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A B S T R A C T

Machine learning is progressively being employed to guide critical decisions
in sensitive contexts where decisions have profound effects on individuals’
lives. Examples include pre-trial bail, loan approval, resume filtering, or pre-
scription of significant medication. In such contexts, it is crucial for models to
be accurate, robust, and simultaneously uphold socially relevant values such
as fairness, privacy, accountability, and explainability. These aspects signifi-
cantly influence the acceptance and impact of these technologies.

In this dissertation, I focus specifically on the task of enabling and facili-
tating algorithmic recourse. This involves providing individuals with compre-
hensible explanations and recommendations on the most effective (efficient
and ideally low-cost) means to recover from unfavorable decisions made by
an automated system. The following research questions are addressed:

q1 . how can we provide recourse to affected individuals

across various settings? In response to this question, I propose a
novel algorithm for generating model-agnostic counterfactual explanations
(MACE) built upon standard theory and tools from formal verification. This
approach overcomes the limitations of previous strategies and supports
model, datatype, and distance agnostic counterfactual explanations. It also
provides plausible and diverse counterfactuals for any individual, and at
provably optimal distances.

q2 . what actionable insight can be derived from a counter-
factual explanation? I argue that explanations must enable people
to act rather than merely understand. Using counterexamples and the the-
ory of structural causal models (SCM), I demonstrate that actionable recom-
mendations cannot generally be inferred from counterfactual explanations.
I propose new optimization problems for generating minimal consequential
interventions (MINT), providing exact recourse under knowledge of the true
SCM and probabilistic recourse when only the causal graph is available.

q3 . how does providing recourse explanations/recommenda-
tions influence other stakeholders? In the third part of this dis-
sertation, I contend that providing individuals with the right of recourse
should be considered within the broader context of its impact on other stake-
holders and other desirable properties like fairness, privacy, and model/IP
security. I define and propose a solution for offering fair recourse, and discuss
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how uncertainties and non-stationarities can affect the provided recourse. I
explore robust recourse strategies and discuss potential changes to classifier
or data generation processes that could facilitate fair/robust recourse.

In conclusion, this dissertation offers a roadmap for future research direc-
tions, challenges existing assumptions, and broadens the domain of recourse
beyond supervised learning.
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K U R Z FA S S U N G

Maschinelles Lernen wird immer häufiger eingesetzt, um entscheidende Ent-
scheidungen in sensiblen Kontexten zu steuern, in denen die Entscheidungen
tiefgreifende Auswirkungen auf das Leben von Einzelpersonen haben. Bei-
spiele hierfür sind die Entscheidung über Kautionen vor Gericht, die Geneh-
migung von Darlehen, das Filtern von Lebensläufen oder die Verschreibung
lebensverändernder Medikamente. In solchen Situationen ist es unerlässlich,
dass die Modelle präzise und robust sind und gleichzeitig soziale Werte wie
Fairness, Privatsphäre, Rechenschaftspflicht und Erklärbarkeit einhalten. Die-
se Werte beeinflussen masgeblich die Akzeptanz und Wirkung dieser Tech-
nologien.

In dieser Dissertation konzentriere ich mich insbesondere auf die Aufgabe,
Algorithmischen Recourse zu ermöglichen und zu fördern. Dies beinhaltet, den
betroffenen Personen verständliche Erklärungen und Empfehlungen darüber
zu geben, wie sie am effektivsten (effizient und idealerweise kostengünstig)
von ungünstigen Entscheidungen, die von einem automatisierten System ge-
troffen wurden, abrücken können. Die in dieser Dissertation behandelten For-
schungsfragen sind:

q1 . wie können wir den betroffenen personen recourse in

unterschiedlichen situationen bieten? Zur Beantwortung dieser
Frage schlage ich einen neuen Algorithmus zur Erzeugung von modellagno-
stischen kontrafaktischen Erklärungen (MACE) vor, der auf Standardtheorie
und -werkzeugen der formalen Verifikation basiert. Dieser Ansatz über-
windet die Einschränkungen früherer Strategien und ist modell-, datentyp-
und distanzagnostisch. Er kann plausible und vielfältige kontrafaktische
Erklärungen für jede Person erzeugen und das auf nachweislich optimalen
Distanzen.

q2 . welche handlungsfähigen erkenntnisse können aus einer

kontrafaktischen erklärung gewonnen werden? Ich argumen-
tiere, dass Erklärungen Menschen zum Handeln anregen sollten, anstatt nur
zum Verstehen. Mit Hilfe von Gegenbeispielen und der Theorie der struktu-
rellen Kausalmodelle (SCM) zeige ich, dass handlungsrelevante Empfehlun-
gen im Allgemeinen nicht aus kontrafaktischen Erklärungen abgeleitet wer-
den können. Ich formuliere neue Optimierungsprobleme zur direkten Erzeu-
gung minimaler konsequenzieller Interventionen (MINT), die einen genauen
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Recourse unter Kenntnis des wahren SCM und einen probabilistischen Re-
course bieten, wenn nur das kausale Diagramm vorhanden ist.

q3 . wie wirkt sich das anbieten von recourse-erklärungen/–
empfehlungen auf andere stakeholder aus? Im dritten Teil die-
ser Dissertation argumentiere ich, dass das Bereitstellen von Recourse für
Einzelpersonen im gröseren Zusammenhang seiner Auswirkungen auf an-
dere Stakeholder und zusätzliche wünschenswerte Eigenschaften wie Fair-
ness, Privatsphäre und Modell-/IP-Sicherheit betrachtet werden sollte. Ich
definiere und biete eine Lösung für die Bereitstellung von fairem Recourse
an und diskutiere, wie Unsicherheiten und Nicht-Stationaritäten den angebo-
tenen Recourse beeinflussen können. Ich untersuche Strategien für robusten
Recourse und diskutiere mögliche änderungen an Klassifizierungsprozessen
oder Daten-Generierungsprozessen, die einen fairen/robusten Recourse un-
terstützen könnten.

Zum Abschluss bietet diese Dissertation eine Orientierung für zukünftige
Forschungsrichtungen, stellt bestehende Annahmen in Frage und erweitert
den Anwendungsbereich von Recourse über das überwachte Lernen hinaus.
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A C K N O W L E D G E M E N T S

Thus said the truthful Prophet: “seek
knowledge from the cradle to the grave”

(Abul-Qâsem Ferdowsi)
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N O TAT I O N

Basic

• x: scalar
• x: vector
• X: matrix
• X: set
• X: random variable
• X : space, model, or constraint

Recourse

• D: dataset
• ϕ: logic formula
• h : X → Y : discriminator
• F : feasibility constraints
• P : plausibility constraints
• cost(·) or c(·): cost function
• dist(·, ·) or d(·, ·): distance function
• CFh(xF): set of counterfactual instances for instance xF and model h

Causality

• S: set of structural equations
• PU: distribution over latent variables
• M = (S, PU): structural causal model
• G: corresponding graphical causal model
• I : subset of graph nodes
• d(I): descendants of subset I
• nd(I): non-descendants of subset I
• ∆(XI := θ) or ∆(θI ): set values of XI to θ via soft interventions
• do(XI := θ) or do(θI ): set values of XI to θ via hard interventions
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1I N T R O D U C T I O N

1.1 introduction

Consider the following setting: a 28-year-old female professional working as
a software engineer seeks a mortgage to purchase a home. Consider further
that the loan-granting institution (e.g., bank) uses a binary classifier and de-
nies the individual the loan based on her attributes. Naturally, in this context,
answering the following questions become relevant to the individual:

Q1. Why was I rejected the loan?

Q2. What can I do in order to get the loan in the future?

In the setting of the example above, unless the policy of the bank is relaxed,
the individual must expend effort to change their situation to be favourably
treated by the decision-making system. Examples such as the above are
prevalent not only in finance (Muk+02; BHN17) but also in justice (e.g.,
pretrial bail) (Ang+16), healthcare (e.g., prescription of life-altering medica-
tion) (BKB17; GB20; BBK19), and other settings (e.g., hiring) (Maz+21; NS18;
CLM19; Sch+20) broadly classified as consequential decision-making settings
(BHN17; Kar+20a; Bur16; CDG18). Given the rapid adoption of automated
decision-making systems in these settings, designing models that not only
have high objective accuracy but also afford the individual with explanations
and recommendations to favourably change their situation is of paramount
importance, and even argued to be a legal necessity (GDPR (VB)). This is the
concern of algorithmic recourse.

1.2 background

1.2.1 Recourse definitions

In its relatively young field, algorithmic recourse has been defined as, e.g., “an
actionable set of changes a person can undertake in order to improve their
outcome” (Jos+19); “the ability of a person to obtain a desired outcome from
a fixed model” (USL19); or “the systematic process of reversing unfavorable
decisions by algorithms and bureaucracies across a range of counterfactual
scenarios” (VA20). Similarly, legal recourse pertains to actions by individualsor
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introduction

corporations to remedy legal difficulties (Wal92). Parallel to this, explanations
aim to, at least in part, assist data-subjects to “understand what could be
changed to receive a desired result in the future” (WMR17). This plurality of
overlapping definitions, and the evolving consensus therein, motivates us to
attempt to present a unified definition under the umbrella of recourse.

Intuitively, the commonality shared among these definitions is the desire to
assist individuals that are negatively affected by automated decision-making
systems to improve their circumstances (captured in the individual’s feature
set) to overcome the adverse decision (from the predictive model). Such as-
sistance may take on the form of explanations (where they need to get to) or
recommendations (what actions should they perform to get there).

We submit that recourse can be achieved by an affected individual if
they can understand (WMR17; Jos+19; Dow+20) and accordingly act (KSV21;
Kar+20b) to alleviate an unfavorable situation, thus exercising temporally-
extended agency (VA20). Concretely, in the example of the previous section,
recourse is offered when the loan applicant is given answers to both
questions: provided explanation(s) as to why the loan was rejected (Q1);
and offered recommendation(s) on how to obtain the loan in the future (Q2).
Below, we describe the similarities and often overlooked differences between
these questions and the different set of assumptions and tools needed to
sufficiently answer each in general settings. Such a distinction is made
possible by looking at the context from a causal perspective, which we
summarize below.

1.2.2 Recourse and causality

1.2.2.1 Contrastive (Counterfactual) Explanations

In an extensive survey of the social science literature, Miller [Mil19] con-
cluded that when people ask “Why P?” questions (e.g., Q1), they are typi-
cally asking “Why P rather than Q?”, where Q is often implicit in the context
(Hil90; Rob18). A response to such questions is commonly referred to as a
contrastive explanation, and is appealing for two reasons. Firstly, contrastive
questions provide a ‘window’ into the questioner’s mental model, identifying
what they had expected (i.e., Q, the contrast case), and thus, the explanation
can be better tuned towards the individual’s uncertainty and gap in under-
standing (Mil18). Secondly, providing contrastive explanations may be “sim-
pler, more feasible, and cognitively less demanding" (Mil18) than offering
recommendations.
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1.2 background

1.2.2.2 Consequential Recommendations

Providing an affected individual with recommendations (e.g., response to
Q2) amounts to suggesting a set of actions (a.k.a. flipsets (USL19)) that should
be performed to achieve a favourable outcome in the future. In this regard,
several works have used contrastive explanations to directly infer actionable
recommendations (Jos+19; USL19; SHG19; WMR17) where actions are con-
sidered as independent shifts to the feature values of the individual (P) that
results in the contrast (Q). Recent work, however, has cautioned against this
approach, citing the implicit assumption of independently manipulable fea-
tures as a potential limitation that may lead to suboptimal or infeasible ac-
tions (VA20; BSR20; MTS19; KSV21). To overcome this, Karimi et al. [KSV21]
suggest that actions may instead be interpreted as interventions in a causal
model of the world in which actions will take place, and not as indepen-
dent feature manipulations derived from contrastive explanations. Formu-
lated in this manner, e.g., using a structural causal model (SCM) (Pea00), the
down-stream effects of interventions on other variables in the model (e.g.,
descendants of the intervened-upon variables) can directly be accounted for
when recommending actions (BSR20). Thus a recommended set of actions
for recourse, in a world governed by a SCM, are referred to as consequential
recommendations (KSV21).

1.2.2.3 Clarifying terminology: contrastive, consequential,
and counterfactual

To summarize, recourse explanations are commonly sought in a contrastive
manner, and recourse recommendations can be considered as interventions
on variables modelled using an SCM. Thus, we can rewrite the two recourse
questions as:

Q1. What profile would have led to receiving the loan?

Q2. What actions would have led me to develop this profile? 1

Viewed in this manner, both contrastive explanations and consequential
recommendations can be classified as a counterfactual (MK93), in that each
considers the alteration of an entity in the history of the event P, where P is
the undesired model output. Thus, responses to Q1 (resp. Q2) may also be

1A common assumption when offering recommendations is that the world is stationary;
thus, actions that would have led me to develop this profile had they been performed in the
past, will result in the same were they to be performed now. This assumption is challenged
in (RKL20b; VA20) and discussed further in §7.1.3.
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introduction

X1 X1

X2 X2

X3 X3 BB Ŷ
· · · · · ·

XD XD

Figure 1.1: Variables {Xi}D
i=1 capture observable characteristics of an individual which are

fed into a blackbox (BB) decision-making system (mechanism) yielding the prediction, Ŷ. Con-
sequential recommendations are interventions on a causal model of the world in which ac-
tions take place, and may have down-stream effects on other variables before being passed
into the BB. Conversely, contrastive explanations are obtained via interventions on the BB
inputs which can be seen as independent feature shifts that do not affect other variables.
Unlike the latter, generating the former relies on accurate knowledge of the SCM or causal
graph as a model of nature itself (both of which are non-identifiable from observational data
alone (PJS17)). The result of performing a consequential recommendation is a contrastive
explanation (see §2.2 and §3 for descriptive and technical details, respectively).

called counterfactual explanations (resp. counterfactual recommendations), mean-
ing what could have been (resp. what could have been done) (Byr19).2

To better illustrate the difference between contrastive explanations and
consequential recommendations, we refer to Figure 1.1. According to Lewis
[Lew86, p. 217], “to explain an event is to provide some information about its
causal history”. Lipton [Lip90, p. 256] argues that in order to explain why P
rather than Q, “we must cite a causal difference between P and not-Q, consist-
ing of a cause of P and the absence of a corresponding event in the history of
not-Q”. In the algorithmic recourse setting, because the model outputs are de-
termined by its inputs (which temporally precede the prediction), the input
features may be considered as the causes of the prediction. The determining
factor in whether one is providing contrastive explanations as opposed to
consequential recommendations is thus the level at which the causal history
(Rub15) is considered: whereas providing explanations only requires informa-
tion on the relationship between the model inputs, {Xi}D

i=1, and predictions,
Ŷ, recommendations require information as far back as the causal relation-
ships among inputs. The reliance on fewer assumptions (Mil19; Lip90) thus
explains why generating recourse explanations is easier than generating re-
course recommendations (WMR17; Mil18).

2Note that “some researchers tend to either collapse or intentionally distinguish con-
trastive from counterfactual reasoning despite their conceptual similarity” (Ste+21), adding
to confusion. For cross-disciplinary reviews, please refer to (Mil18; Mil19; Ste+21).
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1.3 formulation

Next, we summarize the technical literature in Table 1.1 (subsequent sur-
veys can be found at (Kea+21; VDH20; Ste+21)). We find that the vast majority
of the recourse literature has focused on generating contrastive explanations
rather than consequential recommendations (c.f., §1.2). Differentiable models
are the most widely supported class of models, and many constraints are
only sparsely supported (c.f., §1.3). All tools generate solutions that to some
extent trade-off desirable requirements, e.g., optimality, perfect coverage, effi-
cient run-time, and access (c.f., §1.4), resulting in a lack of unifying compari-
son (c.f., §7.1). This table does not aim at serving to rank or be a qualitatively
comparison of surveyed methods, and one has to exercise caution when com-
paring different setups. As a systematic organization of knowledge, we be-
lieve the table may be useful to practitioners looking for methods that satisfy
certain properties, and useful for researchers that want to identify open prob-
lems and methods to further develop. Offering recourse in diverse settings
with desirable properties remains an open challenge, which we explore in the
following sections.

1.3 formulation

Given a fixed predictive model, commonly assumed to be a binary
classifier, h : X → {0, 1}, with X = X1 × · · · × XD , we can de-
fine the set of contrastive explanations for a (factual) input xF ∈ X as
E := {xCF ∈ P(X ) | h(xCF) ̸= h(xF)}. Here, P(X ) ⊆ X is a plausible subspace
of X , according to the distribution of training data (see §1.3.3.1). Descrip-
tively, contrastive explanations identify alternative feature combinations (in
nearby worlds (Lew73)) that result in a favourable prediction from the fixed
model. Assuming a notion of dissimilarity between instances, represented
as dist(·, ·) : X × X → R+, one can identify nearest contrastive explanations
(a.k.a. counterfactual explanations) as follows:

x∗CF ∈ argmin
xCF∈P(X )

dist(xCF, xF)

s.t. h(xCF) ̸= h(xF)

xCF = xF + δ

(1.1)

where δ is the perturbation applied independently to the feature vector xF

to obtain the counterfactual instance xCFE (WMR17). As discussed in §1.2, al-
though contrastive explanations identify the feature vectors that would achieve
recourse, in general, the set of actions that would need to be performed to re-
alize these features are not directly implied from the explanation (KSV21).
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Table 1.1: An overview of recourse algorithms for consequential decision-making settings is presented. Ordered chronologically, we summa-
rize the goal, formulation, solution, and properties of each algorithm. Symbols are used to indicate supported settings in the experimental section of
the paper ( ), settings that are natural extensions of the presented algorithm ( ), settings that are partially supported ( ), and settings that are
not supported ( ). The models cover a broad range of tree-based (TB), kernel-based (KB), differentiable (DF), or other (OT) types. Actionability
contraints (unconditional or conditional), plausibility constraints (domain-, density-, and prototypical-consistency), and additional constraints (diver-
sity, sprasity) are also explored. While the primary datatypes used in consequential settings are tabular, (involving a mix of numeric, binary, cate-
gorical, and ordinal variables), we also include additional works that generate recourse for non-tabular (images, and document) datasets. Further-
more, papers that present analysis of such properties as optimality (opt.), coverage (cov.), and run-time complexity (rtm.) are specified in the table.
Finally, we make note of those papers that provide open-source implementations.

Algorithm
Formulation Solution

Model Actionability Plausibility Extra Data types
Tools Access

Properties
Code

TB KB DF OT uncond. cond. dom. dens. proto. diver. spar. ! � � opt. cov. rtm.

(2014.03) SEDC (MP14) heuristic query

(2015.08) OAE (Cui+15) ILP white-box

(2016.05) HCLS (Las+17b; Las+17a) grad opt/heuristic gradient/query

(2017.06) Feature Tweaking (Tol+17) heuristic white-box

(2017.11) CF Expl. (WMR17) grad opt gradient

(2017.12) Growing Spheres (Lau+17) heuristic query

(2018.02) CEM (Dhu+18) FISTA class prob.

(2018.02) POLARIS (ZSLS18) heuristic gradient

(2018.05) LORE (Gui+18) gen alg + heuristic query

(2018.06) Local Foil Trees (Waa+18) heuristic query

(2018.09) Actionable Recourse (USL19) ILP white-box

(2018.11) Weighted CFs (Gra+18) heuristic query

(2019.01) Efficient Search (Rus19) MILP white-box

(2019.04) CF Visual Expl. (Goy+19) greedy search white-box

(2019.05) MACE (Kar+20a) SAT white-box

(2019.05) DiCE (MST20) grad opt gradient

(2019.05) CERTIFAI (SHG19) gen alg query

(2019.06) MACEM (Dhu+19) FISTA query

(2019.06) Expl. using SHAP (Rat19) heuristic query

(2019.07) Nearest Observable (Wex+19) brute force dataset

(2019.07) Guided Prototypes (VLK19) grad opt/FISTA gradient/query

(2019.07) REVISE (Jos+19) grad opt gradient

(2019.08) CLEAR (WG19) heuristic query

(2019.08) MC-BRP (LHR20) heuristic query

(2019.09) FACE (Poy+19) graph + heuristic query

(2019.09) Equalizing Recourse (Gup+19) ILP/heuristic white-box/query

(2019.10) Action Sequences (RLA19) program synthesis class prob.

(2019.10) C-CHVAE (Paw+19) grad opt + heuristic query + gradient

(2019.11) FOCUS (Luc+19) grad opt + heuristic white-box

(2019.12) Model-based CFs (MTS19) grad opt gradient

(2019.12) LIME-C/SHAP-C (Ram+19) heuristic query

(2019.12) EMAP (CR+19) grad opt dataset/query

(2019.12) PRINCE (Gha+20) graph + heuristic query

(2019.12) LowProFool (Bal+19) grad opt gradient

(2020.01) ABELE (Gui+19) gen alg + heuristic query + data

(2020.01) SHAP-based CFs (FPH20) heuristic query

(2020.02) CEML (AH19a; AH19b; AH20) grad opt/heuristic gradient/query

(2020.02) MINT (KSV21) SAT white-box

(2020.03) ViCE (Gom+20) heuristic query

(2020.03) Plausible CFs (BADS20) grad opt + gen alg dataset

(2020.04) SEDC-T (VM20) heuristic query

(2020.04) MOC (Dan+20) gen alg query

(2020.04) SCOUT (WV20) grad opt gradient

(2020.04) ASP-based CFs (Ber20) answer-set prog. query

(2020.05) CBR-based CFs (KS20) heuristic query + data

(2020.06) Survival Model CFs (KU20) gen alg query

(2020.06) Probabilistic Recourse (Kar+20b) grad opt/brute force gradient/query

(2020.06) C-CHVAE (PBK20) grad opt gradient

(2020.07) FRACE (Zha20) grad opt gradient

(2020.07) DACE (Kan+20a) MILP white-box

(2020.07) CRUDS (Dow+20) grad opt gradient/data

(2020.07) Gradient Boosted CFs (APMRRÁ20) heuristic data

(2020.08) Gradual Construction (Kan+20b) heuristic class prob.

(2020.08) DECE (CMQ20) grad opt gradient

(2020.08) Time Series CFs (Ate+20) heuristic query

(2020.08) PermuteAttack (HF20) gen alg query

(2020.10) Fair Causal Recourse (Küg+22) grad opt/brute force gradient/query

(2020.10) Recourse Summaries (RL20) itemset mining alg query

(2020.10) Strategic Recourse (CWL20) Nelder-Mead query

(2020.11) PARE (RLB20) grad opt + heuristic query
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1.3 formulation

Thus, a consequential recommendation for (factual) input xF ∈ X is defined as
R := {a ∈ F (xF) | h

(
xSCF(a; xF)

)
̸= h(xF)}. Here, F (xF) is the set of feasible ac-

tions that can be performed by the individual seeking recourse (see §1.3.3.2).
Approaching the recourse problem from a causal perspective within the struc-
tural causal model (SCM) framework (KSV21), actions are considered as in-
terventions of the form a = do({Xi := xFi + θi}i∈I ) ∈ F (xF), and xSCF(a; xF)
denotes the structural counterfactual of xF had action a been performed, all
else being equal (Pea00). Finally, given a notion of cost of actions, capturing
the effort expended by the individual as cost(·; ·) : F × X → R+, one can
identify minimal consequential recommendations as follows:

a∗ ∈ argmin
a∈F (xF)

cost(a; xF)

s.t. h(xCF) ̸= h(xF)

xCF = xSCF(a; xF)

(1.2)

Importantly, the solution of (1.1) yields a nearest contrastive explanation
(i.e., xCF = xF + δ∗), with no direct mapping to a set of (minimal) conse-
quential recommendations (KSV21). Conversely, solving (1.2) yields both a
minimal consequential recommendation (i.e., a∗) and a contrastive explana-
tion (i.e., by construction xCF = xSCF(a∗; xF)).3

Our position is that, with the aim of providing recourse, the primary goal
should be to provide minimal consequential recommendations that result in
a (not necessarily nearest) contrastive explanation when acted upon. Offering
nearest contrastive explanations that are not necessarily attainable through
minimal effort is of secondary importance to the individual. In practice, how-
ever, due to the additional assumptions needed to solve (1.2) (specifically
for computing xSCF), the literature often resorts to solving (1.1). Despite the
prevalance of methods assuming independent features, we quote the negative
result of Karimi et al. [Kar+20b, prop. 2] whereby the authors show that with-
out full specification of the causal relations among variables, recourse cannot
be guaranteed. As pointed by Chou et al. [Cho+22], explanations derived
from popular algorithms based on non-causal spurious correlations “may
yield sub-optimal, erroneous, or even biased explanations.” Therefore, for the
remainder of this section, we operate on the assumption of knowledge of an
SCM, which allow for a deterministic formulation of recourse yielding both
minimal consequential recommendation and resulting contrastive explana-
tions. Later in §7.1, 7.2, we relax these assumptions and discuss the relatively
easier settings in which causal assumptions are scarce or absent entire. This is
not to say that counterfactual explanations not accompanied by recommenda-
tion actions are not useful. On the contrary, as noted by (KSV21), counterfac-
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tual explanations hold promise for “guided audit of the data” (WMR17) and
evaluating various desirable model properties, such as robustness (SHG19;
HL20) or fairness (SHG19; Gup+19; USL19; Kar+20a) (see also, §7.1). Besides
this, it has been shown that designers of interpretable machine learning sys-
tems use counterfactual explanations for predicting model behavior (Lag+19),
uncovering inaccuracies in the data profile of individuals (VA20), and also for
medical outcome prediction under hypothesized treatments (Mer+20) or real-
istic medical image generation (WSP21). Beyond the consequential domains
mentioned above and in §1.1, counterfactual explanations have been used
for changing behavior of source code (Cit+21), overcoming class-imbalance
issues by amending underrepresented classes with plausible counterfactuals
(TK21), and aiding the interpretable design of molecules (WSW22).

In the remainder of this section, we provide an overview of the objective
function and constraints used in (1.1) and (1.2), followed by a description of
the datatypes commonly used in recourse settings. Finally, we conclude with
related formulations. Then in Section 1.4, we review the tools used to solve
the formulations defined here.

1.3.1 Optimization objective

Generally, it is difficult to define dissimilarity (dist) between individuals, or
cost functions for effort expended by individuals. Notably, this challenge
was first discussed in the algorithmic fairness literature (Dwo+12; Ilv19), and
later echoed throughout the algorithmic recourse community (VA20; BSR20).
In fact, “the law provides no formal guidance as to the proper metric for
determining what reasons are most salient” (SB18). In spite of this, existing
works have presented various ad-hoc formulations with sensible intuitive
justifications or practical allowance, which we review below.

1.3.1.1 On dist

Wachter et al. [WMR17] define dist as the Manhattan distance, weighted by
the inverse median absolute deviation (MAD):

3Relatedly, the counterfactual instance that results from performing optimal actions, a∗ ,
need not correspond to the counterfactual instance resulting from optimally and indepen-
dently shifting features according to δ∗ ; see (KSV21, prop. 4.1) and (BSR20, Fig. 1). This
discrepancy may arise due to, e.g., minimal recommendations suggesting that actions be
performed on an ancestor of those variables that are input to the model.
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1.3 formulation

dist(x, xF) = ∑
k∈[D]

|xk − xFk |
MADk

MADk = medianj∈P(|Xj,k −medianl∈P(Xl,k)|)
(1.3)

This distance has several desirable properties, including accounting and
correcting for the different ranges across features through the MAD heuristic,
robustness to outliers with the use of the median absolute difference, and
finally, favoring sparse solutions through the use of ℓ1 Manhattan distance.

Karimi et al. [Kar+20a] propose a weighted combination of ℓp norms as
a flexible measure across a variety of situations. The weights, α, β, γ, ζ as
shown below, allow practitioners to balance between sparsity of changes (i.e.,
through the ℓ0 norm), an elastic measure of distance (i.e., through the ℓ1, ℓ2
norms) (Dhu+18), and a maximum normalized change across all features (i.e.,
through the ℓ∞ norm):

dist(x; xF) = α||δ||0 + β||δ||1 + γ||δ||2 + ζ||δ||∞ (1.4)

where δ = [δ1, · · · , δD ]
T and δk : Xk × Xk → [0, 1] ∀ k ∈ [D]. This measure

accounts for the variability across heterogeneous features (see §1.3.5) by inde-
pendently normalizing the change in each dimension according to its spread.
Additional weights may also be used to relative emphasize changes in spe-
cific variables. Finally, other works aim to minimize dissimilarity on a graph
manifold (Poy+19), in terms of Euclidean distance in a learned feature space
(Paw+19; Jos+19), or using a Riemannian metric in a latent space (AHH17;
AHS20).

1.3.1.2 On cost

Similar to (Kar+20a), various works explore ℓp norms to measure cost of ac-
tions. Ramakrishnan et al. [RLA19] explore ℓ1, ℓ2 norm as well as constant
cost if specific actions are undertaken; Karimi et al. [KSV21; Kar+20b] mini-
mize the ℓ2 norm between xF and the action a assignment (i.e., ||θ||2); and Cui
et al. [Cui+15] explore combinations of ℓ0, ℓ1, ℓ2 norms over a user-specified
cost matrix. Encoding individual-dependent restrictions is critical, e.g., ob-
taining credit is more difficult for an foreign students compared to local
resident.

Beyond ℓp norms, the work of Ustun et al. [USL19] propose the total- and
maximum-log percentile shift measures, to automatically account for the dis-
tribution of points in the dataset, e.g.,

cost(a; xF) = max
k∈[D]

|Qk(x
F
k + θk)−Qk(x

F
k)| (1.5)
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where Qk(·) is the CDF of xk in the target population. This type of metric
naturally accounts for the relative difficulty of moving to unlikely (high or
low percentile) regions of the data distribution. For instance, going from a 50

to 55th percentile in school grades is simpler than going from 90 to 95th
percentile.

1.3.1.3 On the relation between dist and cost

In a world in which changing one variable does not affect others, one can
see a parallel between the counterfactual instance of (1.1), i.e., xCF = xF + δ,
and that of (1.2), i.e., xCF = xSCF(a; xF) = xF + θ. This mirroring form suggests
that definitions of dissimilarity between individuals (i.e., dist) and effort
expended by an individual (i.e., cost) may be used interchangeably. Follow-
ing (KSV21), however, we do not consider a general 1-1 mapping between
dist and cost. For instance, in a two-variable system with medication as
the parent of headache, an individual that consumes more than the rec-
ommended amount of medication may not recover from the headache, i.e.,
higher cost but smaller symptomatic distance relative to another individual
who consumed the correct amount. Furthermore, while dissimilarity is of-
ten considered to be symmetric (i.e., dist(xFA, xFB) = dist(xFB, xFA)), the ef-
fort needed to go from one profile to another need not satisfy symmetry,
e.g., spending money is easier than saving money (i.e., cost(a = do(X$ :=
xFA,$ − $500); xFA) ≤ cost(a = do(X$ := xFB,$ + $500); xFB). These example illus-
trate that the interdisciplinary community must continue to engage to define
the distinct notions of dist and cost, and such definitions cannot arise from
a technical perspective alone.

1.3.2 Model and counterfactual constraints

1.3.2.1 Model

A variety of fixed models have been explored in the literature for which re-
course is to be generated. As summarized in Table 1.1, we broadly divide
them in four categories: i) tree-based (TB); ii) kernel-based (KB); iii) differen-
tiable (DF); and iv) other (OT) types (e.g., generalized linear models, Naive
Bayes, k-Nearest Neighbors). While the literature on recourse has primarily
focused on binary classification settings, most formulations can easily be ex-
tended to multi-class classification or regression settings. Extensions to such
settings are straightforward, where the model constraint is replaced with
h(xCF) = k for a target class, or h(xCF) ∈ [a, b] for a desired regression interval,
respectively. Alternatively, soft predictions may be used in place of hard pre-
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dictions, where the goal may be, e.g., to increase the prediction gap between
the highest-predicted and second-highest-predicted class, i.e., Pred(xCF)i −
Pred(xCF)j where i = argmaxk∈K Pred(xCF)k, j = argmaxk∈K\i Pred(xCF)k. In
the end, the model constraint representing the change in prediction may be
arbitrarily non-linear, non-differentiable, and non-monotone (BSR20), which
may limit the applicability of solutions (c.f. §1.4).

1.3.2.2 Counterfactual

The counterfactual constraint depends on the type of recourse of-
fered. Whereas xCF = xF + δ in (1.1) is a linear constraint, computing
xCF = xSCF(a; xF) in (1.2) involves performing the three step abduction-action-
prediction process of Pearl et al. [PGJ16] and may thus be non-parametric
and arbitrary involved. A closed-form expression for deterministically
computing the counterfactual in additive noise models is presented in
(KSV21), and probabilistic derivations for more general SCMs are presented
in (Kar+20b).

1.3.3 Actionability and plausibility constraints

1.3.3.1 Plausibility

Existing literature has formalized plausibility constraint as one of three
categories: (i) domain-consistency; (ii) density-consistency; and (iii) proto-
typical-consistency. Whereas domain-consistency restricts the conterfactual
instance to the range of admissible values for the domain of features
(Kar+20a), density-consistency focuses on likely states in the (empirical) dis-
tribution of features (Lau+19; Jos+19; Paw+19; Kan+20b; Dhu+18; Dhu+19)
identifying instances close to the data manifold. A third class of plausibility
constraints selects counterfactual instances that are either directly present
in the dataset (Wex+19; Poy+19), or close to a prototypical example of the
dataset (AH19b; AH19a; VLK19; KU20; Lau+19).

1.3.3.2 Actionability (Feasibility)

The set of feasible actions, F (xF), is the set of interventions do({Xi := xFi +
θi}i∈I ) that the individual, xF, is able to perform. To determine F (xF), we
must identify the set of variables upon which interventions are possible, as
well as the pre-/post-conditions that the intervention must satisfy. The action-
ability of each variable falls into three categories (Las+17b; KSV21):

I. actionable (and mutable), e.g., bank balance;
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II. mutable but non-actionable, e.g., credit score;

III. immutable (and non-actionable), e.g., birthplace.

Intuitively, mutable but non-actionable variables are not directly actionable
by the individual, but may change as a consequence of a change to its causal
ancestors (e.g., regular debt payment).

Having identified the set of actionable variables, an intervention can
change the value of a variable unconditionally (e.g., bank balance can
increase or decrease), or conditionally to a specific value (KSV21) or in a
specific direction (USL19). Karimi et al. [KSV21] present the following
examples to show that the actionable feasibility of an intervention on Xi may
be contingent on any number of conditions:

i. pre-intervention value of the intervened variable (i.e., xFi ); e.g., an indi-
vidual’s age can only increase, i.e., [xSCF

age
≥ xF

age
];

ii. pre-intervention value of other variables (i.e., {xFj }j⊂[d]\i); e.g., an in-
dividual cannot apply for credit on a temporary visa, i.e., [xF

visa
=

PERMANENT] ≥ [xSCF
credit

= TRUE];

iii. post-intervention value of the intervened variable (i.e., xSCFi ); e.g., an
individual may undergo heart surgery (an additive intervention) only
if they won’t remiss due to sustained smoking habits, i.e., [xSCF

heart
̸=

REMISSION]

iv. post-intervention value of other variables (i.e., {xSCFj }j⊂[d]\i); e.g., an
individual may undergo heart surgery only after their blood pressure
(bp) is regularized due to medicinal intervention, i.e., [xSCF

bp
= O.K.] ≥

[xSCF
heart

= SURGERY]

All such feasibility conditions can easily be encoded as Boolean/logical
constraint into F (xF) and jointly solved for in the constrained optimization
formulations (1.1), (1.2). An important side-note to consider is that F (xF) is
not restricted by the SCM assumptions, but instead, by individual-/context-
dependent consideration that determine the form, feasibility, and scope of ac-
tions (KSV21).

1.3.3.3 On the relation between actionability & plausibility

While seemingly overlapping, actionability (i.e., F (xF)) and plausibility (i.e.,
P(X )) are two distinct concepts: whereas the former restrict actions to
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those that are possible to do, the latter require that the resulting counter-
factual instance be possibly true, believable, or realistic. Consider a Middle
Eastern PhD student who is denied a U.S. visa to attend a conference.
While it is quite likely for there to be favorably treated foreign students
from other countries with similar characteristics (plausible gender, field

of study, academic record, etc.), it is impossible for our student to
act on their birthplace for recourse (i.e., a plausible explanation but an
infeasible recommendation). Conversely, an individual may perform a
set of feasible actions that would put them in an implausible state (e.g.,
small p(xCF); not in dataset) where the model fails to classify with
high confidence. Thus, actionability and plausibility constraints may be
used in conjunction depending on the recourse setting they describe.

1.3.4 Diversity and sparsity constraints

1.3.4.1 Diversity

Diverse recourse is often sought in the presence of uncertainty, e.g., unknown
user preferences when defining dist and cost. Approaches seeking to gen-
erate diverse recourse generally fall in two categories: i) diversity through
multiple runs of the same formulation; or ii) diversity via explicitly append-
ing diversity constraints to prior formulations.

In the first camp, Wachter et al. [WMR17] show that different runs of
their gradient-based optimizer over a non-convex model (e.g., multilayer per-
ceptron) results in different solutions as a result of different random seeds.
Sharma et al. [SHG19] show that multiple evolved instances of the genetic-
based optimization approach can be used as diverse explanations, hence ben-
efiting from not requiring multiple re-runs of the optimizer. Downs et al.
[Dow+20], Mahajan et al. [MTS19], and Pawelczyk et al. [Paw+19] generate
diverse counterfactuals by passing multiple samples from a latent space that
is shared between factual and counterfactual instances through a decoder,
and filtering those instances that correctly flip the prediction.

In the second camp, Russell [Rus19] pursue a strategy whereby subsequent
runs of the optimizer would prevent changing features in the same manner as
prior explanations/recommendations. Karimi et al. [Kar+20a] continue in this
direction and suggest that subsequent recourse should not fall within an ℓp-
ball surrounding any of the earlier explanations/recommendations. Mothilal
et al. [MST20] and Cheng et al. [CMQ20] present a differentiable constraint
that maximizes diversity among generated explanations by maximizing the
determinant of a (kernel) matrix of the generated counterfactuals.
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1.3.4.2 Sparsity

It is often argued that sparser solutions are desirable as they emphasize fewer
changes (in explanations) or fewer variables to act upon (in recommenda-
tions) and are thus more interpretable for the individual (Mil56). While this is
not generally accepted (VLK19; PBK20), one can formulate this requirement
as an additional constraint, whereby, e.g., ||δ||0 ≤ s, or ||θ||0 ≤ s. Formulat-
ing sparsity as an additional (hard) constraint, rather than optimizing for it
in the objective, grants the flexibility to optimize for a different object while
ensuring that a solution would be sparse.

1.3.5 Datatypes and encoding

A common theme in consequential decision-making settings is the use of
datatypes that refer to real-world attributes of individuals. As a result,
datasets are often tabular !, comprising of heterogeneous features, with a
mix of numeric (real, integer), binary, categorical, or ordinal variables. Most
commonly, the Adult (Adu96), Australian Credit (DG17), German Credit
(BL13), GiveMeCredit (YL09), COMPAS (Lar+16a), HELOC (HGB), etc. are
used, which are highly heterogeneous.

Different feature types obey different statistical properties, e.g., the integer-
based heart rate, real-valued BMI, categorical blood type, and ordinal
age group differ drastically in their range. Thus, heterogeneous data re-
quires special handling in order to preserve their semantics. A common
approach is to encode each variable according to a predetermined strategy,
which preprocesses the data before model training and consequently dur-
ing recourse generation (for either recourse type, i.e., consequential recom-
mendations or contrastive explanations). For instance, categorical and or-
dinal features may be encoded using one-hot encoding and thermometer
encoding, respectively. To preserve the semantics of each variable during
recourse generation, we must also ensure that the generated explanation-
s/recommendations result in counterfactual instances that also satisfy the en-
coding constraints. For instance, Boolean and linear constraints of the form
∑j xi,j = 1 ∀ xi,j ∈ {0, 1} are used to ensure that multiple categories are
be simultaneously active, and thermometer-encoded ordinal variables are re-
quired to satisfy xi,j ≥ xi,j+1 ∀ xi,j ∈ {0, 1}. For a detailed overview, we refer
to the work of Nazabal et al. [Naz+20].

In addition to ! tabular data, one may require contrastive explanations
for � image-based or � text-based datasets, as summarized in Table 1.1.
For image-based datasets, the algorithm may optionally operate on the raw
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data, or on super-pixel or other forms of extracted features, e.g., a hidden
representation in a neural network. Text-based datasets are also commonly
encoded as vectors representing GloVe (PSM14) or bag-of-words embeddings
(RSG16).

1.3.6 Related formulations

The problem formulation for recourse generation, and specifically that of
contrastive explanations, (1.1), is broadly related to several other problems
in data mining and machine learning. For instance, cost-minimizing inverse
classification problem (Lau+17; ACH10; LLS18; Las+17b; Las+17a; MK00), aim
to identify the “minimum required change to a case in order to reclassify
it as a member of a different preferred class?” (MK00). Actionable knowledge
extraction is employed in data mining to suggest “behaviors which render a
state of an instance into a preferred state” (Du+11) according to a classifier
(CZ06; CLZ07; Cao+09; KR13; Yan+06). Finally, adversarial perturbations are
small imperceptible changes to the input of a classifier that would alter the
output prediction to a false and highly confident region (Pap+17; MD+17;
CW17; MDFF16; Pap+16; NYC15; GSS14; Sze+14). An additional parallel
shared by the above methods is in their assumption of a fixed underlying
model. Extensions of the above, in which model designers anticipate and
aim to prevent mailicious behavior, exist in the strategic classification (Har+16;
Don+18; Mil+19a; MMH20; KR20; Liu+20; HIV19; LR21) and adversarial ro-
bustness (CRK19; Car+19; FFF15; Xie+19) literature. For recent expositions on
the similarities and contrasts between these methods, we refer to (ELR21;
Paw+21a; Fre21).

Whereas there exists strong parallels in their formulations, the differences
arise in their intended use-cases and guarantees for the stakeholders involved.
For example, as opposed to recourse which aims to build trust with affected
individuals, the primary use-case cited in the actionable knowledge extrac-
tion literature is to deliver cost-effective actions to maximize profit or other
business objectives. Furthermore, whereas a contrastive explanation aims to
inform an individual about ways in which their situation would have led to
a desirable outcome, an adversarial perturbation aims to fool the human by
being imperceptable (e.g., by leaving the data distribution). In a sense, imper-
ceptability is the anti-thesis of explainability and trust. Finally, building on
the presentation in §1.2, offering consequential recommendations relies on a
causal modelling of the world, which is largely ignored by other approaches.
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1.4 solution

By definition, recourse is offered when an individual is presented with
contrastive explanations and consequential recommendations, which can
be obtained by solving (1.1) and (1.2), respectively. Notably, the objective
that is to be minimized (i.e., dist or cost) may be non-linear, non-convex,
or non-differentiable. Furthermore, without restricting the classifier family,
the model constraint also need not be linear, monotonic, or convex. Finally,
based on individual-/context-specific restrictions, the problem setting may
require optimizing over a constrained set of plausible instances, P(X ), or
feasible actions, F (xF).4 Thus, a distance/cost-agnostic and model-agnostic
solution with support for plausibility, feasibility, sparsity, and diversity
constraints over heterogeneous datasets will in general require complex
approaches, trading-off various desirable properties in the process. Below,
we discuss the importance of these properties, and provide an overview of
utilized solutions.

1.4.1 Properties

We remark that the optimizer and the resulting solutions should ideally sat-
isfy some desirable properties, as detailed below. In practice, methods typi-
cally trade-off optimal guarantee δ∗, perfect coverage Ω∗, or efficient runtime
τ∗, and may otherwise require prohibitive access to the underlying data or
predictive model.

1.4.1.1 Optimality

Identified counterfactual instances should ideally be proximal to the factual in-
stance, corresponding to a small change to the individual’s situation. When
optimizing for minimal dist and cost in (1.1) and (1.2), the objective func-
tions and constraints determine the existence and multiplicity of recourse. For
factual instance xF, there may exist zero, one, or multiple5 optimal solutions
and an ideal optimizer should thus identify (at least) one solution (explana-
tion or recommendation, respectively) if one existed, or terminate and return
N/A otherwise.

4Optimization terminology refers to both of these constraint sets as feasibility sets.
5The existence of multiple equally costly recourse actions is commonly referred to as the

Rashoman effect (Bre+01).
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1.4.1.2 Perfect coverage

Coverage is defined as the number of individuals for which the algorithm can
identify a plausible counterfactual instance (through either recourse type), if
at least one solution existed (Kar+20a). Communicating the domain of appli-
cability to users is critical for building trust (WMR17; MRW19), and ideally
the algorithm offers recourse to all individuals (i.e., perfect coverage).

1.4.1.3 Efficient runtime

As explanations/recommendations are likely to be offered in conversational
settings (SF18; Hil90; Mil19; HP+18; Wel17), it is desirable to generate re-
course in near-real-time. Despite the general under-reporting of runtime com-
plexities in the literature, in Table 1.1 we highlight those algorithms that re-
port efficient wall-clock runtimes that may enable interaction between the
algorithm and individual.

1.4.1.4 Access

Different optimization approaches may require various levels of access to the
underlying dataset or model. Access to the model may involve query access
(where only the label is returned), gradient access (where the gradient of the
output with respect to the input is requested), or class probabilities access (from
which one can infer the confidence of the prediction), or complete white-box
access (where all the model params are known).

Naturally, there are practical implications to how much access is permis-
sible in each setting, which further restricts the choice of tools. Consider an
organization that seeks to generate recourse for their clients. Unless these
algorithms are ran in-house by said organization, it is unlikely that the or-
ganization would hand over training data, model parameters, or even a non-
rate-limited API of their models to a third-party to generate recourse.

1.4.2 Tools

We consider the richly explored field of optimization (NW06; BBV04; SNW12)
out of scope of this work and suffice to briefly review the tools used specifi-
cally for recourse generation, highlighting their domain of applicability, and
relegating technical details to appropriate references. Not only is solving (1.1)
and (1.2) difficult in general settings (Las+17b), it has even been shown to be
NP-complete or NP-hard in restricted settings, e.g., solving for integer-based
variables (AH19b), solving for additive tree models (Cui+15; Tol+17; Ate+20)
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or neural networks (Kat+17), and solving for quadratic objectives and con-
straints (AH19b; PB17; BBV04). Thus, except for exhaustive search over a
potentially uncountable set of solutions, most works pursue approximate so-
lutions in restricted settings, trading-off the desirable properties above (see
Table 1.1). Solutions can be broadly categorized as gradient-based-optimization,
model-based, search-based, verification-based, and heuristics-based.6

Under differentiability of the objective and constraints, gradient-
optimization-based solutions such as FISTA (BT09) are employed (Dhu+18;
Dhu+19; VLK19) to find globally optimal solutions under convex Lagrangian,
and first-order methods such as (L-)BFGS or projected gradient-descent may
be used to identify local optima otherwise. Relatedly, rather than solving
recourse for each individual independently, some works pursue a model-based
approach, whereby a mapping from factual to counterfactual instances is
learned through gradient optimization (Paw+19; MTS19). These methods
enjoy efficient runtimes at the cost of coverage loss and poor handling of
heterogeneous data.

For non-differentiable settings, branch-and-bound-based (LW66) ap-
proaches split the search domain into smaller regions within which a solution
may be easier to find. Under linearity of the objectives and constraints, inte-
ger linear programming (ILP) algorithms may be used when datatypes are
discrete (Cui+15; USL19), and mixed-integer linear programming (MILP) ex-
tensions are utilized when some variables are not discrete (Rus19; Kan+20a).
(M)ILP formualations are solved using powerful off-the-shelf solvers such
as CPLEX (Cpl09) and Gurobi (OPT14). One may also use a combination
of iterative binary search and verification tools to obtain solutions to (1.1)
and (1.2). Here, the problem is reformulated as a constrained satisfaction
problem, where the constraint corresponding to the objective (dist or
cost) is updated in each iteration to reflect the bounds in which a solution
is obtainable (Kar+20a; KSV21; Moh+21). As with (M)ILP, this approach
benefits from the existence of off-the-shelf solvers such as Z3 (DMB08),
CVC4 (Bar+11), and pySMT (GM15). The problem may also be cast and
solved as program synthesis (RLA19; DTLP22) or answer-set programming
(Ber20). The methods above typically offer optimality and perfect coverage
while relying on white-box access to the fixed model parameters.

A number of heuristics-based approaches are also explored, e.g, finding the
shortest path (Dijkstra’s algorithm (Cor+09)) between xF and potential xCFs
on an empirical graph where edges are placed between similar instances (ac-
cording to, e.g., Gaussian kernel) (Poy+19). Finally, genetic-based approaches
(Whi94; ZT98) find solutions over different evolutions of candidate solutions

6Alternative categorization of recourse generating methods can be found here (Red+21).
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according to various heuristics (Gui+18; SHG19; Dan+20; KU20; BADS20),
and benefit from being model-/datatype-/norm-agnostic via only requiring
query access to the model.

1.5 thesis outline

The following chapters present contributions on flexible (Chapter 2) and
scalable (Chapter 3) counterfactual explanations, causally consistent recourse
(Chapter 5), followed by fair (Chapter 5) and robust (Chapter 6) extensions
thereof. Finally, we conclude with a summary of contributions and prospec-
tive research directions (Chapter 7).
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2M O D E L - A G N O S T I C C O U N T E R FA C T U A L E X P L A N AT I O N S

Chapter Abstract

Predictive models are being increasingly used to support consequential
decision making at the individual level in contexts such as pretrial bail
and loan approval. As a result, there is increasing social and legal pressure
to provide explanations that help the affected individuals not only to
understand why a prediction was output, but also how to act to obtain a
desired outcome. To this end, several works have proposed optimization-
based methods to generate nearest counterfactual explanations. However, these
methods are often restricted to a particular subset of models (e.g., decision
trees or linear models) and differentiable distance functions. In contrast, we
build on standard theory and tools from formal verification and propose
a novel algorithm that solves a sequence of satisfiability problems, where
both the distance function (objective) and predictive model (constraints) are
represented as logic formulae. As shown by our experiments on real-world
data, our algorithm is: i) model-agnostic ({non-}linear, {non-}differentiable,
{non-}convex); ii) data-type-agnostic (heterogeneous features); iii) distance-
agnostic (ℓ0, ℓ1, ℓ∞, and combinations thereof); iv) able to generate plausible
and diverse counterfactuals for any sample (i.e., 100% coverage); and v) at
provably optimal distances.

This chapter is based on the paper “Model-Agnostic Counterfactual Explanations for Conse-
quential Decisions,” Karimi, Barthe, Balle, Valera, AISTATS (⋆ Á), 2019. (Kar+20a).
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Figure 2.1: Architecture overview for Model-Agnostic Counterfactual Explanations
(MACE)

2.1 introduction

Data-driven predictive models are ubiquitously being used to support or
even substitute humans in decision making in a wide variety of real-world
contexts including, e.g., selection process for hiring, loan approval, or pre-
trial bail. However, as algorithmic methods are increasingly used to make
consequential decisions at the individual-level – i.e., decisions that may have
significant consequences for the individuals they decide about – the debate
about their lack of transparency and explainability becomes more heated.
To make things worse, while the verdict is still out as to what constitutes a
good explanation (DVK17; Fre14; Kod94; Mur+19; Lip18; Rud19; Rüp06), there
already exists clearly defined legal requirements for explanations in the con-
text of consequential decision making. For example, the EU General Data Pro-
tection Regulation (“GDPR”) grants individuals the right-to-explanation (VB;
WMF17), via requiring institutions to provide explanations to individuals
that are subject to their (semi-)automated decision making systems.

A growing number of works on interpretable machine learning have re-
cently focused on the definitions of, and mechanisms for providing, good
explanations for predictor-based decision making systems. In the context
of consequential decision making, it is widely agreed that a good explana-
tion should provide answers to the following two questions (DVK17; Gun19;
WMR17): (i) “why the model outputs a certain prediction for a given individual?”;
and, (ii) “what features describing the individual would need to change to achieve
the desired output?”

Here, we focus on answering the second question, or equivalently, on gener-
ating counterfactual explanations. Of specific importance is the problem of find-
ing the nearest counterfactual explanation – i.e., identifying the set of features re-
sulting in the desired prediction while remaining at minimum distance from
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the original set of features describing the individual. Existing approaches
tackling this problem suffer from various limitations: they either propose so-
lutions that are tailored to particular models, e.g., decision trees (Tol+17);
rely on classical optimization tools, thus being restricted to convex predic-
tive models and distances (Rus19; USL19); or, solve a relaxed version of the
original optimization problem using gradient-based approaches, thus being
restricted to differentiable models and distance functions (WMR17) and lack-
ing optimality guarantees. Additionally, it is important to consider that in the
context of consequential decision-making, the features describing individu-
als are semantically meaningful and heterogeneous (i.e., mixed continuous
& discrete); and can either be acted upon (e.g., bank account balance), or
immutable and should be safeguarded from change (e.g., sex, race). A good
explanation should account for these semantics (i.e., be plausible1) to be use-
ful for the individual, a requirement that most existing approaches fail to
address.

our contributions In this chapter, we propose a model-agnostic ap-
proach to generate nearest counterfactual explanations, namely MACE,
under any given distance function (or convex combinations thereof); while,
at the same time, easily supporting additional plausibility constraints.
Moreover, our approach readily encodes natural notions of distance for
heterogeneous feature spaces, which are common in consequential decision
making systems (e.g., loan approval) and consist of mixed numerical (e.g.,
age and income) and nominal features (e.g., gender and education level).
To this end, in MACE we map the nearest counterfactual problem into a
sequence of satisfiability (SAT) problems, by expressing both the predictive
model and the distance function (as well as the plausibility and diversity
constraints) as logic formulae. Each of these satisfiability problems aims
to verify if there exists a counterfactual explanation at a distance smaller
than a given threshold, and can be solved using standard SMT (satisfiability
modulo theories) solvers. Moreover, we rely on a binary search strategy on
the distance threshold to find an approximation to the nearest (plausible)
counterfactual with an arbitrary degree of accuracy, and a lower bound on
distance such that no counterfactual provably exists at a smaller distance.
Finally, once nearest counterfactuals are found, diversity constraints may be

1We emphasize that while our formulation for generating counterfactuals seems similar
to that of adversarial perturbations (image domain), the goals are different: while our goal
is to provide actionable and plausible counterfactuals, the goal of adversarial examples is to
be imperceptible to humans and hence plausible in the human-perception space, but not in
the data space.
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added to the satisfiability problems to find alternative counterfactuals. The
overall architecture of MACE is illustrated in Figure 2.1.

Our experimental validation on real-world datasets show that MACE not
only achieves 100% coverage by design, but also generates explanations that
are significantly closer than previous approaches (Tol+17; USL19). We also
provide qualitative examples showcasing the flexibility of our approach to
generate actionable counterfactuals by extending our plausibility constraints
to restrict changes to a subset of (non-immutable) features. The Python im-
plementation of our algorithms and the datasets used in our experiments are
available at https://github.com/amirhk/mace.

2.2 first-order predicate logic

In this section, we briefly recall basic concepts of first-order predicate logic,
which MACE builds upon. We distinguish between function symbols (for in-
stance, addition + and multiplication ×) and predicate symbols (for instance,
equality = or lesser than <). Function symbols are used to build expressions,
and predicate symbols are used to build atomic formulae. Examples of valid
expressions are x, x + 2, (−x) + 2 and (x + 2)× (y + 3). Examples of valid
atomic formulae are e < e′, e ≤ e′ or e = e′. A (quantifier-free) formula
is a Boolean combination of atomic formulae. That is, a formula is built
from atomic formulae using conjunction ∧, disjunction ∨, and negation ¬.
Formulae have an interpretation over their intended domain. For instance,
a formula about real-valued expressions has a natural interpretation as a
subset of Rn, where n denotes the number of variables that appear in the
formula. The interpretation is obtained by mapping every variable into a
value, e.g., a real number. For example, (2, 1) belongs in the interpretation of
(x + 2)× (y + 3) ≤ x× y + 16 since the mapping x 7→ 2, y 7→ 1 assigns true
because 16 ≤ 18. We say that a formula is satisfiable if its interpretation as a
subset of Rn is non-empty.

The satisfiability problem consists in checking whether or not a formula is
satisfiable. Satisfiability problems can be verified automatically using satisfi-
ability modulo theories (SMT) solvers like Z3 (MB08) or CVC4 (Bar+11). We
refer to (KS08) for an exposition of the basic algorithms used by SMT solvers.
For the purpose of the next sections, it suffices to assume a given satisfiability
oracle SAT. For our experiments, we use off-the-self SMT solvers to realize
the oracle. We use SMT solvers as black-box, but it is interesting to note
that our formulae fall in the linear fragment of the theory of reals (i.e. all
formulae that only contain expressions of degree 1 when viewed as multi-
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2.3 counterfactual spaces for predictive models

variate polynomials over variables), which can be decided efficiently using
the Fourier-Motzkin algorithm.

2.3 counterfactual spaces for predictive models

This section defines a logical representation of counterfactual explanations
for predictive models, which are functions mapping input feature vectors
x ∈ X into decisions y ∈ {0, 1}. 2 Given a predictive model h : X → {0, 1},
we can define the set of counterfactual explanations for a (factual) input xF ∈ X
as CFh(xF) = {x ∈ X | h(x) ̸= h(xF)}. In words, CFh(xF) contains all the
inputs x for which the model h returns a prediction different from h(xF). We
also remark that CFh(xF) is the set of preimages of 1− h(xF) under h.

For a broad class of predictive models, it is possible to construct counter-
factual formulae capturing membership in CFh. We do so by computing the
characteristic formula ϕh of the model. For a predictive model h : X → {0, 1},
and pair of input and output values x and y, the characteristic formula ϕh ver-
ifies that ϕh(x, y) is valid if and only if h(x) = y. Thus, given a factual input
xF with h(xF) = yF and ϕh we define the counterfactual formula as

ϕCFh(xF)(x) = ϕh(x, 1− yF) (2.1)

Intuitively, the formula on the right hand side of (2.1) says that “x is a coun-
terfactual for xF if either h(xF) = 0 and h(x) = 1, or h(xF) = 1 and h(x) = 0”.
It is thus clear from the definition that an input x satisfies ϕCFh(xF) if and only
if x ∈ CFh(xF). Moreover, (2.1) shows that, to construct counterfactual formu-
lae ϕCFh(xF), we only require the characteristic formulae of the corresponding
predictive models, ϕh, and the value of yF. To obtain such characteristic for-
mulae we assume that predictive models are represented by programs in a
core programming language with assignments, conditionals, sequential com-
position, syntactically bounded loops and return statements. This allows us
to use techniques from the program verification literature. Specifically, we
use the so-called predicate transformers (Dij68; Hoa69; Flo93; FS01). The de-
scription of the general procedure is provided in Appendix A.1. For ease of
exposition, we illustrate the construction of characteristic formulae through
two examples, a decision tree and a multilayer perceptron.

As a first example, consider the decision tree from Figure 2.2a which takes
as input (x1, x2, x3) ∈ {0, 1}2 ×R and returns a binary output in {0, 1}. Fig-
ure 2.2b provides the programming language description of this decision tree.
To construct a formula representing the function h(x) = y computed by this

2While here we assume binary predictor models, i.e., classifiers, our approach generalizes
to regression problems where y ∈ R and more generally any other output domain.
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x3 > 0
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y = 1

no
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(a) Graphical representation

if x1 == 1

y = 0 if x3 > 0 else 1
else

y = 0 if x2 == 1 else 1
return y

(b) Program (in Python)

ϕh(x, y) = (x1 = 1∧ x3 > 0∧ y = 0)

∨ (x1 = 1∧ x3 ≤ 0∧ y = 1)

∨ (x1 = 0∧ x2 = 1∧ y = 0)

∨ (x1 = 0∧ x2 = 0∧ y = 1)

(c) Characteristic formula

Figure 2.2: Decision tree: model, program and characteristic formula.

tree we first build a clause for each leaf in the tree by taking the conjunction
of all the conditions encountered in the path from the root to the leaf. For ex-
ample, the clause corresponding to the leftmost leaf on the tree in Figure 2.2a
is (x1 = 1 ∧ x3 > 0 ∧ y = 0). Once all these clauses are constructed, the char-
acteristic formula ϕh(x, y) corresponding to the full tree is obtained by taking
the conjunction of all said clauses, as shown in Figure 2.2c.

As a second example we consider a feed-forward neural network with
one hidden layer followed by a ReLU activation function, as depicted in Fig-
ure 2.3a. This model implements a function h : R3 → {0, 1}, where the binary
decision is taken by thresholding the value of the last hidden node. The pro-
gramming language representation of this model is given in Figure 2.3b. In
this case, the characteristic formula predicates over inputs x, output y and
program variables zi and z̃i for each hidden node i representing the values
on that node before and after the non-linear ReLU transformation, respec-
tively. The characteristic formula is a conjunction, and each conjunct corre-
sponds to one instruction of the program. For example, for the leftmost hid-
den node in the first layer of the network in Figure 2.3a the variable z1 is
associated with the clause (z1 = x1 − x2); and the variable z̃1 corresponds
to the value of z1 after the ReLU, which can be written as the disjunction
(z̃1 = z1 ∧ z1 ≥ 0) ∨ (z̃1 = 0 ∧ z1 < 0). For the output node – in this case, z3
– we introduce a pair of clauses representing the thresholding operation, i.e.
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(a) Graphical representation

z1 = x1 - x2
z2 = 2x1 - x3
z̃1 = z1 if z1 >= 0 else 0

z̃2 = z2 if z2 >= 0 else 0

z3 = -z̃1 + z̃2
y = 1 if z3 >= 0 else 0

return y

(b) Program (in Python)

ϕh(x, y) = (z1 = x1 − x2)

∧ (z2 = 2x1 − x3)

∧ ((z̃1 = z1 ∧ z1 ≥ 0) ∨ (z̃1 = 0∧ z1 < 0))

∧ ((z̃2 = z2 ∧ z2 ≥ 0) ∨ (z̃2 = 0∧ z2 < 0))

∧ (z3 = −z̃1 + z̃2)

∧ ((z3 ≥ 0∧ y = 1) ∨ (z3 < 0∧ y = 0))
(c) Characteristic formula

Figure 2.3: Multilayer perceptron: model, program and characteristic formula

(y = 1 ∧ z3 ≥ 0) ∨ (y = 0 ∧ z3 < 0). Taking the conjunction of the formulas
for each node we obtain the characteristic formula in Figure 2.3c.

2.4 finding the nearest counterfactual

Based on the counterfactual space CFh(xF) defined in the previous section,
we would like to produce counterfactual explanations for the output of a
model h on a given input xF by trying to find a nearest counterfactual, which
is defined as:

x∗CF ∈ argmin
x∈CFh(xF)

d(x, xF) . (2.2)

For the time being, we assume that a notion of distance between instances, d,
is given. For convenience, and without loss of generality, we also assume that
d takes values in the interval [0, 1].

2.4.1 Main algorithm

Our goal now is to leverage the representation of CFh(xF) in terms of a logic
formula to solve (2.2). To this end, we map the optimization problem in
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(2.2) into a sequence of satisfiability problems, which can be verified or re-
futed by standard SMT solvers. We do so by first converting the expression
d(x, xF) ≤ δ, where δ ∈ [0, 1], into a logic formula ϕd,xF (x, δ), which is valid
if and only if d(x, xF) ≤ δ. We assume here that the distance d function is
expressed by a program in the same language that we used to represent the
models in Section 2.3. In particular, we can leverage the procedure detailed in
Appendix A.1 to automatically construct ϕd,xF . Then, both the counterfactual
formula ϕCFh(xF)(x) and the distance formula ϕd,xF (x, δ) are combined into
the logic formula:

ϕxF ,δ(x) = ϕCFh(xF)(x) ∧ ϕd,xF (x, δ) ,

which is satisfiable if and only if there exists a counterfactual x ∈ CFh(xF)
such that d(x, xF) ≤ δ. To check whether the above formula is satisfiable we
use the satisfiability oracle SAT(ψ(x)) which returns either an instance x such
that ψ(x) is valid, or “unsatisfiable” if no such x exists.

Note that, while the oracle SAT allows us to verify if there exist counter-
factual explanations at distance smaller or equal than a given threshold δ,
solving optimization (2.2) requires finding a nearest counterfactual. To do so,
we apply a binary search strategy on the distance threshold δ ∈ [0, 1] that
allows us to find approximately nearest counterfactuals with a pre-specified
degree of accuracy. This is implemented in Algorithm 1, which for an accu-
racy parameter ϵ > 0 makes at most O(log(1/ϵ)) calls to SAT and returns
a counterfactual xCFϵ ∈ CFh(xF) such that d(xCFϵ , xF) ≤ d(x∗CF, xF) + ϵ, where
x∗CF is some solution of the optimization problem in (2.2). This mild depen-
dence on the accuracy ϵ allows Algorithm 1 to trade-off finding arbitrarily
accurate solutions of (2.2) with the number of calls made to the satisfiability
oracle. Note that Algorithm 1 may also account for potential plausibility or
diversity constraints (refer to next section for further details).

We remark here our approach to find nearest counterfactuals is agnostic
to the details of the model and distance being used; the only requirement is
that they must be expressable in a fairly general programming language. As
a consequence, we can handle a wide variety of predictive models, including
both differentiable – such as, logisitic regression and multilayer perceptron
– and non-differentiable predictive models – e.g., decision trees and random
forest– as well as a wide variety of distance functions (refer to next section for
further details). Moreover, the bound δmin returned by Algorithm 1 provides
a certificate that any solution x∗CF to (2.2) must satisfy d(x∗CF, xF) > δmin.
This is because whenever SAT(ψ(x)) returns “unsatisfiable” it does so by
internally constructing a proof that the formula ψ(x) is not valid.
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Algorithm 1: Binary Search for Nearest Counterfactuals with Satisfia-
bility Oracle

Input: Factual xF, counterfactual formula ϕCFh(xF), distance formula
ϕd,xF , constraints formula ϕg,xF , accuracy ϵ

Output: Counterfactual xCFϵ , distance δmax = d(xCFϵ , xF), lower bound
δmin on (2.2)

Let δmin ← 0 and δmax ← 1
while δmax − δmin > ϵ do

Let δ← δmin+δmax
2

Let ϕxF ,δ(x)← ϕCFh(xF)(x) ∧ ϕd,xF (x, δ) ∧ ϕg,xF

Let x← SAT(ϕxF ,δ)
if x is “unsatisfiable” then

Let δmin ← δ
else

Let xCFϵ ← x and δmax ← δ

return xCFϵ , δmin, δmax

2.4.2 Distance, Plausibility, and Diversity

Next we discuss additional criteria in the form of logic clauses that guide the
satisfiability problem towards generating a counterfactual explanation with
desired properties.

distance We first discuss several forms for the distance function
d(xF, xCFϵ ) that can be used to define the notion of nearest counterfactual. To
this end, we first remark that in consequential decision making the input
feature space X = X1 × · · · × XJ is often heterogeneous – for example,
gender is categorical, education level is ordinal, and income is a numerical
variable. We define an appropriate distance metric for every kind of variable
in the input feature space of the model as:

δj(xj, x̂j) =


|xj − x̂j|/Rj if xj is numerical

I[xj ̸= x̂j] if xj is categorical

|xj − x̂j|/Rj if xj is ordinal

,

where Rj corresponds to the range of the feature xj and is used to normalize
the distances for all input features, such that δj : Xj × Xj → [0, 1] for all
j, independently on the feature type. By defining the distance vector δ =
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Table 2.1: Comparison of approaches for generating counterfactual explanations,
based on the supported model types, data types (heterogenous, numeric, binary),
distance types, plausibility constraints (actionability, data type/range consistency),
and optimal distance guarantees.

Approach Models Data types Distances Plaus. Opt. Dist.

Proposed (MACE) tree, forest, lr, mlp het. ℓp ∀ p ✓ ✓

Minimum Observable (MO) - het. ℓp ∀ p ✓ x

Feature Tweaking (FT) tree, forest het. ℓp ∀ p x x

Actionable Recourse (AR) lr num., bin. ℓ1, ℓ∞ x6 x

(δ1, · · · , δJ) (being J the total number of input features), one can now write
the distance between instances as:

d(xF, xCFϵ ) = α||δ||0 + β||δ||1 + γ||δ||∞ , (2.3)

where || · ||p is the p-norm of a vector, and α, β, γ ≥ 0 such that3 (α + β)/J +
γ = 1. Intuitively, 0-norm is used to restrict the number of features that
changes between the initial instance xF and the generated counterfactual xCFϵ ;
the 1-norm is used to restrict the average change distance between xF and
xCFϵ ; and ∞-norm is used to restrict maximum change across features. Any
distance of this type can easily be expressed as a program.

plausibility Up to this point, we have only considered minimum dis-
tance as the only requirement for generating a counterfactual. However, this
might result in unrealistic counterfactuals, such as e.g., decrease the age or
change the gender of a loan applicant. To avoid unrealistic counterfactuals,
one may introduce additional plausibility constraints in the optimization prob-
lem in Eq. (2.2). This is equivalent to adding a conjunction in the constraint
formula ϕg,xF in Algorithm 1 that accounts for any additional plausibility
formulae ϕp, which ensure that: i) each feature in the counterfactual should
be data-type and data-range consistent with the training data; and ii) only
actionable features (USL19) are changed in the resulting counterfactual.

First, since here we are working with heterogeneous feature spaces, we
require all the features in the counterfactual to be consistent in both the data-
types (categorical, ordinal, etc.) and the data-ranges with the training data. In
particular, if a categorical (ordinal) feature is one-hot (thermometer) encoded
to be used as input to the predictive model, e.g., a logistic regression classi-
fier, we make sure that the generated counterfactual provides a valid one-hot

3Constraints on the distance hyperparameters ensure that the overall distance
d(xF, xCFϵ ) ∈ [0, 1]. To this end, since max || · ||0 = max || · ||1 = J, max || · ||∞ = 1, the hy-
perparameters must satisfy (α + β)/J + γ = 1.
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Table 2.2: Coverage Ω computed on N = 500 factual samples. For comparison,
ΩMACE = ΩMO = 100% always, by definition and by design, respectively. Cells
are shaded when tests are not supported. Higher % is better.

Adult Credit COMPAS

ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞

tree PFT 0% 0% 0% 68% 68% 68% 74% 74% 74%
forest PFT 0% 0% 0% 99% 99% 99% 100% 100% 100%
lr AR 18% 0.4% 100% 100% 100% 100%

vector (thermometer) for such feature. Likewise, for any numerical feature
we ensure that its value in the counterfactual falls into observed range in the
original data used to train the predictive model.

Moreover, to account for a non-actionable/immutable feature xj, i.e., a fea-
ture whose value in the counterfactual explanation should match its initial
value, we set ϕp to be (xj = x̂j). Similarly, we account for variables that only
allow for increasing values by setting ϕp = (xj ≥ x̂j).

diversity Finally, one might be interested in generating a (small) set of
diverse counterfactual explanations for the same instance xF. To this end, we
iteratively call Algorithm 1 with a constraints formula ϕv that includes diver-
sity clauses to ensure that the newly generated explanation is substantially
different from all the previous ones. We can encode diversity by forcing that
the distance between every pair of counterfactual explanations is greater than
a given value. For example, we can take4 ϕv =

∧
i
(∨

j∈J(xj ̸= x̂i
ϵ,j)
)

to restrict
repetitive counterfactuals by enforcing subsequent counterfactuals to have
0-norm distance at least 1 from all previous counterfactuals.

2.5 experiments

In this section, we empirically demonstrate the main properties of MACE
compared to existing approaches.

datasets We evaluate MACE at generating counterfactual explanations
on three real-world datasets in the context of loan approval (Adult (Adu96)
and Credit (YL09) datasets) and pretrial bail (COMPAS dataset (Lar+16a)).
All the three datasets present heterogeneous input spaces.

baselines We compare the performance of MACE at generating the
nearest counterfactual explanations with: the Minimum Observable (MO)

4x̂i
ϵ,j is the j-th dimensions of the i-th counterfactual.
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Table 2.3: Percentage of improvement in distances, computed as 100 ∗ E[1 −
δMACE/δOther]. N = ΩMACE ∩ΩOther factual samples. Cells are shaded when tests
are not supported. The higher the %, the better the improvement.

Adult Credit COMPAS

ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞

tree

MACE (ϵ = 10−3) vs MO 47% 80% 70% 67% 66% 47% 1% 5% 5%

MACE (ϵ = 10−5) vs MO 47% 81% 72% 67% 96% 94% 1% 5% 5%

MACE (ϵ = 10−3) vs PFT 53% 87% 85% 14% 56% 54%

MACE (ϵ = 10−5) vs PFT 53% 97% 96% 15% 55% 54%

forest

MACE (ϵ = 10−3) vs MO 51% 81% 69% 68% 61% 38% 1% 6% 6%

MACE (ϵ = 10−5) vs MO 51% 82% 71% 68% 97% 96% 1% 6% 6%

MACE (ϵ = 10−3) vs PFT 53% 84% 81% 4% 28% 27%

MACE (ϵ = 10−5) vs PFT 53% 96% 96% 4% 28% 27%

lr

MACE (ϵ = 10−3) vs MO 62% 92% 86% 80% 82% 80% 3% 8% 6%

MACE (ϵ = 10−5) vs MO 62% 93% 88% 80% 82% 81% 3% 6% 6%

MACE (ϵ = 10−3) vs AR 3% 89% 39% 67% 10% 38%

MACE (ϵ = 10−5) vs AR 5% 91% 42% 71% 10% 38%

mlp
MACE (ϵ = 10−3) vs MO 60% 92% 91% 77% 85% 91% 1% 3% 3%

MACE (ϵ = 10−5) vs MO 60% 93% 93% 77% 96% 96% 1% 3% 3%

approach (Wex+19), which searches in the dataset for the closest sample
that flips the prediction; the Feature Tweaking (FT) approach (Tol+17), which
searches for the nearest counterfactual lying close to the decision boundary
of a Random Forest; and the Actionable Recourse (AR) (USL19), which solves
a mixed integer linear program to obtain counterfactual explanations for
Linear Regression models. Table 2.1 summarizes the main properties of all
the considered approaches to generate counterfactuals.

metrics To assess and compare the performance of the different ap-
proaches, we recall the criteria of good explanations for consequential
decisions: i) the returned counterfactual should be as near as possible to the
factual sample corresponding to the individual’s features; ii) the returned
counterfactual must be plausible (refer to Section 2.4.2). Hence, we quan-
titatively compare the performance of MACE with the above approaches
in terms of i) the normalized distance δ; and ii) coverage Ω indicating the
percentage of factual samples for which the approach generates plausible (in
type and range) counterfactuals.

experimental set-up We consider as predictive models decision trees,
random forest, logistic regression, and multilayer perceptron, which we train
on the three datasets using the Python library scikit-learn (Ped+11), with
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Table 2.4: Percentage of factual samples for which the nearest counterfactual sample
requires a change in age for a random forest trained on the Adult dataset, and the
corresponding increase in distance to nearest counterfactual when restricting the
approaches not to change age: 100×E[δrestr./δunrestr. − 1]. Lower % is better.

ℓ0 ℓ1 ℓ∞
% age-
change

relative dist.
increase

% age-
change

relative dist.
increase

% age-
change

relative dist.
increase

MACE (ϵ = 10−5) 13.2% 9.0% 20.4% 100.3% 84.4% 32.8%

MO 78.8% 50.9% 92.0% 245.7% 95.6% 193.3%

default parameters.5 Furthermore, to demonstrate the off-the-shelf flexibility
in the various setups described, we build MACE atop the open-source PySMT
library (GM15) with the Z3 (MB08) backend. In Appendix A.3.2, we provide
a thorough empirical evaluation of the computational cost of the off-the-shelf
PySMT solver – including run-time comparisons between MACE and other
baselines, – as well as a discussion on the choice of ϵ trading-off arbitrarily
accurate solutions of (2.2) with the number of calls made to the satisfiability
oracle.

For each combination of approach, model, dataset, and distance, we gener-
ate the nearest counterfactual explanations for a held-out set of 500 instances
classified as negative by the corresponding model. Here we consider the ℓ0,
ℓ1, ℓ∞ norms as a measure of distance to identify the nearest counterfactuals.
Unfortunately, we found that FT not once returned a plausible counterfac-
tual. As a consequence, we modified the original implementation of FT, to
ensure that the generated counterfactuals are plausible. The resulting Plausi-
ble Feature Tweaking (PFT) projects the set of candidate counterfactuals into a
plausible domain before selecting the nearest counterfactual amongst them.
This was not possible for AR because the approach only returns a single
counterfactual, with no avail if it is not plausible.6

coverage and distance results Table 2.2 shows the coverage Ω of
all the approaches based only on data-range and data-type plausibility. Note
that, since by definition both MACE and MO have 100% coverage, we have
not depicted these values in the table. In contrast, PFT fails to return coun-
terfactuals for roughly 15% of the Credit and COMPAS datasets, while both

5For the multilayer perceptron, we used two hidden layers with 10 neurons each to avoid
overfitting. See Appendix A.2.1 for model selection details.

6 Importantly, Actionable Recourse does support actionability and data-range plausibil-
ity, however, it lacks support for data-type plausibility – Appendix A.2.3 describes the failure
points of AR, as reported by the authors.
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PFT and AR achieve minimal coverage on the Adult dataset.7 Focusing on
those factual samples for which PFT and AR return plausible counterfactu-
als, we are able to compute the relative distance reductions achieved when
using MACE as compared to other approaches, as shown in Table 2.3 (addi-
tionally, Figure A.1 in Appendix A.2 shows the distribution of the distance of
the generated plausible counterfactual for all models, datasets, distances, and
approaches). Here, we observe that MACE results in significantly closer coun-
terfactual explanations than competing approaches, with an average decrease
in distance of 70.2% for Adult, 75.4% for Credit, and 21.1% for COMPAS. As
a consequence, the counterfactuals generated by MACE would require signif-
icantly less effort on behalf of the affected individual in order to achieve the
desired prediction.

plausibility contraints . While performing a qualitative analysis of
generated counterfactuals we observed that many of them require changes
in features that are often protected by law such as, age, race, and gen-
der (BDS16). As an example, for a trained random forest, the counterfactuals
generated by both the MACE and MO approaches required individuals to
change their age. Worse yet, for a substantial portion of the counterfactuals,
a reduction in age was required, which is not even possible. To further study
this effect, we regenerate counterfactual explanations for those samples for
which age-change was required, with an additional plausibility constraint
ensuring that the age shall not change (results with constraints to ensure
non-decreasing age are shown in Appendix A.3.3). The results presented
in Table 2.4 show interesting results. First, we observe that the additional
plausibility constraint for the age incurs significant increases in the distance
of the nearest counterfactual – being, as expected, more pronounced for the
ℓ1 and the ℓ∞ norms, since the ℓ0 norm only accounts for the number of
features that change in the counterfactual but not for how much they change.
For the ℓ0 norm, as expected, we find that for the 66 factual samples (i.e.,
13.2% × 500) for which the unrestricted MACE required age-change, the
addition of the no-age-change constraint results in counterfactuals at very
similar distance. In fact, of the newly generated counterfactuals, 8/66 only
require a change in Occupation, and 19/66 only require a change in Capital
Gains, therefore remaining at the same distance as the original counterfac-
tual. In contrast, for the ℓ1 and the ℓ∞ norms we find that the restricted
counterfactual incurs a significant increase in the distance (cost) with respect
to the unrestricted counterfactual. These results suggest that the predictions
of the random forest trained on the Adult data are strongly correlated

7The Adult dataset comprises a realistic mix of integer, real-valued, categorical, and
ordinal variables common to consequential scenarios; further details in Appendix A.2.2.
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Table 2.5: A diverse set of generated counterfactuals is presented for an individual
from the Credit dataset.

Latest
Bill

Latest
Payment

University
Degree

Will default
next month?

Factual $370 $40 some yes

CF #1 $368 $1448 some no

CF #2 $0 $1241 some no

CF #3 $0 $390 graduate no

to the age, which is often legally and socially considered as unfair. This
suggests that counterfactuals found with MACE may assist in qualitatively
ascertaining if other desiderata, such as fairness, are met (DVK17; Wel17).

diversity constraints . Finally, we present a situation where MACE
can be used to generate counterfactuals under both plausibility and diversity
constraints. Consider a loan borrower from the Credit dataset identified with
the following features:8 John is a married male between 40-59 years of age
with “some” university degree. Financially, over the last 6 months, John has
been struggling to make payments on his bank loan. Given his circumstances,
a logistic regression model trained on the historical dataset has predicted
that John will default on his loan next month. To prevent this default, the
bank uses MACE (ℓ1 distance, ϵ = 10−3) to generate the diverse suggestions
in Table 2.5, via successive runs of Algorithm 1. Each new run augments
the constraints formula (already including plausibility constraints on his age,
sex, and marital status) with an additional clause enforcing ℓ0 diversity as
discussed in Section 2.4.2. The returned counterfactuals (of which only 3 are
shown), present John with diverse courses of action: either reduce spending
and make a lump-sum payment on the debt (CF #2) or continue spending
the same as before, but make an even larger payment to account for contin-
ued expenditures (CF #1). Alternatively, providing documents confirming a
graduate degree would put John in a low-risk (no default) bracket (CF #3).
We invite the reader to imagine parallels to the above situation for Adult and
COMPAS datasets.

2.6 conclusions

In this work, we have presented a novel approach for generating counterfac-
tual explanations in the context of consequential decisions. Building on the-

8Complete feature list in Appendix A.3.4
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ory and tools from formal verification, we demonstrated that a large class
of predictive models can be compiled to formulae which can be verified
by standard SMT-solvers. By conjuncting the model formula with formulae
corresponding to distance, plausibility, and diversity constraints, we demon-
strated on three real-world datasets and four popular predictive models that
the proposed method not only achieves perfect coverage, but also generates
counterfactuals at more favorable distances than existing optimization-based
approaches. Furthermore, we showed that the proposed method can not only
provide explanations for individuals subject to automated decision making
systems, but also inform system administrators regarding the potentially un-
fair reliance of the model on protected attributes.

There are a number of interesting directions for future work. First, MACE
can naturally be extended to support counterfactual explanations for multi-
class classification models, as well as regression scenarios. Second, extending
the multi-faceted notion of plausibility defined in Section 2.4.2 (actionability,
data type/range consistency, which focus on individual features), it would be
interesting to account for statistical correlations and unmeasured confound-
ing factors among the features when generating counterfactual explanations
(i.e., realizability). Third, we would like also to explore how different notions
of diversity may help generating meaningful and useful counterfactuals. Fi-
nally, in our experiments we noticed that the running time of MACE directly
depends on the efficiency of the SMT solver. As future work we aim to make
the proposed method more scalable on large models by investigating recent
ideas that have been developed in the context of formal verification of deep
neural networks (Hua+17; Kat+17; Sin+19) and optimization modulo theo-
ries (NO06; ST12).
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3S C A L I N G G U A R A N T E E S F O R C O U N T E R FA C T U A L
E X P L A N AT I O N S

Chapter Abstract

Counterfactual explanations (CFE) are being widely used to explain al-
gorithmic decisions, especially in consequential decision-making contexts
(e.g., loan approval or pretrial bail). In this context, CFEs aim to provide
individuals affected by an algorithmic decision with the most similar
individual (i.e., nearest individual) with a different outcome. However, while
an increasing number of works propose algorithms to compute CFEs, such
approaches either lack in optimality of distance (i.e., they do not return the
nearest individual) and perfect coverage (i.e., they do not provide a CFE
for all individuals); or they do not scale to complex models such as neural
networks. In this work, we provide a framework based on Mixed-Integer
Programming (MIP) to compute nearest counterfactual explanations for the
outcomes of neural networks, with both provable guarantees and runtimes
comparable to gradient-based approaches. Our experiments on the Adult,
COMPAS, and Credit datasets show that, in contrast with previous methods,
our approach allows for efficiently computing diverse CFEs with both
distance guarantees and perfect coverage.

This chapter is based on the paper “Scaling Guarantees for Nearest Counterfactual Explana-
tions,” Mohammadi, Karimi, Barthe, Valera, ACM-AIES (Á), 2021 (Moh+21).

37



scaling guarantees for counterfactual explanations

3.1 introduction

Machine learning models are increasingly being used to assist in semi-
automated prediction and decision-making for consequential scenarios
such as pretrial bail and loan approval. Specifically, end-to-end trained
models such as (deep) neural networks (LBH15) (with non-linearities such as
ReLU) have proven effective at learning and discovering complex non-linear
patterns and relations in the data, and hence are becoming widely deployed.
However, predictive power often comes at the cost of loss in interpretability
(Rud19), i.e., our ability to understand not only the decision made, but also
the process by which the decision was deduced. Importantly, interpretability
can assay the safe, robust, privacy-preserving, fair, and causally consistent
nature of this decision-making (DVK17).

Inspired by this, Counterfactual Explanations (CFEs) are introduced to pro-
vide individuals with an understanding of their situation in relation to a close
hypothetical scenario in which they would have been treated favorably. As for
the process of generating CFEs, a number of criteria are of concern: i) optimal
distance, i.e., nearest explanation; ii) perfect coverage, i.e., providing all indi-
viduals with an explanation; iii) support for expressive models (e.g. neural
networks); iv) efficient runtime; v) support for heterogeneous input spaces;
and, vi) qualitative features such as actionability, plausibility, diversity, spar-
sity, etc. While all these criteria have been discussed in previous works on
CFE generation (VDH20; Kar+22), existing approaches however lack in at
least one of them.

On one hand, providing the explanations with provable guarantees on
the objectives (e.g., the proximity to the factual sample) has been studied
by reducing the problem to a Satisfiability Modulo Theories (SMT) prob-
lem (Kar+20a; Kar+20a) or to a Mixed-Integer Programming (MIP) problem
(Rus19; Kan+20a; USL19). These approaches could theoretically be extended
to support many classes of models, however, in practice this has only been
demonstrated for simple classes of models, being high runtimes their main
bottleneck. As an example, Karimi et al. [Kar+20a] show that even for reason-
ably small Neural Networks (NNs) (e.g. 20 neurons) the backend SMT solver
might never terminate. In contrast, MIP-based approaches, however, so far
ignore the class of NN models but instead work with simple linear (Rus19;
USL19) or tree-based (Kan+20a) models, emphasizing qualitative metrics of
the explanations. On the other hand, counterfactual explanations can be ef-
ficiently generated for (differentiable) NN models using gradient-based op-
timization techniques (MST20). However, while such approaches do work
efficiently for NNs, they do not provide any guarantees in terms of distance
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or coverage. Moreover, they also suffer from limitations to incorporate qual-
itative aspects of CFE such as actionability constraints–e.g., an input feature
capturing individuals’ age is only actionable in one direction, i.e., an indi-
vidual can only increase her age. Conclusively, previous approaches for CFE
generation either ignore the class of neural models or cannot provide the
aforementioned guarantees; the exception being MACE (Kar+20a) which suf-
fers from very high runtimes. While NNs are becoming increasingly popular
to adopt by stake-holders as a flexible non-linear model, an efficient approach
with guarantees is necessary for explaining their decisions.

A similar problem to CFEs, in terms of formulation as a constrained
optimization problem, is the generation of adversarial examples for NNs.
This problem has been broadly addressed by the NN verification community
(Liu+19), where both SMT- and MIP-based approaches have been explored
to efficiently solve the problem of finding adversarial examples in ReLU-
activated NNs which is, in fact, shown to be NP-complete (Kat+17). It is,
however, important to note that while these two problems are formally
similar and ideas can be exchanged among them, they are semantically
and practically different (WMR17). Thus, approaches to handle adversarial
examples in NNs cannot be directly applied to generate CFEs (Fre20).

In this work, we extend the ideas and tools from the NN verification
community to develop an efficient framework to compute CFEs for ReLU-
activated NN models, to provide distance and coverage guarantees, as well
as to accommodate for previously discussed qualitative features. Specifically,
we first propose three efficient approaches to search for a CFE within a given
interval in the input feature space: whereas the first approach relies on SMT
solvers as the backend, the other two approaches formulate the problem as a
MIP and differ in the way that the CFE distance is optimized. All the three
approaches make use of a linear approximation of the ReLU-NNs (Ehl17) to
compute bounds on the hidden units of the NN, given bounds on both the
input feature space and/or distance. We then describe how to incorporate
several qualitative features in our framework, including heterogeneous dis-
tance functions, as well as diversity and plausibility constraints (Kan+20a;
Rus19).

Finally, we experiment our approaches on the before-mentioned criteria
and compare against SMT- and gradient-based approaches that support NNs.
Table 3.1 summarizes the fulfillment of different criteria in CFE generation by
our approach in comparison with previous (SMT-, gradient-, and MIP-based)
approaches. Our empirical results confirm a significant improvement in run-
time efficiency, yielding novel MIP-based approaches for CFE generation on
the class of NN models. Importantly, in addition to efficiently generating
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Table 3.1: Comparison of related work with our approach
Method Opt. Distance 100% Coverage Efficiency Neural Models Qualitative Features Complex Constraints

Our approach ✓ ✓ ✓ ✓ ✓ ✓

MACE (Kar+20a) ✓ ✓ ✓ ✓ ✓

DiCE (MST20) ✓ ✓ ✓

Efficient Search (Rus19) ✓ ✓ ✓ ✓ ✓

CFEs, our presented approaches are optimal in distance and perfect in cover-
age. This efficiency even allows for generating sets of counterfactuals meeting
different criteria, as we show by generating sets of diverse CFEs. Hence, while
up to date, runtimes were the main bottleneck for CFE generation with guar-
antees for NN architectures, our MIP approach performs even faster than
gradient-based optimization for NNs at the scale of consequential decision-
making scenarios.

3.2 background

We first introduce counterfactual explanations and two ways of formulating
the problem, through optimization and verification. We then explain how
the neural network model can be encoded within frameworks capable of
solving the counterfactual explanation generation problem exactly and with
guarantees.

3.2.1 Counterfactual Explanations

Assume that we are given a trained binary classifier h : X → R that de-
termines a positive outcome when h(x) ≥ 0 and a negative outcome when
h(x) < 0, deciding, e.g., whether an individual is eligible to receive a loan or
not. Consider an individual xF where h(xF) < 0 (loan denial); for this individ-
ual, we would like to offer an answer to the question "What would have to be
different for you to achieve a positive outcome next time?" 1 Answers to this
question may be offered as a feature vector corresponding to an (hypotheti-
cal) individual on the other side of the decision boundary, and is referred to
as a counterfactual explanation (CFE).

There are a number of criteria/constraints that a CFE should satisfy to be
useful for the individual (WMR17). A CFE should ideally be as similar as pos-
sible to the individual’s current scenario (the factual instance), corresponding
to the smallest change in the individual’s situation that would favorably al-
ter their prediction. Furthermore, the change in features and the resulting

1The model is commonly assumed to be fixed and not change over time.
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counterfactual instance must satisfy additional feasibility and plausibility con-
straints, respectively. For instance, a change in features that would require
the individual to decrease their age would be infeasible (a.k.a. non-actionable).
Relatedly, we must make sure that the alternative scenario lies within the het-
erogeneous input space (i.e., is plausible) since in the consequential decision-
making domains, we typically work with mixed data types with a variety of
statistical properties, such as age, race, bank balance, etc.

These requirements can be made more precise by assuming a notion of
distance dist between inputs, as well as predicates P and F for plausibility
and actionability.

3.2.1.1 CFE Optimization Formulation

Counterfactual explanations can be modelled as a constrained optimization
problem:

xCFE ∈ argmin
x∈X

dist(x, xF)

s.t. h(x) ≥ 0
(3.1)

The above optimization problem can be solved using Gradient Descent (GD)
or linear programming, depending on the objective function and the con-
straints, and yields the closest input xCFE (with respect to xF) that is plausible,
actionable, and makes the decision of h flip.

3.2.1.2 CFE Verification Formulation

The problem of finding counterfactual explanations can be modelled as a
satisfaction problem:

∃x.dist(x, xF) ≤ δ

h(x) ≥ 0
(3.2)

where δ is a distance threshold. The above satisfaction problem guarantees
the existence of a counterfactual that is plausible, actionable, and within dis-
tance δ of xF. Using a suitable search strategy over δ, it is then also possible
to minimize δ (to an arbitrary precision) and find the nearest counterfactual
explanation. For example, MACE (Kar+20a) encodes the above formulation
using First-order logic and uses an SMT solver to find a series of counterfac-
tuals within a binary search that minimizes δ.

The precise formulation of the satisfaction problem depends on an encod-
ing of h. Specifically, one must encode the classifier h in the language of
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logic. While the encodings are theoretically well-understood, it is crucial to
choose an encoding that guarantees the scalability of the method. Indeed,
even for the simplest models, such as decision trees, naive encodings lead
to verification tasks that exceed the capabilities of current tools. An impor-
tant challenge is thus to develop efficient encodings of other models, and in
particular of NNs.

3.2.2 Encoding NNs using SMT and MIP

Outside of the domain of consequential decision-making, similar formula-
tions to the CFE problem can be seen in the problem of adversarial exam-
ples (Pap+17; MD+17; CW17). Here, there is a well-studied line of research
towards verifying different properties of neural networks (Liu+19), such as
robustness towards adversarial examples. In this regard, many works focus
on proving that a property holds or a counterexample exists. Among these
works, many rely on SMT solvers, MIP-based optimization, or both (Ehl17;
Kat+17; Bun+18).

Neural network verification task (for ReLU-activated NNs) is shown to be
NP-complete (Kat+17). Different works, thus, try to make use of some prop-
erties and guide the search process in a way to work better than conventional
off-the-shelf solvers or optimizers. Subsequently, we try to do the same for
CFE generation and extend the previous work, MACE (Kar+20a), to work
better than using off-the-shelf solvers in a straight-forward manner. This hap-
pens through, e.g., guiding the search process by gradually increasing the
distance within which we are looking for a counterfactual explanation, keep-
ing the distance interval as small as possible to prune domains efficiently.

In the following, we explain how to represent NNs using First-order pred-
icate logic formulae and as an MIP that provide bounds on the optimization
variables, later resulting in efficient domain pruning within the search for
CFEs.

3.2.2.1 First-order Logic (SMT) Encoding of Neural Networks

It is rather straight-forward to encode neural networks using a First-order
logic representation that is acceptable by Satisfiability Modulo Theories
(SMT) oracles (Kar+20a). Figure 3.1 shows this through an example (ẑ1 and
ẑ2 represent the post-ReLU values).
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∧ (z2 = 2x1 − x3)

∧ (z3 = −ẑ1 + ẑ2)

∧
(
(ẑ1 = z1 ∧ z1 ≥ 0) ∨ (ẑ1 = 0∧ z1 < 0)

)
∧
(
(ẑ2 = z2 ∧ z2 ≥ 0) ∨ (ẑ2 = 0∧ z2 < 0)

)
Figure 3.1: A ReLU-activated neural network and its corresponding logic formula

3.2.2.2 Unbounded Mixed-integer Program Encoding of Neural Networks

We try to be faithful to the notation from Liu et al. [Liu+19]. Consider an n-
layer single-output feed-forward neural network (NN) with ReLU activations
after each hidden layer that represents the function h(x). The width of each
layer is ki and zi is the vector of dimension ki which represents layer i where
i ∈ {1, 2, ..., n}. While zi represents the pre-ReLU activations, ẑi is the values
after ReLUs have been applied. Finally, δi are vectors of binary variables
indicating the state of each ReLU; 0 for inactive and 1 for activated ReLUs.

There are multiple ways to encode neural networks as MIPs in the NN ver-
ification literature, each proposing different encodings for ReLU activations.
A generic form is as follows. For i ∈ {1, ..., n} and j ∈ {1, ..., ki}:

zi = Wiẑi−1 + bi (3.3a)

δi ∈ {0, 1}ki , ẑi = zi · δi,

δi,j = 1⇒ zi,j ≥ 0,

δi,j = 0⇒ zi,j < 0

(3.3b)

The first part (3.3a) is simply the linear affine of weights and the second part
(3.3b) encodes the following ReLUs using the introduced binary variables for
each ReLU. We refer to this as the unbounded MIP encoding.

3.2.2.3 Bounded Mixed-integer Program Encoding of Neural Networks

Bunel et al. [Bun+18] suggest that most NN verifiers, based on either SMT or
MIP solvers, are indeed a variation of Branch-and-Bound (B&B) optimization.
This understanding implies that limiting the bounds of the variables of the
optimization problem is a very effective heuristic. Moreover, the extra con-
straints of the CFE generation problem – making the verification formulation
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difficult to solve – might actually help tightening the bounds, and thus, result
in an effective pruning of the domains of the optimization problem. We will
thus, change the generic ReLU formulation (3.3b) and adopt the bounded
encoding proposed by Tjeng and Tedrake [TT17], i.e., for i ∈ {1, ..., n}:

zi = Wiẑi−1 + bi (3.4a)

δi ∈ {0, 1}ki , ẑi ⩾ 0, ẑi ⩽ ui · δi,

ẑi ⩾ zi, ẑi ⩽ zi − li · (1− δi)
(3.4b)

Note that the linear part (3.4a) is the same as (3.3a) and also note that this
is still an exact encoding of NNs using MIP since δi,j = 0 ⇔ ẑi,j = 0 and
δi,j = 1 ⇔ ẑi,j = zi,j. This encoding relies on li and ui, vectors indicating
the lower and upper bounds of the values of the hidden units at layer i.
We remind that tight bounds can be very effective in domain pruning when
solving the mixed-integer program. Here, we introduce two ways to obtain
such bounds and complete the MIP formulation (3.4) for CFEs: first, using
interval arithmetic (HJVE01), and second, using an approximation of ReLUs
that results in tighter bounds. In both cases, we assume that we have initial
lower/upper bounds on the values of the input layer (e.g., derived from the
dataset). This is a valid assumption since real-world features such as age or
income do have bounds.

3.2.2.4 Interval arithmetic

By using interval arithmetic (HJVE01), having the bounds at layer i − 1, we
can compute the bounds for the j-th neuron from the i-th layer (zi,j) as:

li,j = Σki−1
t=1 (max(Wi,j,t, 0) · li−1,t

+ min(Wi,j,t, 0) · ui−1,t) + bi,j

ui,j = Σki−1
t=1 (max(Wi,j,t, 0) · ui−1,t

+ min(Wi,j,t, 0) · li−1,t) + bi,j

(3.5)

The post-ReLU bounds (for ẑi,j) are obtained simply by applying a ReLU on
these bounds.

This is applied layer-by-layer and the bounds for all hidden units are com-
puted recursively starting from the input layer. Unfortunately, although bet-
ter than having no bounds at all, these bounds quickly become loose as we
go deeper in the network. The reason is that in each layer i, each neuron is
choosing a worst-case bound (lower or upper) from the neurons of the previ-
ous layer i− 1, independently from the rest of the neurons in layer i, causing
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conflicts in the choice of the lower or upper bound for some neurons in layer
i− 1.2

3.2.2.5 Linear Over-approximation of ReLUs

To compute tighter bounds than interval arithmetic, we first adopt the linear
over-approximation of ReLUs proposed in (Ehl17) to replace (3.3b), i.e., for
i ∈ {1, ..., n} and j ∈ {1, ..., ki}:

zi = Wiẑi−1 + bi (3.6a)

ẑi ⩾ zi, ẑi ⩾ 0, ẑi,j ⩽ ui,j
zi,j − li,j
ui,j − li,j

(3.6b)

Again, the linear part (3.6a) is the same as (3.3a). For the ReLU part (3.3b),
the binary variables encoding the ReLUs in an exact way are removed and,
instead, a linear over-approximation term has been replaced (3.6b). This re-
sults in a fully linear MIP system without the ReLU binary variables, whose
optimization for different objectives can be performed efficiently.

As before, the bounds are recursively computed in a layer-by-layer man-
ner, and the constraints of the linearized network (3.6) are added to the MIP
system progressively. At each layer i, first, (3.6a) is added with bounds of the
variables computed using simple interval arithmetic from the tight bounds
computed for the previous layer. Then, to find better bounds than simple in-
terval arithmetic, having included all the constraints up until this layer, two
MIPs are solved for each hidden unit: one with the objective of maximizing
the value of the unit to compute an upper bound, and a similar one for com-
puting the lower bound. Finally, the ReLU constraints (3.6b) for this layer are
added with the just-computed tight bounds.2 Note that while we have opted
for the ReLU activation function as a common source of non-linearity, any
activation function that can be approximated by piece-wise linear functions
is applicable, e.g., Max-Pooling (Ehl17).

We build upon an implementation from Bunel et al. [Bun+18] for this pur-
pose. Obtaining tight bounds here relies on how small the domains of the
input variables are; keeping the input domains small enough will result in
tighter bounds for other variables. This will be discussed in more detail in
the next section.

3.3 cfe generation

In this section, we propose three approaches towards CFE generation for
neural networks. All the approaches rely on the linearized network approx-

2Refer to the Appendix for more explanation by an example.
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imations described in the previous section, which provide tight lower and
upper bounds on the values of the hidden units. Below, we first explain the
search strategy on the distance of the nearest CFE and the way lower/upper
bounds on the input and hidden units are computed within this search. Then,
we introduce three approaches towards efficient nearest CFE generation for
neural networks.

3.3.1 Preliminaries

3.3.1.1 Exponential Search Strategy

In order to optimize the distance towards finding the nearest CFE, we imple-
ment an exponential search strategy (BYS10). W.l.o.g., we assume here that
the input space is normalized and lies within the [0, 1] interval. Because the
interval of the input layer determines those of later layers, we initiate our
search with a small distance interval, whose lower and upper bound are set
respectively to 0 and an (arbitrarily) small ϵ. We then exponentially increase
the search interval until a CFE is found. Finally, a simple binary search is per-
formed on the interval where the CFE was found to look for the nearest CFE.
The overall scheme for the exponential search is summarized in Algorithm 2.

Algorithm 2: Exponential Search Strategy

Input: N, xF, ϵ
Output: closest_CFE
[lbdist, ubdist]← [0, ϵ];
while findCFE(N, xF, lbdist, ubdist) is None do

lbdist ← ubdist;
ubdist ← ubdist × 2;

end
closest_CFE← binarySearch(N, xF, ϵ, lbdist, ubdist);
return closest_CFE;

Next, we discuss how to compute bounds on both the input and hidden
units of the network, which are necessary to efficiently implement the CFE
search function, findCFE in Algorithm 2.

3.3.1.2 Computing Bounds for Input and Hidden Units

We leverage the network approximator based upon equation (3.6) to com-
pute the bounds of the network input and hidden units for a given distance
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interval [lbdist, ubdist]. To this end, we first obtain the MIP encoding of the dis-
tance. Then, we optimize the MIP-encoded distance for each input variable,
maximizing/minimizing each variable to obtain the lower/upper bounds of
the input layer for the given distance interval. Then, the input bounds are
propagated in the NN to compute the bounds of hidden units. We include
the distance constraints in the initial constraint set of the linearized network
to help finding tighter bounds for the hidden units. Algorithm 3 shows the
overall scheme for this.

Algorithm 3: Bounds Computation

Input: N, xF, lbdist, ubdist
Output: LBnet, UBnet
ϕdist ← getDistanceConstraints(N, xF, lbdist, ubdist);
lbinp, ubinp ← optimizeInputVars(N, ϕdist);
LBnet, UBnet ← linearizedNetApproximator(N, lbinp, ubinp, ϕdist);
return LBnet, UBnet;

3.3.2 Approaches

In this section, we propose three efficient approaches to implement the CFE
search function, findCFE in Algorithm 2, for neural networks. The first ap-
proach relies on SMT solvers as backend and uses the bounds computation
as a heuristic within each iteration of the exponential search (Algorithm 2).
The second and third approaches instead rely on MIP solving to search for
CFEs. The difference between them lies on the optimization of the distance –
while the second approach minimizes the CFE distance using the exponential
search described above, the third approach includes the distance as objective
within the MIP optimization framework. Next, we provide further details on
the three approaches.

3.3.2.1 ReLU Elimination (MIP-SAT)

In this approach, we build upon MACE (Kar+20a) (SMT solving in the back-
end) and use the bounds computation as a heuristic. Within each iteration
of the exponential search (Algorithm 2), and given the distance interval, the
bounds on the input and hidden units are computed using Algorithm 3 and
ReLUs with a fixed state are determined. A ReLU has a fixed state iff the
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value of the neuron before applying ReLU has either a lower bound greater
than or equal to zero, or an upper bound less than or equal to zero.

The neural network, distance functions, as well as additional constraints
are primarily encoded as SMT formulae. For the NN bounds computation,
the NN and distance constraints are encoded as MIPs, as described before.
Next, the ReLUs with a fixed-state are removed from the initial SMT formula
representing the NN. This means that, for an always-active ReLU, we will
have ẑi = zi and for an always-inactive ReLU we will have ẑi = 0, instead
of the initial ReLU clause: (ẑi = zi ∧ zi ≥ 0) ∨ (ẑi = 0 ∧ zi < 0). This is,
basically, removing the disjunction associated to the ReLU states by fixing its
value, saving the SMT solver the effort to branch over its cases. Finally, the
SMT solver (Z3 solver (DMB08) in our case) is called with the new formula
to verify the existence of a CFE within the given distance interval.

Note that the ReLU clauses in the SMT representation of the neural net-
work are exponentially expensive to handle for the SMT solver since it forces
the solver to branch over the cases. Thus, removing a subset of the RELU ac-
tivations will reduce the run-time exponentially (as empirically shown in the
experiments). Algorithm 4 shows the overall scheme for the proposed mixed
MIP-SAT approach.

Algorithm 4: The MIP-SAT approach – findCFE in Algorithm 2

Input: N, xF, lbdist, ubdist
Output: CFE or None
ϕdist ← getDistanceFormula(N, xF, lbdist, ubdist);
ϕpls ← getPlausibilityFormula(N);
ϕN ← getModelFormula(N);
LBnet, UBnet ← computeBounds(N, xF, lbdist, ubdist);
ϕN ← eliminateRelus(ϕN , LBnet, UBnet);
if SAT(ϕN ∧ ϕdist ∧ ϕpls) then

return CFE;
else

return None;

3.3.2.2 Output Optimization (MIP-EXP)

In this approach, we purely use a MIP-based optimization process (no SMT
oracle), for which we deploy an optimization engine (Gurobi (GO20) in this
case), building upon an implementation of (3.4) from Bunel et al. [Bun+18].
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As before, we assume that we are within an iteration of the exponential
search (Algorithm 2) with a fixed distance interval [lbdist, ubdist]. First, Algo-
rithm 3 is called to compute tight lower/upper bounds for the input and
hidden units of the network. Next, these bounds are used to obtain MIP en-
coding of the neural network as in (3.4). Then the distance, as well as any
other additional constraints (all explained in the next section), are added to
MIP formulation. Finally, depending on the (predicted) label of the factual
sample xF, the single output of the network is optimized. For instance, for
a factual sample with a positive label, the output of the network will be
minimized with a callback that interrupts the optimization as soon as a coun-
terfactual with a negative output value is found. Otherwise, the lower bound
of the output of the network for this factual sample and distance interval
is greater than zero and no counterfactual exists. The overall scheme of the
proposed MIP-EXP approach is shown in Algorithm 5.

Note that this approach no longer uses an SMT oracle, but instead relies
on an optimization engine to solve a mixed-integer program with the sin-
gle output of the network as its objective function. Thus, it can naturally be
extended to multi-class classification by introducing a new variable in the
MIP that preserves the maximum logit among class outputs on which the
optimization objective is defined.

Algorithm 5: The MIP-EXP approach – findCFE in Algorithm 2

Input: N, xF, lbdist, ubdist
Output: CFE or None
ϕdist ← getDistanceConstraints(N, xF, lbdist, ubdist);
ϕpls ← getPlausibilityConstraints(N);
LBnet, UBnet ← computeBounds(N, xzzF , lbdist, ubdist);
ϕN ← getModelConstraints(N, LBnet, UBnet) ; // MIP encoding 3.4

if optimize(ϕN , ϕdist, ϕpls, xF) then
return CFE;

else
return None;

3.3.2.3 Distance Optimization (MIP-OBJ)

This is similar to the MIP-EXP approach except that we remove the outer
loop (the exponential search of Algorithm 2) and the distance function is
introduced as the objective function of the MIP to be minimized.
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In this approach, which we refer to as MIP-OBJ, Algorithm 3 is called to
compute the bounds with the distance interval being [0, 1]. The computed
bounds are placed within MIP encoding (3.4). Since now the objective of the
MIP is the distance function, we need to add a constraint as the counterfac-
tual constraint determining the single output of the network being negative or
positive based on the (predicted) label of the factual sample. The whole prob-
lem is optimized (with an optimality gap of ϵ for the distance objective to be
analogous to the other approaches) and the nearest CFE is found. Algorithm
6 shows the overall scheme of the MIP-OBJ approach.

Algorithm 6: The MIP-OBJ approach

Input: N, xF, lbdist, ubdist
Output: CFE or None
obj← getDistanceConstraints(N, xF);
ϕpls ← getPlausibilityConstraints(N);
ϕCFE ← getCounterfactualConstraint(N, xF);
LBnet, UBnet ← computeBounds(N, xF, 0, 1) ; // No distance limit

ϕN ← getModelConstraints(N, LBnet, UBnet) ; // MIP encoding 3.4

CFE← optimize(ϕN , ϕpls, ϕCFE, obj, xF);
return CFE;

3.4 distance functions and qualitative features

In this section ,we describe how the distance metric, as well qualitative
features–such as plausibility, sparsity and diversity–can be encoded within
the MIP framework. First, we provide details on the encoding of distance
functions suitable for heterogeneous input features. Second, in the context
of plausibility, we describe how to handle heterogeneous input spaces,
i.e., input features with mixed data types. Finally, we focus on a broadly
studied qualitative property of CFEs, diversity. We would like to emphasize
that previous MIP-based approaches have recognized the flexibility of
mixed-integer programming in regards to encode a wide range of complex
constraints and different qualitative features (Rus19; Kan+20a), however, this
cannot be directly leveraged for NN models. We defer to future work to
address a wider range of qualitative features for NN class of models.
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3.4.1 Distance Functions

In this section, we provide more details on the MIP encoding of heteroge-
neous distance functions.3 We provide details on an ℓ1 distance function
(analogous to previous works (WMR17)) while zero-, two-, and infinity-
norms are supported in an analogous manner, each providing a different
practical intuition for the proximity of the CFEs, e.g., ℓ0 used for sparsity. As
described before, the distances are all range normalized and within the [0, 1]
interval.

integer-valued and real-valued features For an input vector x
and factual sample xF with such a feature at the i-th dimension, the normal-
ized ℓ1 distance is computed in a straight-forward manner:

distreal(xi, xFi ) =
|xi − xFi |
ubi − lbi

(3.7)

where lbi, ubi are the scalar lower/upper bounds for xi.

ordinal features For an input vector x and factual sample xF with an
ordinal feature xi having k levels, the normalized ℓ1 distance is computed in
the following manner:

distord(xi, xFi ) =
|∑k

j=1 xi,j −∑k
j=1 xF

i,j|
k

(3.8)

categorical features For an input vector x and factual sample xF with
a categorical feature xi having k categories, the normalized ℓ1 distance is
computed in the following manner:

distcat(xi, xFi ) = max
1≤j≤k

(xi,j − xFi,j) (3.9)

In the end, the total normalized ℓ1 distance between input vector x and fac-
tual sample xF would be the normalized sum over distances of different data
types (3.7), (3.8), (3.9), nreal , nord, ncat being the number of features in each of
the three groups above:

3For conciseness, the intermediate variables used to practically encode the functions
within the MIP model are excluded here.
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dist(x, xF) =
1

nreal + nord + ncat

( nreal

∑
i=1

distreal(xi, xFi )

+
nord

∑
i=1

distord(xi, xFi ) +
ncat

∑
i=1

distcat(xi, xFi )
) (3.10)

sparsity Sparsity can be interpreted as the ℓ0 distance function. It is en-
coded by introducing a number of intermediate binary variables each retain-
ing whether or not a feature has changed its value and then summed over
and normalized analogous to the described ℓ1 distance.

3.4.2 Plausibility Constraints

In this section we explain plausibility constraints that guarantee the CFE
lying within the same heterogeneous space as input. Plausibility constraints
for integer-valued, real-valued, and binary variables are naturally preserved
by defining the right kind of variables within the MIP (or SMT) model.

ordinal features To guarantee that the CFEs are plausible in terms of
ordinality of the ordinal features, for each such feature f with k levels, we
define k binary variables f1, ..., fk ∈ {0, 1} in the MIP model. For each set of
these variables, the following constraints are added to the MIP model:

f1 ≥ f2, f2 ≥ f3, ..., fk−1 ≥ fk (3.11)

This will guarantee that: ̸ ∃ i s.t. fi+1 > fi.

categorical features We want to guarantee that in the produced CFE,
for each categorical feature, only one category is chosen. For a categorical
feature f with k categories, we define k binary variables f1, . . . , fk ∈ {0, 1}
in the MIP model. For each set of these variables, the following constraint is
added to the MIP model:

f1 + f2 + · · ·+ fk = 1 (3.12)

Since fi’s are binary variables, this will guarantee that only one of them is 1

and others are 0, meaning that at most one category is active as desired.

3.4.3 Diversity Constraints

Providing individuals with different, preferably diverse, counterfactuals can
be beneficial in terms of providing alternative ways for the individuals to
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improve their outcome. Having different diverse (and close) counterfactu-
als, the individuals may find the most suitable way to achieve the preferred
outcome while considering their own personal constraints, about which the
explanation-provider might not be aware of.

As with other qualitative features, there are different ways for encoding di-
versity in the literature of CFE generation. Within the MIP-based approaches,
Russell [Rus19] encodes diversity simply as the newly generated CFE not be-
ing equal to the previously generated ones. Based on the evaluation criteria,
this could fail to generate diverse CFEs, for example when the evaluation cri-
teria is the mean of the pairwise distances of the (k) generated CFEs as DiCE
(MST20) suggests. Among the gradient-based approaches, DiCE (MST20) ac-
counts for diversity using determinantal point processes, i.e., it includes the
determinant of the kernel matrix given the counterfactuals in the objective.

It is important to also take into account the distance of the generated set of
diverse counterfactuals since it is necessary for this set to also be close to the
individual for which it is being generated. Thus, it can be seen that there is
an inherent tradeoff between diversity and distance. To account for this, we
encode diversity as a set of constraints for each newly generated counterfac-
tual to have a distance above a fixed threshold from each of the previously
generated counterfactuals, while minimizing the distance to the factual sam-
ple. More specifically, the following set of constraints will be added before
the search for the i-th CFE:

dist(xCFE1 , xCFEi ) ≥ δ

...

dist(xCFEi−1, xCFEi ) ≥ δ

(3.13)

Note that solving the MIP becomes progressively more expensive for each
new counterfactual. We have implemented a version of our approach called
MIP-DIVERSE for generating diverse counterfactuals using the above formu-
lation.

3.5 experiments

We conduct a number of quantitative and qualitative experiments to
demonstrate our frameworks abilities relative to existing approaches:
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MACE (Kar+20a) 4 and DiCE (MST20).5 Following the motivation explained
in the Introduction, we generate counterfactual explanations for fixed-
width ReLU-activated fully-connected NN models of various sizes, having
N×W + (D− 1) ·W2 + (D + 1)×W total parameters, N being the input size,
W width, and D depth. To support consequential decision-making settings,
we employ three widely used real-world datasets from the counterfactual
explanations literature: Adult (d = 51) (Adu96), COMPAS (d = 7) (Lar+16a),
and Credit (d = 20) (BL13). Finally, all approaches are evaluated and
compared on their optimality of distance, coverage, and runtime efficiency
over a total of 500 instances. All implementations of the approaches will be
shared publicly.

Figure 3.2: A bar plot comparing times of our approach and previous work MACE in
all setups of norm type and dataset for NN model. Full-setting runtime comparison
of two-layer ReLU-activated NN with 10 neurons in each layer among our approach
and MACE (SAT) (Kar+20a). Note that coverage is perfect by design. Each setting
has been evaluated on 500 instances, however, SAT and MIP-SAT timed out on some
samples. For such cases, only the samples for which all approaches have successfully
finished running are included.

3.5.1 Performance of the MIP-framework

In the first set of experiments, we aim to showcase the ability of the proposed
MIP-based approaches (i.e., MIP-SAT, MIP-EXP, MIP-OBJ) in diverse settings.
Specifically, we generate CFEs for a two-layer ReLU-activated NN with 10

neurons in each layer and evaluate generated counterfactual explanations us-
ing the metrics above on three datasets and four norm distances: ℓ0, ℓ1, ℓ2, ℓ∞.

4We use an improved version of MACE obtained from the official GitHub repository.
5We use default hyperparameters for DiCE, as obtained from the official GitHub reposi-

tory of DiCE (commit @92530c7). In all but the diversity experiments that will follow, we set
the diversity weight to zero since we are searching for only one CFE and want the focus only
on proximity and flipping of the output.
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Figure 3.3: Distance and time comparison our MIP-based approach against DiCE as
a gradient-based optimization approach. The model is a two-layered ReLU-activated
NN with 10 neurons in each layer. MIP-OBJ coverage is perfect by design and DiCE
coverage is also perfect except for Adult dataset (99.6%).

As expected, the CFE distances for all presented methods are similar to those
of MACE (SAT) (Kar+20a), which we use here as oracle, and coverage is per-
fect by design for all presented methods. Figure 3.2 presents a comparison
of runtime for these methods, where we observe significant improvement in
runtime compared to SAT-oracle. Similar comparison for distances may be
found in Figure B.2 in the Appendix. Importantly, the presented MIP-based
methods are able to generate CFEs in settings in which neither MACE (SAT)
nor MIP-SAT are able (e.g., Adult or Credit dataset on ℓ2 norm).

In a second experiment, we compare the proposed MIP-based approaches,
not only with the SAT-oracle but also with DiCE (MST20) (i.e., gradient-based
optimization) on the same NN model as above. Here we adapt our experi-
mental setting to DiCE, as it only supports the ℓ1-norm distance, and does
not provide support for ordinal and real-valued features. Moreover, since
DiCE assumes that the model has been trained using range-normalized data,
we build additional support in our implementation to encode the normaliza-
tion term in the MIP-based approaches, which in turn could negatively affect
runtime and numeric stability. Nonetheless, in this setting, we observe in Fig-
ure 3.3 relatively smaller distances and significantly smaller runtimes for the
former. Furthermore, where MIP-OBJ has perfect coverage by design, DiCE
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dips slightly below perfect coverage on the Adult dataset, failing to offer an
explanation for 2/500 instances.

3.5.2 Scalablity Experiments

The experiments above were presented on NN models that were able to suf-
ficiently discriminate between the classes of the supervised learning task
(with test accuracy in the range of 67-82% for different datasets). Comple-
menting the demonstrations above, we investigate the scalibility of our ap-
proaches for the sake of completeness. In this regard, Figure 3.5 (and Fig-
ure B.3 in the Appendix) compare the runtime, distance, and coverage for
SMT-based (Kar+20a) and gradient-based (MST20) approaches with our pro-
posed approaches for a NN model with growing width and/or depth (as
well as growing input size by incorporating different datasets).

It can be seen that the SMT-based approaches quickly reach their limit
while MIP-based and gradient-based approaches scale well with both increas-
ing width and depth. As MIP-based approaches do not scale polynomially
w.r.t. network size, they do not scale as well as the gradient-based DiCE (this
can be seen for the bigger Credit and Adult datasets in Figure B.3 in the Ap-
pendix), however, they produce much smaller distances. While MIP-based ap-
proaches have perfect coverage and minimum distance in theory, in practice
numerical instabilities may be incurred in the backend tool as the number of
intermediate variables in the mixed-integer program becomes large and their
relations become deep due to the nested nature of NNs (the analysis of such
numerical instabilities is beyond the scope of this work and deferred for fu-
ture work). This causes failure to generate explanations for some samples or
an increase in distances. In this context, having two MIP-based approaches
is beneficial to verify results–for example, MIP-EXP behaves more stable in
terms of distances than MIP-OBJ.

3.5.3 Qualitative Experiments

In this section, we show that how the expressiveness of SMT and MIP can be
used to easily encode qualitative features and/or user-defined constraints for
the explanations.
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Figure 3.4: Scatter plots showing the diversity and proximity of sets of counterfactu-
als generated by our approach against DiCE along with runtimes. Diversity, distance,
and runtime for generating sets of counterfactuals on the COMPAS dataset and NN
model with two hidden layers of size 10. For each counterfactual set size k ∈ [2, 10],
each approach has been tested on 100 instances.

3.5.3.1 Diversity

We report on experiments showing the diversity feature of our approach as
presented in the previous section, and compare against DiCE’s implementa-
tion of diversity.

We follow the authors of DiCE, and evaluate the k diversely generated
CFEs by measuring the mean of pairwise distances among the CFEs (the
higher the better):

k−diversity({xCFEj }k) :
1

(k
2)

k−1

∑
i=1

k

∑
j=i+1

dist(xCFEi , xCFEj ) (3.14)

Expectedly, diversity is traded-off with distance. Thus, in addition to the
diversity metric above, the distance of the diverse set of CFEs to the original
factual instance, xF, is measured as follows (the lower the better):

k−distance(xF, {xCFEj }k) :
1
k

k

∑
i=1

dist(xF, xCFEi ) (3.15)

Figure 3.4 shows diversities generated by MIP-DIVERSE compared to DiCE
for which the default hyperparameters are used. MIP-DIVERSE succeeds in
finding the closest set of CFEs given a fixed distance threshold for diversity.
The initial threshold has been set to 0.01 for this experiment, increasing it
would result in the k−diversity and k−distance graph of Figure 3.4 to move
upward, providing the possibility to choose the desired diversity-distance
trade-off. Our results show that at a similar level of diversity (i.e., k = 6), the
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Figure 3.5: Scatter and bar plots showing the runtimes and distances when the net-
work architecture becomes wider or deeper. Scalability experiments comparing SMT-
, MIP-, and gradient-based approaches on the COMPAS dataset. The upper row
shows the results for increasing depth and the lower row for increasing width; both
in terms of runtime and distance. For each approach and architecture 50 samples
are evaluated, however, some fail to produce valid CFEs either because of imperfect
coverage (i.e., DiCE) or numeric instabilities (i.e., MIP-OBJ and MIP-EXP); thus, only
the instances for which all approaches have generated valid CFEs are included in
the comparison. In general, for increasing depth, the average coverage across all the
architectures is 99.1% and 93.7% for MIP-OBJ and MIP-EXP, and 96.4% for DiCE. For
increasing width, the average coverage across all the architectures is 100% and 100%
for MIP-OBJ and MIP-EXP, and 100% for DiCE. Similar experiments on the Credit
and Adult datasets may be found in Figure B.3 in the Appendix.

counterfactual set of MIP-DIVERSE is much closer to the factual instance. As
k increases further, in DiCE, while still a subset of the CFEs are diverse (and
thus increase the average distance), the remaining ones are very similar to the
previous as they minimally change a subset of the continuous variables. As
a result, the average diversity and distance of the generated CFEs decreases.
The runtimes of MIP-DIVERSE is again faster than the gradient-based oppo-
nent, however, MIP-DIVERSE is more sensitive to increasing the input size
due to the added distance constraints, making it more or less as slow as DiCE
on larger datasets.
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3.6 conclusion and future work

3.5.3.2 Sparsity

As described in the previous section, maximizing the sparsity of explanations
is equivalent to minimizing the ℓ0 distance to the factual sample. To show
the ability of our approach in maximizing sparsity, we refer the reader to
the first column of figure B.2 in the Appendix where all approaches succeed
in maximizing sparsity. Indeed, it would also be possible to optimize for
a convex combination of ℓ0 and e.g., ℓ1 norms to generate more realistic
sparse explanations that allow more features to vary while staying close to
the factual sample.

We would like to also remark, once more, the role of the expressive power
of SMTs and MIPs, in increasing the quality of explanations through handling
different types of constraints. For example, defining different types of action-
ability on the features (e.g., increase/decrease-only, non-actionable, etc.) are
as simple as adding a few inequality constraints to the MIP model. This ease
of encoding may give stake-holders and explanation-providers the possibil-
ity to take into account individual-specific situations where an individual
might ask for her personal constraints to be considered within the provided
explanation.

3.6 conclusion and future work

In this work, we have proposed efficient approaches based on mixed-integer
programming to generate counterfactual explanations with guarantees for
the widely-used class of neural network models. We have empirically demon-
strated the efficiency and guarantees of the proposed framework by compar-
ing it, in terms of distance, runtime and coverage with previous SMT- and
gradient-based approaches for CFE generation. We have also provided qual-
itative results on the generation of diverse counterfactuals, showing the flex-
ibility of our approach, as well as efficiency in handling complex qualitative
features.

As future work, we plan to explore other qualitative features, such as other
plausibility constraints beyond data types and ranges. Moreover, although in
this work we have focused on NN architectures with ReLU activations, simi-
lar approaches can be deployed for any piece-wise linear activation function
(e.g., Max-Pooling). Moreover, other classes of models (e.g., Support Vector
Machines with RBF kernel) could also be encoded or approximated by linear
constraints, and thus be similarly handled by our MIP-framework. Finally,
as stake-holders increasingly adopt more complex neural models for conse-
quential decision-making, it becomes critical to have access to reliable and ef-
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ficient tools to explain algorithmic decisions. Thus, as venue for future work,
it would be interesting to further investigate the scalability and numeric sta-
bility issues, which also arise in the NN verification.
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4C A U S A L A L G O R I T H M I C R E C O U R S E

Chapter Abstract

Algorithmic recourse actions are typically obtained through solving an
optimization problem that minimizes changes to the individual’s feature
vector, subject to various plausibility, diversity, and sparsity constraints.
Whereas previous works offer solutions to the optimization problem in
a variety of settings, they critically overlook real-world considerations
pertaining to the environment in which recourse actions are performed.

The present work emphasizes that changes to a subset of the individual’s
attributes may have consequential down-stream effects on other attributes,
thus making recourse a fundamentally causal problem. Here, we model such
considerations using the framework of structural causal models, and high-
light pitfalls of not considering causal relations through examples and theory.
Such insights allow us to reformulate the optimization problem to directly
optimize for minimally-costly recourse over a space of feasible actions (in the
form of causal interventions) rather than optimizing for minimally-distant
“counterfactual explanations”. We offer both the optimization formulations
and solutions to deterministic and probabilistic recourse, on an individu-
alized and sub-population level, overcoming the steep assumptive require-
ments of offering recourse in general settings. Finally, using synthetic and
semi-synthetic experiments based on the German Credit dataset, we demon-
strate how such methods can be applied in practice under minimal causal
assumptions.

This chapter is based on the papers “Algorithmic Recourse: from Counterfactual Expla-
nations to Interventions,” Karimi, Schölkopf, Valera, ACM-FAccT (⋆ �), 2020 (KSV21), and
“Algorithmic recourse under imperfect causal knowledge: a probabilistic approach,” Karimi*, von
Kügelgen*, Schölkopf, Valera, NeurIPS (⋆ �), 2020 (Kar+20b).
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4.1 introduction

Predictive models are being increasingly used to support consequential
decision-making in a number of contexts, e.g., denying a loan, rejecting a
job applicant, or prescribing life-altering medication. As a result, there is
mounting social and legal pressure (VB; SSH21) to provide explanations that
help the affected individuals to understand “why a prediction was output”,
as well as “how to act” to obtain a desired outcome. Answering these
questions, for the different stakeholders involved, is one of the main goals
of explainable machine learning (DVK17; Gun19; Kod94; Lip18; Mur+19;
Rud19; Rüp06).

In this context, several works have proposed to explain a model’s predic-
tions of an affected individual using counterfactual explanations, which are
defined as statements of “how the world would have (had) to be different
for a desirable outcome to occur” (WMR17). Of specific importance are near-
est counterfactual explanations, presented as the most similar instances to the
feature vector describing the individual, that result in the desired prediction
from the model (Kar+20a; Lau+17). A closely related term is algorithmic re-
course—the actions required for, or “the systematic process of reversing unfa-
vorable decisions by algorithms and bureaucracies across a range of counter-
factual scenarios”—which is argued as the underwriting factor for temporally
extended agency and trust (VA20).

Counterfactual explanations have shown promise for practitioners and
regulators to validate a model on metrics such as fairness and robust-
ness (Kar+20a; SHG20; USL19). However, in their raw form, such explana-
tions do not seem to fulfill one of the primary objectives of “explanations as
a means to help a data-subject act rather than merely understand” (WMR17).

The translation of counterfactual explanations to recourse actions, i.e., to a
recommendable set of actions to help an individual achieve a favorable out-
come, was first explored in (USL19), where additional feasibility constraints
were imposed to support the concept of actionable features (e.g., to prevent
asking the individual to reduce their age or change their race). While a step
in the right direction, this work and others that followed (Kar+20a; MST20;
Poy+19; SHG20) implicitly assume that the set of actions resulting in the de-
sired output would directly follow from the counterfactual explanation. This
arises from the assumption that “what would have had to be in the past” (retro-
diction) not only translates to “what should be in the future” (prediction) but
also to “what should be done in the future” (recommendation) (Sta19). We chal-
lenge this assumption and attribute the shortcoming of existing approaches
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X1

X2

Ŷ

U1

U2

X1 := f1(U1)

X2 := f2(X1, U2)

PU = PU1 × PU2

 M = (S, PU)

Ŷ = h(X1, X2)

Figure 4.1: Illustration of an example bivariate causal generative process, show-
ing both the graphical model G (left), and the corresponding structural causal
model (SCM) M (right) (Pea09). In this example, X1 represents an individual’s an-
nual salary, X2 represents their bank balance, and Ŷ denotes the output of a fixed
deterministic predictor h, predicting an individual’s eligibility to receive a loan. U1
and U2 denote unobserved (exogenous) random variables.

to their lack of consideration for real-world properties, specifically the causal
relationships governing the physical world in which actions are performed.

4.1.1 Motivating Examples

Example 4.1.1. Consider, for example, the setting in Fig. 4.1 where an individ-
ual has been denied a loan and seeks an explanation and recommendation
on how to proceed. This individual has an annual salary (X1) of $75, 000 and
an account balance (X2) of $25, 000 and the predictor grants a loan based
on the binary output of h(X1, X2) = sgn(X1 + 5 · X2 − $225, 000). Existing
approaches may identify nearest counterfactual explanations as another indi-
vidual with an annual salary of $100, 000 (+33%) or a bank balance of $30, 000
(+20%), therefore encouraging the individual to reapply when either of these
conditions are met. On the other hand, assuming actions take place in a world
where home-seekers save 30% of their salary, up to external fluctuations in cir-
cumstance, (i.e., X2 := 0.3X1 + U2), a salary increase of only +14% to $85, 000
would automatically result in $3, 000 additional savings, with a net positive
effect on the loan-granting algorithm’s decision.

Example 4.1.2. Consider now another instance of the setting of Fig. 4.1 in
which an agricultural team wishes to increase the yield of their rice paddy.
While many factors influence yield (temperature, solar radiation, water sup-
ply, seed quality, ...), assume that the primary actionable capacity of the team
is their choice of paddy location. Importantly, the altitude (X1) at which the
paddy sits has an effect on other variables. For example, the laws of physics
may imply that a 100m increase in elevation results in an average decrease
of 1◦C in temperature (X2). Therefore, it is conceivable that a counterfactual
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explanation suggesting an increase in elevation for optimal yield, without
consideration for downstream effects of the elevation increase on other vari-
ables (e.g., a decrease in temperature), may actually result in the prediction
not changing.

These two examples illustrate the pitfalls of generating recourse actions di-
rectly from counterfactual explanations without consideration for the (causal)
structure of the world in which the actions will be performed. Actions de-
rived directly from counterfactual explanations may ask too much effort from
the individual (Example 4.1.1) or may not even result in the desired output
(Example 4.1.2).

We also remark that merely accounting for correlations between features
(instead of modeling their causal relationships) would be insufficient as this
would not align with the asymmetrical nature of causal interventions: for Ex-
ample 4.1.1, increasing bank balance (X2) would not lead to a higher salary
(X1), and for Example 4.1.2, increasing temperature (X2) would not affect alti-
tude (X1), contrary to what would be predicted by a purely correlation-based
approach.

4.1.2 Summary of Contributions and Structure of this Chapter

In the present work, we remedy this situation via a fundamental reformula-
tion of the recourse problem: we rely on causal reasoning (§ 4.2.2) to incorpo-
rate knowledge of causal dependencies between features into the process
of recommending recourse actions that, if acted upon, would result in a
counterfactual instance that favorably changes the output of the predictive
model (§ 4.2.1).

First, we illuminate the intrinsic limitations of an approach in which re-
course actions are directly derived from counterfactual explanations (§ 4.3.1).
We show that actions derived from pre-computed (nearest) counterfactual
explanations may prove sub-optimal in the sense of higher-than-necessary
cost, or, even worse, ineffective in the sense of not actually achieving re-
course. To address these limitations, we emphasize that, from a causal per-
spective, actions correspond to interventions which not only model changes
to the intervened-upon variables, but also downstream effects on the remain-
ing (non-intervened-upon) variables. This insight leads us to propose a new
framework of recourse through minimal interventions in an underlying struc-
tural causal model (SCM) (??). We complement this formulation with a neg-
ative result showing that recourse guarantees are generally only possible if
the true SCM is known (??).
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Second, since real-world SCMs are rarely known we focus on the prob-
lem of algorithmic recourse under imperfect causal knowledge (??). We propose
two probabilistic approaches which allow to relax the strong assumption of
a fully-specified SCM. In the first (??), we assume that the true SCM, while
unknown, is an additive Gaussian noise model (Hoy+09; PB14). We then use
Gaussian processes (GPs) (WR06) to average predictions over a whole family
of SCMs to obtain a distribution over counterfactual outcomes which forms
the basis for individualised algorithmic recourse. In the second (??), we con-
sider a different subpopulation-based (i.e., interventional rather than counter-
factual) notion of recourse which allows us to further relax our assumptions
by removing any assumptions on the form of the structural equations. This
approach proceeds by estimating the effect of interventions on individuals
similar to the one for which we aim to achieve recourse (i.e., the conditional
average treatment effect (AHL15)), and relies on conditional variational au-
toencoders (SLY15) to estimate the interventional distribution. In both cases,
we assume that the causal graph is known or can be postulated from expert
knowledge, as without such an assumption causal reasoning from observa-
tional data is not possible (PJS17, Prop. 4.1). To find minimum cost interven-
tions that achieve recourse with a given probability, we propose a gradient-
based approach to solve the resulting optimisation problems (??).

Our experiments (??) on synthetic and semi-synthetic loan approval data,
show the need for probabilistic approaches to achieve algorithmic recourse in
practice, as point estimates of the underlying true SCM often propose invalid
recommendations or achieve recourse only at higher cost. Importantly, our re-
sults also suggest that subpopulation-based recourse is the right approach to
adopt when assumptions such as additive noise do not hold. A user-friendly
implementation of all methods that only requires specification of the causal
graph and a training set is available at https://github.com/amirhk/recourse.

4.2 preliminaries

In this work, we consider algorithmic recourse through the lens of causality.
We begin by reviewing the main concepts.

4.2.1 XAI: Counterfactual Explanations and Algorithmic Recourse

Let X = (X1, ..., Xd) denote a tuple of random variables, or features, taking
values x = (x1, ..., xd) ∈ X = X1 × ... × Xd. Assume that we are given a
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binary probabilistic classifier h : X → [0, 1] trained to make decisions about
i.i.d. samples from the data distribution PX.1

For ease of illustration, we adopt the setting of loan approval as a running
example, i.e., h(x) ≥ 0.5 denotes that a loan is granted and h(x) < 0.5 that
it is denied. For a given (“factual”) individual xF that was denied a loan,
h(xF) < 0.5, we aim to answer the following questions: “Why did individual
xF not get the loan?” and “What would they have to change, preferably with
minimal effort, to increase their chances for a future application?”.

A popular approach to this task is to find so-called (nearest) counterfactual
explanations (WMR17), where the term “counterfactual” is meant in the sense
of the closest possible world with a different outcome (Lew73). Translating
this idea to our setting, a nearest counterfactual explanation xCFE for an indi-
vidual xF is given by a solution to the following optimisation problem:

xCFE ∈ argmin
x∈X

dist(x, xF) subject to h(x) ≥ 0.5, (4.1)

where dist(·, ·) is a distance on X × X , and additional constraints may be
added to reflect plausibility, feasibility, or diversity of the obtained counterfac-
tual explanations (Jos+19; Kar+20a; MTS19; MST20; Poy+19; SHG20; Hol+21).
Most existing approaches have focused on providing solutions to (4.1) by
exploring semantically meaningful choices of dist(·, ·) for measuring sim-
ilarity between individuals (e.g., ℓ0, ℓ1, ℓ∞, percentile-shift), accommodating
different predictive models h (e.g., random forest, multilayer perceptron), and
realistic plausibility constraints P ⊆ X .2

Although nearest counterfactual explanations provide an understanding of
the most similar set of features that result in the desired prediction, they stop
short of giving explicit recommendations on how to act to realize this set of
features. The lack of specification of the actions required to realize xCFE from
xF leads to uncertainty and limited agency for the individual seeking recourse.
To shift the focus from explaining a decision to providing recommendable
actions to achieve recourse, Ustun et al. [USL19] reformulated (4.1) as:

δ∗ ∈ argmin
δ∈F

costF(δ) subject to h(xF + δ) ≥ 0.5, xF + δ ∈ P , (4.2)

1Following the related literature, we consider a binary classification task by convention;
most of our considerations extend to multi-class classification or regression settings as well
though.

2In particular, (Dhu+18; MST20; WMR17) solve (4.1) using gradient-based optimization;
(Rus19; USL19) employ mixed-integer linear program solvers to support mixed numeric/bi-
nary data; (Poy+19) use graph-based shortest path algorithms; (Lau+17) use a heuristic
search procedure by growing spheres around the factual instance; (Gui+18; SHG20) build
on genetic algorithms for model-agnostic behavior; and (Kar+20a) solve (4.1) using satisfi-
ability solvers with closeness guarantees. For a more complete exposition, see the recent
surveys (VDH20; Kar+22).
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where costF(·) is a user-specified cost function that encodes preferences be-
tween feasible actions from xF, and F and P are optional sets of feasibility
and plausibility constraints,3 restricting the actions and the resulting coun-
terfactual explanation, respectively. The feasibility constraints in (4.2), as in-
troduced in (USL19), aim at restricting the set of features that the individual
may act upon. For instance, recommendations should not ask individuals to
change their gender or reduce their age. Henceforth, we refer to the opti-
mization problem in (4.2) as CFE-based recourse problem, where the emphasis
is shifted from minimising a distance as in (4.1) to optimising a personalised
cost function costF(·) over a set of actions δ which individual xF can perform.

The seemingly innocent reformulation of the counterfactual explanation
problem in (4.1) as a recourse problem in (4.2) is founded on two key as-
sumptions.

Assumption 4.2.1. The feature-wise difference between factual and nearest counter-
factual instances, xCFE − xF, directly translates to minimal action sets δ∗, such that
performing the actions in δ∗ starting from xF will result in xCFE.

Assumption 4.2.2. There is a 1-1 mapping between dist(·, xF) and costF(·),
whereby more effortful actions incur larger distance and higher cost.

Unfortunately, these assumptions only hold in restrictive settings, render-
ing solutions of (4.2) sub-optimal or ineffective in many real-world scenarios.
Specifically, Assumption 4.2.1 implies that features Xi for which δ∗i = 0
are unaffected. However, this generally holds only if (i) the individual ap-
plies effort in a world where changing a variable does not have downstream
effects on other variables (i.e., features are independent of each other); or
(ii) the individual changes the value of a subset of variables while simulta-
neously enforcing that the values of all other variables remain unchanged
(i.e., breaking dependencies between features). Beyond the sub-optimality that
arises from assuming/reducing to an independent world in (i), and disre-
garding the feasibility of non-altering actions in (ii), non-altering actions may
naturally incur a cost which is not captured in the current definition of cost,
and hence Assumption 4.2.2 does not hold either. Therefore, except in trivial
cases where the model designer actively inputs pair-wise independent fea-
tures (independently manipulable inputs) to the classifier h (see Fig. 4.2a),
generating recommendations from counterfactual explanations in this man-
ner, i.e., ignoring the potentially rich causal structure over X and the result-
ing downstream effects that changes to some features may have on others
(see Fig. 4.2b), warrants reconsideration. A number of authors have argued

3Here, “feasible” means possible to do, whereas “plausible” means possibly true, believable
or realistic. Optimization terminology refers to both as feasibility sets.

67



causal algorithmic recourse

X1

X2 X3

h

(a) Classifier-centric view

X1

X2 X3

h

(b) Causal graph G forM

Figure 4.2: A view commonly adopted for counterfactual explanations (a) treats fea-
tures as independently manipulable inputs to a given fixed and deterministic classi-
fier h. In the causal approach to algorithmic recourse taken in this work, we instead
view variables as causally related to each other by a structural causal model (SCM)
M with associated causal graph G (b).

for the need to consider causal relations between variables when generat-
ing counterfactual explanations (WMR17; USL19; Kar+20a; MST20; MTS19),
however, this has not yet been formalized.

4.2.2 Causality: Structural Causal Models, Interventions, and Counterfactuals

To reason formally about causal relations between features X = (X1, ..., Xd),
we adopt the structural causal model (SCM) framework (Pea09).4 Specifically,
we assume that the data-generating process of X is described by an (un-
known) underlying SCMM of the general form

M = (S, PU), S = {Xr := fr(Xpa(r), Ur)}d
r=1, PU = PU1 × . . .× PUd , (4.3)

where the structural equations S are a set of assignments generating each ob-
served variable Xr as a deterministic function fr of its causal parents Xpa(r) ⊆
X \ Xr and an unobserved noise variable Ur . The assumption of mutually
independent noises (i.e., a fully factorised PU) entails that there is no hid-
den confounding and is referred to as causal sufficiency. An SCM is often
illustrated by its associated causal graph G, which is obtained by drawing
a directed edge from each node in Xpa(r) to Xr for r ∈ [d] := {1, . . . , d}, see
Fig. 4.1 and Fig. 4.2b for examples. We assume throughout that G is acyclic. In
this case,M implies a unique observational distribution PX, which factorises
over G, defined as the push-forward of PU via S.5

4Also known as non-parametric structural equation model with independent errors.
5I.e., for r ∈ [d], PXr |Xpa(r)

(Xr |Xpa(r)) := PUr ( f−1
r (Xr |Xpa(r))), where f−1

r (Xr |Xpa(r))

denotes the pre-image of Xr given Xpa(r) under fr , i.e., f−1
r (Xr |Xpa(r)) := {u ∈ Ur :

fr(Xpa(r) , u) = Xr}.
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Importantly, the SCM framework also entails interventional distributions de-
scribing a situation in which some variables are manipulated externally. E.g.,
using the do-operator, an intervention which fixes XI to θ (where I ⊆ [d])
is denoted by do(XI := θ). The corresponding distribution of the remaining
variables X−I can be computed by replacing the structural equations for XI
in S to obtain the new set of equations Sdo(XI :=θ). The interventional distribu-
tion PX−I |do(XI :=θ) is then given by the observational distribution implied by

the manipulated SCM
(

Sdo(XI :=θ), PU

)
.

Similarly, an SCM also implies distributions over counterfactuals—
statements about a world in which a hypothetical intervention was
performed all else being equal. For example, given observation xF we can ask
what would have happened if XI had instead taken the value θ. We denote
the counterfactual variable by X(do(XI := θ))|xF, whose distribution can be
computed in three steps (Pea09):

1. Abduction: compute the posterior distribution PU|xF of the exogenous
variables U given the factual observation xF;

2. Action: perform the intervention do(XI := θ) by replacing the
structural equations for XI by XI := θ to obtain the new structural
equations Sdo(XI :=θ);

3. Prediction: the counterfactual distribution PX(do(XI :=θ))|xF is the distri-

bution induced by the resulting SCM
(

Sdo(XI :=θ), PU|xF
)

.

For instance, the counterfactual variable for individual xF had action a =
do(XI := θ) ∈ F been performed would be XSCF(a) := X(a)|xF. For a worked-
out example of computing counterfactuals in SCMs, we refer to ??.

4.3 causal recourse formulation

4.3.1 Limitations of CFE-based recourse

Here, we use causal reasoning to formalize the limitations of the CFE-based
recourse approach in (4.2). To this end, we first reinterpret the actions re-
sulting from solving the CFE-based recourse problem, i.e., δ∗, as structural
interventions by defining the set of indices I of observed variables that are
intervened upon.
Definition 4.3.1 (CFE-based actions). Given an individual xF in world M
and a solution δ∗ of (4.2), denote by I = {i | δ∗i ̸= 0} the set of indices of
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observed variables that are acted upon. A CFE-based action then refers to a set
of structural interventions of the form aCFE(δ∗, xF) := do({Xi := xF

i + δ∗i }i∈I ).
Using Defn. 4.3.1, we can derive the following key results that provide nec-

essary and sufficient conditions for CFE-based actions to guarantee recourse.

Proposition 4.3.1. A CFE-based action aCFE(δ∗, xF) in general (i.e., for arbitrary
underlying causal models) results in the structural counterfactual xSCF = xCFE :=
xF + δ∗ and thus guarantees recourse (i.e., h(xSCF) ̸= h(xF)) if and only if the set of
descendants of the acted upon variables determined by I is the empty set.

Corollary 4.3.1. If all features in the true world M are mutually independent,
(i.e, if they are all root-nodes in the causal graph), then CFE-based actions always
guarantee recourse.

While the above results are formally proven in Appendix A of (KSV21), we
provide a sketch of the proof below. If the intervened-upon variables do not
have descendants, then by definition xSCF = xCFE. Otherwise, the value of the
descendants will depend on the counterfactual value of their parents, leading
to a structural counterfactual that does not resemble the nearest counterfac-
tual explanation, xSCF ̸= xCFE, and thus may not result in recourse. Moreover,
in an independent world the set of descendants of all the variables is by defi-
nition the empty set.

Unfortunately, the independent world assumption is not realistic, as it re-
quires all the features selected to train the predictive model h to be inde-
pendent of each other. Moreover, limiting changes to only those variables
without descendants may unnecessarily limit the agency of the individual,
e.g., in Example 4.1.1, restricting the individual to only changing bank bal-
ance without e.g., pursuing a new/side job to increase their income would be
limiting. Thus, for a given non-independentM capturing the true causal de-
pendencies between features, CFE-based actions require the individual seek-
ing recourse to enforce (at least partially) an independent post-intervention
model MaCFE (so that Assumption 4.2.1 holds), by intervening on all the ob-
served variables for which δi ̸= 0 as well as on their descendants (even if
their δi = 0). However, such requirement suffers from two main issues. First,
it conflicts with Assumption 4.2.2, since holding the value of variables may
still imply potentially infeasible and costly interventions inM to sever all the
incoming edges to such variables, and even then it may be ineffective and not
change the prediction (see Example 4.1.2). Second, as will be proven in the
next section (see also, Example 4.1.1), CFE-based actions may still be subopti-
mal, as they do not benefit from the causal effect of actions towards changing
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the prediction. Thus, even when equipped with knowledge of causal depen-
dencies, recommending actions directly from counterfactual explanations in
the manner of existing approaches is not satisfactory.

4.3.2 Recourse Through Minimal Interventions

We have demonstrated that actions which immediately follow from coun-
terfactual explanations may require unrealistic assumptions, or alternatively,
result in sub-optimal or even infeasible recommendations. To solve such
limitations we rewrite the recourse problem so that instead of finding the
minimal (independent) shift of features as in (4.2), we seek the minimal
cost set of actions (in the form of structural interventions) that results in
a counterfactual instance yielding the favorable output from h. For simplic-
ity, we present the formulation for the case of an invertible SCM (i.e., one
with invertible structural equations S) such that the ground-truth counterfac-
tual xSCF = Sa(S−1(xF)) is a unique point. The resulting optimisation formu-
lation is as follows:

a∗ ∈ argmin
a∈F

costF(a) subject to h(xSCF(a)) ≥ 0.5,

xSCF(a) = x(a)|xF ∈ P ,
(4.4)

where a∗ ∈ F directly specifies the set of feasible actions to be performed for
minimally costly recourse, with costF(·).6

Importantly, using the formulation in (??) it is now straightforward to show
the suboptimality of CFE-based actions (proof in Appendix A of (KSV21)):

Proposition 4.3.2. Given an individual xF observed in world M, a set of feasible
actions F , and a solution a∗ ∈ F of (??), assume that there exists a CFE-based action
aCFE(δ∗, xF) ∈ F (see Defn. 4.3.1) that achieves recourse, i.e., h(xF) ̸= h(xCFE).
Then, costF(a∗) ≤ costF(aCFE).

Thus, for a known causal model capturing the dependencies among ob-
served variables, and a family of feasible interventions, the optimization prob-
lem in (??) yields Recourse through Minimal Interventions (MINT). Generating
minimal interventions through solving (??) requires that we be able to com-
pute the structural counterfactual, xSCF, of the individual xF in world M,

6We note that, although x∗SCF := x(a∗)|xF = Sa∗ (S−1(xF)) is a counterfactual instance,
it does not need to correspond to the nearest counterfactual explanation, x∗CFE := xF + δ∗ ,
resulting from (4.2) (see, e.g., Example 4.1.1). This further emphasizes that minimal inter-
ventions are not necessarily obtainable via pre-computed nearest counterfactual instances,
and recourse actions should be obtained by solving (??) rather than indirectly through the
solution of (4.2).
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X3

X1X2

X4

Ŷ

U1

U2

U3

U4

X1 := U1

X2 := U2

X3 := f3(X1, X2) + U3

X4 := f4(X3) + U4

PU = PU1 × PU2 × PU3 × PU4


M = (S, PU)

Ŷ = h (X1, X2, X3, X4)

Figure 4.3: The structural causal model (graph and equations) for the working exam-
ple and demonstration in ??.

given any feasible action a ∈ F . To this end, and for the purpose of demon-
stration, we consider a class of invertible SCMs, specifically, additive noise
models (ANM) Hoy+09, where the structural equations S are of the form

S = {Xr := fr(Xpa(r)) + Ur}d
r=1 =⇒ uF

r = xFr − fr(xFpa(r)), r ∈ [d],
(4.5)

and propose to use the three steps of structural counterfactuals in (Pea09) to
assign a single counterfactual xSCF(a) := x(a)|xF to each action a = do(XI :=
θ) ∈ F as below.

4.3.2.1 Working Example

Consider the model in ??, where {Ui}4
i=1 are mutually independent

exogenous variables, and { fi}4
i=1 are deterministic (linear or nonlinear)

functions. Let xF = (xF1 , xF2 , xF3 , xF4)
⊤ be the observed features belonging

to the (factual) individual seeking recourse. Also, let I denote the set
of indices corresponding to the subset of endogenous variables that are
intervened upon according to the action set a. Then, we obtain a struc-
tural counterfactual, xSCF(a) := x(a)|xF = Sa(S−1(xF)), by applying the
Abduction-Action-Prediction steps (Pea13) as follows:

Step 1. Abduction uniquely determines the value of all exogenous vari-
ables U given the observed evidence X = xF:

u1 = xF1 ,

u2 = xF2 ,

u3 = xF3 − f3(xF1 , xF2),

u4 = xF4 − f4(xF3).

(4.6)
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4.3 causal recourse formulation

Step 2. Action modifies the SCM according to the hypothetical interven-
tions, do({Xi := ai}i∈I ) (where ai = xF

i + δi), yielding Sa:

X1 := [1 ∈ I ] · a1 + [1 /∈ I ] ·U1,

X2 := [2 ∈ I ] · a2 + [2 /∈ I ] ·U2,

X3 := [3 ∈ I ] · a3 + [3 /∈ I ] ·
(

f3(X1, X2) + U3
)
,

X4 := [4 ∈ I ] · a4 + [4 /∈ I ] ·
(

f4(X3) + U4
)
,

(4.7)

where [·] denotes the Iverson bracket.

Step 3. Prediction recursively determines the values of all endogenous
variables based on the computed exogenous variables {ui}4

i=1 from Step 1

and Sa from Step 2, as:

xSCF1 := [1 ∈ I ] · a1 + [1 /∈ I ] ·
(
u1
)
,

xSCF2 := [2 ∈ I ] · a2 + [2 /∈ I ] ·
(
u2
)
,

xSCF3 := [3 ∈ I ] · a3 + [3 /∈ I ] ·
(

f3(xSCF1 , xSCF2 ) + u3
)
,

xSCF4 := [4 ∈ I ] · a4 + [4 /∈ I ] ·
(

f4(xSCF3 ) + u4
)
.

(4.8)

4.3.2.2 General Assignment Formulation for ANMs

As we have not made any restricting assumptions about the structural equa-
tions (only that we operate with additive noise models7 where noise variables
are pairwise independent), the solution for the working example naturally
generalizes to SCMs corresponding to other DAGs with more variables. The
assignment of structural counterfactual values can generally be written as:

xSCFi = [i ∈ I ] · (xFi + δi) + [i /∈ I ] ·
(
xFi + fi(paSCFi )− fi(paFi )

)
. (4.9)

In words, the counterfactual value of the i-th feature, xSCFi , takes the value xFi +
δi if such feature is intervened upon (i.e., i ∈ I). Otherwise, xSCFi is computed
as a function of both the factual and counterfactual values of its parents,
denoted respectively by fi(paFi ) and fi(paSCFi ). The closed-form expression
in (??) can replace the counterfactual constraint in (??), i.e.,

xSCF(a) := x(a)|xF = Sa(S−1(xF)),
7We remark that the presented formulation also holds for more general SCMs (for ex-

ample where the exogenous variable contribution is not additive) as long as the sequence of
structural equations S is invertible, i.e., there exists a sequence of equations S−1 such that
x = S(S−1(x)) (in other words, the exogenous variables are uniquely identifiable via the
abduction step).
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after which the optimization problem may be solved by building on existing
frameworks for generating nearest counterfactual explanations, including
gradient-based, evolutionary-based, heuristics-based, or verification-based
approaches as referenced in § 4.2.1. It is important to note that unlike CFE-
based actions where the precise value of all covariates post-intervention are
specified, MINT-based actions require that the user focus only on the features
upon which interventions are to be performed, which may better align with
factors under the users control (e.g., some features may be non-actionable
but mutable through changes to other features; see also (BSR20)).

4.3.3 Negative Result: no Recourse Guarantees for Unknown Structural Equations

In practice, the structural counterfactual xSCF(a) can only be computed using
an approximate (and likely imperfect) SCMM = (S, PU), which is estimated
from data assuming a particular form of the structural equation as in (??).
However, assumptions on the form of the true structural equations S⋆ are
generally untestable—not even with a randomized experiment—since there
exist multiple SCMs which imply the same observational and interventional
distributions, but entail different structural counterfactuals.

Example 4.3.1 (adapted from 6.19 in (PJS17)). Consider the following two
SCMs MA and MB which arise from the general form in Fig. 4.1 by choos-
ing U1, U2 ∼ Bernoulli(0.5) and U3 ∼ Uniform({0, . . . , K}) independently in
bothMA andMB, with structural equations

X1 := U1, in {MA,MB},
X2 := X1(1−U2), in {MA,MB},
X3 := IX1 ̸=X2 (IU3>0X1 + IU3=0X2) + IX1=X2 U3, in MA,

X3 := IX1 ̸=X2 (IU3>0X1 + IU3=0X2) + IX1=X2 (K−U3), in MB.

Then MA and MB both imply exactly the same observational and inter-
ventional distributions, and thus are indistinguishable from empirical data.
However, having observed xF = (1, 0, 0), they predict different counterfactu-
als had X1 been 0, i.e., xSCF(X1 = 0) = (0, 0, 0) and (0, 0, K), respectively.8

Confirming or refuting an assumed form of S⋆ would thus require counter-
factual data which is, by definition, never available. Thus, example ?? proves
the following proposition by contradiction.

8This follows from abduction on xF = (1, 0, 0) which for both MA and MB implies
U3 = 0.
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4.4 recourse under imperfect causal knowledge

Proposition 4.3.3 (Lack of Recourse Guarantees). If the set of descendants of
intervened-upon variables is non-empty, algorithmic recourse can be guaranteed in
general (i.e., without further restrictions on the underlying causal model) only if the
true structural equations are known, irrespective of the amount and type of available
data.

Remark. The converse of ?? does not hold. E.g., given xF = (1, 0, 1) in ??, abduction
in either model yields U3 > 0, so the counterfactual of X3 cannot be predicted exactly.

Building on the framework of (KSV21), we next present two novel ap-
proaches for causal algorithmic recourse under unknown structural equa-
tions. The first approach in ?? aims to estimate the counterfactual distribu-
tion under the assumption of ANMs (??) with Gaussian noise for the struc-
tural equations. The second approach in ?? makes no assumptions about the
structural equations, and instead of approximating the structural equations,
it considers the effect of interventions on a sub-population similar to xF. We
recall that the causal graph is assumed to be known throughout.

4.4 recourse under imperfect causal knowledge

4.4.1 Probabilistic Individualised Recourse

Since the true SCM M⋆ is unknown, one approach to solving (??) is to
learn an approximate SCMM within a given model class from training data
{xi}n

i=1. For example, for an ANM (??) with zero-mean noise, the functions
fr can be learned via linear or kernel (ridge) regression of Xr given Xpa(r)
as input. We refer to these approaches as Mlin and Mkr, respectively. M
can then be used in place of M⋆ to infer the noise values as in (??), and
subsequently to predict a single-point counterfactual xSCF(a) to be used in (??).
However, the learned causal model M may be imperfect, and thus lead to
wrong counterfactuals due to, e.g., the finite sample of the observed data,
or more importantly, due to model misspecification (i.e., assuming a wrong
parametric form for the structural equations).

To solve such limitation, we adopt a Bayesian approach to account for the
uncertainty in the estimation of the structural equations. Specifically, we as-
sume additive Gaussian noise and rely on probabilistic regression using a
Gaussian process (GP) prior over the functions fr ; for an overview of regres-
sion with GPs, we refer to (WR06, § 2).
Definition 4.4.1 (GP-SCM). A Gaussian process SCM (GP-SCM) over X refers
to the model

Xr := fr(Xpa(r)) + Ur , fr ∼ GP(0, kr), Ur ∼ N (0, σ2
r ), r ∈ [d], (4.10)
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with covariance functions kr : Xpa(r) × Xpa(r) → R, e.g., RBF kernels for
continuous Xpa(r).

While GPs have previously been studied in a causal context for structure
learning (FN00; Küg+19), estimating treatment effects (AS17; SS17), or learn-
ing SCMs with latent variables and measurement error (SG10), our goal here
is to account for the uncertainty over fr in the computation of the posterior
over Ur , and thus to obtain a counterfactual distribution, as summarised in the
following propositions.

Proposition 4.4.1 (GP-SCM Noise Posterior). Let {xi}n
i=1 be an observational

sample from (??). For each r ∈ [d] with non empty parent set |pa(r)| > 0, the
posterior distribution of the noise vector ur = (u1

r , ..., un
r ), conditioned on xr =

(x1
r , ..., xn

r ) and Xpa(r) = (x1
pa(r), ..., xn

pa(r)), is given by

ur |Xpa(r), xr ∼ N
(

σ2
r (K + σ2

r I)−1xr , σ2
r

(
I− σ2

r (K + σ2
r I)−1

))
, (4.11)

where K :=
(
kr
(
xi

pa(r), xj
pa(r)

))
ij denotes the Gram matrix.

Next, in order to compute counterfactual distributions, we rely on ances-
tral sampling (according to the causal graph) of the descendants of the in-
tervention targets XI using the noise posterior of (??). The counterfactual
distribution of each descendant Xr is given by the following proposition.

Proposition 4.4.2 (GP-SCM Counterfactual Distribution). Let {xi}n
i=1 be an

observational sample from (??). Then, for r ∈ [d] with |pa(r)| > 0, the counterfactual
distribution over Xr had Xpa(r) been x̃pa(r) (instead of xFpa(r)) for individual xF ∈
{xi}n

i=1 is given by

Xr(Xpa(r) = x̃pa(r))|xF, {xi}n
i=1

∼ N
(
µF

r + k̃T(K + σ2
r I)−1xr , sFr + k̃− k̃T(K + σ2

r I)−1k̃
)
,

(4.12)

where k̃ := kr(x̃pa(r), x̃pa(r)), k̃ :=
(
kr(x̃pa(r), x1

pa(r)), . . . , kr(x̃pa(r), xn
pa(r))

)
, xr and

K as defined in ??, and µF
r and sFr are the posterior mean and variance of uF

r given
by (??).

All proofs can be found in Appendix A of (Kar+20b). We can now gener-
alise the recourse problem (??) to our probabilistic setting by replacing the
single-point counterfactual xSCF(a) with the counterfactual random variable
XSCF(a) := X(a)|xF. As a consequence, it no longer makes sense to consider
a hard constraint of the form h(xSCF(a)) > 0.5, i.e., that the prediction needs
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Figure 4.4: Illustration of point- and subpopulation-based recourse approaches.

to change. Instead, we can reason about the expected classifier output under
the counterfactual distribution, leading to the following probabilistic version of
the individualised recourse optimisation problem:

min
a=do(XI :=θ)∈F

costF(a)

subject to EXSCF(a)
[
h
(
XSCF(a)

)]
≥ thresh(a).

(4.13)

Note that the threshold thresh(a) is allowed to depend on a. For example,
an intuitive choice is

thresh(a) = 0.5 + γlcb

√
VarXSCF(a) [h (XSCF(a))] (4.14)

which has the interpretation of the lower-confidence bound crossing the de-
cision boundary of 0.5. Note that larger values of the hyperparameter γlcb

lead to a more conservative approach to recourse, while for γlcb = 0 merely
crossing the decision boundary with ≥ 50% chance suffices.

4.4.2 Probabilistic Subpopulation-based Recourse

The GP-SCM approach in ?? allows us to average over an infinite number
of (non-)linear structural equations, under the assumption of additive Gaus-
sian noise. However, this assumption may still not hold under the true SCM,
leading to sub-optimal or inefficient solutions to the recourse problem. Next,
we remove any assumptions about the structural equations, and propose a
second approach that does not aim to approximate an individualized coun-
terfactual distribution, but instead considers the effect of interventions on a
subpopulation defined by certain shared characteristics with the given (fac-
tual) individual xF. The key idea behind this approach resembles the notion of
conditional average treatment effects (CATE) (AHL15) (illustrated in ??) and
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is based on the fact that any intervention do(XI := θ) only influences the de-
scendants d(I) of the intervened-upon variables, while the non-descendants
nd(I) remain unaffected. Thus, when evaluating an intervention, we can con-
dition on Xnd(I) = xFnd(I), thus selecting a subpopulation of individuals simi-
lar to the factual subject.

Specifically, we propose to solve the following subpopulation-based recourse
optimization problem

min
a=do(XI :=θ)∈F

costF(a)

subject to EXd(I) |do(XI :=θ),xFnd(I)

[
h
(
xFnd(I), θ, Xd(I)

)]
≥ thresh(a),

(4.15)

where, in contrast to (??), the expectation is taken over the corresponding
interventional distribution.

In general, this interventional distribution does not match the conditional
distribution, i.e.,

PXd(I) |do(XI :=θ),xFnd(I)
̸= PXd(I) |XI :=θ,xFnd(I)

because some spurious correlations in the observational distribution do not
transfer to the interventional setting. For example, in Fig. 4.2b we have that

PX2 |do(X1=x1 ,X3=x3)
= PX2 |X1=x1

̸= PX2 |X1=x1 ,X3=x3
.

Fortunately, the interventional distribution can still be identified from the
observational one, as stated in the following proposition.

Proposition 4.4.3. Subject to causal sufficiency, PXd(I) |do(XI :=θ),xFnd(I)
is observa-

tionally identifiable (i.e., computable from the observational distribution) via:

p
(
Xd(I)|do(XI := θ), xFnd(I)

)
= ∏

r∈d(I)
p
(

Xr |Xpa(r)

)∣∣∣∣∣∣
XI :=θ,Xnd(I)=xFnd(I)

. (4.16)

As evident from ??, tackling the optimization problem in (??) in the gen-
eral case (i.e., for arbitrary graphs and intervention sets I) requires estimat-
ing the stable conditionals PXr |Xpa(r)

(a.k.a. causal Markov kernels) in order
to compute the interventional expectation via (??). For convenience (see ??
for details), here we opt for latent-variable implicit density models, but other
conditional density estimation approaches may be also be used (e.g., BH01;
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Bis94; TT18). Specifically, we model each conditional p(xr |xpa(r)) with a con-
ditional variational autoencoder (CVAE) (SLY15) as:

p(xr |xpa(r)) ≈ pψr (xr |xpa(r)) =
∫

pψr (xr |xpa(r), zr)p(zr)dzr , (4.17)

p(zr) := N (0, I). (4.18)

To facilitate sampling xr (and in analogy to the deterministic mechanisms
fr in SCMs), we opt for deterministic decoders in the form of neural nets
Dr parametrised by ψr , i.e., pψr (xr |xpa(r), zr) = δ(xr − Dr(xpa(r), zr ; ψr)), and
rely on variational inference (WJ08), amortised with approximate posteri-
ors qϕr (zr |xr , xpa(r)) parametrised by encoders in the form of neural nets with
parameters ϕr . We learn both the encoder and decoder parameters by max-
imising the evidence lower bound (ELBO) using stochastic gradient descend
(BB08; KB15; KW14; RMW14). For further details, we refer to Appendix D
of (Kar+20b)

Remark. The collection of CVAEs can be interpreted as learning an approximate
SCM of the form

Mcvae : S = {Xr := Dr(Xpa(r), zr ; ψr)}d
r=1, zr ∼ N (0, I) ∀r ∈ [d] (4.19)

However, this family of SCMs may not allow to identify the true SCM (provided it
can be expressed as above) from data without additional assumptions. Moreover, exact
posterior inference over zr given xF is intractable, and we need to resort to approxi-
mations instead. It is thus unclear whether sampling from qϕr (zr |xFr , xFpa(r)) instead
of from p(zr) in (??) can be interpreted as a counterfactual within (??). For further
discussion on such “pseudo-counterfactuals” we refer to Appendix C of (Kar+20b)

4.4.3 Solving the Probabilistic Recourse Optimization Problem

We now discuss how to solve the resulting optimization problems in (??) and
(??). First, note that both problems differ only on the distribution over which
the expectation in the constraint is taken: in (??) this is the counterfactual
distribution of the descendants given in ??; and in (??) it is the interventional
distribution identified in ??. In either case, computing the expectation for
an arbitrary classifier h is intractable. Here, we approximate these integrals

via Monte Carlo by sampling x(m)
d(I) from the interventional or counterfactual

distributions resulting from a = do(XI := θ), i.e.,

EXd(I)|θ
[
h
(
xFnd(I), θ, Xd(I)

)]
≈ 1

M ∑M
m=1 h

(
xFnd(I), θ, x(m)

d(I)
)
.
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4.4.3.1 Brute-Force Approach

A way to solve (??) and (??) is to (i) iterate over a ∈ F , with F being a
finite set of feasible actions (possibly as a result of discretizing in the case
of a continuous search space); (ii) approximately evaluate the constraint via
Monte Carlo; and (iii) select a minimum cost action amongst all evaluated
candidates satisfying the constraint. However, this may be computationally
prohibitive and yield suboptimal interventions due to discretisation.

4.4.3.2 Gradient-based Approach

Recall that, for actions of the form a = do(XI := θ), we need to optimize
over both the intervention targets I and the intervention values θ. Selecting
targets is a hard combinatorial optimization problem, as there are 2d′ possi-
ble choices for d′ ≤ d actionable features, with a potentially infinite number
of intervention values. We therefore consider different choices of targets I
in parallel, and propose a gradient-based approach suitable for differentiable
classifiers to efficiently find an optimal θ for a given intervention set I .9 In
particular, we first rewrite the constrained optimization problem in uncon-
strained form with Lagrangian (Kar39; KT51):

L(θ, λ) := costF(a) + λ
(
thresh(a)−EXd(I)|θ

[
h
(
xFnd(I), θ, Xd(I)

)])
. (4.20)

We then solve the saddle point problem minθ maxλ L(θ, λ) arising from (??)
with stochastic gradient descent (BB08; KB15). Since both the GP-SCM
counterfactual (??) and the CVAE interventional distributions (??) admit a
reparametrization trick (KW14; RMW14), we can differentiate through the
constraint:

∇θEXd(I)
[
h
(
xFnd(I), θ, Xd(I)

)]
= Ez∼N (0,I)

[
∇θh

(
xFnd(I), θ, xd(I)(z)

)]
. (4.21)

Here, xd(I)(z) is obtained by iteratively computing all descendants in topo-
logical order: either substituting z together with the other parents into the
decoders Dr for the CVAEs, or by using the Gaussian reparametrization
xr(z) = µ+ σz with µ and σ given by (??) for the GP-SCM. A similar gradient
estimator for the variance which enters thresh(a) for γlcb ̸= 0 is derived in
Appendix F of (Kar+20b).

9For large d when enumerating all I becomes computationally prohibitive, we can upper-
bound the allowed number of variables to be intervened on simultaneously (e.g., |I| ≤ 3),
or choose a greedy approach to select I .
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Table 4.1: Experimental results for the gradient-based approach on different 3-
variable SCMs. We show average performance ±1 standard deviation for Nruns =
100, NMC-samples = 100, and γlcb = 2.

Method
linear SCM non-linear ANM non-additive SCM

Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%)

M⋆ 100 - 10.9±7.9 100 - 20.1±12.3 100 - 13.2±11.0

Mlin 100 - 11.0±7.0 54 - 20.6±11.0 98 - 14.0±13.5

Mkr 90 - 10.7±6.5 91 - 20.6±12.5 70 - 13.2±11.6

Mgp 100 .55±.04 12.2±8.3 100 .54±.03 21.9±12.9 95 .52±.04 13.4±12.8

Mcvae 100 .55±.07 11.8±7.7 97 .54±.05 22.6±12.3 95 .51±.01 13.4±12.2

cate⋆ 90 .56±.07 11.9±9.2 97 .55±.05 26.3±21.4 100 .52±.02 13.5±13.0

categp 93 .56±.05 12.2±8.4 94 .55±.06 25.0±14.8 94 .52±.03 13.2±13.1

catecvae 89 .56±.08 12.1±8.9 98 .54±.05 26.0±14.3 100 .52±.05 13.6±12.9

4.5 experiments

In our experiments, we compare different approaches for causal algorithmic
recourse on synthetic and semi-synthetic data sets. Additional results can be
found in Appendix B of (Kar+20b).

4.5.1 Compared Methods

We compare the naive point-based recourse approachesMlin andMkr men-
tioned at the beginning of ?? as baselines with the proposed counterfac-
tual GP-SCM Mgp and the CVAE approach for sub-population-based re-
course (catecvae). For completeness, we also consider a categp approach
as a GP can also be seen as modelling each conditional as a Gaussian,10

and also evaluate the “pseudo-counterfactual” Mcvae approach discussed
in Remark ??. Finally, we report oracle performance for individualised M⋆

and sub-population-based recourse methods cate⋆ by sampling counterfac-
tuals and interventions from the true underlying SCM. We note that a com-
parison with non-causal recourse approaches that assume independent fea-
tures (USL19; SHG20) or consider causal relations to generate counterfactual
explanations but not recourse actions (Jos+19; MTS19) is neither natural nor
straight-forward, because it is unclear whether descendant variables should
be allowed to change, whether keeping their value constant should incur a
cost, and, if so, how much, c.f. (KSV21).

10Sampling from the noise prior instead of the posterior in (??) leads to an interventional
distribution in (??).
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4.5.2 Metrics

We compare recourse actions recommended by the different methods in
terms of cost, computed as the L2-norm between the intervention θI and the
factual value xFI , normalised by the range of each feature r ∈ I observed in
the training data; and validity, computed as the percentage of individuals for
which the recommended actions result in a favourable prediction under the
true (oracle) SCM. For our probabilistic recourse methods, we also report the
lower confidence bound LCB := E[h] − γlcb

√
Var[h] of the selected action

under the given method.

4.5.3 Synthetic 3-Variable SCMs under Different Assumptions

In our first set of experiments, we consider three classes of SCM s over three
variables with the same causal graph as in Fig. 4.2b. To test robustness of
the different methods to assumptions about the form of the true structural
equations, we consider a linear SCM, a non-linear ANM, and a more general,
multi-modal SCM with non-additive noise. For further details on the exact
form we refer to Appendix E of (Kar+20b)

Results are shown in ??. We observe that the point-based recourse ap-
proaches perform (relatively) well in terms of both validity and cost, when
their underlying assumptions are met (i.e.,Mlin on the linear SCM andMkr

on the nonlinear ANM). Otherwise, validity significantly drops as expected
(see, e.g., the results ofMlin on the non-linear ANM, or ofMkr on the non-
additive SCM). Moreover, we note that the inferior performance ofMkr com-
pared toMlin on the linear SCM suggests an overfitting problem, which does
not occur for its more conservative probabilistic counterpartMgp. Generally,
the individualised approaches Mgp and Mcvae perform very competitively
in terms of cost and validity, especially on the linear and nonlinear ANMs.
The subpopulation-based cate approaches on the other hand, perform partic-
ularly well on the challenging non-additive SCM (on which the assumptions
of gp approaches are violated) where catecvae achieves perfect validity as the
only non-oracle method. As expected, the subpopulation-based approaches
generally lead to higher cost than the individualised ones, since the latter
only aim to achieve recourse only for a given individual while the former do
it for an entire group (see Fig. ??).
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Figure 4.5: Assumed causal graph for the semi-synthetic loan approval dataset.

4.5.4 Semi-Synthetic 7-Variable SCM for Loan-Approval

We also test our methods on a larger semi-synthetic SCM inspired by the Ger-
man Credit UCI dataset (Mur94). We consider the variables age A, gender G,
education-level E, loan amount L, duration D, income I, and savings S with
causal graph shown in Fig. ??. We model age A, gender G and loan duration
D as non-actionable variables, but consider D to be mutable, i.e., it cannot be
manipulated directly but is allowed to change (e.g., as a consequence of an
intervention on L). The SCM includes linear and non-linear relationships, as
well as different types of variables and noise distributions, and is described
in more detail in Appendix B of (Kar+20b).

The results are summarised in ??, where we observe that the insights dis-
cussed above similarly apply for data generated from a more complex SCM,
and for different classifiers.

Finally, we show the influence of γlcb on the performance of the proposed
probabilistic approaches in Fig. ??. We observe that lower values of γlcb lead
to lower validity (and cost), especially for the cate approaches. As γlcb in-
creases validity approaches the corresponding oraclesM⋆ and cate⋆, outper-
forming the point-based recourse approaches. In summary, our probabilistic
recourse approaches are not only more robust, but also allow controlling the
trade-off between validity and cost using γlcb.

4.6 discussion

In this chapter, we have focused on the problem of algorithmic recourse,
i.e., the process by which an individual can change their situation to obtain
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Table 4.2: Experimental results for the 7-variable SCM for loan-approval. We show
average performance ±1 standard deviation for Nruns = 100, NMC-samples = 100, and
γlcb = 2.5. For linear and non-linear logistic regression as classifiers, we use the
gradient-based approach, whereas for the non-differentiable random forest classifier
we rely on the brute-force approach (with 10 discretised bins per dimension) to solve
the recourse optimisation problems.

Method
linear log. regr. non-lin. log. regr. (mlp) random forest(brute-force)

Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%)

M⋆ 100 - 15.8± 7.6 100 - 11.0±7.0 100 - 15.2±7.5

Mlin 19 - 15.4± 7.4 80 - 11.0±6.9 94 - 15.6±7.6

Mkr 41 - 15.6± 7.5 87 - 11.1±7.0 92 - 15.1±7.4

Mgp 100 .50±.00 18.0± 7.7 100 .52±.04 11.7±7.3 100 .66±.14 16.3±7.4

Mcvae 100 .50±.00 16.6± 7.6 99 .51±.01 11.3±6.9 100 .66±.14 15.9±7.4

cate⋆ 93 .50±.01 22.0± 9.4 95 .52±.05 12.0±7.7 98 .66±.15 17.0±7.3

categp 93 .50±.02 21.7± 9.2 93 .51±.06 12.0±7.4 100 .67±.15 17.1±7.4

catecvae 94 .49±.01 23.7±11.3 95 .51±.03 12.0±7.8 100 .68±.15 17.9±7.4

a desired outcome from a machine learning model. Using the tools from
causal reasoning (i.e., structural interventions and counterfactuals), we have
shown that in their current form, counterfactual explanations only bring
about agency for the individual to achieve recourse in unrealistic settings.
In other words, counterfactual explanations imply recourse actions that may
neither be optimal nor even result in favorably changing the prediction of
h when acted upon. This shortcoming is primarily due to the lack of con-
sideration of causal relations governing the world and thus, the failure to
model the downstream effect of actions in the predictions of the machine
learning model. In other words, although “counterfactual” is a term from
causal language, we observed that existing approaches fall short in terms of
taking causal reasoning into account when generating counterfactual expla-
nations and the subsequent recourse actions. Thus, building on the statement
by Wachter et al. [WMR17] that counterfactual explanations “do not rely on
knowledge of the causal structure of the world,” it is perhaps more appro-
priate to refer to existing approaches as contrastive, rather than counterfactual,
explanations (Dhu+18; Mil19). See (Kar+22, §2) for more discussion.

To directly take causal consequences of actions into account, we have pro-
posed a fundamental reformulation of the recourse problem, where actions
are performed as interventions and we seek to minimize the cost of perform-
ing actions in a world governed by a set of (physical) laws captured in a
structural causal model. Our proposed formulation in (??), complemented
with several examples and a detailed discussion, allows for recourse through
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Figure 4.6: Trade-off between validity and cost which can be controlled via γLCB for
the probabilistic recourse methods.

minimal interventions (MINT), that when performed will result in a structural
counterfactual that favourably changes the output of the model.

The primary limitation of this formulation in (??) is its reliance on
the true causal model of the world, subsuming both the graph, and the
structural equations. In practice, the underlying causal model is rarely
known, which suggests that the counterfactual constraint in (??), i.e.,
xSCF(a) := x(a)|xF = Sa(S−1(xF)), may not be (deterministically) identifiable.
As negative result, however, we showed that algorithmic recourse cannot
be guaranteed in the absence of perfect knowledge about the underlying
SCM governing the world, which unfortunately is not available in practice.
To address this limitation, we proposed two probabilistic approaches to
achieve recourse under more realistic assumptions. In particular, we derived
i) an individual-level recourse approach based on GPs that approximates
the counterfactual distribution by averaging over the family of additive
Gaussian SCMs; and ii) a subpopulation-based approach, which assumes
that only the causal graph is known and makes use of CVAEs to estimate the
conditional average treatment effect of an intervention on a subpopulation
of individuals similar to the one seeking recourse. Our experiments showed
that the proposed probabilistic approaches not only result in more robust
recourse interventions than approaches based on point estimates of the SCM,
but also allows to trade-off validity and cost.
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4.6.0.1 Assumptions, Limitations, and Extensions

Throughout the present work, we have assumed a known causal graph and
causal sufficiency. While this may not hold for all settings, it is the mini-
mal necessary set of assumptions for causal reasoning from observational
data alone. Access to instrumental variables or experimental data may help
further relax these assumptions (AIR96; CY99; TP01). Moreover, if only a par-
tial graph is available or some relations are known to be confounded, one
will need to restrict recourse actions to the subset of interventions that are
still identifiable (SP06; SP08; TP02). An alternative approach could address
causal sufficiency violations by relying on latent variable models to estimate
confounders from multiple causes (WB19) or proxy variables (Lou+17), or to
work with bounds on causal effects instead (BP94; TP00; Küg+21).

Perhaps more concerningly, our work highlights the implicit causal as-
sumptions made by existing approaches (i.e., that of independence, or feasi-
ble and cost-free interventions), which may portray a false sense of recourse
guarantees where one does not exists (see Example 4.1.2 and all of § 4.3.1).
Our work aims to highlight existing imperfect assumptions, and to offer an al-
ternative formulation, backed with proofs and demonstrations, which would
guarantee recourse if assumptions about the causal structure of the world
were satisfied. Future research on causal algorithmic recourse may benefit
from the rich literature in causality that has developed methods to verify and
perform inference under various assumptions (PJS17; Pea09).

This is not to say that counterfactual explanations should be abandoned
altogether. On the contrary, we believe that counterfactual explanations
hold promise for “guided audit of the data” (WMR17) and evaluating
various desirable model properties, such as robustness (SHG20; HL20) or
fairness (SHG20; Gup+19; USL19; Kar+20a; Küg+22). Besides this, it has been
shown that designers of interpretable machine learning systems use counter-
factual explanations for predicting model behavior (Lag+19) or uncovering
inaccuracies in the data profile of individuals (VA20). Complementing these
offerings of counterfactual explanations, we offer minimal interventions as
a way to guarantee algorithmic recourse in general settings, which is not
implied by counterfactual explanations.

4.6.0.2 On the Counterfactual vs Interventional Nature of Recourse

Given that we address two different notions of recourse—
counterfactual/individualised (rung 3) vs. interventional/subpopulation-
based (rung 2)—one may ask which framing is more appropriate. Since
the main difference is whether the background variables U are assumed
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fixed (counterfactual) or not (interventional) when reasoning about actions,
we believe that this question is best addressed by thinking about the type
of environment and interpretation of U: if the environment is static, or
if U (mostly) captures unobserved information about the individual, the
counterfactual notion seems to be the right one; if, on the other hand,
U also captures environmental factors which may change, e.g., between
consecutive loan applications, then the interventional notion of recourse may
be more appropriate. In practice, both notions may be present (for different
variables), and the proposed approaches can be combined depending on
the available domain knowledge since each parent-child causal relation is
treated separately. We emphasise that the subpopulation-based approach is
also practically motivated by a reluctance to make (parametric) assumptions
about the structural equations which are untestable but necessary for
counterfactual reasoning. It may therefore be useful to avoid problems
of misspecification, even for counterfactual recourse, as demonstrated
experimentally for the non-additive SCM.

4.7 conclusion

In this work, we explored one of the main, but often overlooked, objectives
of explanations as a means to allow people to act rather than just understand.
Using counterexamples and the theory of structural causal models (SCM),
we showed that actionable recommendations cannot, in general, be inferred
from counterfactual explanations. We show that this shortcoming is due to
the lack of consideration of causal relations governing the world and thus, the
failure to model the downstream effect of actions in the predictions of the ma-
chine learning model. Instead, we proposed a shift of paradigm from recourse
via nearest counterfactual explanations to recourse through minimal interventions
(MINT), and presented a new optimization formulation for the common class
of additive noise models. Our technical contributions were complemented
with an extensive discussion on the form, feasibility, and scope of interventions
in real-world settings. In follow-up work, we further investigated the epis-
temological differences between counterfactual explanations and consequen-
tial recommendations and argued that their technical treatment requires con-
sideration at different levels of the causal history (Rub15) of events (Kar+22).
Whereas MINT provided exact recourse under strong assumptions (requir-
ing the true SCM), we next explored how to offer recourse under milder
and more realistic assumptions (requiring only the causal graph). We present
two probabilistic approaches that offer recourse with high probability. The
first captures uncertainty over structural equations under additive Gaussian
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noise, and uses Bayesian model averaging to estimate the counterfactual dis-
tribution. The second removes any assumptions on the structural equations
by instead computing the average effect of recourse actions on individuals
similar to the person who seeks recourse, leading to a novel subpopulation-
based interventional notion of recourse. We then derive a gradient-based pro-
cedure for selecting optimal recourse actions, and empirically show that the
proposed approaches lead to more reliable recommendations under imper-
fect causal knowledge than non-probabilistic baselines. This contribution is
important as it enables recourse recommendations to be generated in more
practical settings and under uncertain assumptions.

As a final note, while for simplicity, we have focused in this chapter on
credit loan approvals, recourse can have potential applications in other do-
mains such as healthcare (Rie+20; BKB17; GB20; BBK19), justice (e.g., pre-
trial bail) (Ang+16), and other settings (e.g., hiring) (NS18; CLM19; Sch+20)
whereby actionable recommendations for individuals are sought.
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5FA I R C A U S A L A L G O R I T H M I C R E C O U R S E

Chapter Abstract

Algorithmic fairness is typically studied from the perspective of predic-
tions. Instead, here we investigate fairness from the perspective of recourse
actions suggested to individuals to remedy an unfavourable classification.
We propose two new fairness criteria at the group and individual level,
which—unlike prior work on equalising the average group-wise distance
from the decision boundary—explicitly account for causal relationships
between features, thereby capturing downstream effects of recourse actions
performed in the physical world. We explore how our criteria relate to
others, such as counterfactual fairness, and show that fairness of recourse
is complementary to fairness of prediction. We study theoretically and
empirically how to enforce fair causal recourse by altering the classifier
and perform a case study on the Adult dataset. Finally, we discuss whether
fairness violations in the data generating process revealed by our criteria
may be better addressed by societal interventions as opposed to constraints
on the classifier.

This chapter is based on the paper “On the Fairness of Causal Algorithmic
Recourse,” von Kügelgen, Karimi, Bhatt, Valera, Weller, Schölkopf, AAAI (Á),
2022 (Küg+22).
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5.1 introduction

Algorithmic fairness is concerned with uncovering and correcting for
potentially discriminatory behavior of automated decision making sys-
tems (Dwo+12; Zem+13; HPS16; Cho17). Given a dataset comprising
individuals from multiple legally protected groups (defined, e.g., based on
age, sex, or ethnicity), and a binary classifier trained to predict a decision
(e.g., whether they were approved for a credit card), most approaches to
algorithmic fairness seek to quantify the level of unfairness according to
a pre-defined (statistical or causal) criterion, and then aim to correct it by
altering the classifier. This notion of predictive fairness typically considers the
dataset as fixed, and thus the individuals as unalterable.

Algorithmic recourse, on the other hand, is concerned with offering
recommendations to individuals, who were unfavourably treated by a
decision-making system, to overcome their adverse situation (Jos+19; USL19;
SHG19; MTS19; MST20; VA20; Kar+20b; Kar+22; KSV21; UJL21). For a given
classifier and a negatively-classified individual, algorithmic recourse aims
to identify which changes the individual could perform to flip the decision.
Contrary to predictive fairness, recourse thus considers the classifier as fixed
but ascribes agency to the individual.

Within machine learning (ML), fairness and recourse have mostly been
considered in isolation and viewed as separate problems. While recourse has
been investigated in the presence of protected attributes—e.g., by comparing
recourse actions (flipsets) suggested to otherwise similar male and female
individuals (USL19), or comparing the aggregated cost of recourse (burden)
across different protected groups (SHG19)—its relation to fairness has only
been studied informally, in the sense that differences in recourse have typi-
cally been understood as proxies of predictive unfairness (Kar+20a). However,
as we argue in the present work, recourse actually constitutes an interesting
fairness criterion in its own right as it allows for the notions of agency and
effort to be integrated into the study of fairness.

In fact, discriminatory recourse does not imply predictive unfairness (and is not
implied by it either1). To see this, consider the data shown in Fig. 5.1. Sup-
pose the feature X represents the (centered) income of an individual from one
of two sub-groups A ∈ {0, 1}, distributed as N (0, 1) and N (0, 4), i.e., only
the variances differ. Now consider a binary classifier h(X) = sign(X) which
perfectly predicts whether the individual is approved for a credit card (the
true label Y) (BSR20). While this scenario satisfies several predictive fairness

1Clearly, the average cost of recourse across groups can be the same, even if the proportion
of individuals which are classified as positive or negative is very different across groups
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Figure 5.1: Example demonstrating the difference between fair prediction and fair re-
course: here, only the variance of (centered income) X differs across two protected
groups A ∈ {0, 1}, while the true and predicted label (whether an individual is ap-
proved for a credit card) are determined by sign(X). This scenario would be consid-
ered fair from the perspective of prediction, but the cost of recourse (here, the distance
to the decision boundary, set at X = 0) is much larger for individuals in the blue
group with A = 0.

criteria (e.g., demographic parity, equalised odds, calibration), the required
increase in income for negatively-classified individuals to be approved for a
credit card (i.e., the effort required to achieve recourse) is much larger for the
higher variance group. If individuals from one protected group need to work
harder than “similar” ones from another group to achieve the same goal, this
violates the concept of equal opportunity, a notion aiming for people to oper-
ate on a level playing field (Arn15).2 However, this type of unfairness is not
captured by predictive notions which—in only distinguishing between (un-
alterable) worthy or unworthy individuals—do not consider the possibility
for individuals to deliberately improve their situation by means of changes
or interventions.

2This differs from the commonly-used purely predictive, statistical criterion of equal
opportunity (HPS16).
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In this vein, Gupta et al. [Gup+19] recently introduced Equalizing Re-
course, the first recourse-based and prediction-independent notion of fair-
ness in ML. They propose to measure recourse fairness in terms of the av-
erage group-wise distance to the decision boundary for those getting a bad out-
come, and show that this can be calibrated during classifier training. How-
ever, this formulation ignores that recourse is fundamentally a causal problem
since actions performed by individuals in the real-world to change their
situation may have downstream effects (MTS19; KSV21; Kar+20b; MST20),
cf. also (BSR20; WMR17; USL19). By not reasoning about causal relations be-
tween features, the distance-based approach (i) does not accurately reflect
the true (differences in) recourse cost, and (ii) is restricted to the classical
prediction-centered approach of changing the classifier to address discrimi-
natory recourse.

In the present work, we address both of these limitations. First, by extend-
ing the idea of Equalizing Recourse to the minimal intervention-based frame-
work of recourse (KSV21), we introduce causal notions of fair recourse which
capture the true differences in recourse cost more faithfully if features are not
independently manipulable, as is generally the case. Second, we argue that a
causal model of the data generating process opens up a new route to fairness
via societal interventions in the form of changes to the underlying system. Such
societal interventions may reflect common policies like subgroup-specific sub-
sidies or tax breaks. We highlight the following contributions:

• we introduce a causal version (Defn. 5.3.1) of Equalizing Recourse, as
well as a stronger (Prop. 5.3.1) individual-level criterion (Defn. 5.3.2)
which we argue is more appropriate;

• we provide the first formal study of the relation between fair prediction
and fair recourse, and show that they are complementary notions which
do not imply each other (Prop. 5.3.2);

• we establish sufficient conditions that allow for individually-fair causal
recourse (Prop. 5.3.3);

• we evaluate different fair recourse metrics for several classifiers (§ 5.4.1),
verify our main results, and demonstrate that non-causal metrics mis-
represent recourse unfairness;

• in a case study on the Adult dataset, we detect recourse discrimination
at the group and individual level (§ 5.4.2), demonstrating its relevance
for real world settings;

• we propose societal interventions as an alternative to altering a classifier
to address unfairness (§ 5.5).
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5.2 preliminaries & background

notation. Let the random vector X = (X1, ..., Xn) taking values x =
(x1, ..., xn) ∈ X = X1 × ... × Xn ⊆ Rn denote observed (non-protected)
features. Let the random variable A taking values a ∈ A = {1, . . . , K} for
some K ∈ Z>1 denote a (legally) protected attribute/feature indicating which
group each individual belongs to (based, e.g., on her age, sex, ethnicity, reli-
gion, etc). And let h : X → Y be a given binary classifier with Y ∈ Y = {±1}
denoting the ground truth label (e.g., whether her credit card was approved).
We observe a dataset D = {vi}N

i=1 of i.i.d. observations of the random vari-
able V = (X, A) with vi := (xi, ai).3

counterfactual explanations . A common framework for explain-
ing decisions made by (black-box) ML models is that of counterfactual expla-
nations CE; WMR17. A CE is a closest feature vector on the other side of the
decision boundary. Given a distance d : X × X → R+, a CE for an individ-
ual xF who obtained an unfavourable prediction, h(xF) = −1, is defined as a
solution to:

min
x∈X

d(x, xF) subject to h(x) = 1. (5.1)

While CEs are useful to understand the behaviour of a classifier, they do not gen-
erally lead to actionable recommendations: they inform an individual of where
she should be to obtain a more favourable prediction, but they may not sug-
gest feasible changes she could perform to get there.

recourse with independently-manipulable features . Ustun et
al. [USL19] refer to a person’s ability to change the decision of a model by
altering actionable variables as recourse and propose to solve

min
δ∈F (xF)

c(δ; xF) subject to h(xF + δ) = 1 (5.2)

where F (xF) is a set of feasible change vectors and c(·; xF) is a cost function
defined over these actions, both of which may depend on the individual.4

As pointed out by Karimi et al. [KSV21], (5.2) implicitly treats features as
manipulable independently of each other (see Fig. 5.2a) and does not ac-
count for causal relations that may exist between them (see Fig. 5.2b): while
allowing feasibility constraints on actions, variables which are not acted-
upon (δi = 0) are assumed to remain unchanged. We refer to this as the
independently-manipulable features (IMF) assumption. While the IMF-view may

3We use v when there is an explicit distinction between the protected attribute and other
features (in the context of fairness) and x otherwise (in the context of explainability).

4For simplicity, (5.2) assumes that all Xi are continuous; we do not make this assumption
in the remainder of the present work.
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Figure 5.2: (a) The framework underlying counterfactual explanations and distance-
based recourse treats Xi as independently manipulable features (IMF). In a fairness
context, this means that the Xi may depend on the protected attribute A (and po-
tentially other unobserved factors) but do not causally influence each other. (b) The
present work considers a generalisation the IMF assumption by allowing for causal
influences between the Xi , thus modeling the downstream effects of changing some
features on others. This causal approach allows us to more accurately quantify re-
course unfairness in real-world settings where the IMF assumption is typically vi-
olated. It also provides a framework for studying alternative routes to achieve fair
recourse beyond changing the classifier.

be appropriate when only analysing the behaviour of a classifier, it falls short
of capturing effects of interventions performed in the real world, as is the
case in actionable recourse; e.g., an increase in income will likely also pos-
itively affect the individual’s savings balance. As a consequence, (5.2) only
guarantees recourse if the acted-upon variables have no causal effect on the
remaining variables (KSV21).

structural causal models . A structural causal model (SCM) (Pea09;
PJS17) over observed variables V = {Vi}n

i=1 is a pair M = (S, PU), where
the structural equations S are a set of assignments S = {Vi := fi(PAi, Ui)}n

i=1,
which compute each Vi as a deterministic function fi of its direct causes
(causal parents) PAi ⊆ V \ Vi and an unobserved variable Ui. In this work,
we make the common assumption that the distribution PU factorises over the
latent U = {Ui}n

i=1, meaning that there is no unobserved confounding (causal
sufficiency). If the causal graph G associated with M (obtained by drawing
a directed edge from each variable in PAi to Vi, see Fig. 5.2 for examples) is
acyclic, M induces a unique “observational” distribution over V, defined as
the push forward of PU via S.

SCMs can be used to model the effect of interventions: external manipula-
tions to the system that change the generative process (i.e., the structural as-
signments) of a subset of variables VI ⊆ V, e.g., by fixing their value to a con-
stant θI . Such (atomic) interventions are denoted using Pearl’s do-operator by
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do(VI := θI ), or do(θI ) for short. Interventional distributions are obtained
fromM by replacing the structural equations {Vi := fi(PAi, Ui)}i∈I by their
new assignments {Vi := θi}i∈I to obtain the modified structural equations
Sdo(θI ) and then computing the distribution induced by the interventional
SCMMdo(θI ) = (Sdo(θI ), PU), i.e., the push-forward of PU via Sdo(θI ).

Similarly, SCMs allow reasoning about (structural) counterfactuals: state-
ments about interventions performed in a hypothetical world where all unob-
served noise terms U are kept unchanged and fixed to their factual value uF.
The counterfactual distribution for a hypothetical intervention do(θI ) given
a factual observation vF, denoted vθI (u

F), can be obtained from M using a
three step procedure: first, inferring the posterior distribution over the un-
observed variables PU|vF (abduction); second, replacing some of the structural
equations as in the interventional case (action); third, computing the distribu-
tion induced by the counterfactual SCMMdo(θI )|vF = (Sdo(θI ), PU|vF ) (predic-
tion).

causal recourse . To capture causal relations between features, Karimi
et al. [KSV21] propose to approach the actionable recourse task within the
framework of SCMs and to shift the focus from nearest CEs to minimal inter-
ventions, leading to the optimisation problem

min
θI∈F (xF)

c(θI ; xF) subj. to h(xθI (u
F)) = 1, (5.3)

where xθI (u
F) denotes the “counterfactual twin” of xF had XI been θI .5 In

practice, the SCM is unknown and needs to be inferred from data based on
additional (domain-specific) assumptions, leading to probabilistic versions
of (5.3) which aim to find actions that achieve recourse with high probabil-
ity (Kar+20b). If the IMF assumptions holds (i.e., the set of descendants of all
actionable variables is empty), then (5.3) reduces to IMF recourse (5.2) as a
special case.

algorithmic and counterfactual fairness . While there are
many statistical notions of fairness (Zaf+17a; Zaf+17b), these are sometimes
mutually incompatible (Cho17), and it has been argued that discrimination,
at its heart, corresponds to a (direct or indirect) causal influence of a
protected attribute on the prediction, thus making fairness a fundamentally
causal problem (Kil+17; Rus+17; Lof+18; ZB18a; ZB18b; NS18; NMS19;
Chi19; Sal+19; Wu+19). Of particular interest to our work is the notion of

5For an interventional notion of recourse related to conditional average treatment effects
(CATE) for a specific subpopulation, see (Kar+20b); in the present work, we focus on the
individualised counterfactual notion of causal recourse.
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counterfactual fairness introduced by Kusner et al. [Kus+17] which calls a
(probabilistic) classifier h over V = X∪ A counterfactually fair if it satisfies

h(vF) = h(va(uF)), ∀a ∈ A, vF = (xF, aF) ∈ X ×A,

where va(uF) denotes the “counterfactual twin” of vF had the attribute been
a instead of aF.

equalizing recourse across groups . The main focus of this chapter
is the fairness of recourse actions which, to the best of our knowledge, was stud-
ied for the first time by Gupta et al. [Gup+19]. They advocate for equalizing
the average cost of recourse across protected groups and to incorporate this
as a constraint when training a classifier. Taking a distance-based approach
in line with CEs, they define the cost of recourse for xF with h(xF) = −1 as
the minimum achieved in (5.1):

rimf(xF) = min
x∈X

d(xF, x) subj. to h(x) = 1, (5.4)

which is equivalent to IMF-recourse (5.2) if c(δ; xF) = d(xF + δ, xF) is chosen
as cost function. Defining the protected subgroups, Ga = {vi ∈ D : ai = a},
and G−a = {v ∈ Ga : h(v) = −1}, the group-level cost of recourse (here, the
average distance to the decision boundary) is then given by,

rimf(G−a ) = 1
|G−a | ∑vi∈G−a rimf(xi). (5.5)

The idea of Equalizing Recourse across groups (Gup+19) can then be sum-
marised as follows.
Definition 5.2.1 (Group-level fair IMF-recourse, from (Gup+19)). The group-
level unfairness of recourse with independently-manipulable features (IMF) for a
dataset D, classifier h, and distance metric d is:

∆dist(D, h, d) := max
a,a′∈A

∣∣rimf(G−a )− rimf(G−a′ )
∣∣ .

Recourse for (D, h, d) is “group IMF-fair” if ∆dist = 0.

5.3 fair causal recourse

Since Defn. 5.2.1 rests on the IMF assumption, it ignores causal relationships
between variables, fails to account for downstream effects of actions on other
relevant features, and thus generally incorrectly estimates the true cost of
recourse. We argue that recourse-based fairness considerations should rest
on a causal model that captures the effect of interventions performed in the
physical world where features are often causally related to each other. We
therefore consider an SCMM over V = (X, A) to model causal relationships
between the protected attribute and the remaining features.
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5.3.1 Group-Level Fair Causal Recourse

Defn. 5.2.1 can be adapted to the causal (CAU) recourse framework (5.3) by
replacing the minimum distance in (5.4) with the cost of recourse within a
causal model, i.e., the minimum achieved in (5.3):

rcau(vF) = min
θI∈Θ(vF)

c(θI ; vF) subj. to h(vθI (u
F)) = 1,

where we recall that the constraint h(vθI (u
F)) = 1 ensures that the coun-

terfactual twin of vF in M falls on the favourable side of the classifier. Let
rcau(G−a ) be the average of rcau(vF) across G−a , analogously to (5.5). We can
then define group-level fair causal recourse as follows.
Definition 5.3.1 (Group-level fair causal recourse). The group-level unfair-
ness of causal (CAU) recourse for a dataset D, classifier h, and cost function c
w.r.t. an SCMM is given by:

∆cost(D, h, c,M) := max
a,a′∈A

∣∣rcau(G−a )− rcau(G−a′ )
∣∣ .

Recourse for (D, h, c,M) is “group CAU-fair” if ∆cost = 0.
While Defn. 5.2.1 is agnostic to the (causal) generative process of the data

(note the absence of a reference SCM M from Defn. 5.2.1), Defn. 5.3.1 takes
causal relationships between features into account when calculating the cost
of recourse. It thus captures the effect of actions and the necessary cost of
recourse more faithfully when the IMF-assumption is violated, as is realistic
for most applications.

A shortcoming of both Defns. 5.2.1 and 5.3.1 is that they are group-level
definitions, i.e., they only consider the average cost of recourse across all
individuals sharing the same protected attribute. However, it has been
argued from causal (Chi19; Wu+19) and non-causal (Dwo+12) perspectives
that fairness is fundamentally an individual-level concept:6 group-level
fairness still allows for unfairness at the level of the individual, provided that
positive and negative discrimination cancel out across the group. This is one
motivation behind counterfactual fairness (Kus+17): a decision is considered
fair at the individual level if it would not have changed, had the individual
belonged to a different protected group.

6After all, it is not much consolation for an individual who was unfairly given an un-
favourable prediction to find out that other members of the same group were treated more
favourably

97



fair causal algorithmic recourse

5.3.2 Individually Fair Causal Recourse

Inspired by counterfactual fairness (Kus+17), we propose that (causal) re-
course may be considered fair at the level of the individual if the cost of
recourse would have been the same had the individual belonged to a differ-
ent protected group, i.e., under a counterfactual change to A.
Definition 5.3.2 (Individually fair causal recourse). The individual-level un-
fairness of causal recourse for a dataset D, classifier h, and cost function c
w.r.t. an SCMM is

∆ind(D, h, c,M) := max
a∈A;vF∈D

∣∣rcau(vF)− rcau(va(uF))
∣∣

Recourse is “individually CAU-fair” if ∆ind = 0.
This is a stronger notion in the sense that it is possible to satisfy both group

IMF-fair (Defn. 5.2.1) and group CAU-fair recourse (Defn. 5.3.1), without sat-
isfying Defn. 5.3.2:

Proposition 5.3.1. Neither of the group-level notions of fair recourse (Defn. 5.2.1
and Defn. 5.3.1) are sufficient conditions for individually CAU-fair recourse
(Defn. 5.3.2), i.e.,

Group IMF-fair ≠⇒ Individually CAU-fair.

Group CAU-fair ≠⇒ Individually CAU-fair.

Proof. A counterexample is given by the following combination of SCM and
classifier

A := UA,

X := AUX + (1− A)(1−UX),

UA, UX ∼ Bernoulli(0.5),

Y := h(X) = sign(X− 0.5).

We have PX|A=0 = PX|A=1 = Bernoulli(0.5), so the distance to the boundary
at X = 0.5 is the same across groups. The criterion for “group IMF-fair”
recourse (Defn. 5.2.1) is thus satisfied.

Since protected attributes are generally immutable (thus making any re-
course actions involving changes to A infeasible) and since there is only a
single feature in this example (so that causal downstream effects on descen-
dant features can be ignored), the distance between the factual and coun-
terfactual value of X is a reasonable choice of cost function also for causal
recourse. In this case, (D, h,M) also satisfies group-level CAU-fair recourse
(Defn. 5.3.1).
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However, for all vF = (xF, aF) and any a ̸= aF, we have h(xF) ̸= h(xa(uF
X)) =

1− h(xF), so it is maximally unfair at the individual level: for any individual,
the cost of recourse would have been zero had the protected attribute been
different, as the prediction would have flipped.

5.3.3 Relation to Counterfactual Fairness

The classifier h used in the proof of Prop. 5.3.1 is not counterfactually fair.
This suggests to investigate their relation more closely: does a counterfactually
fair classifier imply fair (causal) recourse? The answer is no.

Proposition 5.3.2. Counterfactual fairness is insufficient for any of the three notions
of fair recourse:

h counterfactually fair ≠⇒ Group IMF-fair

h counterfactually fair ≠⇒ Group CAU-fair

h counterfactually fair ≠⇒ Individually CAU-fair

Proof. A counterexample is given by the following combination of SCM and
classifier:

A := UA, UA ∼ Bernoulli(0.5),

X := (2− A)UX , UX ∼ N (0, 1),

Y := h(X) = sign(X)

(5.6)

which we used to generate Fig. 5.1. As sign(X) = sign(UX), and UX is as-
sumed fixed when reasoning about a counterfactual change of A, h is coun-
terfactually fair.

However, PX|A=0 = N (0, 4) and PX|A=1 = N (0, 1), so the distance to the
boundary (which is a reasonable cost for cau-recourse in this one-variable
toy example) differs at the group level. Moreover, X either doubles or halves
when counterfactually changing A.

Remark. An important characteristic of the counterexample used in the proof
of Prop. 5.3.2 is that h is deterministic, which makes it possible that h is counterfac-
tually fair, even though it depends on a descendant of A. This, in general, need not
be the case if h is probabilistic (e.g., a logistic regression), h : X → [0, 1], so that the
probability of a positive classification decreases with the distance from the decision
boundary.
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Figure 5.3: (a) & (b) Causal graphs used in § 5.4.1. (c) The (assumed) causal
graph (from Chiappa [Chi19] and Nabi and Shpitser [NS18]) used for the Adult
dataset (Lic+13); A denotes the three protected attributes {sex, age, nationality}; M
denotes {marital status, education level}; and W corresponds to {working class, occu-
pation, hrs per week}. Here, we show the coarse-grained causal graph for simplicity.
In practice, we model each node separately. For example, the single arrow from A
to M actually corresponds to six directed edges, one from each feature in A to each
feature in M.

5.3.4 Achieving Fair Causal Recourse

constrained optimisation. A first approach is to explicitly take con-
straints on the (group or individual level) fairness of causal recourse into
account when training a classifier, as implemented for non-causal recourse
under the IMF assumption by Gupta et al. [Gup+19]. Herein we can control
the potential trade-off between accuracy and fairness with a hyperparame-
ter. However, the optimisation problem in (5.3) involves optimising over the
combinatorial space of intervention targets I ⊆ {1, ..., n}, so it is unclear
whether fairness of causal recourse may easily be included as a differentiable
constraint.

restricting the classifier inputs . An approach that only requires
qualitative knowledge in form of the causal graph (but not a fully-specified
SCM), is to restrict the set of input features to the classifier to only contain
non-descendants of the protected attribute. In this case, and subject to some
additional assumptions stated in more detail below, individually fair causal
recourse can be guaranteed.

Proposition 5.3.3. Assume h only depends on a subset X̃ ⊆ V \ (A∪ d(A)) which
are non-descendants of A in M; and that the set of feasible actions and their cost
remain the same under a counterfactual change of A, F (vF) = F (va(uF)) and
c(· ; vF) = c(· ; va(uF)) ∀a ∈ A, vF ∈ D. Then recourse for (D, h, c,M) is “indi-
vidually CAU-fair”.
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Proof. According to Defn. 5.3.2, it suffices to show that

rcau(vF) = rcau(va(uF)), ∀a ∈ A, vF ∈ D. (5.7)

Substituting our assumptions in the definition of rcau from § 5.3.1, we ob-
tain:

rcau(vF) = min
θI∈F (vF)

c(θI ; vF) s.t. h(x̃θI (u
F)) = 1,

rcau(va(uF)) = min
θI∈F (vF)

c(θI ; vF) s.t. h(x̃θI ,a(uF)) = 1.

It remains to show that

x̃θI ,a(uF) = x̃θI (u
F), ∀θI ∈ F (vF), a ∈ A

which follows from applying do-calculus (Pea09) since X̃ does not contain any
descendants of A by assumption, and is thus not influenced by counterfactual
changes to A.

The assumption of Prop. 5.3.3 that both the set of feasible actions F (vF)
and the cost function c(· ; vF) remain the same under a counterfactual change
to the protected attribute may not always hold. For example, if a protected
group were precluded (by law) or discouraged from performing certain re-
course actions such as taking on a particular job or applying for a certification,
that would constitute such a violation due to a separate source of discrimina-
tion.

Moreover, since protected attributes usually represent socio-demographic
features (e.g., age, gender, ethnicity, etc), they often appear as root nodes in
the causal graph and have downstream effects on numerous other features.
Forcing the classifier to only consider non-descendants of A as inputs, as
in Prop. 5.3.3, can therefore lead to a drop in accuracy which can be a restric-
tion (WZW19).

abduction / representation learning . We have shown that con-
sidering only non-descendants of A is a way to achieve individually CAU-fair
recourse. In particular, this also applies to the unobserved variables U which
are, by definition, not descendants of any observed variables. This suggests
to use Ui in place of any descendants Xi of A when training the classifier—in
a way, Ui can be seen as a “fair representation” of Xi since it is an exoge-
nous component that is not due to A. However, as U is unobserved, it needs
to be inferred from the observed vF, corresponding to the abduction step
of counterfactual reasoning. Great care needs to be taken in learning such
a representation in terms of the (fair) background variables as (untestable)
counterfactual assumptions are required Kus+17, § 4.1.
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5.4 experiments

We perform two sets of experiments. First, we verify our main claims in nu-
merical simulations (§ 5.4.1). Second, we use our causal measures of fair re-
course to conduct a preliminary case study on the Adult dataset (§ 5.4.2). We
refer to D.1 for further experimental details and to D.2 for additional results
and analyses.7

5.4.1 Numerical Simulations

data . Since computing recourse actions, in general, requires knowledge
(or estimation) of the true SCM, we first consider a controlled setting with
two kinds of synthetic data:

• IMF: the setting underlying IMF recourse where features do not
causally influence each other, but may depend on the protected
attribute A.

• CAU: features causally depend on each other and on A. We use
{Xi := fi(A, PAi) + Ui}n

i=1 with linear (CAU-LIN) and nonlinear
(CAU-ANM) fi.

The corresponding causal graphs are included in Fig.3 of (Küg+22). We use
n = 3 non-protected features Xi and a binary protected attribute A ∈ {0, 1}
in all our experiments and generate labelled datasets of N = 500 observations
using the SCMs described in more detail in D.1.1. The ground truth (GT) la-
bels yi used to train different classifiers are sampled as Yi ∼ Bernoulli(h(xi))
where h(xi) is a linear or nonlinear logistic regression, independently of A,
as detailed inD.1.2.

classifiers . On each data set, we train several (“fair”) classifiers. We
consider linear and nonlinear logistic regression (LR), and different support
vector machines (SVMs; SS02) (for ease of comparison with Gupta et al.
[Gup+19]), trained on varying input sets:

• LR/SVM(X, A): trained on all features (naïve baseline);

• LR/SVM(X): trained only on non-protected features X (unaware base-
line);

• FairSVM(X, A): the method of Gupta et al. [Gup+19], designed to
equalise the average distance to the decision boundary across different
protected groups;

7All Appendix mentions refer to the arXiv version (Küg+22) containing the supplement
of this work.
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• LR/SVM(Xnd): trained only on features Xnd(A) which are non-
descendants of A, see § 5.3.4;

• LR/SVM(Xnd, Ud): trained on non-descendants Xnd(A) of A and on the
unobserved variables Ud(A) corresponding to features Xd(A) which are
descendants of A, see § 5.3.4.

To make distances comparable across classifiers, we use either a linear or
polynomial kernel for all SVMs (depending on the GT labels) and select all re-
maining hyperparameters (including the trade-off parameter λ for FairSVM)
using 5-fold cross validation. Results for kernel selection by cross-validation
are also provided in D.2 in D.2.3. Linear (nonlinear, resp.) LR is used when
the GT labels are generated using linear (nonlinear, resp.) logistic regression,
as detailed inD.1.2.

solving the causal recourse optimisation problem . We treat A
and all Ui as non-actionable and all Xi as actionable. For each negatively pre-
dicted individual, we discretise the space of feasible actions, compute the effi-
cacy of each action using a learned approximate SCM (MKR) (following Karimi
et al. [Kar+20b], see D.2.2 for details), and select the least costly valid action
resulting in a favourable outcome. Results using the true oracle SCM (M⋆)
and a linear estimate thereof (MLIN) are included in Tabs. 3 and 4 in D.2.2;
the trends are mostly the same as forMKR.

metrics . We report (a) accuracy (Acc) on a held out test set of size 3000;
and (b) fairness of recourse as measured by average distance to the boundary
(∆dist, Defn. 5.2.1) (Gup+19), and our causal group-level (∆cost, Defn. 5.3.1)
and individual level (∆indv, Defn. 5.3.2) criteria. For (b), we select 50 nega-
tively classified individuals from each protected group and report the differ-
ence in group-wise means (∆dist and ∆cost) or the maximum difference over
all 100 individuals (∆indv). To facilitate a comparison between the different
SVMs, ∆dist is reported in terms of absolute distance to the decision bound-
ary in units of margins. As a cost function in the causal recourse optimisation
problem, we use the L2 distance between the intervention value θI and the
factual value of the intervention targets xFI .

results . Results are shown in Tab. 5.2. We find that the naïve and unaware
baselines generally exhibit high accuracy and rather poor performance in
terms of fairness metrics, but achieve surprisingly low ∆cost on some datasets.
We observe no clear preference of one baseline over the other, consistent with
prior work showing that blindness to protected attributes is not necessarily
beneficial for fair prediction (Dwo+12); our results suggest this is also true for
fair recourse.
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FairSVM generally performs well in terms of ∆dist (which is what it is
trained for), especially on the two IMF datasets, and sometimes (though
not consistently) outperforms the baselines on the causal fairness metrics.
However, this comes at decreased accuracy, particularly on linearly-separable
data.

Both of our causally-motivated setups, LR/SVM(Xnd(A)) and
LR/SVM(Xnd(A), Ud(A)), achieve ∆indv = 0 throughout as expected
per Prop. 5.3.3, and they are the only methods to do so. Whereas the
former comes at a substantial drop in accuracy due to access to fewer
predictive features (see § 5.3.4), the latter maintains high accuracy by
additionally relying on (the true) Ud(A) for prediction. Its accuracy should
be understood as an upper bound on what is possible while preserving
“individually CAU-fair” recourse if abduction is done correctly, see the
discussion in § 5.3.4.

Generally, we observe no clear relationship between the different fairness
metrics: e.g., low ∆dist does not imply low ∆cost (nor vice versa) justifying
the need for taking causal relations between features into account (if present)
to enforce fair recourse at the group-level. Likewise, neither small ∆dist nor
small ∆cost imply small ∆indv, consistent with Prop. 5.3.1, and, empirically, the
converse does not hold either.

summary of main findings from § 5 .4 .1 : The non-causal met-
ric ∆dist does not accurately capture recourse unfairness on the CAU-
datasets where causal relations are present, thus necessitating our new causal
metrics ∆cost and ∆indv. Methods designed in accordance with Prop. 5.3.3
indeed guarantee individually fair recourse, and group fairness does not
imply individual fairness, as expected per Prop. 5.3.1.

5.4.2 Case Study on the Adult Dataset

data . We use the Adult dataset (Lic+13), which consists of 45k+ samples
without missing data. We process the dataset similarly to Chiappa [Chi19]
and Nabi and Shpitser [NS18] and adopt the causal graph assumed therein
(see also Fig. 3c of (Küg+22)). The eight heterogeneous variables include the
three binary protected attributes sex (m=male, f=female), age (binarised as
I{age ≥ 38}; y=young, o=old), and nationality (Nat; US vs non-US), as
well as five non-protected features: marital status (MS; categorical), edu-
cation level (Edu; integer), working class (WC; categorical), occupation

(Occ; categorical), and hours per week (Hrs; integer). We treat the protected
attributes and marital status as non-actionable, and the remaining variables
as actionable when searching for recourse actions.
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experimental setup. We extend the probabilistic framework of Karimi
et al. [Kar+20b] to consider causal recourse in the presence of heterogeneous
features, see D.2.2 for more details. We use a nonlinear LR(X) as a classifier
(i.e., fairness through unawareness) which attains 78.4% accuracy, and (ap-
proximately) solve the recourse optimisation problem (5.3) using brute force
search as in § 5.4.1. We compute the best recourse actions for 10 (uniformly
sampled) negatively predicted individuals from each of the eight different
protected groups (all 23 combinations of the three protected attributes), as
well as for each of their seven counterfactual twins, and evaluate using the
same metrics as in § 5.4.1.

results . At the group level, we obtain ∆dist = 0.89 and ∆cost = 33.32,
indicating group-level recourse discrimination. Moreover, the maximum dif-
ference in distance is between old US males and old non-US females (latter is
furthest from the boundary), while that in cost is between old US females and
old non-US females (latter is most costly). This quantitative and qualitative dif-
ference between ∆dist and ∆cost emphasises the general need to account for
causal-relations in fair recourse, as present in the Adult dataset.

At the individual-level, we find an average difference in recourse cost to the
counterfactual twins of 24.32 and a maximum difference (∆indv) of 61.53. The
corresponding individual/factual observation for which this maximum is ob-
tained is summarised along with its seven counterfactual twins in Tab. 5.3,
see the caption for additional analysis.

summary of main findings from § 5 .4 .2 : Our causal fairness metrics
reveal qualitative and quantitative aspects of recourse discrimination at both
the group and individual level. In spite of efforts to design classifiers that are
predictively fair, recourse unfairness remains a valid concern on real datasets.

5.5 on societal interventions

Our notions of fair causal recourse (Defns. 5.3.1 and 5.3.2) depend on mul-
tiple components (D, h, c,M). As discussed in § 5.1, in fair ML, the typical
procedure is to alter the classifier h. This is the approach proposed for Equal-
izing Recourse by Gupta et al. [Gup+19], which we have discussed in the
context of fair causal recourse (§ 5.3.4) and explored experimentally (§ 5.4).
However, requiring the learnt classifier h to satisfy some constraint implicitly
places the cost of an intervention on the deployer. For example, a bank might
need to modify their classifier so as to offer credit cards to some individuals
who would not otherwise receive them.
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Another possibility is to alter the data-generating process (as captured by the
SCM M and manifested in the form of the observed data D) via a societal
intervention in order to achieve fair causal recourse with a fixed classifier h. By
considering changes to the underlying SCM or to some of its mechanisms, we
may facilitate outcomes which are more societally fair overall, and perhaps
end up with a dataset that is more amenable to fair causal recourse (either
at the group or individual level). Unlike the setup of Gupta et al. [Gup+19],
our causal approach here is perhaps particularly well suited to exploring
this perspective, as we are already explicitly modelling the causal generative
process, i.e., how changes to parts of the system will affect the other variables.

We demonstrate our ideas for the toy example with different variances
across groups from Fig. 5.1. Here, the difference in recourse cost across
groups cannot easily be resolved by changing the classifier h (e.g., per the
techniques in § 5.3.4): to achieve perfectly fair recourse, we would have to use
a constant classifier, i.e., either approve all credit cards, or none, irrespective
of income. Essentially, changing h does not address the root of the problem,
namely the discrepancy in the two populations. Instead, we investigate how
to reduce the larger cost of recourse within the higher-variance group by
altering the data generating process via societal interventions.

Let ik denote a societal intervention that modifies the data generating pro-
cess, X := (2− A)UX , UX ∼ N (0, 1), by changing the original SCM M to
M′

k = ik(M). For example, ik may introduce additional variables or modify
a subset of the original structural equations. Specifically, we consider subsi-
dies to particular eligible individuals. We introduce a new treatment variable
T which randomly selects a proportion 0 ≤ p ≤ 1 of individuals from A = 0
who are awarded a subsidy s if their latent variable UX is below a threshold
t.8 This is captured by the modified structural equations

T := (1− A)I{UT < p}, UT ∼ Uniform[0, 1],

X := (2− A)UX + sTI{UX < t}, UX ∼ N (0, 1).

Here, each societal intervention ik thus corresponds to a particular way
of setting the triple (p, t, s). To avoid changing the predictions sgn(X), we
only consider t ≤ 0 and s ≤ −2t. The modified distribution resulting from
ik = (1,−0.75, 1.5) is shown in Fig. 5.4a, see the caption for details.

To evaluate the effectiveness of different societal interventions ik in reduc-
ing recourse unfairness, we compare their associated societal costs ck and

8E.g., for interventions with minimum quantum size and a fixed budget, it makes sense
to spread interventions across a randomly chosen subset since it is not possible to give every-
one a very small amount, see (GH+17) for broader comments on the potential benefits of
randomness in fairness. Note that p = 1, i.e., deterministic interventions are included as a
special case.
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Figure 5.4: (a) Distribution after applying a societal intervention to the credit-card
example from Fig. 5.1. We randomly select a proportion p = 1 of individuals from the
disadvantaged group (blue, A = 0) to receive a subsidy s = 1.5 if UX is below the
threshold t = −0.75. As a result, the distribution of negatively-classified individuals
(X < 0) shifts towards the boundary which makes it more similar to those in A = 1,
thus resulting in fairer recourse. At the same time, the distribution of positively-
classified individuals (X > 0) remains unchanged. (b) Comparison of different soci-
etal interventions ik = (1, t,−2t) with respect to their benefit (reduction in recourse
difference) and cost (paid-out subsidies). The threshold t ≈ −0.75 (corresponding to
the distribution shown on the left) leads to the largest reduction in recourse differ-
ence, but also incurs the highest cost. Smaller reductions can be achieved using two
different thresholds: one corresponding to giving a larger subsidy to fewer individ-
uals, and the other to giving a smaller subsidy to more individuals.

benefits bk. Here, the cost ck of implementing ik can reasonably be chosen as
the total amount of paid-out subsidies, and the benefit bk, as the reduction in
the difference of average recourse cost across groups. We then reason about
different societal interventions ik by simulating the proposed change via sam-
pling data fromM′

k and computing bk and ck based on the simulated data. To
decide which intervention to implement, we compare the societal benefit bk
and cost ck of ik for different k and choose the one with the most favourable
trade-off. We show the societal benefit and cost tradeoff for ik = (1, t,−2t)
with varying t in Fig. 5.4b and refer to the caption for further details. Plots
similar to Fig. 5.4 for different choices of (p, t, s) are shown in Fig. 5 in Ap-
pendix B.1. Effectively, our societal intervention does not change the outcome
of credit card approval but ensures that the effort required (additional income
needed) for rejected individuals from two groups is the same. Instead of us-
ing a threshold to select eligible individuals as in the toy example above, for
more complex settings, our individual-level unfairness metric (Defn. 5.3.2)
may provide a useful way to inform whom to target with societal interven-
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tions as it can be used to identify individuals for whom the counterfactual
difference in recourse cost is particularly high.

5.6 discussion

With data-driven decision systems pervading our societies, establishing ap-
propriate fairness metrics and paths to recourse are gaining major signifi-
cance. There is still much work to do in identifying and conceptually under-
standing the best path forward. Here we make progress towards this goal by
applying tools of graphical causality. We are hopeful that this approach will
continue to be fruitful as we search together with stakeholders and broader
society for the right concepts and definitions, as well as for assaying interven-
tions on societal mechanisms.

While our fairness criteria may help assess the fairness of recourse, it is
still unclear how best to achieve fair causal recourse algorithmically. Here,
we argue that fairness considerations may benefit from considering the larger
system at play—instead of focusing solely on the classifier—and that a causal
model of the underlying data generating process provides a principled frame-
work for addressing issues such as multiple sources of unfairness, as well as
different costs and benefits to individuals, institutions, and society.

Societal interventions to overcome (algorithmic) discrimination constitute
a complex topic which not only applies to fair recourse but also to other
notions of fairness. It deserves further study well beyond the scope of the
present work.

We may also question whether it is appropriate to perform a societal in-
tervention on all individuals in a subgroup. For example, when considering
who is approved for a credit card, an individual might not be able to pay their
statements on time and this could imply costs to them, to the bank, or to so-
ciety. This idea relates to the economics literature which studies the effect of
policy interventions on society, institutions, and individuals (HV05; Hec10).
Thus, future work could focus on formalising the effect of these interventions
to the SCM, as such a framework would help trade off the costs and benefits
for individuals, companies, and society.
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Classifier
IMF CAU-LIN CAU-ANM

Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind

SVM(X, A) 86.5 0.96 0.40 1.63 89.5 1.18 0.44 2.11 88.2 0.65 0.27 2.32

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.53 2.11 87.7 0.40 0.34 2.32

SVM(X) 86.4 0.99 0.42 1.80 89.4 1.61 0.61 2.11 88.0 0.56 0.29 2.79

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.57 2.11 87.7 0.41 0.43 2.79

FairSVM(X, A) 68.1 0.04 0.28 1.36 66.8 0.26 0.12 0.78 66.3 0.25 0.21 1.50

SVM(Xnd) 65.5 0.05 0.06 0.00 67.4 0.15 0.17 0.00 65.9 0.31 0.37 0.00

LR(Xnd) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00

SVM(Xnd, Ud) 86.5 0.96 0.58 0.00 89.6 1.07 0.70 0.00 88.0 0.21 0.14 0.00

LR(Xnd, Ud) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00

SVM(X, A) 90.8 0.05 0.00 1.09 91.1 0.07 0.03 1.06 90.6 0.04 0.03 1.40

LR(X, A) 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.22 1.28

SVM(X) 91.4 0.13 0.00 0.92 91.0 0.17 0.08 1.09 91.0 0.02 0.03 1.64

LR(X) 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.06 1.66

FairSVM(X, A) 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 90.3 0.37 0.02 1.64

SVM(Xnd) 66.7 0.10 0.06 0.00 58.4 0.05 0.06 0.00 62.0 0.13 0.11 0.00

LR(Xnd) 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd, Ud) 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 90.1 0.15 0.12 0.00

LR(Xnd, Ud) 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

Table 5.1: Results for our numerical simulations from § 5.4.1, comparing various
classifiers differing mostly in their input sets with respect to accuracy (Acc, higher
is better) and different recourse fairness metrics (∆·, lower is better) on a number of
synthetic datasets (columns). SVM: support vector machine, LR: logistic regression.
The first subtable (first nine rows) corresponds to ground truth labels drawn from
a linear LR (and a linear kernel is used) and the second subtable to labels from a
nonlinear LR (and a polynomial kernel is used). The first four rows in each subtable
are baselines, the middle row corresponds to the method of Gupta et al. [Gup+19],
and the last four rows are methods taking causal structure into account. For each
dataset and metric, the best performing methods are highlighted in bold. As can be
seen, only our causally-motivated methods (last four rows) achieve individually fair
recourse (∆ind = 0) throughout.
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Classifier

GT labels from lin. LR→ using lin. kernel / lin. LR GT labels from nonlin. LR→ using polynomial kernel / nonlin. LR

IMF CAU-LIN CAU-ANM IMF CAU-LIN CAU-ANM

Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind Acc ∆dist ∆cost ∆ind

SVM(X, A) 86.5 0.96 0.40 1.63 89.5 1.18 0.44 2.11 88.2 0.65 0.27 2.32 90.8 0.05 0.00 1.09 91.1 0.07 0.03 1.06 90.6 0.04 0.03 1.40

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.53 2.11 87.7 0.40 0.34 2.32 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.22 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.4 1.61 0.61 2.11 88.0 0.56 0.29 2.79 91.4 0.13 0.00 0.92 91.0 0.17 0.08 1.09 91.0 0.02 0.03 1.64

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.57 2.11 87.7 0.41 0.43 2.79 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.06 1.66

FairSVM(X, A) 68.1 0.04 0.28 1.36 66.8 0.26 0.12 0.78 66.3 0.25 0.21 1.50 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 90.3 0.37 0.02 1.64

SVM(Xnd) 65.5 0.05 0.06 0.00 67.4 0.15 0.17 0.00 65.9 0.31 0.37 0.00 66.7 0.10 0.06 0.00 58.4 0.05 0.06 0.00 62.0 0.13 0.11 0.00

LR(Xnd) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd, Ud) 86.5 0.96 0.58 0.00 89.6 1.07 0.70 0.00 88.0 0.21 0.14 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 90.1 0.15 0.12 0.00

LR(Xnd, Ud) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

Table 5.2: Results for our numerical simulations from § 5.4.1, comparing various
classifiers differing mostly in their input sets with respect to accuracy (Acc, higher
is better) and different recourse fairness metrics (∆(·), lower is better) on a number
of synthetic datasets (columns). SVM: support vector machine, LR: logistic regresion;
the first four rows are baselines, the middle row corresponds to the method of Gupta
et al. [Gup+19], and the last four rows are methods taking causal structure into
account. For each dataset and metric, the best performing methods are highlighted
in bold. As can be seen, only our causally-motivated methods (last four rows) achieve
individually fair recourse (∆ind = 0) throughout.

Sex Age Nat MS Edu WC Occ Hrs Recourse action Cost

CF m y US married Some Collg. Private Sales 32.3 do(Edu: Prof-school, WC: Private) 6.2

CF m y non-US married HiSch. Grad Private Sales 27.8 do(WC: Self-empl., Hrs: 92.0) 64.2

CF m o US married Some Collg./Bachelors Private Cleaner 36.2 do(Edu: Prof-school, WC: Private) 5.5

CF m o non-US married HiSch. Grad Private Sales 30.3 do(WC: Self-empl., Hrs: 92.0) 61.7

CF f y US married Some Collg. Self-empl. Sales 27.3 do(Hrs: 92.0) 64.7

CF f y non-US married HiSch. Grad Self-empl. Sales 24.0 do(Edu: Some Collg., WC: Self-empl., Hrs: 92.0) 68.0

CF f o US married HiSch./Some Collg. Private Sales 28.8 do(Edu: Prof-school, WC: Private) 6.4

F f o non-US married HiSch. Grad W/o pay Sales 25 do(Hrs: 92.0) 67.0

Table 5.3: Individual-level recourse discrimination on the Adult dataset (§ 5.4.2). Fac-
tual (F) observation in the last row, counterfactual (CF) twin with largest individual-
level recourse difference in third row. Consistent with the group-level trends, we
observe quantitative discrimination across each protected attribute (favouring older
age, male gender, and US nationalism), and qualitative differences in the suggested
recourse actions across groups (e.g., favourable predictions based on higher educa-
tion for men and more working hours for non-US nationals).
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6R O B U S T C A U S A L A L G O R I T H M I C R E C O U R S E

Chapter Abstract

Algorithmic recourse seeks to provide actionable recommendations for
individuals to overcome unfavorable outcomes made by automated decision-
making systems. Recourse recommendations should ideally be robust to
reasonably small uncertainty in the features of the individual seeking
recourse. In this work, we formulate the adversarially robust recourse
problem and show that recourse methods offering minimally costly recourse
fail to be robust. We then present methods for generating adversarially
robust recourse in the linear and in the differentiable case. Finally, we
empirically show that regularizing the decision-making classifier to rely
more strongly on actionable features facilitates the existence of adversarially
robust recourse.

This chapter is based on the paper “On the Adversarial Robustness of Causal Algorithmic
Recourse,” Dominguez-Olmedo, Karimi, Schölkopf, ICML (�), 2022. (DOKS22).
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6.1 introduction

Machine learning (ML) classifiers are increasingly being used for consequen-
tial decision-making in domains such as justice and finance (e.g., granting
pretrial bail or loan approval). The need to preserve human agency despite
the rise in automatic decisions faced by individuals has motivated the study
of algorithmic recourse, which aims to empower individuals by providing
them with actionable recommendations to reverse unfavourable algorithmic
decisions (USL19). Prior works have argued that for recourse to warrant trust,
the decision-maker must commit to reversing an unfavourable decision upon
the decision-subject fully adopting their prescribed recourse recommenda-
tions (WMR17; VA20; Kar+22). We argue that if algorithmic recourse is in-
deed to be treated as a contractual agreement, then recourse recommenda-
tions must be robust to plausible uncertainties arising in the recourse process.

For instance, consider a bank that commits to approving the loan of an
individual if they increase their savings by some amount. Suppose that by
the time the individual achieves the prescribed savings increase, the individ-
ual’s weekly working hours have been slightly reduced due to unforeseen
circumstances, and the classifier still deems the individual likely to default
on the loan. Shielding the recourse recommendation against uncertainty ex-
post by nonetheless granting the loan may be detrimental to both the bank
(e.g., monetary loss) and the individual (e.g., bankruptcy and inability to se-
cure future loans), while breaking the recourse promise would negate the
effort exerted by the individual and erode trust in the decision maker. We
therefore argue for the necessity of ensuring that recourse recommendations
are ex-ante robust to uncertainty.

In this work, we direct our focus towards robustifying recourse recommen-
dations against uncertainty in the features of the individual seeking recourse.
Such uncertainty may arise due to the temporal nature of recourse (e.g., some
features may not be static), and/or the presence of noise, adversarial manipu-
lation and other misrepresentations or errors. We adopt a robust optimization
view and propose to characterize the uncertainty around the reported features
of the individual x by defining an uncertainty set B(x) which we assume con-
tains the true features of the individual at the time recourse is offered and/or
plausible changes to the individual’s features arising due to the temporal
nature of recourse. We then seek robust recourse recommendations which
remain valid (i.e., lead to favourable classification outcomes) for all plausible
individuals in the uncertainty set, as illustrated in Figure 6.1. We refer to this
notion of robustness as the adversarial robustness of recourse.
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x

Non-robust
recourse action

Robust
recourse action

Figure 6.1: Adversarially robust recourse actions must lead to positive classification
outcomes for all individuals in the uncertainty set around the individual x seeking
recourse.

We study the adversarial robustness of recourse from the lens of causal-
ity (Pea09). Causal recourse views recourse recommendations as causal in-
terventions on the features of the decision-subject (KSV21), and therefore
presents a more faithful account of how the features of the individual change
as the individual acts on their recourse recommendations, provided that the
underlying structural causal model is known or can be approximated reason-
ably well (Kar+20b).

contributions

• We formulate the adversarially robust recourse problem and show that
minimum-cost recourse recommendations are provably fragile to uncer-
tainty in the features of the individual seeking recourse.

• We present methods for generating adversarially robust causal recourse
in the linear and in the differentiable case. We demonstrate their effec-
tiveness on five tabular datasets, for linear and neural network classi-
fiers.

• We propose a model regularizer that encourages the decision-making
classifier to rely more strongly on actionable features. We empirically
show that our proposed model regularizer facilitates the existence of
adversarially robust recourse.
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6.2 background and related work

6.2.1 Background on causality

We assume that the data-generating process of the features X = {X1, . . . , Xn}
of individuals x ∈ X is characterised by a known structural causal
model (SCM) (Pea09) M = (S, PU). The structural equations S ={

Xi := fi

(
Xpa(i), Ui

)}n

i=1
describe the causal relationship between any

given feature Xi, its direct causes Xpa(i) and some exogenous variable Ui
as a deterministic function fi. The exogenous variables U ∈ U , which are
distributed according to some probability distribution PU, represent unob-
served background factors which are responsible for the variations observed
in the data. We assume that the causal graph G implied by the SCM, with
nodes X ∪ U and edges {(v, Xi) : v ∈ Xpa(i) ∪Ui, i ∈ [1, n]}, is acyclic. The
SCM M then implies a unique observational distribution pX over the features
X. Moreover, the structural equations S induce a mapping S : U → X
between exogenous and endogenous variables. Under the assumption that
the exogenous variables are mutually independent (causal sufficiency), if there
exists some inverse mapping S−1 : X → U such that S

(
S−1(x)

)
= x ∀x ∈ X ,

then the endogenous variables corresponding to some individual x ∈ X are
uniquely identifiable by U|x = S−1(x).

SCMs allow for modelling and evaluating the effect of interventions on the
system which the SCM models. Hard interventions do(XI := θ) (Pea09) fix the
values of a subset I ⊆ [d] of features XI to some θ ∈ R|I| by altering the struc-

tural equations of the intervened upon variables S
do(XI :=θ)
Ii

= XIi
:= θi while

preserving the rest of the structural equations S
do(XI :=θ)
i = Si ∀inotinIcal.

Consequently, hard interventions sever the causal relationship between an
intervened upon variables and all of its ancestors in the causal graph. Soft
interventions, on the other hand, may modify the structural equations in a
more general manner (Kor+04). In particular, additive interventions perturb
the features X with some perturbation vector ∆ ∈ Rn while preserving
all causal relationships, altering the structuralCF equations according to

S∆ =
{

Xi := fi

(
Xpa(i), Ui

)
+ ∆i

}n

i=1
(ES07).

Moreover, SCMs imply distributions over counterfactuals, allowing to
reason about what would have happened under certain hypothetical inter-
ventions all else being equal. Under the aforementioned assumptions, the
counterfactual xCF pertaining to some observed factual individual x ∈ X
under some hypothetical hard intervention do(XI := θ) (resp. soft inter-
vention ∆) can be computed by first determining the exogenous variables
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U|x = S−1 (x) corresponding to the individual x, and then applying the
interventional mapping Sdo(XI :=θ) (resp. S∆) from endogenous to exogenous
variables (Pea09). For notational convenience, we denote such mapping as
xCF = CF (x, do(XI := θ)) := Sdo(XI :=θ)

(
S−1 (x)

)
(resp. xCF = CF (x, ∆) :=

S∆ (S−1 (x)
)
). We use the notation xCF = CF (x, do(XI := θ),M) (resp.

xCF = CF (x, ∆,M)) to highlight that the counterfactual corresponds to a
particular structural causal modelM.

6.2.2 The causal recourse problem

Consider the setting where a classifier h : X → {0, 1} is used to assign ei-
ther favourable or unfavourable outcomes to individuals x ∈ X (e.g., loan
approval). We adopt the causal view of recourse introduced by Karimi et al.
[KSV21] and model recourse recommendations as a hard interventions on
the features of the individual seeking recourse, that is, a = do(XI := xI + θ),
where θ is the prescribed change to some variables XI . We consider this addi-
tive form, rather than a = do(XI := θ) as Karimi et al. [KSV21], to explicitly
allow for uncertainty in the factual individual x to propagate to the recourse
recommendation a.

For a recourse action a to be considered valid, the corresponding counter-
factual individual must be favourably classified, that is, h (CF (x, a,M)) = 1.
Since certain features may be immutable (e.g., race) or bounded (e.g., age),
only feasible actions should be recommended. The action feasibility set F (x)
captures the set of feasible actions available to the individual x. Ideally, re-
course recommendations should incur the least amount of effort possible for
decision-subjects, where the cost function c(x, a) models the effort required
by an individual x ∈ X to implement the recourse action a. Finding the
minimum-cost recourse action for some individual x ∈ X is therefore equiv-
alent to solving the following optimization problem:

argmin
a=do(XI :=xI+θ)

c(x, a)

s.t. a ∈ F (x)
h
(

CF
(

x , a, M
))

= 1

(6.1)

As highlighted in Equation 6.1, uncertainty in the features of the individual
x, the classifier h, and/or the SCM M may affect the validity of recourse.
In Appendix E.1, we discuss and relate the different sources of uncertainty
arising throughout the recourse process.

The non-causal recourse setting is equivalent to the causal recourse setting
under the independently manipulable features (IMF) assumption, that is, if no
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causal relationships exist between the features of the individual. Under such
assumption, CF (x, do(X := x + θ)) = x + θ.

6.2.3 Related work

We now draw connections with existing literature on the robustness of re-
course. Previous works have considered the problem of generating recourse
actions which remain valid under uncertainty in the classifier h. Pawelczyk
et al. [PBK20] show that recourse actions which place the counterfactual in-
dividual in regions of the feature space with large data support are more
robust under predictive multiplicity compared to minimum-cost recourse ac-
tions. However, recourse actions with large data support may be unnecessar-
ily costly. In contrast, our approach seeks to find robust recourse actions with
the lowest possible cost. Another line of work has considered robustness of
recourse with respect to changes to the classifier in response of dataset shift.
Rawal et al. [RKL20b] show that recourse actions are typically not robust
to such model changes, and Upadhyay et al. [UJL21] aim to mitigate this
issue by generating recourse with a minimax optimization procedure where
the cost the recourse is minimized subject to the recourse action being valid
under adversarial changes to the classifier h. While we adopt a similar mini-
max approach to generate robust recourse, we focus on robustifying recourse
against uncertainty in the individual x rather than the classifier h. Lastly,
Black et al. [Bla+21] adopt a distributionally robust optimization approach to
generate recourse recommendations that are consistent across different classi-
fiers h arising from small changes to the initial training conditions. Likewise,
a natural extension of our work is to adopt a distributionally robust view-
point.

Regarding robustness of recourse with respect to uncertainty in the SCM
M, Karimi et al. [Kar+20b] consider the setting where the underlying SCM
is not know and thus must be approximated, and propose a recourse method
to generate recourse recommendations which have low probability of being
invalid due to the misspecification of the underlying SCM. Our work is tan-
gential to Karimi et al. [Kar+20b].

Finally, previous works have identified that small changes to the features of
the decision-subject x may result in different recourse recommendations with
potentially very different costs of recourse (Küg+22; Sla+21; Art+21). Instead
of focusing on the cost of recourse, we study the robustness of the validty of
recourse. The concurrent work of Virgolin and Fracaros [VF22] is most similar
to ours, as they consider the robustness of recourse to adversarial perturba-
tions to the individual x. They present an evolutionary algorithm to generate
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robust recourse, and provide empirical results for random forest classifiers.
In contrast, we focus on generating recourse for differentiable classifiers, and
we provide empirical results for linear and neural network classifiers. Addi-
tionally, we consider the more general causal recourse setting, and we model
feature perturbations in a causal manner.

6.3 counterfactual uncertainty sets

In the adversarial robustness literature, uncertainty in the features of some
data point x is often modelled by an ϵ-ball of uncertainty B(x) = {x +
∆| ∥∆∥ ≤ ϵ} around x, where the norm ∥·∥ characterizes some relevant no-
tion of similarity d(x, y) = ∥x− y∥ between data points, and ϵ characterizes
the amount of uncertainty present (Mad+18; Ber+19). Intuitively, small per-
turbations ∆ to the data point x result in similar data points. Then, the un-
certainty set B(x) can be interpreted as a neighbourhood of plausible data
points similar to the observed data point x.

From a causal perspective, such feature changes δ are equivalent to ad-
ditive interventions on the features x under the IMF assumption, that is, if
not causal relationships exist between features. We argue, however, that ex-
plicitly considering these causal relationships can potentially provide more
informative neighbourhoods of individuals.
Definition 6.3.1 (Neighbourhood of counterfactually similar individuals).
For some similarity norm ∥·∥, SCM M and factual individual x, we define
the ϵ-neighbourhood of counterfactually similar individuals to x as the set of
counterfactuals under all possible ϵ-small additive interventions

B(x) = {CF (x, ∆,M) | ∥∆∥ ≤ ϵ} (6.2)

As a motivating example, consider the SCMM with features X1 = U1 and
X2 = X1 +U2 respectively denoting the income and savings of some individ-
ual x. Figure 6.2 illustrates the observational and counterfactual neighbour-
hoods of similar individuals for the 2-norm similarity metric ∥·∥2. Observe
that under the counterfactual neighbourhood, the individual x is more simi-
lar to some individual x̄ with higher income and higher savings than to some
other individual x̃ with higher income but lower savings, since the latter is not
well explained by the SCM M and thus its circumstances may substantially
differ from those of x (e.g. has a much larger number of individuals depen-
dent on them, resulting in lower savings despite its higher income). There-
fore, we argue that counterfactual neighbourhoods can be more informative
than observational neighbourhoods, since the causal relationships between
features are explicitly considered.
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Figure 6.2: Illustration of the observational and counterfactual neighbourhoods of
similar individuals for the SCM X1 = U1 (Income), X2 = X1 + U2 (Savings) under
∥·∥2.

6.4 the adversarially robust recourse problem

We consider the problem of generating recourse actions which are robust
to uncertainty in the features of the individual seeking recourse. We adopt
a robust optimization point of view and require robust recourse actions to
remain valid for every plausible individual in the uncertainty set B(x).

Definition 6.4.1 (Adversarially robust recourse problem). For some uncer-
tainty set B(x), the minimum-cost recourse action which remains valid for all
plausible individuals x′ ∈ B(x) in the uncertainty set B(x) is given by

argmin
a=do(XI :=xI+θ)

max
x′∈B(x)

c(x, a)

s.t. a ∈ F (x′) ∧ h
(
CF(x′, a)

)
= 1

(6.3)

Observe that any solution a to the above optimization problem must sat-
isfy h(CF(x′, a)) = 1 ∀x′ ∈ B(x), and is thus adversarially robust. In Ap-
pendix E.2 we derive sufficient conditions for the existence of adversarially
robust recourse.
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6.4.1 Recourse is fragile under mild conditions

We show that under mild conditions on the cost function c, feasibility set
F (x) and SCM M, minimum-cost recourse actions are provably fragile to
arbitrarily small uncertainty in the features of the individual seeking recourse.

Theorem 6.4.1. Let a∗ be the solution to the recourse optimization problem stated
in Equation 6.1. Suppose

(i) The cost function c(x, do(XI := xI + θ) is strictly convex in θ with minimum
θ = 0

(ii) ∀ 0 < t < 1 do(XI := xI + θ)) ∈ F (x) =⇒ do(XI := xI + tθ)) ∈
F (x)

(iii) The SCMM is an additive noise model (Pea09).
There exists x′ ∈ B(x) = {CF (x; ∆)) | ∥∆∥ ≤ ϵ > 0} such that h(CF(x′, a∗)) =
0, that is, the recourse action a∗ is fragile for any arbitrarily small ϵ > 0.

Condition (i) is satisfied by the most widely used cost functions, namely
weighted p-norms (Kar+20b) and percentile costs (USL19). Condition (ii) is
satisfied for box actionability constrains, commonly assumed in the recourse
literature (Kar+22). Lastly, condition (iii) is a common modelling assumption
for estimating the underlying SCM M from data (Kar+20b), and also holds
in the non-causal recourse setting.

Therefore, in the settings commonly considered by the algorithmic recourse
literature, recourse methods seeking minimum-cost recourse offer provably
fragile recourse recommendations. This result motivates the study of recourse
methods for generating adversarially robust recourse.

6.5 generating adversarially robust recourse

6.5.1 The linear case

For a linear classifier h(x) = ⟨w, x⟩ ≥ b and linear SCM, we show that gener-
ating robust recourse for h is equivalent to generating standard recourse for
a modified linear classifier h′(x) = ⟨w, x⟩ ≥ b′ whose “acceptance threshold”
is sufficiently increased, that is, b′ ≥ b.

Theorem 6.5.1. Let h(x) = ⟨w, x⟩ ≥ b be a linear classifier, M an SCM with
linear structural equations, and B(x) = {CF (x, ∆) | ∥∆∥ ≤ ϵ} the uncertainty
set of plausible individuals. If the feasibility set is invariant to perturbations to x,
that is, ∀x′ ∈ B(x) : F (x) = F (x′), then the minimum-cost adversarially robust
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recourse action for classifier h(x) is equivalent to the minimum-cost robust recourse
action for the modified classifier

h′(x) = ⟨w, x⟩ ≥ b +
∥∥∥JT

SIw
∥∥∥∗ ϵ (6.4)

where ∥·∥∗ denotes the dual norm of ∥·∥ and JSI denotes the Jacobian of the inter-
ventional mapping resulting from hard-intervening on features XI .

We highlight the importance of this result: if the conditions for Theo-
rem 6.5.1 hold, then any given recourse generating method can be used
to generate adversarially robust recourse by considering the modified
classifier h′. In particular, adversarial robustness can be readily combined
with other desiderata such as large data-support (Jos+19; PBK20) or fairness
constrains (Gup+19; Küg+22).

6.5.2 The differentiable case

Similarly to Wachter et al. [WMR17], we consider the following objective
function

L(x, a, λ) = c(x, a) + λ ℓ (h (CF (x, a)) , 1) (6.5)

where ℓ is the binary cross entropy loss. The adversarially robust recourse
problem is then equivalent to the following unconstrained penalty problem

max
λ≥0

min
a∈F (x)

c(x, a) + λ max
x′∈B(x)

ℓ (h (CF (x, a)) , 1) (6.6)

We propose to solve the inner maximization problem using projected gra-
dient ascent over the uncertainty set B(x). For the particular form of the
uncertainty set considered in this work, we project to the ϵ-ball of ∥·∥, since
maxx′∈B(x) ℓ (h (CF (x, a)) , 1) = max∥∆∥≤ϵ ℓ (h (CF (CF(x, ∆), a)) , 1). Note,
however, that the above optimization objective is in general non-convex in
∆, and therefore the local maxima found using gradient ascent may not be
global maxima in B(x). Thus, it is not possible to guarantee that the recourse
actions returned by the proposed algorithm are adversarially robust. How-
ever, as discussed in Section 7, we empirically find that the proposed algo-
rithm is effective in robustifying recourse against uncertainty for sufficiently
small uncertainty ϵ.

For the outer maximin optimization problem in Equation 6.6, we adopt the
causal recourse approach of Karimi et al. [Kar+20b] and use projected gra-
dient descent over the recourse action a and feasibility set F (x), while also
iteratively increasing λ to place growing emphasis in crossing the classifier’s
decision boundary. We present the proposed optimization procedure in Al-
gorithm 7.
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Algorithm 7: Generate adversarially robust recourse for a differen-
tiable classifier and SCM.

input : Factual individual x, uncertainty set B(x), intervention set I ,
λ > 0, γ > 1

θ← 0 while N ≤ Nmax do
while not converged do

a← do(XI := xI + θ) x∗ ← argmaxx′∈B(x) ℓ(h (CF (x, a)) , 1) if
h (CF (x∗, a)) = 1 then

return θ
θ← ProjF (x) (θ− α∇θL(x∗, a, λ))

λ← γλ

6.6 actionability regularization

To ensure that recourse recommendations are robust, individuals are asked
to make more effort than they would have otherwise had to. Consequently,
the burden of immunizing recourse against uncertainty falls solely on the
decision-subject. We argue, however, that robust recourse desiderata could be
directly embedded into the training of the classifier. Satisfying such desider-
ata may come at a cost in predictive accuracy, thus shifting part of the burden
of robust recourse from the decision-subject to the decision maker. In this sec-
tion, we first restrict ourselves to the linear case in order to theoretically moti-
vate a regularization penalty to reduce the additional cost of robust recourse.
We then extend such regularization to the differentiable case by drawing in-
spiration from local linearity regularization (Qin+19), a popular technique
from the adversarial robustness literature. We find that the proposed regular-
izer substantially facilitates the existence of adversarially robust recourse.

6.6.1 Upper bounding the cost of robust recourse

We restrict ourselves to the linear case in order to derive an upper bound
on the additional cost of robust recourse under certain actionability assump-
tions.

Theorem 6.6.1. Let h be a linear classifier h(x) = ⟨w, x⟩ ≥ b, M an
SCM with linear structural equations, x ∈ X a negatively classified individ-
ual for which there exists some recourse action a = do(XI := xI + θ), and
B(x) = {CF (x, ∆) | ∥∆∥ ≤ ϵ}. Then, there exists some constant β such that
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if a′ = do(XI := xI + (1 + βϵ)θ) is a feasible action a′ ∈ F (x), then a′ is an
adversarial robust recourse action. Assuming that the cost function is subadditive,
the additional cost incurred by robustifying action a is

c(x, a′)− c(x, a)
c(x, a)

≤ βϵ, β =

∥∥∥JT
SIw

∥∥∥∗
⟨JT

SIw, θ⟩ (6.7)

Consequently, βϵ constitutes an upper bound on the additional cost of
recourse incurred as a result of seeking robust recourse. We propose to reg-
ularize w such that the upper bound on the additional cost of recourse βϵ
is reduced. For simplicity, we henceforth make the IMF assumption, such
that JT

SI = I. Let A (resp. U ) be the set of actionable features (resp. unac-
tionable) and mA ∈ [0, 1]n (resp. mU ∈ [0, 1]n) the mask vector such that
(mA)i = 1 ⇐⇒ i ∈ A (resp. (mU )i = 1 ⇐⇒ i ∈ U ). Then

β =
∥w∥∗
⟨w, θ⟩ =

∥mA ⊙w∥∗ + ∥mU ⊙w∥∗
⟨mA ⊙w, θ⟩ (6.8)

where ⊙ denotes the elementwise product. Consequently, reducing the
dual norm ∥mU ⊙w∥∗ of the classifier weights corresponding to the unac-
tionable features directly reduces the upper bound on the additional cost of
robust recourse β, inducing the learning bias “the classifier should rely more
strongly on actionable features”.

6.6.2 Actionable local linearity regularization

We consider classifiers of the form h(x) = g(x) ≥ b, where g(x) is differen-
tiable. With the aim of reducing the additional cost of robust recourse, we
propose the following regularizer.

R(x) = µ ∥mU ⊙∇x g(x)∥∗

+ γ max
∥δ∥≤ϵ

|g(x + δ)− ⟨δ,∇x g(x)⟩ − g(x)| (6.9)

which we denote as the Actionable Locally Linear Regularizer (ALLR). The
first term corresponds to the previously motivated actionability penalty for the
linear approximation h′ of the classifier h around x, and the second term,
inspired by Qin et al. [Qin+19], encourages the function g to behave linearly
near x, such that the linear classifier h′ is a reasonably accurate approximation
of h around x.
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Figure 6.3: Fragility of standard recourse. Small feature perturbations can invalidate
recourse, particularly for linear classifiers. Legend: LR classifier NN classifier
Mode.

6.7 experimental results

Firstly, we empirically validate the effectiveness of the methods proposed for
generating adversarially robust recourse. Secondly, we empirically show that
regularizing the decision-making classifier with our proposed ALLR regular-
izer facilitates the search of adversarially robust recourse.

We consider four real-world data sets and one semi-synthetic dataset.
For the causal recourse setting, we consider the COMPAS recidivism
dataset (Lar+16b) and the Adult demographic dataset (Mur94), for which we
adopt the causal graphs assumed in Nabi and Shpitser [NS18], and fit the
structural equations as 1-layer MLPs. We also consider one semi-synthetic
SCM introduced by Karimi et al. [Kar+20b], which is inspired in a loan
approval setting. We sample 1000 data points from the SCM, and refer
to the resulting dataset as Loan. For the non-causal recourse setting, we
consider the South German Credit dataset (Gro19), as well as a recidivism
dataset (SW88) from the state of North Carolina which we refer to as Bail.
In Appendix E.4, we list the features used for every dataset as well as the
actionability constrains considered.

For the considered datasets, we treat actionable categorical variables as real-
valued, and we standarize all real-valued features. We use as the cost func-
tion the ℓ1 norm of the prescribed feature change, that is c(x, a = do(XI :=
xI + θ)) = ∥θ∥1. We consider two types of classifiers: logistic regression (LR)
models, and neural network (NN) models (3 layers, tanh activation). We de-
fine the uncertainty set B(x) with respect to the 2-norm.
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Figure 6.4: Fragility of recourse robustified against uncertainty. For linear classifiers,
we are unable to find perturbations which invalidate the generated recourse. For
NN classifiers, we do find such adversarial perturbations for sufficiently large uncer-
tainty ϵ. Legend: COMPAS Adult Loan Credit Bail.

6.7.1 Minimum-cost recourse is fragile

First, we empirically demonstrate that recourse methods which aim to gen-
erate minimum-cost recourse fail to be robust. To do so, we train the classi-
fiers using expected risk minimization and generate recourse for the nega-
tively classified individuals with the methods of Wachter et al. [WMR17] and
Karimi et al. [KSV21] for the causal and non-causal recourse setting respec-
tively. We then apply the C&W adversarial attack (CW17) to the features of
the individuals seeking recourse in order to find the minimum feature per-
turbation which invalidates the generated recourse. We present the results in
Figure 6.3.

We observe that the recourse generated for both LR and NN classifiers is
fragile, with adversarial perturbations in the order of 10−2 to 10−9 (for stan-
darized features). We observe that the recourse for LR classifiers is substan-
tially more brittle due to the fact that the recourse problem for LR classifiers
is convex and thus the minimum-cost recourse action can be found in a more
exact manner.

6.7.2 Generating adversarially robust recourse

We evaluate the effectiveness of the method proposed in Section 5.2 for
generating adversarially robust recourse. To do so, we train the classifiers
using expected risk minimization and generate recourse with respect
to different uncertainty sets B(x) with different levels of uncertainty
ϵ ∈ {10−3, 10−2, 10−1, 0.5}. We then use the C&W adversarial attack to
find perturbations ∆ to the features of the individual which invalidate the
generated recourse actions. If we find some perturbation ∥∆∥2 ≤ ϵ which
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invalidates the generated recourse action, we can state that such recourse
action is fragile. The converse, however, is not true, since the absence of
found perturbations does not certify that such adversarial perturbations do
not exist.

We present the experimental results in Figure 6.4. For LR models, we
are unable to find adversarial perturbations invalidating the generated re-
course. Indeed, all perturbations found are larger than ϵ by an arbitrarily
small amount, but not lower. Thus, for LR models our proposed method can
effectively generate minimally-costly robust recourse. However, for NN mod-
els, which present a more challenging optimization landscape, our proposed
method may generate fragile recourse actions under sufficiently large uncer-
tainty ϵ. Nonetheless, overall our proposed method generates substantially
less brittle recourse compared to the standard minimum-cost recourse gener-
ation methods previously considered.

6.7.3 Actionable local linearity regularization

We empirically evaluate whether classifiers trained with the proposed ALLR
regularizer facilitates the existance of adversarially robust recourse. To our
knowledge, Ross et al. [RLB21] is the only work proposing a model reg-
ularizer to facilitate the existence of algorithmic recourse. Their proposed
regularizer augments the model training with “counterfactual examples” by
considering the training objective

E(x,y)∼p(x,y) [ℓ(h(x), y) + λ min δℓ(h(x), 1)] (6.10)

We compare our proposed ALLR regularizer with the regularizer of Ross et
al. [RLB21], as well as two other baselines: empirical risk minimization (no
regularization), and classifiers which only use actionable features (AF), which
amount to ALLR regularization in the limit of infinitely strong regularization
µ → ∞. We train five classifier with each of these regularization methods,
and we evaluate the percentage of individuals for whih recourse is found, as
well as the cost of recourse for no uncertainty ϵ = 0, and under a significant
amount of uncertainty ϵ = 0.1. We also evaluate the extent to which the per-
formance of the classifier is impacted by the regularization, by evaluating the
prediction accuracy as well as the Matthews correlation coefficient (MCC).

We present the experimental results in Figure 6.5 and Figure 6.6. We find
that our proposed regularizer is generally very effective in facilitating the
existance of adversarially robust recourse, for both LR and NN models. Ad-
ditionally, we find that for LR models, our proposed classifier can also sig-
nificantly reduce the cost of robust recourse, as theoritically motivated in
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Figure 6.5: For LR models, we find that ALLR regularization of the classifier (penal-
izing the weights corresponding to unactionable features) substantially facilitates the
existence of adversarially robust recourse, more so than the regularizer by Ross. et
al. Furthermore, the corresponding robust recourse actions are potentially less costly
than those resulting from the classifier trained with ERM. We also find that the pre-
dictive performance is generally impacted to a lower exent than for the Ross. et al.
and AF regularizers. Legend: ERM ALLR Ross et al. AF Accuracy MCC
score.

Section 6. Finally, we find that our proposed regularizer impacts predicition
performance to a comparable or lesser degree than the other regularizers
considered.

6.8 conclusion

Uncertainty in the recourse process is inevitable. Previously suggested ex-post
solutions to mitigate the effect of uncertainty in the recourse process may re-
sult in negative outcomes for both the decision-maker and the individual.
We instead adopt an ex-anti approach to robustness of recourse by requiring
the recourse recommendations to be robust to uncertainty in the features of
the individual seeking recourse. We show that, in practice, minimum-cost
recourse is fragile to arbitrarily small uncertainty in the features of the indi-
vidual. To address this, we formulate the adversarially robust recourse prob-
lem, and present methods to generate adversarially robust recourse in both
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Figure 6.6: For NN models, we find that ALLR regularization of the classifier substan-
tially facilitates the existence of adversarially robust recourse, to a comparable degree
to the AF regularizer. We also find that the predictive performance of the predictive
model is not greatly impacted. Legend: ERM ALLR Ross et al. AF Accu-
racy MCC score.
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the linear and differentiable case. Finally, we propose a model regularizer
that encourages the deicision-making classifier to rely more strongly on the
actionable features, and we empirically show that our proposed regularizer
substantially facilitates the existence of adversarially robust recourse.
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7S U M M A RY A N D P R O S P E C T S

7.1 prospects

In the previous sections we covered the definitions, formulations, and solu-
tions of existing works aiming to offer algorithmic recourse. We showed that
generating recourse explanations and recommendations required counterfac-
tual reasoning based on different levels of causal knowledge. Counterfac-
tual reasoning has roots not only in the philosophy of science (Lip90; HS86;
Hil90; Lew73; Lew86; Woo05), but also in the psychology of human agents
(Mil18; Mil19; Byr19), and benefits from strong technical foundations (HP05;
Bar+20). User studies have demonstrated that causal relationships are as-
sessed by evaluating counterfactuals (MK93), and counterfactual simulation
is used to predict future events (Ger+17). Specifically in the context of XAI, it
has been shown that counterfactuals can “make the decisions of inscrutable
systems intelligible to developers and users” (Byr19), and that people per-
form better at predicting model behavior when presented with counterfac-
tual instances (Lag+19). Organizations seek to deploy counterfactual-based
explanations citing their easy-to-understand nature (Bha+20b; Bha+20a) and
GDPR-compliance (WMR17). Finally, from a practitioner’s standpoint, not
only does algorithmic recourse benefit from the widely exercised practice of
sharing open-source implementations (see Table 1.1), various graphical in-
terfaces have also been developed to assist the on-boarding of non-technical
stakeholders (Wex+19; CMQ20; Gom+20).

There are, however, a number of implicit assumptions made in existing
setups, e.g., that the world dynamics are known and do not change, the pre-
dictive (supervised) model is fixed, and that changes only arise due to the
actions of the individual seeking recourse. Moreover, in the multi-agent set-
tings considered (with e.g., bank and loan seeker), agents are assumed to
act truthfully with no gaming or false reporting of features, and agents are
aligned in the aim to minimize an agreed-upon objective function. Below, we
explore settings in which these assumptions do not hold, and offer potential
solutions for extending to more realistic recourse settings.
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7.1.1 Beyond deterministic recourse

In (1.2), we saw that minimal consequential recommendations are generated
subject to the constraint that the counterfactual instance, xCF, is assigned
to be the structural counterfactual of xF under hypothetical actions a, i.e.,
xCF = xSCF(a; xF) (KSV21). Computing the structural counterfactual exactly,
however, relies on strong assumptions (i.e., the true SCM is an additive
noise model and is known). Earlier (Kar+20b), we show that without
complete knowledge of the true SCM, counterfactual analysis cannot be
done exactly and thus recourse cannot be offered deterministically. Although
the presented methods offer recourse with high probability, they do so
under specification of a causally sufficient graph. Future research in this
direction may explore less strict settings, perhaps accounting for hidden
confounders (Küg+21), or partially observed graphs (AIR96; TP01; CY99),
further adding to the uncertainty of recourse recommendations (Bec22;
KFGW21). Alternatively, sources of stochasticity may enter the recourse
process via a non-deterministic decision-making system. For example, it
has been demonstrated that for models trained on selective labels, fair and
optimal decisions should be made stochastically (Kil+20; Bec+19; TGR20).

7.1.2 Beyond supervised recourse

In §1.3.2 we discussed how the standard binary classification setting could be
extended to support multi-class classification and regression. Beyond these
classic supervised learning settings, an individual may be subject to an auto-
mated decision maker that determines a matching of applicants to resources
across a population, e.g., kindergarten assignment for children, housing for
low-income families. Alternatively, one can expect to generate explanations
in more interactive settings, such as for the actions and policies of a rein-
forcement learning agent (Mad+20; Waa+18; Mad+19; Ros+20) or for recom-
mender systems (Gha+20; DRR20). Finally, explanations may also be gener-
ated for time-series data (APMRRÁ20; Ate+20; LHR20), which can be ex-
tended to support online data streams and models that change over time
(PBK20; BSR20; VA20; DGK21; Roj+21).

7.1.3 Beyond individualized recourse

So far, the presented formulations aimed to offer recourse explanations per-
taining to a single individual, and assumed that recourse recommendations
would be undertaken by that individual. However, it is natural to extend the
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notion of recourse beyond the data-subject in question, or beyond a single
individual in the population.

An example of the former setting is when the family member of a patient
decides on a treatment on their behalf when the patient cannot directly exer-
cise their agency due to incapacitation (VA20). One may also consider com-
mon cases in judicial processes where a legal counsel represents and seeks
recourse for their client which may then be exercised by another fiduciary. In
such settings, the formulation of cost and feasibility of actions may need to
be adjusted to account for restrictions on both the subject and the actor.

Alternatively, recourse may be achieved through the collective action of
a group of people, rather than that of a single individual (KSV21). For in-
stance, the efforts of social and political activists may culminate in a law

change that offers better conditions for a group of individuals. In such set-
tings, a (background) variable which is non-actionable (or incurs high cost)
on an individual level may be rendered as actionable on a group level, which
may in turn bring down the cost for all members of the group. This example
also suggests that background variables may capture contextual information
(e.g., economy) that are not characteristics of, but nonetheless affect, the in-
dividual. Furthermore, the individual may not have control over these macro
variables that change over time and violate the stationarity assumption of
the world. Additionally, explicit consideration for multiple agents (OK21),
building theories of minds for each agent so as to best persuade (KR21), and
viewing recourse as a sequential game under non-instantaneous effects of
actions taken place (VHD21; NN21) is an under-explored area for future re-
search. Finally, the need to analyze recourse on a sub-population level may
arise due to uncertainty in assumptions (Kar+20b) or as an intentional study
of other properties of the system, e.g., fairness (Kar+20a; Gup+19; USL19;
CMQ20; RL20), which we explore further below.

7.1.4 On the interplay of recourse and ethical ML

The research questions above have primarily focused on one stakeholder:
the affected individual. However, giving the right of recourse to individu-
als should not be considered in a vacuum and independently of the effect
that providing explanations/recommendations may have on other stakehold-
ers (e.g., model deployer and regulators), or in relation to other desirable prop-
erties (e.g., fairness (Chapter 5), robustness (Chapter 6), security, privacy),
broadly referred to as ethical ML. We explore this interplay below.
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Figure 7.1: Here we illustrate the model stealing process in 2D and 3D using hy-
pothetical non-linear decision boundaries. “How many optimal contrastive explana-
tions are needed to extract the decision regions of a classifier?” can be formulated as
“How many factual balls are needed to maximally pack all decision regions?”

7.1.4.1 Recourse, security, and privacy

Model extraction concerns have been raised in various settings for machine
learning APIs (Tra+16; LM05; WG18; RST19). In such settings, an adversary
aims to obtain a surrogate model, ĥ, that is similar (e.g., in fidelity) to the
target model, h:

h ≈ ĥ = arg min
ĥ∈H

Ex∼P(x)

[
L
(
h(x), ĥ(x)

)]
. (7.1)

Here, an adversary may have access to various model outputs (e.g., classi-
fication label (LM05), class probabilities (Tra+16), etc.) under different query
budgets (unlimited, rate-limited, etc. (Ily+18; Che+20)). Model extraction may
be accelerated in presence of additional information, such as gradients of out-
puts w.r.t. inputs1 (Mil+19b), or contrastive explanations (ABG20). Related to
recourse, and of practical concern (USL19; SF19; SB18; BSR20), is a study
of the ability of an adversary with access to a recourse API in extracting
a model. Specifically, we consider a setting in which the adversary has ac-
cess to a prediction API and a recourse API which given a factual instance, xF,
returns a nearest contrastive explanation, x∗CF, using a known distance func-
tion, ∆ : X ×X → R+.2 How many queries should be made to these API to
perform a functionally equivalent extraction of h(·)?

In a first attack strategy, one could learn a surrogate model on a dataset
where factual instances and labels (form the training set or randomly sam-
pled) are augmented with counterfactual instances and counterfactual labels.

1A large class of explanation methods rely on the gradients to offer saliency/attribution
maps, especially in the image domain.

2Explanation models such as MACE (Kar+20a) provide optimal solutions, xCFϵ , where
h(xF) ̸= h(xCFϵ ), ∆(xF, xCFϵ ) ≤ ∆(xF, x∗CF) + ϵ, where x∗CF is the optimal nearest contrastive
explanation. In practice, ϵ = 1e− 5 which in turn results in xCFϵ ≈ x∗CF.
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This idea was explored by (ABG20) where they demonstrated that a high fi-
delity surrogate model can be extracted even under low query budgets. While
easy to understand and implement, this attack strategy implicitly assumes
that constructed dataset has i.i.d. data, and thus does not make use of the
relations between factual and counterfactual pairs.

An alternative attack strategy considers that the model h can be fully rep-
resented by its decision boundaries, or the complementary decision regions
{R1, · · · ,Rl}. Every contrastive explanation returned from the recourse API
informs us that all instance surrounding the factual instance, up to a dis-
tance of ∆(xF, x∗CF), share the same class label as xF according to h (otherwise
that instance would be the nearest contrastive explanation). More formally,
h(xF) = h(x) ∀ x ∈ B∆

xF , where B∆
xF is referred to as the ∆-factual ball, centered

at xF and with radius ∆(xF, x∗CF). The model extraction problem can thus
be formulated as the number of factual balls needed to maximally pack all
decision regions (see Fig. 7.1):

Pr[Vol(Rl)−∪n
i=1,B∆

xF i
⊆Rl

Vol(B∆
xF i) ≤ ϵ] ≥ 1− δ ∀ l (7.2)

As in other extraction settings, ĥ can then used to infer private informa-
tion on individuals in the training set, to uncover exploitable system vulner-
abilities, or for free internal use. Understanding attack strategies may guide
recourse policy and the design of defensive mechanisms to hinder the ex-
ploitation of such vulnerabilities.

Surprisingly, a model need not be extracted in the sense above to be reveal-
ing of sensitive information. Building on the intuition above, we note that
a single contrastive explanation informs the data-subject that there are no
instances in a certain vicinity (i.e., within B∆

xF ) such that their prediction is
different. This information informs the data-subject about, e.g., whether their
similar friend was also denied a loan, violating their predictive privacy. Even
under partial knowledge of the friend’s attributes, an adversary may use the
information about the shared predictions in B∆

xF to perform membership in-
ference attacks (SSZ19) or infer missing attributes (DF18). This problem is
worsened when multiple diverse explanations are generated, and is an open
problem.

7.1.4.2 Recourse and manipulation

Although a central goal of recourse is to foster trust between an individual
and an automated system, it would be simplistic to assume that all parties
will act truthfully in this process. For instance, having learned something
about the decision-making process (perhaps through recommendations given
to similar individuals), an individual may exaggerate some of their attributes
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for a better chance of favorable treatment (VA20). Trust can also be violated by
the recourse-offering party. As discussed earlier, the multiplicity of recourse
explanations/recommendations (see §1.4.1.1) may allow for an organization
to cherry-pick “the most socially acceptable explanation out of many equally
plausible ones” (HL20; LB20; BSR20) (see also, fairwashing (Aïv+19)). In such
cases of misaligned incentives, the oversight of a regulatory body, perhaps
with random audits of either party, seems necessary. Another solution may
involve mandating a minimum number of diverse recourse offerings, which
would conflict with security considerations.

7.1.5 Towards unifying benchmarks

Table 1.1 presented an overview of the diverse settings in which recourse
is sought. Despite the abundance of open-source implementations built
on robust tools and working well in their respective settings, a compar-
ative benchmark for recourse is lacking. This problem is exacerbated
for consequential recommendations which further rely on assumptions
about the causal generative process. In order to make objective progress,
however, new contributions should be evaluated against existing meth-
ods. Thus, a next step for the community is the curation of an online
challenge (e.g., using Kaggle) to benchmark the performance of exist-
ing and new methods. To broadly cover practical settings, we envision
multiple tracks where authors can submit their generated explanations/rec-
ommendations given a fixed classifier, test dataset, and pre-determined
dist/cost definition, and be evaluated using the metrics defined in
§1.4.1. Authors may also submit results that satisfy additional actionability,
plausibility, and diversity constraints, and be compared as such.3 Finally,
besides striving for all-encompassing evaluation benchmarks for recourse,
a push towards understanding the relations between recourse methods
and other explainability methods is very welcome. In particular we refer to
(KM+21; Eck+21; FPH20; GPS21) for recent efforts that show how recourse
can lead to, or result from, other such methods as attribution methods. User
testing of recourse, given the consequential nature of the domain, is more
difficult (if at all ethically possible) than explainability methods targeting
other stakeholders in non-consequential domains. Nevertheless, with the
ultimate objective of building not just explanations, but reliable and robust
explanations, future research should investigate ways that such uncertainties

3Since the manuscript was first published online, several works have pushed in this di-
rection, including (Zho+21; OM21; Ram+21; OM21; HIA21), and also a public repository for
running many recourse generating methods in a unified and comparable fashion (Paw+21b).
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can be modeled. This is important not just for the recipient of the recourse
recommendation, but also for the institution offering such recommendation
as, in a sense, it is a binding contract between the parties to offer some
resource when certain conditions are met.

7.2 conclusions

Our work started with a case study, of a 28-year-old female professional who
was denied a loan by an automated decision-making system. We aimed to
assist this individual in overcoming their difficult situation, i.e., to achieve
algorithmic recourse, which was contingent on offering answers to two ques-
tions: why, and how? We studied the relation between these questions, and
arrived at distinct responses, namely, contrastive explanations and consequential
recommendations. Mindful of the goal of recourse, we emphasized minimal con-
sequential recommendations over nearest contrastive explanations as the for-
mer directly optimizes for the least effort from the individual. Furthermore,
we noted that offering recourse recommendations automatically implied re-
course explanations (through simulation of the causal effect of undertaken
actions), whereas the converse would not. In reviewing the literature, how-
ever, we observed an under-exploration of consequential recommendations,
which we attribute to its reliance on additional assumptions at the level of
the causal generative process of the world in which actions take place.

We remark that the primary emphasis of recourse is on providing action-
able recommendations for overcoming adverse predictions, unlike counter-
factual explanations which highlight similar instances with different predic-
tions. This subtlety is also apparent in parallel literature on adversarial ma-
chine learning (see §1.3.6): counterfactual explanations identify the adversar-
ial instances whereas recourse informs on how to create them. Therefore, to
provide actionable recommendations under real world constraints we must
consider that actions on one subset of variables may have consequences on
other variables. Such constraints can be accounted for using the SCM frame-
work, and therefore, we primarily take this approach in our work.

In addition to unifying and precisely defining recourse, we present an
overview of the many constraints (e.g., actionability, plausibility, diversity,
sparsity) that are needed to model realistic recourse settings. With accom-
panying illustrative examples, we distinguish between the notions of dist

vs. cost, and plausibility vs. actionability (feasibility), whose distinctions are
largely ignored in the literature. Throughout, we reiterate that these notions
are individual-/context-dependent, and that formulations cannot arise from
a technical perspective alone. We summarize the technical literature in Table
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1.1, as a guide for practitioners looking for methods that satisfy certain prop-
erties, and researchers that want to identify open problems and methods to
further develop.

Finally, we identify a number of prospective research directions which chal-
lenge the assumptions of existing setups, and present extensions to better sit-
uate recourse in the broader ethical ML literature. The presented examples
and discussion serve to illustrate the diversity of stakeholder needs and a ten-
sion between the desirable system properties (fairness, security, privacy, ro-
bustness) which we seek to offer alongside recourse. Satisfyingly addressing
these needs and navigating the entailed trade-offs may require new defini-
tions and techniques, and relies on the cross-disciplinary expertise of a panel
of technical and social scientists. We hope that this document may guide fur-
ther discussion and progress in this direction.
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a.1 background on programming language and program veri-
fication

programs We assume given a set of function symbols with their arity.
For simplicity, we consider the case where operators are untyped and have
arity 0 (constants), 1 (unary functions), and 2 (binary functions). We let c, c1,
and c2 range over constants, unary functions and binary functions respec-
tively. Expressions are built from function symbols and variables. The set of
expressions is defined inductively by the following grammar:

e :;= x variable

| c constant

| c1(e) unary function

| c2(e1, e2) binary function

We next assume given a set of atomic predicates. For simplicity, we also con-
sider that predicates have arity 1 or 2, and let P1 and P2 range over unary and
binary predicates respectively. We define guards using the following gram-
mar:

b :;= P1(e) unary predicate

| P2(e1, e2) binary predicate

| b1&b2 conjunction

| b1 || b2 disjunction

| ¬b negation

137



appendix mace

We next define commands. These include assignments, conditionals,
bounded loops and return expressions. The set of commands is defined
inductively by the following grammar:

c :;= skip no-op

| x := e assignment

| c1; c2 sequential composition

| if b then c1 else c2 conditionals

| for (i = 1, . . . , n) do c for loop

| return e return statement

We assume that programs satisfy a well-formedness condition. The condition
requires that return expressions have no successor instruction, i.e. we do not
allow commands of the form return e; c or if b then c; return e else c′; c′′. This
is without loss of generally, since commands can always be transformed into
functionally equivalent programs which satisfy the well-formedness condi-
tion.

* Single assignment form Our first step to construct characteristic formu-
lae is to transform programs in an intermediate form that is closer to logic.
Without loss of generality, we consider loop-free commands, since loops can
be fully unrolled. The intermediate form is called a variant of the well-known
SSA form (RWZ88; Cyt+91) from compiler optimization. Concretely, we trans-
form programs into some weak form of single assignment. This form requires
that every non-input variable is defined before being used, and assigned at
most once during execution for any fixed input. The main difference with
SSA form is that we do not use so-called ϕ-nodes, as we require that vari-
ables are assigned at most once for any fixed input. More technically, our
transformation can be seen as a composition of SSA transform with a naive
de-SSA transform where ϕ-nodes are transformed into assignments in the
branches of the conditionals.

path formulae and characteristic formulae Our second step is
to define the set of path formulae. Informally, a path formula represents a
possible execution of the program. Fix a distinguished variable y for return
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values. Then the path formulae of a command c is defined inductively by the
clauses:

PFz:=e(y) = {z = e}
PFc1 ;c2 (y) = {ϕ1 ∧ ϕ2 | ϕ1 ∈ PFc1 (y)∧

ϕ2 ∈ PFc2 (y)}
PFif b then c1 else c2 (y) = {b ∧ ϕ1 | ϕ1 ∈ PFc1 (y)} ∪

{¬b ∧ ϕ2 | ϕ2 ∈ PFc2 (y)}
PFreturn e(y) = {y = e}

The characteristic formula ϕc of a command c is then defined as:∨
ϕ∈PFc(y)

ϕ

One can prove that for every inputs x1, . . . , xn, the formula ϕy(x1, . . . , xn, v)
is valid iff the execution of c on inputs x1, . . . , xn returns v. Note that,
strictly speaking, the formula ϕy contains as free variables the distinguished
variable y, the inputs x1, . . . , xn of the program, and all the program
variables, say z1 . . . zm. However, the latter are fully defined by the charac-
teristic formula so validity of ϕy(x1, . . . , xn, v) is equivalent to validity of
∃z1 . . . zm. ϕy(x1, . . . , xn, v).

a.2 experiment details

In this section we provide further details on the detasets and methods used
in or experiments, together with some additional results.

a.2.1 Model Selection

To demonstrate the flexibility of our approach, we explored four different dif-
ferentiable and non-differentiable model classes, i.e., decision tree, random
forest, logistic regression and multilayer perceptron (MLP). As the main fo-
cus of our work is to generate counterfactuals for a broad range of already
trained models, we opted for models’ parametrization that result in good
performance on the considered datasets (e.g., default parameters). For in-
stance, for the MLP, we opted for two hidden layers with 10 neurons, since
it present better performance in the Adult dataset (%82.52/%81.94 train-
ing/test accuracy) than other architectures with hidden = {100}(default)
and hidden = {100, 100} which result in %81.69/%81.06 and %81.51/%80.82
training/test accuracy, respectively. We leave the exploration of other datasets
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(larger feature spaces), more complex models (deeper MLPs) and other SMT
solvers as future work.

a.2.2 Datasets

Here we detail the different types of variables present in each dataset. We
used the default features for the Adult and COMPAS datasets, and applied
the same preprocessing used in (USL19) for the Credit dataset. All samples
with missing data were dropped. We remark that we have relied on broadly
studied datasets in the literature on fairness and interpretability of ML for
consequential decision making. For instance, the Credit dataset [34] (n =
29, 623, d = 14) has been previously studied by the Actionable Recourse work
[29], and the Adult [1] (n = 45, 222, d = 12, d(one-hot) = 51) and COMPAS
[18] (n = 5, 278, d = 5, d(one-hot) = 7) have been previously used in the
context of fairness in ML [Joseph et al., 2016; Zafar et al., 2017; Agarwal et al.
2018].

Adult (n = 45, 222, d = 12, d(one-hot) = 51):

• Integer: Age, Education Number, Hours Per Week

• Real: Capital Gain, Capital Loss

• Categorical: Sex, Native Country, Work Class, Marital Status, Oc-
cupation, Relationship

• Ordinal: Education Level

Credit (n = 29, 623, d = 14, d(one-hot) = 20):

• Integer: Total Overdue Counts, Total Months Overdue, Months

With Zero Balance Over Last 6 Months, Months With Low Spend-
ing Over Last 6 Months, Months With High Spending Over Last

6 Months

• Real: Max Bill Amount Over Last 6 Months, Max Payment Amount

Over Last 6 Months, Most Recent Bill Amount, Most Recent Pay-
ment Amount

• Categorical: Is Male, Is Married, Has History Of Overdue Payments

• Ordinal: Age Group, Education Level

COMPAS (n = 5, 278, d = 5, d(one-hot) = 7):

• Integer: -
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• Real: Priors Count

• Categorical: Race, Sex, Charge Degreee

• Ordinal: Age Group

a.2.3 Handling Mixed Data Types

While the proposed approach (MACE) naturally handles mixed data types,
other approaches do not. Specifically, the Feature Tweaking method generates
counterfactual explanations for Random Forest models trained on non-hot
embeddings of the dataset, meaning that the resulting counterfactuals will
not have multiple categories of the same variable activated at the same time.
However, because this method is only restricted to working with real-valued
variables, the resulting counterfactual is must undergo a post-processing step
to ensure integer-, categorical-, and ordinal-based variables are plausible in
the counterfactual. The Actionable Recourse method, on the other hand, ex-
planations for Logistic Regression models trained on one-hot embeddings of
the dataset, hence requiring additional constraints to ensure that multiple
categories of a categorical variable are not simultaneously activated in the
counterfactual. While the authors suggest how this can be supported using
their method, their open-source implementation converts categorical columns to
binary where possible and drops other more complicated categorical columns, post-
poning to future work. Furthermore, the authors state that the question of
mutually exclusive features will be revisited in later releases 1. Moreover, ordinal
variables are not supported using this method. The overcome these shortcom-
ings, the counterfactuals generated by both approaches is post-processed to
ensure correctness of variable types by rounding integer-based variables, and
taking the maximally activated category as the counterfactual category.

a.3 additional results

a.3.1 Comprehensive Distance Results

Following the presentation of coverage Ω results in Table 2.2 and relative
distance δ improvement (reduction) in Table 2.3 of the main body, in Figure
A.1 we present the complete distribution of counterfactual distances upon
termination of Algorithm 1. Importantly, we see that in all setups (approaches
× models × norms × datasets), MACE results are at least as good as any
other approach (MO, PFT, AR).

1this link
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Table A.1: Wall-clock time (seconds) for computing the nearest counterfactual expla-
nation (without constraints). N = ΩMACE ∩ΩOther factual samples; cells are shaded
for unsupported tests. Lower run-time is better. The run-time for MACE depends on
O(log(1/ϵ)), i.e., orders of magnitude more accuracy only cost linearly more run-
time. These results should be considered along Tables 2.2, 2.3 comparing coverage Ω
and distance δ.

Adult Credit COMPAS

ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞ ℓ0 ℓ1 ℓ∞

tree

MACE (ϵ = 10−1) 5.65± 2.18 3.01± 0.74 3.47± 0.93 3.48± 1.25 3.44± 1.70 2.39± 0.64 2.41± 1.06 1.22± 0.36 1.62± 0.78

MACE (ϵ = 10−3) 17.59± 4.87 9.58± 3.05 10.43± 2.98 15.84± 4.78 7.55± 3.44 4.44± 2.20 7.07± 2.09 5.72± 1.28 4.99± 1.89

MACE (ϵ = 10−5) 35.32± 14.07 20.35± 6.34 20.44± 9.55 25.47± 8.71 18.46± 6.24 10.58± 6.36 13.49± 6.44 9.22± 4.21 10.76± 4.60

MO 1.04± 0.26 0.85± 0.27 0.87± 0.22 0.53± 0.15 0.64± 0.26 0.54± 0.23 0.15± 0.07 0.12± 0.06 0.16± 0.07

PFT 1.45± 0.42 1.50± 0.36 1.91± 0.79 0.12± 0.05 0.13± 0.06 0.12± 0.05

forest

MACE (ϵ = 10−1) 27.98± 9.48 17.68± 4.82 19.05± 6.11 28.12± 9.31 21.88± 10.04 21.47± 11.07 8.07± 3.36 3.18± 1.15 3.52± 1.93

MACE (ϵ = 10−3) 69.19± 15.76 55.79± 15.78 52.31± 15.39 57.29± 26.69 40.75± 17.85 26.21± 11.71 15.05± 5.15 10.75± 3.03 8.53± 3.55

MACE (ϵ = 10−5) 89.81± 28.99 84.89± 35.14 78.49± 23.85 107.83± 52.32 90.04± 38.02 72.38± 37.77 33.26± 9.79 19.95± 10.03 17.22± 7.90

MO 1.14± 0.35 0.98± 0.25 0.94± 0.36 0.80± 0.27 0.80± 0.35 0.80± 0.28 0.16± 0.06 0.17± 0.08 0.15± 0.07

PFT 13.41± 7.09 10.46± 4.67 11.79± 6.51 1.93± 0.81 2.11± 1.07 1.83± 0.87

lr

MACE (ϵ = 10−1) 0.85± 0.29 0.66± 0.26 0.74± 0.29 0.33± 0.15 1.17± 1.79 0.49± 0.30 0.21± 0.10 0.19± 0.10 0.22± 0.11

MACE (ϵ = 10−3) 2.22± 0.86 3.55± 1.50 5.15± 3.51 0.87± 0.20 10.57± 8.14 6.11± 3.51 0.52± 0.18 0.31± 0.12 0.54± 0.20

MACE (ϵ = 10−5) 2.73± 0.73 6.60± 3.01 13.32± 6.70 1.19± 0.56 25.10± 21.67 16.21± 8.84 0.84± 0.22 0.72± 0.28 0.77± 0.21

MO 7.52± 1.91 6.62± 1.73 5.73± 1.14 1.86± 0.82 1.41± 0.53 1.69± 0.79 0.30± 0.22 0.25± 0.12 0.25± 0.11

AR 2.05± 0.45 1.86± 0.03 0.72± 0.15 0.66± 0.07 0.07± 0.01 0.06± 0.01

mlp

MACE (ϵ = 10−1) 2586± 4523 8070± 5995 5091± 6616 1743± 4171 3432± 5615 10309± 10088 59± 53 158± 135 90± 90

MACE (ϵ = 10−3) 4187± 9899 34101± 29853 7094± 10919 1703± 5889 3304± 4944 8689± 11638 79± 55 180± 139 122± 103

MACE (ϵ = 10−5) 5888± 9760 44470± 30907 19712± 14117 1901± 4892 4736± 5080 11129± 9773 100± 56 257± 168 203± 149

MO 6.66± 2.17 6.61± 1.96 6.40± 1.60 2.02± 2.09 2.43± 0.41 1.90± 0.83 0.35± 0.12 0.45± 0.10 0.32± 0.09

a.3.2 Quality vs Complexity

In the main text and in the previous section, we considered distance compar-
isons upon termination of Algorithm 1; in this section we explore the effect
of the accuracy parameter ϵ jointly on quality (distance δ) and complexity
(run-time τ) during execution of Algorithm 1. Importantly, the number of calls
made to the SAT solver follows O(log(1/ϵ)), where ϵ is the desired the accu-
racy term, i.e., orders of magnitude more accuracy only cost linearly more
SAT calls. The run-time of each call to the SAT solver is governed by a num-
ber of parameters, including the implementation details of the SAT solver2,
the compute hardware3, among other factors. Clearly, a higher desired accu-
racy (i.e., ϵ → 0) will result in closer counterfactuals (δ ∈ [δ∗, δ∗ + ϵ]) at the
cost of higher run-time (higher τ), while leaving the coverage Ω unchanged

2This is assumed beyond the scope of the chapter; we built MACE atop the open-source
PySMT library (GM15) with the Z3 (MB08) backend to demonstrate its model-agnostic sup-
port of off-the-shelf models.

3All tests were conducted using one X86_64 Xeon(R) CPU @ 2.60GHz, and 8GB memory.
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Table A.2: Percentage of factual samples for which the nearest counterfactual sample
requires a reduction in age for a random forest trained on the Adult dataset, and
the corresponding increase in distance to nearest counterfactual when restricting the
approaches not to reduce age: 100×E[δrestr./δunrestr. − 1].

ℓ0 ℓ1 ℓ∞
% age-
change

relative dist.
increase

% age-
change

relative dist.
increase

% age-
change

relative dist.
increase

MACE (ϵ = 10−5) 3.6% 0% 7.4% 61.3% 34.2% 13.9%

MO 24.6% 29.7% 34.6% 94.6% 34.2% 66.6%

(remaining at 100%, by design). Figure A.2 depicts the average counterfac-
tual distance and average run-time against the number of calls to the SAT

solver, confirming the intuition above: not only does MACE always achieve
a lower counterfactual distance4 upon termination, in many cases an early
termination of MACE generates closer counterfactuals while also being less
computationally demanding.

In addition to studying the quality vs complexity tradeoff against number
of calls to the SAT solver, in Table A.1 we compare final run-times (in sec-
onds) upon-termination of Algorithm 1 for various setups. The results show
that MACE takes less than 5 seconds for logistic regression; between 5 and 60

seconds for decision trees and random forests; and between one minute and
three hours for the multilayer perceptron (outliers were not excluded in com-
puted mean runtimes). In contrast, competing approaches (MO, PFT, AR)
require at most 30 seconds to generate a counterfactual explanation, when
possible (note that the coverage for AR and PFT is often significantly below
100%, and only MACE is able to generate counterfactuals for the multilayer
perceptron; MO requires access to the training data as it searches through
the training set for a counterfactual). We believe that this difference is com-
pensated (at least for the decision tree, the random forest, and the logistic
regression classifiers) by the main properties of MACE compared to previous
works, i.e.: i) model-agnostic ({non-}linear, {non-}differentiable, {non-}convex);
ii) data-agnostic (heterogeneous features); iii) provable closeness guarantees; and
iv) 100% coverage, even under plausibility and diversity constraints. Regard-
ing the results on MLPs, we are well aware of prior work that develops effi-
cient SMT-based methods for verifying large deep neural networks (see for-
mal verification of deep neural networks (Hua+17; Kat+17; Sin+19) and op-
timization modulo theories (NO06; ST12)); indeed we plan to leverage state-

4Reminder: lower distance is more desirable, as it specifies the least change required of
the individual’s features.
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of-the-art tools to improve the efficiency of our implementation, in particular
for MLP-based models. With the current implementation of MACE, our main
goal was to explore the use of off-the-shelf SMT-solvers already available in
Python to generate counterfactuals in a broad range of settings, justifying our
lesser emphasis on efficiency.

In practice the choice of epsilon should reflect the desired distance granu-
larity from the operator, the number and range of attributes in the data space,
and the decided upon distance norm. For example, using the ℓ0 norm, which
tracks the number of attributes changed, the lowest achievable distance gran-
ularity is 1/J where J is the data dimensionality. Therefore, choosing any
ϵ < 1/J is sufficient and will result in the optimal counterfactual for this
choice of distance metric. As another example, for the continuous ℓ1 norm,
too much granularity may result in a lack of trust for the end-user – con-
sider the adult dataset with account balance feature with range R = $50, 000;
choosing a fine granularity may result in a counterfactual that suggests that
only a few dollars change in the account balance can flip the prediction (e.g.,
result in the approval of a loan). It is important to point out that this phe-
nomenon is not a fault of the counterfactual generating method (i.e., MACE),
but of the robustness of the underlying classifier and its decision boundary.
While such an explanation may not be favorable for an end-user, it may assist
a system administrator or model designer to assay the robustness and safety
of their model prior to deployement.

a.3.3 Additional Constrained Results

Following the study of counterfactuals that change or reduce age (Section
2.5), we regenerate counterfactual explanations for those samples for which
age-reduction was required, with an additional plausibility constraint ensur-
ing that the age shall not decrease. The results presented in Table A.2 show
interesting results. Once again, we observe that the additional plausibility
constraint for the age incurs significant increases in the distance of the near-
est counterfactual – being, as expected, more pronounced for the ℓ1 and the
ℓ∞ norms. For the ℓ0 norm, we find that for the 18 factual samples (i.e.,
3.6% × 500) for which the unrestricted MACE required age-reduction, the
addition of the no-age-reduction constraint results in counterfactuals at the
same distance, while suggesting a change in work class (5/18) or education
level (4/18) instead of changing age.
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a.3.4 Details on diverse counterfactuals example

In the main body, we described a scenario where a logistic regression model
had predicted that a loan borrower, John, would default on his loan. Here is
john’s complete feature list: John is a married male between 40-59 years of
age with some university degree. Over the last 6 months, Max Bill Amount

= 500.0, Max Payment Amount = 60.0, Months With Zero Balance = 0.0,
Months With Low Spending = 0.0, Months With High Spending = 1.0.
Furthermore, John has a history of overdue payments, his Most Recent Bill

Amount = 370.0, and his Most Recent Payment Amount = 40.0
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Figure A.1: Comparison of approaches for generating unconstrained counterfactual
explanations for a (top to bottom) trained decision tree, random forest, logistic
regression, and multilayer perceptron model. Here the distribution of distance δ
is shown upon termination of Algorithm 1; lower distance is better. For each bar,
N = 500×Ω from Table 2.2, and absent bars refer to Ω = 0. In all setups, MACE
results are at least as good as any other approach.
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Figure A.2: Comparison of approaches for generating unconstrained counterfactual
explanations for a (top to bottom) trained decision tree, random forest, logistic
regression, and multilayer perceptron model. Here the average distance δ and run-
time τ is shown during execution of Algorithm 1 (i.e., over number of calls to the SAT
solver); lower distance and low.er run-time is better. Other approaches (MO, PFT, AR)
would only be shown as a single point on these plots, and therefore we repeat their
results over all values of the x-axis for ease of comparison against MACE. Results
are averaged over all plausible counterfactuals (N = 500× Ω from Table 2.2,). As
expected, Algorithm 1 terminates after different number of iterations depending on
the factual instance; this explains the observed larger variance in results for higher
number of iterations. These results confirm our intuition: not only does MACE al-
ways achieve a lower counterfactual distance upon termination, in many cases an
early termination of MACE generates closer counterfactuals while also being less
computationally demanding.
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b.1 illustrations for the bounds computation
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Figure B.1: A sample neural network demonstrating the bounds computation. Com-
puting bounds using interval arithmetic

We use a very simple example to demonstrate how bounds of the hidden
units are computed using interval arithmetic and why using MIPs we can
obtain better bounds. Consider the simple initial network without ReLUs and
biases in Figure B.1. In step 1, we wish to compute the bounds for the first
(and only) hidden layer. Starting by z1, computing its lower bound means
choosing the bounds from neurons of the previous layer which result in the
minimum value for z1. Thus, considering the sign of its weights, for both of
the neurons in the previous layer the lower bound is chosen and the lower
bound of z1 is set to 1 ∗ (−1) + 1 ∗ (−1) = −2. Similarly, the upper bound
is 1 ∗ 2 + 1 ∗ 2 = 4. For z2, however, since the weights connected to it are
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negative, for computing lower bound, the upper bounds of previous layer
are chosen and its lower bound is set to −1 ∗ 2 +−1 ∗ 2 = −4. Similarly, the
upper bound is −1 ∗ (−1) +−1 ∗ (−1) = 2. Finally, in step 2, the bounds of
the single output is computed in a similar way ([−6, 6]).

It can be seen that, in order to compute the bounds of the hidden layer,
each neuron has chosen lower/upper bounds from the previous layer sep-
arately and without considering the relations among neurons, causing con-
flicts which result in loose bounds for the next layer (the output). On the other
hand, considering the straight-forward MIP for this network, we simply have
z1 = x1 + x2 and z2 = −x1 − x2 for the hidden layer and z3 = z1 + z2 for
the next layer. maximizing/minimizing z1 and z2 variables gives the same
bounds as the ones by interval arithmetic for the hidden layer, however, for
the next layer (the output) we will have the bounds [0, 0] since the deeper
relations among neurons are considered in the MIP i.e., z3 = z1 + z2 =
x1 + x2 − x1 − x2 = 0.

This example was for a network without the ReLU activation. The ReLUs
can also be encoded by associating them with binary variables in the MIP
encoding (e.g., encoding (3.3)) and compute exact bounds similarly by solving
MIPs layer-by-layer. However, this would be inefficient as the ReLU binary
variables incur an exhaustive search. Thus, a linear (over-)approximation for
ReLUs (3.6b) is suggested to find looser than exact but tighter than interval
arithmetic bounds in an efficient way.

b.2 additional results

The results in Figure B.2 complement those in Figure 3.3 in the main body, by
comparing instead the distance norm obtained by every method. Addition-
ally, Figure B.3 presents additional scalability results (similar to Figure 3.5)
but for the Adult and Credit datasets. These results mimic the same trends
seen earlier in the main body.
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Figure B.2: A bar plot comparing distances of our approach and previous work
MACE in all setups of norm type, and dataset on NN model. Full-setting distance
comparison of two-layer ReLU-activated NN with 10 neurons in each layer among
our approach and MACE (SAT) (Kar+20a). Note that coverage is perfect by design.
Each setting has been evaluated on 500 instances, however, SAT and MIP-SAT timed
out on some samples. For such cases, only the samples for which all approaches
have successfully finished running are included.
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Figure B.3: Scatter and bar plots showing the runtimes and distances when the net-
work architecture becomes wider or deeper. Scalability experiments comparing SMT-
, MIP-, and gradient-based approaches. The first two rows show the results for Credit
dataset and the second two rows are for the Adult dataset. In each two rows, the up-
per row demonstrates increasing depth while the lower row demonstrates increasing
width; both in terms of runtime and distance. For each approach and architecture
50 samples are evaluated, however, some fail to produce valid CFEs (only for DiCE
in this case); thus, only the instances for which all approaches have generated valid
CFEs are included in the comparison. In general, for the Credit dataset, increasing
depth results in 100.0%, 100.0%, and 98.2% average coverage and increasing width
results in 100%, 100%, and 100.0% average coverage for MIP-OBJ, MIP-EXP, and
DiCE, respectively. For the Adult dataset, increasing depth results in 100.0%, 100.0%,
and 96.8% average coverage and increasing width results in 100%, 100%, and 99.1%
average coverage for MIP-OBJ, MIP-EXP, and DiCE, respectively.
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c.1 proofs

c.1.1 Proof of Proposition ??

Proposition ?? (GP-SCM Noise Posterior). Let {xi}n
i=1 be an observational sam-

ple from (??). For each r ∈ [d] with non empty parent set |pa(r)| > 0, the posterior
distribution of the noise vector ur = (u1

r , ..., un
r ), conditioned on xr = (x1

r , ..., xn
r )

and Xpa(r) = (x1
pa(r), ..., xn

pa(r)), is given by

ur |Xpa(r), xr ∼ N
(

σ2
r (K + σ2

r I)−1xr , σ2
r

(
I− σ2

r (K + σ2
r I)−1

))
, (C.1.1)

where K :=
(
kr
(
xi

pa(r), xj
pa(r)

))
ij denotes the Gram matrix.

Proof. First, note that, by definition, ur is independent of fr = ( fr(x1
pa(r)), ..., fr(xn

pa(r)))

given Xpa(r). Moreover, it follows from the assumed GP-SCM model in (??)
and Definition ??, as well as properties of the GP prior, that both are
multivariate Gaussian random variables with distributions given by

ur ∼ N (0, σ2
r I) independently of Xpa(r), and (C.1.1)

fr |Xpa(r) ∼ N (0, K), (C.1.2)

where 0 denotes the zero vector (or matrix, see below) and K is as defined in
Proposition ??.

Since independent multivariate Gaussian random variables are jointly mul-
tivariate Gaussian, we thus have(

ur

fr

)
|Xpa(r) ∼ N (0, Σ), where Σ =

(
σ2

r I 0

0 K

)
(C.1.3)

Noting that xr = fr + ur and applying a linear transformation to (C.1.3),
we then obtain(

ur

xr

)
|Xpa(r) =

(
I 0

I I

)(
ur

fr

)
|Xpa(r) ∼ N (0, Σ̃)

where Σ̃ =

(
σ2

r I σ2
r I

σ2
r I K + σ2

r I

)
.

(C.1.4)
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Conditioning on xr and using the conditioning formula (e.g., Tou11), the
result follows:

ur |Xpa(r), xr ∼ N
(

0 + σ2
r I(K + σ2

r I)−1(xr − 0), σ2
r I− σ2

r I(K + σ2
r I)−1σ2

r I
)

(C.1.5)

∼ N
(

σ2
r (K + σ2

r I)−1xr , σ2
r

(
I− σ2

r (K + σ2
r I)−1

))
(C.1.6)

c.1.2 Proof of Proposition ??

Proposition ?? (GP-SCM Counterfactual Distribution). Let {xi}n
i=1 be an ob-

servational sample from (??). Then, for r ∈ [d] with |pa(r)| > 0, the counterfac-
tual distribution over Xr had Xpa(r) been x̃pa(r) (instead of xFpa(r)) for individual

xF ∈ {xi}n
i=1 is given by

Xr(Xpa(r) = x̃pa(r))|xF, {xi}n
i=1

∼ N
(
µF

r + k̃T(K + σ2
r I)−1xr , sFr + k̃− k̃T(K + σ2

r I)−1k̃
)
,

(C.1.7)

where k̃ := kr(x̃pa(r), x̃pa(r)), k̃ :=
(
kr(x̃pa(r), x1

pa(r)), . . . , kr(x̃pa(r), xn
pa(r))

)
, xr and

K as defined in ??, and µF
r and sFr are the posterior mean and variance of uF

r given
by (??).

Proof. We follow the three steps of abduction, action, and prediction for com-
puting counterfactual distributions (see § 4.2.2 for more details). Starting from
the factual observation xF ∈ {xi}n

i=1 generated according to

xFr := fr(xFpa(r)) + uF
r , (C.1.7)

we first compute the noise posterior (abduction). According to Proposition ??
it is given by a marginal of (??), i.e.,

uF
r |Xpa(r), xr ∼ N (µF

r , sFr ) (C.1.8)

where µF
r is given by element F of the mean vector

µr = σ2
r (K + σ2

r I)−1xr (C.1.9)

and sFr is given by element (F, F) of the covariance matrix

Sr = σ2
r

(
I− σ2

r (K + σ2
r I)−1

)
(C.1.10)
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of the noise posterior given by (??).
Next, we simulate the hypothetical intervention by updating the structural

equation (C.1.7) (action step),

xFr (Xpa(r) = x̃pa(r)) := fr(x̃pa(r)) + uF
r . (C.1.11)

The GP predictive posterior at the new input x̃pa(r) has distribution (see, e.g.,
WR06),

fr(x̃pa(r))|Xpa(r), xr ∼ N (k̃T(K + σ2
r I)−1xr , k̃− k̃T(K + σ2

r I)−1k̃). (C.1.12)

Substituting (C.1.12) and (C.1.8) into (C.1.11) and noting that the sum of two
Gaussians is again Gaussian with mean and variance equal to the sums of
means and variances of the two individual Gaussians (prediction step) com-
pletes the proof.

c.1.3 Proof of Proposition ??

Proposition ??. Subject to causal sufficiency, PXd(I) |do(XI :=θ),xFnd(I)
is observation-

ally identifiable (i.e., computable from the observational distribution) via:

p
(
Xd(I)|do(XI := θ), xFnd(I)

)
= ∏

r∈d(I)
p
(

Xr |Xpa(r)

)∣∣∣∣∣∣
XI :=θ,Xnd(I)=xFnd(I)

.

(C.1.13)

Proof. This is a direct consequence of the properties of causally sufficient
(Markovian) causal models, but we include a derivation for completeness.
Recall that P factorises over its underlying causal graph G as follows,

p(X) = ∏
r∈[d]

p(Xr |Xpa(r)). (C.1.13)

This joint distribution is transformed by the intervention do(XI := θ) as
follows,

P(X−I , do(XI := θ)) = δ(XI := θ) ∏
r∈[d]\I

P(Xr |Xpa(r)). (C.1.14)

Splitting the non-intervened variables into descendants d(I) and
non-descendants nd(I), and conditioning on the intervened variables
do(XI := θ), we obtain

P(Xnd(I), Xd(I)|do(XI := θ)) =

 ∏
r∈nd(I)∪d(I)

P(Xr |Xpa(r))

∣∣∣∣∣∣
XI :=θ

. (C.1.15)
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As the non-descendants Xnd(I) are, by their very definition, not affected by
the intervention, we can write

P(Xnd(I), Xd(I)|do(XI := θ)) = ∏
r∈d(I)

P(Xr |Xpa(r))

∣∣∣∣∣∣XI :=θ ∏
r∈nd(I)

P(Xr |Xpa(r)).

We can thus condition on a particular value of Xnd(I) to obtain

P
(

Xd(I)|do(XI := θ), Xnd(I) = xFnd(I)
)
= ∏

r∈d(I)
P(Xr |Xpa(r))

∣∣∣∣∣∣XI :=θ,Xnd(I)=xFnd(I)

(C.1.16)

c.2 additional results

This section presents additional results complementing those from Section ??.
Table C.1 presents results that mirror those in Table ??, where the brute-force
approach discussed at the beginning of Appendix C.5 is used instead of the
gradient-based optimisation. Here, each real-valued feature was discretised
into 20 bins within the range of its observed values in the training dataset.

Fig. C.1 mirrors the results in Fig. ??, for which a snapshot (γLCB = 2.5)
is also provided in Table ??. Here we show the trade-off between validity
and cost by varying the values of γLCB, using as trained classifiers a non-
linear multilayer perceptron (MLP) in (a) and a non-differentiable random
forest classifer in (b). Note that optimisation for the latter can only be done
with the brute-force approach. All these additional results mostly confirm the
insights presented in the main body.

Finally, Table C.2 provides a qualitative comparison of the proposed re-
course approaches against the oracles and baselines in terms of their selection
of intervention targets. We show empirically, on the three synthetic datasets,
that cate approaches have more predictable behaviour, as they are less sen-
sitive to model assumptions, and are thus more preferable for the individual
seeking recourse under imperfect causal knowledge.

c.3 (non-)identifability of scms under different assumptions

In general form, i.e., without any further assumption on the structural equa-
tions S or noise distribution PU, SCMs are not identifiable from data alone,
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Table C.1: Experimental results for the brute-force (20-bin discretization) approach
on different 3-variable SCMs. We show average performance for Nruns = 100,
NMC-samples = 100, and γLCB = 2. The relative trends reflect those in Table ??.

Method
linear SCM non-linear ANM non-additive SCM

Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%) Valid⋆ (%) LCB Cost (%)

M⋆ 100 - 11.0±5.6 100 - 20.7±11.0 100 - 15.8± 8.9

Mlin 100 - 11.3±5.8 60 - 19.9± 8.9 92 - 17.0±10.4

Mkr 95 - 11.2±5.6 88 - 20.5±10.7 47 - 15.8±10.6

Mgp 100 .55±.04 11.6±5.8 99 .55±.04 21.2±10.9 88 .58±.05 16.8±10.3

Mcvae 100 .55±.04 11.5±5.8 95 .55±.03 21.7±10.7 95 .59±.07 16.9±10.3

cate⋆ 90 .57±.07 11.0±5.5 95 .55±.05 22.8±10.8 99 .57±.06 16.2± 8.9

categp 92 .56±.07 11.2±5.5 95 .55±.04 22.8±10.9 85 .58±.07 16.4±10.5

catecvae 90 .57±.06 11.1±5.4 96 .55±.03 23.0±10.8 94 .59±.07 16.8±10.2
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(b) random forest

Figure C.1: Trade-off between validity and cost which can be controlled via γLCB
for the probabilistic recourse methods. Shown is the same setting as in Fig. ?? using
instead a non-linear logistic regression in the form of a multilayer perceptron (MLP;
left), and a random forest (right) as classifiers h.

meaning that there are multiple different SCMs (possibly with different un-
derlying causal graphs) which imply the same observational distribution
(PJS17). One possible construction relies on the use of the inverse cumula-
tive distribution function (cdf) in combination with uniformly-distributed
random variables (Dar51) and is also used in non-identifiability proofs for
non-linear independent component analysis (ICA) (HP99). Even knowing the
causal graph is generally not enough as summarised in the following propo-
sition.

Proposition C.3.1. Even when the causal graph is known, the conditionals
P(Xr |Xpa(r)) alone are insufficient to uniquely determine the structural equations
Xr := fr(Xpa(r), Ur) without further assumptions.
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Proof. This can be shown by using the following argument from JS10, Foot-
note 1 (adapted to our notation):

“let Ur consist of (possibly uncountably many) real-valued random variables
Ur [xpa(r)], one for each value xpa(r) of the parents Xpa(r). Let Ur [xpa(r)] be

distributed according to PXr |xpa(r)
and define fr(xpa(r), Ur) := Ur [xpa(r)]. Then

Xr |Xpa(r) has distribution PXr |Xpa(r)
”.

We can now build on this formulation to construct a second SCM with the
same observational distribution and causal graph, e.g., by shifting the noise
variables and structural equations by some fixed constant C as follows.

For r ∈ [d], define Yr := Xr − C. Let Ũr consist of (possibly uncountably
many) real-valued random variables Ũr [xpa(r)], one for each value xpa(r) of the
parents Xpa(r). Let Ũr [xpa(r)] be distributed according to PYr |xpa(r)

and define

fr(xpa(r), Ũr) := Ũr [xpa(r)] + C. Then Xr |Xpa(r) also has distribution PXr |Xpa(r)
,

but for C ̸= 0 the structural equations and noise distributions are different
from the previous construction.

In the case of the cvae-SCM model from (??) the setting is slightly less
general than the above, since we additionally assume that: (i) the noise distri-
butions are isotropic multivariate Gaussian distributions of fixed dimension,
zr ∼ Ndzr

(0, I); and (ii) the structural equations Dr are from the class of func-
tions that can be expressed as feedforward neural networks if fixed width
and depth with learnable parameters ψr .

Unfortunately, we are not aware of any identifiability results for this par-
ticular setting, and further investigation into this matter is beyond the scope
of the current work. It is interesting to note, however, that the cvae-SCM
from (??) can be understood as a non-linear extension of the linear Gaussian
model with equal error variances considered by (PB14), for which identifia-
bility has been shown.

In general, there seem to be very few works addressing identifiability of
SCMs in the non-linear case; we refer to PJS17, §7.1 for an overview of exist-
ing results. Of particular interest for our setting is the post-nonlinear model
of (ZH09), which refers to the setting in which a non-linearity g is applied
on top of an ANM, i.e., Xr := gr( fr(Xpa(r)) + Ur), and for which complete
conditions on { fr , gr} have been provided that lead to identifiability. Given
the form of the decoders Dr—feedforward neural networks with stacked lay-
ers of simple non-linearities applied to linear transformations of the previous
layers’ output—it may be possible that the cvae-SCM from (??) can be in-
terpreted as a nested post-nonlinear model. We consider this an interesting
direction, but leave further investigations into this matter for future work.
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c.4 further details on cvae training

To learn the cvae latent variable models, we perform amortised variational
inference with approximate posteriors q parameterised by encoders Er in the
form of neural nets with parameters ϕr ,

pψr (zr |xr , xpa(r)) ≈ qϕr (zr |xr , xpa(r)) := N (µ̂r , σ̂2
r ),

(µ̂r , σ̂2
r ) := Er(xr , xpa(r); ϕr).

(C.4.1)

The training objective in form of the evidence lower bound (ELBO) given data
{xi}n

i=1 is given by

Lr(ψr , ϕr) =
n
∑
i=1

Eqϕr (z|xi
r ,xi

pa(r))

[ ∥∥∥xi
r − Dr(xi

pa(r), z; ψr)
∥∥∥2 ]

+ βrDKL

(
qϕr (z|xi

r , xi
pa(r))

∣∣∣∣∣∣ p(z)
) (C.4.2)

We learn both ψr and ϕr simultaneously via stochastic gradient descend
on Lr , with gradients computed by Monte Carlo sampling from qϕr with
reparametrisation. Since the pairs of encoder and decoder parameters (ψr , ϕr)
are independent for different r, this can be done in parallel.

c.4.1 Hyperparameter selection for cvae training

A cvae model was trained for every Xr |Xpa(r) relation. Generally, hyperpa-
rameters were selected by comparing the distribution of real samples from
the dataset against reconstructed samples from the trained cvae obtained by
sampling noise from the prior. The selection of hyperparameters was done
either manually, or by performing a grid search over various encoder and de-
coder architectures, latent-space dimensions, and values of the hyperparame-
ters βr that trade off the MSE and KL terms in the cvae objective (C.4.2). For
the case of automatic selection, the setup resulting in the smallest maximum
mean discrepancy (MMD) statistic (Gre+12) between real and reconstructed
samples was chosen as hyperparameter configuration. Further details on the
search space considered and the selected values are provided in Table C.3.
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c.5 experimental details , hyperparameter choices , and speci-
fication of scms

c.5.1 Specification of SCMs used in our experiments

The following is a specification of all SCMs used in our experiments on syn-
thetic and semi-synthetic data, both for data generation and to evaluate the
validity of recourse actions proposed by the different approaches by comput-
ing the corresponding counterfactual in the ground-truth SCMs.

In addition, we also specify the model used to generate training labels.
Note, however, that these labels are only used to train a new classifier (e.g.,
a logistic regression, multi-layer perceptron, or random forest) from scratch:
this is the h(x) referred to in the main chapter. The label generating process is
thus only used for obtaining labels to train a classifier on and is subsequently
disregarded in favour of h.

In selecting the structural equations and label generating process, we tried
to pick combinations that resulted in roughly centred features, as well as
roughly balanced datasets (i.e., with a similar proportion of positive and neg-
ative training examples) that are not perfectly linearly-separable (i.e., with
some class overlap). Moreover, we tried to select settings that result in a di-
verse set of intervention targets selected by the oracle for different factual
instances, i.e., we try to avoid situations in which the optimal action is to
always intervene on the same (set of) variable(s). To induce more interesting
behaviour, we sample root nodes from mixtures of Gaussians.

c.5.1.1 3-variable synthetic SCMs used for Table ??

A visual summary of the 3-variable synthetic SCMs used for Table ?? is pro-
vided in Fig. C.2.

linear scm : The linear 3-variable SCM consists of the following struc-
tural equations and noise distributions:

X1 := U1, U1 ∼ MoG
(

0.5N (−2, 1.5) + 0.5N (1, 1)
)

(C.5.1)

X2 := −X1 + U2, U2 ∼ N (0, 1) (C.5.2)

X3 := 0.05X1 + 0.25X2 + U3, U3 ∼ N (0, 1) (C.5.3)
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Figure C.2: Histograms and scatter plots of pairwise feature relations for the syn-
thetic 3-variable SCMs.

non-linear anm : The non-linear 3-variable ANM consists of the follow-
ing structural equations and noise distributions:

X1 := U1, U1 ∼ MoG
(

0.5N (−2, 1.5) + 0.5N (1, 1)
)

(C.5.4)

X2 := −1 +
3

1 + e−2X1
+ U2, U2 ∼ N (0, 0.1) (C.5.5)

X3 := −0.05X1 + 0.25X2
2 + U3, U3 ∼ N (0, 1) (C.5.6)

non-additve scm : The non-additive 3-variable SCM consists of the fol-
lowing structural equations and noise distributions:

X1 := U1, U1 ∼ MoG
(

0.5N (−2.5, 1) + 0.5N (2.5, 1)
)

(C.5.7)

X2 := 0.25 sgn(U2)X2
1(1 + U2

2 ), U2 ∼ N (0, 0.25) (C.5.8)

X3 := −1 + 0.1 sgn(U3)(X2
1 + X2

2) + U3, U3 ∼ N (0, 0.252) (C.5.9)

label generation : For all 3-variable SCMs, labels Y were sampled ac-
cording to

Y ∼ Bernoulli
((

1 + e−2.5ρ−1(X1+X2+X3)
)−1

)
(C.5.10)

where ρ is the average of (X1 + X2 + X3) across all training samples.
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c.5.1.2 7-variable semi-synthetic loan approval SCM used for Table ??

For the semi-synthetic dataset, we wanted to capture some relations between
the involved variables that seemed somewhat intuitive to us and to some
limited extent reflect a loan approval setting in the real-world:

• loan amount and duration being largest for mid-aged people who may
want to build a house and start a family, and smaller for younger and
older people;

• loan duration increasing with loan amount due to the an upper limit
on monthly payments that can be afforded

• savings increasing once income passes a certain (minimal-sustenance)
threshold;

• income increasing with age;

• education increasing with age initially before eventually saturating;

• gender differences in income and (access to) education due to existing
gender-discrimination and inequality of opportunities in the popula-
tion;

A visual summary of the 7-variable semi-synthetic loan SCMis shown in
Fig. C.3.
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Figure C.3: Histograms and scatter plots of pairwise feature relations for the semi-
synthetic loan SCM.
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semi-synthetic scm : The loan approval SCM consists of the following
structural equations and noise distributions:

G := UG , UG ∼ Bernoulli(0.5)

(C.5.11)

A := −35 + UA, UA ∼ Gamma(10, 3.5)
(C.5.12)

E := −0.5 +
(

1 + e−
(
−1+0.5G+(1+e−0.1A)

−1
+UE

))−1

, UE ∼ N (0, 0.25)

(C.5.13)

L := 1 + 0.01(A− 5)(5− A) + G + UL, UL ∼ N (0, 4)
(C.5.14)

D := −1 + 0.1A + 2G + L + UD , UD ∼ N (0, 9)
(C.5.15)

I := −4 + 0.1(A + 35) + 2G + GE + UI , UI ∼ N (0, 4)
(C.5.16)

S := −4 + 1.5I{I>0} I + US, US ∼ N (0, 25)
(C.5.17)

Note that variables in the above SCM often have a relative meaning in terms
of deviation from the mean, e.g., we centre the Gamma-distributed age
around its mean of 35, so that A has the meaning of “age-difference from the
mean of 35” (and similarly for other variables).

label generation : Labels Y were sampled according to

Y ∼ Bernoulli
((

1 + e−0.3(−L−D+I+S+IS)
)−1

)
. (C.5.18)

Note that this label generation process only depends on loan duration and
amount, income and savings, but not on gender, age or education level.

c.6 derivation of a monte-carlo estimator for the gradient

of the variance

We now derive an estimator for the gradient of the square-root of the variance
(i.e., standard deviation) of h over the interventional or counterfactual distri-
bution of Xd(I) w.r.t. θ, which appears (multiplied by λLCB) in the threshold
tresh(a) of the optimisation constraint/regulariser.
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C.6 derivation of a monte-carlo estimator for the gradient of the

variance

First, we use the chain rule of differentiation to write

∇θ

√
VXd(I)

[
h
(

Xd(I), θ, xFnd(I)
)]

=
∇θVXd(I)

[
h
(

Xd(I), θ, xFnd(I)
)]

2
√

VXd(I)

[
h
(

Xd(I), θ, xFnd(I)
)] (C.6.1)

Next, we write the variance as expectation and—assuming the interven-
tional or counterfactual distribution of Xd(I) admits reparametrisation as is
the case for the GP-SCM and cvae models used in this chapter—use the
reparametrisation trick to differentiate through the expectation operator as
in (??).

∇θVXd(I)

[
h
(
Xd(I) , θ, xFnd(I)

)]
= ∇θEXd(I)

[(
h
(

Xd(I) , θ, xFnd(I)
)
−EX′d(I)

[
h
(

X′d(I) , θ, xFnd(I)
) ])2

]

= ∇θEz∼N (0,I)

[(
h
(

Xd(I)(z; θ), θ, xFnd(I)
)
−Ez′∼N (0,I)

[
h
(

xd(I)(z
′ ; θ), θ, xFnd(I)

) ])2
]

= Ez∼N (0,I)

[
∇θ

(
h
(

Xd(I)(z; θ), θ, xFnd(I)
)
−Ez′∼N (0,I)

[
h
(

xd(I)(z
′ ; θ), θ, xFnd(I)

) ])2
]

= Ez∼N (0,I)

[
2
(

h
(

Xd(I)(z; θ), θ, xFnd(I)
)
−Ez′∼N (0,I)

[
h
(

xd(I)(z
′ ; θ), θ, xFnd(I)

) ])

×
(
∇θh

(
Xd(I)(z; θ), θ, xFnd(I)

)
−Ez′∼N (0,I)

[
∇θh

(
xd(I)(z

′ ; θ), θ, xFnd(I)
) ])]

(C.6.2)
We can now obtain an estimate of the gradient with two independent sets

of Monte Carlo samples of Xd(I), drawn via reparametrisation from the inter-
ventional or counterfactual distribution,

{x(m)
d(I) := xd(I)(z

(m); θ)}M
m=1, {x(m

′)
d(I) := xd(I)(z

(m′); θ)}M′
m′=1

where z(m), z(m
′) i.i.d.∼ N (0, I).

(C.6.3)

This yields the following Monte Carlo gradient estimator of the variance:

∇θVXd(I)

[
h
(
Xd(I), θ, xFnd(I)

)]
≈

1
M

M

∑
m=1

[
2
(

h
(

x(m)
d(I), θ, xFnd(I)

)
− 1

M′
M

∑
m′=1

h
(

x(m
′)

d(I), θ, xFnd(I)
))
×

(
∇θh

(
x(m)

d(I), θ, xFnd(I)
)
− 1

M′
M′

∑
m′=1
∇θh

(
x(m

′)
d(I), θ, xFnd(I)

))]
(C.6.4)
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Substituting the above expression, together with the following Monte Carlo
estimate of the (undifferentiated) variance

VXd(I)

[
h
(

Xd(I), θ, xFnd(I)
)]

≈ 1
M− 1

M

∑
m=1

(
h
(

x(m)
d(I), θ, xFnd(I)

)
− 1

M

M′

∑
m′=1

h
(

x(m
′)

d(I), θ, xFnd(I)
))2

,

(C.6.5)
into (C.6.1) gives the desired estimate for the gradient of the standard devia-
tion of h.
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variance

Table C.2: Experimental results for the gradient-descent approach on different 3-
variable SCMs (top to bottom: linear SCM, non-linear ANM, non-additive SCM). We
show average performance for Nruns = 100, NMC-samples = 100, and γLCB = 2, and
display the number (out of Nruns) of performed interventions on all subsets of vari-
ables by each recourse type. The two right-most columns display how many of the
intervention sets for each recourse type agreed with the suggestions made by the or-
acle methods, M⋆ and cate⋆, respectively. We observe that interventions proposed
by the subpopulation-based oracle often differ from the ones proposed at the indi-
vidual level, which can be visually explained by Fig. ??. Importantly, we observe
general agreement among all cate approaches in their selection of intervened-upon
variables. In contrast, we observe that individual-based methods deviate away from
their oracle (i.e., M⋆) in their selection of variables to intervene upon for recourse.
This result further suggest that the cate approaches presented in this work exhibit
more predictable behaviour, as they are less sensitive to model assumptions, and
are thus more preferable for the individual seeking recourse under imperfect causal
knowledge.

Method
SCM Intervention Set Identical Int. Set

Valid⋆ (%) LCB Cost (%) {X1} {X2} {X3} {X1 , X2} {X1 , X3} {X2 , X3} {X1 , X2 , X3} M⋆ cate⋆

M⋆ 100 - 10.9±7.9 0 25 0 56 0 0 19 100 23

Mlin 100 - 11.0±7.0 0 26 0 50 0 1 23 52 23

Mkr 90 - 10.7±6.5 0 22 0 44 0 0 34 54 27

Mgp 100 .55±.04 12.2±8.3 0 6 0 13 0 7 74 25 61

Mcvae 100 .55±.07 11.8±7.7 0 12 0 25 0 5 58 31 57

cate⋆ 90 .56±.07 11.9±9.2 0 6 0 11 0 13 70 23 100

categp 93 .56±.05 12.2±8.4 0 3 0 9 1 15 72 18 76

catecvae 89 .56±.08 12.1±8.9 0 6 1 11 0 16 66 18 78

M⋆ 100 - 20.1±12.3 70 0 0 2 16 0 11 99 17

Mlin 54 - 20.6±11.0 13 0 0 0 81 0 5 20 41

Mkr 91 - 20.6±12.5 65 0 0 1 23 0 10 76 22

Mgp 100 .54±.03 21.9±12.9 39 0 0 0 38 0 22 54 38

Mcvae 97 .54±.05 22.6±12.3 33 0 0 0 51 0 15 45 42

cate⋆ 97 .55±.05 26.3±21.4 4 0 0 0 44 2 49 17 99

categp 94 .55±.06 25.0±14.8 4 1 0 0 37 4 53 11 69

catecvae 98 .54±.05 26.0±14.3 3 0 0 1 32 1 62 12 70

M⋆ 100 - 13.2±11.0 0 0 1 0 11 78 7 97 78

Mlin 98 - 14.0±13.5 0 0 0 1 0 85 11 81 77

Mkr 70 - 13.2±11.6 0 17 0 4 10 59 7 55 53

Mgp 95 .52±.04 13.4±12.8 3 1 2 0 0 82 9 73 78

Mcvae 95 .51±.01 13.4±12.2 0 3 1 5 2 71 15 72 76

cate⋆ 100 .52±.02 13.5±13.0 0 0 2 0 9 77 9 78 97

categp 94 .52±.03 13.2±13.1 3 1 5 0 3 73 12 70 76

catecvae 100 .52±.05 13.6±12.9 0 1 2 0 1 82 11 78 78
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Table C.3: Selection of hyperparameters for cvae training was either performed man-
ually (for Linear SCM, Non-linear ANM, Non-additve SCM) or automatically (for
7-variable semi-synthetic loan approval) by selecting the setting that resulted in the
minimum MMD statistic between real and reconstructed samples.

SCM Conditional Encoder Arch. Decoder Arch. Latent Dim. λKLD

Linear SCM
X2|X1, 1×32×32×32 5×5×1 1 0.01

X3|X1, X2 1×32×32×32 32×32×32×1 1 0.01

Non-linear ANM
X2|X1, 1×32×32 32×32×1 5 0.01

X3|X1, X2 1×32×32×32 32×32×1 1 0.01

Non-additve SCM
X2|X1, 1×32×32×32 32×32×1 3 0.5

X3|X1, X2 1×32×32×32 5×5×1 3 0.1

7-variable semi-synthetic
loan approval any

2×1

1,2
1×3×3 2×2×1 5, 1, 0.5, 0.1,

1×5×5 3×3×1 0.05, 0.01,

1×3×3×3 5×5×1 0.005

3×3×3×1
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DA P P E N D I X FA I R C A U S A L R E C O U R S E

d.1 experimental details

In this Appendix, we provide additional details on our experiment setup.

d.1.1 SCM Specification

First, we give the exact form of SCMs used to generate our three synthetic
data sets IMF, CAU-LIN, and CAU-ANM. Besides the desired characteristics
of independently-manipulable (IMF) or causally dependent (CAU) features
and linear (LIN) or nonlinear (ANM) relationships with additive noise, we
choose the particular form of structural equations for each setting such that
all features are roughly standardised, i.e., such that they all approximately
have a mean of zero and a variance one.

We use the causal structures shown in Fig. 5.3. Apart from the desire two
make the causal graphs similar to facilitate a better comparison and avoid
introducing further nuisance factors while respecting the different structural
constraints of the IMF and CAU settings, this particular choice is motivated
by having at least one feature which is not a descendant of the protected
attribute A. This is so that LR/SVM(Xnd(A)) and LR/SVM(Xnd(A), Ud(A)) al-
ways have access to at least one actionable variable (X2) which can be manip-
ulated to achieve recourse.

d.1.1.1 IMF

For the IMF data sets, we sample the protected attribute A and the features
Xi according to the following SCM:

A := 2UA − 1, UA ∼ Bernoulli(0.5)

X1 := 0.5A + U1, U1 ∼ N (0, 1)

X2 := U2, U2 ∼ N (0, 1)

X3 := 0.5A + U3, U3 ∼ N (0, 1)
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d.1.1.2 CAU-LIN

For the CAU-LIN data sets, we sample A and Xi according to the following
SCM:

A := 2UA − 1, UA ∼ Bernoulli(0.5)

X1 := 0.5A + U1, U1 ∼ N (0, 1)

X2 := U2, U2 ∼ N (0, 1)

X3 := 0.5(A + X1 − X2) + U3, U3 ∼ N (0, 1)

d.1.1.3 CAU-ANM

For the CAU-ANM data sets, we sample A and Xi according to the following
SCM:

A := 2UA − 1, UA ∼ Bernoulli(0.5)

X1 := 0.5A + U1, U1 ∼ N (0, 1)

X2 := U2, U2 ∼ N (0, 1)

X3 := 0.5A + 0.1(X3
1 − X3

2) + U3, U3 ∼ N (0, 1)

d.1.2 Label generation

To generate ground truth labels on which the different classifiers are trained,
we consider both a linear and a nonlinear logistic regression. Specifically, we
generate ground truth labels according to

Y := I{UY < h(X1, X2, X3)}, UY ∼ Uniform[0, 1].

In the linear case, h(X1, X2, X3) is given by

h(X1, X2, X3) =
(

1 + e−2(X1−X2+X3)
)−1

.

In the nonlinear case, h(X1, X2, X3) is given by

h(X1, X2, X3) =
(

1 + e4−(X1+2X2+X3)
2
)−1

.

d.1.3 Fair model architectures and training hyper-parameters

We use the implementation of Gupta et al. [Gup+19] for the FairSVM
and the sklearn SVC class (Ped+11) for all other SVM variants. We
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consider the following values of hyperparameters (which are the
same as those reported in (Gup+19) for ease of comparison) and
choose the best by 5-fold cross validation (unless stated otherwise):
kernel type ∈ {linear, poly, rbf}, regularisation strength C ∈ {1, 10, 100},
RBF kernel bandwidth γrbf ∈ {0.001, 0.01, 0.1, 1}, polynomial kernel
degree ∈ {2, 3, 5}; following (Gup+19), we also pick the fairness trade-off
parameter λ = {0.2, 0.5, 1, 2, 10, 50, 100} by cross-validation.

For the nonlinear logistic regression model, we opted for an instance of
the sklearn MLPClassifier class with two hidden layers (10 neurons each)
and ReLU activation functions. This model was then optimised on its inputs
using the default optimiser and training hyperparameters.

d.1.4 Optimisation approach

Since an algorithmic contribution for solving the causal recourse optimisa-
tion problem is not the main focus of this work, we choose to discretise
the space of possible recourse actions and select the best (i.e., lowest cost)
valid action by performing a brute-force search. For an alternative gradient-
based approach to solving the causal recourse optimisation problem, we refer
to (Kar+20b).

For each actionable feature Xi, denote by maxi and mini its maximum
and minimum attained in the training set, respectively. Given a factual ob-
servation xFi of Xi, we discretise the search space and pick possible inter-
vention values θi using 15 equally-spaced bins in the range [xFi − 2(xFi −
mini), xFi + 2(maxi −xFi )]. We then consider all possible combinations of in-
tervention values over all subsets I of the actionable variables. We note that
for LR/SVM(Xnd) and LR/SVM(Xnd, Ud), only X2 is actionable, while for
the other LR/SVMs all of {X1, X2, X3} are actionable.

d.1.5 Adult dataset case study

The causal graph for the Adult dataset informed by expert knowledge (NS18;
Chi19) is depicted in Fig. 5.3c.

Because the true structural equations are not known, we learn an approx-
imate SCM for the Adult dataset by fitting each parent-child relationship in
the causal graph. Since most variables in the Adult dataset are categorical,
additive noise is not an appropriate assumption for most of them. We there-
fore opt for modelling each structural equation, Xi := fi(PAi, Ui), using a
latent variable model; specifically, we use a conditional variational autoen-
coder (CVAE) (SLY15), similar to (Kar+20b).
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We use deterministic conditional decoders Di(PAi, Ui; ψi), implemented as
neural nets parametrised by ψi, and use an isotropic Gaussian prior, Ui ∼
N (0, I), for each Xi.

For continuous features, the decoders directly output the value assigned to
Xi, i.e., we approximate the structural equations as

Xcontinuous
i := Di(PAi, Ui; ψi), Ui ∼ N (0, I). (D.1.1)

For categorical features, the decoders output a vector of class probabilities
(by applying a softmax operation after the last layer). The arg max is then
assigned as the value of the corresponding categorical feature, i.e.,

Xcategorical
i := argmax Di(PAi, Ui; ψi), Ui ∼ N (0, I). (D.1.2)

The decoders Di(PAi, Ui; ψi) are trained using the standard variational
framework (KW14; RMW14), amortised with approximate Gaussian
posteriors qϕi (Ui|Xi, PAi) whose means and variances are computed by
encoders in the form of neural nets with parameters ϕi. For continuous
features, we use the standard reconstruction error between real-valued
predictions and targets, i.e., L2/MSE(Xi, Di(PAi, Ui; ψi)), whereas for cate-
gorical features, we instead use the cross entropy loss between the one-hot
encoded value of Xi and the predicted vector of class probabilities, i.e.,
CrossEnt(Xi, softmax(Di(PAi, Ui; ψi)).

The CVAEs are trained on 6, 000 training samples using a fixed learn-
ing rate of 0.05, and a batch size of 128 for 100 epochs with early
stopping on a held-out validation set of 250 samples. For each parent-
child relation, we train 10 models with the number of hidden lay-
ers and units randomly drawn from the following configurations for
the encoder: encarch = {(ζ, 2, 2), (ζ, 3, 3), (ζ, 5, 5), (ζ, 32, 32, 32)}, where
ζ is the input dimensionality; and similarly for the decoders from:
decarch = {(2, η), (2, 2, η), (3, 3, η), (5, 5, η), (32, 32, 32, η)}, where η is either
one for continuous variables, or alternatively the size of the one-hot em-
bedding for categorical variables (e.g., Work Class, Marital Status, and
Occupation have 7, 10, and 14 categories, respectively). Moreover, we also
randomly pick a latent dimension from {1, 3, 5}. We then select the model
with the smallest MMD score (Gre+12) between true instances and samples
from the decoder post-training.

To perform abduction for counterfactual reasoning with such an approxi-
mate CVAE-SCM, we sample Ui from the approximate posterior. For further
discussion, we refer to (Kar+20b), Appendix C.

Finally, using this approximate SCM, we solve the recourse optimisation
problem similar to the synthetic experiments above. The caveat with this ap-
proach (and any real-world dataset absent a true SCM for that matter) is that
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we are not able to certify that a given recourse action generated under the
assumption of an approximate SCM will guarantee recourse when executed
in the true world governed by the real (unknown) SCM.

d.2 additional results

In this Appendix, we provide additional experimental results omitted from
the main chapter due to space constraints.

d.2.1 Additional Societal Interventions

In § 5.5, we only showed plots for ik with p = 1 since this has the largest
potential to reduce recourse unfairness. However, it may not be feasible to
give subsidies to all eligible individuals, and so, for completeness, we also
show plots similar to Fig. 5.4 for different choices of (p, t, s) in Fig. D.1.

d.2.2 Using different SCMs for Recourse

The results presented in § 5.4.1 of the main chapter use an estimate M̂kr

of the ground truth SCM M⋆ (learnt via kernel ridge regression under an
additive noise assumption) to solve the recourse optimisation problem.

In Tab. D.1 we show a more complete account of results which also in-
cludes the cases where the ground truth SCMM⋆ or a linear (M̂LIN) estimate
thereof is used as the basis for computing recourse actions. When using an
SCM estimate for recourse, we only consider valid actions to compute ∆cost

and ∆indv, where the validity of an action is determined by whether it results
in a changed prediction according the oracleM⋆.

We find that, as expected, using different SCMs does not affect Acc or ∆dist

since these metrics are, by definition, agnostic to the underlying causal gen-
erative process encoded by the SCM. However, using an estimated SCM in
place of the true one may result in different values for ∆cost and ∆indv since
these metrics take the downstream effects of recourse actions on other fea-
tures into account and thus depend on the underlying SCM, c.f. Defns. 5.3.1
and 5.3.2.

We observe that using an estimated SCM may lead to underestimating or
overestimating the true fair causal recourse metric (without any apparent
clear trend as to when one or the other occurs). Moreover, the mis-estimation
of fair causal recourse metrics is particularly pronounced when using the
linear SCM estimate M̂LIN in a scenario in which the true SCM is, in fact,
nonlinear, i.e., on the CAU-ANM data sets. This behaviour is intuitive and to
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Figure D.1: Plots for additional societal interventions ik = (p, t, s) in the context of
the credit card approval example. We consider budgets of p = 0.25 (left column),
p = 0.5 (middle column), and p = 0.75 (right column). In the top row, we show
the difference across groups in the average distance to the decision boundary for
negatively classified individuals (recourse difference), the proportion of negatively-
classified individuals in the disadvantaged group A = 0 who received the treatment
(proportion treated), and the amount of subsidies actually paid out to these indi-
viduals (subsidies spent) as a function of the threshold t. Note that the subsidy
amount is fixed to its maximum amount without affecting the label distribution, i.e.,
s = −2t. In rows 2-5, we show the feature distribution resulting from ik = (p, t, s)
with t = −2s ∈ {−0.5,−1,−1.5,−2}, see the plot titles for the exact values.
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be expected and should caution against using overly strong assumptions or
too simplistic parametric models when estimating an SCM for use in (fair) re-
course. We also remark that, in practice, underestimation of the true fairness
metric is probably more problematic than overestimation.

Despite some small differences, the overall trends reported in § 5.4.1 re-
main very much the same, and thus seem relatively robust to small differ-
ences in the SCM which is used to compute recourse actions.

d.2.3 Kernel selection by cross validation

For completeness, we perform the same set of experiments shown in Tab. D.1
where we also choose the kernel function by cross validation, instead of fixing
it to either a linear or a polynomial kernel as before. The results are shown
in Tab. D.2 and the overall trends, again, remain largely the same.

As expected, we observe variations in accuracy compared to Tab. D.1 due
to the different kernel choice. Perhaps most interestingly, the FairSVM seems
to generally perform slightly better in terms of ∆dist when given the “free”
choice of kernel, especially on the first three data sets with linearly gener-
ated labels. This suggests that the use of a nonlinear kernel may be important for
FairSVM to achieve its goal.

However, we caution that the results in Tab. D.2 may not be easily com-
parable across classifiers as distances are computed in the induced feature
spaces which are either low-dimensional (in case of a linear kernel), high-
dimensional (in case of a polynomial kernel), or infinite-dimensional (in case
of an RBF kernel), which is also why we chose to report results based on the
same kernel type in § 5.4.
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Table D.1: Complete account of experimental results corresponding to the setting
described in § 5.4 of the main chapter, where we additionally consider using the
true SCM M⋆ or a linear (M̂LIN) estimate thereof to infer the latent variables U
and solve the recourse optimisation problem. We compare different classifiers with
respect to accuracy and different recourse fairness metrics on our three synthetic
data sets with ground truth labels drawn from either a linear or a nonlinear logistic
regression. For ease of comparison, we use the same kernel for all SVM variants
for a given dataset: a linear kernel for linearly generated ground truth labels and a
polynomial kernel for non-linearly generated ground truth labels. Moreover, linear
(resp. nonlinear) logistic regression classifiers are used for linearly (resp. nonlinearly)
generated ground truth labels. All other hyper-parameters are chosen by 10-fold
cross-validation. We use a dataset of 500 observations for all experiments and make
sure that it is roughly balanced, both with respect to the protected attribute A and the
label Y. Accuracies (higher is better) are computed on a separate i.i.d. test set of equal
size. Fairness metrics (lower is better) are computed based on randomly selecting
50 negatively-classified samples from each of the two protected groups and using
these to compute the difference between group-wise averages (∆dist and ∆cost) and
maximum individual unfairness. When using an SCM estimate for recourse, we only
consider valid actions to compute ∆cost and ∆indv, where the validity of an action is
determined by whether it results in a changed prediction according the oracle M⋆.
For each experiment and metric, the best performing method is highlighted in bold.

SCM Classifier

GT labels from linear log. reg.→ using linear kernel / linear log. reg. GT labels from nonlinear log. reg.→ using polynomial kernel / nonlinear log. reg.

IMF CAU-LIN CAU-ANM IMF CAU-LIN CAU-ANM

Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv

M⋆

SVM(X, A) 86.5 0.96 0.40 1.63 89.5 1.18 0.43 2.11 88.2 0.65 0.12 2.41 90.8 0.05 0.00 1.09 91.1 0.07 0.04 1.06 90.6 0.04 0.07 1.40

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.49 2.11 87.7 0.40 0.22 2.41 90.5 0.08 0.03 1.06 90.6 0.09 0.02 1.00 90.6 0.19 0.18 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.4 1.61 0.61 2.11 88.0 0.56 0.12 2.79 91.4 0.13 0.00 0.92 91.0 0.17 0.09 1.09 91.0 0.02 0.02 1.64

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.52 2.11 87.7 0.41 0.31 2.79 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.02 1.16

FairSVM(X, A) 68.1 0.04 0.28 1.36 66.8 0.26 0.12 0.78 66.3 0.25 0.21 1.50 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 90.3 0.37 0.03 1.64

SVM(Xnd(A)) 65.5 0.05 0.06 0.00 67.4 0.15 0.17 0.00 65.9 0.31 0.37 0.00 66.7 0.10 0.06 0.00 58.4 0.05 0.06 0.00 62.0 0.13 0.11 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.5 0.96 0.58 0.00 89.6 1.07 0.70 0.00 88.0 0.21 0.14 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 90.1 0.15 0.12 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

M̂LIN

SVM(X, A) 86.5 0.96 0.40 1.63 89.5 1.18 0.44 2.11 88.2 0.65 0.30 3.77 90.8 0.05 0.00 1.09 91.1 0.07 0.04 1.06 90.6 0.04 0.04 1.49

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.51 2.11 87.7 0.40 0.43 3.77 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.20 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.4 1.61 0.61 2.11 88.0 0.56 0.20 3.48 91.4 0.13 0.00 0.92 91.0 0.17 0.10 1.09 91.0 0.02 0.03 1.49

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.58 2.11 87.7 0.41 0.55 3.48 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.04 1.66

FairSVM(X, A) 68.1 0.04 0.28 1.36 66.8 0.26 0.12 0.78 66.3 0.25 0.21 1.50 90.1 0.02 0.00 1.15 90.7 0.06 0.05 1.16 90.3 0.37 0.01 1.64

SVM(Xnd(A)) 65.5 0.05 0.06 0.00 67.4 0.15 0.17 0.00 65.9 0.31 0.37 0.00 66.7 0.10 0.06 0.00 58.4 0.05 0.06 0.00 62.0 0.13 0.11 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.5 0.96 0.58 0.00 89.6 1.07 0.70 0.00 88.0 0.21 0.14 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 90.1 0.15 0.12 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

M̂KR

SVM(X, A) 86.5 0.96 0.40 1.63 89.5 1.18 0.44 2.11 88.2 0.65 0.27 2.32 90.8 0.05 0.00 1.09 91.1 0.07 0.03 1.06 90.6 0.04 0.03 1.40

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.53 2.11 87.7 0.40 0.34 2.32 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.22 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.4 1.61 0.61 2.11 88.0 0.56 0.29 2.79 91.4 0.13 0.00 0.92 91.0 0.17 0.08 1.09 91.0 0.02 0.03 1.64

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.57 2.11 87.7 0.41 0.43 2.79 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.06 1.66

FairSVM(X, A) 68.1 0.04 0.28 1.36 66.8 0.26 0.12 0.78 66.3 0.25 0.21 1.50 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 90.3 0.37 0.02 1.64

SVM(Xnd(A)) 65.5 0.05 0.06 0.00 67.4 0.15 0.17 0.00 65.9 0.31 0.37 0.00 66.7 0.10 0.06 0.00 58.4 0.05 0.06 0.00 62.0 0.13 0.11 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.5 0.96 0.58 0.00 89.6 1.07 0.70 0.00 88.0 0.21 0.14 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 90.1 0.15 0.12 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00



Table D.2: Additional results where also the kernel (linear, polynomial, or rbf) for
each SVM is chosen by 5-fold cross-validation instead of being fixed based on the
ground truth label distribution. We remark that some metrics (e.g., ∆dist) may not
be comparable across methods since they are computed in a different reference space
when different kernels are selected. Otherwise the experimental setup is identical to
that from Tab. D.1, see the caption for details.

SCM Classifier

GT labels from linear log. reg.→ using cross-validated kernel / linear log. reg. GT labels from nonlinear log. reg.→ using cross-validated kernel / nonlinear log. reg.

IMF CAU-LIN CAU-ANM IMF CAU-LIN CAU-ANM

Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv Acc ∆dist ∆cost ∆indv

M⋆

SVM(X, A) 86.5 0.96 0.40 1.63 89.2 1.33 0.55 2.10 87.8 0.36 0.08 2.79 90.8 0.05 0.00 1.09 91.1 0.07 0.04 1.06 90.6 0.04 0.07 1.40

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.49 2.11 87.7 0.40 0.22 2.41 90.5 0.08 0.03 1.06 90.6 0.09 0.02 1.00 90.6 0.19 0.18 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.5 1.13 0.53 2.14 87.6 0.43 0.42 2.79 91.4 0.13 0.00 0.92 91.0 0.17 0.09 1.09 89.4 0.16 0.16 1.16

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.52 2.11 87.7 0.41 0.31 2.79 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.02 1.16

FairSVM(X, A) 86.4 0.01 0.20 1.61 60.5 0.00 0.33 1.05 57.6 0.01 0.13 1.76 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 78.0 0.00 0.04 1.73

SVM(Xnd(A)) 64.6 0.06 0.09 0.00 67.3 0.17 0.25 0.00 65.9 0.28 0.31 0.00 65.7 0.01 0.02 0.00 55.6 0.04 0.03 0.00 61.6 0.04 0.03 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.6 0.84 0.64 0.00 89.4 0.81 0.54 0.00 87.4 0.21 0.35 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 89.0 0.31 0.13 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

M̂LIN

SVM(X, A) 86.5 0.96 0.40 1.63 89.2 1.33 0.55 2.10 87.8 0.36 0.13 3.48 90.8 0.05 0.00 1.09 91.1 0.07 0.04 1.06 90.6 0.04 0.04 1.49

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.51 2.11 87.7 0.40 0.43 3.77 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.20 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.5 1.13 0.51 2.14 87.6 0.43 0.42 4.05 91.4 0.13 0.00 0.92 91.0 0.17 0.10 1.09 89.4 0.16 0.11 1.16

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.58 2.11 87.7 0.41 0.55 3.48 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.04 1.66

FairSVM(X, A) 86.4 0.01 0.20 1.61 60.5 0.00 0.29 1.05 57.6 0.01 0.12 1.76 90.1 0.02 0.00 1.15 90.7 0.06 0.05 1.16 78.0 0.00 0.03 1.73

SVM(Xnd(A)) 64.6 0.06 0.09 0.00 67.3 0.17 0.25 0.00 65.9 0.28 0.31 0.00 65.7 0.01 0.02 0.00 55.6 0.04 0.03 0.00 61.6 0.04 0.03 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.6 0.84 0.64 0.00 89.4 0.81 0.54 0.00 87.4 0.21 0.35 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 89.0 0.31 0.13 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00

M̂KR

SVM(X, A) 86.5 0.96 0.40 1.63 89.2 1.33 0.56 2.10 87.8 0.36 0.18 2.79 90.8 0.05 0.00 1.09 91.1 0.07 0.03 1.06 90.6 0.04 0.03 1.40

LR(X, A) 86.7 0.48 0.50 1.91 89.5 0.63 0.53 2.11 87.7 0.40 0.34 2.32 90.5 0.08 0.03 1.06 90.6 0.09 0.01 1.00 90.6 0.19 0.22 1.28

SVM(X) 86.4 0.99 0.42 1.80 89.5 1.13 0.52 2.14 87.6 0.43 0.44 2.79 91.4 0.13 0.00 0.92 91.0 0.17 0.08 1.09 89.4 0.16 0.14 1.16

LR(X) 86.6 0.47 0.53 1.80 89.5 0.64 0.57 2.11 87.7 0.41 0.43 2.79 91.0 0.12 0.03 1.01 90.6 0.13 0.10 1.65 90.9 0.08 0.06 1.66

FairSVM(X, A) 86.4 0.01 0.20 1.61 60.5 0.00 0.26 1.50 57.6 0.01 0.12 1.76 90.1 0.02 0.00 1.15 90.7 0.06 0.04 1.16 78.0 0.00 0.01 1.73

SVM(Xnd(A)) 64.6 0.06 0.09 0.00 67.3 0.17 0.25 0.00 65.9 0.28 0.31 0.00 65.7 0.01 0.02 0.00 55.6 0.04 0.03 0.00 61.6 0.04 0.03 0.00

LR(Xnd(A)) 65.3 0.05 0.05 0.00 67.3 0.18 0.18 0.00 65.6 0.31 0.31 0.00 64.7 0.02 0.04 0.00 58.4 0.02 0.02 0.00 61.1 0.02 0.03 0.00

SVM(Xnd(A), Ud(A)) 86.6 0.84 0.64 0.00 89.4 0.81 0.54 0.00 87.4 0.21 0.35 0.00 90.7 0.02 0.03 0.00 91.1 0.15 0.11 0.00 89.0 0.31 0.13 0.00

LR(Xnd(A), Ud(A)) 86.7 0.43 0.90 0.00 89.5 0.35 0.77 0.00 87.8 0.14 0.34 0.00 90.9 0.28 0.05 0.00 90.9 0.49 0.07 0.00 90.2 0.43 0.21 0.00





EA P P E N D I X R O B U S T C A U S A L R E C O U R S E

e.1 uncertainties in the recourse process

Uncertainties may arise throughout the recourse process, as depicted in Fig-
ure E.1. Some well-studied sources of uncertainty in the classification setting
naturally extend to algorithmic recourse. A great deal of the robust classifi-
cation literature has focused on uncertainty in the inputs x at inference time,
which may arise due to the presence of noise (FMDF16; XCM09), adversarial
manipulation (Mad+18; Sze+14) and other misrepresentations or errors in the
data (Zhe+16). Regarding the classifier h, the optimization problem solved
for model training often does not have unique optimal solution and multi-
ple models may perform equally well in the training data (Bre+01; Rud19).
Moreover, the temporal nature of recourse introduces a unique challenge: the
circumstances under which recourse is generated may change by the time
the individual is able to implement their prescribed recourse. For instance,
the distribution over inputs itself may change at inference time, under phe-
nomena such as data-set shift (MT+12; QC+09) or for tasks pertaining out
of distribution generalization (Gei+20; MBS13). From a causal perspective,
changes in the observational data distribution are a consequence of changes
to the underlying SCM (Büh20).

M Train classifier h

x Inference

Recourse
generationF c

Recourse
validation

M̂
x̂

ĥ

ptrain(x, y)

Time

ŷ = 0?

a

pinference(x)

ĥ(CF(x̂, a,M̂)) = 1?

Figure E.1: Overview of the recourse process. Uncertain elements are represented
with dashed circles. Possible relations between uncertain elements are represented
with non-bold dashed lines. Bold dashed lines represent temporal jumps.
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appendix robust causal recourse

Indeed, the data-generation process characterised by the SCM M may be
imperfectly known (Küg+22) or may dynamically change over time to some
other SCM M̂ ∈ UM, where UM is the uncertainty set over future SCMs.
Consequently, the counterfactual individual resulting from the prescribed
recourse intervention may also change. Furthermore, decision-makers may
have to periodically retrain their models to prevent performance degradation
due to the distribution shift resulting from a change in the SCM, producing
further uncertainty over the future classifier ĥ ∈ Uh (RKL20a; UJL21). Fi-
nally, it may be unreasonable to expect the individual x to not suffer changes
outside of its control over a extended period of time (VA20), leading to un-
certainty in the future individual x̂ ∈ Ux . Thus, acting on the prescribed
recourse may not lead to favourable classification due to changes to the SCM
M̂, classifier ĥ, and/or factual individual x̂.

e.2 sufficient conditions for the existence of robust re-
course

The conditions required for the existence of robust recourse are strictly more
restrictive than those required for the existence of standard recourse, since all
plausible counterfactuals must be favourably classified rather than solely the
one corresponding to the factual x. Example 1, illustrated in Appendix A.2,
shows that even under the strong assumption that all features are actionable
and that there exists recourse for every individual x ∈ X , robust recourse
may not exist for any individual x ∈ X .

Example E.2.1. Consider x ∈ R2, h(x) = sin(2γπ−1x2) ≥ 0 for 0 < γ < ϵ
and the uncertainty set B(x) = {x + ∆ | ∥∆∥2 ≤ ϵ}. Whilst there exists some
recourse recommendation for all x ∈ R2, there does not exist any adversari-
ally robust recourse recommendation for any x ∈ R2.

The above example relies on the fact that the classifier does not produce
robust predictions for any x ∈ X , and therefore no counterfactual can remain
valid (i.e., favourably classified) in the presence of uncertainty. This hints to
some relation between robustness of prediction and robustness of recourse.
In particular, for recourse to exist, the classifier must be minimally robust
in the sense that there must exist at least one individual x+ ∈ X such that
h(x+) = 1 is robustly classified.

Lemma E.2.1. If all features are actionable and there exists some x+ ∈ X such that
h(x′) = 1 for all x′ ∈ B(x+), then there exists some adversarially robust recourse
recommendation for all x ∈ X .
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E.3 proofs

Table E.1: Sufficient conditions for the existence of robust recourse.

Classifier h
Actionability
constraints

SCMM Existence of
recourse

Existence of
robust recourse

∃ x+ ∈ X s.t. h(x+) = 1
All features
actionable

Any
Guaranteed

(Ustun et al. (USL19))
Not guaranteed
(Example E.2.1)

∃ x+ ∈ X s.t. h(x′) = 1
∀x′ ∈ B(x+)

All features
actionable

Any
Guaranteed

(Ustun et al. (USL19))
Guaranteed

(Lemma E.2.1)

Linear
∃ Xj actionable

and unbounded
Linear

Guaranteed
(Lemma E.2.2)

Guaranteed
(Lemma E.2.2)

Any
All bounded,
≥ 1 immutable

Any
Not guaranteed

(Ustun et al. (USL19))
Not guaranteed

(Follows directly)

In order to relax the condition that all features must be actionable, we
restrict ourselves to the case where both the classifier and the SCM are lin-
ear. Then, the existence of at least one actionable and unbounded feature is
sufficient to guarantee the universal existence of robust recourse. Intuitively,
the decision-maker can require arbitrarily large changes to an actionable and
unbounded feature such that all plausible counterfactuals are favourably clas-
sified (e.g., increase savings for loan approval).

Lemma E.2.2. For a linear classifier h(x) = ⟨w, x⟩ ≥ b and an SCM M with
linear structural equations, if there exists a feature Xj such that Xj is actionable and
unbounded and wj ̸= 0, then there exists at least one adversarially robust recourse
action for all x ∈ X .

If all features are bounded and there exists at least one immutable feature,
then as per Ustun et al. (USL19) Remark 3, it is not possible to guarantee
the universal existence of recourse even in the linear case, and therefore it is
also not possible to guarantee the universal existence of adversarially robust
recourse.

e.3 proofs

e.3.1 Theorem 1

Let a∗ = do(XI := xI + θ∗) be the minimum-cost recourse action for a classi-
fier h and an individual x. Assume that a∗ is a robust recourse action, that is,
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appendix robust causal recourse

h (CF (CF (x, ∆) , a∗)) = 1 ∀ ∥∆∥ ≤ ϵ. Consider any Ij such that for all i ∈ I ,
Xi is not a causal descendent of XIj . Consider ej ∈ R|I| such that (ej)j = 1
and (ej)i = 0 ∀i ̸= j. Then the action a = do(XI := xI − θ∗ + αej sign(θj)) is a
valid recourse action, since h(CF (x, a)) = h(CF

(
CF

(
x, αej sign(θj)

)
, a∗
)
= 1

for any α ≤ ϵ, per the assumption that a∗ is robust, and given that a ∈ F (x)
per assumption ii) in the Theorem. Furthermore, per assumption i) in the The-
orem (strict convexity of the cost function), it must be that c(x, a) < c(x, a∗),
which is a contradiction on a∗ being a minimum-cost recourse action, and
consequently the minimum-recourse action a∗ must be fragile to perturba-
tions x.

e.3.2 Example 1

The shaded area is the favourably classified region of the feature space. While
there exists recourse for every individual, there does not exist robust recourse
for any individual.

X1

X
2 xCF

x

γ

e.3.3 Lemma 1

Per assumption, there exists some x+ ∈ X such that h(x+) = 1 for
all x′ ∈ B(x+), where B(x+) = {CF(x+, ∆)| ∥∆∥ ≤ ϵ}. For any given
individual x, the action a = do (X = x + (x+ − x)) results in the coun-

182



E.3 proofs

terfactual individual xCF = CF(x, a) = x+. The action a is feasible,
since all features are actionable. The action a is a recourse action, since
h(xCF) = h(x+) = 1. Since the action a hard intervenes on all features,
CF(CF(x, ∆), a) = CF(CF(x, a), ∆) = CF(x+, ∆), and consequently
{CF(CF(x, ∆), a)| ∥∆∥ ≤ ϵ} = {CF(x+, ∆)| ∥∆∥ ≤ ϵ} = B(x+). It follows
that a is a robust recourse action, since h(x′) = 1 for all x′ ∈ B(x+).

e.3.4 Lemma 2

Per assumption, there exists some feature Xj such that Xj is actionable and
unbounded, and Xj affects its causal descendants linearly. Consider the re-
course action a = do(Xj := xj + θ) for θ ∈ R. Per Theorem 2, we must find
a recourse action such that ⟨w, CF(x, a)⟩ ≥ b′. Due to the linearity assump-
tions on the SCM, CF(x, a) = x + θv for some v ∈ Rn. Then, ⟨w, CF(x, a)⟩ =
⟨w, x + θv⟩ = ⟨w, x⟩+ θ⟨w, v⟩. A robust recourse action is equivalent to any
θ such that θ⟨w, v⟩ ≥ b′ − ⟨w, x⟩. If ⟨w, v⟩ ̸= 0 (i.e., the non-trivial case where
the weights of the classifier are not chosen adversarially to the SCM), then
clearly it is possible to set θ to have arbitrarily large magnitude and same
sign as ⟨w, v⟩, such that the inequality above is met. Since Xj is actionable
and unbounded, a = do(Xj := xj + θ) is a feasible action. Consequently, a is
a robust recourse action.

e.3.5 Theorem 2

The adversarially robust recourse problem is defined as

min
a=do(XI :=xI+θ)

max
x′∈B(x)

c(x, a) s.t. a ∈ F (x′) ∧ h
(
CF

(
x′, a

))
= 1 (E.3.1)

Assuming h(x) = ⟨w, x⟩ ≥ b and F (x) = F (x′) ∀ x′ ∈ B(x)

min
a=do(XI :=xI+θ)

max
x′∈B(x)

c(x, a) s.t. a ∈ F (x) ∧ ⟨w,
(
CF

(
x′, a)

))
⟩ ≥ b

(E.3.2)
For an action a to be robust feasible, the second constrain must hold for

every x′ ∈ B(x), that is,(
min

x′∈B(x)
⟨w, (CF (x, a)))⟩

)
≥ b (E.3.3)

Consequently, Equation E.3.2 is equivalent to

min
a=do(XI :=xI+θ)

c(a) s.t. a ∈ F (x) ∧
(

min
x′∈B(x)

⟨w, (CF (x, a)))⟩
)
≥ b

(E.3.4)
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Then since the SCMM is linear

CF(CF(x, ∆), a) = Sa
(

S−1 (x′))
= Sa

(
S−1

(
S∆
(

S−1(x)
)))

= Sa
(

S−1
(

S
(

S−1(x) + ∆
)))

= Sa
(

S−1(x) + ∆
)

= Sa
(

S−1(x)
)
+ Sa (∆)

= CF(x, a) + JSI∆

(E.3.5)

where JSI denotes the Jacobian of the interventional mapping SI . Then

min
x′∈B(x)

⟨w, CF (x, a))⟩ = min
∥∆∥≤ϵ

⟨w, CF (x, a)) + JSI∆⟩

= ⟨w, CF (x, a))⟩+ min
∥∆∥≤ϵ

⟨w, JSI∆⟩

= ⟨w, CF (x, a))⟩ −
∥∥∥JT

SIw
∥∥∥∗ ϵ

(E.3.6)

Consequently the optimization problem in Equation E.3.4 reduces to

min
a=do(XI :=xI+θ)

c(x, a) s.t. a ∈ F (x) ∧ ⟨w, CF (x, a))⟩ ≥ b +
∥∥∥JT

SIw
∥∥∥∗ ϵ

(E.3.7)
The corollary follows directly, since under the IMF assumption JSI = I,

and then Equation E.3.7 resembles the definition of the recourse problem in
Equation 6.1 for the classifier

h(x) = ⟨w, x⟩ ≥ b + ∥w∥∗ ϵ (E.3.8)

e.3.6 Theorem 3

Per Theorem 2, the robust recourse action a′ = do (XI = xI + (1 + βϵ)θ)
must satisfy

⟨w, CF
(
x, a′

)
⟩ ≥ b +

∥∥∥JT
SIw

∥∥∥∗ ϵ (E.3.9)

Since the SCM is linear, CF(x, a′) = x + JSI (1 + βϵ)θ. Then,

⟨w, CF
(
x, a′

)
⟩ = ⟨w, x + (1 + βϵ)JSI θ)⟩
= ⟨w, x + JSI θ⟩+ βϵ⟨w, JSI θ⟩
≥ b + βϵ⟨w, JSI θ⟩

(E.3.10)
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where the last inequality follows by assumption that a is a recourse action
for h(x) = ⟨w, x⟩ ≥ b. Consequently, if

β =

∥∥∥JT
SIw

∥∥∥∗
⟨w, JSI θ⟩ (E.3.11)

then Equation E.3.10 satisfies the robust recourse condition in Equation E.3.9.
By assumption that a is a recourse action then ⟨w, JSI ⟩ > 0. Then 0 < β <

∞. Consequently, if a′ ∈ F (x), the action a′ = do(XI := xI + (1 + βϵ)θ) is a
robust recourse action.

e.4 datasets considered

• COMPAS: we use the features age, race, sex and priors count. We
consider priors count actionable, with the actionability constrains that
priors count can only decrease but not go below zero.

• Adult: we use the features sex, age, native-country, marital-status,
education-num, hours-per-week. We consider education-num and
hours-per-week actionable. education-num can only increase and is
bounded to [1, 16], whereas hours-per-week must be below 100.

• South German Credit: we consider the features laufkont, moral,
verw, sparkont, beszeit, rate, famges, buerge, wohnzeit, verm,
weitkred, wohn, bishkred, beruf, pers, telef, gastarb. We consider
laufzeit, hoehe as actionable, and require them to be positive.

• Bail: we use all features except RECID, TIME, FILE. We consider RULE
actionable. We require that it may only decrease, but cannot be negative.

• Loan: we use all features as Karimi et al. [Kar+20b].
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