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ABSTRACT Wind energy generation plays a vital role in transitioning from fossil fuel-based energy
sources and in alleviating the impacts of global warming. However, global wind energy coverage still
needs to rise, while requiring a significant step up in conversion efficiency: monitoring wind flow
and operational parameters of wind turbines is an essential prerequisite for coverage and conversion
efficiency optimization. This paper presents a low-power, self-sustainable, and time-synchronised system
for aerodynamic and acoustic measurements on operating wind turbines. It includes 40 high-accuracy
barometers, 10 microphones, 5 differential pressure sensors, and implements a coarse time synchronisation
on top of a Bluetooth Low Energy 5.1 protocol tuned for long-range communications. Moreover,
we field-assessed the node capability to collect precise and accurate aerodynamic data with a multi-node
setup. Outdoor experimental tests revealed that the system can acquire heterogeneous data with a time
synchronisation error below 100µs and sustain a data rate of 600 kbps over 400m with up to 5 sensor nodes,
enough to fully instrument a wind turbine. The proposed method does not add any traffic overhead on the
Bluetooth Low Energy 5.1 protocol, fully relying only on connection events and withstands transmission
discontinuity often present in long range wireless communications.

INDEX TERMS Aerodynamic, Bluetooth, time synchronisation, low power, sensors, IoT, structural health
monitoring, wind turbines, energy harvesting.

I. INTRODUCTION
Wind energy has the potential to significantly scale up
towards alleviating greenhouse gas emissions and help
mitigating in climate crises and global warming [1]. To avert
the worst impacts of climate change and preserve a livable
planet, global temperature increase needs to be limited to
1.5 ◦C above pre-industrial levels, as called for in the Paris
Agreement – emissions need to be reduced by 45% by
2030 and reach net zero by 2050 [2]. The urgency to
tackle climate change has triggered a growing interest in

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

wind energy [3]. To widely adopt wind energy as a leading
power source, optimizing the design and operation of wind
turbines to increase their efficiency while reducing negative
environmental impacts is essential [4]. This requires a deeper
understanding of the blade aerodynamics and an optimized
environmental impact [5]. As for site selection, today,
wind turbine installation is constrained due to significant
noise emission and the subsequent complaints from nearby
residents [6].
It is essential to gather pressure gradient and audio

data from operational wind turbines to gain a deeper
understanding of aerodynamics and acoustic phenomena [7].
Given the relative novelty of this research field, there is a clear
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demand for advanced and continuous monitoring solutions
to facilitate data collection, particularly for generating
publicly available datasets [8]. Supervisory Control and
Data Acquisition (SCADA) systems have been extensively
employed in various industrial control and Industrial Internet
of Things (IIoT) applications [9], but their utilization in the
wind turbine industry is limited. Currently, these systems
mainly acquire data from static components rather than
from the rotating blades [10]. This limitation arises due
to the considerable challenges associated with acquiring
aerodynamic and acoustic data from the blades of hundreds-
of-meters-tall turbines, which often involves significant effort
and costs in conducting measurement campaigns [8], [10].
Recent efforts have been made to address this issue

and obtain data from moving parts. For example, in [11],
researchers manufactured custom blades equipped with
embedded Pitot tubes and acoustic sensors [11], [12] to
measure the airstream and turbulence impacting the rotor
blade. However, a growing trend is to replace such expensive
andwiredmeasurement systemswith scalable and low-power
IIoT sensors in the next generation of monitoring systems [8],
characterized by reduced installation costs. In this direction,
the Aerosense system [13] has recently proved to support
in-situ measurements directly on a wind turbine blade,
exploiting a flexible and ultra-thin (<4mm) wireless sensor
node. Aerosense is a low-power, self-sustainable sensor
node for aerodynamic and acoustic measurements on wind
turbines. It includes 40 high-accuracy barometers, 10 micro-
phones, and 5 differential pressure sensors [14]. The wireless
transmitter is based on Bluetooth Low Energy 5.1 (BLE)
tuned for long-range while maintaining high per-bit energy
efficiency (80 nJ) [14], supporting a data rate of 850 kbps
over 438m [8]. Previously cited works show the possibility of
acquiring aerodynamic data directly from an operating wind
turbine [8], [9], [11], [13], [14]; however, they only address
a single node installation, without considering the relevant
challenges of monitoring an entire wind farm composed of
tens of electric generator and hundreds of blades. To enable
the multi-node installation of several sensor units, precise
time synchronization needs to be present to enable data
alignment in post-processing, which is a general challenge
for low-power wireless devices.

For the scope of this paper, the Aerosese system [14] has
been used as a reference point. We focus on enhancements
required or support a multi-node installation. We leverage the
Aerosense framework to assure back-compatibility, enriching
its original features with precise time synchronization down
to tens of microseconds, supporting a multi-node connection
with a tree topology and a remote server, and assessing the
data traffic in different configurations.

The objectives of this paper are: (i) Feasibility analysis of
using multi-node Internet of Things (IoT) networks to mon-
itor an entire wind turbine directly with field measurements
on operating electric generators: this is a study that, to the
best of our knowledge, has never been conducted before;
(ii) A full-stack description of a distributed measurement

system which is low power, self-sustainable, and scalable.
We describe both hardware and software and give a detailed
and system-level overview; (iii) The study, analysis and
implementation of a precise and robust time synchronization
technique over a BLE wireless link with minimal traffic
overhead, exploiting only intrinsic BLE packet exchanges,
and reaching an average synchronization error of 40µs and
a maximum of 100µs; (iv) A clock drift monitoring with
error compensation to correct the internal Real Time Clock
(RTC) drift due to variations in temperature and aging; (v)An
experimental analysis of the bandwidth limitation of the
wireless link was conducted from one to five sensor nodes.
Collected experimental results show a maximum throughput
of 2Mbps with a single-transmitting node. For a multi-node
deployment, a bitrate of 600 kbps was empirically determined
to guarantee transmission robustness over 400m with up to
5 sensor nodes connected to a single base station. Due to
the high amount of generated data from each sensor, which
can reach up to 4.2Mbps, and the bandwidth limitation
over long-range wireless links, the transmission time can
exceed by 7× the sensors acquisition period, up to 35× with
5 sensor nodes transmitting in sequence. These collective
bandwidth limitations thereby enforce the necessity of an
accurate time synchronization for re-aligning the collected
data in post-processing. (vi) A multi-node installation on an
operating wind turbine, Aventa AV-7 turbine [15], equipped
with two time-synchronized sensor nodes on the same
blade. The test, conducted over one month, demonstrates
with experimental results the effectiveness of our method
of keeping the sensor operational for turbine monitoring
with a synchronization error not exceeding 100µs. Even
in the presence of packet loss and miss-communications,
the maximum time misalignment between two sensor nodes
remains below 160 µs. Section II presents a literature review
focused on sensor nodes for wind turbines, with specific
emphasis on Bluetooth time synchronization and low-power
sensors. Section III describes the application scenario and its
specific requirements, derived from the goal of performing
wind turbine monitoring through aerodynamic analysis.
In Section IV, we delve into the details of our low-power
sensor node, namedAerosense, describing all its components,
from the hardware and the energy sources to the firmware and
wireless transmission sub-system. Moreover, an overview of
the whole Aerosense system is provided. Section V describes
the wireless time synchronization protocol, supporting a
multi-node installation and micro-second precision. Unit
tests and performance analysis are reported in Section VI.
Sections VII and VIII report results from a real installation on
an operating wind turbine. Lastly, Section IX concludes the
paper with an overview of future applications and research
directions.

II. RELATED WORKS
Monitoring the structural health of civil structures, commonly
referred to as Structural Health Monitoring (SHM), has
garnered significant research attention in recent years [8].
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Focusing on wind turbines, previous studies have explored
the integration of various sensors, such as pressure sen-
sors [16] and microphones [8], to demonstrate their impor-
tance in real-time control and intelligent maintenance.
Additionally, researchers have investigated the monitoring of
blade airflow using distributed systems [17].

While earlier analyses have shown the potential of utilizing
cost-effective Micro-Electro-Mechanical System (MEMS)
sensors for SHM applications [18], only a few works in
academia or industry have presented MEMS multi-sensor
arrays specifically designed for wind turbines [14]. Previous
studies have examined arrays of barometric MEMS sensors
in various application scenarios, such as mounting them
on aerodynamic surfaces like airplane wings [19] and
cars [20]. However, these works primarily focus on acquir-
ing aerodynamic and aeroacoustic measurements without
addressing the challenges of wireless communication, power
consumption, and the requirements for continuous and
long-term monitoring of wind turbines, particularly when
employing a multi-sensor setup [21].
Within the Aerosense work [22], authors successfully

demonstrate the effective application of MEMS sensors
for measuring sound levels and pressure distribution on
wind turbine blades, deploying a self-sustaining sensor node
wirelessly connected to a base station, able to function 24/7
on an operating wind turbine. Further, Wondra et al. [23]
propose a flexible solution for SHM of wind turbine towers
using only MEMS accelerometers in a battery-powered and
wireless system. However, despite deploying the system
on a wind turbine, they do not provide information on
power consumption or estimated battery lifetime. Another
comparable solution is presented by Lu et al. [24], where
the health status of a planetary gearbox is estimated
through vibration analysis. This work also demonstrates
the practical implementation of a vibration-based energy
harvester utilizing a 0.9 mW piezoelectric vibration energy
harvester to fulfill the energy demands. Nonetheless, the
sensor node in this solution has a low sampling frequency of
50Hz and limited coverage of 6 meters.

While a few examples of wireless solutions installed on
wind turbines can be found in the literature [25], previous
efforts have primarily focused on vibration measurements on
the wind turbine tower rather than acquiring aerodynamic
data directly from the blades. In the former case, the system
must process and transmit data in the range of 5 kbps [24],
while aerodynamic analysis typically requires a much higher
throughput of over 1Mbps [8], also reaching up to 4.2Mbps
when microphones are employed [14]. The additional data
collected by barometers and microphones in multi-sensor
arrays is crucial for wind turbine modeling but presents
significant challenges in designing energy-efficient and long-
lasting IoT devices. More importantly, the high requirements
in the wireless bandwidth pose a challenge for system
scalability, as the maximum number of sensing elements is
bounded by the effective wireless channel bandwidth [26].
These works feature low transmission data rate, and they are

tested and designed to work with a single agent rather than
collaborating, gathering structural information at the system
level from a heterogeneous cluster of sensor nodes.

In the domain of wireless measurement systems for wind
farms, a comprehensive technical comparison has been pre-
sented in [27]. For a real-life deployment scenario, we focus
on Aerosense, a state-of-the-art wireless system explicitly
designed for monitoring and analyzing the performance and
structural health of wind turbines [13]. While the Aerosense
system has been proved in the field by exploiting a long-range
BLE wireless link, the presented results only focus on a
single-node installation without investigating the possibility
of extending to multi-node use cases.

Two main requisites are necessary to deploy a multi-
node setup, namely, network scalability in terms of collective
bandwidth requirements and precise time synchronization
to align information collected by several sensor nodes [28].
In the field of aerodynamic wind turbine monitoring,
we additionally need to comply with the limited processing
capabilities of the embedded MicroController Unit (MCU)
and the power consumption, which needs to be minimized to
reach long-term measurement campaigns [29]. Thus, for this
paper’s scope, the BLE long-range wireless link featured by
Aerosense is enhanced to support a multi-sensor deployment
with time-synchronized measurements [30].

A. BLE TIME SYNCHRONIZATION
There are two major types of BLE time synchronization
methods: connectionless and connection-based [31]. In con-
nectionless BLE time synchronization methods, the master
device broadcasts beacons to perform the synchronization.
Authors in [32] present a BLE time synchronization solution
in an application that requires synchronization between
the transmitter and the receiver. In the solution, named
CheepSync, the transmitter broadcasts a single advertisement
packet containing the transmitter’s timestamp. The timestamp
corresponds to the time at which the packet is transmitted.
Upon receiving the timestamp, the receiver records the
local timestamp and calculates the time offset between the
transmitter and the receiver. CheepSync makes continuous
skew adjustments over a measurement window to handle
clock drift. By doing so, it can maintain a synchronization
error of 10µs with a re-synchronization every 100ms.
To handle the challenges in connectionless BLE time

synchronization, such as single-channel scan, random BLE
delay, and low-error timestamping, authors in [31] propose
BlueSync. To avoid keeping broadcasting and listening for the
beacons and therefore save energy, themaster only broadcasts
beacons in the synchronization time slot, which is just a
few seconds, and there is no radio activity in the following
10-minute synchronous task. The clock drift is estimated
with the broadcasted timestamps and is used to keep the
devices synchronized. The underlying assumption is that the
clocks drift apart with the same slopes in the synchronous
task as in the synchronization time slot. To achieve a better
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synchronization than the onboard 32.768 kHz RTC can offer,
a 16MHz timer clock is used to compensate for the clock
resolution and finally achieves an average synchronization
error of 320 ns per 60 s with a timer clock period of 62.5 ns.
However, in [33], the authors point out that in a practical
deployment, the time-synchronization delay caused by the
packet transmission process can strongly affect the accuracy
and precision of the time synchronization.

Although the above-mentioned methods have their merits,
they are not suitable for the application scenario of this paper
for two major reasons. One is the necessity of maintaining
a connection to acquire connection statistics for analytical
purposes and reliably and securely transmit some data while
keeping the devices synchronized. It is also possible to
configure two GAP roles (Broadcaster and Central for the
base station, Observer and Peripheral for the sensor node),
but that comes with an increased complexity of configuring
one more GAP role (Broadcaster for the base station and
Observer for the sensor node) that unnecessarily consumes
memory resources when the connection can already be
utilized to perform synchronization. The second reason
is that the clock drift estimation technique, as presented
in [31], is difficult to apply in our scenario, as sensor nodes
installed on an operating wind turbine suffer from substantial
temperature changes, which can strongly impact clock
drifts.

For connection-based synchronization, there are twomajor
types of timestamping methods based on the literature.
The first method utilizes external circuits to monitor the
current consumption changes caused by BLE events for
precise timestamping. Authors in [34] propose to monitor
the current profile of a connection event and generate a
hardware Interrupt ReQuest (IRQ) when the output of the
Customer Service Management (CSM) exceeds a threshold.
The generated IRQs at the master and the slave are delayed
with a standard deviation of 0.9µs. In [35], different options
for using current measurement for BLE time synchronization
are explored. They look into the current profiles of the master
and the slave during connection establishment, connection
events, and disconnection. The authors conclude that ‘‘many
of these events occur almost at the same time and can
be used for precise time synchronization’’ [35]. Current-
measurement-based timestampingmethods are promising but
require external circuits, increasing the system’s complexity,
cost, and power consumption.

BLE time synchronization based on radio events is
challenging when it only operates at the application layer
due to the non-deterministic delay in transmissions. Authors
in [36] measure the time difference between the connection
events on the master and slave devices and achieve an
accuracy of time synchronization within ±750µs. Authors
in [37] record the timestamps when a packet is transmitted
and received at the master’s and the slave’s sides to calculate
the clock offset and reach a Root Mean Square (RMS) timing
error of 6.6 µs with a 64MHz clock to timestamp the samples.
The achieved synchronization errors in these methods are

not low either in terms of absolute value or relative to the
timestamping clock period. An RMS error as low as 20µs
was achieved in [38] with a 32 kHz RTC assuming that the
operation timings of the sensor node’s (SN) and the base
station’s (BS) feature a time difference with a small standard
deviation. However, according to the protocol description
in [38], the underlying assumption is that the timestamps
TSSN from the sensor node and TSBS from the base station
are collected in the same connection event, which does not
hold when the data packet from the sensor node re-transmits,
a common situation in real deployments. In this case, the
protocol will mistakenly assume TSSN and TSBS are collected
in the same connection event when they are not, resulting in
the misalignment between the timestamps collected at both
sides. In the case of re-transmission, the calculated offset
deviates from the case where no re-transmission happens by
a multiple of Connection Interval (CI ), depending on the
number of re-transmissions.

The aforementionedworks show the possibility of enabling
microsecond time synchronization over the standard BLE
protocol. Moreover, they show the possibility of exploiting
the connection events to decrease the synchronization trans-
mission overhead, keeping the traffic and power consumption
under control. Despite their potentiality, these works target
specific application scenarios or are tested in controlled
environments, not supporting common problems in real
field deployments, such as packet loss and concurrent
re-transmissions. This is where our work is focused on
designing and implementing a reliable, low-power, and effi-
cient synchronization protocol with micro-second accuracy
in the field of wind turbine monitoring.

III. SENSING REQUIREMENTS FOR WIND TURBINE
AERODYNAMICS MONITORING
To understand the technical design choices and the Aerosense
system setup, a basic overview of wind turbine aerodynamics
has to be provided.

The airfoil is defined as the cross-section of a wind
turbine blade. For simplicity, in this paper, we consider a
symmetrically shaped airfoil, where the chord, the distance
between Leading Edge (LE) and Trailing Edge (TE), is shown
in Figure 1. One of the key variables of a blade is the
Angle of Attack (AoA), defined as the angle between
the airflow direction and the blade chord. With an AoA in
the 0 − 20◦ range, the absolute pressure on the wind-facing
side (described as pressure side in Figure 1) increases while
it decreases at the opposite edge on the suction side. In this
condition, the pressure distribution surrounding the blade
creates the lift force, pulling the blade towards the suction
side. When the AoA increases too much, the fluid flow that
normally moves over the suction surface generates a flow
separation near the TE, causing turbulence, audible noise
and dramatically decreasing the lift effect. On the other side,
an ideal symmetric airfoil does not generate any lift for AoA
equal to zero. Hence measuring the pressure all around the
blade surface is a fundamental prerequisite for analyzing
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the dynamic behavior of a wind turbine during its normal
operation in the field, both for increasing its performancewith
accurate real-time control and for accurate model generation.
In the case of large wind turbines, and multi-MW generators,
a blade can be longer than 100m; thus, a measurement
system able to acquire operational data from different points
is a primary necessity to model its dynamic aerodynamic
behavior.

For the scope of this paper, the minimum pressure accuracy
was determined for wind turbines of two different sizes,
Aventa AV-7 6 kW wind turbine [15] and DTU 10MW wind
turbine [39], in the range between 5 Pa and 40 Pa with a
dynamic working range above 1 kPa. Moreover, the needed
minimum barometric accuracy was defined to be at most 1%
of the dynamic pressure range at average wind speeds [8].
Additionally, the chosen sensor must have a low drift in
temperature [16] and a sampling rate equivalent to 100 times
per rotation [8], [16]. This amounts to approximately
70 samples per second for the Aventa AV-7 turbine [15] and
17 sps for the DTU 10 MW generator [39]. In [40], the
authors developed and demonstrated an identificationmethod
for transitional, and turbulence flows (flow separation in
Figure 1) relying on audio data. In a more recent work [14],
a similar approach was replicated using an array of 10MEMS
low-power microphones and a bandwidth up to 8 kHz.
These works also provided the maximum estimated acoustic
pressure level at 500 Pa, corresponding to a Sound Pressure
Level (SPL) above 140 dBSPL.

IV. SYSTEM ARCHITECTURE
This section describes a full-stack description of the system
named Aerosense [13]. It is primarily based on three main
components: a sensor node to acquire and handle the
data from different locations of the blade (Section IV-A),
a base station to forward the data from different nodes via
the gateway to the cloud (Section IV-B), and the cloud
infrastructure to record and process the acquired data with a
digital twin. This section starts by giving a general overview
of the system to acquire heterogeneous data from various
sensors directly from wind turbine blades, successively
transmitting and processing it in a digital twin. Further,
sensors and wireless System on Chip (SoC) are described
as responsible for collecting and transmitting data from the
physical world to the base station. Additionally, the base
station system and its connectivity to the cloud are described.
Figure 1 presents a high-level system overview.
The Aerosense [13] system was designed [14], tested,

validated in the field [14], and calibrated [16] in previous
works. These previous studies also characterize the system
power consumption, the photovoltaic energy harvester with
a flexible 74mm x 146mm solar panel MPT3.6-150 from
PowerFilmSolar,1 and the battery with a 32Wh (8.7Ah)
lithium element. However, the system has been limited so
far by installing only a single sensor node, which poses a

1www.powerfilmsolar.com

practical restriction to monitoring wind farms or large multi-
MW generators. In this paper, we propose a brief description
of the Aerosense system already tested on an operating wind
turbine [22] as a base to extend its functionalities with a
multi-node and time-synchronized setup.

A. AEROSENSE SENSOR NODE
The main Aerosense device is a self-sustainable and long-
range Bluetooth wireless sensor node for heterogeneous
measurement directly on the surface of an operating wind
turbine blade. Each sensor node is directly controlled by
its associated base station that initiates and configures the
sensor node to collect data and for wireless transmissions.
Particularly, upon powering up the system, the base station
starts by sending a chain of commands to the sensor nodes
via the BLE transceiver to configure the data acquisition
process, such as sensor sampling rate, power state, enabled
sensing elements, and etc. Once the configuration is done,
each sensor node can start collecting data from the blade for
a predetermined period of time from different locations of the
blade, as shown in Figure 1. The data is first recorded in the
internal non-volatile memory during the acquisition process,
in which each sample is associated with a timestamp retrieved
from the local clock. After the data collection phase is
completed, the base station transmits the read commands for
data transmission from the cloud. The recorded data are then
transmitted to the base station via BLE and subsequently to
the cloud storage via an internet connection. This procedure
is designed to decouple the sensor sampling from the wireless
transmissions. Thus, each onboard sensor can be accurately
sampled, removing the real-time communication constraints,
including bandwidth limitation and packet loss. In a scaled
system,multiple Aerosense nodes can be deployed tomonitor
the wind turbine, where the BLE synchronization mechanism
is established before the data acquisition to ensure a uniform
and accurate data acquisition process.

1) MEMS SENSORS
The Aerosense node features various sensors that collect
heterogeneous data. These sensors are designed to acquire
specific aerodynamic and acoustic parameters, namely pres-
sure, temperature, audio, and vibrations. Table 1 summarizes
the selected commercial MEMS sensors in terms of power
consumption, height, and generated bitrate. To characterize
the pressure distribution along the blade, measuring the
pressure across the airfoil is necessary. To this end, a set
of 40 absolute pressure sensors have been positioned at
predetermined intervals along the airfoil, Figure 1 showcases
the placement of barometers as blue solid dots when the chord
length is below 1m and a set of multiple sensor clusters to
cover longer chord lengths (namely Node 1-3 in Figure 1).
Considering the sensor’s power consumption and thickness,
ST LPS27HHW is selected as the absolute barometer.
Further, this sensor benefits from an integrated temperature
sensor, allowing on-site calibration to avoid temperature drift
and compensate for aging over time. ST LPS27HHW is a
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FIGURE 1. A high-level overview of the proposed monitoring system and the Aerosense sensor board. Aerosense supports multi-node installation
over multiple blades and wind turbines. Details of the electronic, mechanical installation, and aerodynamic main definitions are provided.

water-resistant, ultra-compact absolute barometer sensor that
can measure from 260 to 1260 hPa absolute pressure range
yielding the aerodynamic requirements of a wind turbine
monitoring system. A previous study demonstrated the
possibility of achieving the required 5 Pa absolute accuracy
via calibration [16].

In addition to the absolute pressure sensor, Aerosense also
provides the possibility of having true differential sensing
via 5 differential Pewatron 52 pressure sensors. They are
used to estimate the local wind conditions at the blade [16].
It offers a compact sensing unit with only 5mm with an
integrated multi-order compensation algorithm for correcting
offset, sensitivity, and thermal errors. Finally, a sampling
rate of 1.2 kHz with a resolution of 16-bit is chosen for the
Aerosense implementation.

To record and monitor the audio spectrum of the flow
separation effect on the wind, the Vesper VM2020 MEMS
microphone is chosen. Microphones’ high bandwidth tends
to generate a large number of data making it non-trivial
for a tiny device to manage it. Subsequently, among the
commercial microphones, the VM2020 is selected with 6 kHz
bandwidth and a dynamic range of 140 dBSPL to respect the
aerodynamic requirement explained in Section III.
Vibration-based sensors are widely used in SHM complex

systems to study the integrity of the structures. Further,
a correlation between pressure and audio with the placement
of the blade is vital for the aerodynamic and acoustic
analysis of wind turbines [14], [16] to correctly remove the
altitude variation generated by the intrinsic periodic wind
turbine oscillation, from the collected data. Thus, a 9-axis

Inertial Measurement Unit (IMU), namely, Bosch BMX160,
is placed in the Aerosense design as the final piece of the
sensing unit. BMX160 consists of a 3-axis accelerometer,
3-axis gyroscope, and 3-axis magnetometer, providing high
accuracywith low current consumption, 46µA in activemode
and 4 µA in idle mode.

2) WIRELESS SYSTEM ON CHIP (SoC)
The wireless SoC chosen for the Aerosense node is the
CC2652P by Texas Instrument. It embeds a 48MHz ARM
Cortex-M4 processor, a 2.4GHz wireless interface, and a
wide range of peripherals to link external sensors. Mainly, the
CC2652P offers a low power consumption for sensor readout,
integrating a Sensor Controller (SC) unit. This provides the
capability of deploying one line of SPI or I2C at 30µA in
addition to the rest of the peripheral unit.Moreover, CC2652P
benefits from 352 kB of in-system programmable flash and
88 kB of SRAM. Finally, the BLE wireless interface provides
a long-range transmission respecting the requirements of
large-scale structures like wind turbines with a data transfer
rate of up to 2Mbps [8]. A combination of low energy and
long-range transmission range (up to 400m) makes BLE a
suitable candidate for wireless sensing systems such as wind
turbines.

Table 1 shows that the sensor node needs to support
a large data bandwidth; only the ten microphones lead to
a total of 3.8Mbps. Considering all the sensors together,
the bandwidth amounts to a total of 4.2Mbps (TotBW =

BWBMX160 + BWLPS27HHW + BWPewatron52 + BWVM2020).
Since the BW of the system is twice as BLE BW,
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TABLE 1. Aerosense set of sensors. For each sensor the generated bitrate
is calculated based on the selected sampling rate.

continuous-stream transmission of data to the base station
would not be possible. Thus, time windows for data
collections are defined by the base station, and then the sensor
node collects time-stamped data and stores it on a 512MB
flashmemory, namely Kioxia FLASHTC58CYG2S0HRAIJ,
is selected as a local non-volatile buffer. Finally, the
time-stamped data is transmitted to the base station according
to a predefined schedule. The base station will use the time
stamps to align in time data coming from multiple sensors.
Thus accurate synchronization is essential to ensure precise
alignment.

B. BASE STATION
The base station serves as a key component in the Aerosense
system, acting as an intermediary between the sensor nodes
and the cloud. It comprises a BLE transceiver and a local
computing unit that collects data from the local sensor nodes
and forwards it to the cloud storage for digital twin analyses.
The base station’s role in the Aerosense system is crucial for
establishing a reliable and efficient data collection process,
ensuring that all the sensor nodes are active and properly
working. Indeed, the base station is in charge of transmitting
commands to the sensor node to control the system’s flow.
Moreover, the base station contributes two other pieces of
information to the data collected by the wireless sensor
nodes, such as atmospheric pressure and air temperature
collected at the ground used as a reference for the whole
system.

The computing unit that controls the base station is the
Raspberry Pi 4 with a 64-bit ARM-Cortex A72 running at
1.5GHz. It supports a Linux distribution, allowing Python
applications to properly handle the data from the BLE
receiver and send them to the cloud over the MQTT protocol
and cellular wireless connection.

V. TIME SYNCHRONIZATION OVER BLE FOR A
MULTI-NODE SETUP
From the literature and the Bluetooth protocol specifications,
two different time synchronization methods over BLE can be
considered: connectionless and connection-based methods.
In this section, the base station is named Central device,
and the sensor node is called Peripheral device as in
the Aerosense context. This paper presents a two-step
BLE connection-based time synchronization protocol with

FIGURE 2. Transmission signals from one base station and three sensor
nodes. Signal A for node 0, B for node 1, and C for node 2 of the tx signal,
where signal D is the base station tx signal.

minimal overhead regarding the processing load of the MCU,
memory, power consumption, and packet traffic on the
BLE channel. Thus, the single connection GAP role used
to send commands to the sensor nodes and subsequently
download the data to the base station is also exploited
for synchronization. Indeed, to avoid keeping broadcasting
and listening for the connectionless beacons and therefore
save energy, the master only broadcasts the BLE connection
events (Figure 2) in specific time slots, which is just a
few microseconds. In practice, it would also be possible to
configure two GAP roles (Broadcaster and Central for the
base station, Observer and Peripheral for the sensor node),
but that comes with increased complexity of configuring
one more GAP role (Broadcaster for the base station and
Observer for the sensor node) that unnecessarily consumes
MCU and battery resources when the single role connection
can already be utilized to perform synchronization. Thus, the
connectionless approach is not further investigated. More-
over, this section also covers the link layer and connection
event protocols to support a reliable and flexible synchro-
nization strategy also in case of packet losses, Peripheral
ghosting and re-transmissions. For example, counteracting
for the wrong alignment issue discussed in Section II using
connection event counters. Therefore, we propose a two-step
time synchronization protocol that features: (i) a coarse
synchronization step which aims for a coarse clock offset
compensation over BLE (ii) a fine synchronization step
in which the coarse offset is used to help align the fine
timestamps collected at each side to calculate the fine offset.
In the rest of the section, T refers to the global time, and
t refers to the local RTC time on each device.

A. COARSE SYNCHRONIZATION
To correctly understand the basis of the proposed method-
ology, the connection event sequence featured by the BLE
protocol needs to be defined. For this reason, we provide here
a specific example aligned with our case study. In Figure 2,
one base station is connected with three sensor nodes, where
the transmission signal events are sampled with the logic
analyzer of a DIGILENT Analog Discovery 2 at 1 MHz.
At the base station’s side, there are three pulses in the
time span of one CI (in this figure CI = 100ms), each
corresponding to the start of each connection event with each
sensor node.
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At the base station’s side, the time difference between the
start of two consecutive transmissions for one sensor node
is always approximately equal to a multiple of CI , with a
negligible deviation. Besides, in one connection event, the
sensor node transmissions’ end and start are approximately
spaced by 90µs.
To build the coarse synchronization, the connection

sequence needs to be determined to enable a fast and
lightweight synchronization procedure. In the implementa-
tion, we decided on a static sequence, where the sensor
node with connection index 0 is always regarded as the first
in the connection list. During the connection sequence, the
base station first registers the connection event with the first
sensor node in the connection list. At the same time, the
RTC counter register (i.e., RTC timestamp) is read with direct
memory access (this operation is referred to as ‘‘read the
RTC timestamp’’ in the rest of the text), and the callback
is registered with the next sensor node in the connection
list. The list is bounded by the MCU memory size, and for
the scope of this paper, it was limited to 5. The collected
timestamps are mapped into the range [ts0, ts0 + CI ], where
ts0 is the timestamp for the first sensor node in the connection
list, with the function as shown in Equation 1, where N is the
number of connected sensor nodes.

t̃i = f (ti) = ti − ⌊
ti − t0
CI

⌋ · CI , i = 1, . . . ,N − 1. (1)

Ascending sorting is then performed on the mapped times-
tamps, and the subscripts of the sorted timestamps reflect the
connection sequence.

After this step, the coarse synchronization begins, where
Figure 3 displays the flow chart of each step. The base station
starts the procedure by sending the ‘‘startCoarseSync’’
command message to all the connected sensor nodes. Upon
receiving the command, each sensor node registers the
connection event callback, in which the RTC timestamp t temps
is recorded with a near-zero delay. Note that the t temps is
updated at every connection event until the sensor node is
unregistered.

After the commands are sent to all the sensor nodes, the
base station queues an indication to the first sensor node in
the connection sequence list. In the callback for connection
event i, the RTC timestamp t ′b is saved, and the event is
unregistered. At the sensor node’s side, the indication can
be successfully received in the same connection event (i.e.,
connection event i) at the earliest, but this condition does
not always apply. After receiving the indication, the latest
recorded timestamp t temps is saved as the coarse reference
timestamp t ′s and a dedicated timer is scheduled to be
invoked in k millisecond, where k ms is a sufficiently long
time after which the current connection event (connection
event i at the earliest) has finished. When performing the
coarse synchronization, the application data transmission is
minimized, and the connection event duration is usually
small; therefore, setting k as CI/2 is a practicable option.
In the timer callback, the indication confirmation is queued to

FIGURE 3. A diagram showing the coarse synchronization sequence from
left to right over time. Messages name, sequence, and time references are
reported.

the BLE stack for transmission. When the current connection
event i has finished, the confirmation can be successfully
received by the base station in the next connection event (i.e.,
connection event i+ 1) at the earliest. When the base station
receives the indication confirmation, the RTC timestamp is
read and saved as tcfmb . By doing so, the time difference
between the two saved timestamps at the base station 1t =

tcfmb − t ′b satisfies Equation 2, where R is the ratio of1t to CI .

R = [
1t
CI

] ≥ 1. (2)

If R is exactly 1, the indication is successfully transmitted
and received in the same connection event as the timestamp t ′b
is saved, and then the confirmation is exactly transmitted and
received in the next connection event. t ′b and t

′
s are considered

the coarse reference timestamps for the base station and
the sensor node. The coarse clock offset ‘‘offset ′’’ can be
calculated as in Equation 3.

offset ′ = t ′s − t ′b, (3)

In the case of R different than 1, three possibilities have to
be considered: (i) The connection event callback registration
and the queuing of the indication are performed shortly before
the start of a connection event. The registration is finished
before the connection event, but the indication is successfully
queued to the BLE stack after the connection event has
started. (ii) The indication is lost and then re-transmitted.
(iii) The confirmation is lost and then re-transmitted; in
this case, the condition R > 1 applies. In case (i) and
(ii), the saved timestamps t ′b and t ′s cannot be directly used
for the calculation of coarse clock offset. In case (iii), the
timestamps can actually be used, but there is no access to the
link layer acknowledgment, so whenever R > 1, the coarse
synchronization is considered a failure and, thus, discarded.
In the case of R > 1, another coarse synchronization is
performed until R = 1. The possibility of events such as case
(iii) validates the technical motivation to not directly calculate
the desired coarse clock offset with 1t , t ′b, and t ′s since it
would result is an incorrect estimation. However, in cases (i)
and (ii), the coarse clock offset can still be inferred according
to Equation 4.

offset ′ = t ′s − (t ′b + (R− 1) · CI ), (4)
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After the coarse synchronization for one sensor node
succeeds, the base station proceeds to the next one in the
connection sequence list. It is done in this sequence to
minimize the waiting time between the end of one coarse
synchronization loop and the start of the next. From this
moment on, each sensor node can internally calculate a
network-aligned timestamp (timestampsync) simply applying
Equation 5.

timestampsync = offset ′ + RTCtimestamp. (5)

However, despite timestampsync offering a robust time refer-
ence across the network, it cannot cover non-idealities such
as internal clock drift, CI period variability and temperature
dependency. Issues that need to be separately addressed with
a dedicated method.

B. FINE SYNCHRONIZATION
At the base station’s side, after the coarse synchronizations
with all the sensor nodes have finished, the base station
sends ‘‘startFineSync’’ command to them. In the meantime,
the base station maps the transmission signal to a physical
interrupt line and performs falling edge detection. RTC
channel 1 is configured to capture mode to latch the current
timestamp upon an edge detection event. Furthermore, the
edge detection also triggers a function hooked to RTC
combined interrupt to read out the latched timestamp in time.
RTC channel 1 and the transmission signal mapping are
disabled when Nb timestamps (tb) have been collected.
At the sensor node’s side, the connection event callback

registered in the coarse synchronization step is unregistered
upon receiving the ‘‘startFineSync’’ command. The sensor
node maps the transmission signal to a physical interrupt
line for edge detection. RTC channel 1 is disabled when Ns
timestamps have been collected, but the mapping continues.
Nb and Ns should satisfy Equation 6, where M is the

number of devices connected to the base station.

Nb = M · Ns. (6)

After Ns timestamps have been collected, the sensor node
transmits these timestamps ts, together with the previously
collected coarse reference timestamp t ′s to the base station.

C. CLOCK OFFSET CALCULATION
After receiving the timestamps from all the sensor nodes, the
base station starts the clock offset calculation. The coarse
offset is calculated for each sensor node as in Equation 3.
Then a timestamp in ts is picked as trefs , and the matched
timestamp at the base station’s side is estimated according
to Equation 7.

t̂refb = trefs − offset ′, (7) j = argmin
i

|tb(i) − t̂refb |,

|tb(j) − t̂refb | < 2.
(8)

If there exists a ‘‘j’’ that satisfies Equation 8, then it is
considered that the base station fine reference timestamp

trefb = t jb is collected in the same connection event as
trefs (trefb aligned with trefs ). If such a matched timestamp
cannot be found, another timestamp from ts is chosen as
trefs . If none of ts has a matched timestamp in tb, the fine
synchronization procedure is repeated. The clock offset is
calculated as in Equation 9.

offset = trefs − trefb − 90. (9)

Then the base station notifies the sensor node of the
calculated offset ‘‘offset’’ and the chosen fine reference
timestamp trefs .

D. CLOCK DRIFT MONITORING
After receiving the clock offset from the base station,
each sensor node infers the change in the clock offset
by monitoring the transmission signal, trying to maintain
constant the synchronization level achieved at trefs (i.e., the
initial synchronization error). Otherwise, the times on the
sensor nodes will drift apart over time.
The duration of one transmission signal depends on the

transmitted data size. In Figure 4, Equation 10 holds as
mentioned in Section V-A and proven in Section VI-B.

1T1 = 1T2 = CI
Ts0 − Tb1 = Ts2 − Tb3 = Ts4 − Tb5 = Ts6 − Tb7 = 90
Tb1 − Tb0 = Tb3 − Tb2 = Tb6 − Tb5 ̸= Tb4 − Tb3

(10)

Therefore, 1T3 = (Tb2 + Tb3 − Tb2 + 90)− (Tb0 + Tb1 −

Tb0 + 90) = CI , while 1T4 = (Tb6 + Tb7 − Tb6 + 90) −

(Tb4 +Tb5 −Tb4 +90) ̸= CI . If we extend 1T to cover more
than one connection event, then 1T

CI ∈ Z+ if the base station
transmissions at the start and the end have the same duration.
For example, 1T5 = 4 · CI because Tb1 − Tb0 = Tb0 − Tb8,
and the deviation of ts8 − ts0 from 4 ·CI is caused by the RTC
clock drift on the sensor node.

Another issue needing consideration is the RTC timestamp
increment over each CI . For CI = 100 ms, the RTC
timestamp should theoretically increase by 3276.8, but
instead, increases by 3276 or 3277 due to the clock resolution
(clock drift not considered here). So updating the clock offset
only when the RTC timestamp should increase by an integer
value is suggested to avoid unnecessary fluctuation in the
synchronization error.

Considering all the mechanisms mentioned above, the
clock offset is updated only if the conditions in Equation 11
holds, with CI = 100 ms, N is a multiple of 5.

1T ̸= 1t
1T = N · CI ,N ∈ Z+

3276.8 · N ∈ Z+

(11)

VI. TIME SYNCHRONIZATION PERFORMANCE
EVALUATION
This section evaluates the described protocol for BLE
time synchronization in Section V. Initially, the setup for
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FIGURE 4. A diagram showing the drift monitoring sequence from left to
right over time. Messages name, sequence, and time references are
reported. 1T is not always a multiple of CI .

examining the tests is described. Moreover, in the other
two sections, we justify the design choices by means of
measurement of the transmitted signals. Further, two sets
of tests, namely toggle test and sensor test, are deployed to
evaluate the time synchronization error.

A. TEST SETUP
This section describes the BLE time synchronization test
configuration. All the sensor nodes are synchronized to the
base station RTC time after the synchronization procedure.
Two tests are conducted to evaluate the accuracy of the
proposed synchronization protocol, namely the toggle test
and the sensor test.

In the toggle test, a meeting point time from the base
station RTC reference clock is transmitted to the sensor node
together with the ‘‘offset’’ and the picked fine reference
timestamp trefs . The sensor node converts the meeting point to
the local RTC time and configures RTC channel 2 in compare
mode with the converted time. A function hooked to the
RTC channel 2 is called when the RTC counter register value
exceeds or equals the time. In the hook function, a physical
pin IOID_16 is toggled with direct register access. The output
of the physical pin is sampled with a logic analyzer, and
times of edge generations on different nodes are compared
to calculate the synchronization error.

In the sensor test, ADC channel 1 on all the sensor nodes
is fed with the same square wave signal with a frequency
of 500Hz and amplitude 1V, generated by a DIGILENT
Analog Discovery 2 to simulate the analog microphone
output. When 10 pages of ‘‘microphone data’’ have been
collected, a timestamp request flag is set. A zero-latency timer
interrupt is invoked every 64µs, i.e., the sampling period of
the microphone data. In the interrupt service routine, if the
timestamp request flag is set, the RTC is read, and the base
station time is inferred as the first element on the new page.
The timestamps of the zero-crossing points of the sampled
square wave signal are interpolated and compared to quantify
the synchronization error.

The Texas Instrument CC1352P2 [41] is used as the BLE
receiver. The transmission signal is mapped to a physical pin

IOID_22 and routed to IOID_27 with a jumper wire. On each
sensor node, the transmission signal is mapped to IOID_17.

Three sensor nodes are connected to one BLE receiver
with the same connection parameters, i.e., connection interval
100ms, peripheral latency 0 , and supervision timeout
2000ms. Nodes are distanced from one another by 0.1mwith
triangular topology, while the BLE receiver is away by 0.3m
from the nodes. This distance is bounded by the measurement
setup with the DIGILENT Analog Discovery 2, which needs
to be physically connected with each node. Moreover, the
BLE connectivity in the field has already been proven in
previous studies [14], supporting up to 400 m.

B. DESIGN CHOICES AND TESTING METHODS
JUSTIFICATION
Measurements such as the transmission signals, connection
events, and testing methods are conducted to justify the
design choices made in Section V and the testing methods
in Section VI-A. In the following, we will detail the results of
these tests.

1) TRANSMISSION SIGNAL
To examine the transmission signals on the BLE receiver
and the sensor node, we mapped them to physical pins and
sampled themwith the logic analyzer in a DIGILENTAnalog
Discovery 2 at 1MHz.

Let us define notations used when evaluating the transmit-
ted signal from the node to the BLE receiver. The global time
difference between the start of two consecutive transmissions
for one sensor node at the base station’s side is denoted with
P′ as shown in Figure 5a. Moreover, the difference between
P′ and CI is denoted with 1P = P′

− CI . The global time
difference between the end of the base station transmission
and the start of the sensor node transmission is denoted with
1T as shown in Figure 5b.
In Section V, we defined CI as two consecutive connection

events. Thus, ideally, we should have an infinitesimal value
for 1P. Measurement results that are shown in Figure 6a
indicate that 1P reaches 0.6µs at maximum. However,
it is mostly concentrated at 0.2µs with an overall standard
deviation of 112 ns. Further, we mention that the end and
the start of the sensor node transmissions are approximately
spaced by 90µs. Further, a successful coarse synchronization
requires two connection events. Figure 6 shows that the
measurement results for 1T are centered at 90µs with a
standard deviation of 184 ns. This means that in a single
connection event, the receiver and the transmitter have the
same event.

2) CONNECTION EVENT
The coarse clock offset is calculated with the RTC times-
tamps read in connection event callbacks. To examine the
calculated coarse clock offset, which is an outcome of the
synchronization protocol between the receiver and the sensor
node, we toggled a physical pin of the one sensor node and
the BLE receiver at the base station.
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FIGURE 5. A diagram showing the time differences between different
transmission events from left to right over time. All the plotted signals are
hooked with the tx events.

FIGURE 6. Measurement results of transmission signal for 1P and 1T
connection event.

Figure 7a manifests the time difference between the
edges from both sides. The result shows that the generated
time stamp at the sensor node and base station after time
synchronization is centered at 0 after time synchronization
with a standard deviation of 75.398µs.

3) TESTING METHODS
Two tests on the testing methods are further verified to assess
insertedmeasurement uncertainty. For the toggle test, channel
2 is configured in continuous compare mode to generate an

RTC combined interrupt every second. When the interrupt is
generated, the function hooked to channel 2 is called to toggle
a physical pin. The time difference between two consecutive
edges and the distribution of their deviations from one second
are plotted in Figure 7b. The standard deviation of the time
difference is 4.126µs. Further, the error that can possibly be
introduced by the sensor test comes from the timestamping
method. In particular, since the timestamps are inferred in
the zero-latency interrupt service routine, the deviation of the
interrupt latency affects the timestamping error. To infer this
error, a physical pin is toggled with direct register access after
the RTC timestamps have been read, and the time difference
between two edges is demonstrated in Figure 7c. The time
difference has a standard deviation of 317 ns. To conclude,
the measurements verify that the proposed protocol for time
synchronization is a feasible and reliable solution for real
experiments with a multi-node scenario.

C. SYNCHRONIZATION ERROR ASSESSMENT
In the toggle test, all the sensor nodes toggle physical
pins every second according to the inferred receiver time
at the base station. However, the internal clock of each
node suffers from drift during the sensor node acquisition
time, affecting the initial synchronized system. The following
results show the synchronization error in real conditions w.r.t.
long-term acquisition slots, in which the internal RTC drifts
significantly and/or the BLE connection event is sporadically
not received Figures 8b and 8c, or in case of extreme
conditions in which a synchronization update cannot happen
for more than 10 s, such as Figure 8a, simulating a BLE
connection failure or wireless communication absence for an
extended period.

Figure 8a showcases the synchronization outcome for 15 s.
Even though the synchronization error starts at 50µs, due to
clock drift between the BLE receiver at the base station and
the measured node, this error monotonically increases rapidly
to a range of a few ms reaching 1.4ms at the end of the
measurement. Hence, the clock drift monitoring procedure is
done as described in Section V-D.

To monitor the synchronization with drift monitoring over
time, toggle and sensor test measurements are repeated in
a continuous mode. Notably, 10 chunks of data acquisition
sessions are collected, each lasting for 100 seconds. In order
to continually observe synchronization and drift monitoring,
the toggling and sensor test measurements are conducted.
Specifically, 10 sets of data acquisition sessions lasting for
100 seconds each are obtained.

Figure 8b, Figure 8c show the result of both tests,
where the effect of drift monitoring is evident in the
graph, as the synchronization error remains within a few
microseconds throughout the whole measurement period
reaching a maximum of 100µs, an acceptable range for the
aerodynamic and acoustic measurements. Further, a snippet
of the reconstructed square wave signals is presented
in Figure 9 for 5 nodes connected to the BLE receiver. To sum
up, the drift monitoring approach enables the synchronization
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FIGURE 7. Time difference between time stamps generated at the sensor node and BLE receiver at the base station for different test scenarios.

error to remain steady with a maximum synchronization error
100µs. Notably, the majority of the measured error comes
from the BLE connection event uncertainty, which has been
measured centered at 90µs.

VII. EXPERIMENTAL RESULTS ON A WIND TURBINE AND
SYSTEM SCALABILITY
In this section, we examine two sets of experiments to study
the scalability of the system in multi-node scenarios. First,
we explore the possibility of scaling the system to deploy
up to 5 nodes with a single BLE receiver, which is the
maximum number of nodes supported by the limited memory
of the Texas Instrument CC1352P2. However, the proposed
methodology still applies to a larger number of devices
within the BLE 5.1 specs. Additionally, we sweep the BLE
transmission throughput to investigate the transmission time
of the system in a multi-node scenario.

1) TEST SETUP
The microphone has a sampling rate of 16 kHz, which can
be affected by the synchronization error leading to data
corruption in multi-node scenarios. Two tests, namely, the
scalability test and the time transmission test, are performed
to examine the robustness of the system in a multi-node
scenario.

The scalability tests are designed to verify the BLE
bandwidth limitation in a multi-node setup. To this end,
we conduct experiments using a single BLE receiver and
five sensor nodes. The input to the microphones is a
rectangular waveform having a period of 200ms. Four cases
are analyzed where the number of nodes increments from
two to five progressively. Similar to Section VI, sensors are
distanced 0.1m apart with the same topology. For each test,
an acquisition time of 30 seconds is considered to record the
data from all the nodes connected to the base station.

For the time transmission test, we sweep the BLE
communication bitrate from 0.5 to 2Mbps, the transmission
time of each node, hence, affecting the whole system’s
throughput. The system setup is the same as the scalability
test. Two scenarios are considered, one involving sequential
data reading and the other utilizing a parallel approach for

reading the data from two or more devices. In the ‘‘Sequence
Reading’’, we sent the ‘‘Mic-Read’’ command to each node
one after another, starting with the first acquired node.
Conversely, during ‘‘Parallel Reading’’ scenario testing, all
sensor nodes received simultaneous commands for ‘‘Mic-
Read’’, enabling concurrent readings from multiple nodes.

2) BLE SYNCHRONIZATION FOR MULTI-NODE SYSTEM
To extract the synchronization error between the microphone
data of different nodes, we deployed the receiver at the base
station, acting as a proxy to the real case scenario. Figure 9
shows the magnified reconstructed waves and the difference
between them at the base station, which always fall below
100 µs. To extract the synchronization error, the rising edge
of each pulse is fixed as the critical point to compare the
generated time stamp for each node. Indeed, the difference
between time stamps at the rising edge is considered as the
synchronization error for the two nodes. Figure 10 depicts the
results of the synchronization tests for varying the number
of nodes connected to a single BLE receiver, reporting the
average error, the variance, and the 75th percentile. The
synchronization error between two nodes for all the cases
is between 0 to 160 µs, with a median error between 40 and
60µs, providing an acceptable range for aerodynamic and
acoustic systems deployed over wind turbines allowing to
reconstruct signals up to a range of kHz [16], [22].

In addition, Figure 10 shows that the synchronization error
concentration is at 50 µs. However, the outliers above 100µs
are due to connection BLE event drops that prevented the
execution of a fine synchronization cycle, thus degrading the
RTC alignment among sensor nodes that drifts over time as
shown in Figure 8a. Scaling up the Aerosense system using
the BLE protocol for multi-node synchronization is feasible,
with an acceptable synchronization error between nodes that
falls between the margins referred to above, also confirming
results in Section VI-C.

3) TIME TRANSMISSION AND BLE BANDWIDTH LIMITATION
To examine the time transmission of the multi-node setup,
we performed a BLE bandwidth variation, ranging between
0.5 to 2Mbps. Given the test setup described in SectionVII-1,
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FIGURE 8. Synchronization error over time between time stamps generated at the sensor node and BLE receiver at the base station for different test
scenarios.

FIGURE 9. Reconstructed timestamped square wave signals at the base
station.

FIGURE 10. Synchronization error between a node pair in a scenario
where the system is scaled from 2 to 5 nodes connected to a single base
station.

each packet has a fixed size and consists of 1.952 kb
(244B), sent to the base station at each connection interval.
The previously sampled sensor data, stored internally the
Aerosense node on the flash memory, is therefore split in
chunks of 244B (the maximum packet size in BLE 5.1 is
250B) and reconstructed at the receiver. Table 2 reports that
in the sequence reading scenario, moving from 0.5 to 1Mbps,
the transmission time is halved as expected. However, for
higher transmission bitrates, between 1 and 2Mbps, the
packet loss limits the effective transmission time of each
packet, which decreases by just 4%, from 2.86 to 2.76ms

as shown in Table 2. For the same reason, if two or more
nodes transmit the data to the base station simultaneously,
the total BLE bandwidth at the receiver still saturates.
Moreover, in this case, we also experience a high probability
of connection failure, expressed with N.A. in Table 2. Notice
that the only case in which the parallel packet communication
was successfully carried out is with only two nodes, each
of those with a transmission bitrate limited to 0.5Mbps,
suggesting that the base station can handle a data stream up
to 1Mbps, or in other words, a 1.952 kb packet every ∼2.86

For field installations, the ‘‘Sequence Reading’’ approach
for packet transmission guarantees the system’s stability.
In this context, the total transmission time of the sys-
tem increases linearly as the number of nodes increases.
Equation 12 can be used to extract the total transmission time
of the system.

Totaltx = Npacket × Tpacket × Nnodes. (12)

where Npacket is the total number of packets per acquisition
slot, Tpacket is the transmission time per packet, and Nnodes is
the total number of nodes connected to a single base station
BLE receiver.

For instance, Table 1 shows that the array of microphones
generates up to 3.8Mbps while the achieved maximum
throughput over the BLE wireless link is ∼1Mbps, which
can deteriorate down to 0.6Mbps in field deployments due
to packet loss and re-transmissions. Thus, the transmission
time of the Aerosense system exceeds the acquisition period,
with a factor that can vary between 4.2× and 7× for each
connected sensor node. A transmission time with a maximum
factor of 7× than acquisition time leads to a longer period
between each acquisition slot. Thus, it introduces a trade-off
between the period of each acquisition slot and the number
of nodes connected at each base station. Finally, we can
conclude that it is not advisable to connect more than five
sensor nodes to the same base station but rather install
a dedicated base station for each wind turbine, therefore
exploiting the multi-channel feature from the BLE protocol.
It not only permits multiple links to operate concurrently in
the same area but also enables the use of frequency hopping,
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FIGURE 11. Raw data of two synchronized nodes (node 1 in red and node 2 in green) installed on the wind turbine for a wind speed of 4m/s and
rotational speed of the blade of 52 rpm.

TABLE 2. Transmission Time per packet in the Multi-node Aerosense
system in milliseconds. N.A. represent the system failures.

allowing concurrent data transmission from nearby wind
turbines. Thereafter, the acquired measurements from sensor
nodes placed on the same wind turbine or the whole wind
farm can be precisely time-aligned, exploiting the precise
synchronization method proposed in this paper.

VIII. FIELD AERODYNAMIC MEASUREMENTS ON AN
OPERATING WIND TURBINE
The field deployment of the Aerosense system composed
of two complete sensor nodes happened in June 2023 on
an Aventa AV-7 [15] wind turbine. It is characterized by a
rotor diameter of 12.8m and a nominal power of 6.2 kW.
As visible in Figure 12, the two sensors were installed at
two different span distances on the rotor, respectively 2.5m
and 3.5m from the tip of the blade, making them 1m
away, to monitor the aerodynamic behavior at two different
spanwise positions. Further, the BLE receiver is placed at
the bottom of the wind turbine’s tower, approximately 18m
from the hub height. It means the height of the sensors
varied between 14.5m and 22.5m from the ground when
the blade was rotating. As visible in Figure 12, the operator
installs the system on the blade surface without using any
expensive crane or making any structural modifications
to the wind turbine. The Aerosense sensor node is fully
flexible and perfectly adheres to the blade surface, with its
stability guaranteed by a waterproof adhesive. Other than
demonstrating the effectiveness of the proposedmeasurement
system in providing a cost-effective measurement solution,
Figure 12 also shows a detailed view of Node 1. The
photovoltaic energy harvester guarantees self-sustainability,
and the main board, including the MCU and sensor arrays,
is clearly visible.

Although the system can support up to 2Mbps of data
reading rate, for increasing the whole robustness of the

FIGURE 12. Aerosense system deployment on an operating wind turbine.
A pair of identical sensors have been installed on a single blade.
A zoomed view of the sensor node is provided on the right, where (A) is
the photovoltaic energy harvester; (B) rechargeable battery holder;
(C) five Pewatron 52 pressure sensors; (D) an array of 40 barometers ST
LPS27HHW.

Aerosense system in longer runs at the field, we have chosen
0.6Mbps as the transmission bitrate.

The two sensor nodes are installed on the same blade
and therefore experience the same main accelerations and
rotational velocity of the wind turbine blade, as shown in
Figure 11. The signals from the accelerometers (Figure 11
(a)) present both the main sinusoidal motion, which is due
to the rotation of the gravity orientation in the reference
frame of the blade. As both nodes have the same orientation
on the same blade, the extrema in the acceleration signals
happen simultaneously for both nodes, demonstrating the
effective synchronization of the two nodes on an operating
wind turbine, where the time synchronization error evolution
over time is present on the y-left axis of Figure 11. In the
25 s window reported in Figure 11, the RTC of the two
Aerosense nodes drift apart in a range between 30µs and
65µs. Moreover, the gyroscope measurements also confirm
the data synchronization in the field, which measures the
rotational speed of the wind turbine blade. The main change
in the rotational speed is clearly superimposed for both nodes.
The slight differences in the two signals are primarily due
to the vibrations and deflections of the blade, which produce
higher dynamics than the main rotation of the blade.

The synchronization of the two nodes makes it possible
to assess the deformation of the blade by analyzing the
difference between the accelerometer and gyroscope signals.
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In Figure 11 (c), the signals of the differential pressure
sensors differ more than those from the accelerometers
or gyroscopes. This is due to the turbulent atmospheric
wind, whose speed and direction vary stochastically in time
and space. The turbulent flow, producing the aerodynamic
pressure on the blade, is not necessarily the same at both
nodes. Hence, the dynamics of the pressure signals also vary
between the two nodes. Severe turbulent wind conditions can
cause load variations resulting in premature blade fatigue and
loss of aerodynamic performance.

The synchronization of sensor nodes in the field of wind
turbine monitoring is essential for fine analysis of blade
motions from the accelerometers and gyroscopes, as well as
turbulent wind conditions from the high-frequency signals
from the differential pressure sensors.

IX. CONCLUSION
This work presents a low-power and time-synchronized wire-
less sensor node for aerodynamic and acoustic measurement
for large-scale multi-node wind turbine monitoring. Initially,
we propose a two-step Bluetooth Low Energy synchroniza-
tion protocol embedded at the MCU level. It is composed
of coarse and fine synchronization, which maintains a time
synchronization error within 100µs for over 10minutes,
with a clock offset update every 500ms in the three-node
context. Further, we study the bandwidth limitation of the
system up to five nodes per gateway, reaching a maximum
synchronization error of 160µs (happening concurrently with
BLE packet losses) between a pair of nodes in a long-term
field deployment on an operating wind turbine. Moreover,
time transmission experiments in multi-node scenarios show
a 600 kbps transmission bandwidth over 400m for long-run
field tests. Finally, results from two sensor nodes installed on
an operativewind turbine show the robustness of the proposed
protocol maintaining a synchronization error within 100µs
while sampling from a heterogeneous set of sensors on an
operating wind turbine.

With the support of a multi-node installation of the
Aerosense system, which is the main contribution of this
paper, future enhancements in wind energy generation will
be enabled. Indeed, collecting aerodynamic samples directly
from an operating wind turbine enables a more detailed
understanding of three-dimensional turbulent flow over
rotor blades, supporting several case studies with real-time
requirements. For instance, using local surface measurements
to infer the blade AoA and rotor inflow conditions helps
manufacturers to improve design and simulation tools. More-
over, the acquired measurements and operational history
can also increase revenues by improving decision-making
and asset management of sub-optimal control settings. For
instance, the acoustic data can be exploited to detect and
subsequently decrease the audio noise emissions, which
is known to upset the residents and, thus, increase wind
energy acceptance. Furthermore, the Aerosense system can
enable early detection and classification of local damage
or deterioration, reducing operating costs by improving

operators’ decision-making regarding blade maintenance and
repair.
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