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Overview on reliability analysis
Goal: estimate the probability of failure Melchers and Beck (2015)

▶ Failure is defined through a limit state function g : x ∈ DX ⊂ RM 7→ R, such that the failure
domain Df is given by {x : g (x) ⩽ 0}

Pf = P (g (X) ⩽ 0) =
∫

{x:g(x)⩽0} fX(x)dx

Features

▶ Multidimensional integration
▶ Implicit domain
▶ Failure is rare, Pf ∈ [10−8, 10−2]

▶ g is often based on a computational
model M

▶ g is a deterministic simulator
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Deterministic simulators
Zhu and Sudret (2020)

Input variables
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Wind pro�le Max. 
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moment

Each run of the model leads to a single output
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Deterministic simulators
Zhu and Sudret (2020)

Input variables

Mb

PD
F

Wind pro�le Max. 
bending
moment

Running the model multiple times allows characterizing the output random variable
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Deterministic simulators
Zhu and Sudret (2020)

Input variables

Mb

PD
F

Pf

Wind pro�le Max. 
bending
moment

Finally, we can compute any quantity of interest (QoI)
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Stochastic simulators
Zhu and Sudret (2020)

Input variables

Mb

PD
F

Turbulence Max. 
bending
moment

Wind fields depend on macroscopic parameters and incorporate wind stochasticity
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Stochastic simulators
Zhu and Sudret (2020)

Input variables

Mb

PD
F

Due to the variability of 
the wind �eld

Turbulence Max. 
bending
moment

Repeated runs of the simulator lead to different outputs
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Stochastic simulators
Zhu and Sudret (2020)

Input variables

Mb

PD
F

Due to the variability 
of the input variables

Turbulence Max. 
bending
moment

If the stochasticity is fixed, the model reduces to a deterministic simulator
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Formal definition
Deterministic simulators Lüthen, Marelli and Sudret (2023)

▶ A deterministic simulator Md is a map:
Md : DX → R

x 7→ Md(x)
▶ DX is the input parameter space with joint PDF fX

Stochastic simulators
▶ A real-valued stochastic simulator Ms is a map:

Ms : DX×Ω → R

(x, ω) 7→ Ms(x, ω)

▶ Stochasticity in the model is represented by an abstract
random event ω ∈ Ω xx1 x2

▶ Randomness in computational models is achieved by introducing latent variables Z (ω):
Ms (x, ω) ≡ Md (x, Z (ω))
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Stochastic simulators
Two possible points of view Lüthen, Marelli and Sudret (2023)

▶ Fixing x or ω leads to different behaviours

Random function view
▶ For a given ω0, the output behaves as a

deterministic function:

gs (·, ω0) ≡ g (x, ω0)

xx1 x2

Random variable view
▶ For a given x0, the output behaves as a

random variable:

Yx0 = gs (x0, ·) ≡ Yx0 | X = x0

xx1 x2
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Reliability analysis on stochastic models
▶ The goal is to compute the probability that gs (X, ω) ⩽ 0
▶ No straightforward definition due to stochasticity
▶ Current approaches aim to bypass the latter

Possible approaches
▶ Computing characteristic values

g∗
α (x) = inf {x ∈ R : P (Yx0 ⩽ x) > α}

xx1

gs
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Reliability analysis on stochastic models
▶ The goal is to compute the probability that gs (X, ω) ⩽ 0
▶ No straightforward definition due to stochasticity
▶ Current approaches aim to bypass the latter

Possible approaches
▶ Computing characteristic values

g∗
α (x) = inf {x ∈ R : P (Yx0 ⩽ x) > α}

▶ Denoising
ĝ (x) = Eω [gs (x, ω)]

▶ MCS

Pf,MCS = Eω [P (gs (·, ω0) ⩽ 0)] ≡ EX [P (gs (x0, ·) ⩽ 0)]

PD
F

gs

Pf

Loss of information occurs because the stochasticity is not explicitly considered
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Reliability analysis on stochastic models
Random function view

▶ The conditional Pf reads:
Pf (ω0) = P (gs (X, ω0) ⩽ 0)

gs

xx1 x2

ω1ω2

Random variable view
▶ The conditional Pf reads:

Pf (x0) = Pω (gs (x0, ω) ⩽ 0)

gs

x

x1 x2

Due to conditioning, Pf is a random variable
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Reliability analysis on stochastic models

Practical implications
▶ A single realization of Pf is not of interest. Instead, we look for the statistics and quantiles

associated with this random variable

▶ Reliability analysis becomes ambiguous and more complex due to the additional latent variables
in the simulator

▶ The points of view are not interchangeable. They are different random variables that have the
same expected value, Pf,MCS

▶ There is no unequivocal reliability measure nor a "best" point of view

Best approach will depend on the problem at hand
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Toy example – R − S problem
▶ Consider the deterministic R-S problem:

X = {R, S}
g (X) = R − S

▶ Conversion into stochastic simulator by introducing two latent variables A and B:

gs (X; A, B) = A · R − B · S

▶ where:
– Input space

R ∼ N
(
5, 0.82)

; S ∼ N
(
2, 0.62)

– Latent space

A ∼ N
(
1, 0.12)

; B ∼ N
(
1, 0.12)
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Monte Carlo approach

▶ Two-level approach for obtaining the conditional distributions

Random function view
▶ Draw samples from the latent variables
▶ For each draw, the stochastic model

reads:

gs (X; A0, B0) = A0 · R − B0 · S

▶ Compute Pf (ω0)

Random variable view
▶ Draw samples from the input variables
▶ For each draw, the stochastic model

reads:

gs (x0; A, B) = A · R0 − B · S0

▶ Compute Pf (x0)

▶ Distributions were chosen such that the conditional probability of failure was analytically obtained
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Toy example – R − S problem
Results – Random function view

▶ Many possible reliability measures:

Mean 3.28 · 10−3

Median 1.34 · 10−3

Pf95% 1.26 · 10−2

95% CI
[
7.29 · 10−5, 1.86 · 10−2]

▶ Probability of failure for particular ω0,
caused only due the uncertainty in the
input variables

▶ Practical application: design 10 -8 10 -6 10 -4 10 -2 10 0
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Toy example – R − S problem
Results – Random variable view

▶ Many possible reliability measures:

Mean 3.28 · 10−3

Median 1.26 · 10−8

Pf95% 2.54 · 10−3

95% CI
[
5.15 · 10−17, 1.98 · 10−2]

▶ Probability of failure at a particular
design, caused only due to the
stochasticity in the model

▶ Practical application: robust design 10 -30 10 -20 10 -10 10 0
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Simply supported beam

▶ Limit state function

gs (x; E) = 0.015 − 5pL4

32Ebh3

p

L

b

h

V

E

▶ Input space

Variable Description Distribution Mean Std. deviation

b Beam width Lognormal 0.15 m 7.5 mm

h Beam height Lognormal 0.3 m 15 mm

L Length Lognormal 5 m 50 mm

p Uniform load Lognormal 10 kN/m 2 kN/m

▶ Latent space

Variable Description Distribution Mean Std. deviation

E Young’s modulus Lognormal 30,000 MPa 4,500 MPa
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Simply supported beam
Results – Random function view

▶ Possible realiability measures:

Mean 1.72 · 10−2

Median 7.20 · 10−3

Pf95% 6.80 · 10−2

95% CI
[
1.67 · 10−4, 9.56 · 10−2]

▶ Due to two-level Monte-Carlo, many
calls to the limit state function

Need for stochastic emulators
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Simply supported beam
Results – Random variable view

▶ Possible realiability measures:

Mean 1.72 · 10−2

Median 1.29 · 10−5

Pf95% 8.32 · 10−2

95% CI
[
1.75 · 10−14, 2.01 · 10−1]

▶ Due to two-level Monte-Carlo, many
calls to the limit state function

Need for stochastic emulators 10 -30 10 -20 10 -10 10 0
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Less relevant in practice due to its huge variability
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Concluding remarks
Conclusions

▶ Aleatory uncertainty is inherent to the problem and cannot be disregarded

▶ Due to inherent stochasticity of the models, performing reliability analysis becomes more
complex

▶ No unequivocal reliability measure exists and most suitable reliability measure will depend on the
problem

▶ Despite that, the random variable view leads to uninteresting pointwise Pf

Upcoming steps
▶ Use of stochastic emulators to overcome the computational burden

▶ Definition of suitable reliability measures w.r.t. case studies
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