
ETH Library

On higher cardinal characteristics

Bachelor Thesis

Author(s):
Leemann, David

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000638566

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000638566
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


On higher cardinal characteristics

Bachelor Thesis

David Leemann

supervised by
Prof. Dr. Lorenz Halbeisen

30th of September, 2023
Revised version of 12/10/2023



To Aude



Abstract

This thesis aims to study how cardinal characteristics of the continuum can be extended
to larger cardinals. We present two different approaches how this can be done, using first
the example of splitting numbers and then we turn to sets of mapping between functions
and their bounding and dominating numbers.

In the first chapter, we settle the notation that will be used througout the thesis and
present some useful basic results and definitions. We also state more advanced results that
will be used in the thesis, but the scope and demonstration of which goes beyond it.

In chapter 2 we see how the classical splitting number may be extended to larger cardinals,
extending the notion of splittig family to ”spitting on κ” in the obvious way. We discuss some
results on successor and singular cardinals before turning to the world of large cardinals and
their splitting numbers. Here we restrict us to two main types of large cardinals: inaccessible
and compact.

In the last chapter, we look at another way of generalizing cardinal characteristics, this
time with the example of bounding and dominating numbers. We first replace the well-known
cardinal characteristics in a setting enabling straightforward generalization. We then analize
properties of the newly born higher cardinal characteristics that can be shown in ZFC and
prove a result on the consistency of their relation with regards to the consistency of ZFC.
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1 Introduction

This bachelor thesis has the goal of investigating how cardinal characteristics of the continuum
can be generalized for larger cardinals. The first idea was to inspect classical subsets of P(R)
like the Lebesgue σ-algebra or the standard topology, and see if they deliver interesting charac-
teristics for c. It turned out to not be the case, but the closest to this idea is a generalisation
on the set of functions, which we present in the chapter 3. First we introduce the reader to the
set-theoretic notation that will be used throughout this thesis, recall some useful basic notions,
and define more specific objects which we will use at some point in our reflections. Then, in
chapter 2, we investigate the clasiscal splitting number and its generalization to larger cardinals.

We assume that the reader is familiar with the axioms of ZFC and the basic associated
definitions, amongst others ordinal and cardinal numbers, cardinal arithmetics, as well as some
associated results. We will denote ordinal numbers by greek letters α, β, γ, δ. The class of all
ordinals is Ω. For infinite cardinal numbers, we use the greek letters κ, λ, µ, ν. The definitions,
basic results, and some more advanced results presented here mainly come from Halbeisen [7],
Jech [8][9] and Kanamori [10].

1.1 Basic notions on sets and cardinals

Let κ be a cardinal. We define κ+ =
⋂
{α ∈ Ω : κ < |α|}. A cardinal κ is a successor cardinal

if there is λ such that κ = λ+. A cardinal κ is a limit cardinal, if κ =
⋃
{µ : µ < κ}. If for

all cardinals λ < κ, we have 2λ < κ, we say that κ is a strong limit cardinal. ωα denotes the
α-th infinite cardinal number. More precisely, by transfinite induction, ω0 = ω, ωα+1 = ω+

α for
all α ∈ Ω, and ωα =

⋃
γ∈α ωγ for α a non-empty limit ordinal. 2κ denotes the cardinality of the

power set of κ. In particular, the continuum is c = 2ω.
For two ordinal numbers α and β we will write [α, β) = {α} ∪ {γ ∈ β : α ∈ γ}. For a set X

and a cardinal number κ, [X]κ denotes the set of all subsets of X having cardinality κ.

[X]κ = {y ∈ P(X) : |y| = κ}.

The set of finite subsets of X is denoted by fin(X) = {y ⊆ X : |y| < ω}. We can extend this
notion to arbitrary sizes < κ by defining

[X]<κ = {y ∈ P(X) : |y| < κ}.

With this, fin(X) = [X]<ω.
For two sets X and Y , XY is the set of all functions from X to Y . For cardinals κ and λ,

we denote by <λκ the set of all functions from a part of λ, whose cardinality is less than λ, to κ.

<λκ =
⋃

{Xκ : X ⊂ λ ∧ |X| < λ}

κ<λ =
⋃

{κµ : µ < λ}

Fn(X,Y ) = {p ∈ XY : |dom(p)| < ω}

The cofinality of an infinite cardinal κ is

cf(κ) = min{|C | : C ⊆ κ ∧
⋃

C = κ}.

An infinite cardinal κ is called regular if cf(κ) = κ; otherwise, κ is called singular.
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Lemma 1.1 (Halbeisen [7]).

a) For every infinite cardinal κ, cf(κ) is regular.

b) Every infinite successor cardinal is regular.

c) Every infinite singular cardinal is a limit cardinal.

For a cardinal κ and a set X we define a tree T as any subset of
⋃

α∈κ
αX such that for all

α ∈ κ and t ∈ αX, if t ∈ T then ∀β ∈ α(t|β ∈ T ). A branch of the tree T is a subset B ⊆ T
which is totally ordered by ⊆ and ⊆-maximal, i.e. B is not inculded in any other branch. The
height of a branch B is the least ordinal α such that t|α = ∅ for all t ∈ B; and the height
of a tree T is the least ordinal α such that t|α = ∅ for all t ∈ T . The level α ∈ κ of T is the
set T ∩ αX. Note that the most simple non-empty tree T = {∅} is of height 0 and has only an
element at level 0.

A tree T ⊆
⋃

α∈κ
αX is called κ-Aronszajn if its height is κ but it has neither level of

cardinality κ nor branch of height κ.

1.2 Independence and consistency

Considering a mathematical theory (i.e. a set of axioms), we can ask ourselves if a particular
sentence φ is provable or if its negation ¬φ is provable using the axioms of the theory. In fact,
in theories strong enough like ZFC, there will always be some sentence ψ which is not provable,
neither is its negation. Such sentences are called independent of the initial therory, since the
theory does not make any statement over the sentence. There are therefore models of the theory
in which the sentence is true, and models in which it is false, and the theory remains consistent1

by adding ψ or ¬ψ (but not both) to its list of axioms.
For example, the continuum hypothesis (CH) is the statement that there is no intermediate

cardinal between ω0 and c, so c = ω1. The generalised continuum hypothesis (GCH)
extends this fact for larger cardinals, stating that for every infinite cardinal κ, 2κ = κ+. The
singular cardinal hypothesis (SCH) is the statement that for every singular cardinal κ,
2cf(κ) < κ→ κcf(κ) = κ+. Those three statements have been proven to be independent of ZFC.

In order to prove independence of a certain statement from ZFC, we use the forcing technique.
To a forcing partial order P = (P,⪯), we denote its ⪯-smallest element by 0 or 0P, and write
x˜ for a P-name of an element x of a generic extension, or

˙
x for the canonical name of an x in

the ground model. If a condition p ∈ P forces a statement ψ of the forcing language, we write
p ⊩P ψ, or p ⊩ ψ if the underlying forcing notion is clear. We will denote the classic Cohen’s
forcing partial order by Cκ = (Fn(κ× ω, 2),⊆).

A cardinal characteristic of the continuum is a cardinal number that can consistently lie
strictly between ω0 and c. Of course, this happens only in models of ¬CH. Under ¬GCH we can
study the behaviour of generalisations of these characteristics to larger cardinals, therefore the
name of this thesis: ”higher cardinal characteristics”.

Example: for an ideal I over a set X, where I contains the Fréchet ideal, we have the
following cardinal characteristics of |X|:

add(I) = min{|A| : A ⊆ I ∧
⋃

A /∈ I}

cov(I) = min{|A| : A ⊆ I ∧
⋃

A = X}

non(I) = min{|Y | : Y ⊆ X ∧ Y /∈ I}
cof(I) = min{|A| : A ⊆ I ∧ ∀B ∈ I(∃A ∈ A(B ⊆ A))}.

1Note that the consistency of a theory strong enough cannot be proven in the theory itself (ZFC ⊬ Con(ZFC)),
it has to be assumed.
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1.3 Some large cardinals

We have seen in lemma 1.1 that all infinite successor cardinals are regular and all infinite singular
cardinals are limits. The question left open is whether some infinite regular limit cardinals exist
or not. Of course, ω is an example for such a cardinal. But are there other (larger) ones? It has
been proven (see Kanamori [10]) that this statement is independent of ZFC. The assumptions
of the existence of various types of such cardinals, called large cardinals, are named “large
cardinal hypotheses”. Some of these hypotheses are known to be relatively consistent with ZFC,
but for others (for the biggest ones), the relative consistency has not been proven yet, or is
even questionned. For the study of higher splitting numbers in chapter 2, we will also have a
look at the cases of some basic large cardinals, whose existence is known to be independent but
consistent with ZFC. Most definitions and basic results about large cardinals presented here are
from Jech [9] and Kanamori [10].

An infinite regular limit cardinal is called weakly inaccessible if it is uncountable. The
condition for a weakly inaccessible cardinal to be uncountable is added only in the aim of
making their existence independent of ZFC. Apart from this distinction, ω fulfills the conditions
for beeing a weakly inaccessible cardinal. A weakly inaccessible cardinal κ is also strongly
inaccessible (or just inaccessible), if κ is a strong limit cardinal, i.e. if for all cardinals λ < κ,
2λ < κ. There are models of ZFC (see Garti and Shelah [6]) containing a cardinal which is
weakly but not strongly inaccessible. These models are not models of GCH, since GCH implies
that the notions of weakly and strongly inaccessible cardinals coincide. Note that for a weakly
inaccessible cardinal ωα, we have ωα = cf(ωα) = cf(α) ≤ α, so obviously ωα = α.

To introduce the next large cardinal, recall first that ordinary first-order languages allow for
finite formulae written in terms of, amongst other symbols, ∧, ∨, ∃ and ∀. We now consider the
language2 Lλ,µ with λ, µ infinite cardinals, where we add the new logical operators∧

ξ∈α

∨
ξ∈α

whith α ∈ λ,

and logical quantifiers

∃
ξ∈β

∀
ξ∈β

whith β ∈ µ.

These shall design conjunction, disjunction, existence and universality over a potentially infinite
domain of discourse. Lλ,µ-formulae shall additionally have less than µ free variables. We
recognise then the ordinary first-order logic behind Lω,ω.

A Lλ,µ-theory shall be said satisfiable if it has a model, and κ-satisfiable if every subtheory
of cardinality less than κ has a model. Note that the compactness theorem states that a Lω,ω-
theory is satisfiable if and only if it is ω-satisfiable. We can now define a strongly compact
cardinal as an uncountable cardinal κ for which any κ-satisfiable Lκ,κ-theory is satisfiable; κ
shall be called weakly compact if any κ-satisfiable Lκ,κ-theory consisting only of sentences
using at most κ non-logical symbols is satisfiable. As previously, except for the condition of
being uncountable, ω satisfies the definition of both strongly and weakly inaccessible.

It can be shown (see Kanamori [10]) that every strongly compact cardinal is also weakly
compact, and that every weakly compact cardinal is also strongly inaccessible. Cox and Lücke
[3] showed that the exsitence of strongly inaccessible cardinals that are not weakly compact is
consistent with ZFC.

Lemma 1.2 (Jech [8]). A strongly inaccessible cardinal κ is weakly compact if and only if there
is no κ-Aronszajn tree.

2For this purpose, a language L shall encompass all the logical and non-logical symbols.
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2 Splitting numbers

The splitting number is a classical cardinal characteristic of the continuum. In this chapter, we
define it in a more general way in order to have directly higher cardinal variants of it. We then
try to evaluate the possible cardinals that these higher splitting numbers can be, depending on
the properties of their defining cardinal. We will distinguish between successor and singular
cardinals, and also have a look at some regular limit cardinals. The results presented here are
mainly the work of Suzuki [13] and Zapletal [15].

Let κ be an infinite cardinal. A family S ⊆ [κ]κ is a splitting family on κ if for all x ∈ [κ]κ

there is an s in S whith |x∩ s| = |x \ s| = κ. In this case we say that s splits x. The splitting
number on κ, denoted by s(κ), is the least cardinality of a splitting family on κ.

s(κ) = min{|S | : S ⊆ [κ]κ is splitting on κ}

By the following lemma 2.1, for every infinite cardinal κ, s(κ) is well-defined and s(κ) ≤ 2κ.

Lemma 2.1. [κ]κ ⊆ P(κ) is splitting on κ.

Proof. Take any x ∈ [κ]κ and find the unique ordinal α and the unique order preserving bijection
h : x → α. Define s = {h−1(β) : β ∈ α∧ “β is a limit ordinal plus an even natural”}. Then
s ∈ [κ]κ and |x ∩ s| = |x \ s|. ⊣

The question we ask ourselves is how large and how small the splitting numbers can really
be. Can s(κ) always (i.e. for every cardinal κ) reach 2κ? Or is there a better upper bound? Or
can s(κ) even be smaller than κ? What about a lower bound in this case?

2.1 The splitting number of the continuum

Let’s first have a look at the splitting number s = s(ω0). As already mentioned, s ≤ c, but s
must also be uncountable.

Fact 2.2. ω1 ≤ s

Proof. Assume we have a countable splitting family S = {S0, S1, S2, ...} ⊆ [ω]ω. Notice that if
s ⊂ ω splits x ∈ [ω]ω, then so does ω \ s. Therefore the family S remains splitting if we replace
some (possibly infinitly many) Si by their complement S′

i = ω \ Si.
Per induction, we now construct a set X ∈ [ω]ω which is not split by any of the elements of

a slight adaptation of S . Define y0 = S′
0 = S0 and x0 =

⋂
y0. Since S is splitting, |y0| = ω.

For n ∈ ω and |yn| = ω, let

S′
n+1 =

{
Sn+1 if |Sn+1 ∩ yn| = ω

ω \ Sn+1 otherwise.

Also define yn+1 = Sn+1 ∩ yn and

xn+1 =
⋂

(yn+1 \ {x0, x1, ..., xn}).

Note that per definition of S′
n+1, |yn+1| = ω, so xn+1 /∈ {x0, x1, ..., xn} is well-defined.

With this construction, we have y0 ⊇ y1 ⊇ ... ⊇ yn ⊇ yn+1 ⊇ ... and S′
n ⊇ yn, for all n ∈ ω.

Furthermore, fixing an n ∈ ω and since we have chosen xn ∈ yn, S
′
n contains xn but also contains

all subsequent xi ∈ yi ⊆ S′
n for i ≥ n.
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Finally, let X =
⋃

i∈ω{xi} and consider S ′ = {S′
0, S

′
1, ...}, the countable splitting fam-

ily obtained from S by the replacements during the construction of the yn. From xn+1 /∈
{x0, x1, ..., xn} we conclude X ∈ [ω]ω, and from the choice of the xn ∈ yn follows |X \S′

n| ≤ n for
all n ∈ ω. This means that X is not split by any element of S ′, a contradiction. We conclude
|S | > ω, so s ≥ ω1. ⊣

So if we assume the continuum hypothesis (CH), we have s(ω0) = ω+
0 = c. As we shall see

later, this fact does not extend to higher splitting numbers. In fact, it is consistent with ZFC
for s to take many values betwwen ω1 and c. This choice of values will restrict itself a little in
the following paragraphs, as we study the splitting numbers of larger cardinals.

2.2 Higher splitting numbers

Can we extend the results found for s(ω0) to any splitting number s(κ)? Notice that the first
inequality of fact 2.2 does not extend in general to κ < s(κ) as the counterexample in the next
fact shows.

Fact 2.3. s(ω1) = ω0

Suzuki [13] states this fact and refers for the proof to Motoyoshi [11], a student of Kamo. As
the work containing the proof is availible in japanese only, the following proof is an adaptation
from that of a more general result in Zapletal [15].

Proof. Since ω1 ≤ 2ω = c, we can choose an injective function f : ω1 ↪→ ω2. For every h ∈ <ω2,
define Sh = {α ∈ ω1 : h ⊆ f(α)} and set

S = {Sh : h ∈ <ω2 ∧ |Sh| = ω1} ⊆ [ω1]
ω1 .

We show that S is splitting on ω1.
If S was not splitting on ω1, choose an x ∈ [ω1]

ω1 which is not split by any Sh ∈ S .
Consider the set A = {h ∈ <ω2 : |Sh ∩ x| = ω1}. Two partial functions h and g in A must be
extension-compatible, since otherwise Sg ∩Sh = ∅ and ω1 = |x∩Sg| ≤ |x \Sh| ≤ ω1, so x would
be split by Sh. Therefore, A is directed by ⊆, and there is at most one ordinal α ∈ ω1 such that
each initial segment of f(α) belongs to A. This means x ⊆ {α} ∪

⋃
{Sh ∩ x : h ∈ <ω2 \A}, so x

is the countable union of countable sets, a contradiction to the choice x ∈ [ω1]
ω1 .

So S ⊆ [ω1]
ω1 is splitting on ω1, and |<ω2| = ω0 implies that |S | = ω0. Since s(ω1) must

obviously be infinite, we conclude that s(ω1) = ω0. ⊣

As a consequence, CH implies s(ω) = c and s(c) = ω. This fact may seem counterintuitive at
first glance, because we need more sets to split ω than we need to split c. Recall however that
the size of the splitting subsets are different in both cases.

After these preliminary results showing that higher splitting numbers s(κ) do not necessarily
behave like s, we now have a look more generally at the higher cardinals, distinguishing between
different cases. Recall that every cardinal is either a successor cardinal or a limit cardinal. For
infinite cardinals, we also make a distinction between cardinals that are singular or regular. First
we have a look at the case of successor cardinals (which are always regular), and then we will
review the singular cardinal case (which are always limit cardinals). Finally, we will approach
the regular limit cardinal case. Notice that ω0 is such a cardinal, but is the only one of its
kind whose existence is provable in ZFC. It was therfore handled separately in chapter 2.1. The
existence of larger, hence uncountable, regular limit cardinals is independent of ZFC and relies
on large cardinal hypotheses.
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2.2.1 The successor case

As successor cardinal, ω1 showed us that the splitting number of successor cardinals does not
behave the same way as s(ω). We could hope for the splitting number of a successor cardinal
to be for example his predecessor, or the preceeding limit cardinal.

Proposition 2.4. Let κ be an infinite successor cardinal. Then s(κ) < κ.

The proof is analogous to that of fact 2.3 and is adapted from Zapletal [15].

Proof. Let λ be the least cardinal such that 2λ ≥ κ. λ is well defined since, as κ is a successor,
there is a cardinal µ with µ+ = κ, for which 2µ ≥ κ. So {ν : κ ≤ 2ν} is a non empty set of
cardinals.

Since κ ≤ 2λ, we can choose an injective function f : κ ↪→ λ2. For every h ∈ <λ2, define
Sh = {α ∈ κ : h ⊆ f(α)} and set

S = {Sh : h ∈ <λ2 ∧ |Sh| = κ} ⊆ [κ]κ.

We show that S is splitting on κ.
If S was not splitting on κ, choose an x ∈ [κ]κ which is not split by any Sh ∈ S . Consider

the set A = {h ∈ <λ2 : |Sh ∩ x| = κ}. Two partial functions h and g in A must be extension-
compatible, since otherwise Sg ∩ Sh = ∅ and κ = |x ∩ Sg| ≤ |x \ Sh| ≤ κ, so x would be split by
Sh. Therefore, A is directed by ⊆, and there is at most one ordinal α ∈ κ such that each initial
segment of f(α) belongs to A. This means x ⊆ {α} ∪

⋃
{Sh ∩ x : h ∈ <λ2 \A}, so x is the union

of at most 2<λ < κ sets of cardinality less than κ, a contradiction to the choice x ∈ [κ]κ.
So S ⊆ [κ]κ is splitting on κ and s(κ) ≤ |S | < κ. ⊣

The proof of proposition 2.4 suggests that the splitting number of a successor cardinal must
be such that there can be an injective function κ ↪→ s(κ)2, advocating towards the following
conjectures.

Conjecture 2.5 (Lower bound for the splitting number of successor cardinals). Let κ be an
infinite successor cardinal or a non-strong regular limit cardinal. Then 2s(κ) ≥ κ.

Conjecture 2.6 (The splitting number of a successor can reach its lower bound). Let κ be a
successor cardinal or a non-strong regular limit cardinal and λ =

⋂
{ν : κ ≤ 2ν}. Then

Con(ZFC) =⇒ Con(ZFC+ λ = s(κ)).

2.2.2 The singular case

We will look briefly at the singular cardinal case, taking the example of ωω.

Proposition 2.7 (Zapletal [15]). s(ωω) ≤ s(ω)

Proof. Let S = {Sα : α ∈ s} ⊆ [ω]ω be a splitting family. Define S′
α =

⋃
n∈Sα

[ωn, ωn+1) and
S ′ = {S′

α : α ∈ s}. For any X ∈ [ωω]
ωω define n0 =

⋂
{m ∈ ω : |X ∩ [ωm, ωm+1)| ≥ ω0} and

nj+1 =
⋃

{
⋂

{m ∈ ω : |X ∩ [ωm, ωm+1)| ≥ ωj+1}, nj + 1}.

Set Y = {nj : j ∈ ω}. Then for all α ∈ s, if Sα splits Y we have also that S′
α splits X. ⊣

The following lemma applies to the example of ωω, but also to ω itself. The proof is taken
from Dow and Shelah [4].

Lemma 2.8. Let κ = ωω or κ = ω. Then cf(s(κ)) > ω0.

6



Proof. Let ⟨λn : n ∈ ω⟩ be a sequence cofinal in κ. If ω0 < s(κ) < κ, then we are done.
Otherwise, let S = {Sα : α ∈ κ} ⊆ [κ]κ. Define X0 = κ and for all α ∈ κ \ {∅} choose
Xα ∈ [κ]κ with Xα ⊆

⋃
β∈αXβ and Xα not split by {Sα : α ∈ λn}. A κ-pseudo-intersection X

of {Xα : α ∈ κ}, i.e. |X \Xα| < κ for all α ∈ κ, is then not split by any Sα with α ∈ κ, so S is
not splitting. Such an X exists by construction of the Xα. ⊣

2.2.3 The regular limit case

As mentionned in chapter 1.3, the existence of such cardinals is independent of ZFC. Under the
assumption of their existence, we can study the possibilities for their splitting number. We here
have a look at the case of three large cardinals. First we have a look at the case of (weakly and
strongly) inaccessible cardinals, then we look at a result about weakly compact cardinals and
mention even further (stronger) axioms.

In ZFC + inaccessible cardinal axiom

Theorem 2.9 (Motoyoshi [11]). Let κ be an uncountable regular cardinal. Then κ is strongly
inaccessible if and only if κ ≤ s(κ).

As Motoyoshi’s thesis is availible in japanese only, the following proof is adapted from Zaple-
tal [15].

Proof. Let κ be an uncountable regular cardinal.
⇒) Let κ be strongly inaccessible and S ⊆ [κ]κ of cardinality |S | = λ < κ. We denote by

Vα for an ordinal α the sets in the construction of the cumulative hierarchy of V ⊨ ZFC. By
the reflection principle (see for example Halbeisen [7]), there is a suitably large ordinal µ such
that Vµ reflects ZFC∗ (where ZFC∗ denotes a finite fragment of ZFC containing all the axioms
we need to construct: ordinals, cardinals, state the theorems, etc.) and a set model M in Vµ
also reflecting ZFC∗ such that κ,S ∈ M , λ2 ⊂ M and |M | < κ. The latter is possible because
κ is a strong limit cardinal. By Mostowski’s collapse we may also assume that M is transitive.

Since κ is regular, we can choose an δ ∈ κ such that δ ∋
⋃
(M ∩ κ). Define

A0 = {S ∈ S : α ∈ S} and A1 = {S ∈ S : α /∈ S}

and notice that they both are in M , as well as the set X =
⋂
A0 \

⋃
A1. Now for any S ∈ S

we have either X \ S = ∅ or X ∩ S = ∅ depending on if α ∈ S or not. It remains to show that
|X| = κ to conclude that X is not split by S and so S cannot be splitting. Because α ∈ X \M
we have that X ∩ (M ∩ κ) is cofinal in M ∩ κ and therefore |X| = κ since M is a set model of
Vµ containing κ.

⇐) By contraposition, let’s assume there is a cardinal λ < κ with 2λ ≥ κ. Then, following
the proof of proposition 2.4, we can show that s(κ) < κ. ⊣

We can now deduce that if a cardinal κ is weakly but not strongly inaccessible, then its
splitting number will be small, i.e. s(κ) < κ.

Question 2.10 (Can s(weakly inaccessible) be ω0?). Is there a model of ZFC containing a weakly
(but not strongly) inaccessible cardinal κ, such that s(κ) = ω0? If not, how small can it be?

Partial answer. First note that c can not be strongly compact since 2ω0 = c, but if there exists a
weakly compact cardinal κ in V, a model of GCH, then Cκ forces that c = κ is weakly compact
in the generic extension. If conjecture 2.6 turned to be true, then the splitting number of a
weakly compact cardinal could be as small as ω0. (?)
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In ZFC + weakly compact cardinal axiom

Theorem 2.11 (Suzuki [13]). Let κ be an uncountable regular cardinal. Then κ is weakly
compact if and only if κ < s(κ).

Proof. Let κ be an uncountable regular cardinal.
⇒) If κ is weakly compact, let S = {Sα : α ∈ κ} ⊆ [κ]κ be a family of cardinality κ and for

all α ∈ κ and t ∈ α2 define the set

Xt =
⋂

{Sβ : β ∈ α ∧ t(β) = 1} \
⋃

{Sβ : β ∈ α ∧ t(β) = 0}.

Consider T = {t ∈ α2 : |Xt| = κ}; obviously T is a tree, since for any t ∈ T we have
s ⊆ t→ Xs ⊆ Xt. Because κ is strongly inaccessible, there are more sets in S than functions in
α2 for any α ∈ κ and we can find a t ∈ α2∩T (reordering at most 2α elements of S , which does
not change the splitting properties of S ; note the similarites with fact 2.2), so T has height κ.
Weak compactness of κ implies that there is a branch B ∈ T of height κ, since there is no level
of size κ in T .

Let f =
⋃
B : κ → 2; since for all α ∈ κ we have |Xf |α | = κ we can choose an increasing

sequence of κ ordinals ⟨δα : α ∈ κ⟩ such that δα ∈ Xf |α for all α ∈ κ. This means also δα ∈ Xf |γ
for α ∈ γ ∈ κ. Consider the set X = {δα : α ∈ κ} and note that for any γ ∈ κ

X ∩ Sγ =

{
{δα : α ∈ γ} if f(γ) = 0

{δα : γ ∈ α ∈ κ} if f(γ) = 1.

So either |X ∩ Sγ | < κ or |X \ Sγ | < κ. In both cases X is not split by any Sγ , therefore S
is not a splitting family. Since the choice of S ⊆ [κ]κ was arbitrary and by theorem 2.9, we
conclude κ < s(κ).

⇐) If κ < s(κ) we know from theorem 2.9 that κ is strongly inaccessible. If κ was not
weakly compact, then there would be a κ-Aronszajn tree T ⊆

⋃
α∈κ

α2 with |T | = κ and we
may assume without loss of generality that T has no terminal nodes. For every t ∈ T we define
St = {u ∈ T : t ⊂ u} and then S = {St : t ∈ T ∧ |St| = κ}.

Now for any X ⊆ [T ]κ there is a level α ∈ κ for which two distinct (i.e. incompatible)
u, v ∈ α2 exist with |X ∩ Su| = |X ∩ Sv| = κ. If it were not the case, then we could build a
branch of height κ by induction. Since u and v are incompatible, Su∩Sv = ∅, so X∩Su ⊆ X \Sv
and we can find a bijection ϕ : T → κ such that S ′ = {ϕ[St] : St ∈ S } is splitting on κ. Since
|S ′| ≤ κ we have a contradiction to κ < s(κ), so κ must be weakly compact. ⊣

For different variations of this proof, see Suzuki [13][12] or Zapletal [15].

Corrolary 2.12. Let κ be a regular cardinal. Then s(κ) = κ if and only if κ is strongly
inaccessible but not weakly compact.

Proof. The claim follows directly from theorems 2.9 and 2.11, together with the fact that every
weakly compact cardinal is strongly inaccessible. Cox and Lücke [3] showed that the existence
of such cardinals is consistent with ZFC. ⊣

We could continue so with ever larger cardinal hypotheses and find that the splitting number
of such large cardinal κ is at least κ++ or κ+++. The problem is that in such cases, we have to
rely on the consistency of the existence of such large cardinals with ZFC, because it (partly) has
not been demonstrated yet. For example, Zapletal [15] shows a similar result for s(κ) > κ+ but
has to admit the consistency of the existence of supercompact cardinals.
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κ regular κ singular
κ limit

κ successor κ weakly
inaccessible

κ strongly
inaccessible

κ weakly
compact

κ = ω0 for example:
κ = ωω

ω0

... s(κ) < κ
(conj 2.5:
κ ≤ 2s(κ))

If κ is not
strongly

inaccessible
(conj 2.5:
κ ≤ 2s(κ))

s(κ) ≤ s
and

cf(s(κ)) > ω0

κ
Only if κ is
also strongly
inaccessible.
Refer to →

s(κ) = κ iff κ
is not weakly
compact

κ+

... Only if κ is
also weakly
compact.
Refer to →

κ < s(κ) ω1 ≤ s ≤ c
and cf(s) > ω0

s(κ) ≤ s
and

cf(s(κ)) > ω0

2κ

Table 2.1: Tabular summary of the values for s(κ) that are a priori consistent with ZFC,
including under some large cardinal hypotheses. A grey shaded area means that the splitting
number cannot take the corresponding values.

2.3 Overview of the different cases

We can now summarize the different cases we analyzed in table 2.1. The case of singular
cardinal was handeled only partly with the example of ωω, and some more investigation would
be necessary there. We could also add some further large cardinals, but the inclusion of these
in the table would not be of great interest.

2.4 Further questions

Question 2.13 (How does iterated splitting behave?). Let κ be a cardinal number and define
for any n ∈ ω per induction on n: s0(κ) = κ and sn+1(κ) = s(sn(κ)). How does sn(κ) evolves
with n→ ω, depending on κ? Can there be a final fixpoint? An oscillation in a closed loop? A
special property that sn(κ) will finally keep, for n big enough?

Initial answer. At least for some cases: strongly inaccessible cardinals are fixpoints and maybe
some singular cardinals can be too; in models of GCH there is the final loop ω0 ⇌ ω1 which is
reached in finitely many steps from ωn. (?)
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3 Sets of functions

In this chapter, we will generalize the well known bounding and dominating numbers. However,
we do this with a different approach than we did for the splitting numbers. This approach is
due to Switzer [14], from whose work most of the following comes. First we set the required
conditions for the generalization of the cardinal characteristics to larger cardinals. We then
define them and study basic relations amongst them, comparing the results the “classical” ones
of Cichoń’s diagram. Then we look at further relations and prove a consistency result for models
of CH.

On ω we define the following relations between u, v ∈ ωω and s ∈ S = {s ∈ ω([ω]<ω) : ∀n ∈
ω(|s(n)| ≤ n)}:

u ̸=∗ v ⇔ |{n ∈ ω : u(n) = v(n)}| < ω

u ≤∗ v ⇔ |{n ∈ ω : u(n) > v(n)}| < ω

u ∈∗ s⇔ |{n ∈ ω : u(n) /∈ s(n)}| < ω

We know two basic cardinal characteristics of the continuum related to the relation ≤∗: the
bounding number b is the least cardinality of an unbounded family B ⊆ ωω, i.e. for which
there is no v ∈ ωω such that for all u ∈ B we have u ≤∗ v; and the dominating number d is
the least cardinality of a dominating family D ⊆ ωω, i.e. for which to any u ∈ ωω, there is a
v ∈ D such that u ≤∗ v.

In order to extend these concepts, we need some more definitions. To any relation R ⊆ Y ×Z
and B ⊆ Y we say that z ∈ Z is an R-bound for B if for all b ∈ B we have bRz. Moreover,
B is said to be R-bounded if it has an R-bound, and R-unbounded otherwise. A set D ⊆ Z
is R-dominating if for every y ∈ Y there is a d ∈ D such that yRd.
We denote by b(R) the least cardinality of an R-unbounded set, and by d(R) the least cardinality
of an R-dominating set.

More generally, let I be an ideal over a set X, and Y , Z be sets. From a relation R ⊆ Y ×Z
we can define a new relation RI ⊆ XY × XZ through

fRIg ⇔ {x ∈ X : ¬f(x)Rg(x)} ∈ I.

For example, we can recover the previous relations by letting R ∈ {≠,≤,∈}, X = Y = Z = ω
(or Z = [ω]<ω with some constraints in the case R =∈) and I being the Fréchet ideal (i.e.
I = F = [ω]<ω).

Proposition 3.1. The following equalities between cardinal characteristics of the continuum are
provable in ZFC:

a) b(≤F ) = b(≤∗) = b ∧ d(≤F ) = d(≤∗) = d

b) b(̸=F ) = b(̸=∗) = non(M) ∧ d(̸=F ) = d( ̸=∗) = cov(M)

c) b(∈F ) = b(∈∗) = add(N ) ∧ d(∈F ) = d(∈∗) = cof(N )

Proof. The equalities in 1 and the first equality of every group in 2 and 3 yield by definition.
For the others, see Bartoszyński and Judah [1]. ⊣

Fremlin [5] proved a number of inequalities between these cardinals together with the least
uncountable cardinal ω1 and the continuum c. His results are summarized in Cichoń’s diagram,
called after the polish mathematician and shown in figure 3.1.
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cov(M) cof(N ) c

b(≤∗) d(≤∗)

ω1 add(N ) non(M)

Figure 3.1: A part of Cichoń’s diagram [14]. An arrow indicates an increase in cardinality (non-
strict).

3.1 Discovering higher bounding and dominating cardinals

One way to extend the now defined characteristics of the continuum to higher cardinals would be
to consider functions u, v ∈ κκ for some κ > ω. This is analog to the approach taken in chapter
2. Switzer [14] however takes an other interesting approach, iterating the process of creating a
new relation modulo an ideal, which we are going to describe in this chapter, considering now
functions f : ωω → ωω or S.

To be able to apply our construction to a relation R ∈ ωω × ωω or ωω × S (for example
̸=∗, ≤∗ or ∈∗), we need one or more ideals over ωω (note that | ωω| = c). These will mainly
be the null-sets or the meager-sets ideals N and M, but Switzer [14] also presents it for the
σ-compact-sets ideal K and it could be applied to other ideals over ωω. The reader knowing the
ideals K, M and N over R can construct a bijection between R and ωω and map the sets of the
ideals back and forth. Alternatively for N , use the Lebesgue measure on ωω. It is defined for
finite sequences as

µ(Ns) =
∏

i<length(s)

21−s(i),

with s ∈
⋃
n∈ω

nω and Ns = {u ∈ ωω : s ⊆ u},

and then completed in the standard way.
Using the definitions of RI to the three mentionned ideals, we get in total 9 new relations

and 18 cardinals. For example, with f, g : ωω → ωω and h : ωω → S:

• f ∈∗
M h ⇐⇒ for all but a meagre set of u ∈ ωω we have f(u) ∈∗ h(u)

⇐⇒ {u ∈ ωω : f(u)��∈∗ h(u)} ∈ M;

• f ≤∗
N g ⇐⇒ for all but a null set of u ∈ ωω we have f(u) ≤∗ g(u)

⇐⇒ {u ∈ ωω : f(u)��≤∗ g(u)} ∈ N ;

• f ̸=∗
K g ⇐⇒ for all but a σ-compact set of u ∈ ωω we have f(u) ̸=∗ g(u)

⇐⇒ {u ∈ ωω : f(u)��̸=∗ g(u)} ∈ K;

• b(̸=∗
N ) is the smallest cardinality of a set B ⊆ (ωω)(ωω) such that for each g there is an

f ∈ B for which the set {u ∈ ωω : |{n ∈ ω : f(u)(n) = g(u)(n)}| = ω} /∈ N , i.e. has
non-zero measure;

• d(̸=∗
N ) is the smallest cardinality of a set D ⊆ (ωω)(ωω) such that for each f there is a

g ∈ D for which the set {u ∈ ωω : |{n ∈ ω : f(u)(n) = g(u)(n)}| = ω} ∈ N , i.e. is a null
set;

• b(∈∗
M) is the smallest cardinality of a set B ⊆ (ωω)(ωω) such that for each h there is an

f ∈ B for which the set {u ∈ ωω : |{n ∈ ω : f(u)(n) /∈ h(u)(n)}| = ω} /∈ M, i.e. is
nonmeagre.
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Theorem 3.2 (Switzer [14]). Let I ∈ {N ,M,K} be an ideal over ωω, then the following
inequalities hold in ZFC:

b(̸=∗
I) d(∈∗

I) 2c

b(≤∗
I) d(≤∗

I)

c+ b(∈∗
I) d( ̸=∗

I)

Figure 3.2: Relations between higher bounding and dominating numbers [14]. An arrow indicates
an increase in cardinality (non-strict). Note the resemblance with Cichoń’s diagram (figure 3.1)
and proposition 3.1, replacing R∗ by R∗

I . It is intentional that no arrow is drawn from c+.

Before we tackle the proof of the seven inequalities of the theorem, we shall prepare ourselves
with some tools and a lemma that will help us for the harder two. Let J = {Jn,k : k < n ∈ ω} be
a partition of ω in finite subsets and Jn =

⋃
k<n Jn,k. We will call the elements of the previously

defined set S = {s ∈ ω([ω]<ω) : ∀n ∈ ω(|s(n)| ≤ n)} slaloms. Now let’s call an x : ω → <ωω
J -function if dom(x(n)) = Jn for every n ∈ ω. Similarly we will call t : ω → [<ωω]<ω a
J -slalom if |t(n)| ≤ n and w ∈ t(n) → dom(w) = Jn for all n ∈ ω. For a J -function x and a
J -slalom t we will write x ∈∗ t if x(n) ∈ t(n) for all but finitely many n ∈ ω.

Furthermore, to an u : ω → ω we denote by u′ the J -function defined by u′(n) = u|Jn , and
to f : ωω → ωω by f ′ the function defined by f ′(u) = f(u)′. We write FJ and SJ for the set
of all J -functions, respectively J -slaloms. In fact, u 7→ u′ is a bijection between ωω and FJ .
We can construct bijections between ωω and FJ , respectively S and SJ , that keep trace of the
ideal, i.e. a homeomorphism / measure isomorphism, for which the bounding and dominating
numbers on ∈∗

I remain the same. We will use this equivalence for the proof of the two harder
cases of theorem 3.2.

Lemma 3.3. Let t be a J -slalom. Then there is a function ut : ω → ω such that for all
v : ω → ω, if v′ ∈∗ t then there are infinitely many j ∈ ω for which ut(j) = v(j).

Proof. Let t be a J -slalom, with t(n) = {wn
0 , ..., w

n
n−1}. We can define ut(j) = wn

k (j) whenever
k < n ∈ ω and j ∈ Jn,k, and will see that this ut is the one we look for.

Now let v : ω → ω with v′ ∈∗ t. If for a particular n we have v′(n) ∈ t(n), then there is
k < n such that v′(n) = wn

k . For all j ∈ Jn,k we then have v(j) = v′(n)(j) = wn
k (j) = ut(j).

Since there are only finitely many n that do not fulfill v′(n) ∈ t(n), there are infinitely many j
for which ut(j) = v(j). ⊣

We can now turn to the proof of the theorem 3.2.

Proof. The first five inequalities are quite straightforward to prove, and the last two make use
of the previous lemma.

b(∈∗
I) ≤ b(≤∗

I):

Let B ⊆ (ωω)(ωω) be ∈∗
I-bounded by b : ωω → S, i.e. for all f ∈ B we have f ∈∗

I b. Define
b̃ : ωω → ωω through b̃(u)(n) = max(b(u)(n))+1. Then b̃ is an ≤∗

I-bound for B, so the inequality
follows.

b(≤∗
I) ≤ b( ̸=∗

I):

Let B ⊆ (ωω)(ωω) be ≤∗
I-bounded by b : ωω → ωω. Then b is also an ̸=∗

I-bound to B, so the
claim follows.
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d(̸=∗
I) ≤ d(≤∗

I):

Let D ⊆ (ωω)(ωω) be ≤∗
I-dominating, i.e. for every f : ωω → ωω there is a df ∈ D such that

f ≤∗
I df . This implies directly f ̸=∗

I df , so D is also ̸=∗
I-dominating, hence the claim.

d(≤∗
I) ≤ d(∈∗

I):
Let D ⊆ (ωω)S be ∈∗

I-dominating, i.e. for every f : ωω → ωω there is a df ∈ D such that f ∈∗
I df .

Define d̃f : ωω → ωω through d̃f (u)(n) = max(df (u)(n)) + 1. Then d̃f satisfies f ≤∗
I d̃f , so the

inequality follows.

b(≤∗
I) ≤ d(≤∗

I):
Let B be ≤∗

I-bounded. Then B cannot be ≤∗
I-dominating, for it contains no element that will

dominate its own ≤∗
I-bound, hence the claim.

b(∈∗
I) ≤ d(̸=∗

I):

Let B ⊆ (ωω)(ωω) be of cardinality |B| < b(∈∗
I). We will show that B is not ̸=∗

I-dominating,
i.e. that there is a function f : ωω → ωω for which ∀g ∈ B({v ∈ ωω : |{n ∈ ω : f(v)(n) =
g(v)(n)}| = ω} /∈ I), from which the claim follows.

Set B′ = {g′ : g ∈ B} ⊆ (ωω)FJ , for which |B′| = |B|, so B′ is ∈∗
I-bounded, using here the

equivalence between ωω and FJ . Let f̄ : ωω → SJ be a ∈∗
I-bound for B′, which means that

{v ∈ ωω : g′(v) ��∈∗ f̄(v)} ∈ I for all g ∈ B. Define f : ωω → ωω : v 7→ uf̄(v) as per in lemma

3.3. Now by the same lemma, for all g : ωω → ωω and all v ∈ ωω, if g′(v) ∈∗ f̄(v) then there are
infinitely many j ∈ ω for which f(v)(j) = g(v)(j). This means that

{v ∈ ωω : g′(v) ∈∗ f̄(v)}
⊆ {v ∈ ωω : |{n ∈ ω : f(v)(n) = g(v)(n)}| = ω},

so since for g ∈ B the first set is not in I (its complement is), the second one is not either in I,
because I is an ideal. This is the property of f we were looking for.

b(̸=∗
I) ≤ d(∈∗

I):
The proof in this case is analogous to the previous one. Let B ⊆ (ωω)SJ be of cardinality
|B| < b( ̸=∗

I). We will show that B is not ∈∗
I-dominating, i.e. that there is a function f : ωω → ωω

for which ∀g ∈ B({v ∈ ωω : f ′(v)��∈∗ g(v)} /∈ I), from which the claim follows.
To each g ∈ B set ḡ : ωω → ωω : v 7→ ug(v) as per in lemma 3.3. Set B′ = {ḡ : g ∈

B} ⊆ (ωω)(ωω), using here the equivalence between S and SJ , for which |B′| = |B|, so B′ is
̸=∗

I-bounded. Let f : ωω → ωω be a ̸=∗
I-bound for B′, which means that {v ∈ ωω : |{n ∈ ω :

f(v)(n) = ḡ(v)(n)}| = ω} ∈ I for all g ∈ B. Now again by lemma 3.3, for all g : ωω → S and all
v ∈ ωω, if f ′(v) ∈∗ g(v) then there are infinitely many j ∈ ω for which f(v)(j) = ḡ(v)(j). This
means that

{v ∈ ωω : f ′(v) ∈∗ g(v)}
⊆ {v ∈ ωω : |{n ∈ ω : f(v)(n) = ḡ(v)(n)}| = ω},

so since for g ∈ B the second set is in I, the first one is in I as well. This is the property of f
we were looking for. ⊣

3.2 Further relations between the bounding and dominating
cardinals

We continue investigating the higher bounding and dominating numbers. First we mention a
few results that are provable in ZFC, then we turn to a consistency proof, other results being
only mentionned at the end.

13



3.2.1 Relations provable in ZFC

Proposition 3.4. Let I ∈ {N ,M,K} and R ∈ {≠∗,≤∗,∈∗}. Then b(R) ≤ b(RI).
If moreover b(R) = c = non(I), then c+ ≤ b(RI).

Proof. Let B = {fα : α ∈ κ} ⊆ (ωω)(ωω) be a set of cardinality |B| = κ < b(R). Since for all
u ∈ ωω the set {fα(u) : α ∈ κ} is R-bounded, we can define g : ωω → ωω : u 7→ g(u), where
g(u) is an R-bound for the mentionned set (consider g : ωω → S in the case R =∈∗). Now, for
all α ∈ κ we have fα(u)Rg(u), so fαRIg since {u ∈ ωω : ¬fα(u)Rg(u)} = ∅ ∈ I, and g is an
RI-bound for B. We infer b(R) ≤ b(RI).

Assume b(R) = c = non(I) and let B′ = {fα : α ∈ c} ⊆ (ωω)(ωω) be a set of cardinality
|B′| = c, as well as {uα : α ∈ c} = ωω be a list of all functions of ωω. For any β, δ ∈ c, consider
the set X = {fα(uδ) : α ∈ β}; as before, because b(R) = c, the set X is R-bounded by a vδβ ∈ ωω.
Defining g : ωω → ωω : uα 7→ g(u) = vαα (or g : ωω → S in the case R =∈∗) we have that for
every δ ∋ α, fα(uδ)Rg(uδ), therefore |{uδ ∈ ωω : ¬fα(uδ)Rg(uδ)}| ≤ |α| < c. Since c = non(I),
we conclude fαRIg. Finally, c

+ ≤ b(RI). ⊣

Furthermore, sometimes under a certain assumption over the characteristics of the contin-
uum, the bouding, respectively the dominating numbers modulo the meager and null ideals are
the same. We refer to Switzer [14] and Brendle [2] for the proof.

Theorem 3.5. Let R ∈ {≠∗,≤∗,∈∗}. Then

a) d(RN ) = d(RM)

b) If add(N ) = cof(N ), then b(RN ) = b(RM)

c) c+ ≤ d(RI) for I ∈ {N ,M,K}

3.2.2 Consistency results

We shall now turn to some inequalities between the newly introduced cardinal characteristics
that are consistent with ZFC + CH, but before we do so, we shall mention a few results by
Brendle and Switzer [2] in models of ZFC + ¬CH. They showed that b(RI) < c and b(RI) = c
are consistent with ZFC, as well as b(RN ) < b(RM) and b(RN ) > b(RM). In what follows, V
shall always be a model of ZFC+ CH when not otherwise stipulated.

To begin with, let’s introduce the N -Cohen forcing defined by CN = (CN ,⊆) where

CN = {p : dom(p) → ωω : dom(p) ⊆ ωω

∧ graph(p) is Borel ∧ µ(dom(p)) = 0}.

In the upcoming paragraphs, we shall study the properties of this forcing notion and prove a
consistency result on the separation of bounding and dominating cardinals. We concentrate
ourselves on the ideal of null sets N , but what follows could in a similar way be applied to
I = M or K as well. First we see some basic properties of CN .

Lemma 3.6. CN is σ-closed and satisfies c+-cc.

Proof. To see that CN is σ-closed, choose an increasing sequence of CN -conditions p0 ⊆ p1 ⊆
p2 ⊆ ... of length ω and set p =

⋃
n∈ω pn. Now obviously p is a function from dom(p) ⊆ ωω to

ωω. Since graph(p) =
⋃

n∈ω graph(pn) and the countable union of Borel sets is Borel, graph(p)
is Borel. In a similar way, since the countable union of null sets is a null set, µ(dom(p)) =
µ(
⋃

n∈ω dom(pn)) = 0. It follows that p ∈ CN .
The requirement for the elements of p ∈ CN that graph(p) is to be Borel means that they

all are Borel subset of 2(ωω), of which there are c. It follows directly that CN has the c+-chain
condition. ⊣
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As a consequence, under the assumption of CH, CN preserves all cardinalities. How does CN
behave in regards to Borel null sets? Obviously CN does not add reals, and therefore it cannot
add any new Borel null sets either. Let A˜ be a CN -name for a subset of ωω. If p ∈ CN forces
the sentence “A˜ is a null set”, then we can find a Borel set N and a stronger condition q ⊇ p
that forces A˜ ⊆

˙
N .

Lemma 3.7. Let G be CN -generic over V. Then (ωω)(ωω)∩V is not ̸=∗
N -dominating in V[G].

Proof. First notice that
⋃
G is a function

⋃
G : ωω → ωω since G is directed, dense in CN , and

to a condition p ∈ CN we can extend any Borel set to the domain of a q ⊇ p. So let g =
⋃
G, g˜

its CN -name, p ∈ P and f ∈ (ωω)(ωω)∩V and suppose that p ⊩ µ({u ∈ ωω :
˙
f(u) = g˜(u)}) = ˙

0.
This null set is contained in a Borel null setN , withN ∈ V since per lemma 3.6 the forcing notion
CN is σ-closed. So we can find a condition q ⊇ p such that q ⊩ {u ∈ ωω :

˙
f(u) = g˜(u)} ⊆

˙
N

and a v ∈ ωω \ (N ∪ dom(q)), since µ(N ∪ dom(q)) = 0.
Set q′ = q ∪ {⟨v, f(v)⟩} for which obviously q ⊆ q′. Now we also have q′ ⊮ {u ∈ ωω :

˙
f(u) = g˜(u)} ⊆

˙
N which is a contradiction, so our assumption that there is p ∈ P with the

mentionned property fails. This means that for any f ∈ (ωω)(ωω) ∩ V, V[G] is a model for

µ({u ∈ ωω : f(u) = g(u)}) ̸= 0, in other words f �
�̸=∗
N g and so (ωω)(ωω) ∩ V is not ̸=∗

N -
dominating. ⊣

Lemma 3.8. Let ⟨uα : α ∈ ω1⟩ be an enumeration of ωω and let N0 = ⟨N0,α : α ∈ ω1⟩ and
N1 = ⟨N1,β : β ∈ ω1⟩ be two (non-necessarily injective) enumerations of the Borel null sets
of ωω such that for all u ∈ ωω there are uncountably many ⟨α, β⟩ for which u /∈ N0,α ∪ N1,β.
Then there is an ω1-sequence ⟨⟨N ′

0,α, N
′
1,α⟩ : α ∈ ω1⟩ enumerating all of N0 × N1 such that

∀α ∈ ω1(uα /∈ N ′
0,α ∪N ′

1,α).

Proof. Let ⟨⟨M0,α,M1,α⟩ : α ∈ ω1⟩ be any enumeration of N0 × N1 and define by transfinite
induction Y0 = ∅ and

Xα = {β ∈ ω1 : ⟨M0,β,M1,β⟩ /∈ Yα ∧ uα /∈M0,β ∪M1,β}

ια =
⋂
Xα

⟨N ′
0,α, N

′
1,α⟩ = ⟨M0,ια ,M1,ια⟩
Yα+1 = Yα ∪ {⟨N ′

0,α, N
′
1,α⟩}

Yα =
⋃
β∈α

Yβ for α a limit ordinal

for all α ∈ ω1. At each step, Xα is not empty because Yα is always countable and we assumed
the existence of uncountably many β for which uα /∈ M0,β ∪M1,β, so ια is well-defined. By
construction, we ensure that for all α ∈ ω1 we have uα /∈ N ′

0,α ∪N ′
1,α.

We still need to see that ⟨⟨N ′
0,α, N

′
1,α⟩ : α ∈ ω1⟩ enumerates all of N0 ×N1. Assume it were

not the case and choose δ ∈ ω1 minimal such that ∀α ∈ ω1(δ ̸= ια), i.e. ⟨M0,δ,M1,δ⟩ has not
been enumerated. Let β be the stage in the construction at which we reached that for all γ ∈ δ,
⟨M0,γ ,M1,γ⟩ ∈ Yβ. Then for all α ∈ ω1 with α ∋ β we have uα ∈M0,δ ∪M1,δ. Since β is at most
countable, there are at least cocountably many such uα, but this would mean that M0,δ ∪M1,δ

is not a Borel null set, a contradiction. ⊣

In the following lemma and theorem, we will use the countable support product and iteration
of copies of CN . We will refer to them interchangably as, since CN does not add new reals nor
new Borel null sets, the countable support product and the countable support iterations are
equivalent forcing notions.
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Lemma 3.9. Let G be Pα-generic over V where Pα is the countable support product of α ∈ ω2

copies of CN . Then (ωω)(ωω) ∩V is ̸=∗
N -unbounded in V[G].

Proof. Assume that there is a Pα-condition p and a Pα-name g˜ for which p ⊩Pα g˜ :
˙

ωω →
˙

ωω

and g is an ̸=∗
N -bound for (ωω)(ωω) ∩V in V[G]. This means that for all f ∈ (ωω)(ωω) ∩V the

set {u ∈ ωω : f(u)��̸=∗ g(u)} = {u ∈ ωω : |{n ∈ ω : f(u)(n) = g(u)(n)}| = ω} has measure zero.
Let ⟨uβ : β ∈ ω1⟩ be an enumeration of ωω. Note that such an enumeration exists because

we assume V ⊨ CH. Now for every Pα-condition q = ⟨qδ : δ ∈ α⟩ define N q =
⋃

δ∈α dom(qδ) and
note that N q is a Borel null set as we work in the countable support product. Since we consider
V ⊨ CH, there are ω1 Borel null sets and as many Pα-conditions, so by lemma 3.8 we can choose
a sequence ⟨⟨Nβ, q

β⟩ : β ∈ ω1 ∧ Nβ ranges over all Borel null sets ∧ qβ ∈ Pα⟩ such that for all

β ∈ ω1 we have uβ /∈ Nβ ∪N qβ .
For each β ∈ ω1 we can find an rβ ≥ qβ that decides g˜(uβ), i.e. rβ ⊩Pα g˜( ˙uβ) = ˙

vβ where
˙
vβ

is the canonical Pα-name of a vβ : ω → ω in V. The function given by f : ωω → ωω : uβ 7→ vβ
is therefore in V. By our assumption, there is a Pα-condition p for which p ⊩Pα “N = {u ∈
ωω :

˙
f(u) ��̸=∗ g˜(u)} is a null set” and as well q ≥ p with q ⊩ N ⊆

˙
B where B is a Borel null

set. For β such that B = Nβ we now have qβ ≤ rβ ⊩Pα N ⊆
˙
Nβ and rβ ⊩Pα

˙
f(

˙
uβ) = g˜( ˙uβ), sorβ ⊩Pα

˙
uβ ∈ N , a contradiction to the choice of β with uβ /∈ Nβ. ⊣

With all this work done, we can now finally turn to the consistensy result.

Theorem 3.10 (Switzer [14]). Let κ > ω2 be a regular cardinal, Pα be the countable support
product of α ≤ κ copies of CN and G be Pκ-generic over V, where V ⊨ GCH. Then V[G] ⊨
(c+ = ω2 = b( ̸=∗

N ) < d( ̸=∗
N ) = 2c = κ).

Proof. First note that as in lemma 3.6, Pκ is σ-closed, and together with the ∆-system lemma
(see Halbeisen [7, lemma 14.3]) we also have that Pκ satisfies the ω2-chain condition. Therefore
this forcing notion preserves all cardinalities.

Since we assume V ⊨ GCH, from chapter 3.2.1 we already know that c+ = ω2 ≤ b(̸=∗
N ).

Also, by an argument analogous to that of Halbeisen [7, theorem 15.19], we have 2c = κ.

Let f˜ be a Pκ-name for a function in (ωω)(ωω) and for all u ∈ ωω let Au be an antichain

of Pκ-conditions pv such that pv ⊩Pκ f˜( ˙u) = ˙
v for all v ∈ ωω. Since Pκ satisfies ω2-cc and we

assumed CH, the set

{supp(p) : p ∈
⋃

u∈ωω

Au}

is of cardinality ω1, so there is an α ∈ ω2 for which f˜ is a Pα-name. Therefore, any ̸=∗
N -bound

of (ωω)(ωω) ∩ V would be in a Pα-generic extension of V but, by lemma 3.9, (ωω)(ωω) ∩ V is
̸=∗

N -unbounded, so it is in V[G] too.

Finally, let D ⊆ (ωω)(ωω) be of cardinality |D| = λ < κ. Then D has been added to V[G]
at an early stage of the iteration (latest by Pλ) and therefore lemma 3.7 implies that D is not
̸=∗

N -dominating. ⊣

Adapting the proof of theorem 3.10 to the other ideals M and K and using further forcing
notions like Hechler and localization forcings, Switzer shows in total four consistency results for
the separation of bounding and dominating numbers. We shall summarize these in the following
theorem, the proof of which is to be found in Switzer [14, Sections 4.1 and 4.3].

Theorem 3.11 (Switzer [14]). Let λ ≥ κ ≥ ω2 be regular cardinals and I ∈ {N ,M,K}. Then
the following propositions are equiconsistent with ZFC:

a) c+ = b( ̸=∗
I) < d( ̸=∗

I) = 2c = κ

b) c+ < b(≤∗
I) = d( ̸=∗

I) = 2c = κ
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c) c+ < b(≤∗
I) = κ < d(≤∗

I) = 2c = λ

d) c+ < b(∈∗
I) = 2c = κ

3.3 Further questions

Question 3.12 (Is there an analogous to Cichoń’s diagram for even higher iterations?). What

about further steps in the construction method? For example with CH on (cc)(cc) to make it not
too heavy in the notation. Has this construction an analogous to Cichoń’s diagram?
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[1] Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line.
Wellesley, MA: A.K. Peters/CRC Press, 1995.

[2] Jörg Brendle and Corey Bacal Switzer. “Higher dimensional cardinal characteristics for
sets of function II”. In: The Journal of Symbolic Logic (2022), pp. 1–22.
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