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Strega: An HTTP Server for FPGAs
FABIO MASCHI and GUSTAVO ALONSO, Systems Group, Department of Computer Science,
ETH Zurich, Switzerland

The computer architecture landscape is being reshaped by the new opportunities, challenges and constraints
brought by the cloud. On the one hand, high-level applications profit from specialised hardware to boost
their performance and reduce deployment costs. On the other hand, cloud providers maximise the CPU time
allocated to client applications by offloading infrastructure tasks to hardware accelerators. While it is well
understood how to do this for, e.g., network function virtualisation and protocols such as TCP/IP, support
for higher networking layers is still largely missing, limiting the potential of accelerators. In this paper,
we present Strega, an open-source1 light-weight HTTP server that enables crucial functionality such as
FPGA-accelerated functions being called through a RESTful protocol (FPGA-as-a-Function). Our experimental
analysis shows that a single Strega node sustains a throughput of 1.7 M HTTP requests per second with an
end-to-end latency as low as 16 µs, outperforming nginx running on 32 vCPUs in both metrics, and can even
be an alternative to the traditional OpenCL flow over the PCIe bus. Through this work, we pave the way for
running microservices directly on FPGAs, bypassing CPU overhead and realising the full potential of FPGA
acceleration in distributed cloud applications.

CCS Concepts: • Hardware → Networking hardware; Hardware accelerators; • Computer systems
organization→ Client-server architectures; Cloud computing.

Additional Key Words and Phrases: Network on chip, FPGA, distributed systems, disaggregated accelerator,
HTTP, Webserver, RESTful API
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1 INTRODUCTION
The cloud has evolved into a highly distributed architecture pooling a potentially large number of
commodity machines to complete a given task. As a result, the last decades have seen a plethora of
distributed software platforms being proposed to facilitate the development of such applications,
notably Spark [69], Flink [8], Apache Drill [24], Kafka [33], Memcached [19], to name but a few. This
trend towards increasingly decentralised architectures has now reached an extreme in the form of
microservices [21, 51, 62]: comparatively small, independent software modules that communicate via
light-weight APIs and are dynamically combined to implement complex applications. Microservices
offer numerous advantages, such as independent deployment and invocation, increased flexibility,
simplified software life-cycle, and enhanced scalability and resilience. Major cloud providers,
including Google [23], Microsoft [2], and AWS [58], provide extensive support for microservices.

At the same time, the economies of scale found in the cloud make the utilisation of heterogeneous
hardware not only economically feasible, but also desirable from an efficiency standpoint. Thus,
the cloud today comprises many different forms of computing nodes, disaggregated layers, and
processing opportunities, including GPU clusters, TPUs, and SmartNICs that go well beyond
1Available together with the additional tools at https://github.com/fpgasystems/strega
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Fig. 1. Traditional flow for FPGA acceleration in distributed systems. Client requests come from the network,

hop into the CPU, and are routed to the FPGA kernel. Both control plane and data path navigate through the

PCIe bus. Additional applications might be co-located in the CPU to either fully utilise the resource, or to

feed more workload into the FPGA. The OpenCL host must be maintained to remain compatible with the

whole stack: OS, CPU architecture, FPGA vendor, board model, shell and driver versions.

traditional CPUs. FPGAs are an important part of this evolution, as they are increasingly used not
only for application acceleration, but also to offload infrastructure tasks away from the CPU.
Successful as FPGAs have been so far, we are still far from exploiting their full potential due

to limitations in their usage and deployment as a result of the lack of support for interfaces that
are compatible to those predominantly used in data centres. Traditionally, an FPGA-accelerated
function is separated into two components: the host application running on the CPU, and the
kernel executed on the FPGA. Both communicate trough the PCIe bus, much like GPU kernels, as
illustrated in Figure 1: (i) memory is first allocated on the device; (ii) data is transferred from the
host to the device; (iii) the kernel is executed; and (iv) the CPU fetches the result data from the
device memory. In the context of distributed systems deployed in the cloud, the consequence of
this flow is that client requests must navigate through the CPU in order to be accelerated by the
FPGA, imposing not only considerable communication overhead [41], but more importantly a very
tight coupling between both the host and the accelerator [39].
The trend is nowadays to move load away from the CPU, allowing it to focus on running

conventional applications [18, 50]. If part of the CPU needs to be used every time an accelerator is
used, the appeal of the accelerator diminishes. This is one reason why for, e.g., GPUs and TPUs, the
dominant design is to provide several of them together under the control of a single CPU so as to
avoid allocating CPU cycles for each one of the accelerators. Although this is not strictly necessary
for FPGAs, as they often have a network interface and are able to directly interact with applications,
the lack of interfaces and levels of abstraction compatible with cloud software and specifications
limits FPGAs from being utilised as first-class processing units. In part this is why cloud offerings
have been restricted to a limited number of FPGA-CPU configurations. Amazon Web Services offers
FPGA boards connected to servers with specific numbers of vCPUs [57], but there is no option to
connect a powerful CPU to an FPGA device. This limitation makes the use of FPGAs too expensive
when a single FPGA can consume the workload produced by several CPUs [39].

Rather than be subordinated to a CPU, accelerators have shown to be very effective when
placed directly on the network, such as a SmartNIC, providing services and functions without CPU
intervention. Microsoft AccelNet [18] is a great example of a large-scale FPGA-based SmartNIC
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Fig. 2. Proposed design, where control plane and data path are separated: client requests come from the

network using HTTP messages, being processed and answered directly in the FPGA. The host CPU becomes

a simple provisioning manager, responsible for programming the FPGA with the bitstream.

deployment that leverages the high bandwidth capacity and low latency of FPGAs to implement
network infrastructure tasks.
This paper explores the direct accessibility and compatibility of network-attached FPGAs with

existing cloud software, particularly as a first step towards running microservices on FPGAs. Doing
so enables FPGA-supported applications to be directly available, bypassing the high overhead of
going through a CPU. In microservice architectures involving potentially thousands of independent
microservices, this overhead is not only a matter of latency but also of wasted resources, as
the CPU is devoted to relaying data to the accelerator rather than performing useful work. The
key to accomplish this is to make the FPGA appear like any other element of a microservice
architecture, which requires expanding its networking capabilities. While there are a number
of studies in the literature on porting the network, transport, session and application layers to
hardware [5, 25, 27, 60, 61], comparatively little attention has been given to the presentation layer,
which connects the network and the application. This layer enables applications to operate at a
higher level of abstraction without directly handling network packages. Thus, a crucial missing
piece in FPGA infrastructure is support for the HTTP interface, which has become the de-facto
standard for communication in the cloud and data centres.
HTTP is today far more than just the transport protocol for web browsers. It is widely used as

the main RESTful interface in the cloud for a wide range of architectures and applications thanks
to its cross-platform portability. Microservices [1] are commonly invoked via HTTP, as are object
stores (e.g., AWS S3), serverless functions, and numerous cloud services. In fact, the most prevalent
means of connecting applications in the cloud is gRPC2, a modern version of the traditional Remote
Procedure Call (RPC) built on top of HTTP leveraging the benefits provided by RESTful interfaces.

Accordingly, in what follows we present Strega, an open-source light-weight HTTP server for
FPGAs, which enhances the communication abstraction between decoupled clients and FPGA-based
kernels. Applications leveraging Strega can benefit from network-attached FPGA deployments,
operating without allocating a CPU instance, providing a vendor- and platform-agnostic interface
that enhances modularity and drastically reduces maintenance costs, achieving predictable and
much faster communication latency, and processing muchmore requests per second than traditional
invocation techniques. In such configuration (Figure 2), the function invocation becomes RESTful

2https://grpc.io
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request-response messages, and the host application becomes a distributed client, that can, in turn,
be any other processing node of the system, be a CPU, an API Gateway, or another FPGA.

We identify four contributions in different, but complementary parts of this work: (i) we present
the first complete open-source, HLS implementation of an application-agnostic HTTP server for
FPGAs that yields orders of magnitude higher throughput and more deterministic latency than
commercial CPU-based solutions; (ii) the architecture enables FPGA-CPU disaggregation in cloud
deployments, by providing a RESTful interface for applications accelerated on FPGAs, thereby
increasing the cross-platform portability of the overall system; (iii) borrowing software engineering
best practices, we provide an extensive testing, debugging, CI/CD, and simulation environment
with automation scripts, unit tests, and mock modules that efficiently and systematically validate
different design levels, facilitating the development of applications on top of Strega; and (iv) we
elaborate our findings and discuss the potential impacts of this work for both cloud providers and
developers, notably in the context of serverless computing.

2 BACKGROUND AND RELATEDWORK
This section provides a brief overview of the main aspects of HTTP and RESTful interfaces, as well
as of related work in FPGAs for microservices and FPGA SmartNICs.

2.1 HTTP
The Hypertext Transfer Protocol (HTTP) [16] is the de-facto OSI model presentation layer [26]
of most online applications, covering from simple web servers serving static content, to RPC of
distributed systems, and including RESTful microservices. Its dominance comes from its simplicity
(stateless communication, human-friendly encoding), generality, and abstraction; which allows
servers, clients, and middlewares to communicate regardless of their technology stacks.
Differently from the TCP/IP layer and other communication protocols that deal with binary

information, HTTP encodes information in ASCII characters. Communication is established follow-
ing the request-response pattern, meaning a user agent (here simply called client) sends a request to
a server and the server returns a response. Both messages are composed of headline, headers and
an optional body.

A request’s headline identifies: (i) themethod (such as GET, POST, PUT, or DELETE); (ii) the endpoint
(e.g., /compression); and (iii) the protocol version (HTTP/1.1). Response’s headline identifies (i) the
protocol version; and (ii) the response status (such as 403 Forbidden or 200 OK). Headers consist
of metadata key-value pairs encoded in ASCII to enhance expressiveness for both requests and
responses, and can be set by the client, the server, or the application. Typically, the main payload
of the transaction is found in the body, which can be encoded as text or in binary; and can be
compressed by the server to save network bandwidth. From the HTTP layer perspective, each
request-response is processed in a stateless manner, which favours high throughput. Thanks to the
TCP/IP layer, the underlying transmission of packets are considered to be delivered in-order and
reliably. If a failure or timeout occurs, the request may be re-issued from the client side.

Listing 1. HTTP request example.

1 POST /v1/accounts HTTP /1.1

2 Content -Type: application/json;

3 Content -Length: 14

4 Connection: keep -alive

5
6 {"foo": "bar"}
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Listing 1 presents a very basic example of a POST request to the endpoint /v1/accounts, where
the client sends a json payload of 14 B. Listing 2 illustrates a possible response to the former
request, where the server sends a 201 Created status alongside with further information in the
body. Applications can customise and define: (i) their own set of headers; (ii) the behavioural logic
based on the endpoints (for instance, having two functions /encrypt and /decrypt co-existing
in the same server); and (iii) the body payload syntax. The standard defines the structure of the
communication messages. For instance, imagine a machine learning inference application running
on the FPGA exposing HTTP endpoints. A client might issue a POST request providing the raw
binary data of a picture to be inferred. Upon reception, an FPGA kernel can process the image and
respond with the list of labels identified within that image using a json body.

Listing 2. HTTP response example.

1 HTTP /1.1 201 Created

2 Content -Type: application/json; charset=utf -8

3 Content -Length: 38

4
5 {" location ":" https ://api.ethz.ch/v1/accounts /64936"}

The current version of Strega implements HTTP version 1.1 [17], an improvement over version
1.0 by keeping TCP/IP connections alive across successive requests, i.e., it has support for the
Connection: Keep-alive header by default. The version is also the first step to implement
HTTP/2.0 [4] in the future, which introduces the notion of HTTP frames in addition to the features
of HTTP/1.1 implemented so far.

2.2 RESTful Interface
If HTTP can be seen as the syntax and behavioural pattern of how a given client and a given server
communicate, it does not establish any convention in terms of the semantics of each endpoint of
a given application. For instance, it is possible to implement a complete API by using only POST
requests and still be compliant to the HTTP specifications. However, how applications exchange
information and the assumptions made in doing so have a large impact on both performance and
how easy they are to maintain. Among the many proposal that have been made over the years
on how to address this issue, the one most in use these days is Representational State Transfer
(REST) [12, 15, 47]. REST is a set of design rules and guidelines, such as statelessness, separation of
concerns, and uniform interfaces, that is usually used for the creation of scalable, maintainable and
distributed web services. The main idea behind RESTful interfaces is to allow clients to manipulate
resources on the server through a well-defined set of operations, such as create, retrieve, update, and
delete, which are performed using standard HTTP methods, such as POST, GET, PUT, and DELETE. In
a nutshell, REST guides applications and clients to establish a common semantic for their interfaces,
and uses HTTP as the syntax and grammar of it. The advantages of using REST principles in
microservices is that they make it easier to dynamically combine independently developed services,
providing an easier basis for implementing recovery, migration, scalability through replication, etc.
independently of the actual implementation or nature of the service [28, 71].

2.3 Microservices on FPGAs
The current PCIe model of utilising FPGAs not only for kernel invocation (data path), but also for
provisioning, bitstream programming and synchronisation (control plane) has been questioned in
numerous works in the literature [3, 20, 35, 42, 44, 48, 64]. By granting more abstraction in each
one of those fronts, related work moved towards a direction where the common goal can be seen
as offering an FPGA-as-a-Service architecture.
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Lallet et al. [34] used RIFFA [30] to build a framework connecting Docker containers to FPGA
kernels. They managed to mimic a microservice architecture by implementing a partial reconfigu-
ration manager attached to the network, programming the FPGA on-demand in a multi-tenant
deployment. While they moved the control path to the network, they maintained the data path of
applications through the PCIe bus in an attempt to reduce latency and sustain higher throughput.
Our findings show that moving the data path to the network actually reduces latency compared to
PCIe end-to-end communication. Similarly, Ojika et al. [46] provide a provisioning manager for a
cluster of PCIe-attached FPGA boards, where the host machine accumulates the function of global
hypervisor running docker containers. Applications can then allocate FPGA kernels using their
proposed custom scheduler, similar to what a load balancer would perform in a distributed system.
Bacis et al. [3] created a robust hardware abstraction platform to provision, deploy and execute
FPGA applications on-demand, exposing the control interfaces running on a CPU as a service. They
integrate their framework with cloud solutions like Kubernetes3 for handling application life-cycles,
and Prometheus4 for profiling and monitoring. Despite the great physical layer abstraction they
achieve, by using OpenCL-based methods for communicating with the FPGA, all interactions must
go through the CPU.
To the best of our knowledge, there has not been related work able to show efficiency and

feasibility of FPGA deployments without constraining programming methods to a very particular
solution. Additionally, our work differs from the previous ones by decoupling FPGA and CPU,
which naturally increases the flexibility of scalability for cloud deployments.

A different approach is that of Lazarev et al. [35], who propose an FPGA-based accelerator to
offload RPC invocation and network handling from the host CPU. They take advantage of memory
interconnects as an alternative to the PCIe bus, which yields lower latency for RPC payloads of size
up to a cache line. Authors also present a detailed characterisation of the communication pattern
of different microservice workloads. While their proposal benefits applications running on the
CPU via accelerating the network stack for RPC, our solution aims at giving equivalent benefits for
FPGA-based kernels. Also, imposing cache line size messages is quite a limitation in practice that
we avoid with our solution.

2.4 SmartNIC FPGAs
In recent years, there have been increasing efforts to make FPGAs available over the network.
Eskandari et al. [13] present a framework that offers network interfaces and communication protocol
out of the box. They target the network layer of the OSI model, thus a lower one compared to the
presentation layer of HTTP. They implement their communication framework in a heterogeneous
system, having CPU and FPGA as processing nodes, and provide a very detailed micro-benchmark
of different node communications.

In the cloud infrastructure field, Tarafdar et al. [63] mention the need of more integration efforts
in the communication of heterogeneous clusters. While their main focus concerns provisioning
mechanisms, their open stack proposal deploys network interfaces on the CPU to address PCIe-
attached FPGAs resources.

Liu et al. [36] present an architecture that places the FPGA behind a CPU-based web server. This
architecture yields the most flexible solution in terms of HTTP features, at the cost of allocating a
CPU for the task and thus keeping a tight dependency between the CPU and the accelerator. It also
suffers from the communication and synchronisation overheads imposed by the PCIe bus between

3https://kubernetes.io
4https://prometheus.io
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the CPU and the FPGA. We implemented this approach as one of the baselines for performance
comparisons of Strega in Section 4.

Brzoza-Woch and Nawrocki [6] discuss the challenges they found throughout their journey on
building an FPGA web service prototype. They identify, among others, two main obstacles for
the success of web-available FPGAs: (i) the hardware development and integration tools are still
nowadays very bothersome to develop hardware, notably when integrating higher level protocols;
and (ii) implementation and maintenance of such solutions are too complex. While the scope of
this work does not address the first issue they raised, our solution facilitates verifying that the tools
built the expected hardware by providing c-simulation, mock engines, and hardware emulation out
of the box. We also address their second concern by implementing Strega using HLS in a highly
modular architecture that can be easily expanded to support new features. These two contributions
provide development and testing environments that, while not comparable to those available in the
software world, represent a solid starting point (see Section 3.4).

Given the number of features and high-level data processing required by the network presentation
layer, first FPGA-based implementations used soft- and hard-cores (e.g., NIOS and MicroBlaze) [7,
31, 38, 54, 59, 68], but performance, resource utilisation, generality, and ease of usage were not the
focus. When a soft- or a hard-core is employed for such task, the implementation burden is shifted
to the hardware kernel, which has vendor-specific mechanisms and interfaces to consume HTTP
requests from the soft-core [6]. Our solution exposes generic AXI4-Streams to the application
together with simple and well-defined data structures that can be used in both RTL or HLS.
Field [14] has published an initial work of an intended FPGA web server in 2016. The imple-

mentation was done in VHDL, and covers the TCP/IP layer as well as the HTTP. The project has
never been finished and has since then been abandoned, as far as it can be ascertained from the
repository.
To the best of our knowledge, there are two FPGA implementations of an HTTP server using

RTL: Chang et al. [9] and Polig et al. [49], from IBM Research. While the former is very primitive
and does not support realistic constraints (i.e., a single TCP/IP connection can be established at a
time), IBM Research has several contributions in the field of FPGAs-as-a-Service in the cloud using
their RESTful interface for the cloudFPGA platform [52, 65, 66]. Their approach relies on a static
OpenAPI specification to generate the API endpoints to be used by the application. This means that
the generated bitstream is fixed to a particular set of endpoints, and any changes would require a
new bitstream to be generated. With such a constraint and no further details, it is uncertain if their
approach supports dynamic value endpoints, such as id in GET /account/:id. In contrast, our
implementation maintains the generality of the HTTP server semantics, and pushes the business
logic of validating endpoints to the application if needed. Our approach also differs from [49]
by supporting HTTP headers for both requests and responses, exposing request headers to the
application, and allowing it to define custom key-value pairs for composing HTTP response headers.
Finally, Strega has been conceived targeting boards intended for data centre applications, such as
the one from the AMD’s Alveo series5.

3 DESIGN
In this section we detail the design of Strega in the context of the FPGA shell and external kernels,
as well as its internal architecture. We also discuss the support provided to developers building
applications on top of Strega, an important topic somewhat underrepresented in the reconfigurable
computing field.

5https://www.xilinx.com/content/xilinx/en/products/boards-and-kits/alveo.html
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Fig. 3. Block diagram of the overall system architecture in the FPGA. In dark gray the static elements and

I/O pins of the FPGA, notably network adaptors and memory banks. In pink, TCP-IP and CMAC kernels from

EasyNet [25]. Strega and the applications compose two independent kernels. Arrows to and from Strega

consist of AXI4-Stream uni-directional channels.

3.1 High Level Architecture
Strega has been built on top of EasyNet [25], an HLS 100Gbit/s networking stack developed from
open source TCP/IP stacks for FPGAs [53, 60], that runs on the Vitis Development Platform6. Strega
runs as an independent kernel, sitting between the TCP/IP and Application kernels (Figure 3). This
organisation allows better modularity and thus ease of maintenance, separating the concerns of
each layer.

Strega I/O interfaces consist of nine AXI4-stream uni-directional channels connecting it to the
interface provided by the TCP/IP kernel [25]. Through them, Strega can open and listen to ports
(0-32767), receive notifications, and read and write TCP/IP messages. Strega is connected to the
application kernel through six AXI4-Stream channels, three for the request flow and three for the
response flow. By exposing to the application simple, yet well-defined streaming interfaces, along
with HLS data structures, it becomes relatively simple for applications to use Strega.

Given the nature of an HTTP server, the kernel is implemented as a service, i.e., a free-running
kernel in ap_ctrl_none control mode, which is currently not fully supported by Vitis HLS. To
overcome the limitation, we exported the HLS implementation as a Vivado IP, created an RTL
wrapper, and exported the kernel as a .xo file. The HLS service is then instantiated by the RTL,
and control signals (ap_start, ap_done, etc) are ignored.

3.2 Detailed architecture
Internally, the architecture is decomposed into independent and parallel read (Request Processor)
and write (Response Processor) flows to maximise throughput (Figure 4). The Short-Circuit Response
and Error Handler manage early responses when there is no need of contacting the application. Even
though the HTTP protocol can be seen in a pipeline-fashion, our kernel supports asynchronous,
non-blocking requests and responses. Applications can optimise scheduling and execution to best
fit their requirements, allowing, e.g., responses to be issued in a different order as their respective
request. For best performance and effective programming, the major part of components were
implemented as a finite state machine inside a dataflow region. HLS stream structures are used for
inter-module synchronisation.
6https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
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Fig. 4. Block diagram of the internal micro-architecture of Strega. Green arrows interfacing other kernels

consist of AXI4-Stream uni-directional channels.

No external memory access is required by Strega. It only uses ROM and BRAM internally
to store HTTP constants and text templates. If necessary, DDR instantiation is handled by the
application. Applications that can process incoming HTTP requests at the maximal throughput
do not need to allocate DDR resources for buffering, reducing resource utilisation overhead to a
minimum. The data stream interfaces are 512 bit wide to match the word throughput of the TCP/IP
stack.
The Port Listener is responsible for requesting to the TCP/IP kernel a port to be opened for

listening to HTTP requests. In the current implementation, for simplicity, Strega listens to a single
port, fixed at hardware compile time. This constraint can be easily lifted by allowing the application
to communicate ports to be opened at runtime, given that the TCP/IP stack can listen to a very
large number of ports dynamically [60].
The Request Processor is responsible of parsing, validating and encoding incoming data. Based

on the HTTP headline, it parses the endpoint and method of the request. If valid, it first notifies the
application of the incoming request, sending the method, endpoint and the session ID that identifies
the client, which should be used for the response. It then forwards HTTP headers and body payload
to the application in two different streams. By splitting headers and body, the kernel allows for
easy disposal of headers when they are not needed by the application. Unlikely in EasyNet, the
communication primitives used in Strega do not know in advance how much data the engine
will receive or send, so meta information coming from the TCP/IP layer, as well as the last flag of
streams are used to assert the end of a message.

The life-time of an HTTP request is as follows:
(1) The TCP/IP kernel sends a notify message to Strega with length and client information

(destination port, IP address and session ID);
(2) Strega and the TCP/IP kernel handshake for reading a number of packets via rx_req and

rx_rsp;
(3) Strega reads incoming data from TCP/IP via rx_data;
(4) Strega parses the method, endpoint, splits headers and body from the request;
(5) Strega notifies the application via req_notify;
(6) The application reads headers and body via req_headers and req_body.
The Response Processor listens to the application in a dedicated channel independent of the

request flow. Upon notification, it parses the status code to compose the response’s headline. The
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engine then merges application and server headers, which are followed by the body payload. For
convenience of usage, Strega can merge unaligned data coming from the application. To issue
the response, the engine forwards the total payload stream to the TCP/IP kernel together with the
session ID that originated the request.

The life-time of an HTTP response is as follows:

(1) The application notifies Strega of a response, providing status code, header and body lengths,
and the session ID of the request;

(2) Strega creates the response headline based on the status code, and merges headers and body
into a single, aligned stream;

(3) Strega and the TCP/IP kernel handshake for sending a number of packets via tx_req and
tx_rsp;

(4) Strega sends outgoing data to TCP/IP via tx_data.

The Short-circuit response and the Error Handler modules are responsible for detecting and
managing responses that can be directly issued without further processing, i.e., when Strega can
issue the response without contacting the application. This can happen, for instance, when the
request is malformed, or in cases the client application queries the HTTP server to pre-validate
further requests, and the server answers with a 100 Continue HTTP status. These two modules
remove the need for the application to understand the HTTP protocol, so only valid and relevant
requests reach the application layer.

3.3 Provision and Deployment
The period fromwhen a cloud application is provisioned and instantiated until it is ready to operate is
known as the warming up period [22, 56], which occurs, e.g., during scaling-out processes, releasing
new service versions/updates, and virtualisation setup for container and serverless applications.
Minimising the warming up period is important not only to save deployment costs, but also to
quickly react to spike workload demands in scaling-out processes, or to reduce latency in serverless
invocations. For FPGAs, the warming up period comprises programming the FPGA with the desired
bitstream, memory manipulation such as allocation and data transfers to the device, and kernel
invocation when they are not free-running kernels.
For maximal flexibility, the kernel running Strega does not require any memory-mapped

registers, such as AXI4-Lite registers implemented by default in the Vitis Kernel Flow. This not
only grants the kernel flexibility to be integrate with different FPGA shells (such as Coyote [32]),
but also removes any deployment latency during warming up that would require a synchronisation
with the host application. As soon as the FPGA is programed with the bitstream, Strega is warmed
up and is able to open a TCP port and start listening for HTTP requests.
Using the system depicted in Figure 2 as the reference, the role of the host CPU is reduced

to programming the FPGA with the corresponding bitstream, a process that takes at most 3 s.
Applications that want to reduce the involvement of the CPU can also be deployed as either a
free-running kernel, or remove the need of synchronous and recurrent FPGA invocation from the
host. Section 4.1 details three applications created for the experimental evaluation of Strega. Two
of them (health check and to_uppercase) uses a free-running kernel and is online as soon as the
board is programmed. The third one (static pages) has a bit longer warming up, when the CPU
programs the board and launches the kernels, allocating memory and pushing data to the FPGA.
Then, the application is online, and does not require any further host intervention. By splitting
control plane and data path (Figure 2), Strega contributes to restricting the intervention from the
CPU during warming up only, while allowing kernels to be invoked via the network.
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3.4 Development Support
As an open-source project, we want to foster contributions from the community to all different
levels of the stack. Equally important, developers willing to employ Strega should spend as little
integration effort as possible, and get in return a solid server that completely abstracts away the
HTTP and network details. For that purpose, we borrow some development principles from software
engineering to design, code, test, evaluate, and iterate over applications using our platform.
First, we heavily integrated CMake for hardware integration and generation scripting, which

largely reduces boilerplate code that is typically duplicated in several instances of projects. We
extended CMake integration of IPs, kernels and program to not only Strega project, but also made
contributions to the open-source repositories that Strega is build on top of. To achieve this, we
extended HLSlib [11] to support not only Vitis HLS, but also Vivado resources. Two new function
were added: add_vitis_ip and add_vivado_kernel. The first exports an HLS function as an IP
that can then be instantiated in RTL by Vivado; the second packages a Vivado RTL design to a .xo
Vitis kernel that can be later used to compose a program bitstream.

In the testing and debugging front, we leveraged the methods available from Vitis tools. We
implemented a unit test (i.e., testbench) for each individual module of our kernel. The execution
of unit tests happens via C simulation and validates the business logic of each module standalone.
It is a software simulation, thus compilation, execution and debugging can occur at fast iteration
steps, and OS I/O interfaces, such as printf, are available. Once the software logic is validated,
C-RTL co-simulation synthesises the HLS code into RTL (i.e., Verilog and VHDL). A C wrapper
instantiates the kernel, provides input mock data, consumes the output and validates it according
to the expected values. This testing step helps identify misconceptions when coding hardware
using a high-level language as C or C++.
Unfortunately, the final hardware implementation that is placed in the FPGA is still different

from the one used for co-simulation. To validate this piece, one needs to do hardware emulation.
In this step, the full FPGA system composed of kernels, memory and role shell is synthesised and
emulated. Since the TCP/IP layer is connected to network transceivers of the board, and currently
there is no way of stimulating them on the hardware emulator, we created a mock version of the
TCP/IP channel in HLS. It generates mock TCP/IP notifications and incoming messages, consumes
outgoing data, and respects the behaviour of handshakes of rx and tx ports. With this mock
module, we create a kernel that replaces the real TCP/IP layer in the hardware emulation bitstream.
This is a common practice for end-to-end testing CD pipelines for complex systems in the software
world.

4 EXPERIMENTAL EVALUATION
In this section, we present performance comparisons between our FPGA-based HTTP server
and several setups exposing the kernel application via a CPU-based HTTP frontend, and as an
OpenCL function over the PCIe bus. We also report measurements from instrumented hardware
experiments that show, with high precision, the latency imposed by the server in request and
response processing.

4.1 Experimental Setup
For our experiments, we built Strega using Vitis 2022.2 and deployed it on an Alveo U55C board7.
The baselines were executed on AMD EPYC 7302P servers with 32 vCPU and 64GiB of memory
each. Up to fourteen CPU servers were used to act as clients and issue HTTP requests to all server
deployments. Figure 5 shows the setup, all HTTP servers and clients are placed in the same 100 Gbps
7https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html
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Fig. 5. Experimental setup. All nodes are connected to the same top-of-rack switch. Up to 14 CPU HTTP

clients (Apache ab benchmarking tool) are used to produce enough workload to saturate Strega.

network, routed through the same top-of-rack network switch, a Cisco Nexus 9336c FX2, using
optical cables, thus minimising network disturbances.

Applications:We created three simple web applications on the FPGA: (i) a health check, similar
to what is used in CPU load balancers, that responds with a body payload in json indicating if
the FPGA design is running healthy. This application has close to zero business logic other than
respecting the consuming and producing flows of Strega, thus the relevance to measure the strict
minimum latency imposed by the HTTP server; (ii) a text transformer to_uppercase that receives
plain text and converts characters [a-z] to [A-Z], returning the same amount of data as the input;
and (iii) a simple static server that serves objects directly from the FPGA memory to the internet
via GET requests. The latency and throughput of DDR memory access, in this example, tends to
represent generic kernel characteristics running on the FPGA. The goal of the evaluation is not
to measure the acceleration of the applications running on top of Strega, but rather the HTTP
server itself. Despite this, these applications serve the purpose of showing the feasibility of the
solution in terms of both flexibility and ease of integration.

Acting as baselines, we compare Strega to two other methods of invoking an FPGA kernel. First,
we designed an OpenCL application running on the host CPU for a traditional invocation over the
PCIe bus. Second, given the HTTP interface brought by Strega, we built a hybrid deployment,
where an HTTP server running on the host CPU acts as the frontend of the kernel, and invokes
the application through the PCIe bus using OpenCL. For each of the baselines, we also extend the
evaluation to measure the performance of individual elements, i.e., the latency decomposition of
an OpenCL invocation into data transfers and kernel execution, as well as the latency impact of
each software element in the hybrid solution.
PCIe baseline:We designed an OpenCL host application following the best optimisations to

reduce latency and increase throughput for a traditional FPGA-based kernel invocation over the
PCIe bus. These optimisations can be found as the host/overlap and host/data_transfer demos
from AMD’s Vitis Accel Examples GitHub repository8.
Hybrid baseline: Acting as the CPU-based HTTP frontend, we deployed nginx open source9,

an HTTP server tuned for scalability and high performance. It presents an increasing adoption
encompassing diverse use cases and architectures, being used by Netflix [43], Dropbox [29] and
WordPress [45]. For a fair comparison, we built nginx from source, disabling all advanced and
optional modules and features not yet implemented in Strega, such as body gzip/brotli compression,
logs, SSL, and any sort of authentication or rate limit. Table 3 in Appendix A lists all the flags used
in these evaluations. This being said, it is important to stress that it is not possible to downgrade
nginx to have the exact same set of features and HTTP protocol implementation as Strega, leave
aside numerous third-party modules developed across years of utilisation. This is also a point that
8https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/host
9https://nginx.org
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should be noticed for FPGA-based infrastructure: by making Strega open source, we hope more
developers will contribute to the ecosystem and extend it further. We allocate all 32 cores available
in the server machine to spawn nginx processes, and set worker_rlimit_nofile to 8192, which
dictates the maximum number of simultaneous connections that can be opened by an nginx process.
These two parameters consist of much higher values than used in production environments, as
they allocate the whole computing power of the CPU to the HTTP server, leaving no space left for
main backend applications. Additionally, we provide the body payload of the health-check endpoint
directly in nginx configuration file, so no disk access or external application process is required.
Connecting the HTTP server to the backend application, we use ZeroMQ10, an efficient messaging
library for concurrency communication between applications.

4.2 Benchmark Tool
To issue client requests, we used standard software HTTP clients, which also ensures the correctness
of the implementation and its compliance with the protocol. For throughput measurements, we first
need an HTTP benchmark client that allows stressing the server with numerous parallel requests
issued from multiple clients. The Apache HTTP server benchmarking tool (ab)11 provides the right
flexibility in terms of request customisation and profiling metrics: it is possible to issue any HTTP
method, any body payload size and define any custom header. However, ab is found alongside
several other tools from Apache software, and since they target measurements of production
environments and client measurements over several layers of network, results are rounded up
to milliseconds. For our experiments, we are interested in measuring the intrinsic metrics of
Strega and nginx, reducing network interference as much as possible. We modified ab to preserve
measurement numbers at microsecond granularity, and for easier benchmark execution, we also
prepared a standalone compilation and installation of the tool, which we published as an open
source repository12 that can be reused in similar use cases.

4.3 Intrinsic Latency
We instrumented Stregawith ChipScopes [67] that capture, at clock-cycle granularity, the hardware
signals of AXI4-Stream interfaces of the system while running on the physical board. We used these
measurements to compute the processing time of different tasks done in Strega to establish the
intrinsic latency provoked exclusively by its implementation alone. In other words, we isolated and
measured the latency introduced by Strega to the overall system. Given that adding the ChipScope
to the design considerably reduces the clock frequency of the placed and routed system, we convert
measurements into clock cycles and report the key ones also in nano seconds, taking the clock
frequency of a standard design as the reference, i.e., 254MHz.
From the moment when the TCP/IP layer sends an incoming packet notification, until Strega

issues the request notification to the application, there are 135 clock cycles, so 531 ns, as illustrated
in Figure 6. This latency is greatly concentrated by the parsing of HTTP headline, as the handshake
with the TCP/IP stack takes only 16 cycles, and the first data line arrives four cycles later. Once the
headline is parsed, the application is notified and the HTTP server simply forwards the payload.
Each 512 bit line of request payload takes 6 clock cycles to be streamed from the TCP/IP layer to
the application.

In the transmission flow, the generation of the HTTP response headline is hidden by processing
it in parallel to the TCP/IP transmission handshake, which greatly impacts the overall latency. From

10https://zeromq.org/
11https://httpd.apache.org/docs/2.4/programs/ab.html
12Available at https://github.com/fpgasystems.
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Fig. 6. Waveform of the request flow as captured by a ChipScope.
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Fig. 7. Waveform of the response flow as captured by a ChipScope.

the moment when the application notifies Strega with a response message, until it starts sending
data to the TCP/IP layer, it takes 51 clock cycles, or 201 ns, less than a half compared to the request
flow, as illustrated in Figure 7. Once a steady stream of data is established to forward headers and
response body to the TCP/IP layer, Strega can produce a 512 bit line every 8 clock cycles. The
difference with the request flow for this metric is provoked by the necessity of alignment between
the data sent by the application and the one send to the TCP/IP layer. Regardless of this difference,
the transmission flow can still sustain enough throughput to process data at line-rate speed as well.

4.4 End-to-end Latency
In this experiment, we place a single HTTP client running on a CPU to issue sequential requests
to both Strega and the hybrid baseline. Additionally, we also compare the same FPGA function
invocation as a traditional OpenCL call, thus going through the PCIe bus.
For the former measurement, we measure the total completion time, encompassing the entire

network round trip from the CPU-based client, to one of the HTTP servers, and back to the client.
As for the latter measurement, we measure only the data transfer from the CPU to the FPGA device,
the kernel execution, and the retrieval of the result data to the host memory after kernel completion.
In both cases, the request and response payloads consist of 64 B, and the deployed application
across different servers is the to_uppercase function.

Figure 8 shows the latency distribution of 5000 function invocations for each method. Maximum,
minimum, 95th and 5th percentiles are also reported. For better visibility, y-axis is in logarithmic
scale. Strega shows a consistent lower latency compared to any other baseline setup, as low as 16 µs
compared to 62 µs and 304 µs for PCIe and hybrid respectively. An interesting point to highlight
comes from the sample variance, or lack of: only 4 out of 5000 measurements in Strega have
latency higher than 30 µs, and the gap between the minimum and the 95th percentile is only 3 µs,
while for PCIe and hybrid this gap represents 11 µs and 514 µs respectively. Strega also presents
the smallest tail latency, the difference between the maximum value and the 95th percentile is 118 µs
while for PCIe it reaches 443 µs.
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Fig. 8. Latency distribution of 5000 sequential invocations as HTTP request-response transactions issued

from a single CPU client for Strega and hybrid, and as OpenCL kernel calls for PCIe.

The slowest point for the HTTP experiments (Strega and hybrid) is caused by the very first
request of each experiment that needs to go over TCP handshake to establish the TCP session that
will be reused in subsequent requests. Apart from this point, any other measurement of Strega
is strictly faster or within the 95th percentile than any other of the baseline samples. This also
highlights the importance of the advantages that the TCP/IP implementation in hardware brings to
the overall system.

The fact that the end-to-end latency of invoking an FPGA-based kernel as an HTTP call over the
network is faster than a traditional PCIe invocation is remarkable. The latency distribution plotted
in Figure 8 shed light on the actual imbalance between what the FPGA hardware can achieve and
what is often limited by the interconnect used, which has traditionally being the PCIe bus. We
further discuss the impact of these numbers in Section 5.

4.4.1 HTTP baselines. The hybrid baseline is composed of different elements, so we also perform
different setups to characterise the impact of each one of them into the overall latency of the design.
The first consists of nginx alone, where the payload of the response is statically defined in its
configuration file, so we canmeasure the fastest, even if not usable, latency of the engine. The second,
ZeroMQ comprises nginx, the ZeroMQ module, and a CPU implementation of the to_uppercase
application, which mainly shows the latency introduced by the asynchronous communication
framework. We also report the previous numbers from Strega and hybrid for comparison.

The latency measurements depicted in Figure 9 demonstrates that the ZeroMQ communication
framework not only introduces significant latency, but also amplifies the discrepancy between
the 5th and 95th percentiles, thereby diminishing the determinism of the call. Comparing the
performance of the ZeroMQ baseline and the hybrid solution, we observe the additional latency
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Fig. 9. Latency distribution of 5000 sequential HTTP request-response transactions issued from a single CPU

client. A single TCP/IP connection session is used for each experiment.

pattern associated with PCIe communication, as ploted in Figure 8. These measurements underscore
the importance of integration efforts in the middleware layer, specifically in connecting an HTTP
server with the backend application. Previous research [49] has explored similar integration setup
utilising uWSGI13 as the middleware, but with inferior performance (in the millisecond range).

4.4.2 TCP/IP breakdown. The global latency of a single HTTP request-response trip seen by the
remote client is composed of the following components:

• DNS lookup: the time it takes to translate the domain name of the target server to its IP
address. Since we are not interested in this metric, we address the servers using their IPs
directly, so no external DNS lookup is necessary. There is still, however, a local check made
by the client, so we report this metric;

• TCP connect: the time it takes to establish the three-way handshake of a TCP/IP connection.
For this experiment, we force opening a new TCP/IP session for each request, so this metric
is captured at its highest value;

• Client setup: the time it takes for the client to issue the request;
• Time to first byte (TTFB): once the request has been issued, how long the client is idle
waiting for the response;

• Data transfer: once the first byte is received, how long it takes to receive the full response.
In addition to these components, a client may also need to handle HTTP redirections when the

server provides a response indicating that the client should make another request to a different
endpoint to complete the initial request. When using HTTPS, the client must also complete an
13https://uwsgi-docs.readthedocs.io
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Fig. 10. Breakdown of the latency perceived by a CPU HTTP client. In this experiment, a TCP/IP session is

created for each HTTP request.

SSL handshake for each request made, which results in additional latency. These two metrics were
neutralised in all of the experiments in this paper as they do not depend on the HTTP server.

Figure 10 presents the breakdown of the latency perceived by a CPU client from the moment an
HTTP request is issued until the reception of its response. The TCP/IP handshake between the
CPU client and the CPU baselines takes about 366 µs, whereas the offloaded TCP/IP stack to the
FPGA reduces the operation to 95 µs. It is important to highlight that using a CPU to issue the
client request induces higher latency than compared to a FPGA-FPGA communication [13, 25], so
the TCP/IP connect metric would be even faster if the HTTP client was placed on an FPGA. The
TTFB captures the real latency imposed by the servers modulo the network delay, which in our
setup is irrelevant. Nginx presents a latency of 370 µs, almost twenty-five times higher than the
TTFB of Strega, which is not only faster, but also presents a very deterministic value, compared
to the big variance of nginx. The addition of ZeroMQ increases the TTFB in 110 µs compared to the
pure-nginx solution. The FPGA invocation on top of ZeroMQ increases the TTFB in further 296 µs.
The transfer time of the 16 B of health check payload is characterised by the network topology
rather than the server stack, so both servers perform similarly. Since DNS lookup and client setup
are client-dependent elements, there is no difference between Strega and nginx. Also, since IP
addresses were used and no disk reads were required, both metrics present close to zero variance.

HTTP/1.1 provides the ability for a client to reuse an existing TCP/IP session when issuing subse-
quent requests, which considerably reduces the latency of subsequent transactions by eliminating
the three-way connection handshake. Strega supports this feature by default and preserves the
TCP connection open after a response is sent back to the client. To test the equivalent behaviour
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Fig. 11. Stress-test of Strega, nginx and hybrid setup to saturate the servers in terms of transactions processed

per second. Up to 14 CPU clients, and 64 threads per machine were allocated for the experiments.

in nginx, we add the Connection: Keep-alive header to the requests. For equivalence in the
headers size, we add the same header to requests to Strega, even if they could have been omitted.

4.5 Throughput
In additional to latency, another key performance number for an HTTP server is the number of
request-response transactions that can be processed per second. To be able to produce enough
workload in our experiments, we adjust the concurrency level of our benchmarking tool to the
double of vCPUs available in the machine, i.e., there are sixty-four threads running on the CPU
client issuing HTTP requests in parallel. We issue about ten million requests per experiment,
which takes several minutes to complete, saturating the network and thus reducing variance in the
measurements. In total, we deploy all fourteen available machines in our cluster for this experiment.
For the CPU baselines, only thirteen CPU clients are available, since one of the machines is used as
HTTP server.

For the PCIe baseline, we ensure that the execution of the kernel and the communication over the
PCIe bus are fully saturated by providing unlimited workload to the OpenCL queues responsible
for scheduling the kernel execution and awaiting its completion. The workload for this series can
only be generated from a single CPU client, which corresponds to the host CPU itself (i.e., the
hybrid baseline provides numbers for a multi-server setup over the PCIe).
Figure 11 plots the stress test of Strega, nginx and hybrid in terms of transactions per second.

Note that the PCIe measurement, only possible from a single client machine, is slightly hidden
behind the hybrid measurement. Nginx is able to process up to 370 000 transactions per second,
which is the load from three client machines. The hybrid baseline suffers from the already limited
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throughput from nginx, but also from the PCIe bus, that can not issue more than 44 000 OpenCL
calls per second. A single CPU client machine is able to issue about 150 000 requests per second,
and at least eleven of them are required to saturate a single node of Strega, at around 1 700 000
transactions per second, close to five times higher than what a single nginx-alive node can process.

Since the client application has close to zero business logic as fully utilises all the available cores
to simply issue requests and receive responses, in a real deployment, the number of client machines
required to saturate Strega is necessarily bigger than the one presented in Figure 11.
The performance numbers, 1.7 M transactions per second, 16 µs of latency — 5 times higher

and one order of magnitude faster than a commercial 32-core CPU baseline — show that placing
a CPU in front an FPGA for acceleration will very likely limit the acceleration that a decoupled
FPGA device would be able to achieve otherwise, which is the behaviour mocked in the hybrid
baseline. The traditional architecture, where requests arrive by network to the CPU and are then
transferred to the FPGA is therefore only interesting in cases where throughput is not an issue, or
in latency-insensitive use cases.

4.6 Hardware Utilisation
Table 1 shows the resources consumed by Strega after place and route on an Alveo U55C board.
This utilisation comprises the full bitstream, including the static XRT shell, the to_uppercase
application, the TCP/IP stack and memory controllers. For a fair comparison, we also report the
resource consumption of the same application in the pure OpenCL model. Notice that the actual
board utilisation is not necessarily linear to the actual functionality routed in the board. Removing
the OpenCL interface from the simple to_uppercase and adding Strega (with all the TCP/IP
requirements) increases the overall resource utilisation by about 10%. There is a considerable
overhead for small circuits. The clock frequency of Strega, 254MHz is set by the TCP/IP stack.
Note that more than 80% of the board is available to the application, plenty to run substantial
microservices.

4.7 Comparison
Table 2 summarises the comparison elements of the FPGA-based kernel interfaces analysed in this
paper. We compare the HTTP interface of Strega with the traditional PCIe model, as well as a
the hybrid baseline. We also report results from [25], where the kernel is also available over the
network, but with a lower-level protocol.

5 DISCUSSION
More than an HTTP server architecture and implementation, the deployment of Strega in FPGA-
based kernels for data centre applications sheds light on architectural decisions that were taken for
granted. As heterogeneous computing becomes more accessible and affordable, external tasks that
were usually performed on a CPU can be offloaded to a more appropriated device.

Table 1. Resource utilisation and maximum clock frequency on Alveo U55C.

Interface LUTs Registers BlockRAM Clock
OpenCL 124 025 (9.51 %) 167 496 (6.42 ) 199 (9.87 %) 500MHz
TCP/IP [25] 132 742 (10.2 %) - - 522 (25.9 %) 254MHz
Strega 272 096 (20.8 %) 430 244 (16.5 %) 401 (19.9 %) 254MHz
Alveo U55C 1 303 680 (100 %) 2 607 360 (100 %) 2016 (100 %) 500MHz
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Table 2. Overall comparison of different interfaces for FPGA-based kernels.

Interface Latency Throughput Client stack API Scalability
PCIe 64 µs 44 000 T/s custom driver OpenCL single client
Hybrid 557 µs 32 000 T/s generic HTTP full HTTP very flexible
Strega 17 µs 1 700 000 T/s generic HTTP limited HTTP very flexible
TCP/IP [25] 4.3 µs - TCP low-level TCP very flexible

An alternative to the PCIe bus. The utilisation of the OpenCL programming model for commu-
nication between the host CPU and FPGA accelerator via the PCIe bus was originally borrowed
from the GPU ecosystem. This approach facilitated the rapid integration of FPGA kernels into
existing software and communication patterns. However, it is important to note that the OpenCL
programming model was initially designed to leverage the acceleration characteristics of GPUs,
which by essence involve processing large volumes of data [37, 70]. In contrast, FPGAs do not
necessarily follow the same principle, and can operate efficiently as fine-grained data-flow units,
handling smaller data sets at a time. The PCIe bus, as evident from both Figure 8 and Figure 11, does
not perform optimally when the ratio between computation and data transfer is high, meaning that
there is insufficient data to maximise its throughput. To overcome this limitation, the conventional
approach has been to batch process multiple individual invocations into a single operation, which
trades higher throughput for significantly increased individual latency [39]. The introduction of
Strega, which provides an even higher level of abstraction for FPGA-based kernels compared to
OpenCL without compromising performance, marks a significant milestone in the integration of
heterogeneous hardware into distributed systems.

Decoupling client application from the FPGA-kernel stack. A lot of effort and time is needed
to learn all the nuances and master the optimisation techniques needed to develop FPGA-based
kernels and integrate them into a system. The platform abstraction brought by the HTTP layer
to an FPGA kernel allows client applications to be completely unaware that the kernel is being
executed on an FPGA. In fact, this is particularly valuable in refactoring tasks, where small parts
of the system can be modified, evaluated and delivered in small modules. Just like a microservice
that can be updated, upgraded and re-implemented without the need of modifying its external
client applications, an FPGA kernel with an HTTP interface can be more easily integrated into a
distributed system. In terms of design, kernel and applications can be optimised independently, by
different developers with different skills, without raising technology stack conflicts. In terms of
maintenance and deployment, host applications do not need to provide support to hardware-specific
stacks, such as OpenCL, FPGA board drivers, etc.

Reconsidering CPU host and cloud offerings. Once the application does not need to sit on the
host CPU that is PCIe-attached to the FPGA board, one can reconsider the usage of such host. As
presented in Section 4.5, an HTTP stack can be executed with better performance by an FPGA.
Imposing requests coming from a distributed system to hop into the CPU to then be routed to the
FPGA results in a large performance penalty. By standardising the interface for FPGA kernels in the
context of heterogeneous cloud computing, cloud users would not use host CPUs for tasks other
than provisioning and launching the FPGA bitstream. Cloud providers should provide specialised
services for such tasks, in such a manner that FPGA boards could be rented without the need of a
renting a fixed CPU. Financially, it would reduce the hourly costs of FPGA in the cloud, but also it
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would simplify their utilisation. Pemberton et al. [48] tackled this problem targeting GPU Kernel-
as-a-Service by making the switch from non-shareable accelerators, to small functions decoupled
from infrastructure. Similarly, Tarafdar et al. [64] presented a light-weight FPGA provisioning
platform for the cloud, making the host a mere management core, handled by the cloud provider.
Both works go in the direction of making FPGAs a first-class citizen in the cloud.

Serverless FPGA. Once the control plane and data path of FPGA-kernels are separated, the former
taken care by cloud providers while the later available through the HTTP interface, the abstractions
for provisioning FPGAs on-demand just like a serverless application can be envisaged. In fact,
FPGAs have the advantage of being able to be partially reconfigured at runtime. For this purpose,
we envisage to integrate Strega with Coyote [32] to provide fast reconfigurable capabilities, so
that microservices can be easily provisioned on the FPGA, thereby not tying the accelerator to one
particular application [40]. This is specially useful for serverless and short-lived applications where
Coyote offers the possibility of deploying up to ten different microservices on one FPGA, which can
be dynamically exchanged for others independently and without having to the restart the FPGA.
This aligns with the goals of serverless computing, as Schleier-Smith et al. [55] advocated in their
work, which aims to offer ease of development and scalability, potentially at lower costs (or, at
most, at the same price) compared to non-serverless deployments.

Limitations. It should be noted that High Performance Computing (HPC) applications may not
benefit from Strega. The focus of HPC solutions is performance rather than interoperability,
similar to highly optimised code with intrinsic operations that may be difficult to write, read, or
maintain, but provides better performance on specific CPUs. Similarly, optimised PCIe-attached
shells and low-level network protocols might yield better performance for HPC applications than
using an HTTP server like Strega.

5.1 Extending this Work
Given the widespread deployment of HTTP servers, this piece of software has overtime being
extended with several complex features. The current version of Strega provides a simplified,
yet realistic and fully operational, version of an HTTP server that can be used by applications
whose goal is to be available over a RESTful API, but do not need to handle all the features and
optimisations available in the HTTP protocol. We plan to develop the following features as part of
future versions of Strega:

TLS for HTTPS. In response to the growing emphasis on network communication encryption,
there has been a significant push towards securing most of the network traffic14. FPGA-based
implementations of AES encryption have demonstrated their effectiveness in this context [10]. By
offloading the TLS protocol to the FPGA for AES encryption and decryption, in conjunction with
the TCP/IP stack, significant performance gains can be achieved compared to deploying an HTTP
server on a CPU.

Support to HTTP/2.0. The recent version of HTTP improves, among others, performance in the
case of several parallel requests coming from the same client. This is done by slicing HTTPmessages
into HTTP frames (a similar principle to TCP/IP packets of a single session), and managing them at
the presentation layer. This would also open up the possibility of porting gRPC to FPGAs, since it
is built on top of HTTP/2.0.

Payload compression. To reduce network traffic, modern engines can compress the body payload
before sending to the client. This feature would seat inside the HTTP kernel, making compression
14for instance, https://www.cnet.com/tech/services-and-software/google-accelerates-encryption-project.
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transparent to the application. DEFLATE decompression, one of the compression algorithms used
in HTTP body, has also already been ported to FPGAs [10].

Call orchestration. Instead of using the HTTP request-response model to send input data and get
it back to client, adopting a linear data-flow of information processing could be an interesting and
complementary research direction. In this scenario, the FPGA could receive the payload from a
node, process it, and forward the result to a yet different node. Enabling the FPGA to issue HTTP
requests, which is a relatively straightforward task, would facilitate the orchestration of data-flow,
just like invocations of microservices that sequentially call each other to accomplish a specific task.

Vendor-agnostic stack. The current implementation is tied to a TCP/IP stack that has only been
ported to Xilinx boards. In an effort of moving away from vendor-specific solutions, we plan to
port the whole stack to Intel FPGA boards as well, increasing the hardware abstraction for future
applications regardless of the underlying board.

6 CONCLUSION
As specialised hardware architectures continue to evolve, nourished by the cloud, the relationship
between accelerators and the host (CPU) can be reevaluated. Rather than be dependant and require
CPU intervention, FPGAs offer the opportunity of being directly connected to the internet.
We presented Strega, an open-source HTTP server for FPGAs. By increasing the hardware

abstraction in the communication between client applications and FPGA kernels, Strega exposes
the kernel as a simple RESTful interface over the network. As a consequence, FPGAs can be more
easily adopted as microservices, while preserving all the performance advantages of heterogeneous
computing. The opportunity of such standardised interface should help making FPGAs first-class
processing units in the cloud, removing the requirement of necessarily instantiating a CPU for
each FPGA board.

Experimental results demonstrate that Strega can handle up to 1.7 M HTTP requests per second
with an end-to-end latency of 16 µs, comparable to traditional PCIe invocation. These numbers not
only supports the trend of decoupling the control plane from the data path, but also sheds light on
the scalability problem of imposing CPU hoping in FPGA cloud offerings.
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A NGINX DISABLED MODULES AND FEATURES
The following table lists all modules and feature flags from nginx disabled for the experimental
evaluation:

Table 3. Resource utilisation and maximum clock frequency on Alveo U55C.

Location Flag
build –without-http_access_module
build –without-http_auth_basic_module
build –without-http_autoindex_module
build –without-http_browser_module
build –without-http_charset_module
build –without-http_empty_gif_module
build –without-http_fastcgi_module
build –without-http_geo_module
build –without-http_gzip_module
build –without-http_limit_conn_module
build –without-http_limit_req_module
build –without-http_map_module
build –without-http_memcached_module
build –without-http_proxy_module
build –without-http_referer_module
build –without-http_scgi_module
build –without-http_ssi_module
build –without-http_split_clients_module
build –without-http_upstream_hash_module
build –without-http_upstream_ip_hash_module
build –without-http_upstream_least_conn_module
build –without-http_upstream_zone_module
build –without-http_userid_module
build –without-http_uwsgi_module
build –without-http-cache
build –without-mail_pop3_module
build –without-mail_imap_module
build –without-mail_smtp_module
runtime proxy_redirect off;
runtime access_log off;
runtime worker_rlimit_nofile 8192;
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