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Abstract

Tropical cyclones are violent weather systems that can cause great damage to coastlines. Their
successful prediction, on timescales ranging from a few days to the climate scale, has thus been
a subject of scientific research for several decades. For the North Atlantic basin, seasonal and
subseasonal forecasts are operationally produced by various agencies to aid in estimating the
potential for damage caused throughout the season. The 2013 hurricane season was predicted to
be above average in activity. In reality, only two category 1 hurricanes, and no major hurricane,
occurred, which is far below average. Predictions of the total number of tropical cyclones were
generally correct, which suggests that the intensification of tropical cyclones was impeded. It has
since been argued that an abundance of Rossby wave breaking events in the North Atlantic basin
caused an increase in vertical wind shear and a reduction in mid-tropospheric humidity, which
would militate against intensification. Rossby wave breaking event frequency, along with other
related metrics, has therefore been proposed as a predictor for tropical cyclone activity. This
thesis explores the latitudinal position of the tropopause in the western North Atlantic region,
which is intrinsically linked to Rossby wave breaking events, as a simplified and more powerful
predictor for tropical cyclone activity.

The implementation of the tropopause latitude in predictions requires the use of numerical
models. To assess whether the relation between the tropopause latitude and tropical cyclone
activity is represented properly, tropical cyclones must be tracked. A tracking algorithm was
thus developed for use with the ICON model. The tracking algorithm uses varying parameter
thresholds to detect weaker systems and the comparatively weak tail ends of tropical cyclone
tracks. It is shown that the algorithm can detect tropical cyclones during their formation stage,
and can terminate them as they dissipate or transition into extratropical systems. False positives
and other tracking issues are shown to not significantly impact the representation of the accumu-
lated cyclone energy throughout a season. The tracking algorithm is thus capable of extracting
full tropical cyclone tracks from the data, and adequately reflects tropical cyclone activity.

1980 to 2017 reanalysis data have been used in conjunction with observed tropical cyclone
data to show strong correlation between the tropopause latitude on the 360 K isentropic surface in
the western North Atlantic region and the accumulated cyclone energy throughout a hurricane
season. The strong correlation is argued to be due to reduced vertical wind shear, and thus
reduced ventilation of tropical cyclone inner cores, for more poleward tropopause positions.
The tropopause location is also shown to be linked to changes in the genesis location, landfalling
probability, and lifetime of tropical cyclones. The tropopause location thus shows strong potential
to be of use as a predictor of tropical cyclone activity on a seasonal timescale.

The regional variant of the ICON atmosphere model has been used to produce ensemble
simulations for the month of September in the years 1980 to 2021, with the aim of reproducing
the results found in reanalysis and observational data. The simulations underestimate North
Atlantic tropical cyclone activity and place the mean tropopause latitude on the 360 K isentropic
surface slightly too far equatorwards. However, the simulations succeed in reproducing the
link between September mean tropopause latitude in the western North Atlantic region and
September accumulated cyclone energy in the North Atlantic basin.

This thesis demonstrates that the September mean tropopause latitude in the western North
Atlantic region is linked to tropical cyclone activity on a seasonal and subseasonal scale, both
in observational and reanalysis data as well as in numerical simulation data. The tropopause
latitude shows potential for use as a predictor in seasonal tropical cyclone forecasting.
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Zusammenfassung

Tropische Zyklonen sind gewaltige Wettersysteme die grossen Schaden in Küstengebieten verur-
sachen können. Ihre erfolgreiche Vorhersage, auf Zeitskalen von ein paar Tagen bis zum Klima,
ist daher seit mehreren Jahrzehnten ein Subjekt der wissenschaftlichen Forschung. Für das Nor-
datlantische Becken werden von verschiedenen Stellen saisonale und subsaisonale Vorhersagen
operationell produziert, um Abschätzungen des Schadenspotentials innerhalb der Saison zu un-
terstützen. Die Hurrikan Saison 2013 wurde als überdurchschnittlich aktiv vorhergesagt. In
der Realität traten nur zwei Kategorie 1 Hurrikane, und kein Hurrikan der Kategorie 3 oder
höher, auf, was weit unter dem Durchschnitt liegt. Vorhersagen für die Anzahl an tropischen
Zyklonen waren generell korrekt, was darauf hindeutet, dass die Intensivierung der tropischen
Zyklonen beeinträchtigt war. Seither wurde argumentiert, dass ein Überfluss an brechenden
Rossby Wellen im Nordatlantik eine Erhöhung der vertikalen Windscherung und eine Reduktion
der Mitteltroposphärischen Feuchte bewirkte, was die Intensivierung beeinträchtigt. Die Häu-
figkeit von brechenden Rossby Wellen, zusammen mit verwandten Metriken, wurden daher als
Prädiktoren für die Aktivität von tropischen Zyklonen vorgeschlagen. Diese Arbeit erkundet
den Breitengrad der Position der Tropopause in der Region des westlichen Nordatlantik, welche
intrinsisch mit brechenden Rossby Wellen zusammenhängt, als vereinfachten und mächtigeren
Prädiktor für die Aktivität von tropischen Zyklonen.

Die Implementierung des Breitengrades der Tropopause benötigt den Einsatz von numerischen
Modellen. Um abzuschätzen, ob der Zusammenhang zwischen dem Breitengrad der Tropopause
und der Aktivität von tropischen Zyklonen angemessen repräsentiert wird, müssen tropische
Zyklonen und ihre Zugbahnen identifiziert werden. Ein entsprechender Algorithmus für den Ge-
brauch mit dem ICON Modell wurde daher entwickelt. Der Algorithmus benutzt variierende
Parameterschwellenwerte, um schwächere Systeme und vergleichsweise schwache Endstücke von
Zugbahnen der tropischen Zyklonen zu detektieren. Es wird gezeigt, dass der Algorithmus tropis-
che Zyklonen in ihrem Formationsstadium detektieren kann, und sie, wenn sie sich auflösen oder
in extratropische Zyklonen umwandeln, beenden kann. Es wird gezeigt, dass fehlerhafte Identi-
fikation und andere Probleme keinen signifikanten Einfluss auf die Repräsentation der saisonalen
akkumulierten Zyklonenenergie hat. Der Algorithmus ist daher dazu fähig, ganzheitliche Zug-
bahnen von tropischen Zyklonen aus den Daten zu extrahieren, und reflektiert die Aktivität der
tropischen Zyklonen adäquat.

Reanalysedaten für die Jahre 1980 bis 2017 wurden zusammen mit Beobachtungsdaten ver-
wendet, um eine starke Korrelation zwischen dem Breitengrad der Tropopause auf der 360 K
isentropen Fläche im westlichen Nordatlantik und der akkumulierten Zyklonenenergie während
einer Hurrikansaison aufzuzeigen. Es wird argumentiert, dass die starke Korrelation eine Folge
von reduzierter Windscherung, und dadurch reduzierter Ventilation der inneren Kernregion von
tropischen Zyklonen, bei Polnäheren Positionen der Tropopause ist. Ebenfalls wird gezeigt,
dass die Position der Tropopause mit Änderungen des Entstehungsorts, der Wahrscheinlichkeit
eines Landfalls und der Lebensdauer von tropischen Zyklonen verbunden ist. Die Position der
Tropopause weist daher starkes Potenzial als Prädiktor für die Aktivität von tropischen Zyklonen
auf einer saisonalen Zeitskala auf.

Die regionale Variante des ICON Atmosphärenmodells wurde benutzt, um Ensemblesimu-
lationen für den September in den Jahren 1980 bis 2021 zu produzieren, mit der Absicht, die
Resultate welche in Reanalyse- und Beobachtungsdaten gefunden wurden, zu reproduzieren.
Die Simulationen unterschätzen die Aktivität der Nordatlantischen tropischen Zyklonen, und
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platzieren den mittleren Breitengrad der Tropopause auf der 360 K isentropen Fläche etwas zu
weit äquatorwärts. Die Simulationen reproduzieren jedoch erfolgreich die Verbindung zwischen
dem mittleren Breitengrad der Tropopause im September, und der akkumulierten Zyklonenen-
ergie im September im Nordatlantischen Becken.

Die vorliegende Arbeit demonstriert, dass der mittlere Breitengrad der Tropopause i der
westlichen Nordatlantik Region im September mit der akkumulierten Zyklonenenergie verbunden
ist, auf einer saisonalen und subsaisonalen Skala, und ich Reanalyse- und Beobachtungsdaten,
sowie in numerisch simulierten Daten. Der Breitengrad der Tropopause weist Potenzial für den
Gebrauch als Prädiktor in saisonalen Vorhersagen von tropischen Zyklonen auf.
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Chapter 1

Introduction

“The tropical cyclone is a solitary
creature of the tropical oceans
accompanied by violent rotating
winds and torrential rain."

(Ooyama, 1969)

1.1 Tropical Cyclones

Tropical cyclones (TCs) are extreme weather systems originating over the tropical oceans (Gray,
1968). They are characterized by strong winds, spiraling rainbands, a warm core in the upper
troposphere, an immense, outward-sloping cloud where the most intense winds are located, called
the eyewall, and a central eye. The primary, cyclonic rotation of the system is maintained by the
release of latent heat in the eyewall cloud. Ooyama (1969), using a numerical model, concluded
that the source of this latent heat is the evaporation of warm ocean water into the planetary
boundary layer, where the inflow carries it towards the eyewall. Emanuel (1986) proposed a
model that explains TCs as a Carnot heat engine, where latent and sensible heat is gained from
the ocean at the temperature of the planetary boundary layer, and ejected in the outflow near
the tropopause at a temperature about 100 K colder than the surface. Rotunno and Emanuel
(1987) then used this model to argue that surface fluxes can amplify an initial vortex even in
the absence of an initial conditional instability, underlining the importance of boundary layer
processes to TC intensification. TCs are therefore weather systems that extract energy from the
tropical surface waters and move it upwards, and due to their motion also polewards.

A satellite image of hurricane Gilbert (1988) is shown in fig. 1.1. Gilbert is located south of
Cuba, and has a clearly visible eye. The spiraling rainbands extending from the central cloud
structure indicate the cyclonic rotation of the system. The secondary circulation is shown in fig.
1.2. The inflow within the boundary layer is roughly isothermal, as the ocean water has a heat
capacity far exceeding that of the air above it, and is thus able to maintain the air temperature.
Due to the evaporation of ocean water, the equivalent potential temperature increases towards
the center. The higher the equivalent potential temperature becomes in the boundary layer, the
higher the altitude of the outflow will be, as this determines at which height the ascending air
becomes neutrally buoyant. The temperature difference between the surface and the outflow
determines the efficiency of the Carnot cycle. Finally, the air subsides far away from the center,
and can be reintroduced into the inflow, completing the cycle. The warm core is indicated by
the strong increase of equivalent potential temperature towards the center.

1.1.1 Tropical Cyclogenesis

The genesis of a tropical cyclone is an event that requires a perfect storm of prerequisites. While
not all prerequisites must be fulfilled for a TC to form, the likelihood of cyclogenesis is reduced
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Introduction

Figure 1.1: Satellite image of hurricane Gilbert (1988). Image downloaded from
https://www.nhc.noaa.gov/outreach/history/ at 21:15 UTC on 17.11.2022

Figure 1.2: Figure 10.2 of Emanuel (2005), showing a schematic of an azimuthal mean TC, indicating
the secondary circulation (black arrows) with typical inflow and outflow temperature values. Contours
indicate equivalent potential temperature.
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1.1. Tropical Cyclones

if this is the case.

Palmen (1948) recognized that for a tropical cyclone to form, there must be some vertical
vorticity present. This pre-existing vorticity consists of a combination of vorticity relative to
the planet’s rotation (i.e. relative vertical vorticity, ζ), and vorticity due to the rotation of the
planet (i.e. planetary vertical vorticity, commonly described by the Coriolis parameter f). For
this reason, Palmen (1948) finds that tropical cyclones typically do not form within 5◦ latitude of
the equator. However, being some distance away from the equator does not guarantee sufficient
vorticity. In the North Atlantic basin, the majority of tropical cyclones form in a trough of
an African easterly wave (AEW) (Pasch et al., 1998), which is characterized by a low pressure
anomaly and cyclonic rotation.

As also noted by Palmen (1948), tropical cyclones require some vertical instability to form.
This requires a warm sea surface temperature (SST), and Palmen (1948) gives a minimum value
of 26 to 27 ◦C. McTaggart-Cowan et al. (2015) revisited this threshold, and argued that tropical
cyclones forming by tropical transition, i.e. from an extratropical precursor cyclone that develops
the structure of a tropical cyclone (Davis and Bosart, 2004), can form at lower SSTs. They go
on to state that while for TCs not developing by tropical transition a 26.5 ◦C SST threshold
can be used, this should be combined with a measure for static stability to better describe the
potential for tropical cyclogenesis by tropical transition.

While SST is relevant for vertical stability, it is also indicative of ocean thermal energy. From

Fqv = CE |V| (qs − qv) (1.1)

where Fqv is the surface latent heat flux, CE is a transfer coefficient, |V| is the magnitude of
the wind with the bold font denoting a vector, qs is the saturation specific humidity and qv
is the specific humidity, it can be seen that a higher SST, and thus a higher temperature of
the directly adjacent air and a resulting higher qs, causes a higher latent heat flux into the
atmosphere at a given wind speed. More energy is thus extracted from a warmer ocean. As
tropical cyclones induce ocean mixing, and a high SST is highly favorable to tropical cyclogenesis,
high temperatures should be present to a depth of 60 meters (Gray, 1975). Otherwise, cold water
stirred up from beneath the surface can impede the latent heat transfer into the atmosphere.

Convection is a central element to the genesis of a tropical cyclone. This process uses the
latent heat gained from the evaporation of ocean surface water to heat a convective column.
However, this heating is reduced by entrainment of environmental air (Emanuel et al., 2004).
Environmental air is more dense than convectively ascending air, either by being colder, being
dryer, or as is typically the case, being both colder and dryer. Therefore, mixing environmental
air into the updraft will reduce the density difference, and convection is hindered. Further, if
the entrained air is sufficiently dry or a sufficient amount is entrained, evaporation of cloud hy-
drometeors can occur. This cools the updraft, making it more dense. To reduce the detrimental
effect of entrainment, a humid mid-troposphere is required for tropical cyclogenesis. Gray (1975)
finds that an environmental relative humidity below 40% is the least conducive to tropical cyclo-
genesis, while values above 70% seem to have no additional benefit to the likelihood of tropical
cyclogenesis.

The magnitude of entrainment heavily depends on vertical wind shear (Tang and Emanuel,
2010), and the combined effect of vertical wind shear and environmental humidity can be quanti-
fied by the ventilation index (VI) of Tang and Emanuel (2012). The ventilation index is defined
as

V I =
VWS · χm

uPI
(1.2)

where uPI is the potential intensity as defined by Bister and Emanuel (2002), and χm is the
entropy deficit, defined as:
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Introduction

χm =
s∗m − sm
s∗SST − sb

(1.3)

where s∗m is the saturation entropy at 600 hPa, sm is the entropy at 600 hPa, s∗SST is the satura-
tion entropy at the sea surface, and sb is the entropy in the boundary layer. The ventilation index
thus compares the "anti-fuel" effect of high vertical wind shear and low mid-tropospheric humid-
ity to the fuel sources included in the potential intensity, such as high SST. Tang and Emanuel
(2012) find that most TCs are generated at VI values of below 0.1. Whether a TC intensifies or
weakens in an environment of given VI is more complex. TCs most frequently intensify at VI
values below 0.01, and weaken most frequently at VI values above 0.04, though there is great
overlap in the distribution of VI for intensifying and weakening TCs. High vertical wind shear
and low environmental humidity both act to reduce the saturated potential temperature of the
updraft, which increases the outflow temperature in the Carnot engine model of Emanuel (1986),
which reduces the temperature difference between the surface and the outflow, which reduces
the efficiency of the heat engine. Vertical wind shear also enhances the entrainment of dry air
into the boundary layer, which dries the inflow of forming and existing tropical cyclones (Riemer
et al., 2010; Riemer and Laliberté, 2015), thus reducing equivalent potential temperature and
increasing the outflow temperature, which reduces the efficiency of the heat engine.

A proposed development pathway of an initial disturbance into a TC is described in detail
in a review paper by Montgomery and Smith (2014). Within a disturbance with radial inflow,
convective cells develop and stretch the vorticity field. These cells are called vortical hot tow-
ers (VHTs). These VHTs move towards the center of the inflow region and aggregate. During
this aggregation process, the cyclone becomes increasingly axisymmetrical, and positive vorticity
anomalies are moved towards the center while negative anomalies are moved outwards.

For the TC to spin up, two mechanisms work in tandem, both related to the convergence
of angular momentum. Above the planetary boundary layer, angular momentum is materially
conserved, such that convergence increases the tangential wind speed as per the equation

M = rV +
1

2
fr2 (1.4)

where M is the angular momentum, r is the radius from the cyclone center, V is the tangential
wind speed, and f is the Coriolis parameter. For M to be conserved, a reduction in r, i.e. radial
inflow of an air parcel, must lead to an increase in V . This process increases the radial pressure
gradient, which also increases the radial pressure gradient in the boundary layer. The second
mechanism is convergence in the boundary layer, where M is not conserved due to the presence of
friction. However, the reduction of V caused by the reduction in M can be offset by a sufficiently
fast reduction in r, ultimately increasing V as an air parcel moves towards the center. The inflow
slows down underneath the eyewall as the inward flowing air becomes supergradient (i.e., faster
than gradient wind), which causes horizontal convergence in the boundary layer inflow. As a
result, air is lifted and condensation occurs. These two mechanisms thus steadily increase the
radial pressure gradient, inflow and tangential wind speed to spin up the TC.

Another genesis pathway is the tropical transition of a precursor cyclone (Davis and Bosart,
2003). Precursor cyclones typically exist in a baroclinic environment of high vertical wind shear,
but show a reduction in baroclinicity and vertical wind shear just prior to transitioning into
TCs. The precursor cyclone acts as a conduit that enables the organization and development of
the emerging TC. McTaggart-Cowan et al. (2013) found that TCs formed via tropical transition
account for over one third of North Atlantic TCs.
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1.1. Tropical Cyclones

Figure 1.3: Figure 2a-c of Persing et al. (2013). Azimuthal means of radial (a), tangential (b) and
vertical (c) wind in ms−1 of a rapidly intensifying simulated tropical cyclone. Red contours show
positive values, blue dashed contours show negative values, and the blue solid contour shows the zero
contour.

1.1.2 Structure of Tropical Cyclones

The large scale cyclonic rotation of a TC can be described by the gradient wind balance

−1

ρ

∂p

∂r
= fV +

V 2

r
(1.5)

where ρ is density, p is pressure, r is the radius, f is the Coriolis parameter, and V is the tan-
gential velocity. The left hand side of the equation describes the pressure gradient force, which
accelerates an air parcel towards the center. The right hand side describes the Coriolis force
and the centrifugal force, which accelerate an air parcel away from the center. A velocity that is
larger than the gradient wind balance would predict is called supergradient wind, and a velocity
that is smaller than the gradient wind balance would predict is called subgradient wind. In the
presence of friction, V is reduced, causing net acceleration towards the center. As described in
the previous subsection, this increases wind speed. Therefore, friction has the paradoxical role
of increasing wind speed in the boundary layer.

TCs have a structure that is very distinct from that of extratropical cyclones. One key dif-
ference is the near radial symmetry of tropical cyclones, which allows for the representation of
structural elements in azimuthal mean fields around the center. Persing et al. (2013) performed
a simulation with 3 km horizontal grid spacing to produce figure 1.3 (their figure 2a-c), which
shows the azimuthal mean wind vector components during a period of rapid intensification. Sev-
eral features that differentiate tropical cyclones from other cyclones can be identified in it.

In panel a, the azimuthal mean radial wind speed is shown. Within the boundary layer, the
dashed lines indicate negative velocity, i.e. a velocity towards the center. This feature is the
frictionally induced inflow that is described above. While the strong inflow is confined to the
boundary layer, weaker inflow extends to about 10 km height. This inflow causes momentum to
converge towards the TC center, and counteracts outflow at low altitudes. The cause for this
inflow is latent heating in the eyewall. The convection is more than strong enough to remove
the mass converging in the boundary layer, and therefore induces inflow above the boundary
layer as well (Montgomery and Smith, 2017). Directly above the boundary layer, there is a small
region of outflow. The outflow is caused by the wind being supergradient, and boundary layer air
ascending to a level above the strong inflow due to convergence. It can then move outwards, only
being hindered by the weaker inflow above the boundary layer. The much larger and stronger
outflow region aloft is where the mass that converges at lower levels is expelled away from the TC
center. The temperature of this outflow layer is highly relevant to the efficiency of the Carnot
engine view on tropical cyclones (Emanuel, 1986). The weak outflow throughout the troposphere
at low radii is indicative of the outward slope of the eyewall. The inflow in the boundary layer
and outflow aloft constitute the radial components of a secondary circulation within a TC with
ascent in the eyewall and slow subsidence away from the center being the vertical components.
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Introduction

In panel b, the azimuthal mean tangential wind speed is shown. The positive values indicate
counter-clockwise rotation in the northern hemisphere (i.e., cyclonic rotation). This rotation is
the primary circulation of a TC, and constitutes the strongest wind component. The maximum
wind speed is found near the top of the boundary layer, where there is frictionally induced inflow,
but the loss of momentum due to friction is weak (Montgomery and Smith, 2017). The radial
position of this wind maximum is where the inflow stagnates and there is strong vertical motion.
The tangential wind speed decreases with height due to the thermal wind relation, which induces
anticyclonic flow around a positive temperature anomaly (such as the warm core of a TC) in its
upper levels. However, as ascending air cannot change its velocity instantaneously, the reversal
of the circulation to anti-cyclonic flow occurs in the outflow, some distance away from the center,
and is therefore not seen in fig. 1.3.

In panel c, the azimuthal mean vertical wind speed is shown. There is a region of deep con-
vection from the boundary layer to near the tropopause where the radial inflow in the boundary
layer stagnates. The stagnation of the inflow causes convergence, which is compensated by forced
vertical motion. Due to high evaporation rates caused by high wind speed, the air in the bound-
ary layer is very humid. This allows for condensation, and thus latent heat release, to occur at
low altitudes upon lifting. The large latent heat release of the lifted air enables the resulting
convection to warm the air sufficiently to reach altitudes close to the tropopause. The resulting
convective cloud is the eyewall of the tropical cyclone, and constitutes the vertical component
of the secondary circulation. Towards the center of the eyewall, there is weak subsidence. The
cause for this subsidence is that as the ascent in the eyewall stagnates, strong flow away from the
center and weak flow towards the center are induced. The inflow forces air to subside in the eye.
As air in the eye is thus warmed along its trajectory, the eye is cloud free in a well developed
eye.

Another structural element that differs from its extratropical counterpart is the warm core of
a tropical cyclone, as seen in fig. 1.2. Haurwitz (1935), almost a century ago, used the existence
of a warm core to argue that the height of a tropical cyclone is substantially more than 3 km, as
was previously assumed due to deteriorating wind speeds with height. He further described the
dry, subsiding air in the eye, and correctly assumed that this air mass previously ascended in the
eyewall, where it warmed and lost much of its humidity, and is not simply heated environmental
surface air. While this may seem banal to a modern reader, it underlines the immense difficulty
that one faces when observing violent weather without remote sensing and without aircraft.
With rather simple means, he also described how the warm core increases in radius with height,
producing a funnel-like structure. More recently, Durden (2013) used vertical soundings of warm
cores to show that there is great variability in the structure of warm cores. Anomaly maxima
are found anywhere between 760 and 250 hPa. Further findings are that stronger anomalies
tend to have a larger vertical extent, and are linked to stronger TCs, as would be expected from
hydrostatic considerations.

1.1.3 North Atlantic Tropical Cyclone Tracks

The movement of a TC across the surface of the planet is primarily governed by two factors.
The first, and more dominant, is the environmental flow. The second is the β-effect (Holland,
1983), which describes a westward and poleward component of the TC’s motion that is caused
by the meridional gradient of the Coriolis parameter and the conservation of absolute vertical
vorticity (Rossby and collaborators, 1939).

Colbert and Soden (2012) separate the tracks of North Atlantic tropical cyclones that form
in the main development region (MDR, Goldenberg and Shapiro (1996)) into three categories,
as seen in figure 1.4 (their figure 1b). They define the MDR as the region spanning from
10◦N to 20◦N and from 65◦W to 17.5◦W. The categories are straight moving (SM), recurving
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Figure 1.4: Figure 1b of Colbert and Soden (2012). Recurving ocean (RCO, blue), recurving landfall
(RCL, red) and straight moving (SM, green) tropical cyclone track categories. Black lines delineate
the borders between the categories.

landfall (RCL) and recurving ocean (RCO) tracks. They note that generally, SM TCs are
generated further to the west and south of the other categories, giving them less time to be
moved northwards by the β-effect. RCO TCs, generally forming farthest to the east, have
the most time to be deflected northwards by the β-effect. Colbert and Soden (2012) further
describe that the strength and extent of the North Atlantic subtropical high-pressure system
(NASH) exerts a substantial influence on the track of tropical cyclones. A strong and large
NASH favors SM tracks, while a weak and small NASH favors RCO tracks, due to its effect on
the environmental steering flow.

1.1.4 Extratropical Transition

TCs that move polewards and do not undergo landfall will at some point interact with the ex-
tratropical flow. This can cause the cyclone to become asymmetrical, develop fronts, and lose its
warm core. This interferes with the circulation of the cyclone, impeding its ability to sustain its
intensity as a tropical cyclone. TCs that begin extratropical transition thus generally weaken,
but may re-intensify as extratropical cyclones if they complete the transition.

Evans and Hart (2003) use the thermal asymmetry and transition of a warm core to a cold
core structure to produce a definition of extratropical transition. A tropical cyclone approaching
a mid-latitude trough has a thermal gradient imposed onto it, producing an asymmetry. A
transitioning TC will be steered by a westerly flow, such that the air to the left, more poleward
side of its motion is colder than the air to the right, more equatorward side on the northern
hemisphere, and vice versa on the southern hemisphere. Evans and Hart (2003) thus define

B = h
((
Z600 − Z900

)
R
−
(
Z600 − Z900

)
L

)
(1.6)

where B is the storm-relative thickness field asymmetry, i.e. the difference in the geometric height
of the 600-900 hPa mean altitudes to the right and left of the cyclone relative to its motion, h
is an indicator for the hemisphere, with h = 1 for the northern hemisphere and h = −1 for the
southern hemisphere, Z is the geometric height of the indicated pressure levels, the subscripts
600 and 900 denote the 600 and 900 hPa pressure levels, respectively, and the subscripts R and
L denote the right and left side relative to cyclone motion, respectively. The overbar denotes

7

C
H

A
P

T
E

R
1



Introduction

an areal mean within a semicircle. The radius to which the areal mean is considered is 500 km.
Extratropical transition onset is defined to have begun when B exceeds a value of 10 m.

As cyclones weaken during the extratropical transition process, some of them decay and do
not finish the process, while others can re-intensify as extratropical cyclones. Evans and Hart
(2003) thus define

−V L
T =

∂ (ZMAX − ZMIN )

∂ ln p

∣∣∣∣600 hPa

900 hPa

(1.7)

where −V L
T is a measure for thermal wind, ZMAX is the maximum isobaric height and ZMIN is

the minimum isobaric height within a 500 km radius, and p is pressure. As tropical and extra-
tropical cyclones are low pressure systems, and this low pressure anomaly generally persists to
beyond 600 hPa in height, ZMIN is close to the center, and ZMAX is far away from the center.
−V L

T is thus a measure of whether the pressure anomaly weakens or strengthens with height.
The sign of −V L

T is indicative of the direction of thermal wind, and thus of whether the core is
warm or cold. Extratropical transition is defined to be completed when −V L

T becomes negative,
i.e. when the warm core of the cyclone developed into a cold core.

Hart and Evans (2001) found that roughly half of North Atlantic hurricanes undergo ex-
tratropical transition, and that roughly half of landfalling TCs in the North Atlantic undergo
extratropical transition. They also found that there is a seasonal cycle in the mean latitude of
transition, with it being low early in the season, high in the mid-season, and in between late in
the season.

1.2 Sub-Seasonal and Seasonal Tropical Cyclone Activity Predic-
tions

Upon reaching land TCs can cause substantial damage to life and property. While the potential
for damage caused has not increased during the past century, an increase in population and
wealth along the North American coast has led to an increase in damage, i.e. the coasts have
become more vulnerable (Pielke Jr. et al., 2008).

Predicting the activity of a TC season can aid in preparatory work to mitigate the damage
they cause. This gives rise to the need for sub-seasonal and seasonal forecasting of TC activity.
In the North Atlantic basin, this effort has been ongoing and steadily improved since the early
1980s (Gray, 1984a,b). Forecasts can use a statistical or a dynamical approach, and the two can
be combined to form a hybrid approach.

1.2.1 Statistical Forecasting

The first attempts at forecasting the seasonal TC activity used a statistical approach, where
certain predictors that correlate with TC activity are combined to produce a forecast. Nicholls
(1979) correlated the pressure anomaly at Darwin, Australia during winter to the number of
TCs in the Australian region. The estimated correlation coefficient of -0.6 suggested that skillful
forecasts could be produced based solely on this pressure anomaly. Gray (1984a,b) related the
North Atlantic seasonal tropical cyclone activity, measured in number of hurricanes, hurricane
days and storm days, to the El Niño-Southern Oscillation (ENSO), the Quasi-Biennial Oscilla-
tion (QBO) and regional sea-level pressure anomalies in the Caribbean basin. He found that the
ENSO correlates somewhat well with the number of hurricanes and tropical storms, and that
the direction of the QBO correlates quite well with both the number of hurricanes and tropical
storms and the number of hurricane days. Gray et al. (1992a) found that the influence of the
QBO is linked to an increase in upper level ventilation for east phases of the QBO, while the
ventilation is reduced in west phases. Gray et al. (1992b) further argue that east QBO phases are
linked to enhanced convection within 7◦ of the equator, while west phases are linked to enhanced
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convection within 8–18◦ the equator. West QBO phases are thus linked to enhanced convection
in regions where TCs are generated, which in turn increases TC activity. ENSO has also been
linked to vertical wind shear in the North Atlantic main development region for TCs, such that
warm SST anomalies in the eastern Pacific basin are associated with an increase in vertical wind
shear, and therefore a reduction in TC activity (Goldenberg and Shapiro, 1996).

Klotzbach and Gray (2004) use several predictors linked to the QBO and ENSO, but further
include predictors linked to the North Atlantic Oscillation (NAO), the Pacific-North-American
pattern (PNA) and the Arctic Oscillation (AO) to demonstrate that statistical predictions can
have skill even when performed six to eleven months in advance. Saunders and Lea (2005) use
July horizontal winds in several different regions to produce skillful forecasts for the wind energy
of TCs undergoing landfall in the USA from August to October. Klotzbach (2007) concludes that
statistical forecasting has improved greatly since its inception, and is likely to improve with the
improvement of global data sets such as ECMWF (European Centre for Medium-Range Weather
Forecasts) reanalysis products.

1.2.2 Dynamical Forecasting

Dynamical forecasting aims to predict TC activity by using numerical models within which TC
activity can be determined directly by tracking them, or indirectly by deriving it from the predic-
tion of other quantities via statistical methods. The latter is the aforementioned hybrid approach.
Thorncroft and Pytharoulis (2001) produced skillful forecasts of vertical wind shear in the main
development region of North Atlantic hurricanes, which could be used to draw conclusions on TC
activity. Vecchi et al. (2014) find that while a purely dynamical approach shows skill, a hybrid
method using SST predictions outperforms the purely dynamical predictions especially at long
lead times of several months to half a year. They also conclude that sub basin-scale predic-
tions are feasible. Dynamical forecasting generally provides skillful results (e.g., Thorncroft and
Pytharoulis (2001); Vitart et al. (2007); Vecchi et al. (2014); Zhang et al. (2019), and operational
forecasts have good skill in predicting TC number and provide information on regional activity
and landfall locations (Klotzbach et al., 2019).

Befort et al. (2022) compared six different European seasonal forecasting models (ECMWF
SEAS5 (Johnson et al., 2019), U.K. Met Office GloSea5-GC2 (MacLachlan et al., 2015), Météo
France System 5 (France, 2015), Météo France System 6 (Dorel et al., 2017), DWD GCFS2.0
(Fröhlich et al., 2021) and CMCC SPS3 (Gualdi et al., 2020)) with horizontal resolutions ranging
from about 32 km to about 110 km (see table 1 of Befort et al. (2022)). They show that the
number of TCs in the North Atlantic basin throughout a season is generally represented well
in its total number and the seasonal cycle, though the total number is underestimated by some
models with coarser horizontal resolution. Notably, all models also have skill specifically in the
tropical coastal regions of North America. The seasonal energy of TCs produced in the models is
found to correlate well with observations and reanalyses. However, while the models are skillful
in the West Pacific basin as well, this is not the case specifically at the western coastline.

A summary of the performance of twelve forecasting centers using statistical, dynamical and
hybrid methods can be found in Klotzbach et al. (2019). They conclude that forecasts have a
good level of skill, and recommend the use of newly available historical data sets for statistical
forecasting and for the calibration of methods. They further recommend the inclusion of new
techniques, such as machine learning, and exploring the potential for regional and multi-annual
predictions.

1.2.3 The 2013 North Atlantic Hurricane Season

The 2013 North Atlantic hurricane season was forecast to be above average in activity, but in
reality this was not the case. Only two category 1 hurricanes (i.e., hurricanes with a maximum
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wind speed between 33 m/s and 42 m/s) and no major hurricane occurred, which is well below
average. A reason for this was proposed by Zhang et al. (2016), who found that an abundance
of Rossby wave breaking dried the tropical North Atlantic by mixing relatively dry extratropical
air into it, and by increasing vertical wind shear.

Potential vorticity (PV), defined as:

PV =
η · ∇θ

ρ
(1.8)

where η is absolute vorticity, ∇θ is the gradient of potential temperature,and ρ is density, can
be used to detect PV streamers. PV streamers are elongated filaments of the 2 PV unit (PVU)
contour which protrude into the troposphere, and can be used as a proxy for a breaking Rossby
wave Wernli and Sprenger (2007); Béguin et al. (2013); Sprenger et al. (2017). The frequency,
size and anomaly magnitude of PV streamers have all been found to correlate negatively with
TC activity in the North Atlantic region Zhang et al. (2017); Papin et al. (2020).

1.3 Tracking of Tropical Cyclones in Numerical Model Data

Numerical modeling produces large amounts of data that require some degree of automation to
analyze. Fortunately, the distinct structure of TCs allows for an algorithm to detect TC centers
based on a number of criteria, and to distinguish them from extratropical cyclones.

Commonly used structural features are the presence of a central pressure minimum with a
nearby maximum in low-level vorticity (e.g., Chauvin et al. (2006); Bengtsson et al. (1995); Zhao
et al. (2009)), or only a central low-level vorticity maximum (e.g., Hodges (1999)), which detects
cyclonic weather systems, and evidence for a warm core, which distinguishes TCs from other
cyclones. Identifying the warm core of a TC can be done either by directly assessing the warm
core itself (e.g., Bengtsson et al. (1995); Chauvin et al. (2006); Zhao et al. (2009)), or by assessing
the wind or vorticity change with height, as both weaken with height in the presence of a warm
core (e.g., Bengtsson et al. (1995); Chauvin et al. (2006); Strachan et al. (2013)).

An alternative way of identifying TC centers is described in Tory et al. (2013), who use an
adapted form of the Okubo-Weiss (OW) parameter, which they call the OWZ parameter. It is
defined as

OWZ = max

(
ζ2 −

(
E2 + F 2

)
ζ2

, 0

)
· η · sign (f) (1.9)

where ζ is the vertical component of relative vorticity, E is the stretching deformation, F is the
shearing deformation, and η is the vertical component of absolute vorticity. The OWZ parame-
ter quantifies the solid body component of the rotation of the cyclonic absolute vorticity, which
aids in identifying low-deformation environments. A high OWZ implies a sheltered environment
within which a TC can develop, which makes the OWZ parameter well suited for detecting early
stages of a TC. The OWZ parameter can be jointly used with vertical wind shear and relative
humidity criteria to track TCs (Tory et al., 2013; Bell et al., 2018).

An issue that all TC tracking algorithms share is the reliance on threshold parameters. For
example, if a low-level vorticity maximum is detected, it must be sufficiently strong to be counted
as a potential TC center. This is necessary to not track any spurious signal, but only cases where
a TC is strongly suspected to be present. These thresholds are chosen subjectively. As a result,
the performance of any TC tracking algorithm is sensitive to the choice of parameters (Horn
et al., 2014). If the parameters are too weak, then false positives become more likely. If they
are too restrictive, then viable model TCs are more likely to evade detection, especially at weak
stages in their life cycle. A possible solution to this is presented by Camargo and Zebiak (2002),
who use one set of parameters to detect TCs, and another set of parameters to expand the search
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forwards and backwards in time once a TC has been detected. The first set of parameters serves
to reduce the probability of false positives, while the second set serves to detect the tail ends of
TCs.

1.4 Objectives

This thesis covers a potential improvement of seasonal and sub-seasonal tropical cyclone activity
forecasts by using the large scale potential vorticity structure in the North Atlantic basin. This
can be subdivided into three main objectives, as described below.

1.4.1 Development of a Tropical Cyclone Tracking Algorithm

If there is a relationship between the tropical cyclone activity and the large scale potential
vorticity field, then it is important to know if this is reproduced in numerical models. To assess
the behavior of tropical cyclones within model data, these must be reliably tracked. Therefore,
a pre-existing tracking algorithm (Kleppek et al., 2008) is adapted and expanded. This leads to
the following objectives:

• Adaptation of the Kleppek et al. (2008) algorithm for use with ICON

• Implementation of a warm core criterion

• Implementation of threshold parameter variation

• Validation of the new tracking method

1.4.2 Large Scale Potential Vorticity Influence on Tropical Cyclone Activity

To improve statistical tropical cyclone activity forecasts, there must be some relation between a
predictor and tropical cyclone activity. Possibly, there is such a predictor that is related to the
large scale upper-tropospheric potential vorticity field. This leads to the following two research
questions, which are to be answered within this thesis:

• Is there a link between the large scale potential vorticity field and tropical cyclone activity
in the North Atlantic basin in reanalysis and observational data?

• If this link exists, what is the underlying physical mechanism?

1.4.3 Assessment of Sub-Seasonal Potential Vorticity Forecasts

If a link between the large scale potential vorticity field on the 360 K isentropic surface and
tropical cyclone activity exists in reanalysis and observational data, then it is of interest to
assess whether numerical models can reproduce it. Regional numerical simulations are thus
performed to explore the relation between the potential vorticity field and TC activity in model
data. The following two questions are to be addressed:

• Is the relation between the large scale potential vorticity field and North Atlantic TC
activity that has been found in reanalysis and observational data reproduced in numerical
simulations?

• If the this link is reproduced, is it based on the same underlying physical mechanism?
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Chapter 2

Data and Methods

2.1 The ERA5 Reanalysis Product

ERA5 is a ECMWF reanalysis product. Within this thesis, ERA5 is used to initialize model sim-
ulations and force the lateral boundaries of model simulations. It consists of a data assimilation
component, a forecasting component, and an observational component. The ERA5 reanalysis
product is described following Hersbach et al. (2020) and the references therein.

ERA5 uses a sequential data assimilation scheme, which advances in 12-hourly analysis cy-
cles. Within each cycle, observations are combined with prior information from a forecast to
estimate the evolution of the atmosphere and the surface. This includes a variational analysis of
upper-air atmospheric fields (temperature, wind, humidity, ozone) and near-surface parameters
(2 m temperature, 2 m humidity, surface pressure), soil moisture, soil temperature, snow and
ocean waves. The analyses provide the basis for a short-range forecast, initialized 9 hours into the
12-hour cycle, which provides the background estimate for the next cycle. The forecast ensures
that observations can be extrapolated in space and time in a physically meaningful way, and to
estimate parameters that are not directly observed, such as turbulent fluxes or cloud properties.

The data assimilation uses a hybrid incremental 4D Var analysis, where an ensemble com-
ponent of one control and nine perturbed members are used to determine background error
estimates for the deterministic data assimilation. Uncertainties is the reanalysis product can
thus be estimated. The data assimilation consists of a 4D Var analysis for the atmosphere, and
data assimilation for surface parameters.

The goal of the 4D Var analysis is to constrain the model forecast with observations. This
requires a background estimate from the preceding cycle, observations within the current analy-
sis, and second order moment error characteristics of the background state, bias parameters and
observations. The error characteristics for the background state are derived from an ensemble of
ten members.

The ensemble data assimilation system uses ten members to estimate background errors. One
of these uses unperturbed data to run (the control), and the other nine used perturbed data. The
members use a lower resolution than the 4D Var analysis, namely TL319 as compared to TL639.
The perturbations are randomly sampled from a Gaussian distribution with a variance equal to
the expected variance of the observation errors. Model physical tendencies in the short-range
forecasts that link analysis cycles are perturbed likewise. As the number of members is quite
limited, additional climatological information is used to determine background error covariances.
The weight of the climatological information is smaller for larger wave numbers.

Land surface parameters are weakly coupled to the atmosphere, in that they influence each
other only in the following assimilation cycle by being relevant to the forecasting process of the
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next background state. First, prognostic 2 m temperature and relative humidity, and snow depth
and density are analyzed. Then, soil moisture, soil temperature, ice temperature and snow tem-
perature are determined. Over the ocean, 2 m temperature and humidity are diagnostic, such
that they do not influence subsequent results. This prevents land observations from influencing
the state over the ocean.

ERA5 uses the IFS release Cy41r2, containing three fully coupled components for atmo-
sphere, land surface and ocean waves. The horizontal resolution is about 31 km. 137 vertical
levels are used, the model top being at 1 Pa.

Observations are subjected to a number of quality control and data selection steps. Data can
blacklisted a priori, which is done when instruments have anomalous periods, for specific regions
or satellite channels, and for certain variables such as 10 m wind over land. Observations can
also be given a low weight to reduce their impact.

2.2 HURDAT2 Hurricane Data

2.2.1 Data Set Description

HURDAT2 is a dataset developed by the National Hurricane Center (NHC) of the USA. It is
described here following Landsea and Franklin (2013). The dataset is a post-storm analysis that
contains data for the intensity, central pressure, position and maximum extent of 34, 50 and 64
kt winds for each quadrant. The precision of the dataset is 5 kt, 1 hPa, 0.1◦, 5 nautical miles (n
mi), 5 n mi and 5 mi, respectively. For the storms considered in this thesis, data are available at
synoptic times (0000, 0600, 1200 and 1800 UTC). Before 1956, data were analyzed only once or
twice a day, and were interpolated to synoptic times to construct the dataset. Prior to 1979, cen-
tral pressure data were only included when specific observations could be used explicitly as best
track values. From 1979 onward, estimates have been produced for all synoptic times. From 2004
onward, size information is included in the data set. Asynoptic times are included for cases where
landfall or peak intensities occur outside of synoptic times for 1851-1945 and from 1991 onward.
The best tracks are subjective assessments based on many data, some of which are only available
after the storm has passed. These data can contradict each other, and the manual construction
of the best tracks relies on the experience of NHC hurricane specialists to weigh the available
data to create a sensible history for each storm. To ensure that the data are representative of
the 6-hour interval they are centered on, variations with time scales of less than 24 hours are not
represented within HURDAT2, even if they are known quite accurately. The HURDAT2 data
are thus smoothed, which can cause discrepancies between the best track data and observations,
including for the position of the storms. This is not the case for landfall positions, where the
NHC’s best estimate for the actual landfall position, intensity and time are used. Given the re-
mote position of tropical cyclones over oceans, where measurements are difficult, the best tracks
rely heavily on remote sensing via satellites. Only about 30% of storms have aircraft observations.

2.2.2 Uncertainty Estimates

Landsea and Franklin (2013) further provides an uncertainty estimate of the data set. However,
this estimate is based on a 2010 survey of the specialists who construct the best tracks, and
number only eleven persons (seven for a prior survey in 1999). The uncertainty estimates are
therefore to be considered only as "ballpark estimates", as it is put in Landsea and Franklin
(2013), and are justified by the absence of any other measure (i.e., they are better than no esti-
mate at all).
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2.3. ICON - the ICOsahedral Nonhydrostatic Atmosphere Model

The uncertainty in intensity increases slightly with increasing intensity of storms, but the
uncertainty relative to the intensity decreases from about 25% for tropical storms to about 15%
in category 1 and 2 hurricanes and about 10% for major hurricanes for satellite-only observations.
For storms with satellite and aircraft observations, the relative uncertainty is about 15%, 10%
and 8%, respectively. The inclusion of aircraft measurements thus reduces the relative uncer-
tainty substantially, more so for weaker storm systems. The uncertainty is reduced compared to
that in 1999, due to new tools made available in the 2000s.

The uncertainty for central pressure increases with increasing storm intensity, especially so for
satellite-only measurements. The relative uncertainty is about 30% for tropical storms, about
20% for category 1 and 2 hurricanes, and about 15% for major hurricanes. The inclusion of
aircraft measurement improves this drastically, yielding about 20%, 10% and 5% relative uncer-
tainty, respectively.

The uncertainty in position is both dependent on the intensity of storms, with a decrease
for more intense storms, and on the availability of data, with the addition of aircraft mea-
surements reducing uncertainty, and land-based observations for landfalling storms reducing it
further. For tropical storms, the uncertainty for satellite-only measurements is about 35 n mi,
which is reduced to about 22 n mi when aircraft measurements are included, and about 18 n
mi for landfalling storms. As a reference for a relative uncertainty measure, the median radius
of the outermost closed isobar is used, which is about 150 n mi for tropical storms and about
200 n mi for both category 1 and 2 and major hurricanes. For satellite-only observations, the
relative uncertainty is then about 20% for tropical storms and 10% for hurricanes. the inclusion
of aircraft measurements reduces this to about 15% for tropical storms, about 7.5% for cate-
gory 1 and 2 hurricanes, and about 5% for major hurricanes. Storms undergoing landfall in the
USA have this reduced further to about 10%, 5% and 5%, respectively. Surprisingly, the uncer-
tainty estimates are very similar to those in the 1999 survey, despite improvements in monitoring.

The uncertainty for the maximum extent of 34, 50 and 64 kt winds is virtually independent
of intensity, but show a strong dependency on data availability. The relative uncertainty is quite
large for all intensities for satellite-only data, with about 40% for tropical storms, and about 30%
for hurricanes of all categories for the 34 kt wind radii. The inclusion of aircraft measurements
reduces this to about 35% for tropical storms, about 25% for category 1 and 2 hurricanes, and
about 20% for major hurricanes. For landfalling hurricanes it is further reduced to about 30%,
20% and 20%, respectively. The relative uncertainties for the 50 and 64 kt winds are even higher.
While these uncertainties might seem alarming, it should be noted that storm size data are not
used within this thesis, and mentioned here only for the sake of completeness.

2.3 ICON - the ICOsahedral Nonhydrostatic Atmosphere Model

The ICOsahedral Nonhydrostatic atmosphere model (ICON) was developed by the German
Weather Service (DWD) and the Max-Planck-Institute for Meteorology (MPI-M). It is specifi-
cally designed to allow for global, regional and large eddy simulation (LES) applications, to scale
well with parallel high-performance computing architecture, and to allow for nested grids, where
a local, high resolution grid is inserted into a parent grid of coarser resolution. Zängl et al. (2015)
describes the dynamical core of the model. This section follows the ICON model tutorial (Prill
et al., 2019) and references therein in describing the grid and used parametrizations.

2.3.1 The Horizontal Grid

What differentiates ICON from many other models is the peculiar icosahedral grid, which was
pioneered in NICAM (Nonhydrostatic ICosahedral Atmosphere Model) (Satoh et al., 2008, 2014)
with great success. With this grid, the planet is represented by a 20-sided die (an icosahedron),
which is projected onto a sphere. The nomenclature used to describe the grid resolution is of the
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Data and Methods

Figure 2.1: Figure 2.1 of Prill et al. (2019). The base icosahedral grid (R1B0) is shown in dashed red
lines, the R1B0 grid is shown in dashed black lines, and the R1B2 grid is shown in solid black lines.

form RnBk, where the icosahedron edges are divided into n parts, and the resulting edges are
bisected k times. This results in a grid that is quasi, though not exactly, uniform in cell area.
Figure 2.1 shows the base grid (R1B0) in dashed red lines. The sides of the original icosahedron
are not further divided into parts, and the sides are not bisected. The dashed black lines show a
R2B0 grid, where the original sides are divided into 2 parts. The solid black lines show a R2B1
grid, where the R2B0 grid is bisected once.

2.3.2 Radiation Parametrization

Radiation is calculated using the Rapid Radiative Transfer Model (RRTM), which is described
here following Mlawer et al. (1997). The RRTM uses the correlated-k method, which is an ac-
celerated calculation that approximates fluxes and cooling rates in a heterogeneous atmosphere.
For each homogeneous layer and spectral band, a small set of absorption coefficients is used.
To obtain representative values for the absorption coefficients, they are transformed into a cu-
mulative probability function within a spectral band, i.e. the absorption coefficient becomes a
function of the cumulative probability instead of wave length. Sub-intervals of the cumulative
probability are then used to determine characteristic values for the absorption coefficient. The
error caused by this approximation is solely due to the finite size of the sub-intervals, such that
the accuracy of the method is determined by the desired computational efficiency. A second error
source is the extension of this method to a vertically heterogeneous atmosphere. The outgoing
radiation of one layer at a specific value of the cumulative probability is the incoming radiation
of the adjacent layer at the same cumulative probability value. However, the mapping from wave
length to cumulative probability typically differs from layer to layer, giving rise to errors. This
error source is only absent if the distribution of absorption coefficients in cumulative probability
space were identical from one layer to the next. Mlawer et al. (1997) show that the accuracy of
the RRTM is comparable to that of line-by-line models.

ICON uses 16 bands in the long-wave spectrum and 14 bands in the short-wave spectrum.
Since radiation is extremely computationally expensive, a reduced radiation grid can be used.
If this is done, a coarser grid is used for radiation computations, which are then downscaled to
the full grid and empirically corrected to account for high-resolution information on albedo and
surface temperature. Within this thesis, no reduced radiation grid is used.
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2.3.3 Microphysics Parametrization

ICON can use one-moment or two-moment cloud microphysics schemes. There are two one-
moment schemes, where both predict the specific mass of cloud water, rain water, cloud ice and
snow, and one additionally predicts graupel. The two-moment scheme predicts the specific mass
and number concentrations of cloud water, rain water, cloud ice, snow, graupel and hail, and
includes nucleation and microphysical interactions between hydrometeor categories. Using the
two-moment scheme is only recommended for at least convection-permitting grid resolutions.
Within this thesis, the one-moment scheme that does not predict graupel is used.

2.3.4 Convection Parametrization

Convection parametrizations describe the effect of the aggregate of sub-grid scale convection
based on grid-scale variables. They are responsible for vertical mixing of heat, moisture and
momentum, convert potential energy into kinetic energy, and produce precipitation. Within
ICON, there are three types of convective clouds: shallow, mid-level and deep convection. The
parametrization of deep and mid-level convection can be disabled for convection-permitting simu-
lations. As the simulations used in this thesis are not convection-permitting, the full parametriza-
tion is used.

The scheme is a spin-off of the Tiedtke-Bechtold scheme, which is described here following
Bechtold et al. (2004). Bechtold et al. (2008) for the vertical variation in mass flux and the
convective adjustment time.

The convection scheme uses the assumption that convectively available potential energy
(CAPE) is consumed over a given time scale, the convective adjustment time. While Bechtold
et al. (2004) uses a constant value of 1 hour, this is not the case in ICON, which follows Bechtold
et al. (2008) and uses a time scale that is dependent on the convective turnover time-scale, and
thus the vertical velocity and vertical extent of a cloud, and on the model resolution. The cloud
top is calculated based on an updraft vertical velocity equation, with the top being where the
vertical velocity is zero. The scheme first attempts to identify shallow convection, which has
a cloud depth of less than 200 hPa, by considering an air parcel with strong entrainment in
the first model level above the surface with an imposed temperature and moisture perturbation.
The scheme then attempts to identify deep convection with weak entrainment originating in the
first 300 hPa above the surface, excluding the lowest model layer. If there is deep convection, it
replaces any shallow convection identified in the first step. If no deep convection is found, the
next model level is considered. Below the first 60 hPa above the surface, the average of a 30 hPa
layer is lifted, while above the first 60 hPa above the surface full model layers are lifted. The
cloud base is not required to be buoyant, but is required to have a positive vertical velocity. The
vertical variation of the convective mass flux follows Bechtold et al. (2008) and is described in
terms of entrainment and detrainment, which are both separated into a turbulent and an orga-
nized convective component. Entrainment is formulated as a function of environmental specific
humidity and saturation specific humidity, such that environmental humidity exerts a very strong
control over the convective mass flux. The turbulent component of detrainment is constant, and
the organized convective component is proportional to the reduction in updraft kinetic energy
when the parcel becomes negatively buoyant.

2.3.5 Turbulent Diffusion Parametrization

The following description is based on the ICON model tutorial (Prill et al., 2019) and Raschen-
dorfer (2001). There are two components to the turbulent diffusion scheme, one in the free
troposphere and one in the surface layer.

The turbulent kinetic energy (TKE) is a prognostic variable. The prognostic equation in-
cludes diffusion of TKE and the production of TKE due to sub-grid scale thermal circulation.
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Data and Methods

A statistical sub-grid scale cloud scheme is used to account for sub-grid scale condensation. The
scheme is based that of , with a notable extension compared to a moist Mellor-Yamada (Mellor
and Yamada, 1982) scheme being the formal separation of turbulence from non-turbulent parts
of the sub-grid scale energy spectrum. This makes the scheme applicable above the boundary
layer and in a very stably stratified atmosphere.

The scheme further calculates transport resistances to fluxes of prognostic variables from the
surface into the atmosphere. A vertical interpolation function is derived from the application of
the turbulence scheme at the top and the at the bottom of the lowest atmospheric layer, which is
then extrapolated to the rigid surface. A vertical integration of the flux gradient representation
provides the transport resistances for the bulk surface-to-atmosphere fluxes. The determination
of specific roughness lengths for scalars is replaced by a direct calculation of partial resistances
for scalar transfer through the laminar and roughness layers, which is dependent on near-surface
model variables, the aerodynamic roughness length, and the enlargement of surface area by land
use.

2.3.6 Cloud Cover Parametrization

The cloud cover scheme in ICON combines information from the microphysics, turbulence and
convection parametrizations. The split between cloud ice and water vapor that is determined in
the microphysics scheme is replicated in the cloud cover scheme for the turbulent component of
ice clouds. The convective anvil is calculated from an equation dependent on detrainment from
the convection scheme and a decay time scale, which is set to 30 minutes. The sub-grid scale
variability of water is prescribed by using a top-hat total water, i.e. the sum of water vapor,
cloud water and cloud ice, distribution with a width of 10%. Assumptions on the vertical overlap
of clouds are made in the radiation scheme.
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Abstract

Assessing the capacity of numerical models to produce viable tropical cyclones, as well as as-
sessing the climatological behavior of simulated tropical cyclones, requires an objective tracking
method. These make use of parameter thresholds to determine whether a detected feature, such
as a vorticity maximum or a warm core, is sufficiently strong to indicate a tropical cyclone.
The choice of parameter thresholds is generally subjective. This study proposes and assesses
the parallel use of many threshold parameter combinations, combining a number of weaker and
stronger values. The tracking algorithm succeeds in tracking tropical cyclones within the model
data, beginning at their aggregation stage or shortly thereafter, and ending when they interact
strongly with extratropical flow and transition into extratropical cyclones, or when their warm
core decays. The sensitivity of accumulated cyclone energy to tracking errors is assessed. Track-
ing errors include faulty initial detection and termination of valid tropical cyclones and systems
falsely identified as tropical cyclones. They are found to not significantly impact the accumulated
cyclone energy. The tracking algorithm thus produces an adequate estimate of the accumulated
cyclone energy within the underlying data.

3.1 Introduction

Numerical models are a useful tool to further our understanding of weather and climate, and to
make predictions thereof. Within these model simulations, certain features, like tropical cyclones
(TCs), can be tracked and their behavior analyzed. TCs are of particular importance, as they
pose an immense threat to human life and assets when they make landfall. The damage caused
by TCs is likely to increase with an increase in population and wealth in coastal areas (Pielke Jr.
et al., 2008). Further, Bender et al. (2010) predicted an increase in the frequency of category 4
and 5 hurricanes in a warmer climate, which is linked to an increase in destructiveness (Grinsted
et al., 2019).

Model simulations, especially when performed with high horizontal resolution, for large do-
mains, and for extended periods of simulated time, produce vast amounts of output data. To
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

analyze certain features, such as the lifetimes, intensities and tracks of TCs, they must be iden-
tified. As manually tracking every TC is cumbersome, an automated and objective algorithm is
preferable.

Any tracking algorithm implicitly contains a definition of the tracked system, and then
searches for instances where this definition is fulfilled. Within the context of TCs, a commonly
used baseline is that a TC is a system with a maximum in vorticity collocated with (e.g., (Chau-
vin et al., 2006)) or in the vicinity of (e.g., (Bengtsson et al., 1995; Zhao et al., 2009)) a minimum
in sea level pressure. The maximum in vorticity can be used without requiring the minimum
in sea level pressure (e.g., Hodges (1999)). However, this alone does not distinguish TCs from
other systems that can occur in the region of interest, such as extratropical cyclones. Therefore,
the warm core structure of TCs is usually also searched for during the tracking process, which
can be done directly or indirectly.

Directly assessing the warm core is done by defining a temperature anomaly, which compares
the temperature at the TC center to that of the environment at a specified altitude or pressure.
For example, Bengtsson et al. (1995) require the temperature anomaly at 300 hPa to be larger
than that at 850 hPa, while requiring the sum of the temperature anomalies at 300, 500 and
700 hPa to exceed a threshold value. This ensures that the temperature anomaly is stronger at
higher altitude, and that it is not too weak. Chauvin et al. (2006) require a strengthening of the
temperature anomaly with height, but only that the 700 and 300 hPa temperature anomalies
exceed a threshold value. Zhao et al. (2009) use the mean temperature between 500 and 300 hPa
to define the temperature anomaly, but use the local maximum thereof, which must be within
2◦ horizontal distance of the sea level pressure minimum.

Indirectly assessing the warm core is done by searching for a pattern that is consistent with
the presence of a warm core. For example, Bengtsson et al. (1995) and Chauvin et al. (2006)
require the cyclonic wind to weaken with height, which is indirect evidence for a warm core
structure. Strachan et al. (2013) require that the vorticity in the TC center is reduced with
height, which is related to the weakening of cyclonic winds with height, and therefore evidence
for a warm core. Tsutsui and Kasahara (1996) detect the warm core by requiring the thickness
of the 200 hPa - 1000 hPa layer at the center and in the inner region of a TC to be larger than at
the periphery. Walsh et al. (2012) combine the direct and indirect criteria, in that they require
a positive 300 hPa temperature anomaly and a reduction of wind speed with height.

An alternative method of tracking TCs is provided by Tory et al. (2013), who used the
Okubo-Weiss (OW) (Okubo, 1970; Weiss, 1991) parameter and absolute vorticity to form the
OWZ parameter. The OWZ parameter reflects the solid body component of absolute vorticity,
and can thus be used to identify vorticity rich quasi-closed circulations. It is argued that every
TC precursor shows increased OWZ, and thus the OWZ parameter is particularly useful to detect
the early stages of a TC. Combined with vertical wind shear and relative humidity criteria, the
OWZ parameter can then be used to track TCs (Tory et al., 2013; Bell et al., 2018). A review
of TC tracking schemes can be found in appendix B of Ullrich and Zarzycki (2017).

Many tracking criteria across many algorithms require that a system exceeds a corresponding
threshold value. For example, the warm core temperature anomaly must exceed the environ-
mental temperature by a predetermined value, or the central vorticity maximum must exceed a
predetermined minimum value. This inherently makes tracking algorithms sensitive to the choice
of these threshold values (Horn et al., 2014). If the threshold values are too weak, then false
positives may be found, and the algorithm cannot be trusted to detect only TCs. If the threshold
values are too strict, then TCs that exist in the model can be truncated in the early and late
stages, or missed entirely. Furthermore, the horizontal resolution of the model may affect how
sensible a given threshold value choice is (Walsh et al., 2007).
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While Horn et al. (2014) found that even small changes in threshold parameters can have a
large impact on the tracking results, Zarzycki and Ullrich (2017) specify that the impact is large
for the discrete count of TCs, but relatively small for integrated metrics such as accumulated
cyclone energy (ACE, Bell et al. (2000)).

To make the tracking process less sensitive to the choice of threshold values, it is possible to
vary these values. An example of this is provided by Camargo and Zebiak (2002), who use more
strict threshold values to first identify TCs, and then use relaxed threshold values forwards and
backwards in time when a system is detected. This allows them to detect early and late stages of
the TC life cycle with the relaxed values while mitigating the pitfall of falsely tracking non-TC
systems.

The relative weakness of the defining TC characteristics at early and late stages in the TC
life cycle is not the only complication to their tracking, as the existential question of when a TC
begins and when it ends can also be asked outside of the scope of tracking. In the North Atlantic
basin, only about 40% of TCs form in the absence of baroclinic processes, and about 40% of
TCs form in a process called tropical transition (TT) (McTaggart-Cowan et al., 2013), where
a precursor storm moves over warm water and attains TC characteristics (Davis and Bosart,
2003). Warm water is required as TCs form predominantly over water warmer than 26°C (Pal-
men, 1948), though TT events with a strong initial lower-level circulation can form at slightly
lower sea surface temperatures (McTaggart-Cowan et al., 2015).

Montgomery and Smith (2014) describe the initial intensification of a weak cyclonic precursor
system. They discuss how many mesoscale systems of deep convection, which they name vorti-
cal hot towers (VHTs), locally stretch vorticity within this precursor system, and how the thus
produced cyclonic vorticity anomalies aggregate while the corresponding anticyclonic anomalies
move outwards. This process gradually increases the vorticity of the precursor system, and allows
it to develop into a mature TC.

The termination of a TC can occur quite rapidly when they move over land. Other than
this rather straight-forward termination, there is also the possibility for a TC to develop char-
acteristics of extratropical cyclones in a process called extratropical transition (ETT) (Evans
and Hart, 2003). ETT occurs when a TC moves poleward and encounters a strong meridional
temperature gradient, which enables it to form fronts and thereby strong radial asymmetry. This
loss of symmetry and the increased vertical wind shear associated with horizontal temperature
gradients cause the warm core to decay, such that the system develops an ETC structure. ETT
occurs for 46% of TCs in the North Atlantic basin, and transitioning systems account for about
half of the systems that landfall (Hart and Evans, 2001).

Both the initial and final stages of TCs are therefore not instantaneous, but rather processes
that take a finite amount of time to conclude. A tracking algorithm would therefore preferably
detect a cyclone at some point during its development, and cease to detect it at some point
during its termination, as this would capture the entire TC phase of the cyclone while allowing
for some leeway during the phases immediately before and after.

While publications typically contain a description of how TCs are tracked, it is by no means
common that they include an assessment of how well the tracking algorithm performs. As this is
a fundamental component on which the data analysis builds, this paper is devoted to introducing
a newly developed algorithm, and assessing how well it performs. The new algorithm uses vary-
ing threshold values, which allows it to contain both lax and strict threshold value combinations,
which are then combined to form a final tracking product.
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

The remainder of this paper is structured as follows. Section 3.2 describes the data and
methods used to produce model TCs which can then be tracked, as well as the tracking algorithm.
Section 3.3 shows that the numerical simulations are capable of producing viable TC-like vortices.
Section 3.4 assesses at which stage model TCs are first tracked, and section 3.5 assesses at which
stage model TCs are last tracked, and why they terminate. Section 3.6 explores false positives,
and how they are caused. Section 3.7 assesses the impact of tracking errors on ACE. Section
3.8 assesses the sensitivity of the tracking process to the allowed translational velocity of TCs.
Section 3.9 summarizes the results, and provides the drawn conclusions and an outlook.

3.2 Data and Methods

3.2.1 Numerical simulations

ICON version 2.6.1 (Zängl et al., 2015) is used in limited area mode (ICON-LAM) to produce
simulation data with which the tracking algorithm can be validated. The simulation domain
spans from 120◦W to 15◦W and from the equator to 70◦N. An unstructured, triangular grid
with resolution of R03B07 (see section 2.1 of Zängl et al. (2015) for more information on the
grid nomenclature) is used, which corresponds to a grid spacing of about 13 km. 50 vertical
levels are used, with the distance between levels increasing with altitude. The first level is at
about 10 meters above the surface, and the model top is at 23 km. A time step of 100 s is used.
Shallow and deep convection parametrizations are used (Bechtold et al., 2008). An ensemble of
20 members spanning the entire North Atlantic hurricane season is generated for the 2013 season.
Within this study, this season is defined as beginning on 00:00 UTC on 1 June and ending on
00:00 UTC on 1 December. The month of May is used to initialize and spin up the simulations,
as described below.

ERA5 data (Hersbach et al., 2020) are used to construct the initial state of the simulations,
and to prescribe monthly mean values for sea surface temperature and sea ice, and as lateral
boundary conditions in 6-hourly intervals. Sea surface temperature, sea ice and boundary con-
ditions are interpolated to individual time steps throughout the simulation. The physical fields
that are prescribed at the boundary are zonal, meridional and vertical wind, the logarithm of
sea level pressure, temperature, specific humidity, cloud liquid water content, cloud ice water
content, rain water content, snow water content and surface geopotential. The first member
of the ensemble is initialized at 00:00 UTC on 1 May 2013. The following 19 members have
their initial times shifted by 24 hours for each additional member, such that the final member is
initialized on 00:00 UTC on 20 May 2013.

Even though the simulations are performed based on data for 2013, the TC activity in the
simulations differs strongly from observations. As the intended focus of the study is on the
validation of the tracking algorithm, and only a single season is simulated, a comparison of
simulated data to observations is intentionally omitted. The intent of the numerical simulations
is not to validate the ability of the simulations to reproduce the 2013 North Atlantic hurricane
season, but to produce a number of viable model-generated TCs that serve as the basis to validate
the tracking algorithm. Thus, the simulated data can, for the focal purpose, be regarded as
arbitrary manifestations of some TC season, within which viable TCs exist and can be tracked.

3.2.2 Tropical cyclone tracking and evaluation

The tracking algorithm is based on that of Kleppek et al. (2008), which has previously been
adapted to identify TCs in ECHAM output data. New features of the presented algorithm are
the inclusion of a warm core criterion, and parallelization and threshold variation to address the
threshold choice issue mentioned in section 1.
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Variable Threshold Values

ps,dis [km] 50 100 150

ζmin [s−1] 10−6 10−5

∆Tcore [K] 0.5 0.75 1 1.25 1.5

Tdis [km] 50 100 200 300 400

Table 3.1: Threshold parameter values used in tropical cyclone tracking.

The tracking algorithm requires mean sea level pressure, the vertical component of relative
vorticity, and temperature on the 300 hPa isobaric surface on a regular longitude-latitude grid.
For the purposes of this study, the chosen resolution is 0.125◦ x 0.125◦, corresponding to about
14 km at the equator, to which the ICON output is remapped. Vertical vorticity is used not on
a pressure level, as ICON internally uses model levels. Over the ocean, these are as a constant
geometric height, and so vertical vorticity is used at 2.5 km. While this may seem odd, it should
be noted that variations in the vertical vorticity threshold barely shows any impact on the track-
ing process, as is argued later on. The main purpose of the vorticity criterion is to ensure that
the rotation of the system is cyclonic.

Initially, all points on the horizontal grid are potential centers of a TC, and the algorithm
then excludes all points that do not meet the criteria mentioned below. All points that remain
are considered to be TC centers at this stage. This is done for each time step individually, such
that no tracks are constructed at this stage. The following criteria need to be fulfilled for a point
to qualify as a potential TC center, with the used values listed in Table 3.1:

1. The sea level pressure must exhibit a local minimum within a given distance (ps,dis)

2. The vertical component of relative vorticity must exceed a threshold value within the lower
troposphere (ζmin)

3. The 300 hPa temperature directly above the sea level pressure minimum must exceed the
mean 300 hPa temperature within a given distance (Tdis) by a certain value (∆Tcore)

The algorithm evaluates these criteria in sequence, i.e. it identifies sea level pressure minima,
then the identified minima are evaluated for their vorticity, and the remaining points are then
evaluated for their warm core structure. All thresholds of this list are varied (see Table 3.1. This
is done by prescribing not a single, but multiple threshold values, and all threshold combinations
then being used in parallel. This results in multiple distinct sets of identified TC centers, which
show considerable overlap especially for strong TCs. Combinations with weak constraints identify
weaker TCs more readily, while combinations with strong constraints identify only the stronger
phases of TCs. This means that the tail ends of TCs are tracked by the weak constraints, while
the strong constraints are less susceptible to falsely tracked points. The choice of threshold
parameter values is based on parameters used throughout the scientific literature, and on the
physical feasibility of values (e.g., a positive value for the warm core temperature difference that
is within a range that can be exceeded by weak TCs). These choices are not tailored to the
underlying dataset.

After TC centers at individual time steps are identified, tracks are constructed from them in
a second step. To determine whether two TC centers at consecutive detection steps represent
the same system, it is assumed that a TC can have a translational velocity of at most 20 ms−1.
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The sensitivity to this velocity is explored in more detail in section 8. If the two TC centers are
within a distance that is consistent with this assumption, they are deemed to be the same TC.
Tracks are only retained if they reach a minimum life time (τ). Within this study, τ is always 18
hours, meaning that a TC track must endure for at least four consecutive detection steps. The
minimum life time criterion is necessary to remove very short-lived false positives that frequently
occur well within the extratropics.

This procedure results in a set of tracks for every parameter combination. These are then
merged to form one final, singular set of tracks. To achieve this, every set is searched for instances
of the same underlying TC, which typically has a variable track length as stronger constraints
in the parameter thresholds produce shorter tracks than weaker constraints. Since the tracking
algorithm aims to include weaker phases, the full length of these tracks is retained. To exclude
probable false positives, the number of parameter combinations that identified an individual
TC, regardless of the individual track length, as long as the minimum life time is fulfilled, is
considered. Tropical depressions (TDs, see Table 3.2) are very weak systems, and are not easily
identified. Thus, if 10% of all combinations identify a TD, it is retained. Tropical storms (TS)
are more intense, but still weak compared to hurricanes. They are retained if at least 20% of all
combinations identify the TC. Hurricanes are rather intense TCs, and are thus comparatively
easy to identify. They are retained if at least 50% of all parameter combinations identify them.
These values are subjectively chosen, based on visual inspection of azimuthally averaged wind
and temperature fields of a subset of the considered TCs. While this introduces a fixed thresh-
old again, the threshold value issue is reduced to one parameter, and this parameter does not
describe the physical properties that the tracked system must exhibit.

The choice of the final parameter thresholds is tailored specifically to the underlying dataset.
For use with other data, it is recommended that these values are revisited, and adapted if nec-
essary.

As an important purpose of tracking TCs is to determine the activity within a season, the TC
activity is quantified by the accumulated cyclone energy (ACE) (Bell et al., 2000). It is calculated
as the sum of the squared maximum wind speeds of all TCs at either the TS or hurricane stage
at 6-hourly intervals, i.e.

ACE =

k∑
i=1

v2max,i (3.1)

where vmax is the maximum wind speed of a TC at time i, which is documented every 6 hours
until the end of the season (k). References to TC intensity follow the Saffir-Simpson hurricane
wind scale Saffir (1973), slightly adapted to be consistent with commonly used modern values as
seen in table 3.2. HURDAT2 data (Landsea and Franklin, 2013) are used to compare simulated
ACE to observations.

The first and last detection steps of individual TCs are separated into a number of categories,
which are described in table 3.3. These categories aid in evaluating how early TCs are tracked,
and what causes them to terminate.

3.3 Tropical Cyclones in the Simulation Data

Validation of a TC tracking algorithm requires that the model producing the underlying data
can represent viable TCs, at least to the extent that the features used in tracking are truly
features of the simulated TC. Figure 3.1 shows the azimuthal mean radial and vertical wind
and temperature anomaly of the most intense TC within the dataset, which was a category 4
TC. The reference temperatures to determine the temperature anomaly is the azimuthal mean
vertical profile at 500 km distance from the center. The third row shows the TC at its high-
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Category Maximum Wind Speed [ms−1]

TD vmax < 17

TS 17 ≤ vmax < 33

Cat 1 33 ≤ vmax < 43

Cat 2 43 ≤ vmax < 50

Cat 3 50 ≤ vmax < 58

Cat 4 58 ≤ vmax < 70

Cat 5 70 ≤ vmax

Table 3.2: Saffir-Simpson Hurricane Wind Scale, where TD is a tropical depression, TS is a tropical
storm, Cat 1-5 are hurricane categories 1-5, and vmax is the maximum instantaneous wind speed.

est intensity, and the second and first rows show the TC 24 and 48 hours prior to this, respectively.

The radial wind panels at all three shown times show inflow within the boundary layer, and
outflow near the tropopause. This is a well documented feature, which has already been repro-
duced by very early numerical simulations, where the boundary inflow is recognized as a feature
crucial to the TC (e.g., Ooyama (1969)). The boundary layer inflow is rather weak in comparison
to that found in fig. 2 of Montgomery and Smith (2017), but as this is not immediately relevant
to the tracking algorithm, this is not investigated further. An expected, though absent from our
simulated TC, feature is a shallow region of outflow above the boundary layer (Smith and Mont-
gomery, 2015), as supergradient wind is lifted above the boundary layer and adjusts to gradient
wind balance. A further feature of radial wind that is expected following Willoughby (1988),
but is absent from our simulated TC, is weak inflow throughout the mid-troposphere, which
is linked to vortex stretching, and thus TC intensification. Vortex stretching is also linked to
changes in vertical velocity with height. All three vertical wind panels show clear updraft regions
throughout the vertical extent of the troposphere, beginning at a radius of about 50 km near the
top of the boundary layer. The vertical wind speed increases with height in parts of this updraft
region, which is indicative of vortex stretching. The panel at 24 hours before maximum intensity
in particular shows a deep region of an increase in vertical velocity with height, which is reversed
at a height of around 11 km. This reversal leads to a reduction in vorticity, which manifests itself
as a reduction in tangential velocity (not shown), and is collocated with the outflow region. The
missing mid-level inflow is thus not indicative of absent vortex stretching, as the vertical wind
profile shows clear signs of vortex stretching. The eye of a well developed TC is characterized by
subsidence, as shown in Montgomery and Smith (2017) for simulated TCs. While this is present
at the time of maximum intensity, it is not present 24 hours earlier, and is not well developed 48
hours earlier. Possible causes for this are the general weakness of the subsidence, and the small
scale of this phenomenon. Further, it has been found that increasing the horizontal resolution of
numerical simulations beyond the resolution used in this study can affect the range of downdraft
velocities (Gentry and Lackmann, 2010). Generally, the numerical simulations within this study
have the capacity to produce the mean secondary circulation features of TCs rather well, even if
the more intricate features of secondary inflow are not represented well. Notably, the numerical
model can produce vortex stretching in the lower troposphere, which is relevant to the tracking
algorithm as it requires a vorticity maximum.

The temperature anomaly panels for all three time steps show a distinct warm core at the
center of the TC. The magnitude of the anomaly increases with increasing TC intensity, which is
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

Category Occurrence Description

Genesis Categories

Single Maximum 36%
TCs exhibit a single vorticity maximum near the
central sea level pressure minimum, or only very
weak secondary maxima around a strong central
maximum within the first 24 hours.

Transitional 34%

TCs exhibit multiple vorticity maxima near the
central sea level pressure minimum, and transi-
tion to a single vorticity maximum, possibly with
very weak local maxima around a strong central
maximum, within 24 hours of first detection.

Multiple Maxima 19%
TCs exhibit multiple vorticity maxima near the
central sea level pressure minimum within the
first 24 hours.

Termination Categories

Warm Core Offset 52%
The warm core offset relative to the central pres-
sure minimum becomes too large to fulfill the
warm core criteria.

Translation Velocity 27% The translational velocity becomes too large for
the algorithm to continue the constructed track.

Vanishing Pressure Minimum 4%
The central pressure minimum vanishes, and
thus there is no local minimum to be tracked
any longer.

Table 3.3: Description of genesis and termination categories with the occurrence rate of each category.
The total number of tracked TCs is 113, about 12% of tracked TCs are false positives. Not all
terminations fall under this categorization.

consistent with the findings of Durden (2013), and the temperature anomaly maxima fall within
the height range of 760–250 hPa described therein. As is discussed in Stern and Nolan (2012),
the altitude of the warm core can vary drastically, and multiple local maxima can coexist. They
find that the most common altitude for the strongest warm core maximum is between 4 km and 8
km. Wang and Jiang (2019) found that the height of the warm core maximum increases with TC
intensity, and typically ranges from 10 to 11 km for category 4 TCs. Therefore, the shown TC
has a warm core at an acceptable height. The numerical simulations are thus concluded to have
the capacity to produce warm core features that the tracking algorithm requires to distinguish
tropical cyclones from extratropical cyclones.

Figure 3.2 shows all TCs of a single ensemble member, indicating their category and the
percentage of parameter combinations that detected a given track segment. Tracks typically
start at very low intensities, and with a lower percentage of threshold parameters detecting the
system. The TS and hurricane stages are detected by more parameter combinations, as their
structure is more developed. The parameter combinations with weaker constraints are therefore
necessary to capture the early stages of TCs.

Figure 3.3 shows the accumulation of ACE throughout the season for HURDAT2 data and
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Figure 3.1: Azimuthal mean radial wind (first column), vertical wind (second column) and temperature
anomaly (third column) of the most intense TC within the simulation dataset at its highest intensity
(third row) and 24 (second row) and 48 (first row) hours prior.

for the 20 simulated ensemble members. While the simulations underestimate the TC activity
early in the season, this is compensated with high activity during September, where most of
the activity is concentrated. While most simulations eventually drastically overestimate ACE,
it is important to note that the 2013 season was one of very low activity (see, e.g., Zhang et al.
(2016) for a discussion of the low activity and its causes). Therefore, the simulations produce
ACE values that are realistic compared to observed TC seasons.

3.4 Genesis Detection

The detection of tropical cyclogenesis is met with a fundamental problem: TCs typically form
from a pre-existing disturbance, which gradually develops TC-like characteristics. This means
that there is no clear distinction between the pre-existing disturbance and the developed TC.
As the tracking algorithm aims to maximize the duration of a TC, how early a TC is detected
is sensitive to how weak the most liberal threshold values are chosen. It is thus of interest to
investigate how early in the life cycle of a TC the system is detected.

For all detected TCs, the first tracked 24 hours are divided into the three genesis categories
listed in Table 3.3. As the number of TCs is not prohibitively high, this division is done manually
to avoid possible oddities in the categorization that an algorithm could produce, though it does
introduce some subjectivity. A total of 113 TCs across 20 ensemble members (i.e., about 5-6
TCs per simulation) are assessed, of which about 12% are false positives, which are discussed in
section 6. The following figures show a detection percentage, which is the number of parameter
combinations which identified the specific TC at the given time. The maximum of this percent-
age along the entire track is what the algorithm uses to decide whether a track is retained. The
figures show the temporal evolution of this percentage throughout the first few time steps.
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

Figure 3.2: Tropical cyclones detected in a single ensemble member. The left panel shows their
category, and the right panel shows the percentage of parameter combinations that detected a given
track segment.

Figure 3.3: Accumulation of ACE throughout the season for HURDAT2 data (black) and the 20
simulation ensemble members (red).

Figure 3.4 shows a typical example of the single maximum category. This category requires
a TC to exhibit a single vorticity maximum near the central sea level pressure minimum, or to
have only very weak local vorticity maxima around a strong maximum throughout the entire 24
hour period. About 36% of all tracked systems fall within this category. The horizontal wind
speed panels show an asymmetry in the cyclonic wind, which is due to the superposition of the
cyclonic wind field and the translational velocity of the TC. Further, the wind speed at the
center of the TC is very low, which is a result of the vanishing tangential wind speed towards
the center. The TC thus has a developed cyclonic circulation. The vorticity panels, as per the
categorization, show a strong central maximum, with comparatively very weak local maxima in
the vicinity. The lack of a tracked aggregation phase is not necessarily indicative of a flaw in
the tracking algorithm, as TCs can be generated from an extratropical precursor cyclone via
tropical transition (Davis and Bosart, 2004), where the precursor cyclone attains TC charac-
teristics. Tropical transition accounts for over a third of cyclogenesis events in the Northern
Atlantic (McTaggart-Cowan et al., 2013). The algorithm only tracks these cyclones once the
TC characteristics are sufficiently developed. This underlines the importance of the warm core
criteria, which serve to distinguish extratropical cyclones from TCs. The temperature anomaly
panels show a distinct warm core very close to the center in all three instances. After 24 hours,
the warm core is offset to the southeast from the TC center. While the offset is not immediately
relevant to first detection, it shows that the warm core criteria allow for some offset of the warm
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3.4. Genesis Detection

core relative to the TC center without losing the ability to track the TC. The allowance for
this displacement is sensitive to the warm core threshold parameters, which is reflected in the
reduction of the detection percentage for this time step, in that the percentage is decreased for
a more intense, but also more offset, core. This in turn shows that the detection percentage is
not sensitive to TC intensity alone. The mean sea level pressure panels serve to show that the
algorithm tracks a genuine low pressure system, and not a spurious local minimum. Notably,
the low pressure system is still tracked when it is embedded in a larger scale pressure gradient,
underlining the importance of a parameter that defines the region within which a point must
constitute a local minimum.
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

Figure 3.4: Example of a TC in the single maximum genesis category. 850 hPa horizontal wind
magnitude (first row), 850 hPa vertical vorticity (second row), 300 hPa temperature anomaly (third
row), mean sea level pressure (fourth row) and central pressure (blue), maximum wind speed (black)
and detection percentage (red) at the three times shown (fifth row). The first column depicts first
detection, the second column shows the TC 12 hours after first detection, the third column shows
the TC 24 hours after first detection. Black cross-hairs indicate the TC center.
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3.4. Genesis Detection

Figure 3.5 shows a good example of the transitional category, in that the first time step shows
a number of local vorticity maxima of roughly equal magnitude spread throughout a sizeable re-
gion. This category requires that at first detection, there are multiple local vorticity maxima in
the vicinity of the central mean sea level pressure minimum. Within 24 hours these must give
way to a single vorticity maximum, possibly with comparatively very weak local maxima around
it (i.e. it must transition into the pattern that the single maximum category requires from first
detection on). This category thus captures TCs that complete an aggregation phase of mesoscale
convective systems within the first 24 hours of detection. About 34% of all tracked systems fall
within this category. A good example of this category is shown instead of a typical example for
two reasons. First, this shows the situation that the variation of parameters aims to track more
effectively. Second, the panels 12 hours after first detection show a situation that is reflective
of a typical first detection in this category, such that a more typical situation is still captured
by the figure. The wind field panels show a pattern similar to that of the previous category,
where cyclonic flow is enhanced in the direction of translation, and reduced in the opposing
direction. The location where the tangential velocity is drastically reduced close to the center is
slightly offset from the mean sea level pressure minimum, which is typical for the tracked TCs
within this category. Once the transition to a single vorticity maximum is completed, this offset
typically becomes very small or vanishes entirely. The vorticity panels show many local maxima
of comparable intensity at first detection. In this stage, a key component to the production
of vertical relative vorticity is the stretching of pre-existing vertical vorticity. Examination of
the vertical wind speeds shows that the vorticity maxima are located where the vertical wind
speed increases with height (not shown), which strongly suggests the presence of vortical hot
towers, as discussed in Montgomery and Smith (2014), or at the very least strong generation
of vertical vorticity through vortex stretching. Therefore, the algorithm appears to be track-
ing the aggregation stage of mesoscale systems, which then develop into a TC. The algorithm
thus successfully fulfills the goal of capturing this stage for about a third of all tracked systems.
However, typically this stage is only detected when the aggregation has progressed substantially,
as the panels depicting the TC 12 hours after first detection are more typical for this category.
The warm core intensifies throughout the aggregation period, and the location of the maximal
temperature anomaly moves closer towards the center of the TC. These two factors cause the
detection percentage to increase drastically from the first to the second panel. This shows that
the early aggregation phase is within a range where the warm core parameters are crucial to
detection, and the thermal structure of the TC must show some organization. The sea level
pressure panels show that the algorithm can track low pressure systems that are rather weak, as
is required for capturing the aggregation phase. The maximum wind speed at first detection is
close to TS strength in this example, but can be around 10 ms−1 in other examples. This low
maximum wind speed reflects the early detection in the non-aggregated state. The maximum
wind speed as tracked by the algorithm is not identical to the maximum wind speed seen in the
figure. This is because the algorithm only searches for the maximum wind speed within 100 km
of the TC center to ensure that there is no false inclusion of winds outside of the TC circulation.
The maximum wind speed can therefore be underestimated for TCs with a very large radius of
maximum winds. Hence, this constraint on the maximum radius of maximum winds should be
revisited for use with other datasets.
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

Figure 3.5: As fig. 3.4 for a TC in the transitional genesis category.
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3.4. Genesis Detection

Figure 3.6 shows a typical example of the multiple maxima category. This category requires
that there are multiple vorticity maxima throughout the first 24 hours of the TC, and that
there is no singular maximum that is substantially stronger than the others. About 19% of
all tracked systems fall into this category. The wind field panels differ substantially from those
shown for the previous two categories. While the very low wind speeds at the center still indicate
cyclonic rotation, this is not evident from the winds further away from the center. The cyclonic
rotation is thus rather weak, and obscured by environmental winds. This calls into question
the usefulness of a maximum wind speed metric, but it will be shown below that these early
phases barely impact ACE. This particular example develops into a category 1 hurricane about
one week later, which has a much larger impact on ACE. The vorticity panels show only few
vorticity maxima, but these increase in number throughout the first 24 hours. This could be due
to more VHTs forming, which locally stretch vorticity and aggregate later on. This implies that
TCs of this category are detected very early in their life cycle, which is intended. The warm core
is barely developed at first, but intensifies throughout the first 24 hours. However, there is no
single central maximum, but rather a few local maxima emerge. This unstructured warm core
is reflected in the detection percentage, which is barely high enough to not discard this stage of
the life cycle. The warm core criteria are thus capable of detecting systems early on, but are
not liberal enough to track any low pressure system with mild diabatic heating. It appears that
a substantial region of increased temperature is required for the tracking algorithm to detect a
TC, especially when the increased temperature is offset relative to the TC center.
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Figure 3.6: As fig. 3.4 for a TC in the multiple maxima genesis category.
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3.5. Tropical Cyclone Termination

3.5 Tropical Cyclone Termination

The termination of a TC is, much like genesis, not strictly defined. Therefore, it is investigated
what the tracking algorithm deems to be the last time step at which a TC exists, and why it
is not tracked further. The algorithm ceases to track a system when the surface pressure mini-
mum disappears, vorticity becomes too weak, the warm core can no longer be detected, or the
translational velocity is too large to construct a track. Within the used data set, three main
causes for TC termination have emerged: (i) The TCs either have a warm core that is offset in a
way that increases the environmental temperature such that the warm core criterion is no longer
fulfilled, (ii) the warm core weakens substantially, or (iii) the TC moves too fast to be connected
to previous detection steps. Typically, at least two of these processes occur in parallel. The
following figures resemble those of the previous section, but now span only the last 6 hours of the
TC in the first and second column, and a third column shows plots 6 hours after the TC is last
tracked, centered on the final TC position. Mean sea level pressure contours are overlaid on the
horizontal wind magnitude, vorticity and temperature anomaly filled contours to better identify
where the pressure minimum is located relative to features within these plots. The temperature
anomaly within the figure (not during the actual tracking) is calculated using a 4◦x4◦ square
centered on the center of the cross-hairs as a reference, as this is somewhat reflective of how the
temperature anomaly is calculated by the tracking algorithm.

Figure 3.7 shows an example of a TC where the tracking algorithm finds a pressure minimum
with sufficient vorticity, but where the warm core is offset relative to the pressure minimum, and
the warm core is weakening in intensity. The wind magnitude panels show a cyclonic wind field
around a pressure minimum even after the TC is no longer tracked, and the vorticity panels show
that there is sufficient vorticity to fulfill the vorticity criterion at all times. In the third column,
the distance between the pressure minimum and the last tracked position is also well within the
permissible distance that would allow for a track to be constructed. Therefore, the TC must be
terminated by the warm core criteria no longer being fulfilled. This is because the weakening
warm core is positioned east-south-east of the pressure minimum, and some distance away from
it. The pressure minimum is thus located towards the edge of the warm core. This combines a
rather weak anomaly above the pressure minimum with an environmental temperature that is
heavily impacted by the presence of the warm core, such that no warm core is detected. The
weakening warm core throughout this period is not directly visible in the figure because the ref-
erence temperature is progressively reduced, but the absolute temperature of the maximum does
indeed decrease, and the area of elevated temperature decreases as well. This aids in offsetting
the warm core location from the pressure minimum, as the area of strong temperature anomaly
is reduced. This scenario is the most common, with about 52% of cases terminating due to an
offset of the warm core position.

Figure 3.8 shows an example where the TC has a translational velocity that is too large for
a track to be constructed. While between the last two tracked steps the TC moves about 3◦ to
the north and 2◦ to the east, the TC then accelerates and moves about 4◦ to the north and 3◦

to the east. This makes it too fast for a track to be constructed. The wind field panels indicate
that there is still cyclonic rotation around a pressure minimum, and the vorticity panels show
that there is still strong vorticity associated with the TC. The warm core criteria also seem to be
fulfilled. However, a feature that is typical for such cases is that there is a strong environmental
temperature gradient, and cold air enveloping the TC in a cyclonic fashion. This is indicative of
extratropical transition (Evans and Hart, 2003), which may also be the cause for the increasing
asymmetry in the vorticity field surrounding the TC. The intensity of the warm core is substan-
tially reduced within the shown 12 hour window, which is consistent with the erosion of a warm
core during extratropical transition. Therefore, it appears that TCs that have a too high trans-
lational velocity tend to be TCs that are interacting with extratropical flow and are undergoing
extratropical transition. While it is reasonable to exclude transitioned TCs, the precise moment
where tracking is terminated is not controllable with this algorithm. Further, the tracks do not
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Parallel use of Threshold Parameter Variation for Tropical Cyclone Tracking

Figure 3.7: Example of a TC in the warm core offset termination category. 850 hPa horizontal wind
magnitude (first row), 850 hPa vertical vorticity (second row), 300 hPa temperature anomaly (third
row), with overlaid mean sea level pressure contour lines. Black cross-hairs indicate the tracked TC
center for the first two columns, and the last tracked TC center (i.e. that of the second column) for
the third column.

terminate explicitly because of the transition process, but because the TCs accelerate, making
this termination scenario convenient, but accidental. About 27% of TCs terminate due to a too
large translational velocity.

For more control over the termination of a track (or the continued tracking, but with appropri-
ate labeling) due to extratropical transition, it may be beneficial to explicitly treat extratropical
transition. Bourdin et al. (2022) and Bieli et al. (2020) both describe methods based on the
definition of extratropical transition provided in Evans and Hart (2003) to distinguish between
tropical and extratropical cyclones. The explicit treatment of extratropical transition is currently
not implemented in the scheme here, but will be the focus of possible future improvements.

Far less common is the vanishing of the sea level pressure minimum. This occurs when a
substantially larger low pressure system absorbs the local pressure minimum, which causes the
TC to weaken and its pressure minimum to vanish towards the edge of the larger low pressure
system. This is the case for 4 TCs within this data set. There is one TC that approaches the
eastern boundary of the domain at 15◦W, where it weakens and is eventually no longer tracked.
Due to the proximity to the boundary, it is not counted in any of the other categories.

In conclusion, tracked TCs reliably terminate due to the erosion or offset of the warm core,
due to interaction with extratropical flow, or due to the vanishing local pressure minimum at
their center. The translational velocity criterion aids in terminating TCs when they interact
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Figure 3.8: As fig. 3.7, but for a TC in the translational velocity termination category.

with extratropical flow, even when the warm core is still present. While this is convenient, as
TCs terminated in this manner show strong asymmetry instead of the typical radial symmetry of
a TC, it is not intended and not controllable by parameter choice. The maximum translational
velocity parameter serves to form tracks out of individual detection steps, and must be chosen
to fulfill that function. It can therefore not be chosen freely and adapted to optimize its function
as a termination criterion.

3.6 False Positives and Other Tracking Issues

Naturally, there are limitations to the tracking algorithm. Other than beginning to track TCs
too early or terminating them too late, there are also instances of tracked systems that cannot
feasibly be considered TCs. About 12% of all tracked systems are false positives. Almost all of
these cases show traits of extratropical cyclones, which is consistent with Bourdin et al. (2022),
who found false alarms to frequently be caused by extratropical cyclones. Edge cases are mostly
eliminated by the life time criterion of the algorithm. Figure 3.9 shows a typical example of
such a case. The wind field at all shown times shows an elongated band of high wind speeds,
but no central minimum. There appears to be no discernible center of cyclonic flow near the
track center, indicating that the wind field is inconsistent with the existence of a TC at this
location. The vorticity fields at all shown times further substantiate this, as elongated bands,
partially with alternating signs, are inconsistent with a developed TC, and also inconsistent with
the aggregation of local maxima caused by vorticity stretching as seen in previous examples.
The temperature fields do not show warm cores, but positive anomalies in an environment with
a strong temperature gradient. The presence of strong negative anomalies reduces the environ-
mental temperature sufficiently for the algorithm to detect what it believes to be a warm core,
as the positive anomaly at the center does not need to be pronounced or confined to a small
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Figure 3.9: As fig. 3.4, but showing a falsely tracked frontal structure.

region to be above the environmental mean temperature. The sea level pressure fields show that
the center of the tracked system is not where the pressure minimum of the low pressure system
is located. Instead, the distance from the true pressure minimum of the system increases with
time. It is thus concluded that the algorithm can mistakenly track frontal structures in extrat-
ropical cyclones, as these can show a local pressure minimum, sufficient vorticity, and a strong
temperature gradient that technically fulfills the warm core criterion, even though it is not a true
warm core. Other, atypical cases of false positives are local pressure minima with some positive
vorticity that are in an environment with a strong temperature gradient, which fulfills the warm
core criterion even though no true warm core is present.

Outside of false positives, it is possible for the algorithm to detect a TC, but to falsely identify
first detection. Figure 3.10 shows a case where first detection is close to the TC’s true location.
At first detection, the minimum in the wind field that indicates the center of the cyclonic ro-
tation is some distance away to the northeast, as is the vorticity maximum. As the vorticity
maximum is rather broad, and only a few spurious and comparatively weak local maxima are
located outside of it, there appears to have been an aggregation phase prior to detection. The
sea level pressure shows a minimum close to the wind speed minimum and vorticity maximum
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Figure 3.10: As fig. 3.4, but showing a falsely tracked initial location.

to the northeast of the tracked center. In the following detection steps the system is tracked
correctly. This false tracking is likely caused by the pressure minimum to the northeast of the
first detected point not fulfilling the warm core criteria. A local minimum outside of this - the
falsely tracked center - fulfills all criteria in what appears to be a single or at most two parameter
combinations, as indicated by the very low detection percentage at this time. This falsely tracks
a system earlier than it otherwise would be at a location that does not reflect where the system
is located. It should be noted that this is the only case within this data set where first detection
of a TC is at the wrong location.

Similar to falsely identifying the beginning of a TC, it is possible for the algorithm to detect
a TC correctly, but to then not terminate it early enough. Figure 3.11 shows a case where a
legitimate TC is detected, but the algorithm then detects a local pressure minimum adjacent to a
stronger low pressure system. This local minimum has sufficient vorticity to fulfill the threshold
requirement, and is in a region with a sizeable temperature gradient. This allows the system to
fulfill the warm core criterion without having a warm core, causing the algorithm to continue to
track a system beyond extratropical transition. Two such cases exist within the used data set.
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Figure 3.11: As fig. 3.7, but showing a false continuation of a TC that no longer exists.

In conclusion, there are features tracked by the algorithm that are not TCs, and TCs are not
always tracked correctly. False positives are rather rare (about 12% of all tracked systems). The
impact of these errors on ACE is explored in the following section.

3.7 Tracking Error Impact on ACE

Within this thesis, the main metric used to describe tropical cyclone activity is ACE. To de-
termine the effect of tracking errors on ACE, a few different ACE calculations are considered.
Figure 3.12 shows box plots of the 20 ensemble members comparing the different calculations.
The first is full ACE, which includes all TCs at stages of TS strength or higher, including the
false positives. This distribution is used as a reference for the following three. The second cal-
culation is the same, but excludes all manually identified false positives. A one-sided t-test is
performed to determine whether the distributions differ significantly, and the resulting p-value
is 0.54. Therefore, there is no significant effect on ACE when false positives are included in the
calculation. This is likely because the identified false positives typically have short lifetimes, and
are not very intense, and therefore do not contribute substantially to ACE.

The third calculation includes all TCs at stages of TD strength or higher. The underlying
rationale is that extending the tail ends of the tracks, and having varying track lengths depending
on tracking parameter threshold choices, could impact the energy produced by individual TCs,
which would not be captured by the regular ACE calculation. However, a one-sided t-test yields
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Figure 3.12: Box plots of ACE with the p-values of a one-sided t-test that assesses the difference of
the means of various ACE calculations.

a p-value of 0.43, which shows that no significant difference is produced by the inclusion of the
TD stage. The track extension of the parameter combinations with weak constraints thus allow
for very early stages in TC development to be tracked without significantly affecting the energy
produced by individual TCs.

The fourth calculation only includes the hurricane stage of TCs. This is done to show that
extending the tail ends of TCs does not significantly impact the ACE contribution of individual
TCs. In principle, the algorithm could extend the lifetime of TCs for too long, or could track
them too early. As shown previously, this could be an issue when extratropical and tropical
transition are involved, as there is no explicit treatment of these processes. Removing all TS
stage data from ACE is an estimate for an upper bound of the impact this could have, which
is intentionally chosen to be overestimated. A one-sided t-test yields a p-value of 0.13, meaning
that the difference is not significant at the 90% level. Therefore, even if all tracks included TS
stage data due to some flaw of the algorithm, ACE would still be adequately represented. This
is especially the case when considering that the presented scenario is intentionally chosen to be
an upper bound, and that most TS stage data truly reflect a TS in the data.

The results of Zarzycki and Ullrich (2017) show that ACE is less susceptible to changes when
parameter thresholds are varied, which is comparable to the results presented here. Here, it is
shown that ACE does not vary significantly when TD and TS strength systems are included or
excluded. These systems are used to provide upper bounds for the impact of false positives and
longer tails of tracks. It is suspected that the underlying reason is that ACE is dominated by
intense TCs, and that parameter threshold variation primarily affects weaker stages of TCs (as
shown in fig. 3.2). This hypothesis is supported by Bourdin et al. (2022), who found that in their
comparison of different tracking schemes, strong cyclones are generally found by all compared
schemes, and weak cyclones are more susceptible to not being found by all.

The impact of flaws in the tracking algorithm on ACE is thus concluded to be negligible, and
the extension of the tail ends of tracks does not significantly increase the total energy produced
throughout the full life cycle of individual TCs. The tracking algorithm is concluded to be
capable of adequately capturing ACE within the underlying data.
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Figure 3.13: Normalized histogram of translational velocity of HURDAT2 systems for tropical depres-
sions (TD, blue), tropical storms (TS, green) and hurricanes (HU, red).

3.8 Sensitivity to Translational Velocity

It has long been known that interaction with extratropical flow can accelerate the translational
velocity of TCs undergoing extratropical transition (e.g., Krueger (1954); Palmén (1958)). This
circumstance can accidentally, though conveniently, terminate TCs at some point during extra-
tropical transition via the maximum translational velocity criterion. This may cause the choice
of the maximum translational velocity to be more impactful than intended. Therefore, the sen-
sitivity to this threshold is investigated.

The maximum translational velocity threshold used for the preceding analyses is 20 ms−1.
Figure 3.13 shows histograms of the translational velocities of HURDAT2 systems of TD, TS and
hurricane (HU) categories. This velocity is calculated as the great circle distance between the
TC’s current location, where the categorization is made, and the location 6 hours prior, divided
by six hours. Non-synoptic times are not considered.

The histograms show that it is extremely rare for observed TCs to move at a mean velocity
of 15 m/s or faster. The TC tracking algorithm is thus applied three times, with the maximum
allowed translational velocity set as 15, 20 and 25 m/s, respectively. Figure 3.14 shows the cor-
responding box plots. There is an increase in ACE with an increase in maximum translational
velocity, as a relaxation of this parameter naturally constructs longer tracks. However, with
p-values of 0.60 and 0.32 for the 15 m/s and 25 m/s cases, respectively, there is no significant
difference in the distribution of ACE. An increase in the maximum translational velocity inher-
ently bears the risk of introducing erroneous tracking, and therefore an increase beyond 20 m/s
does not seem necessary or appropriate. A reduction to 15 m/s appears to be feasible, but fig.
3.13 shows that there are still a few observed TCs with a mean velocity above 15 m/s. Therefore,
using 20 m/s appears to be the most appropriate maximum translational velocity.

3.9 Conclusions

A tracking algorithm for tropical cyclones was developed for use with ICON output data. The
algorithm successfully tracks tropical depression, tropical storm and hurricane strength systems.
About 36% of TC tracks begin with a strong central vorticity maximum, and about 34% begin
with an aggregation of multiple vorticity maxima, in line with the VHT theory of TC cyclogene-
sis (Montgomery and Smith, 2014). About 19% of TC tracks begin with an ongoing aggregation
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Figure 3.14: Box plots of ACE with the p-values of a one-sided t-test that assesses the difference of
the means of ACE using different maximum translational velocities.

process, and remain within this process for at least the first 24 hours. About 12% of tracked
systems are false positives.

The benefit of threshold parameter variation is apparent in the tracking of weak systems,
especially at early stages of the TC life cycle. In particular, the relaxation of the warm core
criterion allows for a larger distance between the warm core temperature anomaly maximum
and the sea level pressure minimum. This distance becoming too large is the leading cause of
track termination in TCs that are weak, but could feasibly be tracked for longer. However, it
also allows for structures that are not warm cores to be falsely tracked. This is evident from
the about 12% false positives, but also in TC termination, where a wrongful continuation of a
system can be tracked. As the use of the OWZ parameter is particularly useful in detecting
cyclogenesis, a comparison between the threshold parameter variation and the OWZ parame-
ter for tracking early stages of a TC may be in order. Joint use of the two methods could
be feasible. Variations in the vorticity threshold do not seem to be of much importance, as
TCs that are tracked typically fulfill even the most strict vorticity criterion. A threshold of 10−6

s−1 could thus be sufficient, as this constrains the resulting tracks to those with positive vorticity.

Specifically for weak TCs, the maximum wind speed is often underestimated. This is because
they often have a radius of maximum winds that is larger than the maximum radius within which
the algorithm determines maximum wind speeds. An increase in radius may provide more accu-
rate results, though care needs to be given to not accidentally include winds that are not part of
the TC. It is possible that using a variable radius threshold based on central pressure could be
beneficial, as weak TCs in particular are affected. However, a more accurate detection of TC gen-
esis should precede this to provide a more solid basis for the exact nature of the radius variability.

The warm core criteria are central to discriminating between TCs and other low pressure
systems. They are also responsible for most track terminations. Therefore, these criteria in
particular need to be refined. Within the used data set, strong environmental temperature gra-
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dients have caused the warm core criteria to be fulfilled even in the absence of a warm core.
A possible solution to this would be to not only use the environmental mean temperature as
a reference, but to introduce an additional requirement of having to reach a minimum positive
anomaly within every quadrant. This would cause the criterion to not be fulfilled when one side
of the detected system is substantially warmer than the other side, i.e. when a strong environ-
mental gradient is present. Further, the offset of the temperature anomaly maximum from the
pressure minimum could be treated explicitly. This could consist of introducing a new thresh-
old parameter which determines the maximal allowed distance between the two extrema, and
could be made dependent on the central pressure, as this is particularly relevant for weak systems.

While cyclones could be detected and tracked by a dedicated algorithm for extratropical cy-
clones after the transition, there is no guarantee that this does not result in gaps between the
tropical and extratropical stage of cyclones during the transition. A further possible addition
to the algorithm would therefore be an explicit treatment of extratropical transition. Currently,
this process is only included via the warm core criteria, which is not only immensely inelegant,
but also allows for no control over how this process is tracked. A clear definition of the transition
process is given in Evans and Hart (2003), and Bieli et al. (2020) and Bourdin et al. (2022) both
provide useful methods to implement this capability.

Furthermore, the effect of tracking errors on ACE has been investigated. The false positives
appear to only have a minor impact on ACE. A hypothetical case where all detections of TD
and TS strength systems are false is used to show that even if this were the case, the impact on
ACE would be insignificant. Therefore, the ACE value calculated from the tracking algorithm
output is concluded to reflect the true ACE value within the simulation data. Changes to how
cyclogenesis is being tracked can thus be made without substantially impacting ACE. Explicit
treatment of the extratropical transition process might have a larger impact, as these systems
can still have somewhat high wind speeds, and extratropical transition occurs frequently.
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Abstract

Tropical cyclones are among the most devastating natural phenomena that can cause severe
damage when undergoing landfall. In the wake of the poorly forecast 2013 North Atlantic
hurricane season, Rossby wave breaking on the 350 K isentropic surface has been linked to tropical
cyclone activity measured by the accumulated cyclone energy (ACE). Here, ERA5 reanalysis
data and HURDAT2 tropical cyclone data are used to argue that the latitude of the 2 potential
vorticity unit (PVU) contour on the 360 K isentropic surface in the western North Atlantic is
linked to changes in vertical wind shear and relative humidity during the month of September.

A more equatorward position of the 2 PVU contour is shown to be linked to an increase in
vertical wind shear and a reduction in relative humidity, as manifested in an increased ventilation
index, in the tropical western North Atlantic during September. The more equatorward position
is further linked to a reduction in the number of named storms, storm and hurricane days,
hurricane lifetime, and number of tropical cyclones making landfall. Changes in genesis location
are shown to be of importance for the changes in landfall frequency and hurricane lifetime. In
summary, the 2 PVU contour latitude in the western North Atlantic can therefore potentially
be used as a predictor in seasonal and sub-seasonal forecasting.

Significance Statement

Forecasts for the North Atlantic hurricane season are operationally produced. Their aim is to
predict the number of tropical cyclones and their total energy throughout the season. This
study proposes to include the tropopause latitude in these forecasts, as it is shown to be linked
to vertical wind shear and mid-tropospheric relative humidity in the western tropical North
Atlantic. The tropopause latitude is thereby linked to the number of tropical cyclones, their
lifetime and the total energy throughout the season. This link is particularly strong during
September.
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4.1 Introduction

Tropical cyclones (TCs) have the potential to lead to a loss of life and cause massive damage
when making landfall. The damage is likely to increase with a larger and wealthier population
concentrated in coastal areas (Pielke Jr. et al., 2008). TCs are projected to become more de-
structive (Grinsted et al., 2019) and intense TCs may become more frequent (e.g., Bender et al.
(2010)) in a warmer climate.

Vertical wind shear, i.e. the vertical shear of horizontal wind, has long been linked to TC
intensity. Increased vertical wind shear has been found to impede intensification by tilting the
TC vortex and causing an outward flux of potential vorticity (PV) and equivalent potential tem-
perature, thereby weakening the cyclone (Frank and Ritchie, 2001). Further, vertical wind shear
aids in ventilating the TC core by entraining relatively dry environmental air into convective
updrafts (Emanuel et al., 2004; Tang and Emanuel, 2010, 2012) and into the boundary layer
(Riemer et al., 2010; Riemer and Laliberté, 2015). Entrainment thereby reduces latent heating
and buoyancy, and thus hinders convection. Furthermore, entrainment reduces the equivalent
potential temperature in the convective updrafts, which leads to outflow at lower altitudes and
thereby warmer temperatures. This reduces the intensity of the TC following the heat engine
model of Emanuel (1986). Relative humidity at various pressure levels throughout the lower and
mid-troposphere has been linked to TC intensity and intensification rates, and reduced relative
humidity has been found to reduce TC activity (e.g., Kaplan and DeMaria (2003); Emanuel
et al. (2004); Hendricks et al. (2010); Wu et al. (2012)). The ventilation index of Tang and
Emanuel (2012) includes the combined effect of humidity and vertical wind shear. It has been
found useful in the reconstruction of the annual cycle of North Atlantic TC activity, in particular
the typically sharp increase in activity from July to August (Yang et al., 2021). Further, the
ventilation index shows significant correlation with TC frequency and rapid intensification (i.e.
an increase in maximum wind speed of at least 15.4 m/s in 24 hours, see Kaplan and DeMaria
(2003)) frequency within numerical modeling frameworks (Horn et al., 2014).

The large potential for damage that TCs can cause gives rise to the need for seasonal fore-
casting of TCs, which is an endeavor that has been undertaken for several decades. In the North
Atlantic, the earliest attempts by Gray (1984a,b) used El Niño events, Quasi-Biennial Oscilla-
tion phases and sea-level pressure anomalies in the Caribbean during spring and early summer
to forecast hurricane activity with useful skill. Since then, this approach of statistical forecasting
has been continuously developed (e.g., Klotzbach and Gray (2004); Saunders and Lea (2005);
Klotzbach (2007)). Statistical forecasting generally makes use of the relationship between ob-
servable phenomena and environmental factors relevant to TC activity. For example, positive El
Niño phases correlate with an increase in vertical wind shear and a decrease in TC activity in
the tropical North Atlantic (Aiyyer and Thorncroft, 2006).

Dynamical seasonal forecasts, where a numerical model is used to predict the future state of
the atmosphere, can also be used to predict TC activity. In a purely dynamical approach, TCs
within the forecast are tracked and evaluated directly. Even at low resolutions, climate models
can produce TC-like structures, though the simulated TCs are larger and weaker than observed
TCs (Manabe et al., 1970; Bengtsson et al., 1982). Still, while individual TCs are unrealistic,
they provide useful information for forecasting the geographical and seasonal distribution of TCs
(Bengtsson et al., 1995). Dynamical forecasting has since improved greatly, and provides skillful
results (e.g., Thorncroft and Pytharoulis (2001); Vitart et al. (2007); Vecchi et al. (2014); Zhang
et al. (2019)). Dynamical forecasts can also be used in combination with statistical modeling in a
hybrid approach, where the large-scale environment produced by the dynamical forecast is used
to make statistical forecasts. Operational TC forecasts have generally been found to have good
skill in predicting the number of TCs, and some provide useful information on landfall locations
and regional activity (Klotzbach et al., 2019).
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Forecasts for the 2013 North Atlantic hurricane season were consistently indicating an above
average activity in terms of number of named storms, hurricanes and major hurricanes. In re-
ality, there were 14 named storms, which is slightly above average, but only two category 1
hurricanes and no major hurricanes, which is far below average. Zhang et al. (2016) proposed
that an increased number of anticyclonic Rossby wave breaking events reduced the humidity in
the tropics through mixing with extratropical air and increased vertical wind shear. This pre-
vented cyclones from intensifying despite other environmental factors being conducive to intense
cyclones. Zhang et al. (2016) investigated the development of Rossby waves using PV, and drew
special attention to the peculiar extreme equatorward position of the 2 potential vorticity unit
(PVU) contour on the 350 K isentropic surface during August. The 2 PVU contour can also be
used to identify stratospheric PV streamers, which are elongated filaments that protrude from
the high-PV stratosphere into the low-PV troposphere. These, in turn, can be used as a proxy
for anticyclonic Rossby wave breaking (Wernli and Sprenger, 2007; Béguin et al., 2013; Sprenger
et al., 2017).

PV streamers and associated Rossby wave breaking events can be reliably identified (e.g.,
Bowley et al. (2019); Papin et al. (2020)), and Rossby wave breaking has been studied in re-
analysis data (e.g., Postel and Hitchman (1999); Scott and Cammas (2002); Abatzoglou and
Magnusdottir (2006); Wernli and Sprenger (2007)). However, predicting Rossby wave breaking
based on numerical models may show biases in frequency and location (Barnes and Hartmann,
2012). The location biases are not simply a direct result of biases in the general tropopause loca-
tion, but of where along the tropopause models produce these events. The bias in Rossby wave
breaking frequency is largest in the North Atlantic region, and the bias of the 2 PVU contour
(i.e., the tropopause) latitude has been found to be lower than that of the Rossby wave breaking
latitude during summer in climate models (Béguin et al., 2013).

The link between TC activity, which is often described in terms of accumulated cyclone en-
ergy (ACE) (Bell et al., 2000), and PV streamers as a proxy for Rossby wave breaking has been
investigated in several publications. Li et al. (2018) found that Rossby wave breaking events
are generally uncorrelated with ACE on a short time scale of 8 days, using their entire data
data set from 1985–2013, but also found that they correlate during a number of individual years,
which may point towards interannual variability of correlation. On a seasonal time scale, ACE
correlates substantially and negatively with Rossby wave breaking frequency and the area of the
involved PV streamers (Zhang et al., 2017), and a combined measure which takes into account
frequency, size and the magnitude of the anomaly of PV streamers (Papin et al., 2020) on the
350 K isentropic surface. Rossby wave breaking can also enable tropical cyclogenesis (Takemura
and Mukougawa, 2021) via tropical transition, where a precursor extratropical cyclone devel-
ops tropical characteristics, such as a warm core and axisymmetry (Davis and Bosart, 2004).
McTaggart-Cowan et al. (2013) found that tropical cyclogenesis via tropical transition accounts
for over a third of tropical cyclogenesis events in the North Atlantic basin. Despite the potential
for cyclogenesis, it appears that the overall effect of an increased Rossby wave breaking frequency
is detrimental to TC activity in terms of ACE (Zhang et al., 2017). TCs formed via tropical
transition have been found to be less predictable than TCs formed via other genesis pathways
(Wang et al., 2018), which suggests that changes in Rossby wave breaking frequency may affect
predictability throughout a TC season.

The aim of this study is to assess if the latitude of the 2 PVU contour on multiple isentropic
surfaces can potentially act as a predictor for seasonal ACE. The effects on environmental verti-
cal wind shear and mid-tropospheric relative humidity are assessed and compared to the effects
caused by Rossby wave breaking. Furthermore, it is investigated if changes in the position of the
2 PVU contour have an impact on other TC-related metrics concerning number and lifetime.

The following sections are organized as follows. Section 2 describes the methods and data
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used in this study. Section 3 describes the statistical link between the 2 PVU contour latitude and
ACE. Section 4 describes the impact that the 2 PVU contour latitude exerts on environmental
variables, and Section 5 describes the exerted impact on TC count and lifetime metrics. Section
6 summarizes the results and states the key conclusions.

4.2 Data and Methods

For the purpose of this study, the North Atlantic hurricane season is defined as beginning on
June 1 at 00:00 UTC, and ending on December 1 at 00:00 UTC. Only the North Atlantic basin
is considered.

Observational and reanalysis data for the years 1980 to 2017 are used. The observational
HURDAT2 TC data (Landsea and Franklin, 2013) provide the longitude and latitude of cyclone
centers, as well as wind speeds that are needed to calculate ACE. ACE is defined as

ACE =
k∑

i=1

v2max,i (4.1)

where i = 1 is the initial time (e.g., the beginning of the season), k is the final time (e.g., the
end of the season), and vmax is the maximum wind speed of any given TC at a given time. Data
are used in 6-hourly intervals. ACE includes only TCs, which for the purposes of this study are
defined as any cyclone categorized as tropical storm (TS) or hurricane (HU) in the HURDAT2
data, and are only considered at synoptic hours (i.e. 00:00, 06:00, 12:00 and 18:00 UTC).

HURDAT2 data are further used to derive other metrics for seasonal activity. The first is
the number of individual days per season where a cyclone of hurricane strength (categorized
in HURDAT2 as HU) exists within the North Atlantic basin (hurricane days). The second is
the number of individual days per season where a cyclone of at least tropical storm strength
(categorized in HURDAT2 as TS or HU) exists within the North Atlantic basin (storm days),
which thus includes hurricane days. The third is the number of named storms. The fourth is the
number of named storms that make landfall, where named storms that make landfall multiple
times are counted only once. The fifth is the lifetime of TCs, where the number of entries at
synoptic hours and at which the TC is categorized as TD (tropical depression), TS or HU is
used. All named terms that contain the word "storm" refer exclusively to TC systems, and not
any other storm system, within this study.

Genesis location density is defined by first dividing the North Atlantic basin into squares of
5◦ side length. HURDAT2 data are then used to obtain the first entry for each cyclone in a set
of years, as motivated in the corresponding section. The resulting number of cyclones per square
is divided by the number of included cyclones, as this allows for a more meaningful comparison
of two distinct sets of years with a different number of total cyclones.

ERA5 reanalysis data (Hersbach et al., 2020) are used to obtain PV, wind and relative hu-
midity data. PV is interpolated to a 0.5◦x0.5◦ grid and to isentropic surfaces from 345 K to
365 K in 5 K intervals. The algorithm used in Sprenger et al. (2017) is used to identify the 2
PVU contour on isentropic surfaces in terms of equidistant points along the contour. The lati-
tude of the 2 PVU contour, here dubbed ΦTP , is then calculated as the mean latitude of these
points within a zonal window of 5◦ half-width at individual longitudes. ΦTP thus describes the
smoothed 2 PVU contour latitude at every longitude on the considered isentropic surfaces.

The PV streamer detection algorithm of Sprenger et al. (2017), which is a refined version
of the Wernli and Sprenger (2007) algorithm, is used to obtain PV streamer frequencies with a
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resolution of 0.5◦x0.5◦. Other methods of obtaining PV streamer frequency, in particular the
one used in Papin et al. (2020), identify the centroid of the streamer, and obtain from it the
geographical distribution of the frequency. In comparison, the method of Sprenger et al. (2017)
identifies all points on the specified grid where a PV streamer is present, and not only the cen-
troid position. The frequency is defined as the ratio of time steps at which a PV streamer is
present at a given location and the total number of time steps in the considered time interval.
PV streamers are used as a proxy for anticyclonic Rossby wave breaking.

Various pressure levels have been used to describe mid-tropospheric humidity. Within this
study, it is quantified by total precipitable water between 850 and 200 hPa in order to not be
limited to a single or only few pressure levels. 850 and 200 hPa are chosen be consistent with
the levels used in Zhang et al. (2016).

Consistent with the pressure levels used for total precipitable water, vertical wind shear is
defined as the difference between horizontal wind on the 200 hPa and the 850 hPa isobaric
surface, i.e.:

VWS =

√
(u200 − u850)

2 + (v200 − v850)
2 (4.2)

where VWS is vertical wind shear, u and v are the zonal and meridional wind components,
respectively, and the indices denote the isobaric surface in hPa.

As vertical wind shear and humidity act in combination to ventilate TCs, the ventilation index
of Tang and Emanuel (2012) is calculated to quantify this combined effect. The ventilation index
is defined as:

V I =
VWS · χm

uPI
(4.3)

where uPI is the potential intensity as defined by Bister and Emanuel (2002), and χm is the
entropy deficit, defined as:

χm =
s∗m − sm
s∗SST − sb

(4.4)

where s∗m is the saturation entropy at 600 hPa, sm is the entropy at 600 hPa, s∗SST is the sat-
uration entropy at the sea surface, and sb is the entropy in the boundary layer. Entropy is
calculated as in Tang and Emanuel (2012), who apply the pseudo-adiabatic entropy according
to Bryan (2008). The boundary layer entropy is calculated using values at 950 hPa, which is
assumed to be representative for the boundary layer.

The main development region (MDR) is defined as the region from 10◦N to 20◦N and from
20◦W to 80◦W (Goldenberg and Shapiro, 1996). The MDR is split into an eastern MDR (EMDR)
and a western MDR (WMDR), with the border being at 50◦W. Further, a high intensity region
(HIR) is defined to represent the region where major hurricanes occur, based on Knapp et al.
(2010). The corners of this region are at (50◦W, 30◦N), (100◦W, 30◦N), (100◦W, 21◦N), (83◦W,
10◦N), (50◦W, 10◦N), such that it encompasses the Gulf of Mexico and the western tropical
North Atlantic basin. Both regions are shown in fig. 4.1.
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Figure 4.1: Mean 2 PVU contour in September on the 345 K to 365 K isentropic surfaces using
1980–2017 climatology (solid) and 2013 (dashed) ERA5 data between 100°W and 20°W. Gray regions
denote the HIR and MDR, with the darker shading indicating the overlap of the two regions.

4.3 ΦTP as a Predictor for ACE

This section explores ΦTP as a simplified predictor for seasonal ACE in place of other PV-related
metrics, such as area and frequency of Rossby wave breaking events (e.g., Zhang et al. (2016)),
or PV streamer index (Papin et al., 2020). Fig. 4.1 shows the September mean 2 PVU contours
for the ERA5 (1981–2017) period and for the year 2013. Previous studies focused heavily on
the 350 K isentropic surface, and found that Rossby wave breaking has an effect on ACE on a
sub-seasonal and seasonal time scale (Zhang et al., 2016, 2017; Papin et al., 2020), but not on a
time scale of 8 days (Li et al., 2018). Here, it is explored whether ΦTP calculated for monthly
mean PV fields on the 350 K isentropic surface also correlates well with ACE, and whether this
correlation is stronger on other isentropic surfaces.

Fig. 4.2 shows the correlation coefficient of monthly mean ΦTP at longitudes from 90◦W to
30◦W and from June to September with seasonal basin-wide ACE. Only the 350 K and 360 K
isentropic surfaces are shown, as the correlations below 350 K and above 360 K are weaker.

On the 350 K isentropic surface during September there is substantial correlation of ΦTP with
ACE (r=0.67) with a maximum at 71◦W. This is roughly where the climatological TC track den-
sity (1979–2007) is at a maximum, and where the most intense cyclones are located (Knapp et al.,
2010). Therefore, environmental changes in this region affect many cyclones, and changes in TC
intensity can have a higher impact on ACE due to the squared dependence of ACE on wind
speed. Further, 71◦W is about 5◦ to the west of where Zhang et al. (2016) identified the highest
Rossby wave breaking frequency in August, and substantially further to the west of where Papin
et al. (2020) identified the climatological maximum of PV streamer frequency during September.
However, both use the PV streamer centroid to designate the position of the PV streamer and
Rossby wave breaking. The centroid position is expected to be further east than the minimum
latitude associated with a PV streamer. As shown in fig. 4.3, which is discussed in section 4c,
the maximum correlation is also further to the west of the maximum PV streamer frequency
when using the method of Sprenger et al. (2017), which is not as far east as that found in Papin
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Figure 4.2: Linear correlation coefficients of ΦTP on the 350 K and 360 K isentropic surfaces with
seasonal ACE using ERA5 and HURDAT2 data from 1980 to 2017 from June to September using a
5◦ half-width.

et al. (2020). In the low-activity 2013 season, the mean 2 PVU contour shows an equatorward
deflection at around 75◦W in September. At this location, the PV streamer frequency has been
found to be increased in 2013 (Papin et al., 2020). It thus appears that ACE is influenced by
ΦTP , and by the frequency of PV streamers, specifically in a region where PV streamers are not
maximally frequent in a climatological sense, and where many potentially intense cyclones occur.

On the 360 K isentropic surface, the correlation coefficient of September ΦTP with ACE is
largest (r=0.78) at 74◦W. While the correlation coefficient is very close to that on the 350 K
isentropic surface, it is stronger than on the 350 K isentropic surface and remains stronger over
a broader region. The reason for this difference is explored in the next section.

On the 350 K isentropic surface, June ΦTP is substantially correlated with ACE, which is
stronger than the correlations of July and August ΦTP with ACE. This is likely not due to a
direct effect of ΦTP on ACE during June, as only about 1% of ACE is produced in June in a
1980–2017 mean using HURDAT2 data, while about 5% and 24% are produced in July and Au-
gust, respectively. Further, June ΦTP correlation with June monthly ACE is weaker than with
seasonal ACE (not shown). A more plausible explanation is thus that ΦTP is autocorrelated.
PV streamers typically do not persist for multiple months, and individual Rossby wave breaking
events typically do not correlate with ACE on short time scales (Li et al., 2018). It is therefore
assumed that autocorrelation of ΦTP is due to other underlying features, such as the correla-
tion of Rossby wave breaking events with teleconnection indices described by Bowley et al. (2019).

ΦTP autocorrelations are summarized in table 4.1. As the question at hand is whether strong
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Table 4.1: Autocorrelation coefficients of ΦTP on the 350 K and 360 K isentropic surfaces between
months at their respective longitude where ΦTP correlates maximally with seasonal ACE, and said
longitude. The listed longitude is the central longitude of the 5◦ half-width zonal window within which
ΦTP is calculated.

350 K Lon Jul Aug Sep

Jun 53◦W 0.35 0.39 0.43

Jul 30◦W 0.39 0.43

Aug 67◦W 0.40

Sep 71◦W

360 K Lon Jul Aug Sep

Jun 46◦W 0.10 0.19 0.40

Jul 53◦W 0.34 0.35

Aug 90◦W 0.67

Sep 74◦W

correlation of June ΦTP with seasonal ACE is due in part to autocorrelation and strong corre-
lation of September ΦTP with seasonal ACE, the longitude where the correlation coefficient is
maximal is chosen for every month and isentropic surface, as denoted in table 4.1.

On the 350 K isentropic surface, June ΦTP correlates with September ΦTP with a correlation
coefficient of r=0.43. This is similar to the autocorrelation of the PV streamer index in June-July
with that in August-November found by Papin et al. (2020). July and August ΦTP correlate
similarly with September ΦTP .

On the 360 K isentropic surface, the autocorrelation coefficient of June ΦTP with Septem-
ber ΦTP is 0.4, but it should be noted that June ΦTP at 74◦W is essentially uncorrelated with
September ΦTP at 74◦W (r<0.2). Autocorrelation coefficients of July and August with Septem-
ber are 0.35 and 0.67, respectively. The increased autocorrelation of August with September is
reflected in the increased correlation of August ΦTP with seasonal ACE at the western edge of
the investigated longitudinal range, while the opposite is observed for July, where a reduction
in autocorrelation accompanies a reduction in correlation with seasonal ACE. The substantial
correlation of June and July ΦTP with seasonal ACE are thus concluded to be due to autocor-
relation of ΦTP . The correlation of August ΦTP with seasonal ACE may be due to two factors.
First, August contributes substantially more to seasonal ACE than June and July, which allows
for a direct influence on ACE that is on a relevant scale compared to the full season. Second, the
autocorrelation of ΦTP from August to September implies that effects of ΦTP on ACE during
September are inherently linked to August ΦTP .

In summary, September ΦTP on the 360 K isentropic surface could be a potent predictor
for seasonal TC activity due to the broad region of strong correlation. Notably, the correlation
is slightly stronger than those found by Zhang et al. (2017) and Papin et al. (2020) between
several Rossby wave breaking metrics on the 350 K isentropic surface, such as frequency and
area, and ACE in the North Atlantic basin. Both Zhang et al. (2017) and Papin et al. (2020)
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also relied on reanalysis data to come to these findings, but based on 1979–2013 and 1979–2015
data, respectively. Since the correlation is particularly strong in September, ΦTP as a predictor
would be mostly relevant for mid-season forecasting, where the lead time is the shortest. June
ΦTP on the 350 K isentropic surface may be of some use for pre-season forecasting of ACE, due
to autocorrelation of ΦTP . However, the correlation with ACE is substantially weaker than that
found on the 360 K isentropic surface for September ΦTP .

4.4 The Link Between ΦTP and Environmental Variables

The mechanisms by which ΦTP influences ACE are not necessarily the same across isentropic
surfaces, and the location where the influence is exerted may also differ. This section shows that
vertical wind shear and relative humidity are affected by ΦTP , that ΦTP on the 350 K isentropic
surface influences ACE via similar pathways as ΦTP on the 360 K isentropic surface does, and
that the affected regions differ, but partially overlap.

Zhang et al. (2016) argue that Rossby wave breaking leads to a reduction in humidity and an
increase in vertical wind shear in the tropical North Atlantic. Multiple linear regression analysis
based on 1980–2017 ERA5 data is thus used to assess whether there is a link between September
ΦTP , 850–200 hPa precipitable water, and 200 hPa - 850 hPa vertical wind shear. The goal is not
to use this analysis to make any direct predictions, but only to argue that a dependence between
these quantities exists. September ΦTP at 71◦W is used on the 350 K isentropic surface, and
September ΦTP at 74◦W is used on the 360 K isentropic surface, as this is where the correlations
with seasonal ACE are largest (see table 4.1). Adjusted R2 values, which quantify the variance
in the predicted variable that is explained by the variance in the predictors, are referred to as R2

values for simplicity. The p-value is listed for the R2 value and the regression coefficients, which
represents the probability that the null hypothesis, i.e. there being no link between the predictors
and the explained variable, is true based on the statistical test. For example, a p-value of 0.05
would thus signify a 95% confidence that a detected link truly exists, as the probability that the
null hypothesis is true is only 5%. HIR, MDR, EMDR and WMDR mean values of vertical wind
shear and precipitable water are considered separately for the linear regression analysis.

4.4.1 The HIR and the MDR

Table 4.2 summarizes the regression results for the HIR and MDR. Using only vertical wind shear
as a predictor and using the 350 K isentropic surface, both regions show substantial correlation
(R2 >0.4, rows 1 and 2) of ΦTP with the mean vertical wind shear in the respective region. Using
precipitable water as an additional predictor slightly increases the R2 value in the HIR, but has
only a very weak effect in the MDR. The p value associated with precipitable water is somewhat
low for the HIR (p<0.1, row 3) and very large for the MDR (p>0.3, row 4). Changes in ΦTP

thus seem to be linked to changes in precipitable water in the HIR, though not as strongly as to
vertical wind shear. In contrast, it cannot be said with confidence that ΦTP is linked to changes
in precipitable water in the MDR.

The lack of correlation with precipitable water in the MDR differs strongly from the findings
of Zhang et al. (2016), who state that humidity changes are linked to Rossby wave breaking
events on the 350 K isentropic surface. However, this apparent contradiction can be reconciled.
Zhang et al. (2016) use the month of August, and not September, in their analysis. Repeating
the multiple linear regression analysis for August reveals that using precipitable water as a sole
predictor yields a similar R2 value as when using vertical wind shear as a sole predictor (R2=0.23
and R2=0.27, respectively). Further, using precipitable water as the sole predictor for September
results in a lower R2 value (R2=0.15), indicating that the link between ΦTP and precipitable
water is substantially stronger in August than in September. Precipitable water as the sole
predictor is significantly linked to ΦTP at the 95% level in all of these cases, but still very weak
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Table 4.2: Multiple linear regression results for September mean ΦTP predicted by September mean
vertical wind shear (VWS) and precipitable water (PW), listing the model, regression coefficients (βn),
the p-value of the coefficients (pβn), the adjusted R2 value, and the p-value of the corresponding F-
test. Indices for ΦTP denote the isentropic surface in K, and alphabetical indices for precipitable
water and vertical wind shear denote the region within which they are averaged. ERA5 data for 1980
to 2017 are used.

Model β1 [ms−1] pβ1 β2 [mm] pβ2 adj. R2 p(F)

ΦTP,350 = β1 · VWSHIR -1.7 < 10−3 0.416 < 10−3

ΦTP,350 = β1 · VWSMDR -1.1 < 10−3 0.489 < 10−3

ΦTP,350 = β1 · VWSHIR + β2 · PWHIR -1.5 < 10−3 0.8 0.081 0.450 < 10−3

ΦTP,350 = β1 · VWSMDR + β2 · PWMDR -1.0 < 10−3 0.4 0.337 0.488 < 10−3

ΦTP,360 = β1 · VWSHIR -1.9 0.003 0.201 0.003

ΦTP,360 = β1 · VWSMDR -1.5 < 10−3 0.335 < 10−3

ΦTP,360 = β1 · VWSHIR + β2 · PWHIR -1.6 0.009 2.2 0.014 0.309 < 10−3

ΦTP,360 = β1 · VWSMDR + β2 · PWMDR -1.2 0.003 1.6 0.049 0.389 < 10−3

compared to vertical wind shear as the sole predictor in the MDR, as is evident from the R2 values.

A plausible reason for the decline of precipitable water as a predictor for ΦTP is that Rossby
wave breaking is most active during summer. It peaks in July in the North Atlantic basin (Postel
and Hitchman, 1999; Abatzoglou and Magnusdottir, 2006; Papin et al., 2020), and is responsible
for mixing dry air into the tropics (e.g., Zhang et al. 2016). A reduction in these events could lead
to less mixing, and thus a reduced impact on precipitable water in the tropical North Atlantic in
September as compared to August. Further, there is also a reduction in vertical extent of Rossby
wave breaking events from August to September (Abatzoglou and Magnusdottir, 2006). As the
presence of a PV streamer is not required for a horizontal PV gradient to exert an influence
on the wind field, and horizontal PV gradients are weaker in summer than in autumn (Postel
and Hitchman, 1999), vertical wind shear can thus become the dominant predictor instead of
precipitable water. Notably, even though the North Atlantic extratropics are generally drier
in boreal autumn than in boreal summer (Gettelman et al., 2006), the humidity change from
August to September does not appear large enough to compensate for the reduction in mixing
due to reduced PV streamer activity.

Using the 360 K isentropic surface (rows 5 through 8), vertical wind shear remains the
dominant predictor. However, using precipitable water as an additional predictor in the MDR
increases the R2 value from 0.335 to 0.389, and the p value associated with precipitable as a
predictor is quite low with p=0.014. Precipitable water thus appears to be responsive to changes
in ΦTP on the 360 K isentropic surface in the MDR. Section 4b argues that this response is not
present in the entire MDR, and section 4c elucidates the cause for this response.

4.4.2 The WMDR and EMDR

Table 4.3 shows the multiple linear regression results of the WMDR and EMDR subregions.
Using the 350 K isentropic surface and vertical wind shear as the sole predictor (rows 1 and 2),
the correlation of ΦTP with vertical wind shear is substantially stronger in the WMDR than in
the EMDR. As argued in the previous section, the WMDR is where the correlation coefficient of
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Table 4.3: As table 4.2, but using the EMDR and WMDR.
.

Model β1 [ms−1] pβ1 β2 [mm] pβ2 adj. R2 p(F)

ΦTP,350 = β1 · VWSEMDR -1.1 < 10−3 0.297 < 10−3

ΦTP,350 = β1 · VWSWMDR -0.8 < 10−3 0.464 < 10−3

ΦTP,350 = β1 · VWSWMDR + β2 · PWWMDR -0.7 < 10−3 0.3 0.476 0.457 < 10−3

ΦTP,360 = β1 · VWSEMDR -1.4 0.004 0.182 0.004

ΦTP,360 = β1 · VWSWMDR -1.1 < 10−3 0.331 < 10−3

ΦTP,360 = β1 · VWSWMDR + β2 · PWWMDR -0.8 0.003 2.2 0.002 0.475 < 10−3

September ΦTP with ACE is maximal, and to the west of where the maximum in PV streamer
frequency is located (see fig. 4.3, which is discussed in more detail further below). The vertical
wind shear response in the WMDR thus seems to be sensitive to westward displacements of PV
streamer frequency as was the case in 2013 (Papin et al., 2020), while vertical wind shear in the
EMDR appears to be affected less. The reduced effect on the EMDR compared to the WMDR
is a result of ΦTP on the 350 K isentropic surface being used at 71◦W, i.e. where the correlation
with ACE is strongest, which is within the WMDR.

Using precipitable water as an additional predictor in the WMDR reduces the R2 value very
slightly, and has an associated p value in excess of 0.4. Precipitable water changes due to changes
in ΦTP on the 350 K isentropic surface are thus concluded to be negligible.

Using the 360 K isentropic surface and vertical wind shear as the sole predictor, the R2 values
decrease substantially in both subregions. However, using precipitable water as an additional
predictor in the WMDR, the resulting R2 value of 0.48 is rather close to those predicting the
350 K isentropic surface in the WMDR (R2=0.46) and in the entire MDR (R2=0.49). Therefore,
when using the 360 K isentropic surface, both vertical wind shear and precipitable water in the
WMDR are important predictors for ΦTP . The reason for this is explored in the following sub-
section.

4.4.3 PV Streamer Climatology on the 350 K and 360 K Isentropic Surfaces

The PV streamer frequency in the North Atlantic region on the 360 K isentropic surface is shown
in fig. 4.3 compared to the frequency on the 350 K isentropic surface, as identified in ERA5 data
during the 1980–2017 period. Note that the Sprenger et al. (2017) algorithm is used to identify
PV streamers, which does not use the centroid position, but the entire area of the streamer
feature. Therefore, the southward extent of streamers is represented more accurately than when
the centroid position is used (see also section 2).

On the 350 K isentropic surface, the PV streamer frequency is reduced from August to
September, and the maximum is shifted eastwards, as also found by, e.g., Papin et al. (2020)
tracking PV streamer centroid positions. PV streamer activity is thus shifted away from where
TC activity is high (Knapp et al., 2010). On the 360 K isentropic surface, Abatzoglou and Mag-
nusdottir (2006) show an increase in the number of Rossby wave breaking events from August to
September in the North Atlantic region. However, this may be a result of their counting method.
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Figure 4.3: ERA5 1980–2017 climatological PV streamer frequency on the 350 K (top) and 360 K
(bottom) isentropic surface during August (left) and September (right).

They counted events on the 360 K isentropic surface only if the event was not also present on the
350 K isentropic surface, such that an increase in the number of events on the 360 K isentropic
surface may also be due to a reduction in vertical extent of events and not a true increase in the
number of events. Fig. 4.3 shows that there is a genuine increase in PV streamer frequency from
August to September on the 360 K isentropic surface, as the region where PV streamers occur
shifts eastward from the Pacific into the North Atlantic region. Notably, PV streamer frequency
is maximal between 10◦N and 20◦N, and is thus shifted into the WMDR. This strongly implies
increased Rossby wave breaking in the WMDR during September, which enables mixing, and
thus the comparatively strong response of precipitable water to changes in ΦTP as described
in the previous subsection. The increase in PV streamer frequency from August to September
is also consistent with the increase in correlation coefficient of ΦTP with ACE from August to
September (see fig. 4.2).

4.4.4 ΦTP Quartiles on the 360 K Isentropic Surface

As 38 years are used within this study (1980–2017), the 9 years with the northernmost September
ΦTP and the 9 years with the southernmost September ΦTP positions on the 360 K isentropic
surface roughly correspond to, and are from here on referred to, as ΦTP quartiles. They are
contrasted to highlight the difference between low (southern) and high (northern) values of ΦTP .
Only the 360 K isentropic surface is used to derive these quartiles, as this is where correlation
with seasonal ACE is strongest in September (see fig. 4.2), and the specification of the isentropic
surface is omitted for brevity.

Fig. 4.4 shows the PV streamer frequency for the southernmost and northernmost ΦTP

quartiles. The southernmost quartile shows a substantially higher PV streamer frequency than
the northernmost quartile, though the maximum is located close to the Pacific region. The
northernmost quartile shows two comparatively weak maxima within the WMDR. More south-
ern positions of ΦTP thus appear to be associated with enhanced mixing of extratropical and
tropical air, though at some distance from the MDR. Fig. 4.5 shows 1980–2017 climatological
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Figure 4.4: Mean September PV streamer frequency of ERA5 1980–2017 southernmost (top) and
northernmost (bottom) ΦTP quartiles. The MDR is outlined in black.

September relative humidity at 600 hPa and the difference between the northernmost and south-
ernmost ΦTP quartile. The 600 hPa level is chosen as this is the level used for the ventilation
index, which depends on the difference between saturated entropy and environmental entropy.
For the northernmost ΦTP quartile, where PV streamer frequency is reduced but has maxima
within the MDR, relative humidity is still increased near the boundary between the WMDR and
the EMDR. This indicates that the reduction in PV streamer frequency in the northernmost
ΦTP quartile favors higher relative humidity, and thus TC intensification, in the WMDR more
than the westward displacement of a comparatively strong maximum in the southernmost ΦTP

quartile. On a different note, 600 hPa relative humidity changes substantially and significantly
between the equator and 10◦N between the quartiles. This implies that ΦTP could be linked to
changes in the intertropical convergence zone (ITCZ), both in position and strength. However,
this is not further explored here.

Fig. 4.6 shows a September mean 80◦W to 50◦W (i.e., the WMDR) zonal mean of zonal
wind speed, the 2 PVU contour and the 350 K and 360 K isentropic surfaces for the 1980–2017
period and the southernmost and northernmost ΦTP quartiles. Both in climatology and in the
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Figure 4.5: Mean September 600 hPa relative humidity of the ERA5 1980–2017 period (top) and the
difference of the northernmost and southernmost ΦTP quartiles (bottom). Yellow contours denote
the 90% (dotted), 95% (dashed) and 99% (solid) confidence levels. The MDR is outlined in black.

southernmost ΦTP quartile, westerly winds are dominant at upper levels in the WMDR. This
places the WMDR downstream of the PV streamer frequency maximum at upper levels in the
southernmost ΦTP case. Even though it is displaced to the west of the WMDR, the region of high
PV streamer frequency thus still impacts the WMDR. Further, there is large-scale subsidence at
upper and mid levels in the WMDR zonal mean (not shown), which allows mixing by Rossby
wave breaking to the west of the WMDR to ultimately affect 600 hPa relative humidity within
the WMDR. In contrast, upper level winds in the WMDR in the northernmost ΦTP quartile are
predominantly easterly. The region where the quartile difference in 600 hPa relative humidity
is largest within the MDR is therefore upstream of the maximum in PV streamer frequency for
the northernmost ΦTP (see fig. 4.4 and fig. 4.5). The northernmost ΦTP quartile thus appears
to be more humid because the effect of breaking waves does not easily propagate further into
the MDR, but instead propagates towards its western boundary. As relative humidity is in-
creased throughout most of the WMDR in the northernmost ΦTP quartile, the reduction in PV
streamer frequency is concluded to be of higher importance to 600 hPa relative humidity within
the WMDR than the relative displacement of high PV streamer frequency regions between quar-
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Figure 4.6: Left: ERA5 1980–2017 climatological September mean 80◦W to 50◦W zonal mean zonal
wind speed (black contours, from -8 to 8 m/s, negative contours are dashed), 350 K and 360 K
potential temperature contours (red) and 2 PVU contour (blue line). Center: Likewise, but for the
9 southernmost September mean ΦTP,360. Right: Likewise, but for the 9 northernmost September
mean ΦTP,360. Blue crosses show 2 PVU contour intersections with potential temperature contours,
and the gray area denotes the meridional extent of the MDR.

tiles.

The reversal of upper-level wind direction between quartiles also has implications for vertical
wind shear. 850 hPa winds are easterly in the climatological mean as well as in the discussed
quartiles. As the 200 hPa winds in the WMDR are mostly easterly in the northernmost ΦTP

quartile, there is no reversal of wind direction with height, and vertical wind shear is thus
greatly reduced. Near-surface winds are reduced in magnitude compared to the climatological
mean, which also aids in reducing vertical wind shear. The southernmost ΦTP quartile shows
an increased magnitude in zonal wind at 200 hPa in the MDR compared to the climatological
mean, as well as an increase in the magnitude of near-surface winds. Vertical wind shear is thus
increased due to an increase in magnitude at both levels used in the vertical wind shear definition,
and the reversal of wind direction with height. The resulting difference in vertical wind shear
between the two quartiles is shown in fig. 4.7, along with the 1980–2017 climatology. There is
indeed a clear reduction in vertical wind shear in the northernmost ΦTP quartile as compared to
the southernmost ΦTP quartile. This is in a location where there is a climatological maximum in
vertical wind shear in excess of 12 m/s. A northward displacement of ΦTP thus reduces vertical
wind shear throughout the WMDR, and specifically also in a region with climatologically rather
pronounced vertical wind shear, which is beneficial to TC intensification. This is consistent with
Aiyyer and Thorncroft (2006), who found an above average number of TCs during years where
the 200 hPa flow in the MDR, which they defined as being slightly larger than used here, is
easterly.

The combined effect of vertical wind shear and relative humidity, as quantified by the venti-
lation index, is shown in fig. 4.8. Climatologically, the ventilation index has a local maximum
off the northern coastline of South America, which is where there is also a climatological maxi-
mum in vertical wind shear. The climatological ventilation index is largest in the MDR at the
northern boundary of the EMDR, where vertical wind shear is high and relative humidity is
low. The quartile difference shows a sizeable decrease in ventilation index for the northernmost
ΦTP compared to the southernmost ΦTP off the coastline of South America and throughout a
large portion of the WMDR. In this region, vertical wind shear is reduced for the northernmost
ΦTP , as described above, and SST is increased for the northernmost ΦTP (not shown), which
could cause a reduction in the ventilation index by increasing the potential intensity. The local
maximum in the quartile difference in the EMDR, while intriguing, is only significant at the 80%
level, which is not deemed sufficient to warrant further investigation here.

The connection between September mean ΦTP , vertical wind shear and mid-tropospheric
humidity is summarized in fig. 4.9 in the form of a pseudo-schematic. A poleward displacement
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Figure 4.7: As fig. 4.5, but showing 200–850 hPa vertical wind shear.

of ΦTP is associated with reduced vertical wind shear and slightly increased relative humidity in
favor of increased TC activity, while the opposite is the case for an equatorward displacement.
The effect is mainly present in the WMDR.

4.4.5 Redundancy of Isentropic Levels as Predictors

ΦTP is linked to vertical wind shear in the WMDR on both the 350 K and 360 K isentropic
surfaces, and thus there may be autocorrelation of ΦTP between isentropic surfaces. This is sub-
stantiated by Abatzoglou and Magnusdottir (2006) and Bowley et al. (2019), which both show
that PV streamers can have a substantial vertical extent, and that the horizontal extent on the
360 K isentropic surface can greatly exceed the horizontal extent on the 350 K isentropic surface.
However, Abatzoglou and Magnusdottir (2006) also show that during September in the North
Atlantic basin, the vertical extent of PV streamers is decreased relative to the vertical extent in
summer. Due to their counting method, it becomes clear that there are PV streamers on the 360
K isentropic surface that are not present on the 350 K isentropic surface. As ΦTP is not only
determined by PV streamers, it should also be noted that ΦTP on the 350 K and 360 K isentropic
surfaces can be controlled by the same underlying feature, such as a tropical upper-tropospheric
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Figure 4.8: As fig. 4.5, but showing ventilation index in the MDR. The 99% confidence level is
omitted to make the figure easier to read.

trough (TUTT, Fitzpatrick et al. (1995)). This, however, is not necessarily always the case. A
quantification of how often an underlying feature controls ΦTP on both isentropic surfaces is not
provided here, and speculation concerning such a quantification is intentionally avoided, as it is
not deemed necessary for the following analysis. In light of these circumstances, ΦTP on the 350
K and 360 K isentropic surfaces could be at least partially redundant when used to predict the
square root of ACE.

Multiple linear regression analysis is again used to assess whether using both isentropic sur-
faces is superior to the use of only one. The square root of ACE is predicted instead of ACE to
detrend the residuals of the regression. This is necessary to ensure that the regression properly
captures the relation between the dependent variable and the predictors. The latitudes where
the correlation coefficient of ΦTP with seasonal ACE is maximal during September, as denoted
in table 4.1, are used for this analysis. The results are summarized in table 4.4.

Using the 360 K isentropic surfaces yields a far larger R2 value than using the 350 K isentropic
surface (R2=0.50 vs. R2=0.32). When both isentropic surfaces are used, the R2 value only
increases very slightly. Further, the p value associated with the 350 K isentropic surface as a
predictor is rather large (p>0.2). There is thus no tangible benefit to using both isentropic
surfaces, and the 360 K isentropic surface appears to be the superior predictor.

4.5 Impact on Storm Number and Lifetime

From the definition of ACE, it follows that not only a reduced intensification via environmental
variables can impact ACE, but also a reduction in named storm number or hurricane lifetime.
This section assesses whether changes in September ΦTP on the 350 K and 360 K isentropic sur-
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Figure 4.9: September mean 2 PVU contour position for 1980–2017 (solid black), the years with
the 9 most equatorward September mean ΦTP,360 (dashed red) and the 9 most poleward September
mean ΦTP,360 (dashed blue) using ERA5 data, and the WMDR (gray region). Arrows indicate
poleward (blue) and equatorward (red) displacements of the 2 PVU contours relative to the 1980–2017
climatological 2 PVU contour at 75◦W (the vertical dashed black line denotes the 75◦W longitude
line). WMDR mean 200–850 hPa vertical wind shear and 500 hPa relative humidity are given as text
in the figure.

faces are linked to changes in named storm number or hurricane lifetime. Further, the number
and ratio of TCs that make landfall is assessed, as this is when TCs pose the greatest and most
immediate threat.

Table 4.5 summarizes the correlation coefficients of September ΦTP with the number of storm
days, hurricane days, and named storms, the average hurricane lifetime, the number of TCs that
make landfall, and the ratio of TCs that make landfall to the number of named storms throughout
the entire North Atlantic hurricane season. The entire season is considered for these variables
instead of only September, as this avoids the need for an arbitrary definition of how to treat
systems that cross from one month into another, and because most of the climatological seasonal
activity (>85% of ACE) occurs from August to October.

For all metrics, the difference from one isentropic surface to the other is generally rather
small, with the ratio of TCs that make landfall showing the largest increase in correlation coeffi-
cient from 0.26 to 0.36. As all coefficients are positive, a more poleward ΦTP is favorable for TC
formation and intensification for all considered metrics. Zhang et al. (2016) found that Rossby
wave breaking frequency correlates with the North Atlantic hurricane frequency (r=-0.47) and
the tropical storm frequency (r=-0.39). The correlation coefficients of ΦTP on both the 350 K
and 360 K isentropic surfaces with the number of named storms are stronger in magnitude, as
expected from the stronger correlation of ΦTP with ACE. Zhang et al. (2017) found that Rossby
wave breaking frequency is correlated with hurricane count (r=-0.67) and the number of named
storms (r=-0.48). They further found that Rossby wave breaking frequency correlates strongly
with ACE (r=-0.73), which is close to the value found using September ΦTP . The correlation
with named storms is therefore stronger when using ΦTP instead of Rossby wave breaking fre-
quency, but this does not appear to affect the correlation with ACE.
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Table 4.4: As table 4.2, but predicting the square root of ACE with September mean ΦTP on the
350 K and 360 K isentropic levels, and using HURDAT2 to calculate ACE.

Model β1 pβ1 β2 pβ2 adj. R2 p(F)
√
ACE = β1 · ΦTP,350 21.5 < 10−3 0.316 < 10−3

√
ACE = β1 · ΦTP,360 16.4 < 10−3 0.498 < 10−3

√
ACE = β1 · ΦTP,350 + β2 · ΦTP,360 7.1 0.221 13.5 < 10−3 0.506 < 10−3

Table 4.5: Correlation coefficients of September mean ΦTP on the 350 K and 360 K isentropic
surfaces (as per subscript) with storm days (SD), hurricane days (HD), number of named storms
(NS), the lifetime of hurricanes (LTHU ), the number of TCs that make landfall (LF), and the ratio of
TCs that make landfall to the number of named storms (qLF ). A single asterisk denotes significance
at the 95% level, and two asterisks denote significance at the 99% level.

SD HD NS LTHU LF qLF

ΦTP,350 0.67∗∗ 0.60∗∗ 0.64∗∗ 0.45∗∗ 0.61∗∗ 0.26

ΦTP,360 0.66∗∗ 0.69∗∗ 0.61∗∗ 0.37∗ 0.68∗∗ 0.36∗

The change in correlation coefficient with the ratio of TCs that make landfall is of particular
note, as the associated p value decreases from 0.11 on the 350 K isentropic surface to 0.02 on
the 360 K isentropic surface. The change in the number of TCs that make landfall is therefore
not only a result of there being more named storms when ΦTP is more poleward, but TCs are
also more likely to make landfall.

The number of storm days and hurricane days can also be considered for September only, as
these metrics do not cross from one month into the next. On both considered isentropic surfaces,
the correlation coefficients are reduced slightly. On the 350 K isentropic surface, they are reduced
to 0.58 and 0.52 for storm days and hurricane days, respectively, down from 0.67 and 0.60 for
the entire North Atlantic hurricane season. On the 360 K isentropic surface, they are similarly
reduced to 0.55 and 0.66 for storm days and hurricane days, respectively, from 0.66 and 0.69
for the entire North Atlantic hurricane season. The number of storm days and hurricane days
are linked to the intensity of cyclones, which in turn is linked to the response of vertical wind
shear and relative humidity patterns to ΦTP . As this response also exists in months other than
September, as already mentioned for August, and because ΦTP is autocorrelated, it is concluded
that autocorrelation aids in producing the high correlation between September ΦTP and seasonal
mean number of storm days and hurricane days.

The lifetime of hurricanes can be affected by the location of their genesis. The northernmost
and southernmost ΦTP quartiles on the 360 K isentropic surface years are compared in their
respective genesis location distributions. The difference in seasonal genesis location density is
shown in fig. 4.10 in the top panel. Differences in genesis location density are rather small
throughout the EMDR (32% of TCs formed in the EMDR for both quartiles), while the WMDR
is more active for more poleward ΦTP (29% of TCs in the northernmost ΦTP quartile and 18% of
TCs in the southernmost ΦTP quartile formed in the WMDR). A more equatorward ΦTP favors
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Table 4.6: Number of storm days (SD), hurricane days (HD), and named storms (NS), the lifetime
of hurricanes (LTHU , in number of synoptic time steps), the number of TCs that make landfall (LF),
and the ratio of TCs that make landfall to the number of named storms (qLF ) for the northernmost
ΦTP quartile (ΦN

TP ) and the southernmost ΦTP quartile (ΦS
TP ).

SD HD NS LTHU LF qLF

Φ
N
TP 76.4 41.7 17.4 36.3 10.2 0.59

Φ
S
TP 42.7 18.7 10.8 29.0 4.4 0.41

the region north of the WMDR, i.e. cyclogenesis at a more poleward location.

The bottom panel of fig, 4.10 shows the difference in the equivalent genesis location den-
sity using only TCs that were formed in September. The favored cyclogenesis location to the
north of the MDR for more equatorward ΦTP years is present in September genesis locations
as well. The EMDR is a slightly favored genesis location for more poleward ΦTP (42% of TCs
in the northernmost ΦTP quartile and 38% of TCs in the southernmost ΦTP quartile formed
in the EMDR), with the central EMDR in particular being favored in the northernmost ΦTP

quartile. TCs therefore show a tendency to be generated not only closer to the extratropics,
but on average also closer to the North American coastline in years with a more equatorward
ΦTP . The differences in genesis location density are consistent with a reduced lifetime for a more
equatorward ΦTP . While a pattern emerges, it is not exceptionally strong, which is consistent
with the comparatively low correlation coefficient of ΦTP with hurricane lifetime (see table 4.5).

Table 4.6 shows the metrics used for correlations in table 4.5, with the absolute numbers listed
for the northernmost and southernmost ΦTP quartiles. The corresponding tracks are shown in
fig. 4.11. In total, the southernmost ΦTP years produced 41 TCs starting in September, and the
northernmost ΦTP years produced 42 TCs starting in September. While the difference seems
small, the number of produced hurricanes is 22 and 32, respectively. This is consistent with
the forecast failure of 2013 and the analysis of Zhang et al. (2016), which indicated that while
TCs are generated in the presence of high Rossby wave breaking activity, their intensification is
impeded. Note that table 4.6 provides numbers for the entire season, so while the number of TCs
in September is similar in both quartiles, the number of TCs throughout the season still differs
substantially. For a more northern ΦTP , there is an increase in landfall events particularly in the
Gulf of Mexico, but there appears to be a reduction of events along the eastern coast of North
America. This is consistent with genesis being favored in the region north of the MDR for the
southernmost September ΦTP positions, as TCs generated in that region do not typically enter
the Gulf of Mexico, but preferentially make landfall along the eastern coast of North America.
The reduction in landfall opportunities is consistent with the lower number of landfall events
and the reduced landfall ratio for the southernmost ΦTP quartile in table 4.6. The northernmost
ΦTP quartile shows an increase in cyclogenesis in the EMDR, as also seen in fig. 4.10. Although
the ratio of TCs that make landfall is increased in the northernmost ΦTP quartile, many of the
TCs originating in the EMDR recurve without making landfall, which increases their lifetime
compared to TCs forming further west which make landfall, as also reflected in the increased
hurricane lifetime in table 4.6. It is thus visible that changes in genesis location density affect
landfall location and frequency, as well as hurricane lifetime.
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Figure 4.10: Difference in genesis location density of the northernmost ΦTP quartile and the south-
ernmost ΦTP quartile for all TCs within the North Atlantic hurricane season (top) and TCs formed
in September (bottom). The region outlined in black is the MDR.
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PV TC Link

Figure 4.11: Tracks of TCs generated in September for the 9 southernmost September ΦTP years
(top) and the 9 northernmost September ΦTP years (bottom).
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4.6 Summary and Conclusions

ΦTP was introduced as a metric to describe the influence of the latitude of the 2 PVU contour
on an isentropic surface on TC activity. Using ERA5 and HURDAT2 data, the correlation
of monthly mean ΦTP with TC activity as quantified by ACE was found to vary greatly from
month to month, and strongly depends on the longitude of ΦTP , as well as the isentropic surface.
Particularly strong correlations of ΦTP on the 350 K and 360 K isentropic surfaces with ACE
were found during the month of September in the western North Atlantic basin. Weaker but
still substantial correlation was found during the month of June throughout the central North
Atlantic basin for ΦTP on the 350 K isentropic surface. It is thus concluded that September ΦTP

on the 360 K isentropic surface shows potential as a useful predictor for seasonal ACE in mid-
season hybrid-approach forecasting (i.e., a combination of statistical and dynamical forecasting).
This, however, depends on the capability to predict ΦTP with a lead time of about two months,
which is not addressed here. June ΦTP on the 350 K isentropic surface has some potential to be
a useful predictor in pre-season forecasting, though not to the same extent as September ΦTP

for mid-season forecasting.
Multiple linear regression analysis was used to assess the link between September ΦTP , 200

hPa - 850 hPa vertical wind shear and 850–200 hPa precipitable water in several sub-regions of
the North Atlantic basin. It was found that ΦTP on the 350 K isentropic surface affects vertical
wind shear in the MDR and in the HIR, but that there is no tangible effect on precipitable
water in the MDR. ΦTP on the 360 K isentropic surface affects mainly vertical wind shear in
the western MDR, but also has a tangible effect on vertical wind shear in the eastern MDR
and the HIR. In the western MDR, there is a substantial effect on precipitable water. It was
argued that this change is due to a region of high PV streamer frequency on the 360 K isentropic
surface intruding into the western MDR from August to September. It is concluded that these
impacts allow September ΦTP to influence ACE by changing environmental factors relevant to
TC intensification.

The northernmost and southernmost quartiles of ΦTP on the 360 K isentropic surface were
compared to each other. The comparison shows a significant increase in 600 hPa relative humidity
in parts of the WMDR, and a significant decrease in vertical wind shear throughout most of
the WMDR for the northernmost ΦTP quartile. As a consequence, the ventilation index is
significantly decreased throughout a large section of the WMDR for the northernmost ΦTP

quartile.
Finally, the correlation of September ΦTP with a number of metrics related to TC activity

and lifetime was assessed. In particular, September ΦTP substantially correlates with the number
of storm days, hurricane days, and named storms throughout the entire season. Further, there
is substantial correlation of ΦTP on the 360 K isentropic surface with the ratio of TCs making
landfall to the number of named storms. ΦTP on the 350 K isentropic surface shows much weaker
correlation. September ΦTP is further correlated with the average lifetime of hurricanes through-
out the season. A reason for this was presented in the form of a shift of cyclogenesis location,
as a more equatorward September ΦTP on the 360 K isentropic surface shows a tendency for
cyclones to form closer to coastlines and closer to the extratropics in the western North Atlantic,
and fewer to form in the eastern MDR during September. It is concluded that September ΦTP

influences seasonal ACE not only by affecting cyclone intensity via environmental factors, but
also by affecting TC genesis locations and thereby their lifetimes. September ΦTP , in particular
on the 360 K isentropic surface, is therefore concluded to show possible potential for use as a
predictor for a number of TC activity metrics.

We recommend to conduct further research on how specifically the ΦTP metric can be in-
tegrated into existing seasonal and sub-seasonal prediction frameworks. Also, due to the link
of ΦTP to Rossby wave breaking frequency, it is speculated that changes in ΦTP could lead to
changes in the relative frequency of different tropical cyclogenesis pathways. This has ramifica-
tions for the predictability of tropical cyclogenesis with varying ΦTP .
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Chapter 5

The Mean Tropopause Latitude in
Numerical Simulations

Abstract

The September mean tropopause latitude on the 360 K isentropic surface in the western North
Atlantic region is linked to both seasonal and September accumulated cyclone energy in the
North Atlantic basin. The regional variant of the ICON model is used to assess whether this link
is present in numerical simulations. The simulations do not reproduce the interannual variability
of tropical cyclone activity and the mean tropopause latitude in the western North Atlantic re-
gion very well, and underestimate tropical cyclone activity. However, a clear and significant link
between the tropopause latitude and accumulated cyclone energy is found. Further, variations in
tropopause latitude are found to be linked to significant changes in vertical wind shear that are
qualitatively consistent with the corresponding changes found in ERA5 reanalysis data. Signifi-
cant changes in ventilation index are also found, are partially consistent with the corresponding
changes in ERA5 data, and are of an appropriate magnitude.

5.1 Introduction

Tropical cyclones (TCs) are powerful weather systems that can lay waste to coastlines upon
making landfall. The potential damage they cause is projected to increase as coasts become
more populated and the concentration of wealth increases (Pielke Jr. et al., 2008). In a warming
climate, hurricanes of categories 4 and 5 are projected to become more frequent(Bender et al.,
2010) and more destructive (Grinsted et al., 2019). It is therefore of interest to predict the
impact of TCs ahead of time, both as individual TCs become acutely dangerous in short-term
forecasts, and on a seasonal scale, where mitigation and relief can be planned on a longer time
scale.

Seasonal predictions were first attempted by Nicholls (1979) for the Australian region. In
the North Atlantic region, Gray (1984a,b) made first attempts at seasonal prediction by relating
the number of hurricanes and hurricane days to El Niño events, the quasi-biennial oscillation,
and Caribbean sea level pressure anomalies during spring. This approach, where a statistical
connection between any phenomenon and TC activity is used to produce forecasts, is termed sta-
tistical forecasting, and has since been continuously developed (e.g., Klotzbach and Gray (2004);
Saunders and Lea (2005); Klotzbach (2007)).

Another method of forecasting is to use dynamical models, within which TC activity can be
assessed. While numerical models can produce TC-like systems even at low resolutions, these
are typically larger and weaker than observed TCs (Manabe et al., 1970; Bengtsson et al., 1982).
However, even unrealistic TC-like systems can be used to derive useful information on the ge-
ographical and seasonal distribution of TCs (Bengtsson et al., 1995). Murakami et al. (2015)
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found that a horizontal resolution of 25 km or higher is required for numerical models to ade-
quately represent very intense TCs, and Gentry and Lackmann (2010) showed in a case study
that even at very high resolutions, a further increase from 8 km to 1 km can reduce the minimum
pressure of a TC by 30 hPa. As an increase in resolution comes at a high computational cost,
regional models can be used to limit the domain of the simulation. Knutson et al. (2007) used
a regional model to simulate North Atlantic TCs with a regional modeling where they nudged
the large scale environment towards reanalysis data. They underestimated TC intensity, but
made use of an empirical relation between central surface pressure and maximum wind speeds
to reproduce TC activity based on central surface pressure. Patricola et al. (2014) performed
regional simulations with a horizontal resolution of 27 km and without nudging. They produced
TCs that were too weak, but overestimated the accumulated cyclone energy (ACE, Bell et al.
(2000)) by almost 20%, as they generated too many TCs.

Dynamical forecasting can be combined with statistical forecasting to form a hybrid ap-
proach. The hybrid approach uses numerical models not to predict TCs directly, but to predict
the future state of the atmosphere, i.e. the environment within which TCs will exist, and base
their predictions on these environmental variables. Dynamical and hybrid forecasting has been
shown to be skillful (e.g., Thorncroft and Pytharoulis (2001); Vitart et al. (2007); Vecchi et al.
(2014); Zhang et al. (2019)). Operational TC forecasts have generally been found to not only
have skill in predicting the number of TCs, but also have the capability to provide information
on landfall locations and regional activity (Klotzbach et al., 2019).

The 2013 North Atlantic hurricane season was forecast to be above average in activity by
various forecasting agencies. In reality, only two category one hurricanes occurred, and no ma-
jor hurricanes, which is far below average. The total number of TCs was adequately forecast,
though, which implies that forecasts underestimated the intensity of storms, and not their num-
ber. Zhang et al. (2016) proposed that an abundance of anticyclonic Rossby wave breaking
events caused a decrease in mid-tropospheric humidity and an increase in vertical wind shear.
These two quantities work in tandem to increase the ventilation of the TC, which mixes rela-
tively dry air into the system and thereby impede intensification (Riemer et al., 2010; Tang and
Emanuel, 2010, 2012; Riemer and Laliberté, 2015). Zhang et al. (2016) draw special attention to
the very equatorward position of the August mean 2 potential vorticity unit (PVU) contour on
the 350 K isentropic surface. The 2 PVU contour can be used to identify Rossby wave breaking
by identifying potential vorticity (PV) streamers, which are elongated filaments emerging from
the high-PV stratosphere into the low-PV troposphere. PV streamers can be used as a proxy
for anticyclonic Rossby wave breaking (Wernli and Sprenger, 2007; Béguin et al., 2013; Sprenger
et al., 2017).

PV streamers can be reliably identified (e.g., Bowley et al. (2019); Papin et al. (2020)), and
Rossby wave breaking has been studied extensively in reanalysis data (e.g., Postel and Hitchman
(1999); Scott and Cammas (2002); Abatzoglou and Magnusdottir (2006); Wernli and Sprenger
(2007)). Predictions of Rossby wave breaking in numerical models, however, show biases in fre-
quency and location(Barnes and Hartmann, 2012). Béguin et al. (2013) found that the bias in
Rossby wave breaking frequency in the largest in the North Atlantic region, and that the bias of
the 2 PVU contour latitude is lower than that of the Rossby wave breaking latitude. They thus
conclude that the bias in Rossby wave breaking location is not exclusively a result of the bias in
the 2 PVU contour location, but of where along the contour wave breaking occurs.

The link between Rossby wave breaking and PV streamer behaviour and TC activity has
been the subject of recent scientific attention. Li et al. (2018) found that on a short time scale
of 8 days, Rossby wave breaking is essentially uncorrelated with ACE when they use their entire
dataset from 1985 to 2013. However, there is significant correlation during a few individual
years, which may be due to interannual variability of the correlation. On a seasonal time scale,
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TC activity has been shown to significantly correlate negatively with Rossby wave breaking fre-
quency and and the area of the breaking wave (Zhang et al., 2017), as well as with a metric
that combines the frequency, size and magnitude of the anomaly of PV streamers (Papin et al.,
2020). The link between TC activity and Rossby wave breaking is generally limited to Rossby
wave breaking on the 350 K isentropic surface. The impact of PV streamers on TC activity is
not exclusively negative, as their presence can enable tropical cyclogenesis via tropical transition
(Takemura and Mukougawa, 2021), a process where a precursor cyclone attains characteristics of
a TC, such as axisymmetry and a warm core (Davis and Bosart, 2003). TCs formed via tropical
transition account for over one third of North Atlantic TCs (McTaggart-Cowan et al., 2013), but
tropically transitioned TCs are less predictable than TCs that did not undergo tropical transition
(Wang et al., 2018). While PV streamers affect TC activity in different ways, their overall effect
is a reduction in TC activity (Zhang et al., 2017).

Chapter 4 of this thesis has demonstrated that the latitude of the 2 PVU contour in the
western North Atlantic region can potentially be used instead of a quantification of PV streamer
activity to predict TC activity, and that the 360 K isentropic surface can be used instead of
the more commonly used 350 K isentropic surface to make these predictions. A requirement for
this is that numerical models can reproduce the results found in reanalysis and observational
data. This chapter thus aims to use the numerical model ICON (Zängl et al., 2015) to assess its
capability in reflecting the results of chapter 4.

The remainder of this chapter is structured as follows. Section 5.2 describes the data and
methods used within this chapter. Section 5.3 validates the simulations results, specifically in the
capability of the numerical model to reproduce ACE, relevant physical fields, and ΦTP . Section
5.4 assesses the link of ΦTP to ACE, and section 5.5 assesses the link to environmental variables,
in the numerical simulations. Section 5.6 summarizes the results and conclusions.

5.2 Data and Methods

The numerical model used in this chapter is ICON (Zängl et al., 2015) version 2.6.4 in limited
area mode (ICON-LAM). The years 1980 to 2021 are simulated from August 1 to October 4,
with the analysis of the results being focused on September. This is done because September is
the most active month, and because it was shown in chapter 4 of this thesis that the link between
the 2 PVU contour position and ACE is strongest in September. The horizontal resolution is
R03B07, which corresponds to about 13 km. 50 vertical levels are used, with the lowest level at
10 m, the model top at 23 km, and the distance between levels increasing with height. A time
step of 100 s is used. Both shallow and deep convection parametrizations are used (Bechtold
et al., 2008). The simulation domain is from the equator to 70◦N and from 120◦W to 15◦W, as
shown in fig. 5.1.

For each year, three ensemble simulations are performed. All simulations use ERA5 (Hers-
bach et al., 2020) data to provide forcing for sea surface temperature and sea ice cover, which
are both available as monthly means for the individual years and interpolated to individual time
steps.

ERA5 ensemble data assimilation (ENDA) members 0–2 are used to provide the initial con-
ditions and lateral boundary conditions. ENDA members correspond to the ensemble members
produced by ICON, i.e. ICON member 0 uses ENDA member 0 initial and lateral boundary
conditions, ICON member 1 uses ENDA member 1 initial and lateral boundary conditions, etc.
Lateral boundary data are available in 6-hourly time steps, and prescribe zonal, meridional
and vertical wind, the logarithm of sea level pressure, temperature, specific humidity, cloud liq-
uid water content, cloud ice water content, rain water content, snow water content, and surface
geopotential. They are interpolated to individual time steps. To further perturb the simulations,
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Figure 5.1: Numerical simulation domain (black) and the main development region of North Atlantic
TCs (red).

the physical parametrizations are perturbed. The perturbation is applied randomly, depending
on the ensemble member number.

The 2 PVU contour is identified using the algorithm of Sprenger et al. (2017), both for ERA5
and ICON data. ICON data are remapped to a 1◦x1◦ grid. The algorithm detects the 2 PVU
contour in evenly spaced intervals of 75 km distance. The 2 PVU contour is detected on the 360
K isentropic surface in September monthly mean PV fields. ΦTP is defined as the mean latitude
of the 2 PVU contour within a longitudinal window of 5◦ half-width, i.e. as a longitudinal run-
ning mean of the 2 PVU contour latitude.

ACE is defined as

ACE =
k∑

i=1

v2max,i (5.1)

where i = 1 is the initial time, k is the final time, and vmax is the maximum wind speed of any
given TC at a given time. 6-hourly data are used, and only the month of September is considered,
as motivated above. Within ICON data, a TC is defined as any system detected by the tracking
algorithm of chapter 3 of this thesis, that at the given time step has at least the intensity of a
tropical storm (TS), i.e. a maximum wind speed of at least 17 ms−1. HURDAT2 observational
data (Landsea and Franklin, 2013) are used as a reference. Any system that is denoted as TS
or HU (hurricane) at a given time in HURDAT2 data is included in ACE. Only the month of
September is considered for ACE. Within ICON data, TS days are defined as the number of days
on which a TC with a maximum wind speed of at least 17 m/s was present in the North Atlantic
basin. This includes TCs at hurricane strength. Hurricane days are defined likewise, but only
include TCs with a maximum wind speed of at least 33 m/s. Within HURDAT2 data, TS days
and hurricane days are defined similarly, but instead of maximum wind speed use the provided
TS and HU designation to determine whether a system is at TS or HU strength. As with ACE,
only the month of September is considered for TS days and hurricane days. For storms that
begin in August and persist into September, or begin in September and persist into October,
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only the portion that falls into September is considered.

Vertical wind shear (VWS) is defined as the magnitude of the vector difference of the hori-
zontal wind between 200 hPa and 850 hPa, i.e.:

VWS =

√
(u200 − u850)

2 + (v200 − v850)
2 (5.2)

where u is the zonal wind, v is the meridional wind, and the indices denote the pressure level
in hPa. Precipitable water (PW) is calculated within the same pressure interval as VWS. VWS
is calculated for 6-hourly time steps for the month of September, and then averaged to form a
monthly mean. PW is calculated from September monthly mean data.

The ventilation index (VI) of Tang and Emanuel (2012) is used to quantify the combined
effect of vertical wind shear and mid-tropospheric humidity. It is defined as

V I =
VWS · χm

uPI
(5.3)

where uPI is the potential intensity as defined by Bister and Emanuel (2002), and χm is the
entropy deficit, defined as:

χm =
s∗m − sm
s∗SST − sb

(5.4)

where s∗m is the saturation entropy at 600 hPa, sm is the entropy at 600 hPa, s∗SST is the satura-
tion entropy at the sea surface, and sb is the entropy in the boundary layer. Entropy is calculated
according to the pseudo-adiabatic entropy calculation in Bryan (2008). VI is calculated from
monthly means, following Tang and Emanuel (2012), based on 6-hourly data.

The main development region (MDR, Goldenberg and Shapiro (1996)), as shown in fig. 5.1,
spans from 10◦N to 20◦N and from 80◦W to 20◦W. It is further differentiated into the eastern
and western MDR (EMDR and WMDR, respectively), with the boundary being at 50◦W.

5.3 Validation of Simulation Results

The performance of the numerical simulations must be assessed. This is done only for the month
of September, as the link between ACE and ΦTP is strongest in September (see chapter 4). Fig-
ure 5.2 shows the capability of the numerical simulations to reproduce TC related metrics and
ΦTP during September. While ACE, ΦTP , the number of TS days and the number of hurricane
days are all within a reasonable range, some issues arise. The numerical simulations do not seem
to be able to produce very high values of ACE, which is a strong deviation from HURDAT2
data in 2004 and 2017. It may be unexpected that the year 2004 has a very high ACE value,
and the year 2005 does not, but it should be pointed out that Katrina (2005) occurred entirely
in August, and that Wilma (2005), the second most intense TC in the western hemisphere, oc-
curred entirely in October, and are therefore not included. While the simulations did produce a
few category 5 hurricanes, i.e. TCs with a maximum wind speed of 70 m/s or higher, these are
very rare, not sustained for longer than one time step, and did not occur in the 2004 or 2017
simulations during September. The simulations therefore underestimate the intensity of the most
intense TCs. This is likely due to the horizontal resolution of 13 km, which is sufficient to pro-
duce major hurricanes, but insufficient to reproduce the most extreme cases (e.g., Gentry and
Lackmann (2010)). ACE for the year 2017 is grossly underestimated despite being very active
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Figure 5.2: 1980–2021 ACE (top left), ΦTP on the 360 K isentropic surface (top right), TS days
(bottom left) and hurricane days (bottom right). Black lines show HURDAT2-based data (ERA5
for ΦTP ), and blue lines show ICON-based data of individual ensemble members. r denotes the
correlation coefficient of HURDAT2 and ERA5 data with the ensemble mean of the ICON data. Only
the month of September is considered.

in observations, though more ensemble members would be required to conclude that there is a
systematic issue with this specific year. The simulations produce an average ACE of 10.9 m2s−2,
while HURDAT2 data show an average of 14.8 m2s−2. The simulations thus produce only about
74% of the observed ACE, which is the opposite of the results of Patricola et al. (2014), who
used a horizontal resolution of 27 km and overestimated ACE by 20%. The simulation ensemble
mean ACE shows weak correlation with HURDAT2 ACE, which is not significant at the 90%
level. The interannual variability of September ACE is thus not reproduced adequately.

Simulated ΦTP on the 360 K isentropic surface is roughly within the same range as ERA5
ΦTP on the 360 K isentropic surface. However, the mean temporal average ΦTP of the numerical
simulations is still slightly too far equatorwards at 14.6◦N, compared to the temporal average
ΦTP in ERA5 data at 17.4◦N. This is similar to the results of Béguin et al. (2013), who found
the 2 PVU contours too far equatorward in their numerical simulations, though on other isen-
tropic surfaces. The correlation between the ensemble mean simulated ΦTP and ERA5 ΦTP is
essentially zero, so it is concluded that the interannual variability of ΦTP on the 360 K isentropic
surface is not reproduced in the simulations.

The number of TS days and the number of hurricane days are generally within an adequate
range. The average number of TS days in the simulations is 16.0, compared to 19.7 in HUR-
DAT2, and the average number of hurricane days are 11.2 and 12.1, respectively. The occurrence
of TCs is thus generally underestimated, which, in conjunction with not being able to produce
the most extreme TC intensities, explains the reduced average ACE of the numerical simulations
compared to observations. The correlation coefficients of the numerical simulation results with
observations are very weak in both cases, because the interannual variability of TS and hurricane
days is not adequately reproduced, even though ERA5 data are used to prescribe the simulation
domain boundaries and sea surface temperature.

In summary, the numerical simulations do not reproduce the interannual variability of TC
related metrics and ΦTP , produce a too low TC activity, and place ΦTP slightly too far equator-
wards. A likely cause for this is the low number of ensemble members, as Roberts et al. (2020)
found that an increase in ensemble size can greatly improve the correlation with observations for
TC related metrics, with the improvement being largest at low ensemble size. They further find
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Figure 5.3: 1980–2021 September monthly mean vertical wind shear in the MDR in ERA5 data (top,),
the ICON ensemble mean (center), and the difference between ICON and ERA5 data (bottom). Yellow
contours denote p-values indicating 99% (solid), 95% (dashed) and 90% (dotted) significance.

a very large spread in correlations of individual ensemble members with observations, which is
also the case in the numerical simulations presented here.

Even though interannual variability is not reproduced adequately, it is still possible for the
link between ΦTP and ACE, and the link between ΦTP and vertical wind shear, precipitable
water and ventilation index in the WMDR, to be reproduced. Figure 5.3 shows a comparison
of vertical wind shear in the MDR for ERA5 and for the ICON ensemble mean. The numerical
simulations reproduce vertical wind shear reasonably well in the EMDR, with values increasing
polewards, but underestimating shear at the northern boundary. In the WMDR, vertical wind
shear is significantly underestimated almost everywhere, and, notably, the local maximum to
the north of South America is absent in the numerical simulations. The magnitude of this local
maximum is significantly linked to the ΦTP position on the 360 K isentropic surface in ERA5
data (see chapter 4). Section 5.5 will show that this link is still significant in the numerical
simulation data, even though the climatological local maximum is absent.

Figure 5.4 shows the precipitable water in the MDR within ERA5 and the ICON ensemble
mean data. Qualitatively, the results are similar, as precipitable water increases westwards and
equatorwards within the MDR in both cases. However, with the exception of a small region
at the eastern boundary of the MDR, the ICON ensemble mean exhibits increased precipitable
water. The increase is about 5% to 10% relative to ERA5 data, but significant at the 99% level.
The ICON ensemble mean mid-tropospheric humidity is thus overestimated.

The ventilation index is shown in fig. 5.5. Throughout most of the WMDR, the ventilation
index is underestimated by the numerical simulations, which is a result of the reduced vertical
wind shear and the increased mid-tropospheric humidity. Consequently, the difference in ventila-
tion index is the largest north of the South American coast, where the local maximum in vertical
wind shear is not reproduced in the numerical simulations. The reduced ventilation of TCs in
the WMDR is likely to have a positive impact on ACE, as TCs can attain higher intensity with
less ventilation. Consequently, ACE would be underestimated even more if vertical wind shear,
and thus ventilation index, were reproduced better. However, with only the western third of the
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Figure 5.4: As fig 5.3, but showing precipitable water.

MDR being particularly affected, it is difficult to estimate how large the impact would be.
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Figure 5.5: As fig 5.3, but showing ventilation index.
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Figure 5.6: Correlation coefficient of 1980–2021 September mean ΦTP on the 360 K isentropic surface
per longitude with 1980–2021 basin wide ACE during the month of September. ERA5 data (red), the
ICON ensemble mean (blue, solid) and individual ICON ensemble members (blue, dashed) are shown.

5.4 Mean Tropopause Latitude Link to ACE

In chapter 4, it was shown that ΦTP on the 360 K isentropic surface correlates quite well with sea-
sonal ACE. Figure 5.6 shows the correlation of ΦTP on the 360 K isentropic surface per longitude
with basin wide ACE, but unlike in chapter 4, ACE is only calculated for September, and four
more years are included (2018–2021). The results presented here for ERA5 and HURDAT2 data
are very similar to those in chapter 4 (see fig. 4.2), but the maximum in correlation coefficient
is at 73◦W, as opposed to 74◦W in chapter 4. The ICON results differ strongly from the ERA5
and HURDAT2 results. First, the difference in correlation coefficient between ensemble members
is very large. As only three ensemble members are used, the results are naturally sensitive to
the inclusion or exclusion of individual members, and a larger ensemble size would provide more
robust results. Second, the dependency of the correlation coefficient on the longitude is not
reproduced. Instead, the correlation coefficient is somewhat steady throughout the zonal extent
of the considered range, especially for the ensemble mean, and peaks between 60◦W and 50◦W.
However, the ensemble mean correlation coefficient at 73◦W is still about 0.4, and significant at
the 95% level. Therefore, a link between ΦTP on the 360 K isentropic surface and basin wide
ACE during September is reproduced by the model simulations.

The weak dependence of the correlation coefficient on longitude in fig. 5.6 for ICON data
is likely due to zonal autocorrelation of ΦTP . The zonal autocorrelation is shown in fig. 5.7,
which shows that within the considered longitudinal range, the ensemble mean ΦTP on the 360
K isentropic surface at 73◦W correlates very strongly (r>0.95) with all other longitudes. This is
not the case in the ERA5 data. The cause for the zonal autocorrelation is not known, and this
feature is not present in previous global simulations with ICON (not shown).

In conclusion, the link between September mean ΦTP on the 360 K isentropic surface and
basin wide September ACE is partially reproduced in numerical simulations. The correlation
coefficients gained from the numerical simulations are far lower than those gained from ERA5
and HURDAT2 data, and the longitudinal dependence is not reproduced. However, a clear and
significant correlation has been found nevertheless.

78



5.5. Mean Tropopause Latitude Link to Environmental Variables

Figure 5.7: Correlation coefficient of 1980–2021 September mean ΦTP on the 360 K isentropic
surface per longitude with itself at 73◦W. ERA5 data (red), the ICON ensemble mean (blue, solid)
and individual ICON ensemble members (blue, dashed) are shown.

5.5 Mean Tropopause Latitude Link to Environmental Variables

The numerical simulations produced data for 42 years. The ten years with the southernmost
and the ten years with the northernmost ΦTP on the 360 K isentropic surface at 73◦W in the
simulation ensemble mean, henceforth called the southernmost and northernmost ΦTP quartile,
respectively, are investigated further. The aim is to detect differences in the ventilation index
between the two quartiles, as shown in fig. 5.8. As vertical wind shear and 600 hPa humidity are
included in the ventilation index, they are also shown separately, with humidity being quantified
by relative humidity.

The quartile difference shows that variations in ΦTP on the 360 K isentropic surface are
linked to significant changes in vertical wind shear throughout large parts of the MDR. Vertical
wind shear is reduced in the WMDR, in particular where ERA5 data show a climatological local
maximum, even though this maximum is not present in the numerical simulation data. This is
consistent with the results of chapter 4, which show significant changes in this region as well.
Further consistent is the reduction in vertical wind shear in the northern half of the EMDR in
the northernmost ΦTP quartile. Differences arise in a small region in the south-eastern WMDR,
where vertical wind shear is slightly increased, and to the south of the central MDR, where
vertical wind shear is also increased, which is not the case in ERA5 data (see fig. 4.7). Overall,
the size of the region where vertical wind shear is significantly reduced in the northernmost ΦTP

quartile in the WMDR is underestimated, and the magnitude of the quartile difference is under-
estimated as well. However, the results of chapter 4 are qualitatively reproduced within most of
the MDR.

In the results of chapter 4, 600 hPa relative humidity shows significant changes between quar-
tiles only in a comparatively small region at around 60◦W (see fig. 4.5). The quartile difference
in the ICON ensemble mean data presented here overestimates the difference, as they show a
significant difference throughout most of the MDR. This has ramifications for the ventilation
index, where a significant difference between quartiles is detected throughout most of the MDR,
whereas this was only detected north of the coast of South America for ERA5 data in chapter 4
(see fig. 4.8). As the vertical wind shear quartile difference is reproduced at least qualitatively,
the underestimation of the ventilation index in the numerical simulation data is likely caused by
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Figure 5.8: 1980–2021 simulation ensemble mean climatology (left) and difference between the north-
ernmost and southernmost ΦTP quartile (right) vertical wind shear (top), relative humidity at 600
hPa (center) and ventilation index (bottom). The 600 hPa relative humidity quartile difference panel
uses a reversed color scale.

this large change in relative humidity quartile difference. To the north off the coast of South
America, the magnitude of the quartile difference in ventilation index is consistent with that
found in chapter 4, as the quartile difference in 600 hPa relative humidity is reproduced ade-
quately in this region.

In summary, the numerical simulations reproduce the quartile difference in ventilation index
that was found in chapter 4 in the region north of the coast of South America quite well, but
underestimate the ventilation index throughout other parts of the MDR. The reason for this is
that the quartile difference in 600 hPa relative humidity is overestimated.

5.6 Summary and Conclusions

Numerical simulations were performed to assess how well the ICON model can reproduce the re-
sults of chapter 4 of this thesis. While the inclusion of only three ensemble members complicates
the interpretation of the results, some valuable information can still be gained. An expansion to
an ensemble size of ten members is therefore highly recommended, and currently pending.

ACE, ΦTP on the 360 K isentropic surface, and the number of TS and hurricane days are
all underestimated by the numerical simulations. ΦTP on the 360 K isentropic surface being too
far equatorward is consistent with the simulations of Béguin et al. (2013), who found similar
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behavior on lower isentropic surfaces. ACE and the number of TS and hurricane days are likely
underestimated due to a too coarse horizontal resolution, which is exacerbated by limiting the
data to the month of September. As September is within the peak of the North Atlantic hurri-
cane season, it is liable to exhibit extremely intense TCs. The numerical simulations are not able
to sustain TCs with maximum wind speeds of over 70 m/s (i.e., category 5 hurricanes) for longer
than one 6-hourly time step, which would constitute large contributions to ACE if they existed
for a prolonged time. The interannual variability of ACE, ΦTP on the 360 K isentropic surface,
and TS and hurricane days is not reproduced well, but this does not mean that the numerical
simulations are unable to reproduce the link between ΦTP on the 360 K isentropic surface and
ACE.

It is found that there is a significant link between ΦTP on the 360 K isentropic surface and
ACE in the numerical simulation data. In contrast to the results of chapter 4, this link persists
throughout a very wide zonal range, but the correlation coefficient is far lower (r≈0.4) than that
found in ERA5 and HURDAT2 data in chapter 4. The difference in ventilation index between
the northernmost ΦTP quartile and the southernmost ΦTP quartile is adequately reproduced
north of the coast of South America, but is overestimated throughout large sections of the MDR.
The reason for this is that the quartile difference in 600 hPa relative humidity is overestimated
in large sections of the MDR.
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Chapter 6

Conclusion and Outlook

6.1 Summary

6.1.1 Validation of the Tropical Cyclone Tracking Algorithm

A tropical cyclone tracking algorithm was developed for use with the ICON model. The algorithm
uses parameter threshold variation to enable the detection of weak systems and weak stages of
intense systems while still being sufficiently restrictive to not have false positives significantly
impact the accumulated cyclone energy.

The algorithm successfully detects TCs, has the capability to begin tracking during the
aggregation stage of TCs, and terminates TCs when they interact strongly with extratropical
flow or their warm core dissipates. The algorithm can also track systems that do not intensify to
TS strength, which is of use for applications that distinguish intensifying from non-intensifying
disturbances. ACE was shown to not be significantly impacted by faulty tracking, and thus the
algorithm is concluded to adequately represent the ACE value of the underlying data.

6.1.2 Influence of Potential Vorticity Structure on North Atlantic Tropical
Cyclone Activity

The latitude of the 2 PVU contour on the 360 K isentropic surface in the western North Atlantic
region was shown to correlate strongly with seasonal ACE. Similar to the impact of Rossby wave
breaking influence on ACE, it was shown that the 2 PVU contour position impacts ACE via
changes to vertical wind shear and mid-tropospheric humidity in the MDR, but limited to the
western half of the MDR. The geographical location of Rossby wave breaking was shown to be
less important than the frequency and area of Rossby wave breaking events in impacting ACE,
even when the highest frequency of Rossby wave breaking is located outside of the MDR. It
is thus concluded that the 2 PVU contour position has potential for use in seasonal and sub-
seasonal TC forecasting.

Importantly, the 2 PVU contour latitude does not only hold information on ACE. The geo-
graphical distribution of cyclogenesis and landfall locations, as well as the probability of landfall,
are also linked to the 2 PVU contour latitude. The regional damage potential along the coast-
line of North America is therefore also impacted, which is directly relevant to disaster relief
preparation and mitigation work.

6.1.3 The Mean Tropopause Latitude in Numerical Modeling

The ICON atmosphere model was used to produce regional ensemble simulations covering the
North Atlantic basin. While the interpretation of results is frustrated by the small ensemble size
of only three members, useful information was still gained. The numerical simulations do not
reproduce the interannual variability of basin-wide September TC activity and the September
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mean tropopause latitude in the western North Atlantic region well, and generally underestimate
TC activity. Regardless, a significant link between the September mean tropopause latitude on
the 360 K isentropic surface and basin-wide September ACE is shown to be present.

The September mean tropopause latitude on the 360 K isentropic surface is shown to be linked
to significant changes in vertical wind shear and ventilation index, which are partially consistent
with the results of chapter 4. Changes in mid-tropospheric humidity are not reproduced well,
as significant changes in 600 hPa relative humidity cover a very large area in the numerical
simulation data, which is not the case in ERA5 data. As a result, significant changes in ventilation
index also cover an area that is substantially larger than found in ERA5 data. The numerical
simulations still show promise, as the link between the September mean tropopause latitude and
September mean ventilation index is clearly demonstrated.

6.2 Outlook

While the performance of the TC tracking algorithm is adequate, improvements can be made.
First, the use of weak constraints successfully detects TC tracks during their aggregation phase
in many cases. The OWZ parameter is particularly useful in achieving the same goal, and a com-
parison of the two methods would reveal whether including the OWZ parameter in the current
tracking algorithm would be beneficial. Second, the maximum allowed translational velocity is
currently responsible for terminating many storms that interact with extratropical flow. The
maximum translational velocity is tailored towards merging detected TCs in individual time
steps into tracks, and can thus not be optimized for its use in TC termination. An explicit
treatment of extratropical transition would aid in terminating TCs more consistently, and would
allow for more control over algorithm behavior.

A unified tracking scheme for tropical and extratropical cyclones could be developed based
on the current framework. This scheme would primarily track surface pressure minima, use the
detection of a warm core to distinguish between tropical and extratropical cyclones, and would
allow for both tropical and extratropical transition. The resulting scheme would be beneficial for
any research that aims to investigate the transition processes in particular. As these transition
processes are highly relevant, the continues development of the tracking scheme is recommended.

The 2 PVU contour latitude on the 360 K isentropic surface in the western North Atlantic
region correlates strongly with seasonal ACE, but no attempt to implement this metric in actual
forecasting has been made. A sensible next step is therefore to either test the 2 PVU contour lati-
tude as an initial sole predictor for TC activity, and to build a prediction framework from this, or
to implement the 2 PVU contour latitude into existing prediction frameworks. As vertical wind
shear and mid-tropospheric humidity are already used as predictors in some frameworks, special
attention would have to be given to assessing the redundancy of predictors, and their specific
role, as the 2 PVU contour also holds relevant information on the geographical distribution of
TCs and landfall locations. While not stated in the chapter itself, there is no relevant correlation
between the 2 PVU contour position in the western North Atlantic and the 30 hPa and 50 hPa
QBO index. This implies that the change in wind direction described in chapter 4 is not directly
linked to the QBO (which is consistent with the findings of Shapiro (1989)). However, there may
still be a link between the 2 PVU contour position and the QBO that is more difficult to detect,
and further research in this direction may be warranted.

A hybrid forecasting framework using the 2 PVU contour could be constructed. The use of
hybrid forecasting would not require high horizontal resolution, as TCs would not need to be
represented directly. Therefore, the focus of the framework would be to accurately incorporate
and predict large scale features which are statistically linked to TC activity. This, in principle,
includes any large scale feature that has predictive power, such as North Atlantic SST, QBO, or
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teleconnection patterns, provided that they are not found to be redundant.

The results of the numerical simulations can be improved in different ways. First, an increase
in ensemble size to ten members would likely improve the representation of ACE, and make
the results more robust. An increase in horizontal resolution might also be required to improve
the representation of ACE, which would come at a considerable computational cost. However,
this appears necessary to sustain extremely intense TCs. Alternatively, it is possible to forgo
the production of intense TCs entirely, and to instead reduce horizontal resolution to expand
the domain to a global one without drastically increasing the computational cost. This would
likely result in a reduced zonal autocorrelation in the September mean tropopause latitude in
the North Atlantic region, and could improve the link between the September mean tropopause
latitude and the September mean ventilation index, bringing it more in line with the ERA5
results. However, a direct link to ACE may not be possible at a reduced horizontal resolution.
In light of the long time series and large ensemble size that are required to produce viable and
robust results, the latter option seems to be more attractive in the near future.
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