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Lipschitz conformal immersions from
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L2-bounded second fundamental forms
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Abstract. We give an asymptotic lower bound for the Willmore energy of weak immer-
sions with degenerating conformal class. This lower bound is used in several other works.
It is for instance one of the ingredients used by the author (2010) for providing an alter-
native proof of the one by L. Simon of the existence of a smooth torus minimizing the
Willmore energy. The main result of the present paper has been independently obtained
by Kuwert and Li (2010).
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1 Introduction

In [13] the author introduced a suitable framework for proceeding to the calculus
of variations of Willmore Lagrangian of a surface. To that end he introduced the
space of Lipschitz immersions with L2-bounded second fundamental forms.

Let g0 be a reference smooth metric on †. One defines the Sobolev spaces
W k;p.†;Rm/ of measurable maps from † into Rm in the following way:

W k;p.†;Rm/ D

´
f meas. †! Rm W

kX
lD0

Z
†

jr
lf jpg0 dvolg0 < C1

µ
:

Since † is assumed to be compact, it is not difficult to see that this space is inde-
pendent of the choice we have made of g0.

First we need to have a weak first fundamental form, that is, we need Ê �gRm

to define an L1 metric with a bounded inverse. The last requirement is satisfied
if we assume that Ê is in W 1;1.†/ and if d Ê has maximal rank 2 at every point
with some uniform quantitative control of “how far” d Ê is from being degenerate:
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there exists c0 > 0 such that

jd Ê ^ d Ê jg0 � c0 > 0; (1.1)

where d Ê ^d Ê is a 2-form on† taking values into 2-vectors from Rm and given in
local coordinates by 2 @x Ê ^@y Ê dx^dy. The condition (1.1) is again independent
of the choice of the metric g0. For a Lipschitz immersion satisfying (1.1) we can
define the Gauss map as being the following measurable map in L1.†/ taking
values in the Grassmannian of oriented m � 2-planes in Rm:

En Ê WD ?
@x Ê ^ @y Ê

j@x Ê ^ @y Ê j
:

We then introduce the space E† of Lipschitz immersions1 of † with bounded
second fundamental form as follows :

E† WD

²
Ê 2 W 1;1.†;Rm/ W Ê satisfies (1.1) for some c0

and
Z
†

jd Enj2g dvolg < C1
³
;

where g WD Ê �gRm is the pull back by Ê of the flat canonical metric gRm of Rm

and dvolg is the volume form associated to g.
It is proved in [11] that any Lipschitz immersion Ê in E† defines a smooth con-

formal structure on†. A conformal structure c being given on the two manifold†
we define Ec† to be the subspace of E made of weak immersions which are confor-
mal with respect to c. The conformal class to which c belongs to will be denoted
by Œc�.

Let Ê be in E†. Denote by �En Ê the orthonormal projections of vectors in Rm

onto the (m� 2)-plane given by En Ê . With these notations the second fundamental
form is defined as follows:2

8X; Y 2 Tp†; EIp.X; Y / WD �En Ê d
2 Ê .X; Y /:

The mean curvature vector of the immersion at p is given by

EH WD
1

2
trg.EI/ D

1

2

h
EI."1; "1/C EI."2; "2/

i
;

where ."1; "2/ is an orthonormal basis of Tp† for the metric g Ê .

1 We will also simply call these immersions weak immersions.
2 In order to define d2 Ê .X; Y / one has to extend locally the vector X or Y by a vector-field but

it is not difficult to check that �En Ê d
2 Ê .X; Y / is independent of this extension.
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In the present paper we are mainly interested with the Lagrangian given by the
L2-norm of the second fundamental form

E. Ê / WD

Z
†

jEIj2g dvolg :

An elementary computation gives

E. Ê / WD

Z
†

jEIj2g dvolg D
Z
†

jd En Ê j
2
g dvolg :

This energy E can be hence seen as being the Dirichlet Energy of the Gauss map
En Ê with respect to the induced metric g Ê . The Gauss Bonnet Theorem implies
that

E. Ê / WD

Z
†

jEIj2g dvolg D 4
Z
†

j EH j2 dvolg � 4� �.†/; (1.2)

where �.†/ is the Euler characteristic of the surface †. The energy

W. Ê / WD

Z
†

j EH j2 dvolg

is the so-called Willmore energy.
In [13] we studied the existence minimizers of W in E† with or without con-

straints on the conformal class c realized by Ê . We provided in particular a new
flexible approach for proving L. Simon’s result of the existence of a minimizer for
† being the torus. Following [15] we denote

ˇmg WD inf
®
W. Ê / W Ê is an immersion of the genus g closed surface

¯
and

!mg WD min

´
4� C

pX
iD1

.ˇmgi � 4�/ W g D g1 C � � � C gp; 1 � gi < g

µ
:

In [1] it is proved that for g � 2

ˇmg < !
m
g : (1.3)

In [13] we gave the existence of a smooth minimizer of the Willmore energy in
E† for an arbitrary closed 2-manifold † provided the conformal class defined by
some minimizing sequence is not degenerating. This fact is then guaranteed by
the following result which has been proved first for m D 3; 4 in [9] has also been
independently proved in [6] for general m.
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Theorem 1.1. Let .†; ck/ be a sequence of closed Riemann surface of genus g but
with degenerating conformal class Œck� diverging to the boundary of the Moduli
Space of †. Let Ê k be a sequence of conformal immersions in E†. Then

lim inf
k!C1

Z
†

j EH Ê
k
j
2 dvol Ê �

k
gRm
� min¹8�; !mg º (1.4)

and the lower bound min¹8�; !mg º can be replaced by 8� if g D 1.

This result plays a crucial role in [3] for proving the compactness of Willmore
surfaces below min¹8�; !mg º modulo the action of conformal diffeomorphisms
(see [3, Theorem I.5]).

An important result in [7] asserts that min¹8�; !mg º converges to 8� as g goes
toC1.

One of the main tool we are using for proving (1.4) is the following consequence
of Simon’s monotonicity formula with boundary which was probably known by
the experts in the field but for which we still give a proof below.

Lemma 1.2. Let † be a compact surface with boundary. Let Ê be a weak immer-
sion in E†. Then the following inequality holds:

4� �

Z
M

j EH j2 dvolg C 2
H1.@M/

d.@M;M/
; (1.5)

where H1.@M/ is the 1-dimensional Hausdorff measure of the boundary of the
immersion @M and d is the usual distance3 between two sets.

Observe that the inequality is optimal since it is an equality forM being the flat
2-dimensional disc.

2 The normalization procedure

The aim of this section is to prove the “normalization” result Proposition 2.1. This
result asserts that a sequence of conformal immersions Ê k of E† realizing a de-
generating sequence of conformal classes on † being given, either (1.4) holds
or, for any connected component � of the limit † topologically obtained from
† by removing collapsing geodesics for the constant Gauss curvature associated
to .†; Ê �

k
gRm/, one can find a sequence of Möbius transformations „k of Rm

such that, away from possibly finitely many blow up points on � , the sequence

3 Let A and B be two sets in Rm we define

d.A;B/ WD sup
p2A

inf
q2B
jp � qj C sup

p2A

inf
q2B
jq � pj:
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of immersion „k ı Ê k converges weakly on � in W 2;2 \ .W 1;1/� (with respect
to some reference constant Gauss curvature metric) to a non-constant conformal
immersion of the component � .

The proof of this normalization result will be a consequence of Deligne–Mum-
ford’s description of the loss of compactness of the conformal class for a sequence
of Riemann surfaces, the Three Point Normalization Lemma A.1, the Simon’s
monotonicity formula with boundary and Müller–Sverak–Hélein local control of
conformal factors.

First we recall Deligne–Mumford’s description of the loss of compactness of
the conformal class for a sequence of Riemann surfaces with a fixed topology (see
for instance [16] and [5, Proposition 5.1]). We restrict below in the presentation of
the proof to the more complex case where g.†/ > 1, the case of tori is following
the same lines and we shall comment it at the end of the next section.

In what follows, let .†; ck/ be a sequence of closed Riemann surface of fixed
topology g.†/ > 1. Denote by hk the hyperbolic metric associated to ck . Let Ê k
a sequence of immersions in E† with uniformly bounded energy. Then, modulo
extraction of a subsequence, there exists

(i) an integer n 2 N�,

(ii) a sequence Lk D l
i
k

, i D 1; : : : ; N , of finitely many pairwise disjoint simple
closed geodesics of .†; hk/ with length converging to zero,

(iii) a closed Riemann surface .†; c/,

(iv) a complete hyperbolic Riemann surface . Q†; Qh/ with 2n cusps ¹qiºiD1;:::;n D
¹.qi1; q

i
2/ºiD1;:::;n – or punctures – and no boundary such that Q† has been

obtained topologically after removing the geodesics Lk and after closing
each component of the boundary of the open surface † n Lk by adding a
puncture qi

l
at each of these components. Moreover † is topologically equal

to Q† and the complex structure defined by Qh on Q†n¹qiº extends uniquely to c
(i.e. there exists a conformal diffeomorphism from the surface . Q† n Lk; Qh/

into .† n ¹qiºiD1;:::;n; c/).

The surface . Q†; Qh/ is called the nodal surface of the converging sequence and
.†; c/ is its renormalization. These objects are related with another by the mean
of a sequence of continuous maps �k from . Q† n

S
i q
i ; Qh/ into .† nLk; hk/ such

that

(1) �k realizes a C1loc diffeomorphism from . Q† n
S
i q
i ; Qh/ into .† nLk; hk/,

(2) Qhk WD ��khk converges in C1loc topology on Q† n [iqi to Qh.

Now, under the notations above, the aim of this section is to prove the following
proposition.
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Proposition 2.1. Let .†; ck/ be a sequence of closed Riemann surface of fixed
topology g.†/ > 1 with degenerating conformal class ck . Let Ê k be a sequence of
weak immersions of† with L2-bounded second fundamental form (i.e. Ê k 2 E†).
Then either

lim inf
k!C1

Z
†

j EH Ê
k
j
2 dvol Ê �

k
gRm
� 8� (2.1)

or, if this is not true, then for any connected component � of Q† and there exists
a subsequence still denoted by Ê k and a subsequence of Möbius transformations
„k of Rm such that

„k ı Ê k.†k/ � BR.0/ (2.2)

and
H2.„k ı Ê k.†k// � C R2 sup

k

W. Ê k/; (2.3)

where R and C only depend on m, and there exists at most finitely many points
¹a1; : : : ; aN º of � such that, if we denote E�k WD „k ı Ê k ı �k , then

E�k * E�1 weakly in W 2;2
loc

�
� \ Q† n ¹a1; : : : ; aN º [ ¹q

1; : : : ; qnº; Qh
�
: (2.4)

Moreover, for any compactK � � \ Q† n ¹a1; : : : ; aN º[ ¹q1; : : : ; qnº there exists
CK > 0 such that

sup
k2N
klog jd E�kj��

k
hk
kL1.K/ � CK < C1; (2.5)

and the limit E�1 is an element of Ec� : it realizes a non-constant weak conformal
immersion of .� \†; c/ into BR.0/.

Proof. We work of course under the assumption thatZ
†

j EH Ê
k
j
2 dvol Ê �

k
gRm

< 8�: (2.6)

Let P1, P2 and P3 be three distinct points in a given component Q� of the set
Q† n ¹q1; : : : ; qnº. We apply the Three Points Normalization Lemma A.1 to Ê k on
† for the three points �k.P1/, �k.P2/ and �k.P3/ and we obtain the existence of
a Möbius transformation „k such that

„k ı Ê k.†k/ � BR.0/; (2.7)

moreover

8i ¤ j; j„k ı Ê k ı �k.Pi / �„k ı Ê k ı �k.Pj /j � r > 0 (2.8)

and
H2.„k ı Ê k.†k// � C R

2 sup
k

W. Ê k/; (2.9)

where R, r and C are positive constants depending only on m since (2.6) holds.
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We denote by E�k the conformal immersion from . Q†; Qhk D �
�
k
hk/ given by

E�k WD „k ı Ê k ı �k :

Let ı > 0 be a small positive constant and denote

Q†ı WD Q† n

n[
jD1

Bhı .q
j /;

where Bh
ı
.qj / is the geodesic ball in .†; h/ of radius ı and center qj . On Q†ı there

exists an L1-bounded smooth function l such that Qh D el h.
To each p 2 Q†ı we assign �p > 0 such thatZ

B
Qh
�p .p/

jd EnE�k
j
2
Qhk
dvol Qhk D

Z
Bh�p .p/

jd EnE�k
j
2
gk
dvolgk D 8�=3;

where B Qh�p .p/ is the geodesic ball in the surface . Q†; Qh/ of center p and radius �p
and where gk WD E��kgRm .

We extract a Besicovitch covering: each point in Q†ı is covered by at most N
of such balls where N only depends on . Q†ı ; Qh/. Since

R
Q†
jd Enj2gk dvolgk is uni-

formly bounded independent of k, the number of balls in the extracted Besicovitch
covering has to be uniformly bounded independently of k.

Let .B�i
k
.pi
k
//i2I be this finite covering (we shall omit now the superscript Qh).

We can extract a subsequence such that I is independent of k, such that each pi
k

converges to a limit pi1 and each �i
k

converges to a limit �i1. Let

I0 WD ¹i 2 I W �
i
1 D 0º:

Let I1 WD I n I0. Clearly, the union of the closures of the balls,
S
i2I1

B�i1
.pi1/,

covers the set Q†ı . Because of the strict convexity of the balls (the metric Qh has
constant curvature either 0 or �1) the points in Q†ı which are not contained in the
union of the open balls,

S
i2I1

B�i1
.pi1/, cannot accumulate and therefore are

isolated and hence finite. Denote

¹a1; : : : ; aN º WD Q†ı n
[
i2I1

B�i1
.pi1/: (2.10)

We prove now that the following claim holds.

Claim 1. On the connected component Q� of Q† either there exists a subsequence k0

such that for any compact K � Q� \ Q†ı n ¹a1; : : : ; aN º

sup
k02N
klog jd E�k0 j Qhk0kL1.K/ < C1 (2.11)
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or for any compact K � Q� \ Q†ı n ¹a1; : : : ; aN º

log jd E�kj Qhk ! �1 uniformly on K: (2.12)

Proof of Claim 1. Let i 2 I1. For such an i we consider on the ball B�i
k
.pi
k
/ con-

formal coordinates .xi
k
; yi
k
/ 2 D2 for the metric Qhk which converge in C1-norm

to conformal coordinates .x1; y1/ for Qh (this is clearly possible since the se-
quence of metrics Qhk converge to Qh in C1-norm). Denote by f i

k
the inverse of

.xi
k
; yi
k
/ (i.e.f i

k
is then a conformal diffeomorphism fromD2 into .B�i

k
.pi
k
/; Qhk/).

Due to conformal invariance one hasZ
D2
jr EnE�kıf ik

j
2 dx dy D

Z
Bh
�i
k

.pi
k
/

jd Enj2hk dvolhk

D

Z
Bh
�i
k

.pi
k
/

jd Enj2gk dvolgk D 8�=3

and therefore E�k ı f ik satisfies all the assumptions of Lemma A.2. We then ap-
ply Lemma A.2 and since f i

k
converges in C1-norm to some limiting conformal

coordinates from the set D2 into the ball Bh
�i1
.pi1/, we deduce the following al-

ternative:
Either there exists a subsequence k0 such that for any compact K � Bh

�i1
.pi1/

lim sup
k02N

klog jd E�k0 j Qhk0kL1.K/ < C1 (2.13)

or for any compact K � Bh
�i1
.pi1/

log jd E�kj Qhk ! �1 uniformly on K: (2.14)

This alternative holds on any ball

Bh
�i1
.pi1/ �

Q†;

it is then clear that, since none of this ball is “separated” from the others in a given
connected component of Q†, the claim is proved.

We are now going to prove the following claim:

Claim 2. If the second alternative of Claim 1, (2.12), holds on Q� , then (2.1) holds:

lim inf
k!C1

Z
†

j EH Ê
k
j
2 dvol Ê �

k
gRm
� 8�:

Proof of Claim 2. Assuming the second alternative (2.12) of Claim 1 implies that,
modulo extraction of a subsequence, the complement of ¹a1; : : : ; aN º in � \ Q†ı
is collapsing to a point Q 2 BR.0/.
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Because of (2.8), among the three points P1, P2 and P3 we need at least two Pj
to coincide with two distinct blowing points ai , say P1 D a1 and P2 D a2, and
such that

for i D 1; 2; lim inf
k!C1

jE�k.Pi / �Qj �
r

2
> 0: (2.15)

Let s > 0 such that the different balls B
Qhk
s .ai / included in Q†ı are disjoint. Con-

sider
M i
k WD

E�k.B
Qhk
s .ai //

and take conformal coordinates .xi
k
; yi
k
/ 2 D2 for the metric Qhk which converge

in C1-norm to conformal coordinates .x1; y1/ for Qh (this is clearly possible
since the sequence of metrics Qhk converge to Qh in C1-norm). Denote by f i

k
the in-

verse of .xi
k
; yi
k
/ (i.e. f i

k
is then a conformal diffeomorphism fromD2 into the sur-

face .B
Qhk
s .ai /; Qhk/). We have in these coordinates that

H1.@M i
k/ D

Z
@D2

e�
i
k d�;

where �i
k
D log j@� E�k ı f ik j. Combining the fact that s is fixed and the fact that

Qhk converges in any C l -norm to a limiting metric Qh we have that @M i
k

stays con-
tained in a compact subset K of Q†ı n ¹a1; : : : ; aN º. Since moreover f i

k
and its

inverse converge strongly in any C l -norm to a limiting conformal parametrization
of B Qhs .a

i / and since we are assuming that the second alternative (2.12) of Claim 1
holds, we deduce that

�ik ! �1 uniformly on @D2:

Thus we have that
lim

k!C1
H1.@M i

k/ D 0 (2.16)

Consider the monotonicity formula (A.13) for M 1
k

(resp. M 2
k

) and Ex0 D E�k.P1/
(resp. Ex0 D E�k.P2/. For a fixed k we make t ! 0. Since

1

t2

Z
M i
k
\Bt .Ex0/

hEx � Ex0; EHE�k
i dvolgk

�

�
t�2Area.M i

k \ Bt .Ex
0/
�1=2

W.E�k. Q†/ \ Bt .Ex
0//

and since t�2Area.M i
k
\ Bt .Ex

0// is uniformly bounded (from the classical mono-
tonicity formula without boundary) and since clearly W.E�k. Q†/ \ Bt .Ex0//! 0,
we deduce that for a fixed k

lim
t!C1

1

t2

Z
M i
k
\Bt .Ex0/

hEx � Ex0; EHE�k
i dvolgk D 0: (2.17)
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Since Ex0 D E�k.P1/ belongs to the interior of M i
k

, using again the classical mono-
tonicity formula without boundary for Ê k.†/ we have that

lim inf
t!0

t�2Area.M i
k \ Bt .Ex

0// � �: (2.18)

It is clear that

lim
t!0
�
1

2

Z
@M i

k
\BT .Ex0/

1

�2t
hEx � Ex0; E�i dl@M i

k

D �
1

2

Z
@M i

k
\BT .Ex0/

1

jEx � Ex0j2
hEx � Ex0; E�i dl@M i

k
:

(2.19)

Hence by combining (2.17)–(2.19) and making T !C1 in (A.13) gives

1

4

Z
M i
k

j EH j2 dvolg � � �
1

2

Z
@M i

k

1

jEx � Ex0j2
hEx � Ex0; E�idl@M i

k
: (2.20)

Since for i D 1; 2 one has (2.15) and since the boundary of M i
k

is converging to
Q, for k large enough one has

for i D 1; 2; 8Ex 2 @M i
k;

r

4
� jEx � Ex0j � 2R:

Inserting this information in (2.20) gives

for i D 1; 2;
1

4

Z
M i
k

j EH j2 dvolg � � �
8R

r2
H1.@M i

k/: (2.21)

Since (2.16) holds and since M 1
k

and M 2
k

are disjoint, we have proved (2.1) and
Claim 2 is proved.

Assuming now that (2.1) would not hold, then there exists a subsequence k0

such that for the chosen component � of Q† one has (2.5): for any compact K in
� n ¹a1; : : : ; aN º [ ¹q1; : : : ; qnº one has

lim sup
k02N

klog jd E�k0 j Qhk0kL1.K/ < C1:

Since Qhk strongly converges to Qh and since Qh and h are comparable norms away
from the punctures ¹q1; : : : ; qnº, one has

lim sup
k02N

klog jd E�k0 jhkL1.K/ < C1 (2.22)

for any compact K in � n ¹a1; : : : ; aN º [ ¹q1; : : : ; qnº. Since the area of E�k0. Q†/
is uniformly bounded (see (2.9)), the W 1;2-norm of Q�k is uniformly bounded with
respect to the norm gk D E�

�
k
gRm as well as with respect to the norm Qhk since these
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two metrics are conformally equivalent and one hasZ
Q†

jd E�k0 j
2
Qhk0
dvol Qhk0 � C R

2 sup
k

W. Ê k/: (2.23)

Since Qhk converges strongly to Qh away from the punctures, one has that for any
compact K � � n ¹q1; : : : ; qnºˇ̌̌̌Z

K

jd E�kj
2
Qhk
�

Z
K

jd E�kj
2
Qh

ˇ̌̌̌
! 0:

Since Qh and h are conformally equivalent, one hasˇ̌̌̌Z
K

jd E�kj
2
Qhk
�

Z
K

jd E�kj
2

h

ˇ̌̌̌
! 0: (2.24)

Combining (2.23) and (2.24) gives then that, modulo extraction of a subsequence,
E�k converges weakly in W 1;2

loc .� n ¹q
1; : : : ; qnº/ to a limit E�1; moreoverZ

Q†

jd E�1j
2

h
dvol

h
� C R2 sup

k

W. Ê k/: (2.25)

This last inequality implies that E�1 2 W 1;2.�; h/. Since (2.22) holds, using very
classical arguments of functional analysis – see for instance [11, beginning of Sec-
tion VI.7.1] – one obtains the following fact:

E�k * E�1 weakly in W 2;2
loc

�
� n ¹a1; : : : ; aN º [ ¹q1; : : : ; qnº; Qh

�
: (2.26)

Moreover E�1 is a weak immersion away from ¹a1; : : : ; aN º [ ¹q1; : : : ; qnº satis-
fying Z

�

jd EnE�1
j
2

h
dvol

h
� lim inf
k0!C1

Z
�

jd EnE�k0
j
2
Qhk0
dvol Qhk0 < C1: (2.27)

Using now [13, Lemma A.5] permits to extend the limit E�1 as a conformal, pos-
sibly branched, immersion of � . If there is one branched point, then arguing as in
[13, end of Section 3] we would obtain that

8� � W.E�1.�// � lim inf
k0!C1

W.E�k0.�//

� lim inf
k0!C1

W. E„k0 ı Ê k0.†// D lim inf
k0!C1

W. Ê k0.†//

which contradicts our assumption that (2.16) does not hold. Hence E�1 extends
to a weak conformal immersion with L2-bounded second fundamental form all
over � .
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3 Proof of Theorem 1.1

First we present the case g > 1 which is more delicate. Assume that the assump-
tions Theorem 1.1 are fulfilled and that (2.16) does not hold.

Let .�j /jD1;:::;M be the connected components of Q†.
Consider the sequence E�k WD „1k ı Ê k ı �k given by Proposition 2.1 for the

component �1. Let ¹a1; : : : ; aN º be the possible blow-up points for of E�k on
�1 and let .qj /j2J 1 be the punctures of .�1; Qh/ and denote for any ı > 0

�1ı D �
1
n

N[
iD1

Bhı .ai /
[
j2J

Bhı .q
j /:

Because of the convergences (2.4) and (2.5) we have

lim
ı!0

lim inf
k!C1

W.E�k.�
1
ı // � W.

E�1.�
1//:

Observe first that

8j ¤ j 0 2 J; E�1.q
j / ¤ E�1.q

j 0/: (3.1)

Indeed if it would not be the case, using the Li Yau inequality we would obtain

8� � W.E�1.�
1// � lim inf

k0!C1
W.E�k0.�

1//

� lim inf
k0!C1

W. E„k0 ı Ê k0.†//

D lim inf
k0!C1

W. Ê k0.†//:

Claim 1. Assume there is a node qj1 for j1 2 J 1 such that Q† [
S
j¤j1

qj is not
disconnected. then we claim that (2.16) holds which contradict our assumption.

Proof of Claim 1. Because of (3.1) the image of the complement of �1 by E�k is
connecting at the limit two distinct points of Rm images of two punctures of �1

by E�1.
For any ı > 0 small enough, we cut the surface † in two separated surfaces

with boundaries: in one hand we consider

†C
ı
WD �k

�
� n

[
j2J 1

Bhı .q
j /

�
� †;

and in the other hand we consider

†�ı WD † n†
C

ı
:
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We split the immersions „1
k
ı Ê k according to this decomposition for some ı to

be fixed later on. We observe that, since

E�k converges weakly in .W 1;1
loc .�1 n Œ¹a1; : : : ; aN º [ ¹q

j
ºj2J 1 �//

�;

we have that

E�k converges strongly in Cloc.�
1
n Œ¹a1; : : : ; aN º [ ¹q

j
ºj2J 1 �/.

Hence for any ı > 0

8j 2 J 1; lim
k!C1

sup
2�1 ı<t<ı

d.E�k.@B
h
t .q

j //; E�1.@B
h
t .q

j /// D 0 (3.2)

where d is the usual distance between two sets in Rm defined in the introduction.
Since Qhk is converging in C1-norm to the metric Qh in

Bhı .q
j / n Bhı=2.q

j /

which is itself conformally equivalent to the smooth constant scalar curvature met-
ric h in Bh

ı
.qj //, we can construct conformal coordinates .xj

k
; y
j

k
/ for the metric

Qhk in
Bhı .q

j / n Bhı=2.q
j /

converging in C1-norm to some limiting .xj1; y
j
1/ conformal coordinates for the

metric Qh (and hence also for the metric h). Denote by f j
k

the inverse of .xj
k
; y
j

k
/

and by f j1 its limit. We can moreover choose .xj
k
; y
j

k
/ in such a way that the limit

.x
j
1; y

j
1/ goes from

Bhı .q
j / n Bhı=2.q

j /

into some annulus in the plane D2
ı
nD2

cı
(note that we have c > 0 since h is

smooth around qj and conformally equivalent to .f j1/�1.dx2 C dy2/).
Denote �k WD log j@x.E�k ı f

j

k
/j D log j@y.E�k ı f

j

k
/j. The uniform bound on

the area (2.3) gives that Z
D2
ı
nD2

cı

e2�k � C R2: (3.3)

Since the convergence of E�k holds true also weakly in W 2;2
loc .�

1 n ¹a1; : : : ; aN º [S
j2J ¹q

j º; h/ and since (2.5) holds too, one has

lim
k!C1

Z
D2
ı
nD2

cı

j�k � �1j
2
D 0: (3.4)
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The combination of (3.3) and (3.4) gives that

lim
k!C1

Z
D2
ı
nD2

cı

je�k � e�1 j D 0: (3.5)

Hence there exists ˛k 2 .c; 1/ such that

lim
k!C1

Z
@D2

˛kı

je�k � e�1 j D 0: (3.6)

Since E�1 2 E†, E�1 ı f
j
1 2 W

1;1.D2/ and e�1 2 L1.D2/. ThusZ
D2
˛kı

e�1 D O.ı/: (3.7)

Combining (3.6) and (3.7), we obtain that there exists C > 0 such that for any
j 2 J and for any ı > 0 there exists kı 2 N verifying

8k � kı 9 ˛
j

k
2 .1=2; 1/ W H1.E�k.@B

h

˛
j

k
ı
// � C ı: (3.8)

Since there is a node qj1 for j1 2 J 1 such that Q†[
S
j¤j1

qj is not disconnected
and since (3.1) holds, there must exist a sequence of points pk 2 †�ı=2 such that

lim inf
k!C1

inf
j2J 1

jpk � q
j
j > 0

Cut now† into at least two disjoint connected components by removing the curves
@Bh
˛
j

k
ı
. Applying twice the monotonicity formula with boundary Lemma A.3 with

T !C1; t ! 0

and with respect respectively to an arbitrary fixed point p 2 †C
ı=2

for the immer-
sion E�k restricted to †C

ı=2
and with respect to pk for the immersion E�k restricted

to †�
ı=2

one obtains

lim inf
k!C1

W. Ê k/ D lim inf
k!C1

W.„1k ı
Ê
k/

� lim inf
k!C1

W.E�k.†
C

ı
//CW.E�k.†

�
ı //

� 4� C 4� � C ı D 8� � C ı:

Since this holds for any ı > 0, we have then (2.16) which contradicts our assump-
tion and we have proved the claim.
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Denote by g.� i / the genus of each component � i of the surface Q†. If each qj

for j D 1; : : : ; n is disconnecting Q†, the Deligne–Mumford’s description of the
loss of compactness in the Moduli space gives

g.†/ D

MX
jD1

g.�j /: (3.9)

Starting now from this normalized sequence „1
k
ı ˆk for the first component �1,

because of the convergences (2.4) and (2.5) we have

lim
ı!0

lim inf
k!C1

W.E�k.�
1
ı // � W.

E�1.�
1// � ˇg.�1/:

For each of the other components � i , i ¤ 1, working under the condition that
(2.16) does not hold, Proposition 2.1 gives for each i the existence of a subse-
quence – still denoted by �k – and the existence of a sequence of Möbius trans-
formations such that E„i

k
ı E„1

k
ı Ê k converges in the sense (2.4) and (2.5). Taking

subsequences of subsequences, we can assume that the subsequence we are work-
ing with is common to all the � i . As for �1 we have for any i

lim
ı!0

lim inf
k!C1

W.„ik ı
E�k.�

i
ı// � W.

E�1i / � ˇg.� i /;

where E� i1 is the weak local limit of „i
k
ı E�k on � i minus the blow up points and

the punctures. Using now Lemma A.4, we deduce that for any i ¤ 1

lim
ı!0

lim inf
k!C1

W.E�k.�
i
ı// � W.

E�1i / � 4� � ˇg.� i / � 4�:

Summing over i gives that

lim inf
k!C1

W. Ê k/ D lim inf
k!C1

W.„1k ı
Ê
k/

� lim
ı!0

lim inf
k!C1

MX
iD1

W.E�k.�
i // � ˇg.�1/ C

MX
iD1

.ˇg.� i / � 4�/:

This concludes the proof of Theorem 1.1 for g > 1.

Proof of Theorem 1.1 for g D 1. The degenerating torus has a conformal class
close to the flat torus Œ0; 1� � Œ�k; k� and we can restrict to this case in order to
simplify the notations. We fix three distinct points P1 WD .0; 0/, P2 WD .0; 1/ and
P3 WD .0;�1/ and we apply the Three Point Normalization Lemma A.1.
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If the resulting conformal immersion E�k would degenerate in any compact sub-
set Œ0; 1� � Œ�A;A�,

log jd E�kj ! �1 uniformly on Œ0; 1� � Œ�A;A� n ¹a1; : : : ; aN º

where ai are the concentration points for the energy
R
jr EnE�k

j2 dx dy, then arguing
exactly as in the proof of Claim 2 in Section 2 we would have inequality (2.1) and
the theorem would be proved for g D 1. Therefore we only have to consider the
case when E�k converges weakly in W 2;2

loc to a non trivial conformal immersion E�1
on any annulus Œ0; 1� � Œ�A;A� away from the blow up points ¹a1; : : : ; aN º.

Since
lim sup
A!C1

Z
Œ0;1��Œ�A;A�

jr EnE�1
j
2 dx dy < C1;

it follows that, by using for instance [13, Lemma A.5], E�1 extends to a possibly
branched conformal immersion of the sphere S2 ' Œ0; 1� � Œ�1;C1� where the
North and the South poles can be seen as two punctures q1 and q2 in the Deligne–
Mumford compactification framework described in Section 2.

If E�1.North/ D E�1.South/, then we can argue exactly as in the end of Section 2
and we would have

lim inf
k0!C1

W. Ê k0.†// D lim inf
k0!C1

W. E„k0 ı Ê k0.†//

� lim inf
k0!C1

W.E�k0.Œ0; 1� � Œ�A;A�//

� W.E�1.S
2// � 8�

which would again conclude the proof of Theorem 1.1 for g D 1.
Hence we are now restricting to the case E�1.North/ ¤ E�1.South/ and splitting

the torus Œ0; 1� � Œ�k; k� into two connected components by cutting it along the
circles Œ0; 1� � ¹�Aº and Œ0; 1� � ¹Aº we can argue exactly as in the proof of
Claim 1 of the present Section 3: we can make use of the monotonicity formula
with boundary Lemma A.3 and deduce

lim inf
k!C1

W. Ê k/ D lim inf
k!C1

W.„1k ı
Ê
k/

� lim inf
k!C1

�
W.E�k.Œ0; 1� � Œ�A;A�//

CW.E�k.Œ0; 1� � Œ�k;�A� [ Œ0; 1� � ŒA; k�//
�

� 4� C 4� � oA.1/ D 8� � oA.1/:

where oA.1/ converges to zero as A goes to C1. This concludes the proof of
Theorem 1.1 for g D 1.
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A Appendix

Lemma A.1 (Three Points Normalization Lemma). For any ƒ > 0 there exists
R; r > 0 such that for any closed 2-dimensional manifold †, for any choice of
three distinct points P1; P2 and P3 in † and for any embedding Ê of † into Rm

satisfying Z
†

jd En Ê j
2
g dvolg < ƒ; (A.1)

where g WD Ê �gRm , then there exists a Möbius transformation„ of Rm such that

„ ı Ê .†/ � BR.0/ and 8i ¤ j; j„ ı Ê .Pi / �„ ı Ê .Pj /j � r: (A.2)

Moreover the following control of the total area of „ ı Ê .†/ holds:

H2.„ ı Ê .†// � C R2ƒ; (A.3)

where C > 0 is a universal constant.

Proof. We apply a translation and a dilation in such a way that P1 D 0 and

j Ê .P1/ � Ê .P2/j D min
i¤j
j Ê .Pi / � Ê .Pj /j D 1:

We keep denoting Ê the resulting embedding – observe that due to its conformal
invariance the Willmore energy has not been modified. From Lemma A.3 there ex-
ists a universal constant C > 0 such that for any x0 2 Rm and 0 < � < � < C1

��2H2. Ê .†/ \ B� .x0// � C

�
��2H2. Ê .†/ \ B�.x0//

C

Z
Ê�1.B�.x0//

j EH j2 dvolg

�
:

(A.4)

We claim that there exists �0 depending only on ƒ > W. Ê / and x1 2 B1.0/
such that Ê .†/ \ B�0.x1/ D ;. For y 2 Ê .†/ one has

lim
�!0

��2H2. Ê .†/ \ B� .y// D �: (A.5)

For 0 < � < 1=2 we consider a regular covering of B1.0/ by balls B�.zl/ in such
a way that any point in B1.0/ is contained in at most C.m/ balls of the form
B2�.zl/. The number of l such thatZ

Ê�1.B2�.zl //

j EH j2 dvolg > C�1
�

2
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is bounded by 2ƒC C.m/. For an l such thatZ
Ê�1.B2�.zl //

j EH j2 dvolg < C�1
�

2

and such that there exists y 2 B�.zl/ \† ¤ ;, combining (A.4) and (A.5) one
obtains that

.2�/�2 H2. Ê .†/ \ B2�.zl// > C
�1�

2
:

the number of such l is then bounded by ��2 times a number depending only on
m and ƒ – where we are using again (A.4) but for x0 D 0, � D 1 and � ! C1.
The total number of ball B�.zl/ is proportional to ��m. Since m > 2, for � D �0
chosen small enough, depending only on m and ƒ we deduce the claim.

Let x1 and �0 given by the claim we choose „ to be the inversion with respect
to x1:

„.x/ WD
x � x1

jx � x1j2
:

We have then
„. Ê .†// � B1=�0.0/; (A.6)

moreover, since none of the Pi is in B�0.x1/, we have that

8i D 1; 2; 3; „. Ê .Pi // 2 B1=�0.0/:

We have also that j Ê .P2/�x1jCj Ê .P1/�x1j < 3 hence„. Ê .P1// and„. Ê .P2//
are contained in Rm n B1=3.0/, thus

j„. Ê .P1//�„. Ê .P2//j kr„
�1
kL1.B1=�0 .0/nB1=3.0//

� j Ê .P1/� Ê .P2/j D 1;

which implies that
j„. Ê .P1// �„. Ê .P2//j � 9: (A.7)

Either Ê .P3/ 2 B10.0/ or Ê .P3/ 2 Rm nB10.0/. In the first case one has that all
the „. Ê .Pi // are included in B1=�0.0/ n B1=11.0/, hence we have

8i ¤ j; j„. Ê .Pi // �„. Ê .Pj //j kr„
�1
kL1.B1=�0 .0/nB1=11.0//

� j Ê .Pi / � Ê .Pj /j � 1

which implies that

8i ¤ j; j„. Ê .Pi // �„. Ê .Pj //j � 11
2: (A.8)

This implies (A.2) in this case. In the case when Ê .P3/ 2 RmnB10.0/, we deduce
that „. Ê .P3// 2 B1=9.0/ and since „. Ê .P1// and „. Ê .P2// are contained in
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Rm n B1=3.0/, we obtain that

8i D 1; 2; j„. Ê .Pi // �„. Ê .P3//j �
2

9
: (A.9)

This lower bound combined with (A.7) gives (A.2) in this case too.
Regarding the proof of estimate (A.3), we first observe that inequality (A.4)

(which holds also for Ê replaced by „ ı Ê ) implies that, for any � � ��10

H2.„ ı Ê .†// � C��20 ��2 H2.„ ı Ê .†//C ��20 ƒ:

Letting � converge toC1 yields the desired estimate (A.3). Hence Lemma A.1 is
proved.

The following lemma is more or less implicitly contained in [10] and [4]. We
prove it however for the convenience of the reader.

Lemma A.2. Let Ê k be a sequence of conformal immersions of the disc D2 into
Rm such that

sup
k2N

Z
D2
jr En Ê

k
j
2 dx dy �

8�

3
(A.10)

and
lim sup
k!C1

Z
D2
e2�k dx dy < C1; (A.11)

where e�k D j@x Ê kj D j@y Ê kj. Then the following alternative holds: either

8! �� D2; lim
k!C1

�k D �1 uniformly on !

or there exists a subsequence k0 such that

8! �� D2; lim sup
k0!C1

k�k0kL1.!/ < C1:

Proof. Since (A.10) holds, [4, Lemma 5.1.4] gives the existence of a moving frame
.Ee1; Ee2/ 2 .W

1;2.D2; Sm�1//2 such thatZ
D2
jrEe1j

2
C jrEe2j

2
� C

Z
D2
jr En Ê

k
j
2 dx dy �

8�

3
;

where C > 0 only depends on m and

?En Ê D Ee1 ^ Ee2:

Moreover �k satisfies
��k D .r

?
Ee1;rEe2/:
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Let �k be the solution of´
��k D .r

?
Ee1;rEe2/ in D2;

�k D 0 on @D2:

Wente’s theorem (see [4, Theorems 3.1.2 and 3.1.9]) asserts that

k�kkL1.D2/ � .2�/
�1
krEe1kL2 krEe2kL2

� ��1 C

Z
D2
jr En Ê

k
j
2 dx dy:

(A.12)

Hence �k is uniformly bounded in L1-norm on D2.
The function �k WD �k � �k is harmonic on D2 and satisfies

lim sup
k!C1

Z
D2
e2�k dx dy < C1:

Let ! be an open set strictly included in D2 (i.e. ! � D2) and let U be an open
set strictly included in D2 and such that ! is itself strictly included in U , that is,
! �� U �� D2. Since e2�k is subharmonic (�e2�k � 0) and positive, from
Harnack’s inequality there exists a constant C depending on U such that

�C
k
D sup

U

�k � log
�
C

Z
D2
e2�k

�
:

So �C
k

is uniformly bounded from above. If

�C
k
! �1;

then the first alternative in the lemma holds for this special !. Assuming on the
contrary that

lim sup �C
k
> �1;

there exists a subsequence k0 such that

�C
k0
! �C1 2 R:

Consider now the sequence of positive harmonic functions �C
k0
� �k0 on U , Har-

nack’s inequality again gives the existence of a constant C > 0 independent of k0

such that
sup
!
�C
k0
� �k0 � C inf

!
�C
k0
� �k0 :

It is clear also that the supremum of �k0 is bounded from above on !, therefore

lim sup
k0!C1

inf
!
�C
k0
� �k0 < C1:
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Combining the two last inequalities gives that

lim inf inf
!
�k0 > C1:

Thus the second alternative of the lemma holds for this special !.
So we have proved that for any strict sub-domain of D2 one of the two alter-

natives always holds. Now it is clear that if for some sub-domain of D2 the first
alternative holds, then the second cannot hold for another sub-domain and vice
versa. Thus Lemma A.2 is proved.

The following lemma is the extension of Simon’s monotonicity formula4 in the
presence of a boundary. This lemma might have been already published some-
where, but the author could not find it anywhere and is making the computation
related to it available to the reader.

Lemma A.3 (Monotonicity formula with boundary). Let † be a smooth compact
surface with boundary and let Ê be an element of E†, a Lipschitz immersion of
the surface † into Rm with L2 bounded second fundamental form. Denote by
M WD Ê .†/ the immersed surface. Then for any point Ex0 2 Rm and any choice
of two radii 0 < t < T < C1 the following identity holds:

T �2Area.M \ BT .Ex0// � t�2Area.M \ Bt .Ex0//

D

Z
M\BT .Ex0/nBt .Ex0/

ˇ̌̌̌
.Ex � Ex0/?

jEx � Ex0j2
C
EH

2

ˇ̌̌̌2
dvolg

�
1

4

Z
M\BT .Ex0/nBt .Ex0/

j EH j2 dvolg

�
1

T 2

Z
M\BT .Ex0/

hEx � Ex0; EH i dvolg

C
1

t2

Z
M\Bt .Ex0/

hEx � Ex0; EH i dvolg

C
1

2

Z
@M\BT .Ex0/

�
1

T 2
�
1

�2t

�
hEx � Ex0; E�i dl@M

(A.13)

where .Ex � Ex0/? is the orthogonal projection of the vector Ex � Ex0 onto .TExM/?

the normal plane to the surface at Ex and �t WD max¹jEx � Ex0j; tº.

Proof. To simplify the presentation we give the argument for† D D2. We follow
step by step the computations in [14, pp. 82–84].

4 Formula
¯

(A.13) is exactly the formula as it is written in [8, formula (A.3), p. 353] except that
the boundary term was not considered in this work.
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Let EX be a smooth vector-field in Rm. We define the divergence of EX along
M WD Ê .D2/ to be the following quantity:

divM EX WD

2X
kD1

˝
d EX � Eek; Eek

˛
: (A.14)

where .Ee1; Ee2/ is an arbitrary local orthonormal frame on M . Decomposing EX
along M in the sum of its tangential

EXT WD

2X
kD1

h EX; Eeki Eek

and its vertical part
EX? D EX � EXT

gives5

divM EX D divM EXT C divM EX?

D

2X
kD1

˝
d EXT � Eek; Eek

˛
�

*
EX?;

2X
kD1

d Eek � Eek

+

D

2X
kD1

˝
d EXT � Eek; Eek

˛
� 2h EX; EH i:

(A.15)

We can assume that Ê is conformal since such a conformal reparametrization al-
ways exists (see [11]). Denote e� WD j@x1 Ê j D j@x2 Ê j and take Eek WD e��@xk Ê .
Write EXT WD

P2
iD1Xi @xi

Ê . We have

divM EXT D
2X
kD1

˝
d EX � Eek; Eek

˛
D

2X
iD1

@Xi

@xi
C

2X
iD1

Xi e
�2�@xi e

2�: (A.16)

HenceZ
M

divM EXT dvolg D
Z
D2

2X
iD1

@

@xi

�
e2�Xi

�
dx1 dx2

D

Z 2�

0

e2�
2X
iD1

Xi xi d�

D

Z
@M

h EXT ; E�i dl@M D

Z
@M

h EX; E�i dl@M

(A.17)

5 In comparison with formula in [14] observe that our definition of the mean curvature vector
differs by a factor 2.
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where E� is the unit limiting tangent vector to M on @M orthogonal to it and ori-
ented in the outward direction, i.e. E� WD e��@r Ê . Combining (A.15) and (A.17)
gives thenZ

M

divM EX dvolg D
Z
@M

h EX; E�i dl@M � 2

Z
M

h EX; EH i dvolg : (A.18)

As in [14] we choose EX WD 
.�/.Ex � Ex0/ where Ex0 is an arbitrary point in Rm

and � D jEx � Ex0j. We have for this choice of EX

divM EX D 2
 C P

2X
kD1

dr � EekhEx � Ex
0; Eeki

D 2 
 C � P


�
1 �
j.Ex � Ex0/?j2

jEx � Ex0j2

�
:

We choose now 
.�/ to be a function depending on a parameter s > 0, that is,

s.�/ D '.�=s/ where later on ' will be chosen to be closer and closer to the
characteristic function of the unit interval Œ0; 1�. Then (A.18) becomes

2

Z
M

'

�
�

s

�
dvolg C

Z
M

P'

�
�

s

�
�

s

�
1 �
j.Ex � Ex0/?j2

jEx � Ex0j2

�
dvolg

D

Z
@M

'

�
�

s

�
hEx � Ex0; E�i dl@M

� 2

Z
M

'
��
s

�
hEx � Ex0; EH i dvolg :

(A.19)

Observe that

d

ds

�
'
��
s

� 1
s2

�
D �

1

s3

h
2'
��
s

�
C P'

��
s

� �
s

i
Hence we deduce that

�
d

ds

�
1

s2

Z
M

'

�
�

s

�
dvolg

�
D �

1

s2
d

ds

�Z
M

'

�
�

s

�
j.Ex � Ex0/?j2

jEx � Ex0j2
dvolg

�
C
1

s3

Z
@M

'

�
�

s

�
hEx � Ex0; E�i dl@M

�
2

s3

Z
M

'

�
�

s

�
hEx � Ex0; EH i dvolg :

(A.20)
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Taking ' closer and closer to the characteristic function of the unit interval Œ0; 1�,
(A.20) implies at the limit the following formula:6

d

ds

�
1

s2

Z
M\Bs.Ex0/

dvolg

�
D

d

ds

�Z
M\Bs.Ex0/

j.Ex � Ex0/?j2

jEx � Ex0j4
dvolg

�
�
1

s3

Z
@M\Bs.Ex0/

hEx � Ex0; E�i dl@M

C
2

s3

Z
M\Bs.Ex0/

hEx � Ex0; EH i dvolg :

(A.21)

Integrating this formula between 0 < t < T < C1 gives

T �2Area.M \ BT .Ex0// � t�2Area.M \ Bt .Ex0//

D

Z
M\BT .Ex0/nBt .Ex0/

j.Ex � Ex0/?j2

jEx � Ex0j4
dvolg

C
1

2

Z
@M\BT .Ex0/

�
1

T 2
�
1

�2t

�
hEx � Ex0; E�i dl@M

C

Z
M\BT .Ex0/

�
1

�2t
�

1

T 2

�
hEx � Ex0; EH i dvolg

(A.22)

where �t .Ex/ WD max¹�.Ex/ D jEx � Ex0j; tº. We writeZ
M\BT .Ex0/nBt .Ex0/

j.Ex � Ex0/?j2

jEx � Ex0j4
dvolg

D

Z
M\BT .Ex0/nBt .Ex0/

ˇ̌̌̌
.Ex � Ex0/

�2
C
EH

2

ˇ̌̌̌2
dvolg

�
1

4

Z
M\BT .Ex0/nBt .Ex0/

j EH j2

�

Z
M\BT .Ex0/nBt .Ex0/

hEx � Ex0; EH i

�2
dvolg :

(A.23)

Combining (A.22) and (A.23) gives (A.13) and Lemma A.3 is proved.

The following lemma is more or less contained in previous works on the subject
but, for the convenience of the reader, we give a proof of it.

6 Formula (A.21) generalizes in dimension 2 the formula (17.3) in [14, p. 84].
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Lemma A.4. Let .†; c/ be a connected closed Riemann surface. Let a1; : : : ; aN
be a finite family of points in the surface. Let h be some smooth conformal metric
on † and denote

†ı WD † n

N[
iD1

Bhı .ai /

where Bh
ı
.ai / is the geodesic ball of center ai and radius ı for the metric h.

Assume there exists a weak conformal Lipschitz immersion E�1 of † into Rm with
L2-bounded second fundamental form (i.e. E�1 is an element of Ec†) and assume
there exists a sequence of weak conformal Lipschitz immersions E�k of †ı into Rm

(for any ı > 0 provided k is large enough) such that

8ı > 0; E�k ! E�1 weakly in W 2;2
\ .W 1;1/�.†ı/

and
8ı > 0; lim sup

k!C1

klog jd E�kjhkL1.†ı/

where the different norms W 2;2, W 1;1 and L1 are taken with respect to the h
metric. We assume E�1.ai / ¤ E�1.aj / for i ¤ j . Let xk be a sequence of points
such that xk … E�k.†ı/ for any ı > 0 for k large enough and converging to E�1.a1/.
Denote by Ixk the inversion with respect to the point xk , i.e.

Ixk .x/ WD xk C
x � xk

jx � xkj
2
:

Then the following inequality holds:

lim
ı!0

lim inf
k!C1

W.Ixk ı
E�k.†ı// � W.E�1/ � 4�: (A.24)

Assume now that the sequence of points either diverges to 1 or converges to a
point x1 … E�1.†/. Then

lim
ı!0

lim inf
k!C1

W.Ixk ı
E�k.†ı// � W.E�1/: (A.25)

Proof. Denote by lhgk WD E��kgRm the metric on†ı induced by the immersion E�k .
Since Ixk is a conformal diffeomorphism from Rm [ ¹1º into itself, the induced
metric

Qgk WD .Ixk ı
E�k/
�gRm D

E��k .I
�
xk
gRm/

is conformally equivalent to gk . One has I�xkgRm D
1

jx�xk j4
gRm , thus we obtain

Qgk D
1

jE�k � xkj
4
gk :
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We denote by Kgk and K Qgk the Gauss curvatures with respect to gk resp. Qgk .
A classical computation in the differential geometry of surfaces gives

Kgk �
1

jE�k � xkj
4
K Qgk D ��gk log jE�k � xkj

2:

The integration of this identity over †ı with respect to the gk volume form givesZ
†ı

Kgk dvolgk �
Z
†ı

K Qgk dvol Qgk D �
Z
†ı

�gk log jE�k � xkj
2 dvolgk

D

Z
@†ı

d log jE�k � xkj
2
� �k dlgk ;

(A.26)

where �k is the unit outward normal in† to @†ı with respect to the gk metric and
dlgk is the length form with respect to gk along @†ı . Let A0gk , resp. A0

Qgk
, denote

the trace free second fundamental form of E�k , resp. Ixk ı E�k . We have

jA0gk j
2
D 4.j EHE�k

j
2
�Kgk / and jA0

Qgk
j
2
D 4.j EH

Ixkı
E�k
j
2
�K Qgk /:

A classical result in conformal geometry (see [11, Theorem VI.1]) gives

jA0gk j
2 dvolgk D jA

0
Qgk
j
2 dvol Qgk :

Hence we have

j EHE�k
j
2 dvolgk �KE�k dvolgk D j EHIxkıE�k

j
2 dvol Qgk �KIxkıE�k

dvol Qgk

Integrating this identity over †ı and combining this with (A.26) givesZ
†ı

j EHE�k
j
2 dvolgk �

Z
†ı

j EH
Ixkı

E�k
j
2 dvol Qgk D

Z
@†ı

d log jE�k � xkj
2
� �k dlgk :

(A.27)
Then [13, Lemma A.5 of] gives an asymptotic expansion of E�1 in a neighborhood
of a1 from which we deduce that

dist.E�1.@Bı.a1//; E�1.a1// � Cı > 0

for some positive constant Cı . Since xk converges to E�1 and since E�k converges
in C 0-norm to E�1 on†ı , we have that for any ı > 0 there exists cı > 0 such that,
for k large enough

dist.E�k.@Bı.a1//; xk/ � cı > 0: (A.28)

Since E�k weakly converges in W 2;2-norm towards E�1 on †ı , d E�k strongly con-
verges towards d E�1 in Lp.†ı/ for any p < C1. In †ı n†2ı we denote by �
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the vector-field equal to the outward unit normal to @†s for s 2 .ı; 2ı/ for the
metric h. Since gk is conformally equivalent to h, we have that �k dlgk D � dl

h

and we have for s 2 .ı; 2ı/Z
@†s

d log jE�k � xkj
2
� �k dlgk D

Z
@†s

d log jE�k � xkj
2
� � dl

h
:

Using now the strong convergence of d E�k towards d E�1 in Lp.†ı/ for p D 2
together with (A.28), with the C 0-convergence of E�k towards E�1 and with the
help of Fubini’s theorem, we deduce that for almost every s 2 .ı; 2ı/ there exists
a subsequence still denoted by E�k such that

lim
k!C1

Z
@†s

d log jE�k � xkj
2
� � dl

h
�

Z
@†s

d log jE�1 � E�1.a1/j2 � � dlh D 0:

(A.29)
As before, since g1 WD E��1gRm is conformally equivalent to h, we haveZ

@†s

d log jE�1 � E�1.a1/j2 � � dlh D
Z
@†sk

d log jE�1 � E�1.a1/j2 � �1 dlg1 :

(A.30)
For all i ¤ 1, jE�1 � E�1.a1/j � c > 0 on @Bs.ai / and, since E�1 is Lipschitz, we
easily get that

8i ¤ 1; lim
s!0

Z
@Bs.ai /

d log jE�1 � E�1.a1/j2 � �1 dlg1 D 0: (A.31)

At this stage, if E�1 would be a smooth immersion, we could easily pass to the limit
s ! 0 for i D 1 as well and prove that this boundary integral generates a residue
equal to 4� . In the case of weak immersion E�1 2 E† this passage to the limit does
not necessarily holds and we have to pick some well chosen sequence si .

We take conformal coordinates x D .x1; x2/ around a1 such that

x.a1/ D y.a1/ D 0:

We assume to simplify notations that E�1.a1/ D 0. Let f be the inverse of these
coordinates. We assume to simplify the presentation that our metric h coincides
with the flat metric in these coordinates. Let �1 be the conformal factor associ-
ated to f �g1, i.e. e2�1 Œdx21 C dx

2
2 � D f

�g1. By an abuse of notation we keep
denoting by E�1 the composition of E�1 with f . Let

Ee1 WD e
��1 @x1

E�1 and Ee2 WD e
��1 @x2

E�1:

For any radius � > 0 we denote

E�1
�

WD j@B�.0/j
�1

Z
@B�.0/

E�1:
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We have

E�1
�

D
1

2��

Z
@B�.0/

Z �

0

@E�1

@r
dr

D
1

2�

Z 2�

0

Z �

0

e�1

jxj

�
cos � Ee1 C sin � Ee2

�
r dr d�:

(A.32)

For such a E�1 2 E†, � is continuous (see [4, 11] for instance). Hence we haveZ
B�.0/

je�1 � e�1.0/j

jxj
D o.1/ �: (A.33)

For i D 1; 2 we denote

Ee
�
i WD j@B�.0/j

�1

Z
@B�.0/

Eei :

Since Eei is W 1;2, we have by using the Hölder and Sobolev–Poincaré inequalitiesZ
B�.0/

jEei � Ee
�
i j

jxj
� C �

�
1

jB�.0/j

Z
B�.0/

jEei � Ee
�
i j
3

�1=3
� C �

�Z
B�.0/

jrEei j
2

�1=2
D � o.1/:

(A.34)

Since Z 2�

0

cos � Ee�1 C sin � Ee�2 D 0;

combining (A.32), (A.33) and (A.34) gives

jE�1
�

j � � o.1/: (A.35)

Let
EX
�
i WD jB�.0/j

�1

Z
B�.0/

@xi
E�1 D jB�.0/j

�1

Z
B�.0/

e�1 Eei :

Using Poincaré inequality, we have

1

jB�.0/j

Z
B�.0/

j@xi
E�1 � EX

�
i j
2
� C

Z
B�.0/

jr
2E�1j

2
D o.1/: (A.36)

Thus there exists x 2 B�.0/ such that

j@xi
E�1 � EX

�
i j
2
D o.1/:

Since @xi E�1 D e
�1 Eei D e

�1.0/Eei C o.1/, one has

j EX
�
i j D e

�1 C o.1/: (A.37)
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We have moreover

j EX
�
1 �
EX
�
2 j D

ˇ̌̌̌
1

jB�.0/j2

Z
B�.0/

Z
B�.0/

@x1
E�1.x/ � @x2

E�1.y/

� @x1
E�1.y/ � @x2

E�1.y/ dx1 dx2 dy1 dy2

ˇ̌̌̌

�
krE�1k1

jB�.0/j

Z
B�.0/

ˇ̌̌̌
rE�1 � jB�.0/j

�1

Z
B�.0/

rE�1

ˇ̌̌̌
� C

Z
B�.0/

jr
2E�1j D o.1/:

(A.38)

OnB�.0/we define Eu� WD E�1�x1 EX
�
1 �x2

EX
�
1 . Using again Poincaré’s inequality,

we have Z
B�.0/

jru�j
2
D

Z
B�.0/

jrE�1 � jB�.0/j
�1

Z
B�.0/

rE�1j
2

� C �2
Z
B�.0/

jr
2E�1j

2
D o.1/ �2:

(A.39)

Using the Hölder inequality, Fubini’s theorem and the mean value formula, we
deduce from (A.39) that there exists s 2 .�=2; �/ such that8̂̂̂<̂

ˆ̂:
ku� � u�

s
kL1.@Bs.0// �

Z
@Bs.0/

jru�j � o.1/ s;Z
@Bs.0/

j@xi
E�1 � EX

�
i j
2
D o.1/ s for i D 1; 2:

(A.40)

Then (A.35) gives that
ju�

s
j D o.1/ s:

Hence from (A.37), (A.38) and (A.40), proceeding to a classical Schmidt orthonor-
malization of e��1.0/ . EX�1 ; EX

�
1 /, we deduce that there exists a radius s 2 .�=2; �/

and a pair of unit vectors . Ef �1 ; Ef
�
2 / orthogonal with another such that

e��1.0/. EX
�
1 ;
EX
�
1 / D .

Ef
�
1 ;
Ef
�
2 /C o.1/ (A.41)

and
kE�1 � e

�1.0/Œx1 Ef
�
1 � x2

Ef
�
2 �kL1.@Bs.0// D o.1/ s: (A.42)

This implies in particular that

kjE�1j � e
�1.0/jxjkL1.@Bs.0// D o.1/ s: (A.43)
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Combining (A.43), (A.41) and the second line of (A.40) givesZ
@Bs.a1/

d log jE�1 � E�1.a1/j2 � �1 dlg1 D 2s

Z �

0

@E�1

@r
�

E�1

jE�1j2
d�

D 4� C o.1/:

(A.44)

Thus combining (A.27), (A.31) and (A.44), for this special choice of s 2 .ı=2; ı/
we have found a subsequence still denoted by E�k such that

lim inf
k!C1

Z
†s

j EH
Ixkı

E�k
j
2 dvol Qgk

� lim inf
k!C1

Z
†s

j EHE�k
j
2 dvolgk � 4� C oı.1/:

(A.45)

Since
lim inf
k!C1

Z
†s

j EHE�k
j
2 dvolgk �

Z
†s

j EHE�1
j
2 dvolg1 ; (A.46)

we have proved that for all " > 0 there exists s > 0 and a subsequence still denoted
by E�k such that

lim inf
k!C1

W.Ixk ı
E�k.†s// � W.E�1.†s// � 4� � ": (A.47)

Using a diagonal argument, we can choose a unique subsequence E�k such that
formula (A.44) holds for ı D 2�j for each j 2 N and with a well-chosen element
sj 2 .2

�j�1; 2�j /. Since lim infk!C1W.Ixk ı E�k.†s// is a decreasing function
of ı, we have proved that

lim
ı!0

lim inf
k!C1

W.Ixk ı
E�k.†ı// � W.E�1.†// � 4� � ": (A.48)

Hence we have proved that from any sequence satisfying the assumption of the
lemma one can extract a subsequence such that (A.48) holds; we have then proved
(A.24). The last case when no subsequence of xk converge to a point of E�1.†/ is
covered by the previous analysis since the problem of the limiting point E�1.a1/
as being an accumulation point of xk does not show up and one has (A.25) in that
case. Lemma A.4 is then proved.
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