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Security invariants in discrete transition
systems
Thai Son Hoang
Institute of Information Security, ETH-Zurich, 8092 Zurich, Switzerland

Abstract. The Shadow semantics is a qualitative model for noninterference security for sequential programs. In
this paper, we first extend the Shadow semantics to Event-B, to reason about discrete transition systems with
noninterference security properties. In particular, we investigate how these security properties can be specified
and proved as machine invariants. Next we highlight the role of security invariants during refinement and identify
some common patterns in specifying them. Finally, we propose a practical extension to the supporting Rodin
platform of Event-B, with the possibility of having some properties to be invariants-by-construction.

Keywords: The Shadow semantics; Event-B; Noninterference security; Refinement; Invariants

1. Introduction

Event-B [Abr10] is a formal modelling method for developing systems via step-wise refinement, based on first-
order logic and some typed set theory. The strength of the method is enhanced by the Rodin Platform (Rodin)
[ABH+10] for reasoning about Event-B models rigorously. Each machine, the basic construct in Event-B, corre-
sponds to a discrete transitions system, with its properties defined as machine invariants, which need to be proved
to hold always during the execution of the machine.

In [Mor06], Morgan introduced the “Shadow Knows” framework for sequential programs, including an
assertion language for expressing “knowledge” together with a weakest-precondition modal semantics, which
can be used as the basis for ignorance-preserving refinement. An attractive property of this work is the possibility
to translate (1) programs into standard statements and (2) properties into first-order logic (the “shadow form”),
and to reason about (1) and (2) within the standard context.
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In [HMM+11], we investigated the possibility of using Event-B as a target language for translating igno-
rance-sensitive sequential programs, and used Rodin as a back-end to generate and discharge the required proof
obligations for shadow refinement. While the technique meets our purpose of automating the refinement proofs,
it lacks certain aspects to become a development method for more general forms of systems. One of the shortcom-
ings is the disconnection between modelling and proving activities: Event-B models are used purely as a vehicle
for verification purpose, rather than a helping tool to deepen the understanding of systems under developing
and their properties. In particular, during the translation into Event-B, several invariants are added to the model
based on some predefined heuristics. Several questions could arise including what the meanings of these invari-
ants are. More importantly, when there are undischarged proof obligations, it is difficult to determine the precise
reason why the proofs fail, e.g., because of the weakness of the automatic provers or because of some modelling
mistakes, including missing invariants.

In this paper, we investigate how general discrete transition systems can be developed within the Event-B
framework, extended with the reasoning about noninterference security. In particular, we consider how security
properties can be specified as machine invariants. More importantly, we show why security invariants are needed
as the means to prove shadow refinement. We identify two common patterns for security invariants, constrain-
ing what the observer knows and only knows about the value of the hidden variables. Finally we propose some
extensions to Rodin to practically support the development systems with noninterference security properties.

Structure Overview The rest of our paper is structured as follows. In Sect. 2, we give some background informa-
tion on the Event-B modelling method and the Shadow Knows framework. We state our proposal for Event-B
models with security invariants in Sect. 3. We illustrate an application of our approach using the well-known
Chaum’s Dining Cryptographers algorithm [Cha88] in Sect. 4. In Sect. 5, we sketch our ideas for extending Rodin
to support developments of noninterference security systems. We compare related work and propose future work
in Sect. 6 and Sect. 7. Finally, we summarise and conclude in Sect. 8.

2. Background

In this section, we first give some background information on the Event-B modelling method. Afterwards we
review the Shadow Knows framework [Mor06] including the accompanying logic for expressing “knowledge”
(and its compliment “ignorance”).

2.1. The Event-B modelling method

Event-B [Abr10] is a modelling method for formalising and developing systems whose components can be mod-
elled as discrete transition systems. An evolution of the (classical) B-method [Abr96], Event-B is centred around
the general notion of events, which can be also found in other formal methods such as Action Systems [Bac89],
TLA [Lam94] and UNITY [CM89]. The semantics of Event-B based on transition systems and simulation
between such systems, is described in [Abr10]. We will not describe in detail the semantics of Event-B here.
Instead we only show some proof obligations that are important for our reasoning in later examples.

Event-B models are organised in terms of the two basic constructs: contexts and machines. Contexts spec-
ify the static part of a model whereas machines specify the dynamic part. Contexts may contain carrier sets,
constants, axioms, and theorems. Carrier sets are similar to types. Axioms constrain carrier sets and constants,
whereas theorems are additional properties derived from axioms. The role of a context is to isolate the parameters
of a formal model (carrier sets and constants) and their properties, which are intended to hold for all instances.
For simplification, we omit references to constants, carrier sets, and the properties of them in the presentation of
proof obligations.

We give an overview about machines in Sect. 2.1.1, then about machine refinement in Sect. 2.1.2.
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2.1.1. Machines

Machines specify behavioural properties of Event-B models. Machines may contain variables, invariants, and
events.1 Variables v define the state of a machine and are constrained by invariants I (v ). Theorems are additional
properties of v derivable from I (v ). Possible state changes are described by events.

Events An event evt can be represented by the term

evt �̂ any t where G(t, v ) then S (t, v ) end , (1)

where t stands for the event’s parameters,2 G(t, v ) is the guard (the conjunction of one or more predicates) and
S (t, v ) is the action. The guard states the necessary condition under which an event may occur, and the action
describes how the state variables evolve when the event occurs. We use the short form

evt �̂ when G(v ) then S (v ) end (2)

when the event does not have any parameters, and we write

begin S (v ) end (3)

when, in addition, the event’s guard equals true. A dedicated event in the form of (3) is used for the initialisation
event init. Note that events may be annotated to indicate whether they refine other events, and to present the
witnesses for refinement. We will say more about these annotations later.

The action of an event is composed of one or more assignments of the form

x :� E (t, v ) (4)

or
x :∈ E (t, v ) (5)

or
x :| Q(t, v , x ′), (6)

where x are some of the variables contained in v ,E (t, v ) is an expression, and Q(t, v , x ′) is a predicate. Note
that the variables on the left-hand side of the assignments contained in an action must be disjoint. In (4) and
(5), x must be a single variable. Assignments of the form (4) are deterministic, whereas the other two forms are
nondeterministic. In (5), x is assigned any element of a set E (t, v ). (6) refers to Q which is a before-after predicate
relating the values v (before the action) and x ′ (afterwards). (6) is also the most general form of assignment and
nondeterministically selects an after-state x ′ satisfying Q and assigns it to x . Note that the before-after predicates
for the other two forms are as expected; namely, x ′ � E (t, v ) and x ′ ∈ E (t, v ), respectively. All assignments of
an action S (t, v ) occur simultaneously, which is expressed by conjoining together their before-after predicates.
Hence each event corresponding to a before-after predicate S(t, v , v ′) established by conjoining all before-after
predicates associated with each assignment and y � y ′, where y are unchanged variables.

Proof Obligations Event-B defines proof obligations, which must be proved to show that machines have their
specified properties. We describe below the proof obligation for invariant preservation and feasibility. Formal
definitions of all proof obligations are given in [Abr10].

Invariant preservation states that invariants are maintained whenever variables change their values. Obviously,
this does not hold a priori for any combination of events and invariants, therefore must be proved. For each event,
we must prove that the invariants I are re-established after the event is carried out. More precisely, under the
assumption of the invariants I and the event’s guard G , we must prove that the invariants still hold in any possible
state after the event’s execution given by the before-after predicate S(t, v , v ′). The proof obligation is as follows.

I (v ),G(t, v ), S(t, v , v ′) � I (v ′) (INV)

Similar proof obligations are associated with a machine’s initialisation event. The only difference is that there is
no assumption that the invariants hold. Note that in practice, by the property of conjunctivity, we can prove the
preservation of each invariant separately.

1 We omit other modelling elements such as theorems and variants.
2 When referring to variables v and parameters t , we usually allow for multiple variables and parameters, i.e., they may be “vectors”. When
we later write expressions like x :� E (t, v ) we mean that if x contains n > 0 variables, then E must also be a vector of expressions, one for
each of the n variables.
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2.1.2. Machine refinement

Machine refinement is a mechanism for introducing details about the dynamic properties of a model [Abr10]. For
more details on the theory of refinement, we refer the reader to the Action System formalism [Bac89], which has
inspired the development of Event-B.

When proving that a machine CM refines another machine AM, we refer to AM as the abstract machine and
CM as the concrete machine. The states of the abstract machine are related to the states of the concrete machine
by gluing invariants J (v ,w ), where v are the variables of the abstract machine and w are the variables of the
concrete machine. Typically, the gluing invariants are declared as invariants of CM and also contain the local
concrete invariants constraining only w . Basically the refinement is defined as simulation of any trace of CM by
a trace of AM.

Each event ea of the abstract machine is refined by a concrete event ec (later we will relax this one-to-one
constraint). Let the abstract event ea and concrete event ec be as follows.

ea �̂ any t where G(t, v ) then S (t, v ) end (7)
ec �̂ any u where H (u,w ) then T (u,w ) end (8)

Somewhat simplifying, we can say that ec refines ea if the guard of ec is stronger than the guard of ea (guard
strengthening), and the gluing invariants J (v ,w ) establish a simulation of ec by ea (simulation). This condition is
captured by the following proof obligation.

I (v )
J (v ,w )
H (u,w )
T(u,w ,w ′)

�
∃t, v ′ ·G(t, v ) ∧ S(t, v , v ′) ∧ J (v ′,w ′)

(9)

In order to simplify and split the above proof obligation, Event-B introduces the notion of “witnesses” for the
abstract parameters t and the after value of the abstract variables v ′. The witnesses are in the form of predicates
W1(t, u, v ,w ) (for t), and W2(v ′, u,w ,w ′) (for v ′), which are required to be feasible, i.e., satisfying the following
proof obligations.

I (v ), J (v ,w ),H (u,w ), T(t,w ,w ′) � ∃u ·W1(u, t, v ,w ,w ′) (WFIS)

I (v ), J (v ,w ),H (u,w ), T(t,w ,w ′) � ∃v ′ ·W2(v ′, u, v ,w ,w ′) (WFIS)

Intuitively, the witnesses give some “hints” about how t and v ′ can be instantiated during the proof of (9). In
practice, often the witnesses are given deterministically, i.e. of the form u � E (t, v ,w ,w ′) or v ′ � E (u, v ,w ,w ′),
hence are trivially feasible. Given the witnesses, the refinement proof obligation (9) is replaced by three different
proof obligations as follows.

I (v ), J (v ,w ),H (u,w ),W1(t, u, v ,w ) � G(t, v ) (GRD)

I (v ), J (v ,w ),H (t,w ), T(u,w ,w ′),W1(t, u, v ,w ),W2(v ′, u,w ,w ′) � S(t, v , v ′) (SIM)

I (v ), J (v ,w ),H (t,w ), T(u,w ,w ′),W1(t, u, v ,w ),W2(v ′, u,w ,w ′) � J (v ′,w ′) (INV REF)

In the case where t or v are retained in the concrete machine, the corresponding witnesses can be omitted. The
witnesses are denoted by the keyword with.

A special case of refinement (called superposition refinement) is when v are kept in the refinement, i.e. v ⊆ w .
In particular, if the action of an abstract event is retained in the concrete event, the proof obligation SIM is trivial,
hence we only need to consider INV REF for proving that the gluing invariants are re-established. Our reasoning
in the later sections will often use this fact.

In the course of refinement, new events are often introduced into a model. New events must be proved to refine
the implicit abstract event skip, which does nothing, i.e., does not modify abstract variable v .
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Fig. 1. The Shadow operational semantics for sequential programs

The one-to-one correspondence between the abstract and concrete events can be relaxed. When an abstract
event ea is refined by more than one concrete event ec, we say that the abstract event ae is split and prove that each
concrete ec is a valid refinement of the abstract event. Conversely, several abstract events ae can be refined by
one concrete ec. We say that these abstract events are merged together. A requirement for merging events is that
the abstract events must have identical actions. We need to prove that the guard of the concrete event is stronger
than the disjunction of the guards of the abstract events.

2.2. The Shadow semantics for sequential programs

We now give a brief overview of the Shadow semantics for sequential programs [Mor06]. Assume that our pro-
gram state is partitioned into a “visible” part v and a “hidden” part h and our program operates over v and h.
Here we are interested in properties about what information an observer knows about the part of the program
states that he cannot directly see, i.e. h. In other words, we can ask the question “from the final value of v , what can
an observer deduce about the final value of h” [Mor06]. The answer obviously depends on the actual program:
if the program is v :� 0 then what the observer knows is just the same as what he knows before executing the
program; if the program is v :� h then he knows the exact value of h; if the program is v :� h mod 2, then he
knows the parity of h (in addition to what he already knows about h before).

2.2.1. Operational semantics

Assume a state space with only two sets of variables: visible variables v and hidden variables h, an additional
variable H —called the shadow of h—which keeps all the values that h has potentially at any point. It is required
that h ∈ H .
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Fig. 2. Examples for the Shadow semantics for sequential programs

The Shadow operational model is given by translating the (v , h)- (ignorance sensitive) programs to traditional
(that is (v , h,H )-) programs (the shadow form) as showed in Fig. 1. The sequential language contains determin-
istic assignments (:�), nondeterministic assignments (:∈), demonic choices (	), sequential compositions (;), and
conditional statements (if . . . then . . . else . . . end).

Some special features of the Shadow semantics are as follows.

• It distinguishes (as expected) between assignments to visible variables (10), (11) and assignments to hidden
variables (12), (13) in terms of changes to the shadow H .

• There is a clear distinction between atomic nondeterminism :∈ (12) and composite nondeterminism 	 (14). In
particular, in the case of the atomic nondeterminism, e.g., h :∈ {0, 1}, the observer only knows that h is set
to either 0 or 1 but no more than that. In the case of composite nondeterminism, e.g., h :� 0 	 h :� 1, the
observer knows afterwards which choice has been executed and hence knows the final value of h too.

• For conditional statements (16), the observer can also see the actual program flow, i.e., knowing which branch
has been taken. As a result, when S is executed, the observer knows that the guard G(v , h) holds initially. Sim-
ilarly, when T is executed, the observer knows that G(v , h) does not hold initially. The operational semantics
of conditional statements “shrinks” the shadow H accordingly to the branch being executed.

Figure 2 shows some examples for the Shadow semantics.
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Fig. 3. Examples of the assertion logic

2.2.2. Shadow refinement

Given two program statements S and T , we said S is refined by T (denoted as S 
 T ) when for starting from
some before state (v , h,H ), every possible after state (v ′, h ′,H ′

T ) of T can be matched by an after state (v ′, h ′,H ′
S ),

where H ′
S ⊆ H ′

T . Intuitively, shadow refinement corresponds to standard functional refinement on traditional
variables v and h, with the possibility of enlarging the shadow H component (shadow refinement). As a result,
v :∈ T in general cannot be refined to be v :� h (this is often referred to as the Refinement Paradox). While the
former does not change the shadow component H , the latter shrinks the shadow to the singleton set {h}.
2.2.3. The assertion logic

We review here the assertion logic for expressing knowledge from Morgan [Mor06, Mor09]. Informally, the logic
is defined to be first-order logic augmented with a modal operator “know” K [FHMV95]. Kφ (read “know φ”)
holds in the state when φ holds in every (other) state “compatible” with the visible part of this state, the program
text and the information about the execution path as well as earlier visible values. The dual operator of K is P
(hence Pφ read “possibly φ”) is defined as Pφ �̂ ¬K(¬φ). Examples about this assertion logic are given in Fig. 3.

We do not present explicitly the interpretation of the logic, details can be found in [Mor06]. However, we state
here some properties of the logic which are important for our reasoning here.

• Ignorance formulae are those in which all modalities K occur negatively, and all modalities P occur positively.
Shadow refinement preserves the only the truth value of ignorance formulae.

• We can assume wlog that the modalities, i.e. K and P are not nested, since we can remove the nesting by
Kφ ⇔ (∀c ·[[h :� c]]¬φ ⇒ K(h �� c)). (Here [[h :� c]]¬φ replaces any free h in ¬φ by c, note that any h under
the modal K or P is not free.)

• As a result, we can translate any modal formulae (i.e. containing either K or P) over the state consisting of
v , h into first-order logic over the state consisting of v , h,H (the shadow form), since we have

��K(Q)�� �̂ ∀h ·h ∈ H ⇒ Q . (17)

Note here that we overload the syntax ��·�� to translate both programs and formula from ignorance sensitive to
the shadow form. In a sense, the assertion logic is only syntactic sugar for the more basic form. The operator
��·�� distributes through all classical operators as usual. We note the following important properties of this
operator.

– For all standard predicate Q , i.e. containing no modal operators, we have

��Q�� ⇔ Q . (18)

– For operator P, the translation is as follows.

��P(Q)�� ⇔ ∃h ·h ∈ H ∧ Q . (19)
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• A useful syntactic extension is the notion of complete ignorance from [Mor06], defined as follows.

<<h | Q(v , h)>> �̂ ∀e ·Q(v , e) ⇒ P(h � e) (20)

Intuitively, <<h | Q(v , h)>> expresses that the only fact known about h is Q(v , h), nothing more. Notice that
this complete ignorance notion explicitly quantifies over some hidden variables (i.e., not necessarily over all
hidden variables). As an example, assume that there are two hidden variables h1, h2, both are in {0, 1}. Property

<<h1 | h1 ∈ {0, 1}>> (21)

is different from.

<<h1, h2 | h1 ∈ {0, 1}>> (22)

This can be seen by translating both (21) and (22) to their shadow form. For (21), the reasoning is as follows.

��<<h1 | h1 ∈ {0, 1}>>��
⇔ ��∀e1 ·e1 ∈ {0, 1} ⇒ P(h1 � e1)�� complete ignorance (20)
⇔ ∀e1 ·e1 ∈ {0, 1} ⇒ ��P(h1 � e1)�� Distribution of ��·��
⇔ ∀e1 ·e1 ∈ {0, 1} ⇒ (∃h1, h2 ·h1 �→ h2 ∈ H ∧ h1 � e1) Definition of P (19)
⇔ ∀e1 ·e1 ∈ {0, 1} ⇒ (∃h2 ·e1 �→ h2 ∈ H ) One-point rule

For (22), the reasoning is as follows.

��<<h1, h2 | h1 ∈ {0, 1}>>��
⇔ ��∀e1, e2 ·e1 ∈ {0, 1} ⇒ P(h1 � e1 ∧ h2 � e2)�� complete ignorance (20)
⇔ ∀e1, e2 ·e1 ∈ {0, 1} ⇒ ��P(h1 � e1 ∧ h2 � e2)�� Distribution of ��·��
⇔ ∀e1, e2 ·e1 ∈ {0, 1} ⇒ (∃h1, h2 ·h1 �→ h2 ∈ H ∧ h1 � e1 ∧ h2 � e2) Definition of P (19)
⇔ ∀e1, e2 ·e1 ∈ {0, 1} ⇒ e1 �→ e2 ∈ H One-point rule

As one can see, the part of the hidden variables over which a complete ignorance property holds is important.

3. Shadow semantics for Event-B models and invariants

In this section, we consider how the Shadow semantics can be extended to a more general setting of discrete
transition systems, e.g., Event-B. We assume that the models contain some visible variables v and some hidden
variables h. We also assume that the observer is given the actual Event-B model (hence knows how events are
specified). Moreover, at any time he knows which events have actually been executed (i.e., knows the execution
trace), and the earlier values of the visible variables v after each event execution. The operational model is given by
converting the ignorance sensitive Event-B models containing v and h into traditional standard Event-B models
including the additional shadow component H . It is required to adapt the Shadow semantics as given in Sect. 2.2
to the Event-B modelling method accordingly.

3.1. Events

We consider the translation of an ignorance sensitive (v , h)-event of the form3

evt �̂ when G(v , h) then S (v , h) end

into a standard (v , h,H )-event. Our translation is influenced by the following decisions.4

• The Shadow semantics given in Fig. 1 for assignments, i.e., (10), (11), (12), (13), uses standard sequential
compositions. Since there is no sequential composition in Event-B, we “compress” sequential compositions
into equivalent multiple assignments.

��v :� E (v , h)�� �̂ v ,H :�E (v , h), {g | g ∈ H ∧ E (v , h) � E (v , g)} (23)
��v :∈ E (v , h)�� �̂ v ,H :| v ′ ∈ E (v , h) ∧ H ′ � {g | g ∈ H ∧ v ′ ∈ E (v , g)} (24)
��h :� E (v , h)�� �̂ h,H :�E (v , h), {g ·g ∈ H | E (v , g)} (25)
��h :∈ E (v , h)�� �̂ h,H :| h ′ ∈ E (v , h) ∧ H ′ � {g ′ | ∃g ·g ∈ H ∧ g ′ ∈ E (v , g)} (26)

These translations have been applied in our earlier work [HMM+11].

3 We omit event parameters for clarity.
4 These translations are influenced by abstraction from a Kripke model given in Sect. A.
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• An important feature of a modelling method such as Event-B is the use of before-after predicates for abstractly
specifying the effect of event execution. We extend the translation into the shadow form for v :| Q(v , h, v ′)
and h :| Q(v , h, h ′) as follows.

��v :| Q(v , h, v ′)�� �̂ v ,H :|Q(v , h, v ′) ∧ H ′ � {g | g ∈ H ∧ Q(v , g, v ′)} (27)

��h :| Q(v , h, h ′)�� �̂ h,H :| Q(v , h, h ′) ∧ H ′ � {g ′ | ∃g ·g ∈ H ∧ Q(v , g, g ′)} (28)

Note that the other forms of assignments, i.e., (23), (24), (25), (26), are special cases of (27) and (28) as
expected. The general assignment form using :| allows making changes to several variables together, suitable
for a specification modelling method such as Event-B.
As a first example, assume the context of our model contains two hidden variables h1, h2, consider the assign-
ment

h1, h2 :| h ′
1 ∈ {0, 1} ∧ h ′

2 ∈ {0, 1} (29)

which assigns non-deterministically a value in {0, 1} to h1 and h2. Intuitively, the assignment leads to four
possibilities for the final value of the pair h1 �→ h2, which are any combination of 0 and 1. But in all cases the
shadow H is the same and is {0 �→ 0, 0 �→ 1, 1 �→ 0, 1 �→ 1}. The translation for example (29) is as follows.

��h1, h2 :| h ′
1 ∈ {0, 1} ∧ h ′

2 ∈ {0, 1}��
≡ nondeterministic hidden substitution (28)

h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h ′

2 ∈ {0, 1} ∧ H ′ �
{

g ′
1 �→ g ′

2 | ∃g1, g2 ·g1 �→ g2 ∈ H ∧
g ′

1 ∈ {0, 1} ∧ g ′
2 ∈ {0, 1}

}

≡ logic (since h1 �→ h2 ∈ H )

h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h ′

2 ∈ {0, 1} ∧ H ′ � {

g ′
1 �→ g ′

2 | g ′
1 ∈ {0, 1} ∧ g ′

2 ∈ {0, 1}}
≡ set theory

h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h ′

2 ∈ {0, 1} ∧ H ′ � {0 �→ 0, 0 �→ 1, 1 �→ 0, 1 �→ 1}
For the second example, we consider the assignment

h1, h2 :| h ′
1 ∈ {0, 1} ∧ h ′

1 � h ′
2 (30)

which assigns non-deterministically a value in {0, 1} to h1 and h2 such that they are equal. The assignment
leads to two possibilities for the value of h1 �→ h2 which are either 0 �→ 0 or 1 �→ 1. In either case, the final
value of the shadow H is {0 �→ 0, 1 �→ 1} as illustrated below.

��h1, h2 :| h ′
1 ∈ {0, 1} ∧ h ′

1 � h ′
2��

≡ non-deterministic hidden substitution (28)

h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h1′ � h ′

2 ∧ H ′ �
{

g ′
1 �→ g ′

2 | ∃g1, g2 ·g1 �→ g2 ∈ H ∧
g ′

1 ∈ {0, 1} ∧ g ′
1 � g ′

2

}

≡ logic (since h1 �→ h2 ∈ H )

h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h ′

1 � h ′
2 ∧ H ′ � {

g ′
1 �→ g ′

2 | g ′
1 ∈ {0, 1} ∧ g ′

1 � g ′
2

}

≡ h1, h2,H :| h ′
1 ∈ {0, 1} ∧ h ′

1 � h ′
2 ∧ H ′ � {0 �→ 0, 1 �→ 1} set theory

We emphasise here again the fact that the shadow H not only keeps the potential values for individual
variables hidden variables, e.g., h1, h2, but also restricts how these hidden variables relate to each other. If
we consider h1 and h2 separately, the possible values for each of them are either 0 or 1 for both exam-
ples. Comparing the second example to the first example, we do not know more about the value of h1
and h2 individually, but we know more about how h1 and h2 are varied together: they must have the same
value.

• Another important feature of Event-B is that events are guarded by their enabling conditions. The events hence
are interpreted as “naked guarded commands”, providing a simple mechanism for modelling concurrency
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and distributed systems. Inspired from the semantics of conditional statements (16), we define the semantics
of the naked guard command as follows.

��when G(v , h) then S (v , h) end�� �̂
when

G(v , h)
then

H :� {h | h ∈ H ∧ G(v , h)}; ��S��
end

(31)

The intuition here is that since the observer knows which event is executed, he then can subse-
quently derive that its enabling condition (which he also knows from the model text) must hold
when the event is carried out. Furthermore, since there are no sequential composition allows in the
action of events, we (again) combine the shrinking effect of the guard on the shadow H with the
effect of the action S . For example, when S is a deterministic assignment to visible variables (23), we
have5

��when G(v , h) then v :� E (v , h) end�� �̂

when
G(v , h)

then
v :� E (v , h)
H :� {g | g ∈ H ∧ G(v , g) ∧ E (v , h) � E (v , g)}

end

(32)

3.2. Shadow machines

We now turn to the issue of translating an ignorance sensitive (v , h)-machine into the shadow (v , h,H )-form.
Assume that our Event-B model has visible variables v , hidden variables h, some standard invariant I (v , h).
Additionally, our ignorance sensitive model have some modal invariant γ (v , h) (i.e., containing K and P).

variables: v , h
invariants:

I (v , h)
γ (v , h)

The modal invariant γ (v , h) denotes some property related to knowledge about the hidden variables h that hold
for all reachable states of the system. The modal invariant γ (v , h) can be translated into the shadow form as
described in Sect. 2.2.3, and proved as a standard invariant in the shadow (v , h,H )-machine.

We can see from the operational semantics of an ignorance sensitive (v , h)-event above that the its correspond-
ing (v , h,H )-event “contains” the original (v , h)-event, with some additional assignment updating the shadow
H . Moreover, from our experience with shadow machines in [HMM+11], we notice the separation of concerns
between the functional part of the model (related only to v and h) and the shadow part of the model (related
additionally to H ). As a result, for each ignorance sensitive machine, we associate two standard machines. The
first one is the “functional” (v , h)-model, essentially a copy of the original model without the modal invariant
γ (v , h). The second one is a superposition refinement of the first with additional shadow variable H (the shadow
model). This is summarised in Fig. 4. Later on, when there are multiple points of view of the system, we extend
this idea (i.e., separating functional and shadow parts) to allow the functional part of the model to be shared
between different points of view. More information is given in Sect. 5.

The initialisation init of the shadow model (v , h,H )—has an additional assignment to initialise H according
to the initialisation for h. For example, when h is initialised according to an after predicate L(h ′), the initialisation
for the shadow variable H is H :� {h ′ | L(h ′)}.

Furthermore, an invariant is generated in the shadow machine stating that the values of the hidden variables
are always in the shadow, i.e., h ∈ H . This property is in fact an invariant-by-construction as a requirement of the
Shadow semantics. Our translation of the initialisation and events into shadow form establishes and maintains
this invariant trivially.

5 As an alternative, we could use event’s parameters to “simulate” sequential substitution. However, this leads to some complications later
on for refining events with parameters.
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Fig. 4. Translation of secure Event-B machine

3.3. Shadow machine refinement

Given two ignorance sensitive (v , h)-machines M1 and M2, we have M1 
 M2 just when the translation
into standard (v , h,H2)-machine ��M2�� of M2 is a refinement of the (v , h,H1)-machine ��M1�� (the shadow
translation of M1) with the gluing invariant H1 ⊆ H2,6 denoted as ��M1�� 
H1⊆H2 ��M2��. The refinement
of M1 by M2 preserves all invariants in the form of ignorance formulae.7 Intuitively, ��M1�� 
H1⊆H2 ��M2��
guarantees that every concrete trace trc of ��M2��, a sequence of (v , h,H2)-states, has an abstract counter-
part in the form of a trace tra of ��M1��, a sequence of (v , h,H1)-states. More precisely, assume that trc is a
sequence of states 〈(v0, h0,H10), (v1, h1,H11), . . . , (vi , hi ,H1i ), . . .〉, the corresponding trace tra is of the form
〈(v0, h0,H20), (v1, h1,H21), . . . , (vi , hi ,H2i ), . . .〉, where H1i ⊆ H2i . As a result, if γ is an ignorance invariant for
M1 then its translation ��γ �� is an invariant of ��M1�� must hold at every reachable states of ��M1��. In particular,
��γ �� must hold for every (vi , hi ,H1i ) states of tra . Since γ is an ignorance formulae, it must also hold for every
(vi , hi ,H2i ) states since H1i ⊆ H2i ). As a result, γ is also an invariant for H2i .

3.4. Patterns of invariants

We identify two “patterns” for the modal invariants typically required for specifying properties and proving the
shadow refinement relationship. For shadow refinement, we need to prove that H0 ⊆ H1 where H0 is the shadow
of the abstract model and H1 is the shadow of the concrete model.8 In order to prove the above relationship, most
of the time, we need to constraint on how large H0 can get and how small H1 can be. Subsequently, we identify two
patterns of security invariants.

Type 1. What the observer knows This type of invariants is specified using the K operator. Recall the translation
of K(P (v , h)) into the shadow form as ∀h ·h ∈ H ⇒P (v , h), we can use this invariant to constraint the upper
bound of the shadow, e.g., how large the abstract shadow H0 can get. This pattern of invariants K(P (v , h))
corresponds to a standard invariant P (v , h). Our reasoning is as follows. If K(P (v , h)) is an invariant of
the machine, we always know that P (v , h) holds, hence P (v , h) must be an invariant of the machine. More
formally, since the translation of K(P (v , h)) into the shadow form is ∀ h ·h ∈ H ⇒ P (v , h) and we have the
invariant that stating that h ∈ H , it is trivial that P (v , h) holds.9 Vice versa, if P (v , h) is an invariant of the
machine, we must “know” that P (v , h) holds for all reachable states, hence K(P (v , h)) must also hold for all
reachable states, hence is an invariant of the machine.10

6 When there are new hidden variables introduced in M2, the gluing invariant between H1 and H2 is slightly more complicated.
7 Recall ignorance formulae are those in which K can only occur negatively and P can only occur positively.
8 The relationship can be more elaborated as we show in our example in Sect. 4. However our intuition about the patterns of security
invariants is still applicable.
9 This is similar to the Knowledge Axiom in [FHMV95].
10 This is similar to the Knowledge Generalisation Rule in [FHMV95].
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Type 2. What the observer does not know This type of invariants is specified using the complete ignorance notion
<< ·>>. Recall the definition of total ignorance as <<h | Q(v , h)>> as ∀e ·Q(v , e) ⇒ P(h � e), which can be
use to constraint the lower bound of the shadow, e.g., how small the concrete shadow H1 can be: it must be
large enough to contain every h satisfying Q(v , h).

Typically, these invariants are additionally guarded by some appropriated standard conditions.
Note that invariants of Type 2 are ignorance formulae hence are maintained by shadow refinement.

Invariants of Type 1 are not ignorance formulae, however are also preserved by refinement. This is because
a standard invariant P (v , h) is maintained by functional refinement.

4. Developing the dining cryptographers protocol

We take Chaum’s Dining Cryptographers problem and algorithm [Cha88] as the case study to illustrate our
approach.

4.1. Description

Three cryptographers are sitting around a table for dinner. Afterwards, the waiter informs them that the dinner
has been paid by someone. The person who paid for the meal could be either one of the cryptographers or the
National Security Agency (NSA). The cryptographers on the one hand want to know whether the NSA paid, but
on the other hand respect each other’s right to make an anonymous payment.

Chaum [Cha88] presented an algorithm for developing a protocol containing two phases. In the first phase,
each pair of cryptographers will toss a coin between them, but the value is hidden from the other cryptographer.
In the second phase, each cryptographer publicly announces the exclusive-or ⊕11 of the two coins that he saw
and if he already paid. The result of the algorithm is just the exclusive-or of the three announcements, which are
visible to everyone.

The Dining Cryptographers has been used as an illustrative example for the Shadow Knows semantics in
[Mor06]. Let a Boolean si denote whether or cryptographer i ∈ 1 .. 3 paid for the meal, and let r be the result of
the protocol, the specification of the problem is as follows.

{<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>} S

{

r � s1 ⊕ s2 ⊕ s3 ∧ r ⇒
(

<<s1 ∈ BOOL>> ∧
<<s2 ∈ BOOL>> ∧
<<s3 ∈ BOOL>>

)}

The predicate AtMostOne(s1, s2, s3) states that at most one of the cryptographer paid. Here

<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>

states that the only information we know about s1, s3 and s3 is that there is at most one of them hold at the
same time. As the post-condition, besides the functional requirement, i.e., r � s1 ⊕ s2 ⊕ s3, we have some security
requirements, e.g., when some cryptographer paid for the dinner, we do not know which cryptographer did (e.g.,
<<s1 ∈ BOOL>>). Moreover, the specification is satisfied when the program S is r :� s1 ⊕ s2 ⊕ s3. The proof is
carried out using the weakest-precondition modal semantics.

4.2. Some background on previous work

In [HMM+11], the Dining Cryptographers is used as one of the illustrated examples of using Rodin as a back-end
for verifying the correctness of the (sequential) algorithm. In particular, Event-B is used as a target language
for verifying the refinement relationship of the following two sequential programs. The specification is a single
assignment statement (abs )reveal as follows.

(abs )reveal : r :� s1 ⊕ s2 ⊕ s3 (Spec)

11 The operator ⊕ is defined for a number of Booleans, b1, . . . , bn . b1 ⊕ · · · ⊕ bn is FALSE if and only if there are an even number of TRUE’s
in b1, . . . , bn .
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The refinement contains 4 sequential statements announce1, announce2, announce3, and (cnc )reveal, correspond-
ing to the informal descriptions of the algorithm above (with a specific order on the announcements of each
cryptographer). Here cij denotes the value of the hidden coin between cryptographers i and j , and ai models the
visible announcement made by cryptograph i .

announce1 : a1 :� c31 ⊕ s1 ⊕ c12;
announce2 : a2 :� c12 ⊕ s2 ⊕ c23;
announce3 : a3 :� c23 ⊕ s3 ⊕ c31;
(cnc )reveal : r :� a1 ⊕ a2 ⊕ a3

(Ref)

A tool is used to translated these input programs (together with some declarations about variables, functions)
into Event-B models. The initial version of the tool translates each statement into an Event-B event, with an
additional assignment to the shadow variable H (similar to what is described in Sect. 3). Control variables are
added to model the order of execution of events accordingly. However, with this translation, it is impossible
to prove that (Ref) is a refinement of (Spec). In particular, the translation requires to prove that (cnc )reveal
is a refinement of (abs )reveal and each of the announcement event announcei is a new event, i.e., refines skip
(does nothing). The proof attempt fails to verify that the last announcement event, i.e., announce3 is a (shadow)
refinement of skip. While announce3 refines skip functionally—i.e., does not change visible variable r or hidden
variables s1, s2, s3—it does “reveal” some additional information about the hidden variables: their exclusive-or
s1 ⊕ s2 ⊕ s3 (which is the same as a1 ⊕ a2 ⊕ a3).

In order to get around this problem, a later version of the tool translates one statement of the sequential
program into two events: the first event updates the shadow H and the second event updates the ordinary variables.
As a result, statement (abs )reveal is now modelled by two events (abs )reveal S (shadow part) and (abs )reveal F
(functional part). Similarly, each statement in (Ref) is modelled by two events. Control variables are added to
ensure the correct order of executing events, in particular, each shadow event must be followed immediately by
the corresponding functional event. The shadow refinement can now be proved by associating the translated
abstract and concrete events accordingly. For the dining cryptographer algorithm, we prove that announce3 S
(the shadow part of the last announcement event) is a refinement of (abs )reveal S and (cnc )reveal F is a
refinement of (abs )reveal F . Other events of the concrete Event-B machine are new events. This (relationship
between events) reflects our analysis above that the last announcement reveals some information about the hidden
variables.

The disadvantage with the approach of splitting the shadow and functional parts of a statement is that it
complicates the formal model (somewhat artificially). In particular, for the specification, it seems to indicate
that there is no information leaked before (abs )reveal occurred. This certainly does not hold for the concrete
program. As a result, we can see the problem here is because of an “unfaithful” specification of the algorithm. In
the subsequent, we develop a slightly different model in [HMM+11] which does not require us to split the events.

In the subsequent sections, we present how the problem and subsequently the algorithm are developed in
Event-B. We model the protocol from the point of view of an outsider, e.g., the waiter. For each refinement level,
we present the ignorance sensitive model and its translation into shadow form. In particular, we focus on how
shadow invariants are discovered as means to prove the correctness of the formal model.

4.3. The initial model

We start with a slightly more abstract specification of the Dining Cryptographers problems (compared with the
specification given by Morgan [Mor06]).12

The cryptographers are represented by three Boolean variables s1, s2, s3. Invariant inv0 1 corresponds to
the assumption that at most one cryptographer paid.13 Variable r is to keep the final result of the algorithm.
Our specification has two events, namely calc and reveal, scheduled such that calc occurred before reveal. Event
calc “calculates” (somehow) if a cryptographer pays or not (bool(TRUE ∈ {s1, s2, s3}))14 and reveals the value
using some visible variable t . Afterwards, the result t is copied to the final r in event reveal. As a result, the

12 We regard the encoding of the result of the protocol using exclusive-or (⊕) as already revealing too much implementation details.
13 We use the Theory plug-in [Maa12] to define predicate AtMostOne.
14 bool is a function converting a predicate to either TRUE or FALSE according to its truth value.
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information about the exclusive-or of whether one of the cryptographer paid or not is revealed by calc (i.e., before
reveal happens). Note that we already anticipate the fact that some secret has been revealed event before final
result is produced. Additional control (Boolean) variables c and f are added to schedule the events accordingly.
Invariant inv0 2 constrains the order of the events. The initialisation init assigns initial values to the variables
accordingly.

variables: s1, s2, s3, r , t, f , c
invariants:

inv0 1 : AtMostOne(s1, s2, s3)
inv0 2 : c � FALSE ⇒ f � FALSE

init
begin

s1, s2, s3 :| AtMostOne(s ′
1, s ′

2, s ′
3)

r :∈ BOOL
t :∈ BOOL
f :� FALSE
c :� FALSE

end

calc
when

c � FALSE
then

c :� TRUE
t :� bool(TRUE ∈ {s1, s2, s3})

end

reveal
when

f � FALSE
c � TRUE

then
f :� TRUE
r :� t

end

Invariant inv0 3 states the functional requirement of the system: the result once computed will indicate if
one of the cryptographer paid for the meal or not. In order to prove the maintenance of inv0 3, an additional
invariant inv0 4 is required, states the assertion about the value of t after the calc has been carried out.

invariants:
inv0 3 : f � TRUE ⇒ r � bool(TRUE ∈ {s1, s2, s3})
inv0 4 : c � TRUE ⇒ t � bool(TRUE ∈ {s1, s2, s3})

The most important property that we want to analyse is that the protocol never reveals any information about
each cryptographer having paid for the meal or not, in the case it is reveals that some of them paid. For s1, this
is expressed as f � TRUE ∧ r � TRUE ⇒ <<s1 | s1 ∈ BOOL>> using the notion of complete ignorance as
mentioned earlier in Sect. 2.2.3. This is specified as a shadow invariant of our model.

invariants:
inv0 5 : f � TRUE ∧ r � TRUE ⇒ <<s1 | s1 ∈ BOOL>>

4.3.1. The Shadow model

The shadow is a superposition refinement of the functional model, with and additional variable H0 for tracking
the possible values of the hidden variables, i.e., s1, s2, and s3. Invariant Shadow0 captures the fact that the values
of the hidden variables are always in the shadow. The additional assignments in init and c update H0 according
to the Shadow semantics. Event reveal stays unchanged since it does not refer to any hidden variables.
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variables: . . . , H0
invariants:

Shadow0 : s1 �→ s2 �→ s3 ∈ H0

init
begin

. . .
H0 :� {s ′

1 �→ s ′
2 �→ s ′

3 | AtMostOne(s ′
1, s

′
2, s

′
3)}

end

calc
when

. . .

then
. . .

H0 :�
{

g1 �→ g2 �→ g3 | g1 �→ g2 �→ g3 ∈ H0 ∧
bool(TRUE ∈ {g1, g2, g3}) � bool(TRUE ∈ {s1, s2, s3})

}

end

We translate the invariant inv0 5 to its shadow version as follows.

�� f � TRUE ∧ r � TRUE ⇒ <<s1 | s1 ∈ BOOL>>��
⇔ f � TRUE ∧ r � TRUE ⇒ ��<<s1 | s1 ∈ BOOL>>�� Distribution of ��·��
⇔ f � TRUE ∧ r � TRUE ⇒ ��(∀e1 ·e1 ∈ BOOL ⇒ P(s1 � e1))�� complete ignorance (20)
⇔ f � TRUE ∧ r � TRUE ⇒ (∀e1 ·e1 ∈ BOOL ⇒ ��P(s1 � e1)��) Distribution of ��·��
⇔ Definition of P (19)

f � TRUE ∧ r � TRUE ⇒ (∀e1 ·e1 ∈ BOOL ⇒ (∃s1, s2, s3 ·s1 �→ s2 �→ s3 ∈ H0 ∧ s1 � e1))
⇔ f � TRUE ∧ r � TRUE ⇒ (∀e1 ·e1 ∈ BOOL ⇒ (∃s2, s3 ·e1 �→ s2 �→ s3 ∈ H0)) One-point rule

As a result, we add the following invariant (translation of inv0 5) to the shadow model.

inv0 5S : f � TRUE ∧ r � TRUE ⇒ (∀e1 ·e1 ∈ BOOL ⇒ (∃s2, s3 ·e1 �→ s2 �→ s3 ∈ H0))

The consistency of the model suggest an additional (similar) invariant about the result of the intermediate
calculation.

invariants:
inv0 6 : t � TRUE ⇒ <<s1 | s1 ∈ BOOL>>

The translated version of the invariant is added to the shadow model is as follows.

inv0 6S : t � TRUE ⇒ (∀e1 ·e1 ∈ BOOL ⇒ (∃s2, s3 ·e1 �→ s2 �→ s3 ∈ H0))

Proof obligation init/inv0 6S/INV The proof obligation stating that inv0 6S is established by init (after some
simplification) is as follows.

. . .
e1 ∈ BOOL

�
∃ s2, s3 ·AtMostOne(e1 �→ s2 �→ s3)
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The obligation is trivial to prove: for any given Boolean e1, there exists two Booleans s2, s3 such that there are at
most one of them to be TRUE.

Proof obligation calc/inv0 6S/INV The obligation stating that inv0 6S is maintained by calc is as follows (after
some simplification).

. . .
c � FALSE
e1 ∈ BOOL

�
∃s2, s3 ·e1 �→ s2 �→ s3 ∈ H0 ∧ TRUE ∈ {e1, s2, s3}

We discover at this point that we need an additional assumption about H0 when the temporary value has not yet
been computed, i.e., when c � FALSE. This is expressed as c � FALSE⇒<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>.
The meaning is that initially, we do not know any information about whether or not each cryptographer paid,
except the fact that at most one of them did. We add this as an invariant of the model.

invariants:
inv0 7 : c � FALSE ⇒ <<s1, s2, s3 | AtMostOne(s1, s2, s3)>>

The translation of invariant inv0 7 into the shadow form is as follows.

��c � FALSE ⇒ <<s1, s2, s3 | AtMostOne(s1, s2, s3)>>��
⇔ c � FALSE ⇒ ��<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>�� Distribution of ��·��
⇔ complete ignorance (20)

c � FALSE ⇒ ��(∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒ P(s1 � e1 ∧ s2 � e2 ∧ s3 � e3))��
⇔ Distribution of ��·��

c � FALSE ⇒ (∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒ ��P(s1 � e1 ∧ s2 � e2 ∧ s3 � e3))��
⇔ Definition of P (19)

c � FALSE ⇒
(

∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒
(

∃s1, s2, s3 ·s1 �→ s2 �→ s3 ∈ H0 ∧
(

s1 � e1 ∧
s2 � e2 ∧
s3 � e3

)))

⇔ One-point rule

c � FALSE ⇒ (∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒ e1 �→ e2 �→ e3 ∈ H0)

As a result, we add the following invariant into the shadow model.

inv0 7S : c � FALSE ⇒ (∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒ e1 �→ e2 �→ e3 ∈ H0)

The new additional invariant inv0 7S is trivially maintained by reveal and established by init.
Coming back to the proof obligation calc/inv0 6S/INV, with the additional invariant, the proof obligation

is (after some simplification) as follows.

. . .
c � FALSE
e1 ∈ BOOL
∀e1, e2, e3 ·AtMostOne(e1, e2, e3) ⇒ e1 �→ e2 �→ e3 ∈ H0

�
∃s2, s3 ·e1 �→ s2 �→ s3 ∈ H0 ∧ TRUE � e1 ⊕ s2 ⊕ s3
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The obligation can now be discharged: depending on the value of e1, we can choose the value for s2, s3 to
satisfy the goal. When e1 is TRUE, we can instantiate FALSE for both s2 and s3: since at most one of them
TRUE, e1 �→ s2 �→ s3 ∈ H0 according to invariant inv0S 3; and their exclusive-or is TRUE. Similarly, when e1
is FALSE, we can instantiate TRUE for s2 and FALSE for s3.

Symmetrically, we can have the following additional invariants stating the ignorance of the protocol with
respect to s2 and s3.

inv0 8 : f � TRUE ∧ r � TRUE ⇒ <<s2 | s2 ∈ BOOL>>
inv0 9 : t � TRUE ⇒ <<s2 | s2 ∈ BOOL>>
inv0 10 : f � TRUE ∧ r � TRUE ⇒ <<s3 | s3 ∈ BOOL>>
inv0 11 : t � TRUE ⇒ <<s3 | s3 ∈ BOOL>>

4.4. The first refinement

In the first refinement, we introduce the first detail about the implementation: the result can be calculated as
the exclusive-or15 of s1, s2, and s3. We focus here on the functional refinement of calc (event init and reveal stays
unchanged).

(abs )calc
when

. . .

then
. . .
t :� bool(TRUE ∈ {s1, s2, s3})

end

(cnc )calc
when

. . .

then
. . .
t :� s1 ⊕ s2 ⊕ s3

end

For simulation proof obligation, we have to prove that the expressions assigned to t are equivalent between
the abstract and concrete models, i.e. bool(TRUE ∈ {s1, s2, s3}) � s1 ⊕ s2 ⊕ s3. This is indeed a property of
exclusive-or ⊕, given that at most one of s1, s2 and s3 is TRUE. Together with invariant inv0 1 defined earlier,
i.e., AtMostOne(s1, s2, s3), the proof obligation is trivial to be discharged.

4.4.1. The shadow model

The shadow model of this refinement introduces the concrete shadow variable H1 in place the abstract shadow
H0. Invariant Shadow1 states that the values of hidden variables s1, s2, and s3 are always within the H1.

variables: s1, s2, s3, r , t, f , c, H1

invariants:
Shadow1 : s1 �→ s2 �→ s3 ∈ H1

The initial value of H1 reflects the non-deterministic initial assignment to the hidden variables (28) s1, s2, and
s3 (the same as with H0).

15 We also use the Theory plug-in [Maa12] to define exclusive-or ⊕.
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init
begin

s1, s2, s3 :| AtMostOne(s ′
1, s ′

2, s ′
3)

r :∈ BOOL
t :∈ BOOL
f :� FALSE
c :� FALSE
H1 :� {s ′

1 �→ s ′
2 �→ s ′

3 | AtMostOne(s ′
1, s

′
2, s

′
3)}

end

For calc, the additional assignment updating H1 according the definition (23).

calc
when

c � FALSE
then

c :� TRUE
t :� s1 ⊕ s2 ⊕ s3
H1 :� {g1 �→ g2 �→ g3 | g1 �→ g2 �→ g3 ∈ H1 ∧ s1 ⊕ s2 ⊕ s3 � g1 ⊕ g2 ⊕ g3}

end

The shadow refinement requires us to prove that the shadow cannot be decreased, which is stated as an
invariant ShadowRefinement1.

ShadowRefinement1 : H0 ⊆ H1

Since the initial expressions assigned to H0 and H1 in the initialisation init are identical, the invariant is
trivially established. For calc, the proof obligation calc/ShadowRefinement1/INV stating that calc maintain
the invariant ShadowRefinement1 (after some simplification) is as follows.

. . .
AtMostOne(s1, s2, s3)
g1 �→ g2 �→ g3 ∈ H0
bool(TRUE ∈ {g1, g2, g3}) � bool(TRUE ∈ {s1, s2, s3})

�
g1 ⊕ g2 ⊕ g3 � s1 ⊕ s2 ⊕ s3

From property of exclusive-or and the fact that AtMostOne(s1, s2, s3), we derive that bool(TRUE ∈
{s1, s2, s3}) � s1 ⊕ s2 ⊕ s3. However, we stuck when trying to prove that bool(TRUE ∈ {g1, g2, g3}) � g1 ⊕ g2 ⊕ g3
using the same reasoning: we do not have the necessary condition that AtMostOne(g1, g2, g3). In fact, we only
know that they are within the abstract shadow, i.e., g1 �→ g2 �→ g3 ∈ H0, and bool(TRUE ∈ {g1, g2, g3}) �
bool(TRUE ∈ {s1, s2, s3}). It suggests that we need an additional invariant about property of H0 (which we added
to the initial shadow model).

prj0S inv0 1 : ∀g1, g2, g3 ·g1 �→ g2 �→ g3 ∈ H0 ⇒ AtMostOne(g1, g2, g3)

Given the invariant, the proof obligation calc/ShadowRefinement1/INV can be trivially discharged.
Note that invariant prj0S inv0 1 states that K(AtMostOne(s1, s2, s3)) (using the modal operator K), i.e.,

the observer knows that at most one of the cryptographers paid for dinner. This is indeed the corresponding
projected version of standard invariant inv0 1 (i.e., Type 1 as mentioned earlier in Sect. 3). In fact, we should
expect prj0S inv0 1 being an “invariant-by-construction”, from the way the shadow H0 and its modification is
added into the model.
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Similarly, we can add the following invariant about H1 to the shadow model of the first refinement.

prj1S inv0 1 : ∀g1, g2, g3 ·g1 �→ g2 �→ g3 ∈ H1 ⇒ AtMostOne(g1, g2, g3)

4.5. The sequential second refinement

In this second refinement, we introduce the details of algorithm, i.e., the coin tossing and announcement by each
cryptographer. What we mean by sequential is that the order under which the announcement is made is fixed.

We introduce three new Boolean variables c12, c23, c31 to denote the value of the hidden coins between the
pair of corresponding cryptographers. The value of the coins are assigned randomly within the initialisation.

variables: . . . , c12, c23, c31

init
begin

. . .
c12 :∈ BOOL
c23 :∈ BOOL
c31 :∈ BOOL

end

In order to schedule the announcement of event, we introduce three additional Boolean control variables
f1, f2, f3 to denote if a corresponding cryptographer has announce his computation or not. Initially, they are all
FALSE. The control variables are visible. The sequential nature of the announcements is captured by invariants
inv2A 1 and inv2A 2. Invariant inv2A 3 allows us to replace abstract variable c by f3.

variables: . . . , f1, f2, f3

invariants:
inv2A 1 : f2 � TRUE ⇒ f1 � TRUE
inv2A 2 : f3 � TRUE ⇒ f2 � TRUE
inv2A 3 : c � f3

init
begin

. . .
f1 :� FALSE
f2 :� FALSE
f3 :� FALSE

end

Last but not least, we introduce three visible Boolean variables a1, a2, and a3 to model the announcements
made by the cryptographers.

variables: . . . , a1, a2, a3

init
begin

. . .
a1 :∈ BOOL
a2 :∈ BOOL
a3 :∈ BOOL

end

We have three events to model the announcements of the cryptographers as follows. Notice the use of the
control variables to schedule the announcements sequentially. Of these events, announce1 and announce2 are new
events, and announce3 is a refinement of the abstract event calc. This reflects the fact that the last announcement
actually reveals some information about the hidden variables, namely, the exclusive-or s1 ⊕ s2 ⊕ s3.
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announce1

when
f1 � FALSE

then
f1 :� TRUE
a1 :� c31 ⊕ s1 ⊕ c12

end

announce2

when
f2 � FALSE
f1 � TRUE

then
f2 :� TRUE
a2 :� c12 ⊕ s2 ⊕ c23

end

announce3

refines calc
when

f3 � FALSE
f2 � TRUE

then
f3 :� TRUE
a3 :� c23 ⊕ s3 ⊕ c31

end

The refinement of the original event reveal is as follows.

(abs )reveal
when

f � FALSE
c � TRUE

then
f :� TRUE
r :� t

end

(cnc )reveal
when

f � FALSE
f3 � TRUE

then
f :� TRUE
r :� a1 ⊕ a2 ⊕ a3

end

Simulation between the abstract and the concrete version of reveal relies on the following additional invariants
related to the announcement made by each cryptographer.

invariants:
inv2A 4 : f3 � TRUE ⇒ t � a1 ⊕ a2 ⊕ a3
inv2A 5 : f1 � TRUE ⇒ a1 � c31 ⊕ s1 ⊕ c12
inv2A 6 : f2 � TRUE ⇒ a2 � c12 ⊕ s2 ⊕ c23
inv2A 7 : f3 � TRUE ⇒ a3 � c23 ⊕ s3 ⊕ c31

4.5.1. The shadow model

We replace the abstract shadow H1 by H2 keeping track of the possible for concrete hidden variables which now
includes c12, c23, and c31.

variables: . . . , H2
invariants:

Shadow2A : s1 �→ s2 �→ s3 �→ c12 �→ c23 �→ c31 ∈ H2

init
begin

. . .
s1, s2, s3 :| AtMostOne(s ′

1, s ′
2, s ′

3)
c12 :| c′

12 ∈ BOOL
c23 :| c′

23 ∈ BOOL
c31 :| c′

31 ∈ BOOL

H2 :�
{

s ′
1 �→ s ′

2 �→ s ′
3 �→ c′

12 �→ c′
23 �→ c′

31 | AtMostOne(s ′
1, s

′
2, s

′
3) ∧

c′
12 ∈ BOOL ∧ c′

23 ∈ BOOL ∧ c′
31 ∈ BOOL

}

end

The update of the shadow variable H2 is straightforward for the announcement events, i.e.,announce1, announce2
and announce3. For example, for announce2, the additional assignment is as follows.

H2 :� {g1 �→ g2 �→ g3 �→ d12 �→ d23 �→ d31 ∈ H2 | d12 ⊕ g2 ⊕ d23 � c12 ⊕ s2 ⊕ c23}
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Moreover, the shadow H2 is unchanged within reveal: the concrete event reveal only refers to visible variables,
i.e., r , a1, a2 and a3.

We now discuss the possible link between the abstract shadow H1 and the concrete shadow H2. First of all,
the simple inclusion ⊆ relationship no longer works since H2 now also includes information about the hidden
coins, i.e., c12, c23, and c31. However, we still wish to express the fact that the shadow (with respect to s1, s2, s3)
does not decrease during refinement. With this intuition, the shadow refinement relationship between H1 and H2
could be expressed as the following invariant.

invariants:
ShadowRefinement2A : ∀s1, s2, s3 ·s1 �→ s2 �→ s3 ∈ H1 ⇒

(∃ c12, c23, c31 ·s1 �→ s2 �→ s3 �→ c12 �→ c23 �→ c31 ∈ H2)

The intuitive meaning of this relationship is that any possible value of s1, s2 and s3 in the abstract system according
to H1 is also a possible value in the concrete system according to H2. Basically, we compare H1 with the projection
of H2 onto the states containing only s1, s2, s3.

The fact that events announce3 (together with its abstract version calc) maintains invariant
ShadowRefinement2A requires some additional invariants about the revealed information after each
announcement. For announce3, intuitively, what we know is that at most one of the cryptographer paid, and
the values of the three announcements. It can be stated as follows using the notion of complete ignorance.

invariants:

inv2A 8 : f3 � TRUE ⇒ <<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ∧
a1 � c31 ⊕ s1 ⊕ c12 ∧
a2 � c12 ⊕ s2 ⊕ c23 ∧
a3 � c23 ⊕ s3 ⊕ c31

>>

Translated into the standard first-order logic, it corresponds to the following standard invariant (which is
added to the shadow model).

inv2A 8S : f3 � TRUE ⇒ (
∀g1, g2, g3, d12, d23, d31 ·

AtMostOne(g1, g2, g3) ∧
a1 � d31 ⊕ g1 ⊕ d12 ∧
a2 � d12 ⊕ g2 ⊕ d23 ∧
a3 � d23 ⊕ g3 ⊕ d31

⇒
g1 �→ g2 �→ g3 �→ d12 �→ d23 �→ d31 ∈ H2

)

Similarly, we have the following invariants about what information is leaked after announce2 and announce1
respectively.

invariants:

inv2A 9 : f2 � TRUE ∧ f3 � FALSE ⇒ <<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ∧
a1 � c31 ⊕ s1 ⊕ c12 ∧
a2 � c12 ⊕ s2 ⊕ c23

>>

inv2A 10 : f1 � TRUE ∧ f2 � FALSE ⇒ <<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3) ∧
a1 � c31 ⊕ s1 ⊕ c12

>>
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Finally, we need to specify what information about the hidden variables is known initially, i.e., before
announce1. In this case, the only information is that at most one cryptographer paid, which is captured as
follows.

invariants:
inv2A 11 : f1 � FALSE ⇒ <<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3)>>

Given the additional invariants, the machine is fully proved (including the establishment and maintenance of
the newly introduced invariants), using properties of the exclusive-or ⊕ operator.

4.6. The parallel second refinement

In the previous section, we considered a specific sequential order of announcements by each cryptographer. Intu-
itively, any order of announcements made by the cryptographers should work, i.e., it does not effect the outcome
of algorithm. An advantage of using Event-B is that the non-determinism between events can be used directly
to model concurrency. In this section, we make an attempt to model the dining cryptographers algorithm that
includes any order of announcements, and consider the challenge of ensuring that the result still correct.

We use the same additional variables as for modelling the sequential algorithm, including the control variables
f1, f2, and f3. The abstract variable c is refined according to the following invariant, indicating that calculation
happens when all announcements have been made.

invariants:
inv2B 1 : c � TRUE ⇔ f1 � TRUE ∧ f2 � TRUE ∧ f3 � TRUE

Since (as we analysed before) the last announcement is different from other announcements (it reveals some
secret), we split the announcement for each cryptographer into two cases. For example, for cryptographer 3, the
events are as follows.

announce3

when
f3 � FALSE
f1 � FALSE ∨ f2 � FALSE

then
f3 :� TRUE
a3 :� c23 ⊕ s3 ⊕ c31

end

announce last3
refines calc
when

f3 � FALSE
f1 � TRUE ∧ f2 � TRUE

then
f3 :� TRUE
a3 :� c23 ⊕ s3 ⊕ c31

end

Event announce3 models the case where cryptographer 3 announces, when one of the other cryptographer has
not yet made his announcement. In this case, no secret is revealed and this is a new event in our model. Event
announce last3 models the case where cryptographer 3 announces and he is the last one to do so. As the result,
this will reveal some information about the hidden variables and is a refinement of abstract event calc. Compare
to the sequential version, the guards of the announcement events do not enforce any specific order on how these
announcements must be carried out between the cryptographers.
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Finally, the guard of event reveal should ensure that it is enabled only when all the announcements have been
made.

(abs )reveal
when

f � FALSE
c � TRUE

then
f :� TRUE
r :� t

end

(cnc )reveal
when

f � FALSE
f1 � TRUE
f2 � TRUE
f3 � TRUE

then
f :� TRUE
r :� a1 ⊕ a2 ⊕ a3

end

Consistency for reveal, in particular to ensure that the abstract can simulate the concrete version, is guaranteed
by the additional invariants (similar to the sequential version of the algorithm).

inv2B 2 : f1 � TRUE ⇒ a1 � c31 ⊕ s1 ⊕ c12
inv2B 3 : f2 � TRUE ⇒ a2 � c12 ⊕ s2 ⊕ c23
inv2B 4 : f3 � TRUE ⇒ a3 � c23 ⊕ s3 ⊕ c31

4.6.1. The shadow model

For the shadow model, we introduce in place of the abstract shadow H1 a new concrete shadow variable H2 (the
same as with the sequential version).

invariants:
Shadow2B : s1 �→ s2 �→ s3 �→ c12 �→ c23 �→ c31 ∈ H2
ShadowRefinement2B : ∀s1, s2, s3 ·s1 �→ s2 �→ s3 ∈ H1⇒

(∃c12, c23, c31 ·s1 �→ s2 �→ s3 �→ c12 �→ c23 �→ c31 ∈ H2)

The update of the shadow variable H2 is the same as in the sequential version of the algorithm. For example, the
update assignment for announce3 is as follows.

H3 :� {g1 �→ g2 �→ g3 �→ d12 �→ d23 �→ d31 ∈ H2 | d23 ⊕ g3 ⊕ d31 � c23 ⊕ s3 ⊕ c31}

Notice that the shadow H2 is unchanged by event reveal.
So far, the model is almost identical to the sequential version of the algorithm. The main differences will

be the invariants about the leaked information by each announcement. Intuitively, for each announcement, the
information leaked is the exclusive-or of whether or not a cryptographer paid for the dinner and the two coins
that the same cryptographer sees. For example, for cryptographer s1, we knows that a1 � c31 ⊕ s1 ⊕ c12. However,
what we need is invariants in the form of complete ignorance to specify what we only knows. And what we only
know after each announcement depends on which other announcements have already been made. As a result, in
total we have 8 different invariants, some of them are as follows.
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inv2B 5 : f1 � TRUE ∧ f2 � TRUE ∧ f3 � TRUE⇒

<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ∧
a1 � c31 ⊕ s1 ⊕ c12 ∧
a2 � c12 ⊕ s2 ⊕ c23 ∧
a3 � c23 ⊕ s3 ⊕ c31

>>

. . . . . .

inv2B 8 : f1 � FALSE ∧ f2 � TRUE ∧ f3 � TRUE⇒

<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ∧
a2 � c12 ⊕ s2 ⊕ c23 ∧
a3 � c23 ⊕ s3 ⊕ c31

>>

. . . . . .

inv2B 12 : f1 � FALSE ∧ f2 � FALSE ∧ f3 � FALSE⇒
<<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3)>>

In fact the invariants enumerate through all the possibilities about what announcements have been already
made so far. For example, invariant inv2B 8 states that if the second and third cryptographers have already
announce, but not the first one, then what we only know is:

• at most one of them paid (the original knowledge),
• that a2 � c12 ⊕ s2 ⊕ c23 (information leaked through announce2),
• and that a3 � c23 ⊕ s3 ⊕ c31 (information leaked through announce3).

It seems that defining several invariants like this is cumbersome. However, this is certainly necessary for the
correctness of the algorithm. A remaining challenge is to find a better way for representing these invariants and
proving that they are indeed invariants of the model.

Table 1. Proof statistics
Model Total Auto. (%) Manual (%) Reviewed (%)

Initial
Func. 11 11 (100%) 0 (0%) 0 (0%)
Shadow 21 17 (81%) 0 (0%) 4 (19%)
1st Ref.
Func. 1 1 (100%) 0 (0%) 0 (0%)
Shadow 7 3 (43%) 0 (0%) 4 (57%)
2nd Ref. (Seq.)
Func. 29 29 (100%) 0 (0%) 0 (0%)
Shadow 27 23 (85%) 0 (0%) 4 (15%)
2nd Ref. (Par.)
Func. 31 31 (100%) 0 (0%) 0 (0%)
Shadow 76 69 (91%) 0 (0%) 7 (9%)
Total 203 184 (91%) 0 (0%) 19 (9%)

4.7. Proof statistics

The proof statistics of the development16 in Rodin is in Table 1. In particular, column “Reviewed” shows the
number of proof obligations that are reviewed. They are proof obligations related to certain correct by construc-
tion invariants which are discussed in Sect. 3. As a result, it is not required to discharge them. We highlight these
obligations to indicate how much proof effort is saved by identifying these invariants.

All proof obligations are discharged automatically. We use an additional plug-in [DFGV12] recently devel-
oped for Rodin, allowing external SMT solvers to be used to discharge proof obligations. Without the additional

16 The model is available on-line at http://www.inf.ethz.ch/~thoang/event-b/dining-crypto

http://www.inf.ethz.ch/~thoang/event-b/dining-crypto
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SMT solvers, we have to prove some (around 17%) obligations manually. As one can see, developing the shadow
models is slightly more difficult than the functional models, with more proof obligations. Moreover, the parallel
version of the algorithm is also (as expected) more involved than the sequential version of the algorithm. This is
because the parallel version requires more invariants taking into account all possible orders of announcements
made by the cryptographers.

5. Tool support

So far, we manually encode the development as standard Event-B model and prove its consistency within Rodin
[ABH+10]. It is an extensible Eclipse-based tool, allows contributors to implement additional support by pro-
viding plug-ins. In this section, we discuss the possibility of extending Rodin to support the generation of the
standard and shadow model directly.

First of all, even though we present the development of the Dining Cryptographer in the view of an agent (e.g.,
the waiter) different from the cryptographers involved in the protocol, it should be straight-forward to model
the algorithm through another different point of view (e.g., of one of the cryptographers). Different points of
view give different partitions of the state in terms of hidden and visible variables. A variable therefore can be
associated with some declaration to denote its visibility.

Taking into account the different agent’s view, an algorithm is correct if it is correct in every agent’s view.
As a result, we need to have several developments, each corresponding to a particular agent’s view. Despite of
having different developments, the functional part of these developments should be identical. In other words,
the different points of view only make the different to shadow model, not the functional one. As a result, we can
share the functional part of all development, prove the functional consistency of the system once and for all.

We propose the following extensions to Event-B models.

• Declaration of agents. For example, the following declaration defines two agents A and B.

agents: A,B

A special reserved constant other is used to refer to any third party agent, i.e., different from A and B.
• For each variable, declaration of its visibility. This is defined by a list of agents (possibly empty) which the

variable is visible to. For example, consider the following declarations.

variables: x visible to A, other
y visible to other
z visible to A,B

In A’s view, x and z are visible, y is hidden. In B’s view, only z is visible. In the point of view of a third party
(different from A and B), x and y are visible.

• The additional security invariants can be added using new clause shadow invariants. Since these informa-
tion can be different with respect to different points of view, we declare them separately for each agent. As
mentioned earlier, a security invariant is of the following form using complete ignorance.

some conditions P (v ) ⇒ <<h | some property Q(v , h)>>

Without introducing additional mathematical notation for << ·>>, we can define the security invariants using
some additional syntax. Note that the shadow invariants depend on agent’s view.

shadow invariants:
invX : ifP (v ) then knows only Q(v , h) about h(visible to list)

• As shown earlier in Sect. 4.4.1, some of the standard invariants I (v , h) can be lifted to be the shadow invari-
able, i.e., of the form K(I (v , h)), we add this declaration (list of agents) as an attribute of the traditional
invariant.
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invariants:
invY : I (v , h) visible to list

Fig. 5. Development in Security Event-B

Given the above extension to Event-B models, the additional shadow development can be generated accord-
ingly by adding the shadow variables, how they are updated, the gluing invariants between different shadow
variables across different refinement levels, and the generated shadow invariants from the declared security
invariants. The summary of how different developments are generated is in Fig. 5. In the middle is the secu-
rity model which is an Event-B model with additional decorations for about visible/hidden variables and
security invariants. This security model also act as the shared functional development between different shadow
developments. The shadow developments are generated accordingly to the declaration about agents’ point of
view. We depict here two developments according to agent A and B’s views.

6. Related work

Our motivation starts from the work of Morgan [Mor06, Mor09] on the Shadow semantics for sequential pro-
grams. We extend the work to discrete transition systems, allowing us to formalise and reasoning about non-
interference security for different types of systems including distributed and parallel ones. We use Event-B as
the language to illustrate the extension, with the basic modelling elements are guarded events. Similar to the
work in [Mor06], we distinguish between two types of non-determinism: atomic non-determinism represented by
non-deterministic event actions (assignments of the form :∈, :|), and composite non-determinism represented by
the implicit choice between enabled events. The semantics of guarded events is designed based on the semantics
given to conditional statement if G then S else T end in [Mor06]. In fact, a conditional statement usually modelled
using two guarded events as follows.
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evt1 �̂ when G then S end
evt2 �̂ when ¬G then T end

The semantics of conditional statements can be deduced from our semantics of guarded events by combining the
effect of the two events evt1, evt2.

The link between the Shadow semantics and Event-B/Rodin is first explored in [HMM+11]. There Rodin is
used as a back-end for verifying the Shadow refinement of sequential programs by encoding the shadow sequen-
tial programs into Event-B. We go one step further in this paper to give a Shadow semantics to Event-B models
themselves and use it to reason about discrete transition systems. We also translate ignorance-sensitive Event-B
models into standard Event-B model via an additional shadow variable H . As a result, there are similarities
between our work and [HMM+11], including how the shadow variable H is updated for assignments of the
form :�, :∈. Ultimately, we moved away from purely verifying sequential programs into modelling and reasoning
about discrete transition systems. In particular, we do not split the events into shadow and functional parts as
described earlier in Sect. 4.2. While separation of shadow and functional updates make perfect sense for sequential
programs, it introduces some complications in reasoning about discrete transition systems.

The logic of knowledge that we used is essentially identical to what described by Morgan in [Mor06], subse-
quently inspired by the standard model for knowledge-based reasoning of Fagin et al. [FHMV95]. In particular,
compared to [FHMV95, HO08, HO04], we only consider one agent (one point of view) at a time and the (v , h,H )-
model only allow the h component to be varied in the underlying Kripke model [FHMV95].

The example of the Dining Cryptographer is used to illustrate the Shadow semantics in [Mor09]. There its
reasoning is based on the accompanying weakest precondition semantics. Subsequently, it is used as one of the
illustrating examples in [HMM+11]. We focus here on developing the specification of the problem and the algo-
rithm within a development method like Event-B. In particular, we show that shadow invariants can be discovered
during development as conditions for maintaining the consistency of the model. Compared to [HMM+11] where
invariants are generated according to some heuristics based on strongest post-conditions (often containing some
redundant information), our invariants are added manually on demand and often simpler. Moreover, we identify
two patterns for invariants which should help the developers in guiding their intuition when reasoning about
non-interference security. This is of particular important for reasoning about discrete transition systems where
invariants often play an important role for deriving the correctness of the formal models.

The Dining Cryptographers problem has been studied in [HO04]. Moreover, it has also been extensively ana-
lysed mostly using model checking techniques [vdMS04, vdM11, ABvdM10, RL07, KLN+06]. In most of these
works, the models of the protocol are often generic in terms of the number of cryptographers. We presented a 3-
agent version of the protocol in this example. Later, we discuss the possibility of having a generic model in Sect. 7.
A clear distinction between these fore-mentioned work and our work is also the difference between model check-
ing and theorem proving. We develop our model gradually via refinement, starting with an abstract specification.
Most of the existing work using model checkers involves some “implementation” models and having properties
of the protocol verify directly on these concrete models. An abstraction of the Dining Cryptographers protocol
is discussed in [ABvdM10]. However, in our opinion, their purpose of abstracting the protocol is different from
our work. We present an abstract system capturing the essential properties of the protocol, whereas their abstract
system is a means for optimising the model checking problem.

7. Future work

We presented a 3-agent model for the Dining Cryptographers, and our invariants (in particular for the parallel
version) are often symmetric. It is clear that a more generic model parameterised by the number agents is desir-
able. In particular, assume that there are n cryptographers, the choices of the cryptographers can be represented
by a single variable s as follows.

s ∈ 1 .. n → BOOL

It is hence required to have a generalised version of exclusive-or and reasoning about properties of this operator.
Note that here s is a single variable, rather than n different variables representing the choice of each individual
cryptographer. As a result, the shadow H will be a set of total functions, each function represent a possible value
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of s. The first theoretical question we need to solve is how the shadow H is represented in the case where only part
of s is hidden. For example, in the view of cryptographer i , only s(i ) is visible, whereas s(j ) is hidden for j �� i .
Even in the case where s is all hidden, e.g., in the view of the waiter, it is also required to adapt the interpretation
of complete ignorance accordingly. For example, considering we want to express the fact that we do not know the
exact value of s(i ) for some i . Currently, using the notion of complete ignorance, the best of what we can express
is <<s | s(i ) ∈ BOOL>> and its translation into the shadow form is as follows.

��<<s | s(i ) ∈ BOOL>>��
⇔ ��∀t ·t(i ) ∈ BOOL ⇒ P(s � t)�� complete ignorance (20)
⇔ ∀t ·t(i ) ∈ BOOL ⇒ ��P(s � t)�� Distribution of ��·��
⇔ ∀t ·t(i ) ∈ BOOL ⇒ (∃s ·s ∈ H ∧ s � t) Definition of P (19)
⇔ ∀t ·t(i ) ∈ BOOL ⇒ t ∈ H One-point rule

However, this is obviously too strong compared to the property that we want to express. Basically,
<<s | s(i ) ∈ BOOL>> states that the complete ignorance not only about s(i ) but also of all other cryptog-
raphers, and their possible combinations. Intuitively, the precise property that we want to express using H is as
follows.

∀e ·e ∈ BOOL ⇒ (∃s ·s ∈ H ∧ s(i ) � e) (33)

The Shadow semantics is designed only for possibilistic (qualitative) reasoning about noninterference security.
In [HMM+11], it is showed that in some important class of security protocols, this (qualitative) reasoning can
be soundly lifted to probabilistic (quantitative) context. We want to study the conditions (similar to those in
[HMM+11, Sect. 4]) under which this lifting is also valid in the context of discrete transition systems.

We plan to extend Rodin to implement the tool support according to the proposal mentioned in Sect. 5. In
particular, the connection with a model checker for Event-B such as ProB [LB08] will be investigated. We believe
that the use of model checkers will complement the theorem proving task, in particular in verifying generic
parameterised models.

Last but not least, we intend to apply our approach to other examples, such as Rivest’s Oblivious Transfer
[Riv99]. Note that the specifications will be our building blocks for reuse later, i.e. we are going to build more com-
plex protocols using sub-protocols. This is illustrated in the work of McIver and Morgan [MM09]. For reusing
specification, we propose to make use of techniques such as generic instantiation and design patterns [HFA09]
for Event-B.

8. Conclusion

Our work presented in this paper is strongly motivated by the work of Morgan [Mor06, Mor09] and built on
the experience from [HMM+11]. However, while the original work of Morgan concentrated on the ignorance
preserving refinement of programs using mainly program algebra, we focus here on how the Shadow Knows
framework fits into a development method such as Event-B. In particular, we showed that the Shadow Knows
framework can be extended from reasoning about sequential programs to more general discrete transition systems
(including concurrent or distributed systems).

We presented an extension to the Event-B method for handling security invariants: properties of systems
constraining the knowledge of observers about some hidden variables. The state variables are split into the set of
visible variables and hidden variables. The underlying logic of Event-B is extended with the “knows” operator K,
where Kφ holds in the state where φ hold in every state compatible with the visible part of the state, the formal
model text and the information about the execution path including the previous visible values and the order of
executed events. We identify two patterns of security invariants to constraints the knowledge of the observer about
hidden variables. Moreover, we propose the notion of invariant-by-construction and determine certain properties
which fit into this category to reduce the number of obligations to be discharged.

For tool support, we propose an extension to Rodin. In particular, we consider multiple agents’ point of view
and generated different developments accordingly. A novel idea here the separation between functional model
and shadow model, allowing different developments to share the functional part.
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A. The model as a Kripke structure and connection with the operational model

We make similar approach to [Mor06, A] for building a Kripke structure of our model.
Given an Event-B model M. For simplicity, suppose that M contains a visible variable v and a hidden vari-

able h. Composite nondeterministic choice is the choice between events, whereas atomic nondeterministic choice
is within event actions, i.e., assignments of the forms :� or :|. The global state of the system comprises both v
and h, sequences of previous and current values of v and h, respectively, and p, sequences of events that has been
executed so far. The observer can see v and p, but not h.

The possible runs of a model M is all sequences of global states produced by successive execution of events,
starting from some initial state v0, h0 specified by the initialisation init. If the current state is (v , h, p), the set of
possible states associated with it is the set of triple (v , h1, p) that M can produced. We use denote this equivalence
relationship as (v , h, p) ∼ (v , h1, p).

The correspondence between the above Kripke model and the operational model described in Sect. 3 is via
the following abstraction

v � last(v ) ∧ h � last(h) ∧ H � {h1 · (v , h, p) ∼ (v , h1, p) | last(h1)}
The abstraction determines how H is initialised and updated as described in Sect. 3.
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