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A B S T R A C T

Sun-induced fluorescence (SIF) as a close remote sensing based proxy for photosynthesis is accepted as a useful
measure to remotely monitor vegetation health and gross primary productivity. It is therefore important to
develop methods that allow for its precise and reliable retrieval from radiance measurements with spectral
resolutions that have been increasing over the past few years. Retrieval methods are catching up to the
increasing complexity of the available datasets making use of their whole information extent (spectral, spatial
and temporal) but the comparability of different SIF retrievals and consistency across scales is still limited.

In this work we present the new retrieval method WAFER (WAvelet decomposition FluorEscence Retrieval)
based on wavelet decompositions of the measured spectra of reflected radiance as well as a reference radiance
not containing fluorescence. By comparing absolute absorption line depths by means of the corresponding
wavelet coefficients, a relative reflectance is retrieved independently of the fluorescence, i.e. without intro-
ducing a coupling between reflectance and fluorescence. The fluorescence can then be derived as the remaining
offset. This method can be applied to arbitrary chosen wavelength windows in the whole spectral range, such
that all the spectral data available is exploited, including the separation into several frequency (i.e. width of
absorption lines) levels and without the need of extensive training datasets.

At the same time, the assumptions about the reflectance shape are minimal and no spectral shape
assumptions are imposed on the fluorescence, which not only avoids biases arising from wrong or differing
fluorescence models across different spatial scales and retrieval methods but also allows for the exploration of
this spectral shape for different measurement setups.

WAFER is tested on a synthetic dataset as well as several diurnal datasets acquired with a field spectrometer
(FloX) over an agricultural site. We compare the WAFER method to two established retrieval methods, namely
the improved Fraunhofer line discrimination (iFLD) method and spectral fitting method (SFM) and find a good
agreement with the added possibility of exploring the true spectral shape of the offset signal and free choice
of the retrieval window. On our synthetic dataset, WAFER seems to outperform the SFM and works best in
a spectral window only containing solar Fraunhofer lines where we achieve a relative retrieval error of 10%
on average. Applied to the real dataset, the method returns reasonable diurnal cycles for SIF and can, due
to the decoupling of reflectance and fluorescence retrieval, reveal interesting trends at times when vegetation
canopies may experience a midday depression that remain largely unobserved with current methods.
1. Introduction

Large scale observations of Earth, especially of vegetation, play a
crucial role in gaining a better understanding of ecosystem processes
and their adaptability to global environmental changes (Running et al.,
1999; Schimel et al., 2019). In this context, carbon and water fluxes are
of particular interest as they are highly sensitive to changing abiotic
factors commonly associated with climate change such as precipitation

∗ Correspondence to: Institute for Particle Physics and Astrophysics, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland.
E-mail address: veoehl@phys.ethz.ch (V. Oehl).

or temperature (Reichstein et al., 2013). While carbon and water
exchange between the ecosystem and the atmosphere can be quantified
on a local spatial scale using eddy covariance towers (Baldocchi, 2020),
remote sensing techniques allow for the retrieval of complementary in-
formation on abiotic and biotic factors to estimate and compare carbon
uptake or evapotranspiration dynamics on larger scales. By exploring
the interaction of solar radiation with the atmosphere, the surface
vailable online 12 September 2023
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and the ecosystems themselves, proxies to quantify the aforementioned
processes can be obtained (Xiao et al., 2021).

Retrieving the desired flux dynamics occurring within and through
vegetation from spectrally highly resolved intensities measured above
the ground or from the top of the atmosphere requires a detailed un-
derstanding of the different contributing components. While various ap-
proaches based on evaluating the fractions of radiation being reflected
by the surface have been developed and applied in the past to po-
tentially quantify photosynthesis and related carbon exchanges, newer
research focuses on the emitted sun-induced chlorophyll fluorescence
(SIF, note that we will be using SIF and fluorescence interchangeably)
signal. This emission of electromagnetic radiation can be observed in
the red and near infrared and, being a byproduct of photosynthesis,
has recently been found as a way to remotely access information about
actual photosynthetic activity of vegetated ecosystems across different
spatial scales (Mohammed et al., 2019; Ryu et al., 2019). Eventually,
quantifying this signal allows for estimates of a number of related
parameters and processes such as water (i.e. transpiration Damm et al.,
2021; Pagán et al., 2019; Qiu et al., 2018) or carbon uptake (i.e. gross
primary productivity (GPP) Damm et al., 2015; Guanter et al., 2014).

It has been demonstrated that SIF intensity and spectral shape at
canopy level contain information about functional responses of plants
(such as the tradeoff between photosynthesis, fluorescence and heat
dissipation plants can regulate) to environmental conditions (Porcar-
Castell et al., 2014) and are also sensitive to canopy structure (Fournier
et al., 2012). The canopy architecture for example influences the far-
red signal (Fournier et al., 2012), while a change in the plant condition
causes changing contributions of photosystem I and II, leading to a
difference in the ratio of the two peak heights (Joiner et al., 2016;
Verrelst et al., 2016). This ratio and the respective emission intensities
can also be sensitive to nitrogen uptake, which in turn influences the
plants ability to fixate carbon (Corp et al., 2010).

Due to the small signal intensity (typically 1% to 2% of the total
pwelling radiance in the NIR), retrieving SIF accurately with minimum
rior assumptions and auxiliary data is one of the key challenges in the
IF remote sensing community.

Ignoring atmospheric absorption and scattering in between the
urface and the sensor for a moment, the relationship between down-
nd upwelling radiance is quite simple: a fraction of sunlight gets
eflected by the surface of the Earth and reaches the sensor at a
ertain distance above the ground. The SIF signal is independent of this
rocess and simply adds onto the overall at-sensor radiance. This can
e summarized as

(𝜆) = 𝑅(𝜆)𝑠0(𝜆) + 𝐹 (𝜆), (1)

here 𝑠 is the upwelling at-sensor radiance, 𝑠0 a reference spectrum
e.g. the downwelling top of canopy (ToC) radiance, more information
n this can be found in Appendix B) and 𝑅 and 𝐹 denote reflectance and
luorescence respectively. Using spectroscopy, all of these quantities
an be obtained at different wavelengths and are therefore equipped
ith a wavelength 𝜆 argument.

Current retrieval methods rely on spectral shape assumptions for
ither reflectance or fluorescence or both, or are only using a fraction
f the spectral channels available with state-of-the-art instruments,
xcluding a considerable amount of valuable information. So far, no
chemes for the retrieval of SIF across the entire spectral range exist
hat are completely independent of spectral shape assumptions for
he fluorescence, although recent developments relax such assump-
ions (Zhao et al., 2018). Aside from this, different SIF retrieval meth-
ds are used for measurement setups at different scales (i.e. in situ,
irborne, satellite). This complicates a direct comparison of the re-
rieved fluorescence values, which is required for validation purposes
see Meroni et al., 2009 or Chang et al., 2020 for comprehensive
verviews).

The FLD (Fraunhofer line depth or discrimination) methods repre-
2

ent the simplest way of disentangling the small fluorescence signal s
rom the upwelling radiance. Eq. (1) is solved for the two unknowns 𝐹
and 𝑅 with two sets of measured values 𝑠 and 𝑠0 making the simplifying
ssumption of 𝐹 as well as 𝑅 being constant across the wavelength
ange considered. Even though the method can in principle be applied
o any two different points in the spectrum spectrally close enough,
uch that these simplifying assumptions hold, the FLD methods are
ostly applied around the oxygen absorption lines where the absolute
ifference between two spectrally close radiances is large in order
o reduce numerical errors and the influence of noise. This absolute
ifference can also be large enough in solar Fraunhofer lines, but in
any cases the spectral resolution of the spectrometers used is not

ufficient to measure the lowest point in the absorption line accurately.
or some satellite acquired data, solar Fraunhofer lines can also be
xploited (Joiner et al., 2011). The most widely used improvements to
his simple approach are the 3FLD method (Maier et al., 2004) and the
FLD method (Alonso et al., 2008). Within the former, 𝐹 is still assumed
o be constant but 𝑅 is modeled across the absorption band with a
inear function, where the slope is approximated from the apparent
eflectance 𝑠∕𝑠0. Within the iFLD method, correction factors relating
he true reflectance 𝑅, and eventually also 𝐹 , outside and inside the
bsorption band are derived, again using the apparent reflectance to
pproximate 𝑅.

Approaching the problem similarly from Eq. (1) but using the
hole spectral range instead of only a few distinct wavelengths is the

pectral fitting method (SFM) (Cogliati et al., 2015, 2019). Here, 𝑅
s modeled as a piece-wise cubic spline with roughly 20 knots and 𝐹

as two Lorentzian functions with fixed peak positions multiplied with
the reflectance (accounting for reabsorption) such that the two peak
heights are the only free parameters for 𝐹 . The multiplication with the
reflectance induces a forced correlation between retrieved fluorescence
and reflectance that does not necessarily reflect reality. The method
takes 𝑠 and 𝑠0 as inputs and then numerically minimizes the residual
𝑠(𝜆) − 𝑅(𝜆)𝑠0(𝜆) − 𝐹 (𝜆))2 by varying the knot heights, i.e. 𝑅 values
efining the spline, and the magnitude of the fluorescence peaks. This
ethod is quite robust against noise but is limited to this predefined

luorescence shape and the residuals have to be carefully analyzed. The
atter is important to make sure that the residual does not correlate with
he distribution of the absorption lines which would indicate towards
mismatch of reflectance and fluorescence contributions to the overall

ignal as they act differently on the absorption line depths.
The singular value decomposition (SVD) method (Guanter et al.,

012) is based on decompositions of measured or simulated refer-
nce spectra not containing a SIF signal. The principal components
escribing most of the variance of these data are combined linearly to
econstruct a signal 𝑠0 while the shapes of 𝑅 and 𝐹 are modeled as
ow order polynomials or are fixed and only modified by a constant.
hese retrievals are performed in selected wavelength windows where
ignature Fraunhofer lines are present. A drawback of the method is the
ependence on the quality of the reference dataset needed to obtain the
rincipal components. Past research successfully applied methods rely-
ng on reference datasets to satellite data (Guanter et al., 2012; Köhler
t al., 2015). The application at local scales using airborne or drone
ata, however, can be challenging due to missing or heterogeneous
eference datasets.

Within the Differential Optical Absorption Spectroscopy (DOAS)
ethod the logarithm of the spectra is analyzed instead of the unaltered

adiance values (Wolanin et al., 2015). This is a consequence of the
ethod being developed to retrieve the column density of trace gases in

he atmosphere based on the absolute line depths. Here, the logarithm
s taken in order to retrieve optical thickness with a linear fit directly
hrough the Lambert–Beer law. As Eq. (1) is already linear in the
esired quantity 𝐹 , this linearization operation does not seem to be a
ecessity for fluorescence retrievals. Moreover, products become sums
nside a logarithm such that the technical advantage of exploiting the
ifferent effects of multiplication and addition on the line depths and

hapes of the spectra is gone. If the spectral shapes are not tightly
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and precisely constrained, fluorescence and reflectance can become
degenerate additions to the spectrum, which poses a disadvantage of
this method. This especially holds when the fluorescence contribution is
developed into a Taylor expansion, turning it into a smooth additional
contribution to the forward model just like the reflectance. As both
the reflectance and fluorescence are modeled as low order polynomials
or with a fixed shape that could easily be described by a low order
polynomial as well, assigning the two contributions to the respective
processes becomes difficult.

As outlined in the last paragraphs, each of these aforementioned
methods has successfully been applied to existing datasets and offers
slightly different ways of retrieving SIF. The small signal in combina-
tion with many factors disturbing the retrieval requires and justifies the
use of parametric modeling assumptions whenever possible. However,
imposing models that do not describe the data well enough induces
biases on the retrieved parameters that depend on the nature of the
model. As different methods apply different models for the fluorescence
in particular, the retrieved fluorescence values will differ depending
on the chosen model and different systematics will be introduced. A
consistent way of retrieving fluorescence from different measurement
setups is desirable in order to be able to directly compare SIF retrievals,
e.g. in the context of validation activities (Buman et al., 2022). Apart
from this, as datasets become more comprehensive, new ways to exploit
all the information available need to be explored. Therefore, comple-
menting existing retrieval methods with a new one that (i) makes use
of all the spectral information available, (ii) does not make too many
assumptions, (iii) is able to bridge the aforementioned gaps, and that
(iv) is at best also scalable to different measurement setups would be
an important step forward to advance the reliability of SIF retrievals.

The SIF retrieval method WAFER that will be introduced in this
work is based on wavelet decompositions (WD) of the upwelling at-
sensor radiance as well as a reference that can either be the ToC
downwelling radiance, if known, a solar spectrum or a different up-
welling at-sensor radiance from a non vegetated pixel (see Appendix B).
Wavelet decompositions have been used for the analysis of spectral
data in astrophysics (Meiksin, 2000; Starck et al., 1997) or to assess
spectral shapes of ground reflectances (Cheng et al., 2014) but we
are not aware of any prior work using them to estimate and compare
absolute absorption line depths in atmospheric radiative transfer.

The paper is structured as follows: We will describe the WAFER
method and model assumptions for our retrievals in Section 2, where
we will also introduce the simulated and measured datasets on which
it will be tested. The obtained results are presented in Section 3 and
discussed and compared to the performance of existing methods in
Section 4. In Appendix A, some more information about the radiative
transfer assumptions is provided.

2. Methods and data

2.1. Spectral shape assumptions

Retrieving SIF from upwelling radiance spectra requires some as-
sumptions or constraints on the spectral shapes of key components
that cause the changes to the downwelling radiance. With WAFER, the
number and restrictiveness of these assumptions is greatly reduced as
compared to other methods while still obtaining comparable results. In
this section we briefly argue why we made these choices and how they
affect our results before describing the method.

2.1.1. Reflectance
In the limited wavelength range where the SIF emission is present,

the reflectance of vegetated surfaces can be described by a smooth
function of wavelength (Mohammed et al., 2019; Woolley, 1971). In an
optimization process, the parametrization should on one hand be flexi-
ble enough to represent the true and a priori unknown shape but on the
other hand also be simple and robust to avoid overfitting and limit the
3

required computational power. This is especially important when not
tightly constraining the fluorescence shape at the same time. The entire
ToC reflectance shape needs to be flexibly adjustable as it can vary
significantly with species (Woolley, 1971), fractional cover by leaves
in a given footprint and plant status (see for example Jacquemoud and
Ustin, 2019). It can accurately be described by a piece-wise cubic spline
(e.g. Cogliati et al., 2015). Since this requires a spline with roughly 20
knots for the wavelength range considered for SIF retrievals meaning a
high number of 24 degrees of freedom and therefore parameters to be
optimized, we have limited our retrievals to spectral windows where
a second order polynomial with only 3 degrees of freedom suffices to
represent the reflectance. The retrieval windows employed are listed in
Table 1.

2.1.2. Fluorescence
The Kennard-Stepanov relation (Kennard, 1918; Stepanov, 1957)

establishes a very general link between the ground-state absorption
spectrum and emission spectrum of an excited atom, molecule or
pigment. This has been shown to also be applicable to solutions of
photosystem I (Croce et al., 1996). On a molecular level, the spec-
tral shape of the fluorescence mirrors the absorption spectrum of the
absorbing molecule. In principle, this leads to temperature dependent
but known emission shapes for chlorophyll molecules. In practice, the
interplay of many chlorophyll molecules, leaf structure and also the
canopy structure make the ToC emission shape very hard to predict. For
SIF retrievals, it is argued that the assumption of a fixed spectral SIF
shape induces little error for retrievals at fixed spectral points (Fournier
et al., 2012; Guanter et al., 2013; Joiner et al., 2013). We suggest that
this claim can only be underpinned when comparing to retrievals from
spectra containing simulated SIF signals, which themselves are based
on assumptions of the spectral shape and have their limitations when
it comes to representing all possibly observable SIF spectra.

On a similar note, Magney et al. (2019) conducted a study mea-
suring the shapes of fluorescence spectra from different species in the
laboratory and analyzed them using an SVD. They conclude that most
of the variance can be explained with a single spectral shape, if ambient
parameters are controlled such that for example the temperature is
kept constant. This only allows for conclusions about in-situ observable
fluorescence shapes in a limited way.

Currently, there is no method in place to retrieve the full spectral
fluorescence shape without prior shape assumptions apart from active
methods in the laboratory, again with controlled ambient parameters.
Therefore, we decided to not prescribe any shape assumptions on the
fluorescence for WAFER in order to make it possible to measure not
only the magnitude but also the rough shape of the signal.

As described in the last section, we will be imposing minor shape
restrictions on the reflectance by using a second order polynomial.
Consequently, the fluorescence shape retrieved as the remaining offset
in fact will have a third order polynomial shape, if the downwelling
radiance can at large scale (i.e. spectral scales larger than the absorp-
tion lines) be described by a first order polynomial and the upwelling
radiance by a second order polynomial in the respective limited wave-
length window. For the retrieval windows used with our approach, that
is not too much of a limitation to the observable fluorescence shapes
but should be kept in mind.

2.2. Retrieval technique

The WAFER1 method is based on a wavelet decomposition (WD)
(extensive information on this topic can be found in Mallat, 2009) of
the measured spectral radiances and the separation of changes to a
reference spectrum into multiplicative (e.g. reflectance) and additive
(e.g. fluorescence) as summarized in Eq. (1) and further explained

1 https://github.com/voehl12/WAFER

https://github.com/voehl12/WAFER
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𝑠

Fig. 1. Flowchart of the retrieval process. WD means wavelet decomposition.
𝑠

in Appendix A. A key property of the WD being exploited is the
preservation of the spectral location while decomposing a given signal
into different scales (spectral frequencies). This way, it can not only be
analyzed which spectral frequencies contribute to what extent but also
where in the spectrum. In this section, we will introduce the WD and
highlight properties important for the SIF retrieval scheme developed
on the basis of this operation. We will then outline the steps needed to
disentangle the desired fluorescence signal from the mixed at-sensor
signal using this approach. The retrieval scheme is illustrated in a
flowchart (Fig. 1).

2.2.1. The wavelet decomposition
The WD is the first step of the new SIF retrieval process and can

be understood in analogy to a Fourier transformation (FT). In an FT, a
signal 𝑠(𝜆) is multiplied by a complex exponential function, that can
be visualized by an infinitely extending sinusoidal function, with a
given wavenumber and integrated over the real (wavelength) space
to yield the signal strength at this isolated wavenumber or frequency
in Fourier space. Similarly, in a WD, the signal is multiplied by a
wavelet, a localized shape with adjustable width that determines the
frequency, and integrated over the real space. The difference is that this
shape is localized and can be pushed along the spectrum to yield the
contribution of a given spectral frequency at a given spectral location,
which makes it very useful for non-stationary signals, similarly to a
windowed Fourier transform. Mathematically, the WD is a convolution
of the signal with a wavelet with custom widths making it possible to
detect and enhance different spectral features. This convolution can be
expressed as

̂(𝜆, 𝑏) = ∫ d𝜆′ 𝑠(𝜆′) 𝜓
(

𝜆 − 𝜆′
𝑤𝑏

)

, (2)

where 𝜓 is the wavelet function and 𝑤𝑏 is the width parameter defin-
ing a decomposition level or scale. We will be using level and scale
interchangeably, where low levels and small scales correspond to very
narrow features and high levels and large scales represent spectrally
smooth, slowly changing features. These wavelet functions are always
meant to be normalized. The normalization factor depends on the width
𝑤 but is left out here for clarity since it is also unimportant for our
4

𝑏

application, as we will only be comparing wavelet coefficients of the
same decomposition level. For brevity, we will write this convolution
as

̂(𝜆, 𝑏) =∶ 𝑠 ∗ 𝜓𝑏. (3)

The convolved signal components are called wavelet coefficients and
we will always refer to them as hatted quantities with a wavelength
and width argument where needed. In order to make use of a WD, an
appropriate wavelet function has to be selected from a range of possible
shapes. For the continuous WD, only two mathematical characteristics
are important: the functions have to be 𝐿2-normalized and need to have
a mean of zero.

As the continuous WD is a convolution of the wavelet function
with the signal, one can expect the best representation of the input
signal, when matching the wavelet shape to the expected signal shape.
The WD will be used to detect absorption lines and quantify and
compare their absolute depth, such that it is their shape that needs to
be matched. As the approximate shape of the spectral response function
of most spectrometers resembles a Gaussian, these observed absorption
lines will also have a Gaussian shape. We therefore chose the widely
used Mexican hat wavelet, which has a Gaussian-like shape being the
second derivative of the Gaussian. It is possible to reconstruct the signal
from the wavelet coefficients with this particular wavelet function with
reasonably small residuals. Note though that a good reconstruction
of the complete signal is not crucial for the method to work as the
reconstruction is not needed in any of the retrieval steps. However, it is
indicative of well chosen decomposition shapes and levels and therefore
useful for selecting the function and decomposition scales.

For the task at hand, we employed the Python package PyWavelets
(Lee et al., 2019) and, as this is not provided in the package, im-
plemented a reconstruction for the continuous wavelet transformation
following Torrence and Compo (1995) and Mallat (2009).

2.2.2. Level selection and weighting
Having selected the wavelet function, appropriate decomposition

scales have to be chosen. This is shown as the first intermediate step
on the left in Fig. 1. Upon a fine decomposition of the measured

upwelling radiance into more than 2000 levels with widths between
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Table 1
Retrieval windows and decomposition characteristics (shown for FloX-retrieval on 2021-
04-23 and retrievals from synthetic data). All numbers are in nanometers and 𝑏
epresents the wavelet scale width.
Window 𝑏min 𝑏max

FloX SCOPE FloX SCOPE

660–679 0.11 0.24
681–695 0.08 1.11
700–720 0.08 0.31
725–740 0.08 0.29
745–755 0.08 0.10 1.08 0.63
754–773 0.14 0.25 0.92 0.46
770–800 0.14 0.43

0.08 nm and 9 nm, the relevant scales are selected automatically by
counting detected features. Features are defined as wavelet coefficients
exceeding a level dependent threshold that depends on the median
coefficient strength, which in turn serves as a proxy for the noise level
on that scale. If the coefficient exceeds this median value times a factor
(following soft thresholding outlined in Mallat, 2009) and is negative
(i.e. represents an absorption line), it is counted as a feature. This way
the range of levels used for the optimization can be narrowed down
by only picking 10 levels with the highest numbers of features in a
given wavelength range. For our FloX-data as well as the two retrieval
windows for the synthetic data, we list retrieval windows and the
corresponding selected wavelet scale widths based on this procedure
in Table 1.

After the fit of the reflectance (see Section 2.2.3) has been per-
formed for all selected levels, the same technique of counting features
is applied to determine weights: the more features detected on a given
level in a given wavelength range, the larger the weight when averag-
ing the resulting reflectance polynomes from the different levels. This
ensures that levels capturing more features are deemed more important
and, as the fit is only performed with respect to these features, that a
fit to more points is considered more reliable.

2.2.3. Separation of scales and optimization process
WAFER makes use of the separability of the spectral shapes of

SIF (slowly changing over the spectral range, low spectral frequency)
and the overall signal of reflected sunlight rapidly changing due to
numerous absorption lines. As the fluorescence appears as an offset
in the measured upwelling radiance (see Eq. (1)) and integration and
therefore convolution is a linear operation, this contribution will van-
ish if the decomposition scales are chosen small enough. Everything
affecting the downwelling solar radiation mutliplicatively (including
but not limited to the reflectance) will influence the absolute line
depths, which are captured and quantified by the small scale wavelet
coefficients without having to select particular lines or features. The
wavelet representations of typical down- and upwelling radiances are
shown in Fig. 2. The chosen wavelength window contains only solar
Fraunhofer lines, which become apparent as red dips in the decom-
position coefficients. Comparing the overall strength of the wavelet
coefficients in the top left and right panel of Fig. 2 for the down-
and upwelling radiance respectively or explicitly comparing the two
decompositions on level 5 (lower panel of Fig. 2), the impact of the
reflectance on the absolute line depths becomes visually clear as a
reduction in coefficient strengths.

We will retrieve the true reflectance or multiplicative alteration of
the downwelling radiance by fitting a smooth function between the low
level wavelet coefficients of the downwelling reference radiance and
the measured upwelling radiance by minimizing the residual between
the features in the wavelet space. The fluorescence will then be derived
as the remaining offset. The third green item in the middle of Fig. 1
symbolizes this step.
5

The residual is calculated as the squared sum of the low level
wavelet coefficients of the difference of the reference radiance times
the modeled reflectance and the measured upwelling radiance:
∑

𝜆′

(

(𝑠 − 𝑅𝑠0) ∗ 𝜓𝑏
)2

→ 0. (4)

Here, 𝜆′ denote spectral positions counted as features according to
the definition in Section 2.2.2 and 𝑏 denote the preselected levels.
One important restriction imposed by setting the boundary conditions
accordingly is that the term 𝑠−𝑅𝑠0 cannot be zero by itself, otherwise
the retrieved 𝑅 will simply be the apparent reflectance.

On each level 𝑏, Eq. (4) is minimized using the function minimize
ithin Scipy’s optimization package (Virtanen et al., 2020).

As in most optimization problems, it is advisable to give an initial
uess and to constrain the result as well as possible, without making
oo many assumptions. In our case, the initial guess is given by the
moothed apparent reflectance, 𝑅app = 𝑠(𝜆)∕𝑠0(𝜆), where the bump
round the O2A band is replaced by a smoothly continuing spline
alculated as a second step in the scheme (Fig. 1, green item on the
ight). Boundary conditions are set such that the apparent reflectance
inus a safety margin is the maximum value and the minimum is

he apparent reflectance minus 0.2, corresponding to a SIF radiance of
0% of the reference, which is much greater than what SIF typically
ontributes to the upwelling radiance.

For each level, the minimization function will return the optimal
olynome coefficients for the reflectance (orange box in Fig. 1), which
re then weighted and averaged to a single reflectance as outlined in
ection 2.2.2. Finally, the reference signal 𝑠0 is multiplied with the
etrieved reflectance and subtracted from the upwelling radiance. The
emaining offset, calculated as

(𝜆) = 𝑠(𝜆) − 𝑅(𝜆)𝑠0(𝜆) (5)

epresents the fluorescence and also contains any other kind of additive
ffset that does not alter the absolute line depth such as instrumental
ffsets. However, this limitation also holds for the FLD methods and
ll other methods where not all possible offsets are explicitly modeled
ith their particular shapes. Reflectance 𝑅 and fluorescence 𝐹 are the

final output arrays as shown in Fig. 1, blue box at the bottom.

2.2.4. Error calculation
As described in Section 2.2.2, the final reflectance is calculated

as a weighted average from the single level reflectance results. Con-
sequently, it is possible to assign a weighted standard deviation as
retrieval error for the reflectance giving an estimate of how well the
derivations from different widths of spectral features agree. Addition-
ally, if uncertainties for the measured or synthetic up- and downwelling
spectra are known or can be estimated as statistical errors from the
aggregation process, these can also be taken into account as 𝛥𝑠 and
𝛥𝑠0. Following Eq. (5) and assuming all measurements to be Gaussian
distributed, the errors from the measurement can be propagated onto
the final retrieval as

𝛥𝐹 =
√

𝛥𝑠2 + (𝑠0𝛥𝑅)2 + (𝑅𝛥𝑠0)2. (6)

This error is also returned by the optimization function as shown in
Fig. 1, blue box at the bottom.

2.3. Data

2.3.1. Observational data
We test WAFER on a diurnal set of spectra on several cloudless

as well as overcast days. These spectra have been acquired with the
FloX-system (JB-Hyperspectral Devices, Düsseldorf, Germany) over an
agricultural site in Oensingen, SO, Switzerland (47.2864° N, 7.7338°
E). The site is situated on the Central Swiss Plateau, is exposed to
temperate climate, and is characterized by crop rotation. A picture of
the setup can be found in Appendix E. We use data from the year 2021
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Fig. 2. Example of a wavelet decomposition of the downwelling radiance (upper left panel) and upwelling radiance (upper right panel). The colors encode the coefficient strength.
For comparison both sets of coefficients for the downwelling radiance (𝑠0, orange) and upwelling radiance (�̂�, green) on decomposition level 5 are also shown (lower panel). The
corresponding radiance signals are shown as dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
where the field was in a recovery period covered by grass that was
regularly cut. This idealizes the conditions to test SIF retrievals as no
significant shadowing effects are to be expected and the footprint of
the spectrometer is mostly homogeneous. With this setup, upwelling
as well as the corresponding downwelling radiances are available with
a temporal sampling interval of 1min to 2min. According to the man-
ufacturer, the full width at half maximum (FWHM) of the spectral
response function amounts to 0.3 nm and the sampling rate is 0.17 nm.
A signal to noise ratio of 1000 can be expected. To increase this signal
to noise ratio, spectra have been averaged over a time period of 5min
resulting in a set of 154 spectra for a single day. Retrievals from single
measurements are also possible but lead to slightly noisier diurnal
cycles as one would expect.

As systematical errors for this system are hard to determine (Buman
et al., 2022) and are not of particular interest for this work, we only
employ statistical errors in form of standard deviations calculated in
the aggregation process.

The remaining noise is carried over to the wavelet decomposition,
and, if the noise is uncorrelated across all wavelengths with a constant
variance, will be present with the same power on all decomposition
levels. Noise contributions are reduced within the retrieval by only
selecting wavelet coefficients well above a noise threshold and aver-
aging the retrieved reflectance over several decomposition levels. The
6

assumption of certain noise characteristics is not important though, as
the noise level is determined within the method for each decomposition
level separately (see also Section 2.2.2).

2.3.2. Simulated data
To validate our retrieval method, we created a set of simulated ToC

up- and downwelling radiance spectra. For a realistic representation of
directional effects and the different contributions of direct and diffuse
radiation, a directional parametrization for the reflectance has been
employed for our numerical model. We made use of the option to
calculate directional reflectance distributions with the SCOPE model,
version 2.1 (van der Tol et al., 2009) and simulated a set of 56 bidirec-
tional reflectance distribution functions (BRDF) and SIF spectra with
varying chlorophyll contents (from 5 μg cm−2 to 70 μg cm−2 at intervals
of 5 for the first interval and then 10 μg cm−2) and leaf area indices
(from 1m2 m−2 to 7m2 m−2 at intervals of 1m2 m−2) leaving all other
parameters at their default values and using a fixed solar zenith angle
of 39.17° to match our observational data. Afterwards, the coefficients
for a linear BRDF model have been obtained by inverting the linear
equation numerically. The model chosen in our particular case is the
semi-empirical Ross–Li BRDF discussed by Lucht et al. (2000) together
with the hot spot extension by Maignan et al. (2004) as it is well

tested and also implemented in the atmospheric radiative transfer code
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Fig. 3. Example up- and downwelling radiance spectra (left) as well as the modeled fluorescences (right).
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we employ, libRadtran (Mayer et al., 2017). The parametrization has
been obtained by inverting the SCOPE BRDF sampled with 5° steps
long both the viewing zenith angle and relative azimuth angle, with
enser sampling around the hot spot. Once parametrized, i.e. after
btaining the kernels from Lucht et al. (2000), these reflectances can
e extrapolated to any set of viewing angles, which libRadtran does
nternally. The wavelength dependence is also extrapolated internally,
fter the BRDF kernels are provided to libRadtran at the 1 nm sampling
ate output by SCOPE.

For a leaf area index of 3m2 m−2 and a chlorophyll content of
0 μg cm−2, we show the BRDF for a selection of wavelengths in Ap-
endix C (Fig. C.9) for the SCOPE simulation (producing reflectances
or each set of zenith and azimuth angles at a wavelength sampling
nterval of 1 nm) as well as the parametrized version for comparison.

In Fig. C.10 in Appendix C we show the mean relative deviation of
he parametrized bidirectional reflectance from the simulated one. This
eviation does not exceed 3% such that the parametrization seems to
epresent the simulated reflectances well enough.

The reflectances produced by SCOPE are not perfectly representable
ith this parametrization but it is the closest we can get to a real-

stic coupling of libRadtran and SCOPE without having to resort to
xtracting and separating multiplicative transmittances for the direct
nd diffuse parts of the radiation, as is done for example in Cogliati
t al. (2019). This approach mostly overcomes the issue of the non-
ommutativity of spectral multiplication and convolution as the at-
ensor radiance is calculated directly in the radiative transfer code,
.e. actually solving the full radiative transfer equation and includ-
ng the coupling between atmosphere and bi-directional vegetation
eflectance, and only tailored to the sensor specifications in the end.

Using libRadtran with a standard atmosphere and aerosols included,
e created a set of down- and upwelling radiances at a sampling rate of
.1 nm and a sensor height of 2m above ground and again a solar zenith
ngle of 39.17°, replicating the set up as well as the location of our test
ite for 2021-05-30 at 10:00 UTC. The spectrally smooth SCOPE sim-
lated SIF spectra (sampling rate of 1 nm) were interpolated and then
esampled to match the libRadtran outputs. Then, they were multiplied
ith the transmittance between ground and sensor and added to the
verall upwelling spectrum. Afterwards, the resulting highly resolved
pectra were convolved with a Gaussian spectral response function with
FWHM of 0.3 nm and downsampled to the sampling rate of the FloX

ox (0.17 nm). A selection of the resulting spectra is shown in Fig. 3.
ote that the BRDF also influences the observed downwelling radiance

hrough the diffuse part of the radiation as it should be. This can be
een particularly well around 700 nm.

Additionally to this noise-free dataset, a second one with added
oise has been used in our tests to assess the performance of WAFER on
more realistic but still synthetic dataset. Replicating mostly thermal

oise of a typical CCD employed in a measurement setup as the one
7

s

sed for our observational data, we added Gaussian white noise with
signal to noise ratio of 1000 (see for example, the specifications

nd expected noise levels of the FloX-box, JB-Hyperspectral Devices,
üsseldorf, Germany).

For our particular dataset, 10 noisy spectra are averaged in each
ase. As most datasets are available as timeseries with a fairly high
emporal resolution or spatially resolved with similar characteristics
n neighboring pixels, some kind of averaging by downsampling can
ealistically be applied on observational data as well.

.4. Evaluation of WAFER

We evaluate WAFER by comparing retrieved fluorescences from
imulated as well as observational data to the well established SFM
Cogliati et al., 2019) and iFLD method (Alonso et al., 2008) as de-
cribed in Section 1. The following implementations and settings have
een used:

For the SFM, we implemented a pipeline for our FloX-data using a
east squares minimization with the Trust Region Reflective Algorithm
trf) of Scipy (Virtanen et al., 2020). For the modeling assumptions,
e follow Cogliati et al. (2019) and model the fluorescence as two
orentz distributions with fixed peak positions at 735 and 684 nm and
orresponding scales of 25 and 10 nm respectively, multiplied by the
eflectance. For the reflectance, we use a cubic spline with 4 spline
nots for the same retrieval windows as used for our method for the
ynthetic data and additionally the whole spectral range with 24 knots
or the observational data. As routinely done, the spectral regions of the
pparent reflectance containing the oxygen absorption bands have been
moothed before inferring the reflectance. We would like to emphasize
hat using the whole spectral range as intended for the SFM resulted in
orse results for the SFM on our synthetic data, which is why we left

he results from the whole spectral range out for this direct comparison
nd discuss reasons for this behavior of the SFM in Section 4.1.

For the iFLD retrievals, we used an R implementation provided by
B-Hyperspectral Devices2 specifically designed for the FloX-system.
he implementation follows Alonso et al. (2008). In this application,
he wavelength inside the absorption band is determined from the
inimum downwelling and upwelling radiances between 755 nm and
65 nm or 682 nm and 692 nm for O2A and O2B band respectively.
he radiances outside the absorption band are chosen to be means
valuated in the range 4.12 nm to 3.12 nm towards smaller wavelengths
tarting from the selected wavelength inside the absorption band.
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Table 2
Linear fit parameters and error measures comparing retrieved (using the spectral fitting method (SFM) and the new WAFER method) and modeled fluorescence values. These are
shown for the simulated spectra with and without the addition of noise.

Window Method Slope Intercept 𝑅2 RMSE
[nm] [–]

[

mWnm−1 m−2 sr−1
]

[–]
[

mWnm−1 m−2 sr−1
]

No noise Noise No noise Noise No noise Noise No noise Noise

745–755 WAFER 0.87 0.85 0.31 0.00 0.94 0.44 0.23 0.81
SFM 1.14 1.17 0.27 0.23 0.91 0.68 0.75 1.02

754–773 WAFER 1.08 1.04 −0.65 −0.56 0.98 0.98 0.51 0.52
SFM 1.02 1.02 −0.55 −0.55 0.99 0.99 0.52 0.52
Fig. 4. Comparison of fluorescence at 750 nm (𝐹750) and 760 nm (𝐹760) between input from SCOPE and retrieved values for the new WAFER method (point markers and error bars)
as well as the established spectral fitting method (SFM) (diamond markers). Results from two different retrieval windows are shown in the two panels: (A) using the window
containing only solar Fraunhofer lines (745 nm to 755 nm), (B) using the window containing the atmospheric O2A absorption band (754 nm to 773 nm). Noisy (red) as well as noise
free (blue) spectra have been used as inputs. The root mean square error (RMSE) is given in mWnm−1 m−2 sr−1. The black dashed line represents the 1:1 line. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. Results

3.1. Evaluation of retrieval accuracy on synthetic data

The performance of WAFER as outlined in Section 2 and illus-
trated in Fig. 1 is evaluated using the synthetic spectra introduced in
Section 2.3.2.

We compare the retrieved fluorescence values to the corresponding
simulated SIF spectra, which is not possible with observational data
where the true contribution of SIF to the upwelling radiance is not
known. We focus on two retrieval windows: one containing only solar
Fraunhofer lines (745 nm to 755 nm) assessed at 750 nm and a second one
containing the atmospheric O2A absorption band (754 nm to 773 nm) as-
sessed at 760 nm. For both windows, the retrieved SIF values are shown
in Fig. 4 together with the errors calculated following Section 2.2.4
and the corresponding values retrieved with the SFM using the same
retrieval windows. Additionally, the parameters of the linear fits and
the root mean square error (RMSE) are listed in Table 2. In both
retrieval windows, the RMSE suggests a better or similar performance
of WAFER compared to the SFM for this particular synthetic dataset.
For the solar Fraunhofer line window, the RMSE for WAFER amounts
to 0.23mWnm−1 m−2 sr−1 without noise, corresponding to a relative root
mean square error (RRMSE, relative to input values for each parameter
set) of 10%, and 0.81mWnm−1 m−2 sr−1 with noise, corresponding to
an RRMSE of 37%. For the SFM, the RMSE without noise amounts
to 0.75mWnm−1 m−2 sr−1 and to 1.02mWnm−1 m−2 sr−1 with noise. The
RRMSEs amount to 29% and 41%, respectively.

The dimensionless correlation measure 𝑅2, with respect to the
regression line, for WAFER is 0.94 and 0.44 for the noise-free and noisy
spectra respectively and 0.91 and 0.68 with the SFM.

2 https://github.com/tommasojulitta/FieldSpectroscopyDP
8

With RMSEs of 0.51mWnm−1 m−2 sr−1 and 0.52mWnm−1 m−2 sr−1

for WAFER and 0.52mWnm−1 m−2 sr−1 for both, the noise free and
noisy input spectra for the SFM, the performance of WAFER is worse
around the oxygen absorption window compared to the Fraunhofer
line window, particularly for the noise free spectra, and also worse for
the SFM, independent of the addition of noise. Here, all the RRMSEs
amount to about 40%. The 𝑅2 values are close to one for all retrieval
methods for noisy as well as noise-free spectra.

We would like to emphasize that 𝑅2 is only added because it is
routinely done in the field not because we think it is a useful measure
here. The regression line does not at all reflect on the performance
of the method but is an indicator of linear correlation. 𝑅2 is a mea-
sure of how much better a linear fit is than comparing to the mean
of all measured values, which is not meaningful in this case where
a correlation of input and measured values is something we would
expect. 𝑅2 is useful to determine the goodness of a linear fit or the
strength of a linear correlation in order to find out how well the data
is described by a linear relation. As we are not inferring (linear) fit
parameters or trying to find a correlation here, 𝑅2 is not relevant. If
anything, it can tell us, how well constrained the offset, i.e. a systematic
deviation of all retrievals from the input values, is or how far the
data spreads around the regression line. The RMSE with respect to the
model input is a better measure for the comparison of the performance
of the methods and is therefore preferred. A good example for this
problem is given in Fig. 4: In panel B, the linear regression is really
good, 𝑅2 is very close to one. But it is obvious, that the retrieved SIF
values are strongly biased towards lower than the input values which
is reflected in the RMSE. There seems to be a systematic deviation of
the retrieved values from the input values that can with such a tight
regression line be quantified with confidence to amount to roughly
−0.6mWnm−1 m−2 sr−1 for all retrieval methods and independent of
the addition of noise considering the intercept of these regression

https://github.com/tommasojulitta/FieldSpectroscopyDP
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t

Fig. 5. Reflectances (A and C, solid lines) and fluorescences (B and D, solid lines) retrieved from measured radiance signals comparing reflectance retrievals using WAFER to the
apparent reflectance and fluorescence retrievals to fluorescence retrieved with the established spectral fitting method (SFM) (dashed lines). Measurements were taken on 2021-04-23
and results are shown for the retrieval windows including either the O2A band (A and B) or the O2B band (C and D). The root mean square differences (RMSD) between SFM
and WAFER retrieved fluorescences in these windows are shown in panels E and F, where the mean is taken over the entire day. In each panel, the oxygen absorption band is
shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
lines. Looking at the mean of the residuals would be a complementary
way of evaluating the performance. This mean amounts to roughly
−0.5mWnm−1 m−2 sr−1 for all methods as well as noise-free and noisy
retrievals in panel B. In panel A, the mean of the residuals amounts to
−0.04mWnm−1 m−2 sr−1 for the noise-free retrievals with WAFER and
o 0.66mWnm−1 m−2 sr−1 for the noise-free retrievals with the SFM.

Adding noise, we see the same trend between the two methods with
−0.19mWnm−1 m−2 sr−1 for WAFER and 0.70mWnm−1 m−2 sr−1 for the
SFM. Larger error bars especially for the noisy dataset indicate larger
uncertainties for the retrieval in the Fraunhofer line window but a
better agreement with the input values within this error.

3.2. Evaluation of retrieval accuracy on observational data

We applied the WAFER method to in-situ data acquired with a FloX-
box as described in Section 2.3.1. For these data we looked at several
9

retrieval windows: a larger window containing the O2A absorption
band, another one containing the O2B absorption band and smaller
ones connecting these two windows including one only containing
solar Fraunhofer lines between 745 nm to 755 nm where no atmospheric
absorption should be present. The windows have been chosen in such a
way that the expected reflectance in each window is well represented
by a second order polynomial and are listed in Table 1. In Fig. 5 we
show retrieved reflectances and fluorescences for several times and
two different retrieval windows on 2021-04-23. For reference, we also
show the corresponding apparent reflectances as well as the SFM SIF
retrievals as dashed lines. For these two retrieval windows, we also
show the root mean square difference (RMSD) between our retrieval
and the SFM for all wavelengths across all times of the day. This
difference is noticably lower in the oxygen absorption bands and overall
does not exceed 0.6mWnm−1 m−2 sr−1 on this particular day. For low
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Fig. 6. Diurnal cycles of fluorescence and reflectance as derived with WAFER (solid lines) as well as the spectral fitting method (SFM) (dashed) and improved Fraunhofer line
discrimination (iFLD) method where applicable (dotted). Different retrieval windows are shown in each row: 754 nm–773 nm with the fluorescence shown at 760 nm (𝐹760, A to C),
45 nm–755 nm with the fluorescence shown at 750 nm (𝐹750, D to F) and 681 nm–695 nm with the fluorescence shown at 687 nm (𝐹687, G to I). The data shown have been acquired
ith a FloX field spectrometer over a grass field on three different days (one column each): 2021-04-23 (A, D, G), 2021-05-28 (B, E, H) and 2021-06-01 (C, F, I).
i
s
o

3

2
r
u
t
t
w
o
a
d
t
t

a
a
N
d
b
t
r
s

ight conditions tested on 2021-05-11, both retrieval methods agree
ven better and the RMSD does not exceed 0.2mWnm−1 m−2 sr−1.

On the overcast day (meaning low and completely diffuse light
onditions), reabsorption of the fluorescence by oxygen becomes well
pparent in the 754 nm to 773 nm retrieval window, especially for higher
luorescence values. This is shown in Appendix D, Fig. D.11.

.2.1. Diurnal cycles
For the explicitly mentioned wavelength windows, we show diur-

al cycles of the retrieved fluorescence at characteristic wavelengths
ogether with the median reflectance in this window for three different
loudless days: 2021-04-23, 2021-05-28 and 2021-06-01 in Fig. 6.
ere, fluorescence retrievals are only shown for a single wavelength

n order to compare with the iFLD method, which relies on the oxygen
bsorption bands at 687 nm and 760 nm.

We also compare our results to the respective SIF values retrieved
ith the SFM, showing an overall agreement in the O2A retrieval
indow, while the SFM tends to return lower SIF radiances in the lower
avelength ranges.

The retrieval from the 745 nm–755 nm window (i.e. only including
arrow solar Fraunhofer lines) is much more noisy but the results show
he potential feasibility of the new approach for a solar reference alone.

An interesting feature that becomes apparent in the O2A retrieval
indow using WAFER is a decrease and increase in SIF just as the

eflectance drops in the afternoon and again, when it increases roughly
n hour later. The depression in the reflectance can also be seen clearly
10

l

n the retrieval window including the red peak of the fluorescence
ignal situated around 684 nm (last row in Fig. 6) while the fluorescence
nly follows this trend when retrieved with the SFM or iFLD method.

.2.2. Spectral shapes, full range retrieval
The spectral shapes in the left panel of Fig. 7 retrieved on 2021-04-

3 are compared to the SFM shapes retrieved using the full wavelength
ange (note that the results for the synthetic dataset have been obtained
sing the same limited wavelength windows as for WAFER). This shows
hat using WAFER, SIF radiances can in principle be retrieved consis-
ently across the entire wavelength range using the different retrieval
indows independently. Employing the SFM in the same way, using
nly down- and upwelling radiances from a given wavelength window
s inputs, only yields consistent results for some of the wavelength win-
ows, particularly the windows containing the O2 absorption lines, as
he thin dotted lines in the right panel of Fig. 7 suggest. For comparison,
he corresponding iFLD retrievals are also shown as diamonds.

The fluorescence around the O2B band retrieved with WAFER is on
verage 0.15mWnm−1 m−2 sr−1 higher than the predefined SFM shapes
llow (see also Fig. 5), albeit lower than the iFLD retrievals in this band.
ote that the spectral shape of the fluorescence derived with WAFER
epends on the model shape chosen for the reflectance and should not
e mistaken as actual peaks of the fluorescence. It is not surprising
hat the shape segments look like third order polynomials, after the
eflectance is modeled with a second order polynomial and the large
cale wavelength dependence of the downwelling radiance is roughly
inear in this small wavelength window.



Remote Sensing of Environment 298 (2023) 113786V. Oehl and A. Damm

t
t

3

c
r
w
c
h
w
a
m
T
t

Fig. 7. Left panel: Full spectral range retrieved fluorescences for FloX field spectrometer measurements over grass at different times (UTC) on 2021-04-23 comparing the spectral
fitting method (SFM) using the whole spectra (solid lines) and the new WAFER method using only limited retrieval windows (scatter). Right panel: SFM retrieved fluorescences
using the full spectral range (solid lines) and using limited retrieval windows (thin dotted). Here, the improved Fraunhofer line discrimination (iFLD) method results are also shown
as diamonds.
Fig. 8. Comparison of fluorescence retrieved using the improved Fraunhofer line discrimination (iFLD) method and spectral fitting method (SFM) against WAFER at characteristic
wavelengths (left panel 760 nm (𝐹760) and right panel 687 nm (𝐹687)) for all measurements on 2021-04-23 over a grass field. Orange markers represent the iFLD method, red markers
he SFM. The dashed lines denote the 1:1 line respectively. The root mean square differences (RMSD) are in 1mWnm−1 m−2 sr−1. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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.2.3. Direct comparison to other methods
In Fig. 8 retrievals with WAFER are directly plotted against the

orresponding values retrieved with the SFM and the iFLD for all
etrieval times on 2021-04-23. Here, we again use the same retrieval
indows for the SFM as for WAFER and not the entire range for

omparison. Note that in these particular retrieval windows shown
ere, the values retrieved with the SFM are the same irrespective of
hether we use the full spectral range or only the small windows
round the oxygen absorption bands. In the left panel the good agree-
ent between SFM, iFLD and WAFER at 760 nm becomes apparent.
he RMSDs between WAFER and the SFM and iFLD method amount
o 0.06mWnm−1 m−2 sr−1 and 0.05mWnm−1 m−2 sr−1 respectively. For

lower SIF values up to 1mWnm−1 m−2 sr−1 the deviation does not
11

f

exceed 0.1mWnm−1 m−2 sr−1 for the SFM and 0.15mWnm−1 m−2 sr−1
or the iFLD method. The relative difference to both other methods
s less than 20% across all retrieved values and 92% of the retrievals
n this day exhibit a difference of less than 10% for both the SFM
nd iFLD methods. At least 90% of all wavelet retrievals on this day
ave an absolute difference of less than 0.1mWnm−1 m−2 sr−1 to both
stablished methods.

In the O2B band, WAFER retrieves values roughly in between those
hat the SFM and iFLD methods return. This can be seen well in the
ight panel of Fig. 8. Here, the RMSD between the different methods
s slightly higher (0.08mWnm−1 m−2 sr−1 and 0.26mWnm−1 m−2 sr−1 for
he SFM and iFLD method respectively). Again, the absolute agreement
s better for lower fluorescence values but interestingly, the relative dif-
erence between WAFER and the SFM is roughly constant between 0%
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and 30% whereas this relative difference to the iFLD method increases
towards higher fluorescence values. In both comparisons, the absolute
difference does not exceed 0.1mWnm−1 m−2 sr−1 for retrieval values less
than 0.2mWnm−1 m−2 sr−1 and 89% of all absolute differences for the
FM and 26% for the iFLD method are below 0.1mWnm−1 m−2 sr−1. The
orresponding plots for an overcast day can be found in Fig. D.12. In
his case at 687 nm, both the iFLD method and the SFM agree better
ith the WAFER method with RMSDs of 0.03mWnm−1 m−2 sr−1 in both

cases and even better agreement at 760 nm.

4. Discussion

In the following we will discuss the performance as well as advan-
tages and disadvantages of the WAFER method. Overall, we presented
a method that is very flexible in its application and can in principle
be used for in-situ as well as airborne and satellite acquired data. It
does not rely on any spectral shape assumptions for the fluorescence
and therefore allows for the exploration of different shapes that might
arise in realistic measurement setups. We will discuss the performance
of WAFER, where we only constrain the reflectance to be modeled by
a second order polynomial, in comparison to well established retrieval
methods that make more assumptions or simplifications in Section 4.1.
Apart from that, the retrieved fluorescence is not coupled to the re-
flectance, as the reflectance is extracted directly from the wavelet
coefficients, as we will discuss in Section 4.2. WAFER decomposes
each spectrum using wavelets and therefore exploits all the information
that is available including the width of the absorption lines. With this
comes naturally a higher computational cost, which we will discuss in
Section 4.3 among other possible limitations.

4.1. Comparison of the new WAFER method to other methods

We applied a new wavelet based SIF retrieval method, WAFER, to
synthetic as well as observational data and compared its performance
to the established iFLD method and the SFM (see Chang et al. (2020)
for an extensive comparison).

For the synthetic spectra, we specifically looked at two retrieval
windows, one containing the O2A band, the other one only containing
solar Fraunhofer lines. For the retrieval window including the O2A
band, there is an obvious bias towards lower retrieved SIF values. Com-
paring the actual multiplicative function between down- and upwelling
radiance without fluorescence that includes oxygen absorption effects
in this wavelength range to the retrieved reflectance, the reason for
this behavior can be explained: The absorption by oxygen continues
as light travels from the canopy to the sensor (Sabater et al., 2018),
such that the ratio of up- and downwelling radiance shows a dip
around 760 nm. This dip cannot be modeled and fitted properly with
a simple parabola. Therefore, the reflectance is always overestimated
around this dip leading to fluorescence retrievals that are too low as
can be seen in Fig. 4, right panel. Since this is a systematic error, the
retrieval error bars for our method do not, but also cannot, account
for this discrepancy. In this case, the SFM, which excludes the oxygen
absorption band region to model the smooth reflectance and therefore
is prone to the same error, and WAFER seem to agree better but in fact,
both underestimate SIF. How strong this effect is with observational
data is hard to determine, as the extent to how much oxygen absorption
contributes on the way to the sensor is obscured by the addition of
fluorescence and irregularities in the true reflectance. Nevertheless, a
correlation of the spectral shape of our retrieved fluorescences with the
shape of the oxygen absorption band is visible, which we will come
back to later when discussing the observational results.

The retrievals from the solar Fraunhofer line window ranging from
745 nm–755 nm are more reliable. Due to the lack of atmospheric absorp-
tion (Frankenberg et al., 2012), a smooth reflectance without further
transmittances is expected. Our SIF retrievals from the synthetic data
for this wavelength range confirm this argumentation (i.e. by showing
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a lower RMSE and no clear bias) but it also becomes obvious that
retrievals from this window are more sensitive to noise as the addition
of noise immediately changes the wavelet estimated line depth of
the very narrow solar Fraunhofer lines. This noise sensitivity can be
accounted for to some extent by averaging the reflectance fit over
several absorption lines and several decomposition levels.

Using WAFER, fluorescence retrievals from different wavelength
ranges are completely independent such that the retrievals in the solar
Fraunhofer line window are not influenced by the errors from the
oxygen band windows. This offers new possibilities to compensate
for atmospheric disturbances and complements latest developments to,
for example, account for atmospheric re-absorption of SIF for in-situ
measurement setups (Sabater et al., 2018; van der Tol et al., 2023).

Concluding the comparison to the SFM, it becomes apparent that
the SFM is more robust against noise which was to be expected as the
fluorescence shape is constrained, but WAFER shows an overall higher
retrieval precision with our synthetic data. As retrieval methods have
not been tested on similar synthetic datasets using BRDFs yet, more
work is needed to tell whether our synthetic dataset does not represent
real setups well enough or whether the SFM used with the parameters
and settings as introduced in Cogliati et al. (2019) only works well on
synthetic datasets modeled in the same way as in the corresponding
publication.

Analyzing observational data measured with a field spectrometer
as described in Section 2.3.1, we used several retrieval windows dis-
tributed along the entire spectral range of the instrument. Here, we
were able to compare to the SFM as well as the iFLD method used on
the same dataset.

Generally, all retrieval methods agree very well when SIF is re-
trieved in the O2A band. In the other retrieval windows, the SFM
derived values are often slightly below our SIF retrievals or at the same
level. This is especially true for the lower wavelength range including
the O2B band (see Fig. 8). A possible explanation is that the SFM has
the reabsorption of fluorescence implemented within the method as a
multiplication with the reflectance function, which assumes low values
in this wavelength range and therefore forces the red peak to be lower
than it might actually be. Consequently, the reflectance would be over-
and the fluorescence underestimated. A careful analysis of the SFM least
squares residuals to disentangle multiplicative and additive changes to
the spectrum of the incoming radiation could shed light on this and will
be briefly touched upon later.

Not predefining the shape of the fluorescence signal allows for an
analysis of the entire additional offset of the upwelling signal compared
to the downwelling signal after having subtracted the multiplicative
contribution. We can therefore see oxygen absorption contributions in
our retrieved spectral shapes.

Notably the SIF retrievals in the far-red from an overcast day (see
Fig. D.11, panel B) show an absorption pattern that looks like oxygen
absorption in the optical path between sensor and canopy: it can either
stem from the overestimation of the reflectance (or rather the fact
of ignoring the transmittance) or be due to actual absorption of the
fluorescence by oxygen, even though the latter phenomenon should
have a negligible effect on the retrieved fluorescence within 2m above
the sensor as our transmittance radiative transfer models show. Most
probably both, absorption of the reflected radiance and absorption of
the emitted fluorescence, contribute. This shape similarity with the
known oxygen absorption pattern is much stronger when the overall
fluorescence is higher, as we would expect. It is interesting to see
that the SFM and WAFER agree best in the oxygen absorption band
(see Fig. 5, E and F), which hints towards the SFM mainly deriving
the final shape of the SIF signal from this part of the spectrum. This
can also be seen in Fig. 7, right panel, where the retrievals from the
smaller wavelength windows only agree with the whole wavelength
range retrievals in the oxygen absorption bands, i.e. the information
coming from these windows seems to be determining for the whole
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fit, leaving the remaining parts of the spectral information essentially
unused.

The fact that the SFM mainly relies on the oxygen absorption
band can also be seen when looking at the residual of the SFM (not
shown in this work): There is a consistently negative and clearly
non-random residual at 687 nm, meaning that the forward modeled
upwelling radiance is lower than the measured input speaking for an
overall underestimation. Likewise, there seems to be a mainly negative
residual in the Fraunhofer lines meaning that either the reflectance is
over- or the fluorescence underestimated.

Meanwhile, Table 1 shows that the WAFER method does not exploit
the large oxygen absorption features but instead relies on features much
smaller in wavelength width.

Comparing WAFER to the iFLD method, a different observation
consistent with the expected bias from looking at the retrieval equa-
tions (Alonso et al., 2008) has been made: in most of the cases tested,
the iFLD returns higher values for the fluorescence as compared to
the retrieval with other methods, which becomes particularly obvious
in the O2B band (Fig. 8). This is due to the fact that the employed
reflectance ratio is estimated from the apparent reflectance which can
mathematically be shown to lead to an overestimation of the retrieved
fluorescence. This effect is larger in the lower wavelength range be-
cause here the relative difference between the true reflectances within
and left of the absorption band is larger and so is the error induced by
using the apparent reflectance ratio instead. On the tested overcast day,
the iFLD method in the O2B band returns more similar values compared
to WAFER and does not exhibit as much of a clear trend. This might be
due to an effect opposing the general inherent overestimation caused by
the very low depth of the O2B band and therefore sensitivity to noise.

In the Fraunhofer line window, the general trend of the SIF diurnal
cycle is visible with our retrievals but it is quite noisy. The reason for
this is likely a combination of spectral resolution of the spectrometer
and the signal-to-noise ratio that compromises resolving the depths of
the Fraunhofer lines accurately enough. Also, for satellite based SIF
retrievals operating in spectral regions where only Fraunhofer lines are
present, an increased SIF retrieval noise has been reported (Guanter
et al., 2021).

4.2. Phenomenological insights

With WAFER applied to in-situ data, a few interesting observations
regarding fluorescence diurnal cycles and spectral shapes could already
be made but they should not be taken as robust findings yet. Instead,
this is to foreshadow what could be possible using this approach on
more and different datasets.

The diurnal cycles, especially in the afternoon, seem to show a
dependence on the retrieval method employed. With WAFER, it is pos-
sible to completely decouple the reflectance retrieval without having
to approximate the shape of the fluorescence or the change of the
reflectance along the retrieval window. As a result, we have seen fluctu-
ations in the retrieved fluorescence in the afternoon before and after the
reflectance drops. The fixed spectral shape of the fluorescence that is
also multiplied with the reflectance in the SFM does not allow for these
independent dynamics: when the reflectance decreases significantly in
the respective wavelength range, SIF is lowered simultaneously. This
is why the fluorescence follows the reflectance trend with the SFM
but not with the newly developed WAFER method. With the iFLD,
the fluorescence also follows the reflectance trend, but the coupling
seems to be a bit weaker. This can also be explained to be coming
from the method itself: The ratio of the reflectance outside and inside of
the absorption band is estimated from the same ratio of the smoothed
apparent reflectance (Alonso et al., 2008). This estimate does not
necessarily change when the reflectance decreases but the fluorescence
increases at the same time, whereas this ratio taken from the real
reflectance might change. As the retrieved fluorescence values are very
13
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sensitive to this ratio, they might tend to follow the diurnal cycle of the
apparent reflectance and are therefore not independent.

More generally, observed reflectance dynamics can be caused by
plant physiology, but also by optical effects like reflectance anisotropies
or shadowing (Kükenbrink et al., 2019). If the SIF retrieval method
employed is coupled to the reflectance retrieval, the retrieved SIF
dynamics might also not be related to photosynthetic regulation but
to these optical effects. The different results using different retrieval
methods shown here might be a starting point to develop SIF retrieval
approaches less sensitive to optically caused reflectance dynamics (as
for example discussed in Chang et al., 2021).

The sudden change in the retrieved range of fluorescence values
between 2021-05-28 and 2021-06-01 (see Fig. 6) suggests that changes
were made at the test site. In fact, the grass has been cut in between
these two days, which immediately becomes obvious from the lower
fluorescence and reflectance values around the O2A absorption band.
Interestingly, there seems to be an increase in O2B fluorescence at the
same time, which could be due to the fact that there is less reabsorption
with shorter grass (Fournier et al., 2012). This effect is less obvious with
the SFM but can be observed looking at the iFLD retrievals as well as
the WAFER retrievals to a lesser extent. Meanwhile, the reflectance in
this wavelength range increased by roughly 0.1 and decreased about
he same amount in the O2A wavelength range.

The ability to observe different wavelength ranges independently
ssentially covering the entire range of a given spectrometer is a
lear advantage of WAFER. In principle, the entire spectral range of
he fluorescence can be explored at once without having to prescribe
hape functions for the fluorescence by making use of all the spectral
nformation available. With most established retrieval methods, the
ocus lies on the far-red range but it has been shown that the red range
ields additional information (Joiner et al., 2016) as we were also able
o demonstrate with the diurnal cycles.

.3. Technical limitations

As mentioned in Section 2.2.3, WAFER only returns the additive
ffset (note that this is also true for all FLD methods), that contains
IF but can also be enhanced by instrumental effects. This is unlikely
n the case of the FloX-retrievals because the fluorescence vanishes at
he beginning and end of the day as it should, not showing any constant
ffset independent of the light conditions (Fig. 6). Also, the SFM with a
rescribed fluorescence shape yields similar values in each wavelength
ange (Fig. 7).

Despite this limitation of the new WAFER method of not being able
o distinguish different kinds of offsets, we found a good agreement
ith established retrieval methods for the in-situ data as well as rea-

onably looking diurnal cycles resembling the shape of a cosine with
he maximum situated around solar noon. For airborne SIF retrievals,
he problem of always retrieving SIF combined with instrumental off-
ets could easily be controlled by comparing to retrievals from non
egetated and therefore non-fluorescing targets (Damm et al., 2014;
iegmann et al., 2021).

Other inaccuracies in the retrieved SIF values could arise from fixing
he reflectance to a parabolic shape, which might not model the true
hape of the reflectance perfectly in each retrieval window. However,
he effect should be negligible especially when handling the exact
hape of the retrieved fluorescence with caution. The magnitude of the
esulting fluorescence is not influenced by the particular shape of the
eflectance when the retrieval window is small enough.

At this stage, the optimization process is relatively slow because
he wavelet decomposition needs to be performed in each iteration,
hich can be quite intensive computationally (i.e. a factor of 50–60

lower than the SFM for FloX-data). We aimed at analyzing spectral
ata in new and potentially more holistic ways, which naturally comes
ith higher computational cost. Still, all retrievals presented in this

ork have been performed on a laptop and a single core within hours.
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A significant speedup can be achieved by fitting the multiplicative
function between the wavelet coefficients of the upwelling radiance
and the reference directly, only decomposing once. This would mean
pulling the reflectance out of the convolution integral in the second
term of Eq. (4), which could be justified for very narrow low level
wavelet functions such that the reflectance can be treated as a constant
along the wavelength. Of course, this is a simplification that would lead
to a loss in accuracy but might still be an option for initial estimates of
observations that have high data volumes. Further research is needed
to quantify the effect of this simplification.

5. Conclusion

The performance assessment of the newly developed wavelet based
SIF retrieval method WAFER presented in this work suggests that it
can be taken as an alternative or supplement to established retrieval
methods. Combining basic principles from different retrieval methods,
it makes use of all the spectral information available in a given wave-
length window. The absolute line depth of different absorption lines
is quantified like in all of the FLD methods, while the spectrum is also
decomposed as in the SVD method but not to reduce the dimensionality
but rather to filter for features and examine alterations to these features
only. The fit of the reflectance is similar as in the SFM but is performed
in the wavelet space as opposed to on the spectra directly.

Altogether, WAFER yields similar results as other methods for in-
situ data, especially at the O2A band, and performs slightly better for
ynthetic data, given noise levels are fairly low. Further development is
uggested to reduce noise sensitivity, for example by refining the noise
hresholding as well as the reflectance fitting function for each retrieval
indow.

Concluding, we would like to point out the following findings that
n their entirety set WAFER apart from other retrieval methods:

(i) WAFER can be applied to arbitrary retrieval windows, as long
s the reflectance or multiplicative change to the incoming radiance
ollows the specified fitting function (in our case a second order polyno-
ial). Additionally, spectral data is explored on a deeper level, because

he frequency of the signal (i.e. width of absorption features) is also
aken into account. This does not increase the information content but
llows for a more thorough analysis with different tools.

(ii) WAFER only puts constraints on the reflectance, which we
ssume to be a second order polynomial in the employed wavelength
anges. The method is based on the assumption that reflectance and
ransmittance act multiplicatively on the downwelling radiance. How-
ver, this assumption is inherent to all other retrieval methods as
ell.

(iii) WAFER allows for arbitrary fluorescence spectral shapes. There-
ore, changes and shifts in the peaks due to environmental or pheno-
ogical conditions can be captured. Other retrieval methods induce a
oupling or even a degeneracy between fluorescence and reflectance
y making simplifying assumptions for the fluorescence spectral shape,
pproximating the reflectance with the apparent reflectance or reduc-
ng the retrieval model (Eq. (1)) to a sum. There is also no need for
xtensive training datasets specific to each measurement setup.

We recommend further research to exploit capacity and reliability
f WAFER for SIF retrievals from airborne and possibly also satellite
cquired spectral data. Particularly the capacity of WAFER to retrieve
IF in spectral windows unaffected by atmospheric absorption could
ield new possibilities to account for atmospheric effects.
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Appendix A. Radiative transfer retrieval assumptions

As the sun is close to being a black body, it emits electromagnetic
radiation spectrally following a Planck distribution. This spectrum is
equipped with a spectral fingerprint caused by absorptions by atoms
making up the solar corona (Fraunhofer, 1817; Kirchhoff, 1860). These
absorptions are complemented by molecular absorptions and scatter-
ing throughout Earth’s atmosphere before the incoming radiation is
reflected by the surface, followed by further scattering and absorptions
until the radiation is measured with a spectrometer. The upwelling
radiation measured is finally composed of the sunlight reflected by
the surface, thermal emission and the SIF signal if living vegetation is
present.

All of this makes up a complex radiative transfer system where the
pathways of the ubiquitous electromagnetic radiation cannot be tracked
on the photon level in an analytical way. Deriving a description of
these processes using radiation intensities from first principles leads
to the integro-differential radiative transfer equation that can only be
solved analytically in idealized and simple cases, the Lambert–Beer
law being one of them (see Rybicki and Lightman, 1979 for a general
introduction). In most applications, this equation is therefore solved
numerically.

Although not a formal solution of the radiative transfer equation,
radiative transfer is often approximated descriptively as a linear combi-
nation of different wavelength dependent reflectance and transmittance
factors for the direct and diffuse parts of the radiation. One way of
expressing the monochromatic upwelling radiance this way is described
for example in Cogliati et al., 2015. A common property of these kinds
of expressions is that they can be reformulated in such a way that only
two terms remain: one with a linear dependence on the downwelling
radiance or solar radiance and the second summarizing all additive
fluorescence contributions represented by the variable 𝐹 in Eq. (1).
The factor in front of the downwelling radiance is summarized by the
variable 𝑅 in Eq. (1) and can contain not only the reflectance but also
all transmittances. The basic idea of our approach is to retrieve these
multiplicative alterations 𝑅 to a given reference spectrum 𝑠0.

ppendix B. Reference spectra

As our approach simply aims to determine the multiplicative alter-
tions to some kind of reference spectrum, several kinds of references
0 are possible. For this proof of concept we specifically evaluated the
ase where the downwelling radiance at the top of the canopy is known
ut in fact, as this approach is developed further, the top of atmosphere
olar spectrum or the upwelling radiance from a non-fluorescing target
re also viable options.

For retrieval windows with only Fraunhofer lines, a solar reference
s presented in Kurucz (2006) alone could be sufficient and would
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make the retrievals independent of changing atmospheric conditions
given that the spectral characteristics (i.e. spectral response function
and sampling rate) of the instrument are known and can be applied
to the reference spectrum before the retrieval. This is also, where the
approach would become feasible for airborne and satellite acquired
data as demonstrated in Joiner et al. (2011) for the FLD method and
in Joiner et al. (2013) using the SVD method.

Appendix C. Visual evaluation of the parametrization of the bi-
directional reflectance distribution function
15
To create our synthetic dataset, we used bi-directional reflectance
distribution functions (BRDF) instead of simple scalar reflectances for
the different direct and diffuse contributions to the overall radiance. For
the BRDFs calculated with SCOPE to be usable within libRadtran, they
need to be parametrized in a particular way. This section outlines that
the parametrization needed for libRadtran is sufficient to represent the
BRDFs calculated with SCOPE. In Fig. C.9 we show BRDFs for different
wavelengths and a given configuration of chlorophyll content and leaf
area index comparing the SCOPE result to the parametrized BRDF,
also showing the relative difference, which is at the percent level for
Fig. C.9. Bi-directional reflectance distribution functions for different wavelengths (700 nm and 750 nm, left and right column respectively) generated with SCOPE for a chlorophyll
content of 50 μg cm−2 and a leaf area index of 3m2 m−2 (first row) and their parametrized counterparts using the Ross-Li-Hotspot parametrization (second row). In the third row,
the relative difference is shown.
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Fig. C.10. Mean relative deviation of the parametrized bi-directional reflectance distribution functions (BRDF) from the sampled ones using SCOPE.
viewing zenith angle of 0°. This is confirmed by the mean relative
eviation, where the mean is taken over all viewing angles, shown in
ig. C.10 over all wavelengths.

ppendix D. SIF retrieval results from observational data on an
vercast day

In this section, we show exemplary fluorescence retrievals on an
vercast day as opposed to the sunny days shown in Section 3. Days
ave been categorized to sunny or overcast by means of the shape
16
of the diurnal cycle of the downwelling radiance. As in Section 3.2,
Fig. D.11 shows spectral reflectance and fluorescence retrievals and
the mean diurnal difference to the SFM retrievals. In Fig. D.12, flu-
orescence retrievals with different retrieval methods are compared at
characteristic wavelengths.

Appendix E. Setup of the flox-measurement

See Fig. E.13.
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Fig. D.11. Reflectances (A and C, solid lines) and fluorescences (B and D, solid lines) retrieved from measured radiance signals comparing reflectance retrievals using WAFER
to the apparent reflectance and fluorescence retrievals to fluorescence retrieved with the established spectral fitting method (SFM) (dashed lines). Measurements were taken on
2021-05-11 and results are shown for the retrieval windows including the O2A band (A and B) and including the O2B band (C and D). The root mean square differences (RMSD)
between the SFM and WAFER for the fluorescence in these windows are shown in panels E and F, where the mean is taken over the entire day. In each panel, the oxygen
absorption band is shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
17
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Fig. D.12. Comparison of fluorescence retrieved using the improved Fraunhofer line discrimination (iFLD) method and spectral fitting method (SFM) against WAFER at characteristic
wavelengths (left panel 760 nm and right panel 687 nm) for all measurements on 2021-05-11. Orange markers represent the iFLD method, red markers the SFM. The dashed lines
denote the 1:1 line respectively. The root mean square differences (RMSD) are in 1mWnm−1 m−2 sr−1. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. E.13. Setup of the FloX-system at an agricultural site in Oensingen, SO, Switzerland (47.2864° N, 7.7338° E). Picture: Michael Niederberger, annotated.
18
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