approach is that we can systematically examine which aspects of the meteorological

history stand out of the noise and variability that are invariably present across the large set of

meteorological histories (e.g., Fig. 3.4) identified here.

The case study of low-NDVI grid cells in Spain in 2005 (SPA05) is one example that illustrates

this value of our approach (Sect. 3.3.2). The meteorological history of SPA05 showed a precipi-

tation surplus in the previous spring and summer, which was not a significant meteorological

precursor to low-NDVI events in the Mediterranean in general (Sect. 3.3.3a). A preceding

surplus in precipitation in a water-limited region such as Spain could cause structural over-

shoot, i.e., the buildup of large crowns with high water demand, which was suggested to

worsen the following drought impact (Zhang et al., 2021). Long-term irrigation experiments at

dry sites revealed reduced tree growth over several years as a response to ceasing irrigation

(Rigling et al., 2003; Feichtinger et al., 2014). Furthermore, short-term irrigation causes more

pronounced responses in tree growth than long-term irrigation, while both potentially increase

the sensitivity to drought in the following years indirectly via increased leaf area and tree height

(Feichtinger et al., 2015). So while there is strong evidence for lagged responses to a previous

precipitation surplus due to structural overshoot, our approach shows that this process does

not translate to a systematic meteorological precursor at the biome scale in the Mediterranean.

The most striking meteorological precursors of low-NDVI grid cells were the persistence of a

precipitation deficit (both biomes) and of positive temperature anomalies (temperate biome)

over at least 2 years. Continuously dry conditions reached farther back in Mediterranean than
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in temperate forests, respectively, which might be an important difference due to year-round

growth of widespread evergreen tree species in the Mediterranean (Camarero et al., 2021).

Also, these conditions play an important role for forest fires, which likely aggravated the me-

teorological impact on NDVI indirectly (Nagel et al., 2017; Turco et al., 2017). The identified

extremely unusual accumulation of warm periods over around 25 months prior to events in the

temperate biome points to its indirect effects on insect populations and fire, as well as to the

joint amplification of drought impacts (Seidl et al., 2017; Sommerfeld et al., 2018; Seidl et al.,

2020; Forzieri et al., 2021). Also, because the significantly pronounced warm periods occurred in

the (late) growing season of all 3 preceding years, continuously increased temperatures might

have worsened the impact of the event-concurrent hot drought through structural overshoot

and soil moisture depletion (Bastos et al., 2020a; Zhang et al., 2021). This 4-month-long hot

drought in JJA-ev was of significant magnitude for both meteorological anomalies in the studied

low-NDVI grid cells. In the Mediterranean, a large precipitation deficit preceded positive T′
90d

by another 4 months, which could follow from the fact that winter/spring drought in southern

Europe increases the likelihood of a hot JJA through an enhanced soil moisture-atmosphere

feedback (Seneviratne et al., 2010; Russo et al., 2019). More generally and in both biomes, the

emergence of an unusually strong 90 d precipitation deficit already in spring can be particularly

damaging (Senf et al., 2020; Bigler and Vitasse, 2021; Bose et al., 2021).

Apart from the accumulation of dry periods reaching far back in time in both biomes, primarily

temperate forests show meteorological precursors that occurred more than 1 year in the past.

Significantly reduced P90d and increased T90d occurred during the previous JJA, which points

towards drought legacy effects (Anderegg et al., 2015). This legacy might not always be

reflected in NDVI (Kannenberg et al., 2019), however, it can indirectly affect future forest

vitality via reduced tree resilience (Bose et al., 2020). Moreover, the succession of drought in

consecutive summers is particularly harmful for temperate forests, while Mediterranean forests

show a decreased sensitivity to the second drought (Anderegg et al., 2020). To summarize,

the systematic meteorological histories of low-NDVI events and differences between the two

biomes can be linked to much of the current mechanistic understanding of forest vitality in the

two bioclimatic regions.

3.4.3 The role of weather systems

Our results highlight that the timing and positioning of weather systems are crucially determin-

ing their impact on surface meteorology relevant for low-NDVI grid cells. At the biome scale,

the at least 34-month-long dry period in the Mediterranean is accompanied by reduced 90 d

cyclone frequency, mostly so in DJF and MAM when cyclones are climatologically most frequent

(Wernli and Schwierz, 2006). Cyclones are the main contributor to cold season precipitation in

these forest regions (Rüdisühli et al., 2020), and also to extreme precipitation (Pfahl and Wernli,

2012b). Other water-limited forest regions show a similar sensitivity to cold season precipitation

(Williams et al., 2013), and therefore, to the precipitation-causing weather phenomenon. More

frequent anticyclones were typical in JJA-ev and MAM-3m and relate to an upper-level sub-
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tropical ridge extending into the Mediterranean – a known driver of heat extremes in southern

Europe (Sousa et al., 2018; Zschenderlein et al., 2019). Over the western Iberian Peninsula in

JJA-ev, specifically, more frequent cyclones likely occurred as Iberian thermal lows that favor

summer heat extremes through increased diabatic heating over the continent (Santos et al.,

2015). Thus, reduced cyclone activity all along the meteorological history of the Mediterranean

low-NDVI events appears to have been the main contributor to the hot-dry meteorological

precursors – with the exception of Iberian thermal lows in JJA.

In temperate forests, the JJA-ev and JJA-12m hot-dry conditions were both accompanied by

more frequent anticyclones, especially in regions at the southern edge of the storm track. The

accompanying reduction in cyclone frequency in northern Europe corresponds to a northward

shift of the jet stream, which can lead to reduced forest greenness in these regions (Messori et al.,

2022). More frequent anticyclones, on the other hand, often relate to an upper-level blocking

that causes heat and precipitation suppression in central to northern Europe (Pfahl and Wernli,

2012a; Zschenderlein et al., 2019). A few regions in western Europe show an opposite signal,

i.e., reduced anticyclone frequency in JJA-ev. This relates to the fact that summer precipitation

there frequently occurs within high-pressure systems (Rüdisühli et al., 2020). In these cases,

convective precipitation occurs in the moist and unstable inflow west of the anticyclone center

(Mohr et al., 2020). So while in JJA a European-centered anticyclone can favor low-NDVI grid

cells in northern Europe, it might be unfavorable for low-NDVI grid cells in western Europe.

All in all, these considerations highlight the importance of weather systems and the necessity of

considering their spatiotemporally varying impact on surface meteorology, also when interested

in events of substantial forest impact.

3.4.4 Caveats

The two main caveats of this study are (i) the event aggregation to the comparably large scale,

and (ii) the relatively short data record. The former implies that our analyses can account

neither for species-specific drought responses (Scherrer et al., 2011; Vanoni et al., 2016), nor for

the multidimensional nature of tree mortality (Allen et al., 2015; Etzold et al., 2016; Schuldt

et al., 2020). The link between drought, drought response, and tree mortality is mediated by site,

stand, and tree properties (Etzold et al., 2019; Vitasse et al., 2019; Frei et al., 2022), and can further

be shaped by tree species diversity within a forest (Grossiord et al., 2014), its microclimate

(Buras et al., 2018), and legacies of changing environmental conditions due to, e.g., past forest

management (Thom et al., 2018). This aggregation, however, is a central element of this study

as we aimed to investigate the link of synoptic atmospheric variability with variability in forest

NDVI, which both act on very different spatial scales. The event identification is, therefore,

targeted to identify only spatially coherent losses of forest NDVI, which are meaningful to

aggregate to the larger scale. Also, the sub-sampling of the identified low-NDVI grid cells

ascertains that our results do not highlight meteorological precursors that are unique to very

few events or regions. Nevertheless, the results of this study should be confronted with more
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specific and local impact assessments.

The main consequence of the relatively short data record is that the normalization of meteoro-

logical anomalies suffers from significant sampling uncertainty, which renders any comparison

over space and time rather difficult. The normalized P′
90d and T′

90d then do not necessarily repre-

sent the actual site-level temperature and precipitation values and their interpretation requires

care (Zang et al., 2020). This specifically applies when comparing the meteorological history of

the temperate with the Mediterranean biome, respectively, as the latter climatologically receives

little precipitation during summer (Schultz, 2005). The normalization, however, is a way to use

basic meteorological variables that can readily be interpreted and linked to weather system

dynamics, which is of great importance to the novelty of this study.

3.5 Conclusions

This study identified specific aspects of the meteorological history (the 3-year evolution of

90 d temperature, T′
90d, and precipitation anomalies, P′

90d), which are systematically shared

characteristics of events of persistently low summer forest greenness at the 50 km scale in

Europe in 2002−2022. Forest greenness as measured by the NDVI is also used as an early

warning metric for forest dieback (Buras et al., 2021). First and foremost, in the temperate and

Mediterranean biomes, the regions with low-NDVI events in 2022 far exceeded the previous

record summers 2018 (temperate) and 2008 (Mediterranean) in terms of spatial extent. During

the hottest summer on record in Europe, 37% of both forest biomes were affected by persistently

low NDVI, which is about +13% more than during the previous records. In contrast, our

approach classifies the impact of the hot-dry summer of 2003 on forests as very limited and, if

so, scattered in space.

The approach used in this study identifies and quantifies the meteorological features that pre-

ceded many of the events in the same way, and reveals significant differences between biomes.

The persistence of dry periods was significantly increased for at least 26 and 34 months prior

to low-NDVI events in the temperate and Mediterranean biome, respectively. In contrast, the

persistence of hot periods was significantly increased (at least for 25 months prior to the events)

only in the temperate biome, but not the Mediterranean biome. Closer to the event summer,

negative P′
90d and positive T′

90d were significantly anomalous in magnitude. In the temperate

biome, both anomalies acquired statistically significant magnitudes in spring, 4 months before

the low-NDVI event. In the Mediterranean biome, negative P′
90d arose another 4 months earlier,

i.e., 8 months prior to low summer NDVI. Note that a single P′
90d value that was anomalous, e.g.,

8 months prior to the low summer NDVI, denotes an anomaly that refers to a 90 d period, i.e., to

the 8 to 10 months prior to the event. Finally, the systematic meteorological histories can be used

to test whether meteorologically related processes from local observations apply to an entire

biome. We discuss structural overshoot (Zhang et al., 2021), which plausibly systematically

affects low-NDVI events in the temperate biome through warmer or longer growing seasons. In
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contrast, structural overshoot due to more precipitation in the previous year is highly plausible

for a case study in the water-limited Mediterranean, but not at the biome scale.

Finally, we provide clear evidence of the spatially variable impact of synoptic-scale weather

systems on key meteorological precursors. At the biome scale, the prominent dry periods are

often caused by a significantly reduced cyclone frequency in the Mediterranean biome, and by

increased anticyclone frequency in the temperate biome. This effect can, however, differ at a lo-

cal scale, depending on which weather system is locally relevant for precipitation. For example,

western Europe often receives summer precipitation from convective cells in anticyclones, and

thus hot-dry conditions in the summer are associated with reduced anticyclone frequency.

The important differences between the meteorological histories affecting temperate and Mediter-

ranean forests as identified in this study provide a better understanding of European forests’

response to multi-seasonal meteorology. Moreover, we, for the first time, quantify and assess

the impact of the extremely hot summer of 2022 and compare it with that of the previous 20

years. Finally, the presented systematic investigations bridge the gap between forest dynamics

and atmospheric dynamics, and thus represent a step forward in linking expected forest dieback

to changing meteorological and climatic conditions under global warming.



Chapter 4
Extreme vapor pressure deficit seasons and their
meteorological contributions

4.1 Introduction

Section 1.4.2 has underlined the importance of vapor pressure deficit (VPD) in summer for crop

yield, forest water stress, wildfire risk, and bark beetle outbreaks. As a central quantity in plant

hydrology, VPD quantifies the ability of air to draw moisture from the (vegetated) Earth surface,

and is defined as the difference between saturation (es) and actual water vapor pressure (ea; see

Eq. 1.1). In addition to aspects highlighted in Sect. 1.4.2, reduced evapotranspiration due to

high VPD or low soil moisture can again increase VPD (Miralles et al., 2019), and promote the

rapid intensification of so-called “flash droughts” (Williams et al., 2017). All in all, high VPD

increases the land-atmosphere water vapor flux and directly alters plant functioning, further

affecting the biogeophysical environment to the disadvantage of plant functioning.

VPD depends on the atmospheric humidity and temperature and, therefore, varies greatly

across the globe and is subjected to change in the coming decades. While es is generally deter-

mined by the ambient air temperature (T), ea depends mainly on specific humidity (q), i.e., the

availability of moisture in the air, which is controlled by land and ocean evapotranspiration

and by atmospheric transport (Fig. 4.1; Wallace and Hobbs, 2006; Byrne and O’Gorman, 2016).

Consequently, VPD is highest in hot-dry regions such as large desert regions and in the summer

season (Fig. 4.2a). The global trend in VPD has been increasing in the past four decades, and is

expected to climb further throughout the 21st century (Fig. 4.2c; Yuan et al., 2019), as expected

from its strong dependence on T (Sect. 1.4.2). That is, by the Clausius-Clapeyron relationship,

global warming causes a nonlinear increase of es of 7% per Kelvin of local warming (Fig. 4.1a;

e.g., Wallace and Hobbs, 2006). The rate of change in ea is more uncertain and spatially varying,

but in many regions smaller compared to that in es (Held and Soden, 2006; Simmons et al.,

2010; Vicente-Serrano et al., 2018). Limitations in ea are due to limited atmospheric moisture

Small parts of this chapter have been published in Röthlisberger et al. (2021).
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Figure 4.1: The dependence of (a) es on T and (b) ea on q and p. The color of the lines in (b) denote p
used to compute the respective ea(q). The respective equations will be introduced in Sect. 4.3.1.

transport and limited land evaporation (Byrne and O’Gorman, 2016; Vicente-Serrano et al.,

2018). Long-term changes in VPD are, therefore, mainly attributed to changes in es, especially

in regions such as the southwestern United States (U. S.), where ea is expected to increase only

weakly if at all (Ficklin and Novick, 2017).

While the long-term increase of VPD is strongly related to T, the meteorological processes lead-

ing to VPD extremes are more complex. On the one hand, variability in VPD is typically larger

and more strongly temperature-dependent in climatologically warm regions (Fig. 4.2b), due to

the increasing derivative des
dT with T (Fig. 4.1a). On the other hand, circulation anomalies and

land surface fluxes are also affecting q and, thus, ea (Fig. 4.1b), which translates to shorter-term

variability in VPD (Seager et al., 2015). Extreme VPD in a given climate is hence driven by T
and q anomalies, both strongly coupled to atmospheric flow dynamics. Given the relevance of

VPD for plant functioning and forest dynamics, longer-term extremes, e.g., of growing season

mean VPD or seasonal VPD, are particularly interesting. So far, seasonally extreme VPD has

been investigated in case studies (e.g., Schuldt et al., 2020), as identifying seasonal extremes

in reanalysis data is inherently challenging given the shortness of these records (Sect. 1.3). In

contrast, daily VPD extremes have been studied systematically and benefit from a more robust

statistical modelling thanks to extreme value statistics (Gamelin et al., 2022). All in all, the

analysis of seasonal VPD extremes regarding the importance of T and q anomalies is highly

relevant and provides interesting linkages between ecosystem dynamics and weather and

climate dynamics.

In this chapter, we investigate the contribution of anomalies of T and q to the intensity of

extreme VPD seasons in the Northern Hemisphere mid-latitudes in June–August (JJA) of the

historical climate. We apply a novel scheme for the identification of extremes on the seasonal

timescale (Röthlisberger et al., 2021) to VPD in reanalysis and climate model data. This results

in spatial objects of extremely high seasonal mean VPD in ERA5 in JJA 1979–2020 (Hersbach

et al., 2020), and in a 1’050-year-large ensemble simulation with the Community Earth System
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Figure 4.2: ERA5 (a) mean VPD in June–August (JJA) 1979–2020, (b) variance of detrended seasonal
VPD anomalies in JJA 1979–2020, and (c) forced change estimate in JJA VPD between 1979 and 2020 (see
Sect. 4.3.2) in the Northern Hemisphere.

Model version 1.12 (CESM1; Hurrell et al., 2013) simulations in the hist period (1990–1999; see

Chapter 2). Thereby, we aim to answer the following research questions:

1. How can VPD be evaluated to identify extreme VPD season objects?

2. How do extreme positive VPD anomalies arise across the globe and what is the relative

importance of T and q anomalies?

To study seasonal VPD extremes independent of the long-term VPD trend, we use detrended

VPD anomalies, which are based on a regression of T with global mean temperature (Sect. 4.3.2).

Moreover, while previous studies typically decomposed VPD into contributions from es and ea

(Seager et al., 2015; Ficklin and Novick, 2017), we, for the first time, decompose seasonal VPD

anomalies into contributions from seasonal mean T and q, while discounting intra-seasonal

VPD variability (Sect. 4.3.4). By identifying extreme VPD seasons in ERA5 and a large set of

CESM1 simulations, we provide a starting point to study extreme VPD at the seasonal timescale

systematically – under the premise that CESM1 is able to reasonably simulate VPD extreme

seasons (Sect. 4.4). In Sect. 4.5, we compare the two datasets, and explore spatial patterns in q
and T contributions to extreme VPD (in CESM1) and the daily substructure of some well-known

high-impact VPD seasons (in ERA5). For these case studies, we additionally analyze the impact

of the extreme VPD seasons on top-1-meter soil moisture from ERA5-Land (Muñoz-Sabater
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et al., 2021) and on drought conditions as by the Standardized Precipitation Evapotranspiration

Index (SPEI; Vicente-Serrano et al., 2010). There are several conceivable applications of the

developed framework that go beyond the scope of this chapter, which we discuss together with

the caveats of this chapter in Sect. 4.6.

4.2 Datasets

4.2.1 ERA5 and CESM1 data

Our analysis is based on JJA seasonal mean data from the ERA5 reanalysis and from historical

CESM1 climate simulations, which both are introduced in Chapter 2. In short, the CESM1

data includes 105 different micro and macro members that were run for the period 1990–1999,

resulting in a total of 1’050 years of data. From that data we calculate the seasonal mean values

at the native spatial resolution of 1.25◦ longitude × ∼0.9◦ latitude, yielding 1’050 seasonal mean

values per grid point. Similarly, we compute 42 seasonal mean values from hourly ERA5 data in

JJA 1979–2020, which we linearly interpolate to the CESM grid. More specifically, the variables

used are surface pressure, 2-m temperature, and 2-m specific humidity calculated from the 2-m

dew point temperature and surface pressure (ECMWF, 2016) from ERA5. From CESM1 we use

surface pressure, as well as temperature and specific humidity at the CESM1 reference height.

Hereafter, these variables are referred to as T, q, and p, respectively. To distinguish daily values

studied in Sect. 4.5.3 from seasonal ones, we will use the subscript d for daily values; e.g., Td

denotes daily 2-m temperature in ERA5.

In order to process the 1’050 years of CESM1 data analogously to the 42 years of ERA5 data,

we group CESM1 data into 25 subsets (C1–C25) of 42 years each (without replacement). The

years are attributed to the subsets such that each subset contains 4 × 10 years in 1990–1999

from four randomly selected CESM1 members plus two random years from another member.

Figure 4.3: Boxplots of non-detrended global mean T in JJA (GMST) in ERA5 (red), and in the 25 CESM1
subsets (grey). The inset panel displays the distribution of deviations of GMST in all 1’050 years of
CESM1 data from the ERA5 mean GMST. The vertical line denotes the mean deviation.
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The JJA global mean T (GMST), calculated from (non-detrended) T values, is on average 0.73 K

higher in ERA5 than in CESM1 (Fig. 4.3). Despite ERA5 data extending further back than our

considered CESM1 period, the coldest GMST of ERA5 in 1984 is above the GMST range of most

CESM1 subsets. As expected from the longer ERA5 data record, which thus sees more of the

warming trend of the last 40 years compared to the CESM1 data (which only experienced 1990–

1999 radiative forcing), variability in ERA5 GMST is slightly larger than in the CESM1 subsets

(Fig. 4.3). All further data processing, e.g., trend estimation, climatologies, and anomalies of

CESM1 data, are always computed for each subset separately in order to exclude effects from

conditional bias (Sect. 1.3; Röthlisberger et al., 2021).

4.2.2 Volumetric soil water content

We use daily volumetric water content of the top 1 meter of soil (θd) in JJA 1979–2020 from

ERA5-Land (Muñoz-Sabater et al., 2021). The θd values result from a depth-weighted average of

the volumetric water content in the top three ERA5-Land soil layers covering 0–7 cm, 7–28 cm,

and 28–100 cm, respectively. Furthermore, we compute seasonal averages over JJA (θ) and a

seasonal climatology as mean over θ in JJA 1979–2020 (θ). This data is only used for the ERA5

case studies (Sect. 4.5.3). Daily anomalies (θ′d) are computed similarly to the other variables

in this section as θ′d = θd − θ. Moreover, the data is not interpolated to the CESM1 grid, as it

covers only land grid cells and its interpolation would result in the loss of information along

the coastlines.

4.2.3 Standardized Precipitation Evapotranspiration Index

We use weekly Standardized Precipitation Evapotranspiration Index (SPEIw) data available

from Vicente-Serrano et al. (2022). This dataset is used for congruence with other studies and

is based on T and P data from ERA5 as used in this study, i.e., at 0.5◦ horizontal resolution.

The SPEI is a widely used drought index that is based on the surface water balance, i.e., on the

difference between P and potential evapotranspiration (PET), integrated over different time

periods (Vicente-Serrano et al., 2010). The water balance is modelled with a three parameters

log-logistic distribution, whose parameters are estimated in the study period 1979–2020. For

further details regarding the computation of SPEI see Vicente-Serrano et al. (2010). The SPEI is

standardized with a mean value of 0 and a standard deviation of 1, and the severity of drought

can be inferred from the cumulative distribution function. For example, the probability of an

SPEI smaller than approximately −1.65 is 5%, which is why SPEI ≤ −1.65 are also referred to

as extreme drought conditions (Vicente-Serrano et al., 2022). In this chapter, we use the SPEI

calculated at the timescales of 1, 3, and 12 months, hence representing the accumulated water

balance of the previous 1, 3, and 12 months, respectively. We refer to the three time series as

SPEIw-1, SPEIw-3, and SPEIw-12. As for θ, SPEI data is merely available over land and thus used

at its original horizontal resolution of 0.5◦ to avoid the loss of information during interpolation

(Sect. 4.5.3).
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4.3 Evaluation and processing of VPD data

The computation of VPD on the seasonal timescale is challenging due to the nonlinear depen-

dence of VPD on the meteorological variables. This section, therefore, not only describes the

methods required to compute detrended VPD anomalies consistently in both datasets, but also

evaluates the inherent assumptions and consequences. Furthermore, before focusing on the

northern mid-latitude land regions, we investigate seasonal mean VPD in the entire Northern

Hemisphere to get a more comprehensive understanding.

4.3.1 Deriving a suitable formulation of VPD

We derive a formulation of VPD [Pa] in terms of T, q, and p, starting with the fundamental

definition of VPD (Eq. 1.1; Grossiord et al., 2020). For es we use the formulation by Murray

(1967), which is valid over a wide range of T [K]:

es = 610.78· exp
(

17.2694·(T − 273.16)
T − 35.86

)
(4.1)

Specific humidity can be expressed as the ratio of water density (ρw) and (moist) air density

(ρd + ρw). To derive an expression q(ea, p), we use the ideal gas law for dry air and for water

vapor to reformulate as follows (Wallace and Hobbs, 2006):

q(ea) =
ρw

ρd + ρw
=

ea
Rw·T

p−ea
Rd·T + ea

Rw·T
=

ea·Mw
Md

p − ea·
(

1 − Mw
Md

) ≈ 0.622·ea

p − 0.378·ea
(4.2)

where Rw = 461.5 J kg−1 K−1 and Rd = 287.1 J kg−1 K−1 are the gas constants for water vapor

and dry air, respectively, and Mw = 18.0 g mol−1 and Md = 29.0 g mol−1 are the molar mass

of water and dry air. VPD can now be expressed as a function of T, q, and p by combining

Eqs. 1.1, 4.1,& 4.2:

VPD
(1.1)
= es − ea

(4.2),(4.1)
= 610.78· exp

(
17.2694·(T − 273.16)

T − 35.86

)
− q·p

0.622 + 0.378·q (4.3)

The dependence of VPD on the three meteorological variables is nonlinear (Fig. 4.1), strongly so

with respect to T, which has various consequences for the work presented in this chapter, in

particular also for the timescale used to compute VPD (Sects. 4.3.3 & 4.3.4). Before addressing

this issue in greater detail, we estimate the forced trend in seasonal mean VPD in the next

subsection.

4.3.2 Detecting and removing the forced trend in seasonal mean VPD

In our statistical modelling of seasonal mean VPD (hereafter simply VPD) anomalies, we as-

sume a stationary VPD time series. Therefore, we first have to detect and account for the forced

trend due to increasing atmospheric CO2 concentration in CESM1 and ERA5 data. That is,

we estimate a trend value for each season, which is changing over time due to the external

forcing. At the same time, we aim at retaining most of the unforced internal climate variability
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Figure 4.4: Estimation of the forced trend in ERA5 seasonal mean values in JJA of (a-c) T, (d-f) q, and
(g-i) VPD near Phoenix, U. S. (35.34°N, 111.25°W). Scatter plots show (a) T vs. GMST, (d) q vs. Ttr, and
(g) VPD vs. GMST, including the respective trend curves in black. Inset numbers in (a,d) mark the slope
of the trend line. (b,e,h) Evolution of the respective values (colored lines) including their trend estimate
(black line) in 1979–2020. (c,f,i) Detrended anomalies, i.e., deviations from the trend line, T′, q′, and VPD’.
Their respective climatological mean values are indicated in the legend.

in the individual CESM1 members as well as in ERA5, which is important as internal variability

conceivably plays an important role in the occurrence of extreme seasons.

To identify VPD anomalies in ERA5 we first estimate a spatially varying trend that is physically

consistent among the variables used – shown at the example grid point Phoenix, U. S. (35.34°N,

111.25°W) in Fig. 4.4. For local T we compute a least square regression with GMST as predictor,

because GMST variability is considered predominantly externally forced (e.g., van Oldenborgh

et al., 2009; Sutton et al., 2015) and ranges from 288.8 K to 289.6 K (Fig. 4.4a). The resulting trend

evolution Ttr(GMST) (Fig. 4.4b) is then computed as follows:

T = α1 + α2·GMST + ϵ (4.4)

Ttr = α1 + α2·GMST (4.5)

where α1 and α2 are intercept and slope of the linear regression estimate with residuals ϵ. The Ttr

is used as an estimate for the evolution in T that occurs as a response to the long-term increase

in GMST – not due to inter-annual climate variability. As physics-based scaling arguments

suggest an exponential relationship between q and T (Dai, 2006), we estimate the forced trend
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Figure 4.5: Trend parameters estimated from seasonal mean T, q, and GMST values in JJA in ERA5. (a)
Trend parameter α2, i.e., the local warming relative to global mean warming, and (b) 100·(exp(β2)−
1)K−1, which is the relative moistening wrt. the local forced warming.

in q (qtr) based on an exponential fit of q on Ttr. To do so we fit a linear least square regression

to ln(q) with Ttr as predictor (Fig. 4.4d,e):

ln(q) = β1 + β2·Ttr + ϵ (4.6)

qtr = exp(β1 + β2·Ttr) (4.7)

where β1 and β2 are intercept and slope of the linear regression estimate with residuals ϵ. The

parameter α2 in Eq. 4.5 denotes the local warming relative to the global mean in K K−1, and

100·(exp(β2)− 1)K−1 is the local trend in q per Kelvin of local warming in % K−1 (Fig. 4.5).

The α2 is considerably larger over land than over ocean, and typically increases towards the

pole. One exception is the Arctic sea ice region, where apparently the ice surface keeps T
almost constant in JJA, i.e., α2 ≈ 0 (Fig. 4.5a). Although GMST has increased by about 0.7 K in

1979–2020, some regions have experienced a forced warming of around 2–3 K. Furthermore,

the forced warming typically goes along with a moistening of below +7% expected from the

Clausius-Clapeyron relationship (Fig. 4.5b). Strong relative increases in q per Kelvin increase

in Ttr can be found in the Arctic (with almost no near-surface warming) and very dry regions

(with low climatological q). In some regions, namely continental Asia, the southwestern U. S.,

and the Iberian Peninsula, the forced warming causes a negative trend in q (e.g., Fig. 4.4d).

Given the identified forced signals in T and q, we compute the trend evolution in VPD using

Eq. 4.3 (Fig. 4.4g,h):

VPDtr = VPD(Ttr, qtr, p) (4.8)



4.3 EVALUATION AND PROCESSING OF VPD DATA 49

Figure 4.6: (a) VPD as a function of T for constant q = 5 g kg−1 and p = 1′000 hPa. Temperatures T1, T2,
T3, T4, and Td are highlighted along with their corresponding VPD, as well as the daily average VPDdavg.
(b) The difference VPDdavg − VPD(Td) (brown) and the daily temperature amplitude (red) over the
course of JJA 1994 at Phoenix. The r indicates the Pearson correlation coefficient of the two curves. Note
the two different y-axes.

We, thereby, assume no trend in p with respect to GMST due to the lack of physical evidence and

the weak dependence of VPD on p. The temporally evolving trend values VPDtr, Ttr, and qtr

can be interpreted as a reference value in a given year. Deviations from these reference values

are assumed to be entirely due to internal variability. Hence, for every variable X ∈ {VPD, T, q}
we compute the seasonal mean anomaly (X′) as follows:

X′ = X − Xtr (4.9)

Note that only for T, the mean anomaly T′ is equal to zero because the trend estimate of T is

linear (Fig. 4.4a,c). The trend estimates for q and VPD are, by construction, nonlinear, however,

are intended to be physically consistent with the forced warming Ttr. Therefore, VPD’ and q′ are

different from zero but only marginally so, as in the example of Phoenix (Fig. 4.4f,i). Globally,

the mean anomalies VPD’ are virtually zero with an average of −3.9·10−5 kPa and a maximum

absolute value of 0.011 kPa in the Northern Hemisphere mid-latitudes (30–60°N). A mean

anomaly around zero is a desirable characteristic of detrended anomalies, as the remaining

internal variability is expected to cancel out over a sufficiently long time series.

The trends and anomalies in CESM1 data are calculated analogously to ERA5, while not the

entire dataset containing 1’050 years is used at once. Instead, to ensure equal treatment of

CESM1 and ERA5 data, we compute the trend estimates separately for each of the 25 subsets

including 42 years of data (Sect. 4.2.1). As for ERA5 data, this procedure results in seasonal mean

anomalies (X′) that are computed to exclude any externally forced change in X ∈ {VPD, T, q}.

4.3.3 Timescale-dependence of VPD and its intra-seasonal variability

The nonlinearity of Eq. 4.3 implies that sesasonal mean values of VPD will differ depending on

whether VPD is first calculated from hourly, daily, or seasonal mean values of T, q, and p (see
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Figure 4.7: Values of (a) VPD, VPDd, and VPD6h, which are based on seasonal, daily, and 6-hourly VPD
calculations, respectively. (b) Anomalies of the three time series in (a) from VPDtr (Fig. 4.4h). The legends
indicate climatological mean values of all time series.

also Appendix in Williams et al., 2013). We first illustrate the effect of sampling frequency for the

sub-daily and daily timescale with a simple synthetic example. Let’s assume that we compute

daily VPD from four 6-hourly mean values. The 6-hourly temperature values are T1...T4, which

represent a daily cycle with T1 = 285 K, T2 = T4 = 295 K, and T3 = 305 K (Fig. 4.6a). Their

average results in the daily temperature Td = 295 K. For all five T values, we compute the

corresponding VPD(T). Thereby, we focus on the effect of T, which is also the most dominant

dependence of VPD (see Sect. 4.3.4), and assume constant q = 5 g kg−1 and p = 1000 hPa

during the day. Note that ∂VPD
∂T is independent of q and p. As ∂VPD

∂T is a monotonically increasing

function of T, the change in VPD is larger for larger T (Fig. 4.6a). As a consequence, the VPD

corresponding to T3 deviates more from that corresponding to Td compared to the VPD corre-

sponding to T1, i.e., VPD(T3)−VPD(Td) > VPD(Td)−VPD(T1) (Fig. 4.6a). Therefore, the daily

average VPDdavg, computed as the average of VPD(T1), VPD(T2), VPD(T3), and VPD(T4), is

larger than VPD(Td).

Now using ERA5 data at the example grid point near Phoneix in JJA 1994, the underestimation

of VPDdavg when using daily instead of 6-hourly T, q, and p is on the order of a few percent

(Fig. 4.6b). Furthermore, the difference VPD(Td)− VPDdavg is strongly correlated (r = 0.9)

with the amplitude of the diurnal cycle of T, computed as the difference of daily maximum

and minimum T, i.e., Tmax − Tmin. To summarize, the use of lower-frequency daily average Td

necessarily causes an underestimation of VPD compared to VPDdavg, which is calculated from

sub-daily values.

This behaviour of VPD can be summarized more generally: The more frequently T is sampled,

the larger and the more realistic are the resulting long-term mean VPD values. We investigate

this effect again on the seasonal timescale by comparing seasonal VPD as in the previous

section with those computed from daily (VPDd) and 6-hourly values of T, q, and p (VPD6h),

respectively in Fig. 4.7a. Furthermore, we compare their anomalies VPD’, VPD’d, and VPD’6h in

Fig. 4.7b, whereby VPD’d and VPD’6h are also computed wrt. VPDtr, i.e., trend values deduced

from seasonally calculated VPD. The VPD6h values are, as expected, largely underestimated by

VPD with a root mean square deviation normalized by the mean (nRMSD) of ∼9% (Fig 4.7a).
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Figure 4.8: (a) Mean absolute difference VPD6h minus VPD, (b) normalized RMSD of VPD6h and VPD,
and (c) Pearson correlation coefficient between the anomalies VPD’ and VPD’6h all in JJA 1979–2020.

The underestimation is about half (nRMSD ≈ 5%) when using VPDd to approximate VPD’6h.

Interestingly, the underestimation by VPD and VPDd at this grid point hardly varies from

season to season. This means that daily as well as sub-daily variability, which is only captured

by VPDd and VPD6h, respectively, are about the same in every season. As a consequence, VPD’

as well as VPD’d agree extremely well with VPD’6h except for an approximately constant offset

(Fig 4.7b). The offset of VPD’ and VPD’6h quantifies the average contribution of intra-seasonal

variability to VPD6h, which, in the example of Phoenix, equals 0.141 kPa or about 7%. Fur-

thermore, the offset between VPD’ and VPD’d and that between VPD’d and VPD’6h separately

quantify the effects of day-to-day and of sub-daily variability, respectively. At this grid point,

the intra-seasonal variability is on average composed of 51% day-to-day variability and 49%

sub-daily variability.

Across the Northern Hemisphere, while the average underestimation of VPD6h by VPD differs,

the co-variability of their anomalies is very high (Fig. 4.8). In absolute terms, intra-seasonal

variability increases VPD by on average 0.094 kPa in mid-latitude land regions, with the largest

effect in dry land regions where absolute VPD is largest (Fig. 4.8a). Relatively speaking, the

nRMSD between VPD and VPD6h is around 5–20% over mid-latitude land. The nRMSD is

largest in regions with a pronounced intra-seasonal variability of T, q, and/or p, e.g., in the

storm tracks and in particular in high latitudes (Fig. 4.8b). There, the effect of intra-seasonal
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Figure 4.9: The effect of day-to-day variability on VPD (computed as mean difference between VPDd

and VPD) relative to the effect of total intra-seasonal variability (computed as mean difference between
VPD6h and VPD) in JJA 1979–2020. Values of 0% (100%) indicate that the entire effect on VPD is owed to
sub-daily (day-to-day) variability.

variability on VPD is dominated by day-to-day variability, which originates from, e.g., changing

solar insolation, synoptic weather systems, and variable soil moisture and snow cover (Fig. 4.9).

In contrast, in more arid and sub-tropical regions day-to-day VPD variability is smaller and/or

has a minor effect on VPD (Fig. 4.9), which is why the underestimation of VPD6h by VPD is

much smaller (Fig. 4.8b). There, the daily cycle (of mainly T) contributes to sub-daily VPD

variability, which is larger than day-to-day variability. In both cases, the absolute values of

VPD as used in the previous section are systematically lower than the values derived from

data with higher temporal resolution, due to the nonlinear dependence of VPD on T. Note,

however, that importantly, the agreement between VPD’ and VPD’6h – and also VPD’d (not

shown) – is extremely high and the Pearson correlation coefficient between the two exceeds 0.95

in most mid-latitude land regions (Fig. 4.8c). That is, even though the absolute values of VPD

used here underestimate the seasonal VPD computed from temporally higher resolution data,

this underestimation seems to be roughly constant in time. Moreover, across all mid-latitude

land regions, this underestimation arises from the effect of 58% day-to-day and 42% sub-daily

VPD variability (Fig. 4.9). Based on the results in this subsection, we hereafter assume that the

magnitude of VPD’ is not affected substantially by the investigated underestimation.

All in all, the previously deduced VPD’ (Sect. 4.3.2) are particularly well-suited for the purpose

of this chapter. Firstly, as we will see in the following section, VPD’ is the preferred quantity

to assess VPD-contributions of q′ and T′ independent of intra-seasonal VPD variability, which

would not be possible when using seasonal mean values based on temporally higher resolved

VPD data. Secondly, and of equal importance, we can use VPD’ to identify extreme VPD seasons

as they capture VPD variability but not any forced trend. Still, one has to bear in mind that the

absolute VPD values used here underestimate the more realistic and plant-relevant VPD6h.

4.3.4 Decomposition of VPD’

In order to better understand VPD’ from a meteorological perspective, we decompose each

VPD’ value into contributions from T′ and q′ according to VPD(T, q, p) (Eq. 4.3). In a second

step, the contribution of q′ is split into a reference part, which captures the effect of locally and
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climatologically expected moistening or drying on VPD’ for a given T′, and a particular part

that represents the deviation of q from the reference part.

In the first step, we use a multivariable linearization of VPD from the trend evolution, i.e., we

approximate any value VPD(T, q, p) tangentially from VPD(Ttr, qtr, p). Therefore, according to

e.g., Stewart (2012):

VPD(T, q, p) ≈ VPD(Ttr, qtr, p) + (T − Ttr)·
∂VPD

∂T

∣∣∣∣
Ttr ,qtr ,p

+ (q − qtr)·
∂VPD

∂q

∣∣∣∣
Ttr ,qtr ,p

(4.10)

which can be formulated as:

VPD(T, q, p) = VPDtr + T′·∂VPD
∂T

∣∣∣∣
Ttr ,qtr ,p

+ q′·∂VPD
∂q

∣∣∣∣
Ttr ,qtr ,p

+ ϵ (4.11)

where ϵ marks a residual term containing higher-order terms, and the derivatives of VPD(T, q, p)
wrt. T and q are evaluated at (T, q, p) = (Ttr, qtr, p) (Eq. 4.3.). We rewrite the above equation to:

VPD’ = T′·∂VPD
∂T

∣∣∣∣
Ttr ,qtr ,p︸ ︷︷ ︸

VPD’T′

+ q′·∂VPD
∂q

∣∣∣∣
Ttr ,qtr ,p︸ ︷︷ ︸

VPD’q′

+ϵ (4.12)

where VPD’T′ and VPD’q′ denote the contributions of T′ and q′ to VPD’, respectively.

The steps from Eq. 4.10 to Eq. 4.12 refer back to ideas outlined in the previous sections in several

ways. We introduced anomalies X′ as the difference of X and Xtr, i.e., an anomaly independent

of the forced trend, which enables the decomposition in the first place (see Eq. 4.9). Moreover,

as the trend estimates are physically consistent, i.e., not independent, VPD(Ttr, qtr, p) = VPDtr

(see Eq. 4.8). And finally, the effect of the nonlinear dependence of VPD on T, which leads to

larger seasonal mean VPD when first computing VPD from temporally high-resolution data

and then averaging over time than the converse, does not affect the VPD’ in Eq. 4.12. This

is because we computed VPD from seasonal mean T and q, which allows a decomposition

consistent with (seasonal mean) T and q (Sect.4.3.3). All in all, this decomposition as well as the

trend estimates of Sect. 4.3.2 constitute a robust framework tailored to the aims of this chapter,

namely (i) statistically identifying regions with extreme VPD and (ii) explaining VPD’ with q′

and T′ – both at the seasonal timescale.

In a second step, we account for the fact that the above decomposition does not yet take into

account climatological co-variability of T and q. We know from Sect. 4.3.2 that many regions

show a long-term increase of qtr due to increasing Ttr (Fig. 4.5b). Also regarding inter-annual

variability, we expect a given T′ to induce a change in q (and so in VPD) that is indirectly related

to warmer T, e.g., due to typically limited moisture supply in warm conditions (q ↘ when

T ↗) or due to the fact that warm air can hold more moisture (q ↗ when T ↗). To estimate the

climatological co-variability of T and q, we compute the same regression as in Eq. 4.6 but now

for absolute values T:
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Figure 4.10: Climatological co-variability between T and q expressed as ∆qT =
(

exp(γ2·1 K)− 1
)

K−1,
which describes the expected relative increase in qre f per Kelvin increase in T.

ln(q) = γ1 + γ2·T + ϵ (4.13)

qre f = exp(γ1 + γ2·T) (4.14)

q′re f = qre f − qtr (4.15)

q′par = q − qre f (4.16)

The four equations denote the linear regression that quantifies the inter-annual co-variability

of T and q (Eq. 4.13), the resulting estimate of the expected q for a given T (qre f ; Eq. 4.14), the

anomaly of qre f (q′re f ; Eq. 4.15), and the introduction of the particular anomaly q′par, which is

not explained by T′ (Eq. 4.16). Note that the two anomalies add up to the full anomaly, i.e.,

q′ = q′re f + q′par. Based on Equation 4.14, we can define the relative increase in qre f per Kelvin of

temperature change, i.e., the change in q expected from the climatological q-T-correlation. It is

a function of γ2 and hereafter referred to as ∆qT in [% K−1]:

∆qT =
qre f (T0 + 1 K)− qre f (T0)

qre f (T0)·1 K
(4.14)
=

(
exp(γ2·1 K)− 1

)
K−1 (4.17)

The separation of q′ into two components accounts for the climatological co-variability between

T and q, by means of ∆qT, which can be considerable (Fig. 4.10). For ERA5 data, the pattern of

inter-annual q-T-relationship (Fig. 4.10) is similar to that of the long-term trend (Fig. 4.5b) but

of lower magnitude. Differences in sign between the two estimates occur in regions that exert

a weak or negative forced warming and a pronounced inter-annual variability in T, e.g., in

parts of western Canada and of Central Asia (Figs. 4.5 & 4.10). In these regions, qtr is estimated

relative to small changes in Ttr and hence shows a different sensitivity than q to T on the

inter-annual timescale. Given q′re f and q′par, we can combine Eq. 4.12 with Eqs. 4.15 & 4.16 to

separate VPD’q′ in contributions of q′re f and q′par:

VPD’ = VPD’T′ + VPD’q′,par + VPD’q′,re f + ϵ (4.18)

where, e.g., VPD’q′,par = q′par· ∂VPD
∂q

∣∣
Ttr ,qtr ,p. For every grid point, this equation quantifies the

contributions of T′ (VPD’T′) and q′ (VPD’q′,par + VPD’q′,re f ) to any VPD’. The separation of

VPD’q′,par and VPD’q′,re f further enables us to compute a particular contribution VPD’q′,par that

is linked to anomalous climate dynamics and that is not related to changes in q expected from
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Figure 4.11: The change in VPD(T, q, p) for (a) T′ = 1 K, and (b) q′ = 1 g kg−1 as a function of Ttr and qtr,
respectively. Note that the curve in (b) is shown for p = 1′000 hPa.

the climatological co-variability between T and q.

Lastly, we note that the point (T, q, p) = (Ttr, qtr, p), i.e., the current and local climate charac-

terized by (Ttr, qtr, p), over which the linearization in Eq. 4.10 is performed, is crucial for the

potential of meteorological anomalies to cause a certain magnitude of VPD’, in particular due to

the nonlinear dependence of VPD on T. Figure 4.11 shows the change in VPD (∆VPD) that goes

along with a T′ = 1 K and a q′ = 1 g kg−1 at different levels of Ttr and qtr, respectively. Clearly,

∆VPD(Ttr), i.e., VPD’T′ related to a 1 K warm anomaly, increases drastically at higher Ttr, i.e., in

a warmer climate (Fig. 4.11a). For example, T′ = +1 K at Ttr = 290 K and at Ttr = 300 K causes

VPD’T′ = 0.12 kPa and VPD’T′ = 0.21 kPa, respectively, i.e., contributes almost twice as much

to VPD’ when going to a 10 K warmer climate. Note that this increase is independent of q and

p. The ∆VPD(qtr) becomes slightly less negative at higher qtr (Fig. 4.11b). Note that this term

additionally depends on p (not shown). As we assume no trend in p, VPD(qtr, p) is mainly

changing due to spatiotemporal variations in p related to surface elevation and atmospheric

circulation. Overall, however, a reasonable trend in q of around 1 − 2 g kg−1 over the ERA5

period of 42 years does hardly change the VPD’q′ related to a given q′. In stark contrast, the

forced trend in T, which is locally on the order of a few Kelvin (Fig. 4.5a), potentially substan-

tially altered VPD’T′ per K temperature anomaly over the course of the study period 1979–2020.

These considerations again illustrate the strong nonlinear dependence of VPD on T, whose

consequences on the timescale used to compute VPD were already illustrated in Sect. 4.3.3.

4.4 Identification of extreme VPD seasons

Given detrended VPD’, we use an identification scheme to find spatially coherent objects of

extremely positive VPD’ in ERA5 data as well as in the much more extensive CESM1 data.

In this subsection, we summarize the most important aspects of the identification scheme

and discuss particular challenges arising from applying this scheme to VPD’ data. Please

see Röthlisberger et al. (2021) for further details about the identification scheme. The scheme

consists of three steps:
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1. Estimate at each grid point the distribution of VPD’ by statistical modelling, then calculate

the local return period (LRP) of each VPD’ value.

2. Identify locally extreme VPD’ based on exceedances of an LRP threshold τ.

3. Form spatially coherent objects within which LRP > τ, and quantify their characteristics.

As in Röthlisberger et al. (2021), we choose τ = 40 y, but theoretically every threshold for LRP

could be used as long as it can be reasonably estimated from the two datasets. We, therefore,

identify extreme VPD seasons that affect a given region about every 40 y. For this, the use of

detrended VPD’ is crucial, as the statistical fitting of a distribution to estimate LRPs is based on

the assumption of a stationary time series, i.e., that VPD’ at one grid point come from a climate

without forced trend.

4.4.1 Statistical modelling of VPD’

Estimation of the LRP is performed by statistically modelling the distribution of VPD’. The ab-

solute VPD values follow a bounded distribution, with a lower bound of zero, and thus also the

distributions of VPD’ are typically positively skewed. To account for this skew we combine the

normal distribution with a parameterized data transformation to allow for modelling skewed

distributions. Specifically, we assume that VPD’ follow a Yeo–Johnson transformed normal

distribution NYJ with the three parameters µ (mean), σ2 (variance), and λ (transform parameter)

according to Yeo and Johnson (2000). The three parameters are considered to vary between

grid points and datasets (ERA5 and each of the 25 CESM1 subsets), and are estimated with a

maximum likelihood estimation in a two step approach. First, VPD’ are transformed, which

Figure 4.12: (a) Sample skewness of the transformed VPD’ in ERA5, and (b) the mean skewness of
transformed VPD’ over all CESM1 subsets. Stippling in (a) indicates grid points where the ERA5
distribution of transformed VPD’ deviates from the normal distribution according to a Shapiro-Wilks
test (α = 5%). Stippling in (b) indicates where this is the case for more than one CESM1 subset.
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Figure 4.13: (a) The 40-year return level of VPD’ in ERA5, and (b) the mean 40-year return level over all
CESM1 subsets. (c) The difference of (b) minus (a) relative to (a). Stippling (hatching) denote grid points
where the ERA5 value lies above (below) all 25 CESM1 subset values.

results in an estimate for λ, and second, we estimate µ and σ2 by fitting a normal distribution to

the transformed anomalies. Details regarding the technical implementation of the parameter

estimation can be found in Röthlisberger et al. (2021).

Figure 4.12 shows that all across the Northern Hemisphere the distribution of the transformed

VPD’ values is not in contradiction with a normal distribution, which implies that the same

statement holds for the (untransformed) VPD’ values and the NYJ . Note, however, that the

power of the goodness-of-fit test, with 42 observations per dataset and grid point, is relatively

low. The skew of ERA5 data remaining after the transformation is mostly small in magnitude

except for some regions in Siberia, eastern Europe, and the Central U. S. (Fig. 4.12a). If skewed,

the transformed VPD’ show widely positive skew, as expected from the lower bound of VPD. In

addition to the previously mentioned regions, the distribution of transformed VPD’ in CESM1

is positively skewed in parts of India and China (Fig. 4.12b). All in all, from the 42-year sets of

VPD’ data, it seems appropriate to follow the approach of Röthlisberger et al. (2021) by using a

NYJ to globally model the distribution of VPD’, because we cannot reject the null hypothesis

that YJ-transformed VPD’ values are normally distributed over almost the entire Northern

Hemisphere.
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4.4.2 Exceedance of 40-year return level

From the resulting distribution, we estimate the LRP of every seasonal mean VPD’ value,

focusing on extremely positive VPD’. The LRP of a given VPD’ is defined as:

LRP(VPD’) =
1

1 − G(VPD’; µ, σ2, λ)
(4.19)

where G(VPD’; µ, σ2, λ) is the cumulative distribution function of the NYJ (Röthlisberger et al.,

2021). Figure 4.13 compares the 40-year return levels of VPD’ between ERA5 and CESM1

data. In general, the 40-year return level in ERA5 is large in regions of pronounced inter-

annual variability in VPD, e.g., the Great Plains in the U. S., the Sahel, and Central Asia (cf.

Figs. 4.2b & 4.13a). These spatial patterns are largely reflected in the mean return level of the

25 CESM1 subsets (spatial Pearson correlation of r = 0.84, Fig. 4.13b). In many subtropical,

continental, and high-latitude regions, CESM1 overestimates the 40-year return level wrt. ERA5

(Fig. 4.13c). In contrast, the eastern U. S., Central Europe, East Asia, the Arctic, and many

ocean regions have a consistently lower VPD’ return level in CESM1 compared to ERA5. These

discrepancies between the two datasets can be explained by biases in local absolute T and q
and their inter-annual variability, as illustrated in Appendix B (Figs. B.1 – B.4). For example, the

largely overestimated CESM1 return level in the African and Indian monsoon regions relate

to an almost two times larger variance of T and q (Figs. B.2c & B.4c). In regions of low T, e.g.,

in the Arctic, the underestimation of T also implies an underestimation of ∂VPD
∂T and VPD’T′

(Sect. 4.3.4), which – despite overestimated variance of T and q – leads to a lower 40-year return

level (Fig. B.1c). Note that biases in absolute q (Fig. B.3) hardly affect the calculation of the

40-year return level, as the change in ∂VPD
∂q , i.e., the change in the potential of a given q′ to

cause VPD’, for different levels of q is extremely low (Eq. 4.3, Fig. 4.11). These results highlight

that the spatial pattern of the 40-year return level is simulated well in CESM1. Regarding the

magnitude of the 40-year return level, CESM1 model biases in T and variability of q and T are

the causes of discrepancies between ERA5 and CESM1.

4.4.3 Forming and characterizing extreme VPD season objects

Lastly, grid points where LRP > τ are connected in space to form spatially coherent objects.

Each grid point is connected to those of all eight neighboring grid points that also exhibit a VPD’

with LRP > τ. The resulting objects are hereafter called “extreme VPD seasons” or in short

VPDJJA+. For each extreme VPD season, we calculate characteristics such as its size and its mean

VPD’. A specific focus is on quantifying the object-mean contributions to VPD’ from T′, q′re f ,

and q′par, respectively (Sect. 4.3.4). For all further analyses, we exclude all VPDJJA+ that affect

less than 105 km2 of land area. Additionally, we select those with a center of mass – considering

the affected land area only – in the mid-latitudes of the Northern Hemisphere (30–60°N). All

discussed characteristics only consider land grid points of VPDJJA+, which is motivated by their

impact on terrestrial ecosystems. Note that, despite the focus on land grid points, the forming

of VPDJJA+ includes ocean/lake grid points to connect land regions that are affected by the

same extreme season but are separated by a water body.
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4.5 Results

4.5.1 Extreme VPD seasons in ERA5 and CESM1

In the Northern Hemisphere mid-latitudes (30–60°N) we identify 96 VPDJJA+ in 1979–2020 that

are larger than 105 km2, of which many are know as high-impact events. Figure 4.14 shows

the ten largest according to their land area (A). The by far largest VPDJJA+ occurred in Russia

in 2010 (RU2010) and strongly impaired net ecosystem productivity (Barriopedro et al., 2011;

Bastos et al., 2020b). It was not only the largest VPDJJA+, but also ranks third in terms of the

land mean VPD’ (I), which we use as measure of intensity (Tables 4.1 & 4.2). The second-largest

VPDJJA+ was in the Central U. S. in 1988 (US1988) and strongly reduced the vegetation’s carbon

sink capacity across the U. S. (Trenberth et al., 1988; Mekonnen et al., 2017). The extreme fire

season linked to large VPD in the southwestern U. S. in 2011 coincides with the most intense

VPDJJA+ (US2011), with I = 0.78 kPa (Table 4.2; Williams et al., 2014). Finally, also the summer

of reduced ecosystem evapotranspiration and carbon uptake in Europe in 2003 (Ciais et al., 2005)

is related to the largest VPDJJA+ in this region (Table 4.1). This identification scheme, however,

also identifies less well-known events of exceptional size, e.g., the VPDJJA+ that occurred in

Central Asia in 1984 (CA1984, Fig. 4.14, Table 4.1). Interestingly, several of the mentioned

extreme VPD seasons, e.g., RU2010, US1988, and CA1984, have also ranked within the ten

largest extremely hot summers (Röthlisberger et al., 2021). Also with respect to precipitation,

e.g., RU2010 and CA1984 are know as the largest and fifth largest extremely dry summers,

respectively, in 1979–2020 (Boettcher et al., 2023). These results underline the linkage between

extreme VPD seasons and other seasonal meteorological extremes.

Figure 4.14: VPD’ of the ten largest VPDJJA+ in the northern mid-latitudes in 1979–2020 identified
from ERA5. Stippling shows the entire region affected by VPDJJA+ (other VPDJJA+ are omitted). The
geographical center (red crosses) of the VPDJJA+ are indicated in the bottom left. Text boxes indicate
values of A and I, which refer to land grid cells only. Note that the panels cover variable lat/lon ranges.
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Table 4.1: The ten largest (land area, A) VPDJJA+ in 1979–2020 shown in Fig. 4.14. The columns denote
the intensity (I) and rarity (R) of VPDJJA+. The R equals the land area mean LRP.

Year Region A [105 km2] I [kPa] R [y]

2010 Western Russia 30.2 0.60 99

1988 Central U. S. 21.1 0.43 84

1984 Central Asia 19.8 0.37 98

2000 Arabian Peninsula 19.6 0.48 77

1994 Western U. S./Mexico 15.3 0.52 91

2011 Southern U. S./Mexico 14.6 0.78 104

2007 China/Mongolia 14.1 0.36 75

2012 Central U. S. 13.8 0.53 68

2003 Central Europe 12.5 0.32 99

1992 Eastern Europe 8.2 0.27 62

Table 4.2: The same as in Table 4.1 but ranked according to I.

Year Region A [105 km2] I [kPa] R [y]

2011 Southern U. S./Mexico 14.6 0.78 104

1980 Southern U. S. 3.4 0.73 49

2010 Western Russia 30.2 0.60 99

2012 Pakistan 1.5 0.59 89

2012 Central U. S. 13.8 0.53 68

1994 Western U. S./Mexico 15.3 0.52 91

2000 Southeastern Europe 1.1 0.51 61

2006 Central Asia 1.1 0.51 54

1994 Morocco/Algeria 2.8 0.49 66

2000 Arabian Peninsula 19.6 0.48 77

In their respective local context, extreme VPD seasons with large I were not necessarily more

extreme, i.e., rare, compared to less intense VPDJJA+. First of all, note that the estimates of the

mean LRP over land (R) are based on 42 observed VPD’ per grid point only and thus inherently

uncertain – particularly so for large R. They merely serve the purpose of putting I into the

local climatic context and should not be interpreted as a fully accurate estimate of the VPDJJA+’s

recurrence. The most intense VPDJJA+ US2011 (R = 104 y) ranks behind the VPDJJA+ in China

and Kazakhstan in 2008 (CK2008), which had lower I = 0.33 kPa but R > 150 y (Table B.1). Not

surprisingly, intense VPDJJA+ preferentially occurred in hot-dry regions of large VPD variability,

where also the 40-year return level is high, such as the southwestern U. S. and southeastern Eu-

rope. Moreover, if the much less intense events CK2008 or CA1984 (I = 0.37 kPa,) had occurred

in the southwestern U. S., where the 40-year return level widely exceeds 0.5 kPa (Fig. 4.13a),
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Figure 4.15: Number of VPDJJA+ per grid point (a) in 1979–2020 in ERA5, and (b) on average in each
CESM1 subset (42 years). Note the slightly different color scales. (c) Scatter plot of I and A for VPDJJA+

in 30–60°N in ERA5 (red) and CESM1 (grey). Linear regression lines are shown in solid, the median I
and A are marked by dashed lines. The VPDJJA+ US2011 and RU2010 are highlighted.

they would not have been identified as a local 40-year extreme. These considerations highlight

the importance of assessing the “extremeness” – often referring to the rarity – of each VPD’ in

its local climatic context. Whether an intense VPDJJA+ (with very strong atmospheric water

demand) or a rare VPDJJA+ (which vegetation is not adapted to) causes a greater impact on

ecosystems is a point of discussion and could be addressed in future work.

The occurrence of VPDJJA+ as well as the two central characteristics A and I are all well-

represented by the 2’507 VPDJJA+ identified in CESM1 data. Most land regions on average

experience slightly less than one VPDJJA+ per 42 years (Fig. 4.15b), as expected from the LRP

threshold τ = 40 y used to identify the extreme seasons (Sect. 4.4). Thus, the CESM1 data

provides much more VPDJJA+ for systematic studies, whereas in many regions only one VPDJJA+

has been observed in the ERA5 period (Fig. 4.15a). The median (and mean) A = 2.26·105 km2

(3.92·105 km2) and I = 0.27 kPa (0.31 kPa) in CESM1 correspond well to the respective values

in ERA5: A = 2.14·105 km2 (4.08·105 km2) and I = 0.26 kPa (0.29 kPa) (Fig. 4.15c). As for the

largest and most intense VPDJJA+ in ERA5, there is also a pronounced correlation between A
and I for large and intense VPDJJA+ in CESM1. The intensity of VPDJJA+ larger than ∼5·105 km2

increases for larger A (Fig. 4.15c). Thus, in addition to the typical A and I of VPDJJA+, also this

positive relationship between the two characteristics is well-simulated in CESM1. Moreover, the

phase space of A and I illustrates that for every observed VPDJJA+, even the most intense and

largest ones, several CESM1 analogs exist that are of similar (or even larger) size and intensity

(Fig. 4.15c). The potential of systematically studying CESM1 analogs to a given extreme season
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is illustrated in Röthlisberger et al. (2021).

All in all, the presented set of extreme VPD seasons in ERA5 includes several well-known

high-impact events as well as unstudied VPDJJA+ in most regions of the mid-latitudes. All of

them could be studied in greater detail with numerous analogs occurring in the same region in

CESM1, which suggests that CESM1 is able to simulate the statistical characteristics of VPDJJA+

extremely well. In the next section, we specifically focus on the contributions of T′ and q′ to the

intensity of extreme VPD seasons.

4.5.2 Decomposition of the intensity of extreme VPD seasons

The mean I of VPDJJA+ in ERA5 (0.29 kPa) is composed of contributions from T′ as well as

q′par and q′re f . Figure 4.16 shows the contributions of T′, q′par, q′re f , and the residual, denoted as

IT′ , Iq′,par, Iq′,re f , and Ires, which result from the spatial average of Eq. 4.18 over the land area

of each VPDJJA+ (Sect. 4.3.4). Considering all VPDJJA+, the largest part (77%) of I was due to

T′ (Fig. 4.16). All VPDJJA+ in 1979–2020 were warmer than usual within their respective local

climate, and T′ contributed at least 29% to I (not shown). Given that most mid-latitude land

regions show a positive q-T-correlation (Fig. 4.10), this positive IT′ on average went along with

a negative Iq′,re f . That is, we expect an increase in q in many regions during warm summers,

which acted to dampen I by on average −13% (Fig. 4.16). The total of the two temperature-

related contributions IT′ and Iq′,re f accounted for about two thirds of I. Approximately one

third was, therefore, due to q′par, i.e., an unusually low q relative to what is expected in a warm

summer of given T′ (Fig. 4.16). So despite the dominant dependence of VPD on T, about

19% of I in VPDJJA+ were due to anomalous q, in a hemispherically aggregated sense, whose

contribution was even more important when the effect of T′ on q is subtracted. Finally, the

Figure 4.16: The mean I of all VPDJJA+ in 30–60°N including the contributions IT′ , Iq′ ,par, Iq′ ,re f , and
Ires (Sect. 4.3.4) for ERA5 (red) and CESM1 (grey). The whiskers indicate the inter-quartile range and
numbers above the bars denote the respective mean contribution relative to I.



4.5 RESULTS 63

residual term resulting from higher-order contributions to I is relatively small with only 4%.

The mean I as well as the contributions of the different meteorological anomalies are similar

over all VPDJJA+ in CESM1 (Fig. 4.16). The most notable difference to ERA5 arises from a smaller

relative IT′ = 68% and, consequently, also a less negative Iq′,re f . This is potentially related to the

fact that the temperature dependence of VPD, and thus the potential of a given T′ to cause large

IT′ , is itself a function of T (Fig. 4.11a). Due to different time periods and model biases, absolute

T is in numerous mid-latitude regions lower in CESM1 than in ERA5 data (Fig. B.1). At lower

T, ∂VPD
∂T is smaller and, consequently, the same T′ in CESM1 produces a smaller VPD’ than it

would in ERA5. Not only mean values but also variability in T and q are potential sources

of disagreement (see Sect. 4.4.2). And lastly, the more positive Iq′,re f in CESM1 compared to

ERA5 also implies an overall weaker co-variability of T and q. The many potential sources of

disagreement between CESM1 and ERA5 likely cause local discrepancies between the discussed

VPDJJA+ characteristics. However, the agreement between CESM1 and ERA5 I as well as its

meteorological decomposition of VPDJJA+ on a hemispheric scale are extremely high.

An interesting aspect is that about 3% of CESM1 VPDJJA+ objects arise despite a cold anomaly

and thus negative IT′ . In these colder than usual summers, the VPD’ large enough to constitute

a 40-year event entirely comes from negative q′. Interestingly, these VPDJJA+ are concentrated

in two distinct regions, namely along the east coasts of North America and Northeast Asia

(Fig. B.5). There, the q-T-correlation is positive (Fig. 4.10), with 4–7% reduction in q per Kelvin

of cooling, and thus (locally) extremely large VPD’ can occur during colder than usual condi-

tions. This is only possible if T′ is not so low that the negative IT′ overcompensates the total

Iq′,re f + Iq′,par. Consequently, VPDJJA+ with these characteristics are further constrained to the

regions with a rather low 40-year return level, i.e., low variability in VPD (Fig. 4.13b).

We next assess the temperature-dependence of I and its contributions in the light of global

warming, which overall increases the ability of inter-annual variability to produce large VPD

(Fig. 4.11, Sect. 4.3.4). Figure 4.17 illustrates the contributions to I of ERA5 VPDJJA+ wrt. GMST,

which increased from 288.8 K to 289.6 K in 1979–2020. A linear regression of all contributions

with GMST as predictor shows, first of all, that I increased by about 0.06 kPa (+23%) between

the coldest (1984) and the warmest (2019) year (Fig. 4.17a). This intensification comes from an

increase in IT′ and of Iq′,re f . As mentioned above, the increase in IT′ is at least partly owed to a

larger VPD’ resulting from the same T′ in a warmer climate. Changes in the two q′-contributions

are more difficult to attribute to a phenomenon, as they additionally depend on the local rela-

tionship between q and T, which varies across the globe. Still, we note a strong reduction of

Iq′,par in absolute, but especially in relative terms (Fig. 4.17a,b). The relative importance of q′par

for I decreased with the observed global warming from 41% to 23%. All in all, the importance

of q′par, i.e., q′ related to anomalous climate dynamics, for the intensity of VPDJJA+ was reduced

with the observed global warming in 1979–2020. Instead, IT′ and Iq′,re f , i.e., processes mostly

related to T′, contributed more positively to I at higher GMST. The robustness, however, over a
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Figure 4.17: (a) Scatter plot of I (brown), IT′ (red), Iq′ ,par (teal), and Iq′ ,re f (grey) of all ERA5 VPDJJA+ in
30–60°N with respect to GMST. Linear regression lines are shown in solid lines of the respective color. (b)
All regression lines relative to that of I in %.

relatively narrow range of GMST and slightly less than 100 VPDJJA+ is relatively low. Conse-

quently, all four assessed trends are insignificant at a significance level of α = 5%. Nevertheless,

these results are indicative of what is to be expected with ongoing global warming, which could

be investigated when applying the presented framework to future climate simulations.

Lastly, given the good performance of modelling the contributions to VPDJJA+ intensity across

the mid-latitudes, we use the much more extensive set of CESM1 VPDJJA+ to assess the spatial

patterns of I and the three contributions. In CESM1, the most intense VPDJJA+ with I > 0.8 kPa

occur in the Great Plains in the Central U. S., and the Indus River Basin in Pakistan (Fig. 4.18a).

These large I on average consist of more than 50% IT′ , while the larger part of the remainder

comes from Iq′,re f and only up to 10% from Iq′,par (Fig. 4.18b-d). Very low I is found for

VPDJJA+ that affect the eastern continents, higher latitudes, and northwestern Europe. A typical

characteristic of VPDJJA+ in these and adjacent regions are negative Iq′,re f , i.e., a moistening

during the warmer than usual VPDJJA+ (Fig. 4.18c). Consequently, the share of Iq′,par is widely

above 25% (Fig. 4.18d). The previously-mentioned VPDJJA+ with negative IT′ , occurring at the

east coasts of North America and Asia, belong to those with I < 0.2 kPa (Fig. 4.18a). On average

over all VPDJJA+ there, IT′ is still positive (Fig. 4.18b). Still, more than 75% of I are on average

attributed to Iq′,par (Fig. 4.18d). In contrast, other VPDJJA+ with typical I < 0.2 kPa are first and
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Figure 4.18: Maps of (a) the intensity I, and its relative contributions (b) IT′ , (c) Iq′ ,re f , and (d) Iq′ ,par

averaged over all CESM1 VPDJJA+ in 30–60°N. At each grid cell we average over the respective object-
land-mean values of all VPDJJA+ that cover the respective grid cell.

foremost composed of IT′ with a relative contribution of > 100%, and occur, e.g., in Alaska,

Newfoundland, the British Isles, and Japan (Fig. 4.18a,b). In the remaining regions, mostly over

mid-latitude continents, the typical IT′ and Iq′,par are around 70% and 20%, respectively, while

Iq′,re f does not contribute substantially to the intensity of VPDJJA+ (Fig. 4.18b-d). We conclude

that the key factors contributing to I are very diverse across the mid-latitudes. There are some

characteristic patterns, of which the majority – but not all – show the largest fraction of I related

to T′. Moreover, the decomposition of I into the different contribution seems to be affected by

the absolute level of I itself. While lower I can sometimes be attributed largely to q′par, VPDJJA+

with high values of I seem to rely on a sufficiently large IT′ .
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4.5.3 Case studies: substructure and drought impact

To illustrate the meteorological conditions leading to extreme VPDJJA+ in different regions, we

qualitatively investigate daily meteorological time series over JJA for a diverse set of exemplary

VPDJJA+ in 1979–2020. This so-called temporal substructure of VPDJJA+ provides insight into

the meteorological composition of an entire JJA season and reveals shorter-term phenomena,

e.g., individual heat waves, droughts, or combinations thereof (see Sect. 1.3). We selected six

VPDJJA+ that are diverse regarding their decomposition of I (Table 4.3). For each of the cases

we use daily anomalies VPD’d, T′
d, and q′d – which are calculated as the deviation of the daily

mean values from the seasonal trend value in that year (analogously to Eq. 4.9) – and daily

accumulated precipitation Pd (convective plus large-scale). Moreover, we also discuss daily

anomalies of the volumetric water content of the top 1 meter of soil (θ′d) and weekly values of

1-, 3-, and 12-monthly Standardized Precipitation Evapotranspiration Index (SPEIw-1, SPEIw-3,

and SPEIw-12) to assess the interaction of VPDJJA+ with drought (see Sects. 4.2.2 & 4.2.3). Note

that VPD’d have a slight positive bias of approximately 0.05 kPa as VPD is slightly larger when

calculated on shorter timescales (Sect. 4.3.3). Consequently, the average of VPD’d over one

season is slightly larger than its I, which is based on seasonally calculated VPD’. The qualitative

assessment of the substructure presented in the following, however, is hardly impeded as

typical VPD’d are much larger than this offset.

The VPDJJA+ in Spain (SP1994) and in Morocco/Algeria (MA1994) in 1994 show a similar

substructure, as they were less than two hundred kilometers apart (Fig. 4.19). They appear

as separate extreme seasons, however, as the two VPDJJA+ objects were separated by one grid

cell. SP1994 and MA1994 occurred in one of the most extreme hydrological years in northern

Africa (Benassi, 2008), and the vast majority of Mediterranean woody flora in central and

southern Spain was damaged, i.e., dry, completely decolorated or defoliated (Peñuelas et al.,

2001; Lloret et al., 2004). The intensity of the two VPDJJA+ mostly comes from positive T′,

especially so for SP1994 with a relative IT′ of 82% (Table 4.3). On the daily timescale, positive T′
d

during virtually all of July and August caused positive VPD’d of around 1 kPa (Fig. 4.19a,c).

Nevertheless, q′d played an important role, which becomes clear when contrasting the hot-moist

period of ∼+5 K in early August with the similarly warm dry period in early July: the latter

Table 4.3: VPDJJA+ examples in ERA5 including their intensity I and the four contributions relative to I.

Year Region I [kPa] IT ′ [%] Iq′,par [%] Iq′,re f [%] Ires [%]

1994 Morocco/Algeria 0.49 75 23 −3 4

1994 Spain 0.38 82 2 12 4

2000 Southeastern Europe 0.51 53 48 −4 3

2003 Central Europe 0.32 127 −2 −35 11

2011 Southern U. S./Mexico 0.78 71 5 19 6

2018 Northern Europe 0.21 95 31 −31 5
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Figure 4.19: Time series of (a) VPD’d, (c) T′
d, (e) q′d, (g) Pd, (i) θ′d, and (k) 1-, 3-, and 12-monthly SPEIw

during SP1994. Maps (b,d,f,j,l) show the seasonal mean of the respective time series in (a,c,e,i,k), and (h)
the mean anomaly of P from the 1979–2020 seasonal mean value. Dashed lines in (a,c,e,g,i) denote the
time series’ mean. The cross in (b) denotes the center of SP1994. (m-x) The same as (a-l) but for MA1994.
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went along with a twice as large VPD’d ≈ 1.5 kPa (Fig. 4.19a,c,e). Moreover, the frequent cold

periods in June went along with mostly positive VPD’d due to q′d as low as −4 g kg−1. In that

time, SPEIw-1 was the least negative in SP1994, and greatly decreased to below −1 during

July (Fig. 4.19k). On the seasonal timescale, the region of SP1994 climatologically features

decreased q during warm JJA, as indicated by the expected decrease in qre f per Kelvin of T′

(∆qT = −1.8 % K−1), which is why the contribution of the mentioned periods of negative q′d are

mostly attributed to Iq′,re f (Table 4.3). The contribution of negative q′ was mostly important in

the southwest of SP1994, where VPD’ was larger than its northeast (Fig. 4.19b,d,f). In addition

to the extremely large VPD, precipitation (P) was scarce and accumulated a seasonal deficit

between 25 mm in the southwest and 150 mm in the northeast (Fig. 4.19h). The most negative

seasonal anomalies in P also went along with a greatly reduced SPEIw-3 ≈ −2 and θ′ < −5%

(Fig. 4.19j,l). A lack of Pd compared to climatology together with the intense periods of positive

VPD’d led to a declining θ′d mostly throughout JJA, reaching its minimum at the end of August

(Fig. 4.19i). The only larger differences of MA1994 compared to SP1994 arise from the fact that

Morocco/Algeria are climatologically almost completely dry in most of JJA, i.e., the absence

of Pd does not cause large anomalies in seasonal P (Fig. 4.19s,t). Consequently, θ′d remains

relatively small, as soils are climatologically dry during JJA, and SPEIw-1 partly increases over

the course of JJA when the water balance is climatologically strongly negative (Fig. 4.19u,w).

Nevertheless, there was a decrease of θ′d over the course of JJA, mostly so in the northeast of

MA1994, where in addition to extremely high VPD P′ was reduced most strongly (Fig. 4.19t,u,v).

Figure 4.20: The same as Fig. 4.19a-l but for SE2000.
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The extreme VPD season in southeastern Europe (SE2000) mainly affected northern Greece,

Bulgaria, and Serbia. In some contrast to SP1994, the intensity of SE2000 was equally due to

positive T′ and negative q′par (Table 4.3). Two very intense heat waves in July with T′
d of up to

10 K partly coincided with negative q′d and thus caused VPD’d of more than 2 kPa (Fig. 4.20a,c,e).

In these periods, the reduction in θ′d was particularly strong (Fig. 4.20i). During the first one,

the highest temperature in Bulgaria in 1979−2021 was recorded (Nojarov and Nikolova, 2022).

In many Mediterranean countries such as Greece, temperatures above 48◦C caused an extreme

atmospheric water demand that led to extensive wildfires and anomalously low soil moisture

(Fig. 4.20i,j; Demirtaş, 2017). The q′d was negative during all but 12 days of the warmer than

usual SE2000 with an average of −1.5 g kg−1, especially during and after the two heat waves in

July (Fig. 4.20c,e). Some very pronounced dry periods in June and August went along with neg-

ative T′
d < −2 K, which is why VPD’d then remained around zero and the almost continuously

decreasing θ′d stagnated (Fig. 4.20a,c,e,i). As the affected region shows hardly any climatological

correlation between T and q, the anomalies in q contribute almost entirely to Iq′,par and not to

Iq′,re f (Table 4.3). The few intermittent periods of positive q′d were often accompanied by some

rainfall that increased soil moisture anomalies, and which either resulted from increased qd

and/or which increased surface evapotranspiration in the moisture-limited period (causing

larger q) (Fig. 4.20g,i). The SPEIw-1 and SPEIw-3 indicate that drought conditions were partly

extreme (≤ −1.65) all throughout JJA of SE2000, with lowest seasonal mean values (θ′ < −5 %)

in the center and northwest of SE2000. Over this summer season SPEIw-12, i.e., drought condi-

tions considering the previous 12 months, shifted from indicating almost normal conditions

(SPEIw-12 = −0.11) at 1 June to extreme drought at 31 August (SPEIw-12 = −1.79). All in all,

the intensity of SE2000 was shaped predominantly by the two heat waves and continuously less

than climatological q. The reduced atmospheric moisture content also related to an accumulated

P deficit of more than 100 mm (Fig. 4.20h). This both led to a great reduction in top-1-meter soil

moisture and extreme drought conditions even on the 12-monthly timescale by the end of JJA.

The two most discussed summers regarding heat, drought, as well as impaired ecosystem

functioning in Europe are related to the VPDJJA+ in central and southwestern Europe in 2003

(CE2003) and to that in northern Europe in 2018 (NE2018; Bastos et al., 2020b). The most

unusual conditions in NE2018 emerged earlier during the year – already in May – compared

to CE2003, which had its most extreme hot period in August (Fig. 4.21; Buras et al., 2020).

Therefore, VPD’d of up to 1.5 kPa in August contributed substantially to I of CE2003 (Fig. 4.21a),

while VPD’d was often negative and P more abundant in August of NE2018 (Fig. 4.21m,s).

Consequently, lowest θ′d of around −8% occurred at the end of August and July in the case

of CE2003 and NE2018, respectively (Fig. 4.21i,u). Contrary to the previous case studies, the

central and northern European continent climatologically shows increased q during hot JJA,

e.g., ∆qT = +2.5 % K−1 for CE2003 (Fig. 4.21c). Consequently, mostly positive q′d during CE2003

caused I to be about 27% lower compared to the contribution from T′ alone (Fig. 4.21e, Ta-

ble 4.3). The moistening during CE2003 was at about the rate expected from the climatological

q-T relationship, consequently Iq′par was just around zero. Moisture availability seems to have
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Figure 4.21: The same as Fig. 4.19 but for (a-l) CE2003 and (m-x) NE2018.
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been an important factor for dampening I, as q′ was most positive along the Mediterranean

and Atlantic coasts (Fig. 4.21f). Hence, these were the only regions of CE2003 where SPEIw-3

indicated mild instead of extreme drought conditions (Fig. 4.21l). Again, we cannot determine

whether q′d was positive due to Pd or vice-versa, due to the strong temporal correlation of the

two variables (Fig. 4.21e,g). The deficit in accumulated P was greatest with < −100 mm in

the continental regions affected by CE2003 and with < −200 mm in the Alps (Fig. 4.21h). The

dampening of I due to larger q was not equally pronounced in NE2018 compared to CE2003

and weaker than expected climatologically. Mostly due to negative q′d during the first half of

JJA, q′par contributed 30% to I of NE2018 (Table 4.3, Fig. 4.21q). Related to that, the longer-term

impact on drought, i.e., on SPEIw-3 and SPEIw-12, was larger and regionally more consistent

for NE2018 than for CE2003 (Fig. 4.21k,l,w,x). Nevertheless, regarding VPD in JJA, CE2003

was more exceptional in terms of intensity (I = 0.32 kPa) and rarity (R = 99 y) than NE2018

(I = 0.21 kPa; R = 71 y). Recall that R values are rough estimates of the recurrence and are only

meant to contextualize I in the local climate. This difference most likely arises from the timing

of most extreme periods of positive VPD’d and below-average Pd, which in the case of NE2018

were shifted by about a month wrt. JJA – which is also reflected in the increasing θ′d and SPEIw-1

in August (Fig. 4.21u,w). When considering the entire growing seasons, that in 2018 featured

stronger climatic impact on ecosystems than that in 2003 (Buras et al., 2020; Bastos et al., 2020b).

In summary, for both VPDJJA+ the climatological dampening of I, occurring preferentially in

coastal regions and manifesting in negative Iq′re f , was important but still outweighed by the

large IT′ (CE2003 and NE2018) and Iq′par (NE2018).

Lastly, the most intense VPDJJA+ discussed earlier, US2011, was characterized by an extremely

homogeneous substructure (Fig. 4.22). All but one day of US2011 showed positive VPD’d and

also positive T′
d of on average 2.6 K (Fig. 4.22a,c). This could be partly due to the dry soils at

the beginning of summer, indicated by the already negative θ′d and SPEIw values at all three

timescales (Fig. 4.22i,k). The hot spot of positive T′ and negative q′ were the central and northern

regions affected by US2011 (Fig. 4.22d,f). ERA5 Pd exceeded 5 mm on only one day in June, and

the seasonal anomalies of P were so large that accumulated P in most regions was below 50 mm

(Fig. 4.22g,h). These features of the substructure, especially also that of q′d, were similar to those

of SP1994, which occurred in a similarly arid region (Figs. 4.19 & 4.22). Also here, the largest

part of I was due to T′ (71%) but also Iq′,par contributed with 19% to I (Table 4.3). However,

the region of the southern Great Plains is unique regarding the intensity of VPDJJA+, which in

the case of US2011 (and also US1980) was about twice that of SP1994. The spatial patterns of

drought intensity show the aggregated nature of SPEIw-3, which was extremely low where

rainfall was anomalously scarce (in the southwest of US2011) and where extremely positive

VPD’ occurred (in the north of US2011). Note that positive θ′ in the southwest of US2011 has

to be interpreted carefully, as it is situated in the climatologically dry area of the Chihuahua

desert and might still indicate very low absolute θ (Fig. 4.22j). Lastly, in contrast to the case

studies in non-arid regions (e.g., SE2000 and NE2018), θ′d did not further decrease and was less

negative for US2011 during JJA despite a more extreme atmospheric water demand reflected
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Figure 4.22: The same as Fig. 4.19a-l but for US2011.

in large VPD’d and low SPEIw-1 (Fig. 4.22a,i,k). This means that virtually no soil water was

available for evapotranspiration, i.e., actual evapotranspiration was well below PET, and all

excess energy at the surface was converted into sensible heat to warm the (dry) air above. Thus,

these water-limited conditions fed back on high T′
d, low q′d and hence high VPD’d, and were

partly responsible for the extremely large I of US2011. In summary, US2011 is an example that

illustrates how VPDJJA+ can intensify in an arid region that reaches complete water limitation.

To conclude, the six cases of VPDJJA+ illustrated the diversity of how extreme VPD on the

seasonal timescale formed in 1979−2020, and how strongly it is linked to drought conditions,

i.e., to soil water content and to the SPEI. While all of the six VPDJJA+ shared extremely positive

I, absolute values of I as well as the physical limits of individual meteorological anomalies to

produce large VPD’ varied with region. The combined potential of qd and Td to form large VPD’d
becomes particularly obvious when contrasting the impact of individual cold-dry periods (e.g.,

in SP1994), hot-dry periods (e.g., in US2011), and hot-moist periods (e.g., in CE2003). Regarding

the decomposition of I, (strongly) positive T′ was important in all case studies, but Iq′,par and

Iq′,re f were important contributions in exceptionally dry summer seasons (e.g., SE2000), and in

specific regions such as the southern Great Plains (US2011). The latter illustrated the feedback

mechanisms between extreme VPD reducing θ, and low θ fostering high VPD under arid

conditions (Miralles et al., 2019). Similarly, the below-average θ and P often co-occur in space

and time with negative q′, as these anomalies are positively coupled in many regions (Betts

et al., 1996).
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4.6 Discussion

We have applied the scheme of Röthlisberger et al. (2021) to identify extreme VPD seasons in

the Northern Hemisphere mid-latitudes in JJA 1979–2020 (ERA5) and in a 1’050-year-large set

of climate simulations (CESM1) with 1990–1999 historical radiative forcing (see Chapter 2),

and have decomposed the intensity of the resulting VPDJJA+ into contributions from T′, q′par,

and q′re f . The evaluation of VPD on the seasonal timescale requires a careful methodological

setup that allowed us to (i) statistically identify VPDJJA+, and (ii) decompose I into seasonal

mean contributions from the meteorological anomalies. Using seasonal mean T, q, and p leads

to an underestimation of VPD compared to a more accurate computation based on sub-daily

VPD values. This underestimation of the lower-frequency computation has been accounted for

with empirical corrections (Williams et al., 2013), or with the use of long-time averaged daily

minimum and maximum temperature, which, however, tends to overestimate VPD inferred

from sub-daily values (Seager et al., 2015). As we find that the underestimation is approximately

constant in time, it is merely the result of intra-seasonal VPD variability rather than of a process

related to the intensity of one particular VPDJJA+. Consequently, this fraction of VPD could

not have been explained by seasonal mean anomalies of T and q. In summary, regarding the

magnitude of VPD, our results have to be considered a conservative estimate, which, however,

does neither impede the identification of VPDJJA+ nor their I.

In both datasets analyzed here, the intensity of VPDJJA+ is clearly dominated by IT′ , however,

Iq′,par accounts for about a third of total I across all VPDJJA+ in ERA5 and CESM1. Many re-

cent studies on VPD, on its trend and variability, and particularly those that quantify future

impacts of VPD on forests emphasized the role of T′ (or es) for large VPD (Williams et al., 2013;

McDowell et al., 2016; Ficklin and Novick, 2017). Only few studies, e.g., Seager et al. (2015),

have investigated and highlighted the importance of ea (i.e., q) variability for inter-annual VPD

variability. Our results for ERA5 VPDJJA+ indicate an increase of I with global warming, which

is consistent with future projections of global VPD (Yuan et al., 2019), or regional analyses in

the U. S. (Ficklin and Novick, 2017) and Europe (Balting et al., 2022). Interestingly, although

insignificantly, IT′ increases at about the same rate as I, while there is a strong shift of the

q′-contribution from Iq′,par to Iq′,re f at the hemispheric scale (Fig. 4.17). The globally decreasing

trend in relative humidity that accompanied the recent climate warming could explain that a

larger share of q′ is attributed to q′re f instead of q′par at warmer temperatures (Simmons et al.,

2010; Vicente-Serrano et al., 2018). Projections of daily VPD extremes (Gamelin et al., 2022) and

seasonal VPD (Ficklin and Novick, 2017) underline the increasing importance of T for large

VPD towards the end of this century. It would, therefore, be of high interest to use the setup

developed here to investigate IT′ , Iq′,par, and Iq′,re f of VPDJJA+ in CESM1 simulations for a future

climate with larger radiative forcing than that used for our simulations.

We found that CESM1 is well able to model the typical VPDJJA+ size and intensity, their positive

correlation, and the decomposition of their I in the Northern Hemisphere mid-latitudes. First
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of all, we use CESM1 in 1990–1999, a relatively short period during which the observed global

trend in relative humidity was still small (Simmons et al., 2010; Blunden and Boyer, 2021).

Consequently, the inability of many CMIP5 models to capture this trend (Dunn et al., 2017),

which would have introduced an error in the decomposition of I, did not apply to our CESM1

setup. Furthermore, the climatological co-variability between q and T is well-simulated by

the models in the historical period (Dunn et al., 2017). As a consequence of a well-simulated

co-variability, the modelling of VPD can be better than that of q and T individually (Fischer

and Knutti, 2013). Nevertheless, the high agreement of extreme VPD characteristics in CESM1

compared to ERA5 remains surprising, given the considerable uncertainties related to the

land-atmosphere coupling (Berg and Sheffield, 2018). Therefore, further evaluation of VPDJJA+

characteristics analogously to Röthlisberger et al. (2021) could consolidate and explain the

ability of CESM1 to simulate VPDJJA+.

Spatial patterns in the decomposition of I during extreme VPD seasons appear to be physically

constrained by the observed q-T-correlation, i.e., ∆qT, which arises from the local climate,

weather system dynamics, surface cover, and orography. On the one hand, ∆qT exhibits its

largest negative values in dry regions of the southwestern U. S. and Pakistan (Dai, 2006), where

negative q′ contributes mainly to Iq′,re f as low q is expected in warm JJA. This could be strongly

coupled to intra-seasonal weather system dynamics, which explain why most rainfall – which

is inherently coupled to moist (q′ > 0 ) conditions – falls on colder than normal days in the

southwestern U. S. (Zschenderlein and Wernli, 2022). On the other hand, regions of highly

positive ∆qT, such as northwestern Europe and the northeast of Asia and of North America

(Dai, 2006), show typically negative Iq′,re f and large relative IT′ . Large contributions Iq′,par are

found adjacent to the western ocean basins and in northern latitudes, where cyclones are clima-

tologically the most abundant in JJA (Wernli and Schwierz, 2006). Cyclones are responsible for

atmospheric (moisture) transport and for a large share of P in these regions (Pfahl and Wernli,

2012b; Zschenderlein and Wernli, 2022) and thus exceptionally low cyclone frequency could

be the source of negative q′par in VPDJJA+. Related to that, in more confined areas within the

coastal entrance regions of the Northern Hemisphere jet streams, CESM1 revealed a unique

group of VPDJJA+ with negative IT′ . They arise from a subtle balance between sufficiently nega-

tive T′ (thsu negative q′re f ), which, however, are not too low to cause a substantially negative

IT′ . A southward shifted Northeast Asian jet reduces the local cyclone frequency and hence

precipitation in and north of North Korea, fostering a colder and more continental flow towards

these regions (Zheng-Bin et al., 2014). Thus, the colder conditions relate to positive Iq′,re f and

the particularly dry conditions further contribute to Iq′,par. In the eastern U. S., a northward

shifted North Atlantic jet stream reduces the moist southerly inflow towards the eastern U. S.

(Coleman and Budikova, 2013) – a pattern which has been responsible for major droughts

in that region (Seager et al., 2012). These situations disfavor atmospheric rivers and warm

conveyor belts, which are two weather systems crucial for summer precipitation in the eastern

U. S. (Zschenderlein and Wernli, 2022). The absence of the weather systems related to wet

conditions during VPDJJA+, in the eastern U. S. but also elsewhere in the mid-latitudes, is pre-
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sumably compensated by the increased occurrence frequency of (blocking) anticyclones, which

can favorably contribute to both positive IT′ and Iq′,par (e.g., Zschenderlein et al., 2020). These

considerations highlight how weather and climate dynamics can – amongst others – shape the

identified VPDJJA+ and how the interplay of T′, q′re f , and q′par determines their intensity.

As already discussed in Sects. 4.5.1 & 4.5.3, many of the identified VPDJJA+ have previously

been related to adverse impacts on ecosystems and drought conditions indicated by θ and SPEI.

As reduced P and dry soils often went along with VPDJJA+, partly amplifying their intensity

(Miralles et al., 2019; Lesk et al., 2022), it remains difficult to attribute the adverse ecosystem

impact to the extremely high VPD or to dry soils alone (Sulman et al., 2016). Nevertheless,

the extreme forest drought stress in Europe in 2018 has regionally been linked to the highest

growing season mean VPD of the last 100 years (Schuldt et al., 2020). Also, specifically in

the southwestern U. S., VPD has been highlighted as major factor determining forest drought

stress and wildfire risk (Williams et al., 2013, 2014). Generally in arid and semi-arid regions,

the intensification of drought stress by VPD is more straight-forward than in humid regions,

where prevalent θ and P are more important for drought stress (Vicente-Serrano et al., 2020).

This is evident from the temporal substructure of US2011, where almost completely dry soils

from early on greatly limited evapotranspiration and thus fostered positive T′
d, negative q′d,

and high VPD’d via enhanced sensible heat fluxes (Seneviratne et al., 2010; Lesk et al., 2022).

Nevertheless, also in semi-arid to sub-humid regions of Europe, the case studies of VPDJJA+

(SE2000, CE2003, and NE2018) went along with extreme SPEIw-3 values below −1.65, which are

strongly related to agricultural and forest drought impact (Bachmair et al., 2018). Finally, the set

of VPDJJA+ presented here constitutes a starting point to study the adverse impacts of extremely

high VPD more systematically and to quantify the role of VPD for ecosystem drought stress in

comparison with other climatic determinants.

Finally, and despite all efforts to develop a nuanced methodological setup that fits the purpose

of this chapter, some limitations of the presented analyses remain. The first one is the short

observational period of 42 summer seasons, which affects the estimation of VPD trends, the

shares of q′re f and q′par, and the parameters of the NYJ at each grid point. Using a longer

reanalysis dataset, e.g., the backward extension of ERA5 from 1940 to 2022 (Hersbach et al.,

2020), would make all statistical models used here more robust. Second, since the lower tail

of any VPD distribution is bounded at zero, the forced warming trend potentially increases

the variability of VPD in ERA5 over time, which would impede the assumptions made in the

parameter estimation of the NYJ distribution. Observations do not show a consistent change in

VPD variability over the past 50 years, as it is locally influenced by additional factors of climate

variability (Hansen et al., 2022). However, these first two limitations lead to a mutual trade-off:

A longer observational period would increase the robustness of the parameter estimation, but at

the same time, the undesirable effect of global warming on VPD variability would be larger and

thus potentially call for substantial modifications in the statistical modelling of VPD compared

to Röthlisberger et al. (2021). A last limitation concerns the use of ERA5 and CESM1 data
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in different time periods, which goes along with different climatic reference states used to

compute the IT′ and alters the effect of a given T′ on VPD’. From our results, which show a

good agreement between ERA5 and CESM1 in terms of I and IT′ , we cannot infer whether these

differences are of minor importance or compensated by CESM1 model biases. We, therefore,

suggest additional model evaluations regarding VPDJJA+.

4.7 Conclusions

High vapor pressure deficit (VPD) during the summer season results from hot and/or dry air

and is, among other things, a key driver of ecosystem drought stress, crop failure, increased

wildfire risk, and tree mortality in mid-latitude forests. This chapter presents the results of a

sophisticated methodology that (i) identifies extremely high VPD on the seasonal timescale

guided by Röthlisberger et al. (2021) based on the exceedance of the local 40-year return level,

and (ii) decomposes the mean VPD’ of the resulting extreme season objects (VPDJJA+) into

meteorological contributions from seasonal anomalies of T and q (T′ and q′). Both aspects

constitute progress in the understanding of inter-annual VPD variability, as neither extremes

of seasonal mean VPD have previously been identified on a hemispheric scale, nor have their

intensities been attributed to T′ and q′.

In the region from 30–60 ◦N in summer, we identify 96 VPDJJA+ in ERA5 in 1979–2020, and 2’507

VPDJJA+ in a 1’050-year-large set of CESM1 climate simulations with 1990–1999 radiative forcing.

The most intense observed VPDJJA+ occurred in the southern U. S. and Mexico in 2011 with an

intensity of I = 0.78 kPa, and the largest one affected A = 30.2·105 km2 of land area in western

Russia in 2010. Over all VPDJJA+, approximately 75% of I are due to positive T′ in both ERA5

and CESM1; a fraction that is likely to increase in a warming climate due to the exponential

dependence of VPD on T. A minor fraction of this temperature contribution is offset by a

moistening that can be attributed solely to the warming (q′re f ). The remaining ∼31% can be at-

tributed to a dry anomaly in q that is related to anomalous circulation dynamics during extreme

VPD seasons (q′par). According to CESM1, which simulates the main characteristics of VPDJJA+

extremely well, the relative contributions of T′, q′par, and q′re f vary across the mid-latitudes.

In a few semi-arid and arid regions, all three terms contribute positively. In more northern

regions, positive q′re f acts to dampen the contributions of the hot and dry anomalies during

VPDJJA+. Very few regions along the east coasts were identified, where VPDJJA+ can also occur

in association with negative T′ due to exceptionally large negative q′. Many of the presented

relationships between T, q′re f , and q′par during VPDJJA+ are potentially related to anomalous

weather system dynamics on the daily to weekly timescales. A possible future extension of this

work could examine the meteorological phenomena and processes that influence q′ and T′ in

the first place.

Moreover, we explored the peculiarities of the nonlinear dependence of VPD on T, which

causes an underestimation of the seasonal mean VPD computed from seasonal mean T, q, and



4.7 CONCLUSIONS 77

p compared to higher-frequency data of the same variables. This underestimation is due to

intra-seasaonal VPD variability (58% day-to-day and 42% sub-daily variability), and hardly

contributes to the rarity, i.e., extremeness, of the identified VPDJJA+.

In a last analysis, we presented the substructure of a diverse set of exemplary VPDJJA+ and their

concurrence with (extreme) drought according to the SPEI and top-1-meter soil water content.

They exemplify the importance of individual heat wave contributions to VPDJJA+, and also

illustrate the importance of extended periods of simultaneously low q and high T for large VPD

and low SPEI.

Overall, this chapter presents a novel meteorological decomposition of extreme seasonal mean

VPD to better understand how they are shaped by shorter-term atmospheric variability. Fur-

thermore, the presented framework could be used in future work to investigate the impact of

VPDJJA+ more systematically and separately from other drivers of plant water stress, and also

to investigate the relative importance of T′ and q′ in a warmer future climate.





Chapter 5
Assessment of the Greenland summer melt
increase in the 21st century

5.1 Introduction

Short-term atmospheric variability in summer is a major determinant of the total mass balance

(TMB; Eq. 1.2) of the Greenland Ice Sheet (GrIS) and thus of the GrIS’s contribution to global

sea-level rise (see a more elaborate introduction in Sect. 1.4.3). As a response to global warming,

surface melt has contributed more and more to the decrease of TMB in the past decades (Fet-

tweis et al., 2013a; van den Broeke et al., 2016). Future mass loss will be dominated by surface

melt, as the contribution from dynamical ice loss (D) decreases due to the retreat and thinning

of outlet glaciers (Muntjewerf et al., 2020). As a consequence, surface processes including the

impact of atmospheric variability on melt remain the largest source of uncertainty regarding

future GrIS mass loss (Delhasse et al., 2018; Hofer et al., 2019; IPCC, 2021; Delhasse et al., 2021).

While the increase in surface melt in the near future is unequivocal (Box et al., 2022b), the

potential impact of changing atmospheric circulation patterns as a response to continued global

warming is a matter of debate (Belleflamme et al., 2013; Hanna et al., 2018; Delhasse et al., 2021).

Delhasse et al. (2018) suggested that more frequent anticyclonic circulation anomalies as in

the early 2000s – which are not well-captured by current general circulation models (GCMs) –

would cause a two times larger surface mass loss than currently estimated (see Eqs. 1.2 & 1.3).

In addition to altered atmospheric circulation patterns, future changes in surface melt include

an increasing melt area and a larger melt intensity (Q) in the melt area (Franco et al., 2013;

Mioduszewski et al., 2016). The increase in Q results from spatially varying processes that cause

an energy surplus at the GrIS surface, e.g., changes in cloud properties (Hofer et al., 2017, 2019),

enhanced sensible heat fluxes from a warmer atmosphere (Wang et al., 2021), the melt-albedo

feedback (Box et al., 2012), and the melt-elevation feedback (Muntjewerf et al., 2020). A main

challenge regarding future mass loss from the GrIS is, therefore, to understand if and how

strongly (i) the expanding melt area, (ii) intensified Q in the melt area, i.e., melt intensification,

79
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Figure 5.1: Vertical profiles of 100 m-binned (a) ice sheet area, (b) surface melt intensity, (c) accumulated
melt above a certain elevation, and (d) ratio of accumulated melt relative to PD. Purple lines show
CESM2 average values in PD. Dotted, hatched, and solid black lines in (a-c) show MAR average values
in 1995–2005, 2000–2010, and 2005–2015 (PD), respectively. Cyan and yellow lines in (c,d) denote CESM2
average values in 2045–2055 (MC) and 2085–2095 (LC), respectively. The dashed red line denotes 1’250 m,
i.e., values for the elevation bin 1’200–1’300 m. Grey shading in (b-d) shows blind spots of CESM2.

and (iii) shifts in the occurrence frequency of given circulation patterns determine the increase

in summer melt. Moreover, it is worth investigating if atmospheric circulation anomalies remain

an important driver of melt variability in a warmer future climate, or if the average conditions

already lead to widespread and intense melt.

We use an ensemble of the Community Earth System Model version 2.1 (CESM2) with a static

GrIS topography using radiative forcing from the SSP3-7.0 scenario to quantify melt and the

three aforementioned contributing mechanisms (Danabasoglu et al., 2020). We consider the

change in June–August (JJA) surface melt estimated from the surface energy balance between

present-day (PD; 2005–2015), mid-century (MC; 2045–2055), and late-century (LC; 2085–2095),

for details see Sect. 5.2.4. To motivate the use of a CESM2 at ∼1◦resolution to model surface

melt, we first compare our melt estimates with those of the regional climate model (RCM)

MAR v3.11 with 6 km horizontal resolution and ERA5 boundary conditions (Fig. 5.1; Fettweis

et al., 2017). By and large, the GrIS area as well as the mean Q in PD are well-captured by

CESM2 for regions above ∼1′200 m (Fig. 5.1a,b). As expected from the coarse resolution, the

increasingly steep ablation area is greatly underestimated by CESM2, and fully ice-covered

regions below ∼1′000 m hardly exist (Fig. 5.1a). Consequently, the accumulated melt in CESM2

deviates strongly from MAR estimates when including lower elevations (Fig. 5.1c). Above

1’200 m, however, the accumulated melt in CESM2 amounts to 201 Gt JJA−1 in PD, which is

relatively close to MAR estimates in the same period (30% underestimation). The cause of the

remaining discrepancy is unclear, but it is conceivable that internal variability and model biases

both contribute. Note that the exceptional melt years in 2007, 2010, and 2012 are contained
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in the MAR data but not in the freely running CESM2 simulations and thus likely contribute

to this discrepancy (Fettweis et al., 2020). The underestimation of melt in CESM2 is smaller

with 16% and 6% when compared to MAR values in 2000–2010 and 1995–2005, respectively

(Fig. 5.1c). Thus in this study, we will consider only upper-elevation (≥ 1′200 m) surface melt

for two reasons: Firstly, these regions will see an extremely large relative increase in melt of

+68% and +249% towards MC and LC (Fig. 5.1c,d), respectively, and, secondly, the CESM2 melt

is consistent with the MAR melt there.

In this chapter, we analyze melt from the upper-elevation zone (≥ 1′200 m), which is projected

to contribute an additional 501 Gt JJA−1 (∼1.4 mm JJA−1 of sea-level rise) to GrIS summer melt

in the 2090s (assuming the SSP3-7.0 scenario). Thereby, we aim to answer:

1. How much of the change in GrIS surface melt in the 21st century can be attributed to

changes in melt extent, melt intensity, and atmospheric circulation?

2. How does atmospheric circulation modulate this melt change across the GrIS?

3. How important is atmospheric variability for intra- and inter-seasonal variability of GrIS

surface melt?

As mentioned above, we use a CESM2 ensemble including four members in the periods PD, MC,

and LC, i.e., 44 years of simulated data in each time period (Sects. 2.2 & 5.2.2). To classify the

GrIS atmospheric circulation, we use the Self-Organizing Map method on 500 hPa geopotential

height anomalies in Sect. 5.2.3 (Kohonen, 1982). To attribute changes in surface melt to changing

melt area, melt intensity, and circulation, we refine a decomposition introduced by Cassano et al.

(2007, Sect. 5.2.5). We acknowledge that the use of a GCM might still underestimate atmospheric

variability (Delhasse et al., 2021), which is discussed in Sect. 5.4. Nevertheless, CESM2 is one of

the best evaluated GCMs, performing well in the GrIS region (van Kampenhout et al., 2020).

Moreover, this chapter provides a framework to study the three main determinants of the

enormous projected increase in surface melt, which are studied in Sect. 5.3, and advances our

understanding of the atmospheric influence on GrIS mass loss and associated sea-level rise.

5.2 Data and methods

5.2.1 Regional climate model MAR

We used MAR data in 1995–2015 in Sect. 5.1 to evaluate the melt estimates from CESM2 data

(Fettweis, 2007; Fettweis et al., 2017). Daily output on a 6 km horizontal grid was downloaded

from ftp://ftp.climato.be/fettweis/MAR/ (Fettweis, 2020). MAR is a widely used regional

climate model targeted to high latitudes and includes a 1-dimensional multi-layered energy

balance model that simulates the energy fluxes between the GrIS surface and the atmosphere.

In v3.11, MAR is laterally forced with ERA5 reanalysis data (Sect. 2.1). We sum the melt-water

production in JJA over the GrIS for several elevation bins to acquire the results shown in Fig. 5.1,

ftp://ftp.climato.be/fettweis/MAR/
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using the provided GrIS mask and GrIS topography. For further details with regard to MAR

data see Fettweis (2007).

5.2.2 CESM2 data

We use 6-hourly output from four members of the Community Earth System Model 2.1 (CESM2)

integrated from 1850 to 2100 using historical forcing up to 2014 and the SSP3-7.0 scenario

thereafter (Sect. 2.2). CESM2 is one of the latest CMIP6 models and is among the currently best

GCMs to simulate the climate of the GrIS (Noël et al., 2020; van Kampenhout et al., 2020). In

our CESM2 setup (“noevolve”), the GrIS topography is static, however, the Community Land

Model 5.0 (CLM5) does modify the GrIS surface albedo by modelling mass concentrations of

atmospheric-deposited aerosols and ice effective grain size (Lawrence et al., 2019). We use

the data in June–August (JJA) grouped into three 11-year periods termed present-day (PD;

2005–2015), mid-century (MC; 2045–2055), and late-century (LC; 2085–2095). The variables

used include 6-hourly values of surface temperature (Ts), and daily mean values of 500 hPa

geopotential height (Z500), net shortwave radiation (SWnet), net longwave radiation (LWnet),

sensible heat flux (SH), and latent heat flux (LH). For the SOM analysis, we compute anomalies

of Z500 (Z500′) from transient climatologies, which are defined as 11-day running mean Z500

over the 44 years of data in each period. Each Z500′, therefore, refers to the climatology of the

period of its occurrence. We consider glaciated grid cells in Greenland as part of the GrIS – as

elaborated in Sect. 5.1 – if they lie at least at 1’200 m (this yields a total area of 1.51·106 km2,

which is hereafter referred to as the “upper-elevation zone”).

5.2.3 Self-Organizing Map

To classify the atmospheric circulation over the GrIS in the three time periods, we make use

of the Self-Organizing Map (SOM) method (Kohonen, 1982). SOM is an unsupervised neural

network that identifies similarities in high-dimensional data without prior knowledge of the re-

sulting patterns. It is, therefore, well-suited to classify and visualize the synoptic circulation and

has become a widely used tool in atmospheric sciences (Liu and Weisberg, 2011). Specifically in

the Greenland region, SOM was applied to classify not only atmospheric circulation patterns

(Mioduszewski et al., 2016; Gallagher et al., 2022), but also water vapor transport (Mattingly

et al., 2018), and atmospheric blocking (Preece et al., 2022).

The SOM input data is daily mean Z500′ from all three time periods in the domain from 50–80◦N,

and 65–20◦W at its southern edge and 90◦W–5◦E at its northern edge (see Fig. 5.2 below). The

domain includes the GrIS, as well as the proximal North Atlantic storm track, the Davis and the

Denmark Strait. The Z500′ data was first interpolated to an equidistant grid with ∆x = 100 km

to ensure that all latitude bands contribute equally. This results in o = 12′144 observation days

and n = 1′041 equidistant grid points within the domain. Second, we normalize Z500′ at every

equidistant grid point with the mean and standard deviation of all observations to account

for spatial variations in Z500′ variability. Consequently, the input data consists of normalized
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Z500′ as a two-dimensional (2D) o × n array. Note that we perform the SOM analysis on data

that is pooled from all three periods, i.e., not separately for each period.

We tested different SOM setups, which are summarized in the Appendix C (Table C.1). The

SOM user chooses the size of the SOM map, i.e., how many nodes or circulation patterns to

identify, and a set of tuning parameters. The latter include the neighborhood function and the

initial radius (r), which both determine how the input data adjusts the position of the closest

and neighboring nodes in the data space during training, and the number of training iterations

(I), i.e., how often the SOM is trained with the input data. We test different rectangular SOM

sizes (5×4, 6×4, 6×5), whereby the trade-off is between a more accurate representation of

circulation patterns (many nodes) and a stronger reduction in the dimensionality (fewer nodes).

The number of iterations I, i.e., the “training length”, was varied with I ∈ {1’000, 3’000, 5’000,

10’000}. Further, we test r ∈ {2, 3, 4}, which are in the range of about half the size of SOM

side length, and which should ensure that the initialized nodes converge to a final SOM map.

As advised by Liu et al. (2006), we chose the Epanechikov neighborhood function. Our final

choice of parameters was guided by the ability of the final SOM map to adequately classify

the GrIS circulation, i.e., by the quantization error (QE), and by the topographic error (see Liu

et al. (2006) for details). We were primarily interested in sufficiently reducing dimensionality

while still minimizing QE, which quantifies the similarity between the final SOM nodes and

the observed daily Z500′. Considering all these aspects, we chose the setup of a 6×5 map with

r = 2 and I = 10′000.

To perform SOM, we use the SOM Toolbox in Matlab, which is among the most flexible and

frequently tested public-domain SOM tools (Vesanto et al., 2000). On the following lines we

provide a brief and somewhat “heuristic” explanation of how the final SOM map is computed.

For more details the interested reader is referred to Vesanto et al. (2000). The 30 nodes are

initialized linearly in a mesh in a 2D plane along the two greatest eigenvectors of the input data.

In the following batch training process, which describes the training with all input data at once,

the nodes in the n-dimensional data space are modified according to the input observations.

The training draws the nodes and its neighboring nodes towards regions of high data density,

such that each node of the final SOM map is closest to about the same number of observations.

The final nodes can be displayed as a 2D map, in which neighboring nodes are more similar

than nodes that are further apart. Each daily Z500′ observation is allocated to the closest node

in the data space – also called its best-matching unit.

5.2.4 Surface melt characteristics

In this subsection, we introduce several daily measures to arrive at a formulation for daily melt,

which is then aggregated to one JJA season and also formulated in terms of the SOM node

classification of the previous subsection. First of all, at each grid cell j and day d we define the

daily melt energy (Qd,j) according to the surface energy balance as,
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Qd,j = SWnet,d,j + LWnet,d,j − LHd,j − SHd,j (5.1)

where Qd,j is approximated from the sum of radiative and turbulent fluxes with unit W m−2.

Positive radiative fluxes point downwards while positive turbulent fluxes point upwards.

Thereby, we assume that the entire energy surplus at the surface is available for melt, i.e., that all

ice is at the melting point and that the subsurface conductive heat flux is zero. This assumption

is justified during periods when the GrIS is melting (van den Broeke et al., 2016). Consequently,

in a second step, we define the daily melt area (Ad) from 6-hourly surface temperature (Ts). A

grid cell of the upper-elevation zone is considered to be melting at a given day if at any time of

that day Ts ≥ 272.15 K (Nghiem et al., 2012). Finally, we compute the daily melt intensity as the

spatial average of Qd,j over Ad (Qd) and the daily melt total (md) as follows:

Ad = ∑
j∈Jd

aj (5.2)

Qd =
∑j∈Jd

aj·Qd,j

Ad
(5.3)

md = Ad·Qd (5.4)

where aj is the area of grid cell j, and Jd is the set of melting grid cells at day d. Negative

values of Qd (and hence md) are set to zero. The md values are converted from W to Gt d−1 by

using the heat of fusion to melt 1 g of ice at 0◦C equal to H f = 334 J g−1 (e.g., Hofer et al., 2017).

Aggregating the (daily) md to a seasonal melt total (ms, in Gt JJA−1) equals:

ms =
92

∑
d=1

md =
30

∑
i=1

∑
d∈Di

md (5.5)

where i denotes the SOM node index and Di the set of days in node i. The number of days in

Di, i.e., the number of node days per JJA season, is hereafter termed fs,i [d JJA−1].

5.2.5 Decomposition of 21st century melt change

We use a framework similar to that introduced by Cassano et al. (2007) to decompose the

changes in summer melt that occur during the 21st century into contributions from circulation

changes, melt area changes, and melt intensity changes.

To apply the decomposition, we first compute node day averages of several quantities over all

44 years of data in one period. That is, daily variables Ad, Qd, and md are averaged over all

days in node i of period P, which are termed AP
i , QP

i , and mP
i . As fs,i is a seasonally aggregated

variable, f
P
i simply denotes the average of fs,i over all 44 years. Thus, the average summer melt

in period P, which is the average of ms over 44 years (mP
s ), can be written as:

mP
s =

30

∑
i=1

mP
s,i =

30

∑
i=1

f
P
i ·m

P
i =

30

∑
i=1

f
P
i ·
(

A·Q
)P

i =
30

∑
i=1

f
P
i ·
(

AP
i ·Q

P
i + CP

i

)
(5.6)
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where mP
s,i denotes the average JJA melt produced during days in node i, and CP

i = cov(Ad, Qd)
P
i

denotes the covariance of Ad and Qd for all days of node i in period P. So mP
s is (second equality

in Eq. 5.6) the sum over all nodes of the average seasonal node occurrence [d JJA−1] times the

average melt per node day [Gt d−1]. The latter can be expressed in terms of AP
i , QP

i , and the

covariance of Ad and Qd, which arises due to the averaging of the nonlinear Eq. 5.4. Based

on that, we formulate the change of mP
s between two given time periods P1 and P2 (∆ms) as

follows:

∆ms = mP2
s − mP1

s
(5.6)
=

30

∑
i=1

(
f

P2
i ·AP2

i ·QP2
i + f

P2
i ·CP2

i − f
P1
i ·AP1

i ·QP1
i − f

P1
i ·CP1

i
)

(5.7)

Further, we insert XP2
i = XP1

i +∆Xi for all X ∈ { f , A, Q, C}, where ∆Xi denotes the change of

Xi between P1 and P2, and arrive at the following expression:

∆ms =
30

∑
i=1

(
∆ f i·

(
AP1

i ·QP1
i +CP1

i
)︸ ︷︷ ︸

(i)

+∆Ai· f
P1
i ·QP1

i︸ ︷︷ ︸
(ii)

+∆Qi·A
P1
i · f

P1
i︸ ︷︷ ︸

(iii)

+∆Ai·∆Qi· f
P1
i︸ ︷︷ ︸

(iv)

+∆Ci· f
P1
i︸ ︷︷ ︸

(v)

+Ei

)
(5.8)

The sums of terms (i) to (v) over all nodes denote parts of ∆ms that are attributed to a change

in (i) node day frequencies, i.e., atmospheric circulation, (ii) melt area, (iii) melt intensity, (iv)

concurrent changes in (seasonal) melt intensity and area, and in (v) the covariance of daily melt

area and intensity. The expression Ei summarizes four additional concurrent terms that are

negligible when summed over all nodes as we will show a posteriori in Sect. 5.3.1. Term (iv)

can be better understood with the example of positive ∆Qi and ∆Ai, i.e., of increasing average

melt area and melt intensity in a given node. This necessarily causes also a nonlinear, positive

contribution (iv), which quantifies the amount of melt that arises over the extension of the melt

area (∆Ai) by the extra melt intensity (∆Qi). In the following, we will refer to the five terms or

their sums over all nodes by (i) the frequency term, (ii) the area term, (iii) the intensity term,

(iv) the concurrent term, (v) the covariance term, and the residual. We use the decomposition

(Eq. 5.8) to attribute melt changes occurring between PD and MC, and between PD and LC.

Changes between MC and LC result from the difference of the two.

In summary, we decompose the change in the mean GrIS surface melt in JJA between periods

PD, MC, and LC by using (1) a SOM classification of the mid-tropospheric circulation, and (2) a

refined version of the decomposition introduced by Cassano et al. (2007), which attributes the

melt change to altered atmospheric circulation, melt area, and melt intensity (Eq. 5.8).

5.3 Results

In the first part of this section, we present the attribution of the melt increase during the first

and second half of the 21st to the individual processes (Sect. 5.3.1). Thereby, we first introduce

the atmospheric circulation patterns derived from the SOM analysis, their frequency, and the

associated melt, melt area, and melt intensity. In the second part, we present the melt change



86 CHAPTER 5. GREENLAND SUMMER MELT INCREASE IN THE 21ST CENTURY

decomposition for every node and further illustrate the spatial variability in how the extent

and intensity of melt are modified during different circulation patterns (Sect. 5.3.2). Lastly,

we examine to what extent circulation variability in the late 21st century still matters for melt

(Sect. 5.3.3).

5.3.1 The 21st century summer melt increase

a) Mid-tropospheric circulation patterns

The 30 nodes (atmospheric circulation patterns) identified by the SOM method from daily

Z500′ in PD (2005–2015), MC (2045–2055), and LC (2085–2095) demonstrate the great circulation

variability over the GrIS (Fig. 5.2). Nodes in the upper left of the SOM map are characterized

by cyclonic Z500′, with lowest GrIS-wide average Z500′ (Z500′GrIS) of −163 ± 37 m for days

in node (1,1). Diagonally opposed are nodes with anticyclonic Z500′ and anomalies of up to

Z500′GrIS = +201 ± 44 m in node (5,6). The SOM nodes further vary according to the location

of cyclonic and anticyclonic Z500′, which determine the mid-tropospheric flow anomaly in

the GrIS region. Nodes in the lower left oft the SOM map, e.g., (4,1) and (5,2), exert southerly

flow anomalies due to positive Z500′ to the Southeast of the GrIS. Nodes with negative Z500′

in that region are in the opposite corner of the SOM map, e.g., (1,5) and (1,6), and show more

northerly flow over the GrIS. As a result, neighboring nodes differ due to a combination of a

shift in location and in strength of the main mid-tropospheric flow anomalies. Finally, although

the SOM method aims at distributing the 30 nodes equally in the data space (Sect. 5.2.3), the

occurrence frequencies underline that nodes with most distinct Z500′ at the margins of the data

space are less common than those in the center of the SOM map (Fig. 5.2).

b) Evolution of melt characteristics

In this subsection, we first discuss the quantities and changes that the decomposition is based

on, before presenting the results of the actual decomposition in Sect. 5.3.1c. Average summer

melt of a given node (ms,i) as well as the node occurrence frequency ( f i), node-average melt

extent (Ai), and node-average melt intensity (Qi) reveal considerable variability between the

three time periods (Fig. 5.3). By and large, the increase in ms,i is larger in the second than in

the first half of the century. On average over all nodes, summer melt per node increases from

6.7 Gt JJA−1 (PD) to 11.3 Gt JJA−1 (MC) to 23.4 Gt JJA−1 (LC; Fig. 5.3a). The partially weak melt

increase from PD to MC is illustrated at the example of node (4,6), which is merely due to an

increase in occurrence frequency (Fig. 5.3b), while ∆A(4,6) and ∆Q(4,6) are approximately zero

(Fig. 5.3c,d). For many other nodes, only Ai is increasing between PD and MC, while Qi is about

constant or even decreasing (Fig. 5.3c,d). Hence, the average increase in daily melt intensity

from MC to LC (+7.1 W m2) is more than three times that from PD to MC (+2.0 W m2). In short,

there is a strong acceleration of the melt increase from the first to the second half of this century

during most circulation patterns.
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Figure 5.2: The 30 SOM nodes identified from daily Z500′ in JJA of the periods PD, MC, and LC (3 × 44
years). Shading shows Z500′. The title indicates the node number as (column,row) and the occurrence
frequency over all 132 years. The mean and standard deviation of GrIS-wide average Z500′ (Z500′GrIS)
over all node days are indicated in the legend.
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Figure 5.3: Node-average (a) summer melt (ms,i), (b) seasonal occurrence frequency ( f i), (c) melt extent
(Ai), and (d) melt intensity (Qi) for node i in present-day (purple), mid-century (cyan), and late-century
(yellow). The nodes are sorted from lowest (left) to highest (right) Z500′GrIS. The respective Z500′GrIS is
indicated by the label color (according to Fig. 5.2). Horizontal dashed lines denote (a,b) seasonal and
(c,d) daily averages over all nodes.

The changing melt dynamics are strongly dependent on the SOM node. In PD, the node

contributing most melt per season was (5,2) with mPD
s = 13.8 Gt JJA−1 (Fig. 5.3a). In terms of

mPD
s,i scaled by f

PD
s,i (not shown), i.e., melt per node day, node (5,6) led to most melt in PD. Both

nodes are characterized by positive Z500′ in the South of the GrIS and thus strong advection

of air from lower latitudes directed towards the GrIS (Fig. 5.2). In LC, nodes (4,6) and (5,5)

with the anticyclonic anomaly further north induce more melt per node day than (5,2) and

(5,6), of which (5,5) is also responsible for the maximum summer total of mLC
s = 47.9 Gt JJA−1

(Fig. 5.3a). More generally, circulation patterns with positive Z500′GrIS typically show a larger

∆Ai and ∆Qi between PD and LC than cyclonically dominated nodes (Fig. 5.3c,d). Therefore,

the importance of atmospheric circulation for variability in summer melt increases from PD

(inter-node variability of σ = 3.4 Gt JJA−1) to LC (σ = 8.8 Gt JJA−1), which will be looked at

further in Sect. 5.3.3. Interesting exceptions are (5,6) and (5,1), which are amongst those nodes

with the highest Z500′GrIS and also with the highest mPD
s,i . The very weak increase in ms,(5,6) is

related to the low occurrence frequency of node (5,6), i.e., relatively few days contributing to
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the summer melt total, and to a stagnation of A(5,6) and Q(5,6) between MC and LC (Fig. 5.3a-d).

That is, during days in node (5,6) melt affects about the same fraction of the GrIS with the

same average intensity in MC as in LC. The melt area becomes extensive for many nodes and

exceptionally so for (5,5) and (4,6) with ALC
(5,5) = 89% and ALC

(4,6) = 81%, i.e., almost the entire

GrIS is melting during days in these nodes (Fig. 5.3c). Despite the smaller magnitude, the melt

increase is also pronounced for nodes with mostly negative Z500′ over the GrIS (Fig. 5.3a). For

example, node (1,1), which contributes the least melt in LC, still contributes mLC
s = 6.3 Gt JJA−1.

Lastly, changes in frequency are generally small and often opposing for neighboring nodes

(Fig. 5.3b). For example, the decrease of node (1,2) from PD to LC (∆ f = −0.8 d JJA−1) is

counteracted by an increased occurrence frequency of neighboring, i.e., synoptically similar,

nodes (1,1) and (2,2). We conclude that mLC
s,i becomes large for all nodes, whereby nodes with

high Z500′GrIS typically lead to most melt in PD and also in LC. Also, inter-node melt variability

increases from PD to LC, i.e., atmospheric variability determines inter-annual variability in

summer melt more strongly in LC (see also Sect. 5.3.3).

c) Decomposition of summer melt increase

We now combine the summed effects over all nodes on ∆ms of changes in node frequency

(changing circulation), melt area, and melt intensity that were discussed above (using Eq. 5.8

in Sect. 5.2.5). The increase of ∆ms = +501 Gt JJA−1 from PD to LC is entirely attributable to

changing melt area and melt intensity. The largest share of 50.9% to ∆ms comes from an increase

in daily average melt area, which increases from 24% to 60% (Figs. 5.3c & 5.4c). At the same

time, 16.6% of the melt increase (+83 Gt JJA−1) is due to an intensification of melt, i.e., more melt

energy available in the melt area of the GrIS (Fig 5.4c). As both quantities increase from PD to

LC, there is a concurrent change, which contributes 23.6% to ∆ms and which quantifies the extra

melt intensity over the additional melt area. These results can be understood better based on the

following considerations. The increases in Qi discussed in Fig. 5.3d contribute more strongly to

the concurrent term (term (iv) in Eq. 5.8) than to the intensity term (term (iii)) because of the

relatively large values of ∆Ai compared to APD
i with which they are factorized, respectively

(Sect. 5.2.5). Over all summer days, A increases from PD to LC by +147% (Fig. 5.3c,d). Hence,

the concurrent area-intensity terms (iv) of the decomposition including ∆Ai become larger

than the intensity terms (iii) including APD
i (see Sect. 5.2.5). In contrast, Q over all node days

increases only by +46% (Fig. 5.3d) and thus ∆Ai more strongly contributes to melt induced

by the area term than by the concurrent term (Fig 5.4c). Lastly, 8.3% of ∆ms can be attributed

to an increasing covariance of Ad and Qd. That is, large anomalies of Ad more often co-occur

with large anomalies of Qd. Reasons for this process are twofold: First, the variance of both

quantities increases (not shown), likely because both quantities acquire larger values in LC

compared to PD while still having daily values of zero. Therefore, larger anomalies occur in LC

than in PD. Second, and possibly related to that, the correlation of Ad and Qd increases as well

(not shown). Lastly, changes in atmospheric circulation as well as all other contributions to ∆ms

summarized in the residual E are negligible. That is, while atmospheric circulation is pivotal

for the inter-annual variability of seasonal melt, circulation changes are largely irrelevant for its
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Figure 5.4: The decomposition of ∆ms from (a) PD to MC, (b) MC to LC, and (c) PD to LC into contri-
butions from changes in melt area (∆A), in melt intensity (∆Q), in melt area and intensity combined
(∆A∆Q), in atmospheric circulation (∆ f ), in covariance between Qd and Ad (∆C), and in the residual E
according to Eq. 5.8 (Sect. 5.2.5). Numbers indicate the contributions relative to the respective ∆ms.

response to global warming. After further investigating the response of seasonal melt to global

warming, we will revisit the role of inter-annual variability for seasonal melt in LC in Sect. 5.3.3.

The decomposition sheds further light on the previously mentioned acceleration of melt from

the first to the second half of this century, as well as the changing importance of individual con-

tributions to ∆ms (Fig 5.4a,b). First of all, ∆ms = +137 Gt JJA−1 between PD and MC increases

to ∆ms = +364 Gt JJA−1 between MC and LC. Moreover, the relative contribution to ∆ms from

the area term is larger from PD to MC (67.3%) than from MC to LC (44.7%; Fig 5.4a,b). Instead,

the increase of the concurrent term becomes much more important in the second half of this

century, causing 29.7% of the extra melt from MC to LC (Fig 5.4b). This is because the nonlinear

effect of two strongly increasing quantities becomes disproportionally larger the larger the

individual quantities are. Melt intensification further becomes more important in absolute

and relative terms from MC to LC compared to from PD to MC, but contributes less than the

concurrent term in the latter period (Fig 5.4a,b). As discussed in the previous paragraph, a

large share of the concurrent term relates to melt intensification rather than an increase in melt

area. This effect is illustrated in the Appendix (Fig. C.1): When computing the decomposition

directly between MC and LC the share of melt intensification to ∆ms is 26.5% instead of 17.5%

(Figs. C.1 & 5.4). The area term increases slightly when using this method (49.1% instead of

44.7%) but much less than the intensity term.
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To summarize, GrIS melt will strongly increase, mainly due to an increase in melt area and an

intensification of melt. While the increase in melt area is particularly important during the first

half of this century, the melt intensification becomes more relevant during the second half of

this century. Changes in atmospheric circulation, at least those simulated by CESM2, do not

contribute significantly to changes of the mean melt between the periods. To better understand

the decomposition, we will, in the following, investigate the melt contributions as well as their

spatial patterns over the GrIS for all nodes individually.

5.3.2 Melt dynamics of different circulation patterns

a) Decomposition of summer melt increase

The contribution of all processes to ∆ms between PD and LC for every node individually

are displayed in Fig. 5.5. The average increase in summer melt per node varies between

∆ms,(5,6) = +4.4 Gt JJA−1 and ∆ms,(5,5) = +35.3 Gt JJA−1 (see also Fig. 5.3a). As for their total,

the main determinant of ∆ms,i is ∆Ai for every node, especially for the cyclonically dominated

nodes in the upper (left) part of the SOM map (Figs. 5.2 & 5.5). That is, the expanding melt area

contributes most to the melt increase in this century, and particularly much during cyclonic

circulation patterns. Melt intensification becomes almost equally important for nodes with

southerly flow anomalies and/or large positive Z500′GrIS, e.g., (4,4), (5,5), and (5,6). Recall

from Figure 5.3a that the anticyclonic nodes (5,6) and (5,1) have unusual, below-average in-

creases in melt. The slight reduction in occurrence frequency does not explain the smallest

∆ms,(5,6) (Fig. 5.5). Rather, the contributions of ∆A(5,6), ∆Q(5,6), and thus also of their concurrent

change are limited compared to other nodes. So despite the prevalent anticyclonic conditions

over Greenland in (5,6), neither the melt area increases significantly nor the melt intensity.

Further, despite simulated circulation shifts of up to ∆ f i ≈ +0.8 d JJA−1, i.e., about a third

of f
PD
i (Fig. 5.3b), the associated contributions to ∆ms,i are much smaller than those from the

area and intensity terms for all nodes. Only for nodes (4,5) and (5,5), there is a noteworthy

positive contribution to increasing melt by a larger occurrence frequency of +2.4 Gt JJA−1 and

+1.9 Gt JJA−1, respectively (Fig. 5.5). This contribution of changing circulation, however, is

offset by the reduced occurrence frequency of nodes that show similar increases in ms,i, namely

(3,4), (4,3), and (5,6). Hence, the total effect of changing occurrence frequencies over all nodes

is negligible (Sect. 5.3.1) because there is no shift from weak to strong melting nodes, or vice

versa, but rather within nodes with similar melt increases. Lastly, a larger covariance between

(daily) Ad and Qd is contributing substantially for nodes with negative or near-zero Z500′GrIS

(Figs. 5.2 & 5.5). The spread of Ad and Qd increases, as flow anomalies of these nodes can go

along with very extensive and intense melt while relatively low Ad and Qd are still possible in

these nodes during the LC period, e.g., early in JJA.

In summary, nodes with positive Z500′ over and near Greenland typically cause a larger ∆ms,i

than those with negative Z500′. An exception to this rule are nodes (5,1) and (5,6), which

feature intense melt already in PD, and which do not increase their melt as dramatically as other



92 CHAPTER 5. GREENLAND SUMMER MELT INCREASE IN THE 21ST CENTURY

anticyclonic nodes. The increases in melt area and intensity also dominate ∆ms,i at the node

level, while the simulated circulation changes are only for a few nodes of relevance (but their

effect cancels when summing over all nodes). We will, therefore, focus on the spatial patterns of

the melt area and intensity changes over the GrIS to understand their varying importance for

different nodes in the next subsection.

Figure 5.5: The decomposition of ∆ms,i for every node i between PD and LC. That is, the same decompo-
sition as in Fig. 5.4c (for ∆ms) but for the melt increase of every SOM node (Fig. 5.2) individually. The
∆ms,i is shown as wide red bar on top of the individual contributions.
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b) Spatial patterns of increasing melt extent and intensity

To better understand the large differences in this century’s melt increase for different SOM

nodes, we investigate the spatial patterns of melt extent and intensity in each node as well as

the changes in these spatial patterns (Figs. 5.6 & 5.7; Appendix Figs. C.2-C.7). To investigate

the effect of an increasing melt area spatially, Fig. 5.6 shows maps of the change in average

melt frequency in node i (∆ωi) minus that in all days (∆ω). On average over all days, there is a

pronounced increase in ω everywhere, from 10% in the GrIS Summit region to 40–50% around

2’000 m (Fig. 5.6 top right panel). At the lowest elevations, ω is again below 30% due to a “satu-

artion” effect, i.e., melt persists almost continuously throughout JJA in LC. Note that deviations

for individual nodes from ∆ω are mostly smaller than ∆ω itself, i.e., there is a substantial change

occurring irrespective of the atmospheric variability (Fig. C.4). Nevertheless, ∆ωi is strongly

pronounced at lower elevations for nodes with a northerly flow anomaly and such with mostly

negative Z500′ – e.g., (1,2), (1,5), (2,1), (2,3), and (2,4). This pattern can be related to a uniform

warming, which increases ωi values at and below the zero degree altitude, except for regions

hit by the northerly flow anomaly, e.g., the northern GrIS in (1,6). For some cases, it seems that

downslope Foehn winds additionally contribute to more positive ∆ωi in the lee of the cyclonic

flow anomaly, e.g., in the western GrIS for nodes (1,1), (1,2), and (1,3). Conversely, nodes with

positive Z500′GrIS and/or with southerly flow anomalies increase ωi most strongly at higher

elevations – for example (4,4) (4,6), (5,2), (5,4), and (5,5). In these nodes, melt reaches high

elevations of the GrIS frequently and lower elevations partly reach the previously mentioned

melt saturation. The exceptionally low increases in melt during nodes (5,1) and especially (5,6)

can at least partially be explained by below average increase in ω due to melt saturation at

low elevations and on the southern GrIS (Fig. 5.6). Furthermore, ω(5,6) in LC remains at PD

values of around 50% for large parts of the accumulation area, meaning that ω(5,6) is limited by

other factors than climate warming during GrIS-centered positive Z500′ (Figs. C.2-C.4). Lastly,

flow anomalies that advect air from lower latitudes cause above-average values of ∆ωi in the

regions hit by the respective flow direction, e.g., the central and northwestern GrIS in nodes

(1,3) and (5,4). To summarize, ∆ω depends on the atmospheric circulation pattern (Z500′ and

flow direction/origin) with the constraint of a melt saturation effect and a substantial increase

that occurs irrespective of the circulation pattern.

While the increase in ωi is pronounced all over the GrIS and for every node, some parts of the

GrIS experience a very weak increase or even slight decrease in Qi for some nodes (Fig. 5.7).

Over all days, the increase in Q is largest with up to +50 W m−2, reaching more than 75 W m−2,

at the lowest elevations of the southwestern GrIS (top right panel in Figs. 5.7 & C.7). Further,

considering all days, Q decreases nowhere on the GrIS. For some nodes, however, melt becomes

regionally less intense, e.g., during node (1,6) with northwesterly flow anomalies. For this

node, ∆Q(1,6) < 0 over parts of the high accumulation area with values of around −10 W m−2

(Figs. C.5-C.7). Also for nodes (1,1), (1,3), (2,2), (2,4), and (3,2), there are highly elevated regions

with negative ∆Qi (Figs. 5.2 & 5.7). However, note that, importantly, the composites of Z500′ for

node days in PD and LC are different from the SOM nodes identified from all three time periods,
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Figure 5.6: The top right panel shows the mean change in melt day frequency from PD to LC (∆ω). The
other panels illustrate the change in each node relative to the mean change (∆ωi − ∆ω). Green (yellow)
shading denotes grid cells with ωPD > 95% (ωLC > 95%). Dotted (solid) black lines show negative
(positive) Z500′ contours according to Fig. 5.2. The dashed line denotes 2’200 m elevation.
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Figure 5.7: The same as Fig. 5.6 but for the change in node average melt intensity ∆Qi minus the overall
average ∆Q (shown in the top right panel) in PD to LC. Moreover, hatching denotes grid cells that show
a negative ∆Qi. Grid cells that never experience melt in PD and/or LC are masked. Dotted (solid) black
lines show negative (positive) Z500′ contours according to Fig. 5.2.
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which might explain some spatial shifts of weak melt intensity (Appendix Figs. C.8 & C.9). For

example, the cyclonic flow anomaly east of the GrIS in node (1,6) is notably stronger in LC

compared to PD, which might explain why stronger cold-dry northerly flow anomalies reduced

the downward longwave radiation in LC compared to PD, as such radiative anomalies are

the most important contribution to Q in the high accumulation area (e.g., Bennartz et al., 2013;

Wang et al., 2019). Furthermore, some of the relevant QPD
i values at the highest elevations are

based on comparably few days with melt, i.e., Ts ≥ 272.15 K (Fig. C.2). In contrast to negative

∆Qi, wherever southerly flow anomalies impinge on the GrIS topography, e.g., in the Southwest

for nodes (4,1) and (5,2), melt intensifies strongly from PD to LC (Fig. 5.7). Moreover, the two

anticyclonic nodes with a relatively weak melt increase have below average ∆Q(5,1) and ∆Q(5,6)

over large parts of the GrIS. This means that several other nodes show a larger QLC
i thanks

to a more pronounced intensification over this century (Figs. C.5-C.7). These considerations

highlight that the intensification of melt is not uniform over all nodes and thus those nodes with

largest melt intensity today are not the most intense in the future (Fig. 5.3d). In contrast to the

change in melt frequency, some regions show a decrease in melt intensity for some circulation

patterns. The later, however, might be explained by methodologically induced intra-node

differences between days in PD and LC rather than physical changes (see also Sect. 5.4).

5.3.3 Relevance of atmospheric variability for summer melt in the late-century

We conclude the result section by assessing the relevance of atmospheric variability for GrIS

summer melt in LC. So far, we have discussed that (i) atmospheric variability is a strong

determinant of ms in PD (Sect. 5.1), and (ii) atmospheric circulation changes do not lead to

significant ∆ms towards LC (Sect. 5.3.1c). The increase in ms from 200.6 Gt JJA−1 in PD to

701.6 Gt JJA−1 in LC is accompanied by a more than two-fold increase in the standard deviation

of σ(ms) = 61.4 Gt JJA−1 to σ(ms) = 130.6 Gt JJA−1. This increase in inter-annual melt vari-

ability is due to a larger spread in the melt produced by the different SOM nodes, i.e., during

different atmospheric circulation patterns (Sect. 5.3.1b). Consequently, atmospheric variability

becomes a more important determinant of seasonal ms variability in LC.

Figure 5.8 illustrates the distribution of SOM nodes in four summers in LC, which exert the

two lowest (Fig. 5.8a,b) and highest (Fig. 5.8c,d) ms. This so-called substructure indicates that

during the two summers with exceptionally low mLC
s , nodes that cause little melt and that

relate to strongly negative Z500′GrIS are particularly frequent. For example, node (1,1), which

exerts the lowest Ai and Qi among all nodes (Fig. 5.3c,d), is almost twice as frequent as all

other nodes in the year with lowest mLC
s (Fig. 5.8a). At the same time, there are only 17 out of

92 summer days with positive Z500′GrIS, which are, however, attributed to anticyclonic nodes

with comparably low ALC
i and QLC

i , e.g., (3,6), (4,5), and (5,3) (Fig. 5.3a). This is similar for the

year with second-lowest mLC
s , where anticyclonic nodes are slightly more frequent (Fig. 5.8b).

Conversely, summers with very high mLC
s can arise, e.g., due to the absence of cyclonic Z500′GrIS

(Fig. 5.8c) or due to the high occurrence frequency of nodes with particularly intense and

extensive melt (Fig. 5.8d). In the year with highest mLC
s , nodes (4,4) and (5,2) with high Ai and
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Figure 5.8: The count of days attributed to the 30 SOM nodes for the JJA with (a) lowest, (b) second-
lowest, (c) second-highest, and (d) highest melt in LC (mLC

s ), which is indicated in the panel title. The
nodes are sorted from lowest (left) to highest Z500′GrIS (right). The respective Z500′GrIS is indicated by
the label color (according to Fig. 5.2).

Qi account for a quarter of all summer days (Fig. 5.8d). Note that, importantly, the clustering

of days in individual nodes does not change significantly between PD and LC (not shown),

which thus is not the cause for the increasing σ(ms). In summary, these four examples clearly

demonstrate how atmospheric variability shapes the JJA season’s substructure at the example

of summers with extremely low and high mLC
s . Summer melt is greatly shaped by the absence

and presence of individual circulation patterns in all three time periods, which are particular

either in their occurrence frequency or in their melt characteristics. Due to the differential ∆ms,i

with mostly stronger increases for anticyclonic nodes than for cyclonic nodes, the inter- as well

as intra-annual variability of ms increases from PD to LC.

5.4 Discussion

In this study we focus on the upper-elevation zone (≥ 1′200 m) of the GrIS and study the causes

of changing melt. Even in the upper-elevation zone, the CESM2 underestimates ms compared

to 2005–2015 values obtained from the MAR RCM (Fig. 5.1). We hypothesize that this relates in

part to the frequent high-melt years in the validation period (2007, 2010, and 2012), which are

not captured by our free-running CESM2 simulations (Fettweis et al., 2020). This is supported

by the fact that CESM2 realistically simulates the GrIS surface energy balance, which we use

to compute ms, in 1979–1999 (van Kampenhout et al., 2020). Additionally, the computation

of Q at 1◦ resolution is likely inferior to estimates from downscaled melt estimates using an

RCM or an ice sheet model at higher resolution (e.g., Noël et al., 2020; van Kampenhout et al.,
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2020). Finally, smaller parts of the melt underestimation could relate to melt that occurs at

Ts < 272.15 K throughout the day (which we do not consider part of the melt area) or that

results from the rain heat flux (Fausto et al., 2016), which is ignored here and likely becomes

more important with an upward extension of the zero degree altitude in MC and LC. Given our

computation of Q, however, considering upper-elevation zone melt only is also advantageous

as we exclude the regions that are increasingly affected by the melt-elevation feedback in this

century (Muntjewerf et al., 2020), i.e., which call for a model with dynamic GrIS topography

(Le clec’h et al., 2019). All in all, it is important to highlight that the results of this chapter are

valid for a substantial share of the increase in ms between PD and LC (+501 Gt JJA−1), but extra

melt from today’s ablation area is not analyzed. Consequently, the results on the importance

of changing melt extent, melt intensity, and atmospheric circulation most likely differ for the

lower GrIS.

A key finding of this chapter is that changes in the atmospheric circulation (characterized by

the frequencies of the 30 SOM nodes) contribute very little to changes in melt, despite the

unequivocal importance of atmospheric circulation for inter-annual variability in melt. In

fact, there are nodes that occur much more frequently in LC compared to PD and induce an

above-average amount of melt in LC. For example, node (4,5) becomes +36% more frequent,

however, this dynamical effect only contributes 10% to ∆ms,(4,5) (Figs. 5.3a,b & 5.5). Hence, even

for circulation patterns that become more/less frequent, the frequency change effect on melt

is outweighed by the extension and intensification of melt. Moreover, over all nodes, these

partly substantial changes in node occurrence frequency occur between nodes with similar

∆ms,i. Accordingly, Mioduszewski et al. (2016) found that 75% of the melt increase since the

1980s arose due to melt intensification and expansion, despite the exceptional anticyclonic

conditions in the early 2000s. These and our results qualify the findings of, e.g., Delhasse et al.

(2018) and Delhasse et al. (2021) to some extent, which underline the inability of current GCMs

to accurately model atmospheric circulation relevant for GrIS melt. We rather highlight the

comparably larger potential of Q and A modifications in this century as Hofer et al. (2019).

Important changes with global warming that foster the strong extension and intensification of

melt are the intensifying melt-albedo feedback (Box et al., 2012), increasing rainfall (Box et al.,

2022a), and potential increases in sensible heat fluxes and downward longwave radiation from

a warmer and moister atmosphere (Franco et al., 2013; Izeboud et al., 2020; Wang et al., 2021).

Lastly, although simulated circulation changes do not contribute significantly to changes in ms,

atmospheric variability becomes increasingly important for inter-annual variability in ms. This

is because increases in ms,i are node-dependent, and particularly pronounced for nodes that

already exert large mPD
s . This indicates that not only the expansion of the ablation area becomes

increasingly important for the GrIS surface mass balance (SMB) (Fyke et al., 2014), but also

melt intensification in the upper-elevation zone. Therefore, it remains crucial to understand

how atmospheric variability modifies the ongoing intensification of melt, i.e., to investigate

how upper-elevation GrIS melt changes during different SOM nodes. Furthermore, in addition

to the node day distribution in one JJA season (Sect. 5.3.3), future research should consider
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different sequences of daily atmospheric circulation patterns, which greatly affect the impact on

surface melt (Box et al., 2022a).

This chapter for the first time separates the so-called “thermodynamic” ∆ms, i.e., that indepen-

dent of circulation changes (Mioduszewski et al., 2016), directly into contributions from ∆A
and ∆Q for different circulation patterns. The increasing melt extent is by and large elevation

dependent: The lowest parts of the considered GrIS melts continuously in JJA in LC, while the

GrIS interior remains spared from melt during several weeks. Melt intensification is strongest

below 2’000 m and locally more dependent on the prevailing circulation than ∆A. The intensifi-

cation is strongest during anticyclonic circulation regimes and over the southern and western

GrIS, when warm air advection and enhanced solar radiation favor melt feedbacks (Bennartz

et al., 2013; Fausto et al., 2016; Hermann et al., 2020; Box et al., 2022a). Studies considering

the entire GrIS often attribute melt intensification to shortwave radiation and sensible heat

fluxes (e.g., Franco et al., 2013), which is mainly due to their impact on ablation area melt (Wang

et al., 2021). This likely differs for the upper-elevation zone considered here, where longwave

forcing from liquid clouds and moist-warm air is highly relevant in PD (Bennartz et al., 2013;

Mioduszewski et al., 2016; Wang et al., 2019). Below-average or even negative changes in melt

intensity from PD to LC occur for some nodes and mainly at high elevations towards which

the flow anomaly is directed. A reduction in melt intensity with global warming might occur

locally. However, potential explaining factors at a large scale are unlikely, as increased snowfall

at higher elevations has a subordinate impact on the absorbed melt energy (Lenaerts et al.,

2020), and reductions in downward longwave radiation contradict the expected increase of

liquid clouds and warmer and moister air (Hofer et al., 2019). Rather, as a result of identifying

SOM nodes over all three time periods, the composite of Z500′ for individual periods slightly

differ from one another, and are at least partly able to explain spatial shifts of Q from PD to LC,

i.e., ∆Q. In summary, the increase in melt day frequency over the GrIS is more uniform than the

intensification of melt, where further research is needed to confirm and better understand the

spatial patterns in 21st century changes found here.

In addition to not accounting for the entire GrIS melt, the methods applied in this chapter are

limited in the following ways. First, the decomposition applied here essentially constitutes a

linearization of ms(Ai(t), Qi(t), f i(t), ...) at t = PD, where the derivatives are approximated by

forward differences, e.g. ∆Ai = Ai(LC)− Ai(PD). Naturally, such a linearization only allows

attributing a large fraction in ∆ms to changes in melt area, melt intensity, and atmospheric

circulation as long as these changes are small compared to the respective values in PD. In

particular when decomposing the melt increase between PD and LC, ∆Ai relative to APD
i are

not small and nonlinear terms such as the concurrent terms including ∆Ai·∆Qi attain rather

large magnitudes (Fig. 5.4c). Similarly, when considering individual nodes instead of the sum

over all nodes, the residual term Ei partially contributes a lot to ∆ms,i as it includes further

concurrent changes. Second, we use a single GCM ensemble to model ∆ms. Although CESM2

is among the best-performing GCMs regarding the GrIS climate (van Kampenhout et al., 2020;
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Noël et al., 2020), multi-model ensembles better capture the full atmospheric and ice sheet

variability in the GrIS region (Belleflamme et al., 2013; Fettweis et al., 2020). Lastly, we highlight

that the presented framework of assessing the importance of individual drivers of ∆ms could

be fully exploited when using daily output of higher-resolved RCM coupled to several GCM

projections. This data would not only more accurately represent the GrIS melt (Fettweis et al.,

2020), but also allow to study the PD ablation area and additional determinants of the GrIS SMB

such as refreezing and runoff during individual circulation patterns. The latter is particularly

interesting, as we do not separate melt that refreezes from melt that runs off, which is an

important hydrological determinant of GrIS mass loss (e.g., Noël et al., 2022). Hence, the

limitations of this chapter constitute clear ideas for insightful future research.

5.5 Conclusions

In this chapter, we have used a four-member ensemble of CESM2 simulations (SSP3-7.0) to

study the ∆ms = +501 Gt JJA−1 increase in GrIS summer melt from the upper (≥ 1′200 m)

GrIS from PD (2005–2015) over MC (2045–2055) to LC (2085–2095), and examined how much

changes in circulation, in melt area, and in melt intensity contribute to this projected melt

increase. We use the SOM method on daily 500 hPa geopotential height anomalies (Z500′) to

identify 30 atmospheric circulation patterns that serve as a basis for attributing ∆ms to the three

main processes. First, there is a more than twofold acceleration of the melt increase between

the first and second half of this century. The overall ∆ms between PD and LC comes entirely

from what is sometimes referred to thermodynamic processes, namely increasing melt area

(51%), increasing melt intensity (17%), their concurrent effect (24%), and a stronger covariance

of the two measures on the daily timescale (8%). Melt intensification becomes increasingly

important over the course of this century. Although there are substantial changes in occurrence

frequency of some nodes, the melt increase due to changes in circulation is always smaller

than the thermodynamic ones, and the total effect over all nodes almost completely cancels out.

While the exact proportions may differ for other models, or for future models that better capture

the atmospheric circulation relevant to GrIS melt (Delhasse et al., 2021), the thermodynamic

effects are likely to dominate the melt increase in this century regardless of the model used.

Due to the dominance of increasing melt area and melt extent, ms increases during every circula-

tion pattern. However, in flow situations with anticyclonic circulation anomalies, melt increases

most strongly in this century, via an intensification of melt at lower elevations and an upward

extension of melt frequency. Exceptions are anticyclonic circulation patterns that regionally

reach a limit in melt intensity or melt extent already during PD or MC. The highest daily melt in

PD occurs when the strong anticyclonic Z500′ is located to the south of the GrIS, while a more

northerly position of the flow anomaly favors the highest daily melt in LC. During cyclonic

circulation anomalies, the melt frequency increases strongly, especially at lower elevations,

while the melt intensifies less than averaged over all days. Although the extension of the melt

area increases summer melt the most, the inter-node variability in melt is strongly shaped by
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the variation in melt intensity.

Our analyses suggest that the long-term trend in ms is driven by an intensification and an

extension of melt. In contrast, atmospheric circulation drives the inter-annual variability of

ms, more strongly so towards the end of this century. Due to various feedback mechanisms,

a deeper understanding of the drivers of melt intensification as well as of the sequencing of

circulation patterns over the summer season is crucial. This chapter provides and applies a

framework to a single GCM ensemble, which – ideally combined with RCM data – improves

our physical understanding of the accelerating GrIS mass loss.





Chapter 6
Conclusion and outlook

6.1 Highlights

We motivated this thesis in Chapter 1 by highlighting the importance of seasonal atmospheric

variability with respect to three aspects of the Earth system: European forest vitality, extremely

high vapor pressure deficit (VPD) potentially driving vegetation water stress, and the projected

increase in surface melt of the Greenland Ice Sheet (GrIS) that will contribute substantially

to global sea-level rise. Amongst others reasons, the profound impact of global warming on

terrestrial ecosystems and GrIS melt is due to the fact that seasonal meteorology is rapidly

moving out of its historical niche. Therefore, understanding these systems today and how they

will change with further global warming is an important step towards developing prepared-

ness and adaptation strategies. A fundamental challenge when studying seasonal timescale

climate extremes is that there are only very few meteorological and climatological phenomena

at this timescale. We thus adopted, the “weather perspective” to understand how shorter-term

variability aggregates over seasons to shape these three components of the Earth system. We

highlight the most important findings of each result chapter by answering the three overarching

research questions posed in Chapter 1:

1. What were meteorological precursors of reduced forest vitality in Europe in the summers

of the past two decades?

As an indication of reduced forest vitality, we identified persistent (seasonal) and widespread

(50 km) low-forest-greenness events in Europe in the summers of 2002–2022 from the remotely

sensed Normalized Difference Vegetation Index (NDVI; Chapter 3). We are the first to quantify

the impact of the 2022 European summer (the hottest on record) on forest vitality, which, ac-

cording to our criteria, negatively affected 37% of temperate and Mediterranean forest regions.

The adverse impact on forest greenness was thus more extensive than in any other summer in

2002–2022. Through regionally pooling low-NDVI events of all years across the temperate and

Mediterranean biomes, and by accounting for the uneven distribution of events across the study

period, we identified so-called meteorological precursors of these events. That is, meteorological

103
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signals in the preceding 3 years that are systematically shared among the low-NDVI events and

that deviate in a statistically significant manner from climatology.

The low-NDVI events occurred in particularly dry and hot summers, but their meteorological

histories also featured other meteorological precursors, with clear differences between the

temperate and Mediterranean biome. A key feature is the anomalous accumulation of dry

periods (i.e., periods with a precipitation (P) deficit) over the preceding 26 and 34 months in the

temperate and Mediterranean biome, respectively. More specifically, 90-d P was below-normal

for approximately 90% of the two years prior to low-NDVI events. In the temperate biome

only, positive temperature (T) anomalies were unusually persistent during almost the same

26-month period. While anomalously strong hot-dry conditions were already characteristic of

temperate low-NDVI events in the previous summer, we found hardly any other systematic

meteorological precursor in the Mediterranean prior to the event year. The identified dry

periods went along with reduced cyclone activity in the Mediterranean, and with positive

anticyclone frequency in the temperate biome. The occurrence of these two weather systems is

locally more nuanced, e.g., showing consistently increased (decreased) cyclone frequency over

western (northern) Europe in all event summers.

The low-NDVI events represent an impact-oriented extreme season, in the sense that forest

greenness (impact) is significantly adversely affected over large areas and large portions of the

summer season. By combining statistical evaluations with the growing body of literature on

forest-meteorology interaction, we identified T and P signals that can be seen as precursors of

this extreme impact. Moreover, we were able to link these meteorological anomalies at the 90-d

timescale to significant anomalies in the occurrence frequency of cyclones and anticyclones,

acting on shorter timescales. In the temperate biome, where the four most extensive low-NDVI

events occurred within the last five years (except for 2021), the novel systematic understanding

of forest–meteorology interactions is of particular relevance for forest dieback in the warming

European climate.

2. What is the meteorological composition of extremely high summer mean VPD in the

present-day climate?

Extremely high VPD over the course of an entire season in critical for water stress of crops

and forest ecosystems, especially in summer. In Chapter 4, we applied and further developed

the framework of Röthlisberger et al. (2021) to identify summers with extremely high seasonal

mean VPD (VPDJJA+) in ERA5 in 1979–2020 and in the 1050-year-large set of CESM1 historical

climate simulations (Chapter 2). Furthermore, we introduced a decomposition of seasonal VPD

anomalies (VPD’) to analyze how much seasonal temperature and specific humidity anomalies

(T′ and q′) contribute to the intensity (I) of VPDJJA+. We identified about 100 VPDJJA+ in ERA5

and more than 2’500 VPDJJA+ in the CESM1 simulations with a center of mass in 30–60◦N,

which enable a systematic investigation of VPDJJA+.

The two datasets agree extremely well on the meteorological decomposition of I across

the Northern Hemisphere mid-latitudes: positive T′ contribute about 75% to the average

I ≈ 0.3 kPa, but at the same time offset a part of I due to the moistening resulting merely from
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the climatological co-variability of T and q. About 31% of I arise due to negative q′ related

to anomalous circulation dynamics during VPDJJA+. Using the extensive set of VPDJJA+ in

CESM1, we could robustly analyze spatial variations in this meteorological decomposition. In

a few semi-arid and arid regions, all three terms contribute positively to I. In more northern

regions, e.g., the UK or parts of Canada and Siberia, the moistening induced by hot T′ acts to

dampen the very pronounced contributions of the hot and (dynamically induced) dry anomalies

during VPDJJA+. Very few regions along the east coasts of North America and Eurasia were

identified, where VPDJJA+ can also occur in association with negative T′ due to exceptionally

large negative q′. Moreover, the meteorological substructure of known high-impact VPDJJA+,

e.g., in the southern U. S. and Mexico in 2011 or in northern Europe in 2018, underlined the

importance of VPD for low soil moisture and a low SPEI drought index.

By thoroughly analyzing and detrending VPD anomalies in both datasets, Chapter 4 has im-

proved our understanding of VPD on the seasonal timescale, and will allow us to assess the

response of VPDJJA+ to global warming. As a consequence of the nonlinear dependence of VPD

on T, VPD is underestimated when estimated from seasonal mean T and q. In the northern

mid-latitudes, this underestimation arises due to day-to-day (58%) and sub-daily (42%) VPD

variability, and, however, does not contribute to the intensity of VPDJJA+. Altogether, our results

have shed light on a how short-term atmospheric variability can lead to VPDJJA+ in different

mid-latitude regions, and thus help to understand how weather systems can adversely affect

terrestrial ecosystems and crops during the summer season. In addition, the findings from

ERA5 suggest that the contribution of T′ to I will increase with continued global warming.

Thanks to the framework developed here, we plan to systematically evaluate this hypothesis in

the near future.

3. Which mechanisms govern the summer melt increase of the GrIS in this century?

GrIS summer melt (ms) from the upper-elevation zone (≥ 1′200 m) shows an increase from

2005–2015 (PD) to 2085–2095 (LC) equal to ∆ms = +501 Gt JJA−1, or to a factor of 3.5, assuming

the SSP3-7.0 scenario. We extended a decomposition framework (Cassano et al., 2007; Mio-

duszewski et al., 2016), and applied it to this substantial melt increase derived from the surface

energy balance of a CESM2 ensemble (Chapter 5). Furthermore, circulation patterns were

classified by applying the Self-Organizing Map (SOM) method to daily 500 hPa geopotential

height anomalies (Z500′). The ∆ms = +501 Gt JJA−1 can be attributed to an expansion of the

melt area (51%), an intensification of melt (17%), a concurrent change of both (24%), and an

increase in the daily covariance between melt area and intensity (8%). Melt accelerates over the

course of this century, with melt area expansion contributing more in the first half of the century

than in the second half. Furthermore, ms in cyclonic patterns of Z500′ increases mainly due to an

upward (in orographic terms) expansion of the melt area, while anticyclonic circulation patterns

also promote large contributions from melt intensification – especially in the southwestern GrIS.

Since substantial circulation changes occur only between flow configurations with similar melt

increases, the change in atmospheric circulation patterns has no effect on the projected melt

increase in the 21st century.
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Despite the strong response of ms to mean climate warming, the impact of intra-seasonal at-

mospheric variability on the inter-annual variability in ms becomes larger in LC compared

to PD. This is because most anticyclonic circulation patterns show a stronger intensification

of melt than cyclonic ones. Thus, although the GrIS will contribute continuously and much

more strongly to global sea-level rise in a warmer climate, a thorough understanding of the

short-term atmospheric variability remains crucial for determining the pace of mass loss as well

as its inter-annual variability.

6.2 Caveats

After highlighting the main novelties of this thesis, we state overarching and important limiting

aspects of the presented analyses. More specific and more minor caveats are discussed in the

Sects. 3.4, 4.6,& 5.4.

It is important to cautiously interpret the meteorological history of low-forest-greenness events

in the context of future occurrences thereof, because (i) of the systematic assessment used in

Chapter 3, and (ii) forest ecosystems respond dynamically to global warming – i.e., as the

climate moves out of its historical niche. First, we considered T and P anomalies based on a

relatively short climatology (2002–2022), assuming that the change in mean climate during this

period was relatively small compared to the inter-annual variability. However, with further

global warming, changes in the mean climate (i.e., climatology) are becoming increasingly

relevant to forest dynamics as well (Seidl et al., 2017; Brodribb et al., 2020; McDowell et al., 2020).

Therefore, anomalies derived from such a climatology may not have the same significance as

the meteorological precursors identified in Chapter 3. The low-NDVI events in 2003 and 2018

underline that forests respond differently to similar meteorological signals (see Sect. 3.4.1). This

response depends on the meteorological history in previous years and presumably also on the

slowly changing mean climate. Second, although low NDVI is a highly useful indicator of

forest dieback (Buras et al., 2021), it does not strictly imply continuously impaired forest vitality

as, e.g., indicated by reduced tree growth (Kannenberg et al., 2019). Furthermore, the identified

low-NDVI events can lead to improved acclimation to drought (Gessler et al., 2020), but on

the other hand, they may reduce tree resilience to subsequent droughts (Bose et al., 2020). The

type of response depends on several factors that often operate at finer scales than the analyses

in this thesis (see also Sect. 3.4.1), such as site, stand, and tree properties (Etzold et al., 2019;

Vitasse et al., 2019; Frei et al., 2022), tree species diversity within a forest (Grossiord et al., 2014),

forest microclimate (Buras et al., 2018), and legacies of past forest management (Thom et al.,

2018). The co-variability of these factors such as the interaction between host trees and biotic

disturbance agents further enhances the complexity of drought-induced tree damage (Trugman

et al., 2021). These drought-mediating factors thus also contribute to variations in local mete-

orological histories, which may differ from those systematically identified at the biome level.

While our results contribute to understanding the impact of weather on forests in their current

composition and under present climatic conditions, a comprehensive assessment of forests’
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future response to multi-seasonal meteorological histories requires further development of our

mechanistic understanding of eco-hydraulic processes, drought indicators, and the differential

effects of climate change on various tree species and forests.

An additional caveat has to be considered when interpreting the results presented in Chap-

ters 4 & 5, both of which are based on climate simulations of a single general circulation model

(GCM). Projections of GrIS melt (Fettweis et al., 2020; Hofer et al., 2020) as well as of q and T
(John and Soden, 2007; Dunn et al., 2017) differ strongly between different models, while the

mean over several GCM ensembles is often in best agreement with observations (Belleflamme

et al., 2013; Fettweis et al., 2020; IPCC, 2021). We have partly evaluated the GCMs and found

very high agreement of extreme VPD seasons in CESM1 with those in ERA5 (Sect. 4.5), and

the analyzed CESM2 melt estimates are in reasonable agreement with those of the regional

climate model (RCM) MAR (Sect. 5.1). Moreover, we use CESM1 and CESM2 micro and macro

ensembles to capture a large fraction of internal variability (Sect. 2.2); however, uncertainties

associated with the specific GCM used still remain. In particular the mean and variance of q
and T point to CESM1 model biases, which are, consequently, also present in the simulated

variability and return period of VPD anomalies. In future research, our results should be

confronted with those resulting from the application of the frameworks developed here to other

GCMs.

The simulation of GrIS melt is further limited by the ability of CESM2 to simulate the polar

climate. Compared to CESM1, important aspects relevant for melt could be improved in CESM2,

e.g., the representation of liquid clouds (Lenaerts et al., 2020; van Kampenhout et al., 2020)

and of the surface snowpack (van Kampenhout et al., 2017). Nevertheless, a higher horizontal

resolution still improves the representation of the GrIS climate and topography and thus mass

balance in variable-resolution GCMs (van Kampenhout et al., 2019) and RCMs, which are addi-

tionally tailored to modeling the polar climate (Fettweis et al., 2020). As such, MAR (Fettweis

et al., 2017), RACMO (Noël et al., 2016), and HIRHAM (Christensen et al., 2007) run at close to

the kilometer scale and would thus allow to study the substantial ablation area melt, which was

excluded from our analyses due to the relatively coarse CESM2 resolution. So the projections

of GrIS melt changes could be further improved by using output from high-resolution polar

RCMs coupled to multi-model GCM simulations or RCM single model initial-condition large

ensembles (SMILEs; Maher et al., 2021). Note that similarly promising projections can be

obtained when using output from the coupled 4 km ice sheet model of CESM2 (van Kamp-

enhout et al., 2020; Noël et al., 2020), which was not available at the daily timescale for this thesis.

Furthermore, it is worth revisiting the discussion raised by Belleflamme et al. (2013) and

Delhasse et al. (2018) regarding the ability of GCMs to accurately simulate future circulation

changes over the Greenland region. During the 2005–2017 period when anticyclonic circulation

anomalies over the GrIS in summer, i.e., also negative NAO, have occurred with an intensity and

persistence not reproduced by CMIP3 (Belleflamme et al., 2013), CMIP5 (Delhasse et al., 2018;
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Hanna et al., 2018), or CMIP6 models (Delhasse et al., 2021). This period went along with strong

warming in Greenland, raising the question of whether such dynamic changes are the result of

a warming climate or internal climate variability. While the former is underlined by further

discrepancies between observed and modeled regional circulation and thus climate anomalies

(Shepherd, 2014; Smith et al., 2020), the latter is supported by the extremely uniform circulation

projections across CMIP3, CMIP5, and CMIP6 models. Note that these models simulate a

slightly decreasing anticyclone occurrence frequency in the GrIS region in this century (e.g.,

Hanna et al., 2018). Due to the high sensitivity of surface melt to such anticyclonic circulation

anomalies (Delhasse et al., 2018), which is expected to increase (Sect. 5.3.3), the importance of

circulation changes will remain relevant for GrIS mass loss projections. However, our study

does not specifically address this question, emphasizing the importance of considering potential

changes in circulation when interpreting the broader implications of our results.

This thesis clearly focused on the short-term atmospheric variability, which we also introduced

as the “weather perspective”. As emphasized in Chapter 1, a full understanding of seasonal

anomalies requires a seamless approach across the timescales of potential driving phenomena

in the Earth system. Melt of the GrIS is not only influenced by daily circulation patterns but

can also be understood by studying the NAO and the Greenland Blocking Index (GBI; Hanna

et al., 2021), which exhibit up to decadal variability (Hurrell, 1995). Likewise, extreme seasons

are also related to more slowly varying components of the Earth system such as sea-surface

temperature anomalies (e.g., Namias, 1978; Rousi et al., 2023). And as one of the most important

teleconnections influencing the extratropical inter-annual variability, ENSO has been mentioned,

among others, in the context of the “abnormal winter 1976/77” (Namias, 1978), the globally

largest extremely hot summers (Röthlisberger et al., 2021), and anomalous winter seasons in

northeastern Europe (Brönnimann et al., 2006). Regarding the external drivers of variability,

our analyses mostly studied internal variability separately from global warming due to the

relatively short time period of forest greenness anomalies (Chapter 3), by detrending T, q, and

VPD anomalies (Chapter 4), and by separately calculating Z500 anomalies with respect to each

time period in the 21st century (Chapter 5). Undoubtedly, extreme seasons as perceived by the

mere magnitude of meteorological anomalies are shaped by a combination of internal climate

variability (including weather systems as well as major modes of variability such as ENSO) and

external forcing, such as during the extremely cold-wet summer in western Europe following

the Tambora volcanic eruption (Brönnimann and Krämer, 2016). In summary, we chose to focus

on understanding seasonal climate variability from a weather system perspective. However,

we acknowledge that approaching the problem of understanding seasonal climate variability

with our understanding of the climate system on longer than seasonal timescales would be

complementary and equally valid.

Finally, we used the ERA5 reanalysis to study the observed atmospheric variability (Sect. 2.1),

which is not an exact representation of the past atmospheric state. For example, ERA5 is known

to have a wet bias over Europe, presumably due to the coarse resolution of orography and
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the compensation for smoothed subgrid-scale P peaks (Bandhauer et al., 2022). Mountainous

regions with sparse direct observations from weather stations also show the largest disagree-

ment between ERA5 and observed T, where, however, weather station observations are also

considered less robust (e.g., Tarek et al., 2020). In the Northern Hemisphere, the ECMWF

predecessor of ERA5, ERA-Interim, generally agrees well with other full-input reanalyses on

the intensity, frequency, and duration of weather systems, however, spatiotemporal resolution

and the identification criteria of weather systems cause some differences between the reanalysis

products (Rohrer et al., 2018). Overall, the improvements from ERA-Interim to ERA5 are con-

siderable and have resulted in a spatiotemporally complete dataset, whose major shortcomings

are limited locally or to the stratosphere (Hersbach et al., 2020). All in all, the value of ERA5 as

a modern full-input reanalysis clearly outweighs its shortcomings, which we do not expect to

qualitatively affect the conclusions drawn from Chapters 3–5.

6.3 Outlook

The previous sections have outlined the advances made in this thesis, along with their limi-

tations, which have also revealed relevant research questions for subsequent research at the

weather-climate interface. First, as drought and drought-related disturbances are becoming crit-

ical for global forests at regionally variable pace, we expect different meteorological precursors

of low-NDVI events in different bioclimatic regions. The differences we have found between

the event precursors in temperate and Mediterranean forests illustrate that the relevance of me-

teorological precursors depends at least on the physical environment, the species composition

of forests, and the locally relevant weather systems. Considering the potential of low NDVI

as an early warning for forest dieback in Europe, it is crucial to identify the meteorological

precursors of low forest greenness in other regions, such as the boreal biome of North America

and northern Eurasia. Subsequently, the increasing length of satellite records of forest greenness

may allow more robust assessments of forest dieback at the local scale. Although in this study,

we could aggregate events across a single biome to obtain systematic results applicable to that

specific biome, longer observational records will enhance our ability to identify meteorological

precursors at a more localized level. Thus, the factors acting at a finer spatial scale mentioned

earlier that mediate forest response to seasonal meteorology could successively be accounted

for. After considering the dynamic response of ecosystems to global warming, such insights

could form the basis for predicting forest dieback similarly to crop failure (Vogel et al., 2021).

The robust framework for the meteorological decomposition of extreme VPD seasons in large-

ensemble climate simulations has clearly raised the question of how their intensity and con-

tributions will change in the future. There is a clear hypothesis of increasing contributions

from T′ in a warming climate, due to the increasing potential of T to cause large VPD in a

warmer climate. However, the large variability in the meteorological decomposition across

the mid-latitudes (revealed in this thesis), as well as in the current and future distribution of

seasonal mean q and T, calls for a thorough investigation of this hypothesis. The flexible nature
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of this framework makes it particularly valuable in the light of increasingly available SMILEs

(such as the CESM1 used here), which in combination are useful to robustly investigate internal

variability separately from global warming and structural, i.e., model-dependent, uncertainty

(Deser et al., 2020; Maher et al., 2021). Moreover, applying the framework to identify less (e.g.,

with a return period of 10 y) or more extreme (e.g., 70 y) VPD seasons could reveal which

meteorological conditions make seasonal mean VPD particularly intense – a research question

that has not yet been addressed.

As elaborated in the previous two sections, the main limitation of Chapter 5 could be overcome

by analyzing GrIS melt in RCM simulations, preferably using input of several GCMs and

SMILEs. The advantages of polar RCMs are their higher spatial resolution, which resolves

the narrow and steep ablation zone of the GrIS, and a more accurate representation of surface

properties such as albedo, both resulting in a better simulation of surface melt and precipitation.

Moreover, as GCMs and SMILEs continue to improve from generation to generation in terms

of simulating the GrIS climate and mass loss, the role of short-term atmospheric variability in

modulating the response of GrIS melt to global warming should be revisited in future research,

e.g., by using the framework provided in Chapter 5.

Finally, all three chapters, especially those on extreme VPD seasons (Chapter 4) and GrIS

summer melt changes (Chapter 5), assessed daily atmospheric variability and the involved

meteorological phenomena rather fundamentally. Indirectly, e.g., in Chapter 5, we have high-

lighted the potential importance of atmospheric blocking for anticyclonic flow anomalies and of

Foehn during cyclonic flow anomalies, while other weather systems such as atmospheric rivers

are also highly relevant for GrIS melt (e.g., Mattingly et al., 2016). The specific examination

of the weather systems involved, also from a Lagrangian point of view, could, for example,

provide answers to the following questions: Given that the projected circulation changes have

no effect on the GrIS melt increase, how do weather system dynamics modulate the melt

expansion and intensification? Which weather systems and processes lead to the ∼31% of the

extreme VPD season’s intensity that arise from dynamically induced negative q′? These are

just two questions whose answers would further deepen our understanding of the seamless

interaction of phenomena across the weather-climate interface.

In the quote at the very beginning of this thesis, Callendar (1938) concluded his revolutionary

findings with the beneficial consequences of human-caused global warming for crop cultivation,

plant growth (CO2 fertilization), and regarding the retreat of “the deadly glaciers”. As it hap-

pened, this thesis studied these exact three components of the Earth system, which, however,

are responding in a much more alarming than beneficial manner to global warming. Specifically,

we have examined how weather matters for forest vitality, extremely high VPD in summer,

and GrIS surface melt in the 21st century. Short-term atmospheric variability contributes to

seasonal anomalies in regionally and temporally distinct ways, whose evaluation has required

particularly systematic approaches throughout this thesis. Moreover, as global warming increas-
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ingly alters seasonal meteorology and thus the components of the Earth system studied here,

this work has contributed to the understanding needed for timely preparedness strategies. By

applying and developing appropriate frameworks to study seasonal meteorological anomalies,

this thesis also brought forward tools for further research at the weather-climate interface.





Appendix A
Additional information for Chapter 3

A.1 Sensitivity to threshold parameters

The event identification is based on 3 threshold parameters, namely the minimum affected

ratio ARmin = 80%, the minimum forest area FAmin = 10%, and the minimum number of

time steps in JJA with negative NDVI’ cmin
ev = 4 (Sect. 3.2.3). Parameter ARmin refers to the

fraction of forest pixels that has to show persistently negative NDVI per 0.5◦ × 0.5◦ grid cell

for that grid cell to be identified as low-NDVI grid cell. Persistently here is defined via a lower

threshold cmin
ev for cn,ev, where the latter refers to the number of time steps out of a total of six in

JJA that show negative NDVI. Lastly, FAmin sets a minimum forest cover per grid cell to filter

out those with only very few forest NDVI pixels. We vary ARmin and FAmin by ±5% and test

different combinations thereof. We vary cmin
ev by ±1 only for the setup “80_10” used in the study

(ARmin = 80%, FAmin = 10%) as the identification scheme depends strongly on this parameter.

Table A.1 shows the number of events (ntot), the number of years with at least 10 low-NDVI grid

cells in 2002−2022 (nyr), and also the number of events per sub-sample (nev) that results from

varying the threshold parameters. Large nyr is important to the sub-sampling of the low-NDVI

grid cells, which is used to retrieve more systematic results, and would optimally be as close to

the total years of 21 as possible. The ntot is particularly strongly reduced when increasing ARmin

to 85%, resulting in nyr ≤ 10. Aiming to optimize nyr by using looser thresholds, however,

would misconceive a typical characteristic of extreme events such as low-NDVI events, namely

that they occur concentrated in individual years and not in others. So looser thresholds have

the disadvantage of reducing the peculiarity of low-NDVI grid cells. This is illustrated by the
∼1.5× increase in ntot when reducing ARmin from 80% to 75%. While reducing cmin

ev in the study

setup (80_10) from 4 to 3 has only minor effects, ntot and consequently nyr and nev are drastically

reduced when increasing cmin
ev to 5 (Table A.1). For example, in the temperate biome, only 3

years would contribute at least ten low-NDVI grid cells if cmin
ev = 5 was used. So while the

number of events is not very sensitive to reductions in cmin
ev , increasing cmin

ev would render a

systematic assessment impossible.
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Table A.1: Number of events (ntot), number of years with at least 10 low-NDVI grid cells (nyr), and
number of events per sub-sample (nev) for different combinations of threshold parameters. Values in
rows 1–3 and rows 4–6 apply to the temperate and Mediterranean biome, respectively. The column
title indicates the setup with cmin

ev = 4 and different ARmin and FAmin combinations separated by an
underscore – except for the last two columns. These denote tuning the threshold parameter cmin

ev to 3 and
5 while ARmin = 80% and FAmin = 10%.

Sensitivity

75_5 75_10 75_15 80_5 80_10 80_15 85_5 85_10 85_15
3of6

80_10

5of6

80_10

ntot 2294 1998 1744 1580 1386 1204 929 809 707 1770 144

nyr 17 17 17 16 15 15 10 9 9 16 3

nev 187 185 183 173 170 164 138 132 124 179 35

ntot 1701 1319 1078 1287 989 808 861 661 529 1181 195

nyr 18 16 15 16 14 14 12 12 11 14 6

nev 195 187 177 177 164 160 155 142 136 177 93

The sensitivity of the main result to these two parameters is illustrated in the example of Fig. 3.5

(Fig. A.1). As in the original Fig. 3.5, we perform a random sub-sampling of up to 10 low-NDVI

grid cells per year for each biome and compute an average meteorological history from the

resulting samples (Sect. 3.3.3). This sub-sampling is done 10 times for each biome, and Fig. A.1

shows the median of these 10 equivalent average meteorological histories for each of the 11

combinations of ARmin, FAmin, and cmin
ev listed in Table A.1. The sub-sampling for each combina-

tion of the two threshold parameters is of course dependent on the identified low-NDVI grid

cells and, therefore, dependent on ntot and nyr (Table A.1).

Figure A.1 overall highlights low sensitivity of various aspects of the meteorological history

to the two threshold parameters. First, the number of events per sub-sample and thus per

average meteorological history nev differs for every setup of threshold parameters depending

on variations in ntot. Consequently, setups with more events per sample (loose thresholds)

lead to smaller magnitudes of the averaged meteorological anomalies, and, hence, also a more

narrow confidence interval than a setup with fewer events per sample (stricter thresholds).

The comparison here, therefore, focuses mostly on aspects such as the timing and evolution of

significant anomalies instead of their exact magnitude. The statistically significant anomalies

highlighted in our study, e.g., negative P′
90d in JJA-12m and JJA-ev and positive T′

90d that

emerged in MAM-3m in temperate forests, would also result from other parameter setups

(Fig. A.1a,c). Especially the timing when meteorological anomalies were significantly different

from climatology is consistent within almost all 11 setups. Some of the highlighted anomalies

persisted longer and emerged more clearly when using stricter thresholds, e.g., ARmin = 85%

and FAmin = 15%. Positive T′
90d followed JJA-12m into SON-9m and also the warm period prior

to JJA-ev reached farther into the past (Fig. A.1c). With that setup, also the negative f ′90d(C)
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Figure A.1: The same as Fig. 3.5 but for different combinations of ARmin, FAmin, and cmin
ev . The bold

olive line and the shaded grey 95% confidence interval (CI) correspond to the median setup shown in
the study (Fig. 3.5). The other bold lines show the meteorological histories of the other combinations
of threshold parameters, and the corresponding CI is shown with thin lines of the same color. The
normalized 90 d mean (a,b) precipitation, (c,d) temperature, (e,f) cyclone frequency, and (g,h) anticyclone
frequency anomalies, respectively, are shown as line plots. The legend indicates the combination of
threshold parameters used as in Table A.1.

in MAM-3m prior to low-NDVI events in the Mediterranean biome was more distinct than

for the setup used. With stricter parameter setups, however, nev is unfavorably reduced as the

number of years contributing the maximum of 10 low-NDVI events (nyr) is greatly reduced

(Table A.1). This is strongly pronounced when using the setup “5of6”, for which, e.g., in the

temperate biome, only 3 years (2018, 2019, and 2022) contribute substantially to the average

meteorological history shown in Fig. A.1. Considering the numbers in Table A.1 this setup

can clearly not provide a meaningful evaluation of low-NDVI events over the study period.

Apart from that setup, any larger deviations between the results from the different parameter

setups typically occur within the respective confidence intervals – e.g., f ′90d(A) in JJA-ev – and

are, hence, not highlighted in the analysis and interpretation of Fig. 3.5. To summarize, the

sensitivity analysis supports the chosen setup with ARmin = 80%, FAmin = 10%, and cmin
ev = 4,
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and generally demonstrates low sensitivity of the main results to reasonable variations in the 3

parameters.

A.2 Bootstrapping tests

In the bootstrapping test we want to test the null hypothesis H0,EV that a given aspect X of

the meteorological history at tev − ∆t of low-NDVI events is equal to that of any random me-

teorological history. For X we use the meteorological fields of T′
90d, P′

90d, f ′90d(C), and f ′90d(A),

as well as the fraction of ∆t where T′
90d > 0 and P′

90d < 0, respectively, covering 1999–2022

and the study domain (Fig. 3.1a). The fields are used here for the period 1999–2022, in order

to compute 3-year meteorological histories for all low-NDVI events in 2002–2022. Figure A.2

illustrates the procedure of retrieving event mean meteorological histories as well as the way

the bootstrapping is constructed.

Figure A.2: Schematic of the construction of the event mean meteorological histories (a) of event set EVS
and (b) their synthetic analogues EVSr used for the bootstrapping test. The rows on the side show the
order in which fields of X are used to extract the time series for EVS and each EVSr. The annual binary
event masks of EVS in (a) are colored according to the year of occurrence. The shuffled EVSr sets have a
different order of these masks; however, they use the X fields in the same order as EVS.

First, the sub-sampling of all low-NDVI grid cells results in an event set EVS of low-NDVI grid

cells that can be represented as 3-dimensional binary 21× nlat × nlon event mask, which is equal

to 1 at every low-NDVI grid cell (Fig. A.2a). Further, for every X we retrieve an nev × ndt matrix

– i.e., one with a time series with ndt = 3 × 365 daily time steps for every of the nev selected

low-NDVI grid cells – by extracting the fields of X where EVS equals 1. The average time series

of X for one sample results from taking the mean along the first dimension of this matrix, as

shown in Fig. 3.5. For the bootstrapping test, we generate 1’000 synthetic event sets (EVSr) by

randomly shuffling the 21 annual masks of EVS 1’000 times (Fig. A.2b). This shuffling process

is best visualized by shuffling a deck of cards, whereby each card corresponds to the binary
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nlat × nlon event mask of a specific year. Specifically, when constructing the random event set

with number r we assign a randomly selected year yr
i to all low-NDVI grid cells occurring in

year yi and then repeat the process for all remaining years. Hereby, the random years are chosen

such that each year occurs once in every EVSr. Consequently, each reference event set contains

the same number of low-NDVI grid cells as EVS but in a different year-location combination.

Afterwards, the synthetic meteorological histories are generated by first retrieving Xr from

extracting X fields for EVSr, i.e., using the shuffled deck of annual binary event masks. Then,

the resulting 1′000 × nev × ndt matrix is averaged along its second dimension to retrieve a set of

1’000 synthetic event mean time series for every Xr. We, thereby, create 1’000 meteorological

histories that are equally plausible in the climatological reference period without the prerequi-

site of a following low NDVI.

We then compare event mean time series of X of low-NDVI grid cells to the 1’000 synthetic

event mean time series of Xr. Values of X outside the range of Xr receive a p value of 0

(Röthlisberger et al., 2016). The remaining p values are estimated from the percentiles of the

1′000 × ndt synthetic matrix along its first dimension. At the significance level of α = 5%, H0,EV

is rejected at time lags ∆t if the event value of X is outside the 95% confidence interval, i.e.,

outside the 2.5th − 97.5th percentile range, of the 1’000 reference values of Xr. Note that the

shuffling of years is done prior to extracting the spatial fields of X from the ERA5 data set.

This has – in contrast to a random sampling of all forest grid cells – the convenient effect that

spatial correlation in these meteorological variables is retained. Thus, synthetic meteorological

histories of Xr are constructed from a data set with exactly the same spatial correlation as the

original data sets of X.
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A.3 Maps of low-NDVI grid cells

Figure A.3: Low-NDVI grid cells in 2002−2022 (red) in forest grid cells of the temperate (turquoise) and
Mediterranean biome (cyan). The dashed lines delineate the two biomes. Data available from Hermann
(2022).

A.4 Low-NDVI events and forest disturbance

We provide a brief and qualitative comparison of our set of low-NDVI grid cells with the

independent disturbance data set of Senf and Seidl (2021a). The comparison is useful to

put the identified low-NDVI events into perspective regarding existing knowledge on forest

disturbances.

A.4.1 Forest disturbance data set

We use the forest disturbance data set by Senf and Seidl (2021a) with an original resolution of

30 m. It is based on a time series segmentation approach called LandTrendr (Kennedy et al.,

2010) and identifies tree canopy mortality in 1986−2020. The approach uses two spectral bands

(shortwave infrared I and II) and two spectral indices (tasselled cap wetness and normalized

burn ratio) from Tier 1 Landsat 4, 5, 7, and 8 images in Jun−Sep. For more details see Senf and

Seidl (2021a). From this data set we use the annual disturbance area DJ,n, which is aggregated

for every 0.5◦ × 0.5◦ forest grid cell. We only use years and grid cells that overlap with our

study period and forest grid cells as identified in Sect. 3.2.1. Our event data set overlaps with
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Figure A.4: Event comparison for (a,b) the temperate and (c,d) the Mediterranean biome in the period
2002−2020. (a,c) Boxplots of the disturbance anomaly D′ of low-NDVI grid cells (red) and non-event
grid cells (turquoise). The distribution mean is shown by a yellow triangle, outliers are omitted. (b,d)
Histograms of ranks 1−19 of disturbance area DR of low-NDVI grid cells in 2002−2020. The median is
shown by the vertical line.

the disturbance data set in the time period of 2002−2020 at 91% of forest grid cells as D does

not cover Turkey. Consequently, 66% and 51% of all low-NDVI grid cells in the temperate and

Mediterranean biome are compared to the disturbance data set. More specifically, we use two

measures of D: the disturbance anomaly D′, and the rank of D among the 19 annual values

DRJ,n in 2002−2020:

D′
J,n =

DJ,n − DJ

DJ
(A.1)

DRJ,n = rank(DJ,n) (A.2)

at forest grid cell J in year n, with DJ denoting the climatological mean disturbance area in

2002−2020. When referring to low-NDVI grid cells in the following, we thereby only address

those that spatially overlap with D data in 2002−2020.

A.4.2 Qualitative comparison

In 70% of all low-NDVI grid cells the disturbance area D is larger than on average in 2002−2020

– more often in the temperate (76%) than in the Mediterranean biome (59%; Fig. A.4a,c). The me-
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dian disturbed area increases by +27% and +16% during low-NDVI events in the temperate and

Mediterranean biome, respectively. Furthermore, non-events typically go along with negative

D′ in the temperate (61% of non-events) and the Mediterranean biome (66%). Figure A.4b,d

additionally shows the disturbance area rank, DR, from 1 (smallest D in 2002−2020) to 19

(largest D). With 1−6 events per affected forest grid cell (Fig. 3.2c) a low-NDVI grid cell would

go along with DR 14−19 if the event years were equal to the years of largest disturbed area.

The majority of low-NDVI grid cells indeed covers ranks 16−19 and 15−19 in the temperate

and Mediterranean biome, respectively. We conclude that low-NDVI grid cells tend to go along

with more forest disturbances, i.e., enhanced canopy mortality, and rank among the largest

forest disturbances at forest grid cells.

A.5 Weather system anomalies

The following Figures A.5 & A.6 show the spatial pattern of weather system anomalies. For

all forest grid cells with at least two low-NDVI events in 2002−2022, we show how many of

these events were linked to positive or negative anomalies in f ′rel
90d . Additionally, we calculate

the average anomaly over all events that had the same sign of the anomaly and highlight those

with mean changes of at least 25%. For each season of the past year, from JJA-ev backward to

SON-9m, we use the value of f ′rel
90d on the last day of the season, which is approximately equal

to the seasonal average over the 3 preceding months.

Figure A.5: The same as Fig. 3.7 but for the relative anticyclone frequency anomaly f ′rel
90d (A) in (a) JJA-ev,

(b) MAM-3m, (c) DJF-6m, and (d) SON-9m.
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Figure A.6: The same as Fig. 3.7 but for the relative cyclone frequency anomaly f ′rel
90d (C) in (a) JJA-ev, (b)

MAM-3m, (c) DJF-6m, (d) SON-9m.
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Figure B.1: Mean T (a) in ERA5 in JJA 1979–2020, and (b) averaged over all 25 CESM subsets in JJA
1990–1999. (c) The difference of (b) minus (a), where stippling (hatching) indicates where the ERA5 value
lies above (below) the values of all CESM subsets.
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Figure B.2: Variance of seasonal T′ (a) in ERA5 in JJA 1979–2020, and (b) averaged over all 25 CESM
subsets in JJA 1990–1999. (c) The difference of (b) minus (a) relative to (a). Stippling (hatching) indicates
where ERA5 variance lies above (below) the values of all CESM subsets.

Figure B.3: The same as Fig. B.1 but for seasonal q.
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Figure B.4: The same as Fig. B.2 but for seasonal q′.

Table B.1: The same as in Table 4.1 but ranked according to the season’s rarity (R).

Year Region A [105 km2] I [kPa] R [years]

2008 China/Kazakhstan 5.8 0.33 158

2011 Southern U. S./Mexico 14.6 0.78 104

2008 Iran/Afghanistan 5.3 0.39 102

2003 Central Europe 12.5 0.32 99

2010 Western Russia 30.2 0.60 99

1984 Central Asia 19.8 0.37 98

2004 Russia/Japan 1.5 0.09 94

1997 Alaska 1.3 0.11 91

1994 Western U. S./Mexico 15.3 0.52 91

2012 Pakistan 1.5 0.59 89
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Figure B.5: The number of mid-latitude VPDJJA+ with a negative T′ in CESM (66 in total).
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Table C.1: The map size (nx×ny), radius (r), number of training iterations (I), quantization error (QE),
and topographic error (TE) for different tested SOM setups. The chosen setup is highlighted in red.

nx ny r I QE TE nx ny r I QE TE

5 4 2 1’000 20.396 0.279 6 5 2 1’000 19.419 0.397

5 4 2 3’000 20.319 0.344 6 5 2 3’000 19.415 0.410

5 4 2 5’000 20.312 0.359 6 5 2 5’000 19.385 0.401

5 4 2 10’000 20.303 0.362 6 5 2 10’000 19.403 0.376

5 4 3 1’000 20.405 0.307 6 5 3 1’000 19.428 0.386

5 4 3 3’000 20.355 0.372 6 5 3 3’000 19.428 0.394

5 4 3 5’000 20.328 0.391 6 5 3 5’000 19.428 0.400

5 4 3 10’000 20.306 0.437 6 5 3 10’000 19.402 0.422

5 4 4 1’000 20.433 0.274 6 5 4 1’000 19.457 0.369

5 4 4 3’000 20.363 0.362 6 5 4 3’000 19.457 0.383

5 4 4 5’000 20.346 0.378 6 5 4 5’000 19.439 0.409

5 4 4 10’000 20.318 0.399 6 5 4 10’000 19.418 0.425

6 4 2 1’000 19.917 0.363 6 4 3 5’000 19.930 0.390

6 4 2 3’000 19.891 0.359 6 4 3 10’000 19.930 0.392

6 4 2 5’000 19.911 0.376 6 4 4 1’000 19.958 0.348

6 4 2 10’000 19.906 0.388 6 4 4 3’000 19.936 0.370

6 4 3 1’000 19.957 0.355 6 4 4 5’000 19.932 0.372

6 4 3 3’000 19.932 0.378 6 4 4 10’000 19.931 0.376
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Figure C.1: The same as Fig. 5.4c but from MC to LC. That is, we compute changes from MC to LC (as
shown in Fig. 5.4b) but by using the decomposition (Eq. 5.8) with MC as P1 and LC as P2, instead of
subtracting changes between PD to MC from those between PD and LC (see Sect. 5.2.5).
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Figure C.2: The top right panel shows the mean daily melt frequency in PD (ωPD). The other panels
illustrate the mean daily melt frequency during each SOM node (ωPD

i ). Dotted (solid) black lines show
negative (positive) Z500′ contours according to Fig. 5.2. The dashed line denotes the 2’200 m elevation
contour.
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Figure C.3: The same as Fig. C.2 but for ωMC (top right panel) and ωMC
i .
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Figure C.4: The same as Fig. C.2 but for ωLC (top right panel) and ωLC
i .
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Figure C.5: The same as Fig. C.2 but for melt intensity QPD (top right panel) and QPD
i .
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Figure C.6: The same as Fig. C.5 but for QMC (top right panel) and QMC
i .
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Figure C.7: The same as Fig. C.5 but for QLC (top right panel) and QLC
i .
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Figure C.8: Composites of Z500′ for all days attributed to the respective SOM nodes in PD (shading).
Dotted (solid) black lines show the same negative (positive) Z500′ contours of the 30 SOM nodes
according to Fig. 5.2. The title indicates the node frequency in PD.
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Figure C.9: The same as Fig. C.8 but for all days in LC.
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Etzold, S., K. Ziemińska, B. Rohner, A. Bottero, A. K. Bose, N. K. Ruehr, A. Zingg, and A. Rigling,

2019: One century of forest monitoring data in Switzerland reveals species- and site-specific

trends of climate-induced tree mortality. Front. Plant Sci., 10, 307, doi:10.3389/fpls.2019.00307.

Fausto, R. S., D. van As, J. E. Box, W. Colgan, P. L. Langen, and R. H. Mottram, 2016: The impli-

cation of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation

area surface melt in 2012. Geophys. Res. Lett., 43 (6), 2649–2658, doi:10.1002/2016GL067720.

Feichtinger, L. M., B. Eilmann, N. Buchmann, and A. Rigling, 2014: Growth adjustments

of conifers to drought and to century-long irrigation. For. Ecol. Manag., 334, 96–105,

doi:10.1016/j.foreco.2014.08.008.

Feichtinger, L. M., B. Eilmann, N. Buchmann, and A. Rigling, 2015: Trait-specific responses

of Scots pine to irrigation on a short vs long time scale. Tree Physiol., 35 (2), 160–171,

doi:10.1093/treephys/tpu114.

https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.1016/j.scitotenv.2021.149104
https://doi.org/10.1029/2010GL046582
https://doi.org/10.5194/esd-8-719-2017
https://doi.org/10.21957/tr5rv27xu
https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates
https://doi.org/10.1002/2013GL059010
https://doi.org/10.3389/fpls.2019.00307
https://doi.org/10.1002/2016GL067720
https://doi.org/10.1016/j.foreco.2014.08.008
https://doi.org/10.1093/treephys/tpu114


REFERENCES 145

Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance

using the regional climate model MAR. Cryosphere, 1 (1), 21–40, doi:10.5194/tc-1-21-2007.

Fettweis, X., 2020: Modèle atmosphérique régional v3.11. University of Liège, accessed at

20-October-20202, ftp://ftp.climato.be/fettweis/MARv3.11/Greenland/.

Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke,

and H. Gallée, 2013a: Estimating the Greenland ice sheet surface mass balance contribution

to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 7 (2),

469–489, doi:10.5194/tc-7-469-2013.

Fettweis, X., E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallée, 2013b: Important

role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over

the Greenland Ice Sheet. Cryosphere, 7, 241–248, doi:10.5194/tc-7-241-2013.

Fettweis, X., J. E. Box, C. Agosta, C. Amory, C. Kittel, C. Lang, D. van As, H. Machguth, and

H. Gallée, 2017: Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance

using the regional climate MAR model. Cryosphere, 11 (2), 1015–1033, doi:10.5194/tc-11-1015-

2017.

Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 sur-

face mass balance over the Greenland Ice Sheet. Cryosphere, 14 (11), 3935–3958, doi:10.5194/tc-

14-3935-2020.

Ficklin, D. L., and K. A. Novick, 2017: Historic and projected changes in vapor pressure deficit

suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res.: Atmos.,
122 (4), 2061–2079, doi:10.1002/2016JD025855.

Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate

extremes. Nat. Clim. Change, 3 (12), 1033–1038, doi:10.1038/nclimate2051.

Fischer, E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature

extremes. Nat. Clim. Change, 3 (2), 126–130, doi:10.1038/nclimate1682.

Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of

heavy-precipitation and high-temperature extremes. Nat. Clim. Chang., 5 (6), 560–564,

doi:10.1038/nclimate2617.

Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture-

atmosphere interactions during the 2003 European summer heat wave. J. Clim., 20 (20),

5081–5099, doi:10.1175/JCLI4288.1.

Flaounas, E., M. Röthlisberger, M. Boettcher, M. Sprenger, and H. Wernli, 2021: Extreme wet

seasons – their definition and relationship with synoptic-scale weather systems. Weather Clim.
Dyn., 2 (1), 71–88, doi:10.5194/wcd-2-71-2021.

https://doi.org/10.5194/tc-1-21-2007
ftp://ftp.climato.be/fettweis/MARv3.11/Greenland/
https://doi.org/10.5194/tc-7-469-2013
https://doi.org/10.5194/tc-7-241-2013
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-14-3935-2020
https://doi.org/10.5194/tc-14-3935-2020
https://doi.org/10.1002/2016JD025855
https://doi.org/10.1038/nclimate2051
https://doi.org/10.1038/nclimate1682
https://doi.org/10.1038/nclimate2617
https://doi.org/10.1175/JCLI4288.1
https://doi.org/10.5194/wcd-2-71-2021


146 REFERENCES

Forzieri, G., M. Girardello, G. Ceccherini, J. Spinoni, L. Feyen, H. Hartmann, P. S. A. Beck,

G. Camps-Valls, G. Chirici, A. Mauri, and A. Cescatti, 2021: Emergent vulnerability to climate-

driven disturbances in European forests. Nat. Commun., 12 (1), 1081, doi:10.1038/s41467-021-

21399-7.

Franco, B., X. Fettweis, and M. Erpicum, 2013: Future projections of the Greenland ice sheet

energy balance driving the surface melt. Cryosphere, 7 (1), 1–18, doi:10.5194/tc-7-1-2013.

Franks, P. J., I. R. Cowan, and G. D. Farquhar, 1997: The apparent feedforward response

of stomata to air vapour pressure deficit: information revealed by different experimental

procedures with two rainforest trees. Plant Cell Environ., 20 (1), 142–145, doi:10.1046/j.1365-

3040.1997.d01-14.x.

Frei, E. R., M. M. Gossner, Y. Vitasse, V. Queloz, V. Dubach, A. Gessler, C. Ginzler, F. Hagedorn,

K. Meusburger, M. Moor, E. S. Vives, A. Rigling, I. Uitentuis, G. von Arx, and T. Wohlgemuth,

2022: European beech dieback after premature leaf senescence during the 2018 drought in

northern Switzerland. Plant Biol., 24, 1132–1145, doi:10.1111/plb.13467.

Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison

Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17 (2), 1417–1452,

doi:10.5194/acp-17-1417-2017.

Fyke, J. G., M. Vizcaíno, W. Lipscomb, and S. Price, 2014: Future climate warming increases

Greenland ice sheet surface mass balance variability. Geophys. Res. Lett., 41 (2), 470–475,

doi:10.1002/2013GL058172.

Gallagher, M. R., M. D. Shupe, H. Chepfer, and T. L’Ecuyer, 2022: Relating snowfall observations

to Greenland ice sheet mass changes: an atmospheric circulation perspective. Cryosphere,

16 (2), 435–450, doi:10.5194/tc-16-435-2022.

Gamelin, B. L., J. Feinstein, J. Wang, J. Bessac, E. Yan, and V. R. Kotamarthi, 2022: Projected

U.S. drought extremes through the twenty-first century with vapor pressure deficit. Sci. Rep.,
12 (1), 8615, doi:10.1038/s41598-022-12516-7.

Gessler, A., A. Bottero, J. Marshall, and M. Arend, 2020: The way back: recovery of

trees from drought and its implication for acclimation. New Phytol., 228 (6), 1704–1709,

doi:10.1111/nph.16703.

Gouveia, C., R. M. Trigo, and C. C. DaCamara, 2009: Drought and vegetation stress monitoring

in Portugal using satellite data. Nat. Hazards Earth Syst. Sci., 9 (1), 185–195, doi:10.5194/nhess-

9-185-2009.

Grossiord, C., T. N. Buckley, L. A. Cernusak, K. A. Novick, B. Poulter, R. T. W. Siegwolf, J. S.

Sperry, and N. G. McDowell, 2020: Plant responses to rising vapor pressure deficit. New
Phytol., 226 (6), 1550–1566, doi:10.1111/nph.16485.

https://doi.org/10.1038/s41467-021-21399-7
https://doi.org/10.1038/s41467-021-21399-7
https://doi.org/10.5194/tc-7-1-2013
https://doi.org/10.1046/j.1365-3040.1997.d01-14.x
https://doi.org/10.1046/j.1365-3040.1997.d01-14.x
https://doi.org/10.1111/plb.13467
https://doi.org/10.5194/acp-17-1417-2017
https://doi.org/10.1002/2013GL058172
https://doi.org/10.5194/tc-16-435-2022
https://doi.org/10.1038/s41598-022-12516-7
https://doi.org/10.1111/nph.16703
https://doi.org/10.5194/nhess-9-185-2009
https://doi.org/10.5194/nhess-9-185-2009
https://doi.org/10.1111/nph.16485


REFERENCES 147

Grossiord, C., A. Granier, S. Ratcliffe, O. Bouriaud, H. Bruelheide, E. Checko, D. I. Forrester,

S. M. Dawud, L. Finer, M. Pollastrini, M. Scherer-Lorenzen, F. Valladares, D. Bonal, and

A. Gessler, 2014: Tree diversity does not always improve resistance of forest ecosystems to

drought. Proc. Natl. Acad. Sci. U. S. A., 111 (41), 14 812–14 815, doi:10.1073/pnas.1411970111.

Hanna, E., X. Fettweis, and R. J. Hall, 2018: Brief communication: Recent changes in summer

Greenland blocking captured by none of the CMIP5 models. Cryosphere, 12 (10), 3287–3292,

doi:10.5194/tc-12-3287-2018.

Hanna, E., J. Cappelen, X. Fettweis, S. H. Mernild, T. L. Mote, R. Mottram, K. Steffen, T. J.

Ballinger, and R. J. Hall, 2021: Greenland surface air temperature changes from 1981 to

2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol., 41 (S1),

doi:10.1002/joc.6771.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau,

S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice,

and J. R. G. Townshend, 2013: High-resolution global maps of 21st-century forest cover

change. Science, 342 (6160), 850–853, doi:10.1126/science.1244693.

Hansen, W. D., N. B. Schwartz, A. P. Williams, K. Albrich, L. M. Kueppers, A. Rammig, C. P. O.

Reyer, A. C. Staver, and R. Seidl, 2022: Global forests are influenced by the legacies of past

inter-annual temperature variability. Environ. Res.: Ecol., 1 (1), 011 001, doi:10.1088/2752-

664X/ac6e4a.

Harpold, A. A., N. P. Molotch, K. N. Musselman, R. C. Bales, P. B. Kirchner, M. Litvak, and P. D.

Brooks, 2015: Soil moisture response to snowmelt timing in mixed-conifer subalpine forests.

Hydrol. Process., 29 (12), 2782–2798, doi:10.1002/hyp.10400.

Hartmuth, K., M. Boettcher, H. Wernli, and L. Papritz, 2022: Identification, characteristics and

dynamics of Arctic extreme seasons. Weather Clim. Dyn., 3 (1), 89–111, doi:10.5194/wcd-3-89-

2022.

Hartmuth, K., L. Papritz, M. Boettcher, and H. Wernli, 2023: Arctic seasonal variability and

extremes, and the role of weather systems in a changing climate. Geophys. Res. Lett., 50 (8),

e2022GL102 349, doi:10.1029/2022GL102349.

Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. Me-
teorology over the tropical oceans, D. B. Shaw, Ed., Royal Meteorological Society, Bracknell,

United Kingdom, 251–259, accessed at 28-June-2023, https://hdl.handle.net/21.11116/

0000-0003-12C3-C.

Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett.,
39 (1), L01 702, doi:10.1029/2011GL050087.

Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones, 1996:

Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J.
Clim., 9 (10), 2281–2306, doi:10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.

https://doi.org/10.1073/pnas.1411970111
https://doi.org/10.5194/tc-12-3287-2018
https://doi.org/10.1002/joc.6771
https://doi.org/10.1126/science.1244693
https://doi.org/10.1088/2752-664X/ac6e4a
https://doi.org/10.1088/2752-664X/ac6e4a
https://doi.org/10.1002/hyp.10400
https://doi.org/10.5194/wcd-3-89-2022
https://doi.org/10.5194/wcd-3-89-2022
https://doi.org/10.1029/2022GL102349
https://hdl.handle.net/21.11116/0000-0003-12C3-C
https://hdl.handle.net/21.11116/0000-0003-12C3-C
https://doi.org/10.1029/2011GL050087
https://doi.org/10.1175/1520-0442(1996)009%3C2281:DGGICC%3E2.0.CO;2


148 REFERENCES

Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming.

J. Clim., 19 (21), 5686–5699, doi:10.1175/JCLI3990.1.

Hermann, M., 2022: Normalized difference vegetation index (NDVI) based low forest greenness

events in europe in 2002–2022 (1.0) [dataset]. ETH Zurich Research Collection, https://doi.

org/10.3929/ethz-b-000505559.

Hermann, M., L. Papritz, and H. Wernli, 2020: A Lagrangian analysis of the dynamical and

thermodynamic drivers of large-scale Greenland melt events during 1979–2017. Weather Clim.
Dyn., 1 (2), 497–518, doi:10.5194/wcd-1-497-2020.

Hermann, M., M. Röthlisberger, A. Gessler, A. Rigling, C. Senf, T. Wohlgemuth, and H. Wernli,

2023: Meteorological history of low-forest-greenness events in Europe in 2002–2022. Biogeo-
sciences, 20 (6), 1155–1180, doi:10.5194/bg-20-1155-2023.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146 (730),

1999–2049, doi:10.1002/qj.3803.
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