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Abstract

Computational complexity is a key limitation of genomic analyses. Thus, over the last 30 years,

researchers have proposed numerous fast heuristic methods that provide computational relief. Comparing

genomic sequences is one of the most fundamental computational steps in most genomic analyses. Due

to its high computational complexity, new, more optimized exact and heuristic algorithms are still being

developed. We find that these methods are highly sensitive to the underlying data, its quality, and various

hyperparameters. Despite their wide use, no in-depth analysis has been performed, potentially falsely

discarding genetic sequences from further analysis and unnecessarily inflating computational costs. We

provide the first analysis and benchmark of this heterogeneity. We deliver an actionable overview of the

11 most widely used state-of-the-art methods for comparing genomic sequences. We also inform readers

about their pros and cons using thorough experimental evaluation and different real datasets from all

major manufacturers (i.e., Illumina, ONT, and PacBio). SequenceLab is publicly available at

https://github.com/CMU-SAFARI/SequenceLab.
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Introduction

The rapid advancement of genomics and sequencing technologies continuously calls for adjusting

existing algorithmic techniques or developing completely new computational methods across diverse

biomedical domains1. Omics algorithms implemented as computational tools help life-science and

biomedical researchers analyze increasingly complex data, solve complex biological problems, and lay

the groundwork for novel clinical translations. One of the key success factors of computational omics

software tools is how fast an omics tool can solve the subject problem while accounting for some

technical aspects of the biotechnological protocol2,3. As we witness an explosive growth of omics data

generated in laboratories worldwide, high computational complexity and limited computing infrastructure

remain fundamental constraints to scaling analyses3–6.

One of the most fundamental computational steps in most genomic analyses is comparing

genomic sequences to find their differences and similarities. Comparing genomic sequences is a key step

in, for example, DNA and RNA sequence alignment7–16, taxonomic profiling of metagenomics

samples17–19, viral quasispecies20, bisulfite-converted sequences21–23, reconstructing ancient genomes24, B

and T-cell receptor repertoire analysis25,26, and building population-specific reference genomes27,28.

Comparing genomic sequences has long been a major bottleneck and a computational challenge for two

reasons: First, the analyzed datasets are typically large. Modern sequencing machines generate genomic

sequences at an exponentially higher rate than prior sequencing technologies, with their growth far

outpacing the growth in computational power in recent years3–5. For example, the Illumina NovaSeq 6000

system can generate about 136 gigabases per hour per instrument29.

In contrast, the PromethION 48 system from Oxford Nanopore Technologies (ONT) generates 1.4x higher

throughput than that, and their throughput is constantly improving30. Second, calculating the optimal

number of differences between two genomic sequences requires using dynamic programming (DP)

algorithms15,31 such as Levenshtein distance32, Smith-Waterman33, and Needleman-Wunsch34. Such

DP-based algorithms are well-known for having quadratic time and space complexity in the genomic

sequence length, which is inefficient for processing large genomic data. To detect all edits resulting from

genomic alteration35,36 or sequencing errors37,38, quadratic time (DP-based) approaches are unavoidable,

as the optimal genomic comparison is impossible in strong sub-quadratic complexity39,40. To reduce the

workload of such quadratic time algorithms, many heuristic methods are used to quickly quantify the

similarity of a pair of genomic sequences, mainly known as filtering techniques, to reduce the workload of

such quadratic time algorithms. Most of these techniques make binary decisions to accept or reject the

genomic sequence pair before using the costly DP algorithms between these sequences.

Over the past several decades, many exact algorithms and heuristics have been proposed to

accelerate comparing genomic sequences. A heuristic is a practical method that is not optimal in all cases

but aims to provide close-to-optimal solutions at greater speed41. Though heuristics usually reduce the
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execution time and memory footprint of an application, heuristics can compromise accuracy, limit the

reproducibility and usability of the adopted bioinformatics methods, and quickly become obsolete due to

changes in the properties of the underlying genomic data. However, these pitfalls are not well

characterized – preventing an educated choice of adequate heuristics for a given application. Our goal is

to provide the first comprehensive benchmark of a prominent set of heuristic algorithms used for quickly

comparing genomic sequences such that it guides a wide range of users in academia and industry toward

selecting the heuristic that suits their needs.

We make five key contributions to achieve this: 1) We provide the first comprehensive analysis of

algorithmic foundations and methodologies of the 11 most widely used algorithms in read mapping for

taxonomic profiling of metagenomic samples. 2) We provide a rigorous experimental evaluation to

examine the algorithms’ speed and accuracy. Heuristic methods for comparing genomic sequences often

greatly relieve the computationally expensive subsequent steps but can come at the cost of removing

sequences from downstream analysis and excessively large filtering time. In this context, we consider the

heuristic methods for comparing genomic sequences as pre-alignment filters. 3) We determine whether a

combination of heuristic methods can perform better than a single method alone. 4) We analyze

empirically and theoretically how the properties (e.g., number, distribution, and type of genomic

differences) of the genomic data and sequence length affect filtering performance and accuracy. We use

real datasets representing the three prominent sequencing technologies, Illumina, PacBio HiFi, and ONT,

with a wide range of edit distance thresholds to control the filtering rigor. This analysis is tailored towards

providing bioinformatics researchers a firm understanding of which filtering heuristic offers the best

performance for a given real-world application. 5) Our study provides a plug-and-play benchmark suite for

evaluating the performance of existing and future algorithms. Enabling rapid benchmarking can vastly

accelerate further research and add to the already plentiful applications of filters. It will also identify the

techniques or compare genomic sequences that balance accuracy and speed well. We hope that it

catalyzes new research in genome sequence analysis and bioinformatics.

Methods

We survey the existing algorithmic methods used for comparing genomic sequences. We provide a

comprehensive overview of computational heuristic methods for comparing genomic sequences

published from 1993 until 2020 (Table 1). To assess them and evaluate their pros and cons, we develop

the first benchmark suite, SequenceLab, that includes implementations of state-of-the-art algorithmic

methods. We observe that there is a critical need for such a benchmark suite due to five main reasons:

1) Without having an available benchmark suite, it is challenging to understand which algorithm is best to

be utilized in omics tools based on, for example, developer needs, target platform, and accuracy. 2) Each

algorithm is implemented using a different programming language, which leads to differences in

performance and difficulties in integrating such implementations with existing projects. 3) Some
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algorithms are implemented as part of large tools, and it is time-consuming to understand the code of the

complete tool to be able to isolate the algorithm implementation. 4) Some algorithms are implemented

using hardware architectures; running them requires owning the target hardware platform (e.g., expensive

FPGA or GPU) or implementing the algorithm as a CPU program from scratch. 5) Some algorithms do not

have an available implementation as they are closed source, the link to the source code is invalid, or their

published manuscript does not include a link to the source code.

To address these five challenges, we build SequenceLab, which includes implementations of 11

state-of-the-art algorithmic methods for comparing genomic sequences. The filter benchmark suite is

written in C to be compatible with most bioinformatics tools written in C and C++. It accepts input data that

contains sequence pairs in a versatile format that can be generated from, e.g., a minimap2’s PAF file.

SequenceLab provides four different types of output data. 1) The raw total execution time for each tool. 2)

a table where each index of its rows corresponds to the index of its corresponding input sequence pair,

and the columns represent the outputs of the included algorithmic method as 1 or 0. A cell with a value of

1 means that the tool accepts the sequence pair given the estimated edit distance is less than or equal to

the user-defined edit distance threshold. A cell with a value of 0 means that the tool rejects the sequence

pair. Heuristic algorithms for comparing genomic sequences can quickly estimate the edit distance

between two sequences. Prior work has shown that exact edit distance calculation is computationally

expensive, and it is impossible to develop an edit distance algorithm with strong sub-quadratic time39. If

the estimated edit distance exceeds a user-defined threshold, the input sequence pair is considered

dissimilar and excluded from further analysis. In genomic studies, only sequences with an edit distance

less than or equal to a user-defined threshold are considered biologically useful1,42,43. The user-defined𝐸

edit distance threshold should be high enough to accommodate possible sequencing errors (with a rate of

0.1–20 % of the read length, depending on the sequencing technology) and genetic variations specific to

the individual organism’s DNA13. 3) Statistics on workload overlap, which indicates how many methods

agree on the decision of acceptance/rejection. This helps inform developers on which algorithmic method

can be executed after which algorithmic method for a more robust multi-level filtering mechanism. 4)

Evaluation statistics such as False Accept Rate (FAR) and False Reject Rate (FRR). Developing an ideal

comparison algorithm requires achieving an FRR of 0 and a minimal FAR. We define the FAR and FRR

as follows:

𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡 𝑅𝑎𝑡𝑒 (𝐹𝐴𝑅) =   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒  𝑅𝑒𝑗𝑒𝑐𝑡𝑠

𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 (𝐹𝑅𝑅) =   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒  𝐴𝑐𝑐𝑒𝑝𝑡𝑠

Rejecting some correct sequence pairs, i.e., FRR > 0, is generally undesirable as a correct pair is

excluded from downstream analyses. For read mapping, this could mean that some genetic variants can

be missed.
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There Are Four Main Approaches to Genomic Sequence Comparison

There are four main approaches to cluster existing methods: base counting, q-gram, Pigeonhole

Principle, and sparse dynamic programming (DP). Researchers have proposed filters for CPU (most

common), GPUs44, FPGAs45,46, and Processing-in-Memory systems42. Each accelerator has tradeoffs, but

their evaluation is outside the scope of this paper.
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Table 1: Overview of the methods surveyed. Not all are included in the benchmarking suite due to erroneous or missing source

code. Some filters can only be used as part of a larger pipeline and are inaccessible for standalone use cases.

Name Year Approach
Short/
Long
Reads

Native
Platform

Langu
age URL Software

QCKer47,48 2020 q-gram Short CPU/
FPGA

C N/A

SneakySnake46 2019 Pigeonhole Short/
Long

CPU/
GPU/
FPGA

C/
C++

https://github.com/CM
U-SAFARI/SneakySna
ke

Shouji43 2019 Pigeonhole Short FPGA C/
Verilog

https://github.com/CM
U-SAFARI/Shouji

GenCache III: Banded
Myers49

2019 Sparse DP Short CPU N/A

GenCache II: SHD49 2019 Pigeonhole Short CPU N/A

GenCache I: HD49 2019 Pigeonhole Short CPU N/A

Chaining in minimap28 2018 Sparse DP Short/
Long

CPU C/
Python

N/A

GRIM-Filter42 2018 q-gram Short PIM C https://github.com/CM
U-SAFARI/GRIM

Bitmapper250 2018 q-gram Short GPU C N/A

D-Soft (Darwin)51 2018 q-gram Long FPGA C++ https://github.com/yati
sht/darwin

MAGNET52 2017 Pigeonhole Short CPU Matlab https://github.com/Bilk
entCompGen/MAGNE
T

GateKeeper45 2017 Pigeonhole Short FPGA C/
Verilog

https://github.com/Bilk
entCompGen/GateKee
per

PUNAS
(improved SHD)53

2017 Pigeonhole Short CPU
(AVX2/K
NL)

https://github.com/Xu-
Kai/PUNASfilter

rHAT54 2016 q-gram Long CPU C++ https://github.com/HIT-
Bioinformatics/rHAT

SHD44 2015 Pigeonhole Short SIMD C/
SIMD

https://github.com/CM
U-SAFARI/Shifted-Ha
mming-Distance

Bitmapper55 2015 Pigeonhole Short CPU C N/A

6

https://paperpile.com/c/8Y63Lj/7vMUp+70DST
https://paperpile.com/c/8Y63Lj/IDI11
https://github.com/CMU-SAFARI/SneakySnake
https://github.com/CMU-SAFARI/SneakySnake
https://github.com/CMU-SAFARI/SneakySnake
https://paperpile.com/c/8Y63Lj/v4RFu
https://github.com/CMU-SAFARI/Shouji
https://github.com/CMU-SAFARI/Shouji
https://paperpile.com/c/8Y63Lj/x6ynV
https://paperpile.com/c/8Y63Lj/x6ynV
https://paperpile.com/c/8Y63Lj/x6ynV
https://paperpile.com/c/8Y63Lj/a1UfG
https://paperpile.com/c/8Y63Lj/IA2L9
https://github.com/CMU-SAFARI/GRIM
https://github.com/CMU-SAFARI/GRIM
https://paperpile.com/c/8Y63Lj/Gq0Sh
https://paperpile.com/c/8Y63Lj/yXSlq
https://github.com/yatisht/darwin
https://github.com/yatisht/darwin
https://paperpile.com/c/8Y63Lj/DaoZJ
https://github.com/BilkentCompGen/MAGNET
https://github.com/BilkentCompGen/MAGNET
https://github.com/BilkentCompGen/MAGNET
https://paperpile.com/c/8Y63Lj/T2Rdw
https://github.com/BilkentCompGen/GateKeeper
https://github.com/BilkentCompGen/GateKeeper
https://github.com/BilkentCompGen/GateKeeper
https://paperpile.com/c/8Y63Lj/7xXZw
https://github.com/Xu-Kai/PUNASfilter
https://github.com/Xu-Kai/PUNASfilter
https://paperpile.com/c/8Y63Lj/xv9qL
https://github.com/HIT-Bioinformatics/rHAT
https://github.com/HIT-Bioinformatics/rHAT
https://paperpile.com/c/8Y63Lj/R5ovQ
https://github.com/CMU-SAFARI/Shifted-Hamming-Distance
https://github.com/CMU-SAFARI/Shifted-Hamming-Distance
https://github.com/CMU-SAFARI/Shifted-Hamming-Distance
https://paperpile.com/c/8Y63Lj/v1OHP


mrsFAST-Ultra II56 2014 Pigeonhole Short CPU C http://mrsfast.sourcefo
rge.net

mrsFAST-Ultra I56 2014 Base
Counting

Short CPU C http://mrsfast.sourcefo
rge.net

RazerS 3 I: SWIFT57 2012 q-gram Short CPU C++ http://www.seqan.de/pr
ojects/razers

RazerS 3 II:
Pigeonhole57

2012 Pigeonhole Short CPU C++ http://www.seqan.de/pr
ojects/razers

Hobbes58 2011 q-gram Short CPU C++ http://hobbes.ics.uci.e
du

SHRiMP 259 2011 q-gram Short CPU C http://compbio.cs.toron
to.edu/shrimp

GASSST II: Base
Counting60

2010 Base
Counting

Short CPU C++ https://www.irisa.fr/sy
mbiose/projects/gassst

GASSST I: Tiled-NW60 2010 Sparse DP Short CPU C++ https://www.irisa.fr/sy
mbiose/projects/gassst

Adjacency Filtering
(mrFAST)61

2010 Pigeonhole Short CPU C https://github.com/Bilk
entCompGen/mrfast

ZOOM62 2008 q-gram Short CPU https://www.bioinfor.co
m/zoom-1-3-gui-releas
e-next-gen-seq

SWIFT63 2005 q-gram Short CPU C++ https://bibiserv.cebitec.
uni-bielefeld.de/swift

Better Filtering with
Gapped q-Grams64

2001 q-gram Short CPU N/A

FLASH65 1993 q-gram
(LUT)

Short CPU C N/A
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Base Counting Is the Simplest Method for Comparing Genomic Sequences
Base counting compares the frequency of individual genomic bases between two sequences. For DNA,

this means counting the occurrence of adenine (A), thymine (T), guanine (G), and cytosine (C) bases in

each sequence. By calculating the Manhattan distance for the four counts for one sequence and another

four counts for another sequence, we can derive a lower bound to the edit distance of these two

sequences (Figure 1).

A B

Figure 1: Base Counting approach for comparing genomic sequences.
A) It counts every two differences as, at most, one edit. B) No edit is detected despite the six differences between the two

sequences, as both sequences have the same number of As, Cs, Gs, and Ts.

The base counting algorithm does not provide an overestimation of the number of differences

between two sequences for two reasons. 1) The Manhattan distance divides the sum of the total number

of differences between the counts by two as it assumes an increase in one of the counts for As, Cs, Gs,

or Ts leads to a decrease in one of the other counts (given that the lengths of the two sequences are

equal). The increase and the decrease in counts can be caused by a single change (e.g., deleting one

character) or two changes (e.g., two substitutions). Hence, the base counting algorithm counts them

conservatively as, at most, a single difference (Figure 1A). 2) It does not consider the location of the base

in the sequence when counting the bases. This means that swapping two characters in one of the

sequences is not counted as two differences. For example, the base counting algorithm considers

"AACGTT" the same as "TTGCAA" (Figure 1B). Hence, for example, the base counting algorithm

provides a zero False Reject Rate (FRR).

The computational complexity of base counting is with space, where is the sequenceՕ(𝑛) Օ(1) 𝑛

length. There is a key potential for accelerating the different implementations of the base counting
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algorithm as the algorithm is simple and highly parallelizable (counting one base is independent of

counting the other bases). Using parallelization, its computational complexity drops to withՕ(𝑙𝑜𝑔(𝑛))

space. If we query a sequence repeatedly, building an index for constant lookups may provideՕ(𝑙𝑜𝑔(𝑛))

further speedup. It is important to note that the complexity is independent of the edit distance threshold

chosen, which is advantageous for long sequences.

Q-gram Improves Sequence Comparison Accuracy By Counting Subsequences Instead of Bases
The q-gram approach can be seen as an extension of the base counting approach. Q-gram methods

compare the abundance of q-long subsequences to calculate a lower-bound estimate of the edit distance.

Much like Base Counting, these approaches are designed to have a zero False Reject Rate. The old

implementations66 of q-gram approaches enumerate all subsequences of a certain length, , and quantify𝑞

the occurrence of each of such enumerations. There are four possible enumerations for =1, 16𝑞

enumerations for =2, 64 enumerations for q=3, 256 enumerations for =4, and 1024 enumerations for𝑞 𝑞 𝑞

=5. For long q-grams, this approach becomes infeasible; enumerations for =15. Recent415 ≈ 109 𝑞

implementations extract the q-gram from the sequence itself instead of enumerating all possible

subsequences. For a sequence of length , there are overlapping q-grams. An edit operation𝑛 𝑛 − 𝑞 + 1

in any position can modify a maximum of q-grams. Thus, if two sequences have fewer than𝑞

matching q-grams, they are guaranteed to have more than edits (Figure 2).𝑛 − 𝑞 + 1 −  𝑞 * 𝐸 𝐸

Q-grams (or k-mers) still play a large role in many biological algorithms, such as seeding or

Metagenomics8,17,67. They are straightforward to implement in their simplest form. One major advantage of

the q-gram approach is that its complexity does not depend on the edit distance threshold. Thus, its

computational complexity is similar to that of the base counting approach (without using any data𝑂(𝑛)

structure) for a sequence length of . Q-gram methods are suitable for acceleration due to q-gram𝑛

independence and the simplicity of the required operations. The key limitation of the q-gram approach is

that it does not respect the order in which q-grams appear in the original sequences, which can confuse

the decision on whether or not the two compared sequences are similar.
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Figure 2: q-gram (k=5) filtering example with threshold .𝐸 = 1

Pigeonhole Principle Approach Increases Algorithm Complexity

The pigeonhole principle states that if objects are placed in boxes , at least one of the boxes𝑛 𝑘 𝑘 <  𝑛

contains objects (rounded up). Many tools use this principle to determine whether substitutions𝑐𝑒𝑖𝑙( 𝑛
𝑘 )

exist in a sequence. If a substitution exists, there is at least one position where the two sequences differ.

To also handle insertions and deletions, many approaches use shifted copies of the sequences43–46,53.

The simplest version is the Hamming distance algorithm. It determines whether two sequences

match by iterating over the sequences and counting the number of times the corresponding characters

are different. If there is a single substitution ( =1) in one of the sequences, then the single substitution𝑛

divides the exact matches into two sets ( =2) of matching subsequences. Quantifying these matching𝑘

subsequences can also provide insights into the number of differences based on the Pigeonhole

Principle. Unlike base counting and q-gram approaches, the Hamming distance approach considers the

location of the matching characters in making the similarity decision. Notably, Hamming distance cannot

handle insertions and deletions. An insertion operation, for example, is the equivalent of shifting the

trailing subsequence of the original sequence to the right. Thus, Hamming distance cannot correctly

match the characters in such subsequences. Shifted-sequence approaches address this by also

comparing against a right-shifted (for insertion) and left-shifted (for deletions) version of the sequence.

Comparing with two right-shifted copies and two left-shifted copies helps to detect at most two operations

of the same type (either insertion or deletion) occurring one after another (Figure 3). Such a number of

shifted copies can also help to detect other cases, such as one insertion followed (not necessarily

consecutively) by a deletion followed by an insertion. These three edit operations have +1=4 matching𝐸

subsequences distributed among the shifted copies.
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The computational complexity of the Pigeonhole Principle varies based on the implementation. Except for

Hamming distance, the Pigeonhole Principle approach heavily relies on the edit distance threshold , a𝐸

conservative parameter used to control the maximum number of operations of the same type that occurs

after each other and can be detected by the Pigeonhole Principle approach. Most methods have a

complexity of where is the sequence length. The value usually depends on the type ofՕ(𝑛𝐸) 𝑛 𝐸

sequencing data used for the analysis. For example, of 5% of read length suffices for Illumina as𝐸

Illumina data usually has very high sequencing accuracy that obviates the need to accommodate them via

higher value13,68.𝐸

Algorithms such as Hamming distance can be simple and only use bitwise comparison operations

(i.e., XOR circuit), which makes it attractive for acceleration. More complex algorithms that generate

shifted copies of a sequence can still be attractive for acceleration as they rely on shift operation and

bitwise comparisons and have been widely implemented in GPUs, FPGAs, and Processing-in-Memory.

Figure 3: Pigeonhole Principle-based filter that uses shifted sequences to tolerate up to two insertions and deletions. The

highlighted sections mark matches with the read sequence. We see that it tolerates the deletion at position two.
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Sparse Dynamic Programming Uses Expensive Alignment Sparingly
Sparse Dynamic Programming (DP) algorithms utilize the concept of exact matches, or seeds, between

two sequences to optimize execution time. The algorithms find exactly matching subsequences between

two sequences and only use expensive edit distance calculations for the gaps between every two

matching subsequences (Figure 4). If these gaps are sufficiently small, overall runtime is greatly

improved compared to expensive edit distance calculations on the entire sequence. This approach is very

useful in popular software such as minimap28 and rHAT54.

Recent advancements in the field have led to the development of GPU and FPGA accelerators

for the chaining algorithm, resulting in 7x and 28x acceleration, respectively, compared to the sequential

implementation executed with 14 CPU threads in minimap28. However, the worst-case time and space

complexity for this approach is still where is the length of the sequence.Օ(𝑛2) 𝑛

Figure 4: Sparse Dynamic Programming. Expensive alignment is only performed between the exact matching sections.
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Evaluation Results

We evaluate every algorithm included in SequenceLab using six key performance metrics: specificity,

false accept rate (FAR), false reject rate (FRR), filtering throughput, execution time, and workload overlap.

We define throughput as the number of sequence pairs examined per second; thus, a higher throughput

is better. We define specificity as 1 - FAR; thus, a higher specificity is better. We also compare the

performance of these filters with that of two state-of-the-art sequence aligners, Edlib69 and KSW28,70,

whenever applicable. We evaluate performance using different real datasets representing the three

prominent sequencing technologies: Illumina, PacBio HiFi, and ONT. The filtering accuracy depends

greatly on the edit distance threshold and the data analyzed. If a filter has zero FRR and we apply a

threshold of 5%, it is guaranteed to accept all pairs with an edit distance of less than (or equal) 5% (as a

percentage of read length). We test the thresholds from 0% to 10% for both Illumina and HiFi data and

from 0% to 20% for ONT data. This covers practical and real-world ranges of edit distance threshold.

While higher thresholds would be technically possible, they are rarely biologically useful and thus not

seen in real-world applications1,42,43. It is important to note that 0% is a special case in this analysis. An

edit distance of 0% means that the two sequences must be identical to pass, which can be tested

perfectly in with the Hamming Distance algorithm. Some filters use this special case and run𝑂(𝑛) 

Hamming Distance if threshold 0 is given. Unfortunately, many filters do not and thus unnecessarily

exhibit non-zero errors in this special case.

The system configuration we used was a 2.3 GHz Intel Xeon Gold 5118 CPU with 24 cores and

48 threads, along with 192 GB of RAM. To maintain comparability, only CPU implementations were

considered in our experiments. Most filters rely on numerous parameters: q-gram length, early

termination, sliding window sizes, or algorithm choice. To assess performance fairly, we used the author’s

recommended parameters. These parameters can be viewed and tweaked within the benchmarking suite

we provide.

Datasets

To provide the most comprehensive overview possible, we examined real sequence datasets from

Illumina (SRR10035390, accessed July 2022), PacBio HiFi (SRR12519035, accessed July 2022), and

ONT (SRR12564436, accessed July 2022). For each of these datasets, we used minimap2 (version

2.23-r1111) to generate two PAF files – one after chaining and one after mapping, for a total of six

datasets. The PAF files generated before mapping (after chaining) contain sequence pairs that still have a

high number of edits since filtering is not executed. In contrast, the PAF files generated after mapping

mostly contain sequence pairs with a number of edits less than or equal to the edit distance threshold. We

chose Homo-Sapiens CHM13 Telomere-to-Telomere71 (GCA_009914755, accessed July 2022) as our

reference genome. We extracted the sequence pairs from these files and further split them into the
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shortest 90% and longest 10% of sequences to better observe the effect of ultra-long sequences on the

performance of the different comparison methods. We extensively analyzed the datasets to understand

edit distance distribution and confirm sensible edit distance thresholds. In total, we examined twelve

datasets. In the spirit of brevity, not all are plotted in the results, but we provide the data and plotting tools

in the supplementary materials.

Overall Performance: Specificity and Throughput

We first evaluate the overall performance of the 11 filters and the two sequence aligners in terms of both

specificity and throughput (Figure 5). Ideally, we would like to have a filtering algorithm whose specificity

and throughput are as close as possible to the top-right corner of the figure. We make four key

observations based on Figure 5. 1) There is a clear tradeoff between throughput and specificity when

using Illumina short reads. SneakySnake and Hamming Distance break this tradeoff, though Hamming

Distance has a non-zero FRR that can be unsuitable for some applications, as detailed in Methods. 2)

When filtering very long sequences, i.e., PacBio HiFi and ONT, only Base Counting and SneakySnake

(HiFi only) maintain a significant throughput. 3) Only SneakySnake, MAGNET, and q-gram (with a k-mer

length of 15) provide high specificity for very long reads. In contrast, Adjacency Filtering, SHD,

GateKeeper, Shouiji, short q-gram methods (including GRIM), and Base Counting provide very low

specificity. 4) For ONT reads, the aligner Edlib outperforms many filters.

We conclude that filter performance varies strongly based on the underlying sequencing

technology. SneakySnake is an attractive candidate for Illumina and HiFi reads. There are no filters that

perform well on ONT data.
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Figure 5: Scatter plot showing specificity over throughput for Illumina (top left), PacBio HiFi (top right), and ONT
(bottom). The * sign next to the tool name indicates that the filter has False Rejects, which is undesirable and may lead to

artificially high specificity. Hamming Distance is excluded from ONT and PacBio HiFi as it removes almost all correct pairs and

thus is unsuitable for most applications – see the next section for an in-depth evaluation. SHD was tested but omitted from these

charts as it is limited to sequences of length 128 or less.

False Accept and False Reject Rates

We evaluate the accuracy of the 11 filters using two key metrics: false accept rate (FAR) and false reject

rate (FRR). Figures 6-8 show the FAR and FRR for six datasets across three sequencing technologies.

The left heatmap shows the accuracy for the shortest 90% of sequences and the right for the longest 10%

of sequences. Low FAR and FRR are better. A FAR of 1.0 (highest) indicates that the filter does not reject

any pairs and accepts everything. An FRR of 1.0 (highest) indicates the filter falsely rejects every correct

pair. We make six key observations: 1) FAR sharply increases with higher edit distance thresholds

(except Hamming Distance). 2) FAR also increases for longer sequences, most evident in HiFi and ONT

datasets. 3) Most filters provide good FAR and FRR for low edit distance thresholds across HiFi and

Illumina datasets. SneakySnake provides excellent FAR and zero FRR for all data types up to 10%. 4)

Hamming Distance has a potentially acceptable FRR for Illumina reads but rejects 70-100% of correct
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pairs for HiFi (longest 10%) and ONT data and thus cannot be recommended for general applications. 5)

q-gram methods have a very low FAR for HiFi. Q-gram (k=5) is attractive on ONT for edit distance

thresholds of 1-5%. 6) SneakySnake and MAGNET are the only filters that maintain low FAR for ONT

data (up to a threshold of 8-10%).

We conclude that filtering accuracy highly depends on the edit distance threshold, with many

filters becoming ineffective for thresholds above 5%. This observation is vital for application developers,

as deploying filters outside this region means no sequences are removed, and total runtime increases.

Additionally, we observe that most filters are ineffective at useful edit distance thresholds for long reads.

Figure 6: False Accept Rate (top) and False Reject Rate (bottom) for Illumina reads after chaining inside minimap2. 0.0 is the

best, and 1.0 is the worst score. Note that boosting the False Accept Rate is easy by increasing the False Reject Rate – see

Hamming Distance. FRR > 0 is undesirable as some correct pairs may be lost.
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Figure 7: False Accept Rate (top) and False Reject Rate (bottom) for PacBio HiFi reads after chaining inside minimap2. 0.0 is

the best, and 1.0 is the worst score. Note that boosting the False Accept Rate is easy by increasing the False Reject Rate – see

Hamming Distance. FRR > 0 is undesirable as some correct pairs may be lost.
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Figure 8: False Accept Rate (top) and False Reject Rate (bottom) for ONT reads after chaining inside minimap2. 0.0 is the best,

and 1.0 is the worst score. Note that boosting the False Accept Rate is easy by increasing the False Reject Rate – see Hamming

Distance. FRR > 0 is undesirable as some correct pairs may be lost.

Execution Time

The goal of filtering is to reduce the overall computational burden. To evaluate performance, we analyze

the execution time and throughput of the 11 filters and two aligners analyzed and see how it depends on

the underlying data and the edit distance threshold. To maintain a fair comparison, we only tested CPU

implementations of the algorithms provided. We reserve GPU, FPGA, and PIM benchmarks for future

work.

Longer Sequences Account for Most of the Execution Time
During our experiments, we observed that the filter throughput is highly sensitive to the length of the

sequences. This effect was especially pronounced for filters whose runtime depends on the edit distance

threshold. To investigate this effect, we split each of the six datasets: One containing the shortest 90% of

the reads and the other the longest 10%. We break down the execution time between these splits in

Figure 9. We make three key observations: 1) The quadratic complexity filters (Shouji, MAGNET,

SneakySnake, GateKeeper) spend ~90% of their execution time on the longest 10% of sequences (81x

longer on a per pair basis). 2) The linear complexity filters (q-gram, GRIM, and Base Counting), except
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Hamming Distance, spend ~50% of their time on the longest sequences (9x longer on a per pair basis). 3)

Adjacency and Hamming Distance spend time proportional to the share of the underlying data (~10%

– indicated by the dotted line).

We conclude that most of the execution time comes from the longest sequences, even within the

same dataset. Improving efficiency in this edge case or avoiding long sequences can dramatically

increase performance. Additionally, as the sequence length is known beforehand, one could dynamically

decide to use a more efficient filter for the longest reads to achieve significant throughput𝑂(𝑛)

improvements.

Figure 9: Execution time distribution between the longest 10% and shortest 90% for PacBio HiFi chained datasets. The dotted

line at 10% indicates the share of the input data. Anything above that line indicates that computation for the longer sequences

took more time.
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Filter Execution Time Varies Drastically Across Filters And Thresholds
We analyze the total execution time across varying edit distance thresholds. We provide reduced plots to

increase clarity, with full plots in the supplementary section. For each dataset, we provide the total

execution time spent on the filter. We additionally provide log-log plots to observe scaling better: A

horizontal line indicates the runtime does not scale with the edit distance, and a straight line with a greater

than zero gradient implies polynomial scaling. For SneakySnake, we observe an even stronger scaling,

but this is most likely due to the effects of SneakySnake’s early termination.

We make the following four key observations from Figure 10: 1) All filters are significantly faster

than the aligners (Edlib69 shown) for Illumina and HiFi (except GateKeeper45). 2) Hamming Distance is the

fastest filter across datasets. 3) We confirm quadratic scaling for SneakySnake, GateKeeper, Shouji,

MAGNET and linear scaling for the others. 4) For ONT data, only a few filters (Hamming Distance shown)

beat the performance of the aligners. We also note that many of the approaches are highly sensitive to

implementation. All tested code was written in C/C++ without vector instructions. We remark that, e.g.,

PUNAS53 has shown that order of magnitude improvements can be expected by correctly utilizing these

instructions and other systems-level optimizations. We expect this to hold for other approaches, too.

In conclusion, most filters provide significant speedup over the aligners. Still, many suffer from

quadratic time scaling with increasing edit distance thresholds and sequence length, making them

unsuitable for long sequences. SneakySnake and Hamming Distance are very attractive candidates for

Illumina. For HiFi and ONT, linear complexity filters dominate throughput, with Hamming Distance leading,

followed by q-gram methods and Base Counting.
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Figure 10: Runtime for Illumina (top left), HiFi (top right), and ONT (bottom left). Total filter time for 9M (Illumina), 90,000 (HiFi),

and 4500 (ONT) sequence pairs. Linear axes on the left, log-log axes on the right. The top two charts in each cell are for chained

data, and the bottom two are for mapped data.

21



Workload Overlap

This is the first work to provide an overview of filter combinations. Many approaches, such as GASSST60

and GenCache49, use multiple pipelined filters but do not provide a standalone analysis. Combinations

have the promise to improve overall accuracy and performance in two ways:

● Accuracy: Multiple filters may reduce the False Accept Rate by removing distinct sequence

pairs. To analyze this, we provide a Venn diagram for the four highest-performing filters to see if

they reject/accept the same set of pairs.

● Performance: Using a high-throughput filter first (such as Base Counting), we can reduce the

workload passed to lower-throughput, higher-accuracy subsequent filters. We expect a significant

reduction in the execution time without sacrificing accuracy based on observations from previous

work17.

We investigate the accuracy claim more closely and reserve the performance analysis for future work. If

desired, a theoretical estimate of performance improvement can be calculated using the supplementary

materials provided. In Figure 11, we provide a four-set Venn diagram illustrating the work overlap

between filter combinations. We have chosen a mix of the most attractive individual filters for each

sequencing technology based on throughput or accuracy. Using the data provided, they can be generated

for an arbitrary filter combination using the supplementary materials. The sum of all percentages inside a

circle indicates the share of rejections the filter contributed – higher is better. The percentage in an

overlapping field indicates that any filter could have provided those rejections. A filter combination

increases overall accuracy if there is a large share of “unique” contributions, i.e., a high percentage in the

non-overlapping sections.

We make four key observations: 1) SneakySnake makes up ~99.7% of the rejection for Illumina,

making multi-stage filters unattractive from an accuracy perspective. 2) For HiFi, q-gram methods and

SneakySnake have a 79.3% overlap, meaning there is a moderate ~25% accuracy improvement to using

a combination. 3) The simple Base Counting method is well-suited for HiFi, managing to filter 43.3% of

the total. Using this as a pre-filter could generate significant speedup (future work). 4) For ONT,

SneakySnake and q-gram (k=15) overlap strongly. Most other approaches are ineffective – not all are

shown here.
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We conclude that combinations of the current filters do not provide significant accuracy benefits

for Illumina and ONT (Note: q-gram’s 17% is inflated due to false rejects). For HiFi, filter combinations are

sensible, and we believe a Base Counting (applied first) and q-gram (k=15) combination might be fast and

accurate even for long reads.

Figure 11: Venn diagrams showing the overlap between four methods representing different filtering methodologies. The number

displayed is the unique number of pairs rejected by that filter or filter combination. Thus, high percentages are desirable, and low

percentages indicate that a filter only removes a few additional sequences. To estimate how much work could be done by a filter

or filter combination, sum the total percentages within the respective areas. Values were sampled at an edit distance threshold of

5% for Illumina (top left) & PacBio HiFi (top right) and 10% for ONT (bottom).
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Applications in Metagenomic Analysis

Metagenomic Profiling

Microorganisms are ubiquitous in almost every natural setting, including soil, ocean water, and the human

body. They play critical roles in the functioning of each of these systems. Traditional culture-based

analysis of these microbes is confounded by many microorganisms that cannot be cultured in standard

laboratory settings. Further, analysis of lab-cultured organisms fails to capture the complex community

dynamics in real microbial ecosystems. Metagenomics, or the analysis of whole microbial genomes

recovered directly from their host environment via high-throughput sequencing, is vital to understanding

microbial communities and their functions. Taxonomic profiling, which predicts taxa's presence and

relative abundance in a metagenomic sample, is a fundamental aspect of metagenomic analysis. It is

computationally simpler and more effective in detecting low-abundance organisms than metagenomic

assembly. Taxonomic profiles can be generated through read classification, where reads are assigned to

specific taxa, or read binning, in which groups read into probable taxa or organism groups. However, due

to the challenge of inferring taxa from short reads, these techniques have been demonstrated to result in

lower accuracy in taxonomic profiling.

Evaluating the benefits of pre-alignment filtering for read mapping

We evaluate the potential benefits of using pre-alignment filtering in metagenomic profiling. We introduce

the previously studied pre-alignment filters to reduce the workload for the computationally expensive

sequence alignment. We base our analysis on the state-of-the-art mapping-based metagenomic profiler

Metalign. Metalign performs read-mapping using minimap2. We restrict our modifications of Metalign to

the read-mapping stage. In the read mapping stage, we use each filter to estimate an edit distance value

for all reads in the read set. We discard all reads with an approximate edit distance higher than 10% of

the read length, as they are likely highly dissimilar to the subject species' genome. We pass all remaining

reads, i.e., those with an estimated edit distance below the cutoff value, on to sequence alignment. The

sequence alignment results are stored in a SAM file that Metalign uses to calculate the relative

abundance of each species. We evaluate the benefits of pre-alignment filtering heuristics on real and

simulated datasets. The Critical Assessment of Metagenome Interpretation (CAMI) provides the most

comprehensive and in-depth evaluation of metagenomic classifiers. The study examines metagenomic

profiling methods based on diverse simulated metagenomic datasets. We produce the ground truth for

our analysis by performing sequence alignment on the complete, unfiltered read set. Methodologically,

this can be interpreted as a pre-alignment filter with its edit-distance cutoff threshold set to infinity, i.e., a

filter that accepts all sequence pairs (from now on referred to as the all accept filter). Subsequently, we

rely on the edit distance estimated by each filter to reject dissimilar sequences, thereby effectively filtering

the read set. We evaluate the performance of all filters in terms of recall, precision, F1 score, Jaccard
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index, L1 norm error, and weighted UniFrac (full OPAL report in supplementary material). In total, we

consider three datasets: a low-diversity (CAMI low) and a high-diversity (CAMI high) community from

CAMI, each comprising 15 Gbp of sequence data and a real dataset from the TARA Ocean project

(ERR1700889_1.fastq). The CAMI-high-complexity community includes numerous species not contained

in the database: only 161 out of 243 unique species are present in our reference database.

We conduct metagenomic classification on these three datasets and perform an accuracy analysis using

OPAL, the CAMI-affiliated evaluation software. As a representative example, we consider the results of

the analysis as mentioned earlier based on the CAMI high complexity dataset. We run each filter with the

same parameters and are exposed to the same workload. We remove all organisms assigned an

abundance of less than 0.01% from all final profiles. For all read sets, we observe that all classification

results are free of both false negatives and false positives, with each filter exhibiting an F1 score of one.

We conclude that all methods are suitable as pre-alignment filters for metagenomic classification

applications.

In the following evaluation, we assess the computational resources required by minimap2 when

run with each filter (Table 3). For each filter, we provide the end-to-end runtime, peak RSS, the number of

pairs accepted, and the total number of pairs processed by each filter. The number of processed pairs

quantifies the workload for each filter. For comparability, we subject each filtering methodology to the

same workload, meaning each filter processes the same number of pairs. The end-to-end runtime of the

read mapping stage depends on the number of accepted sequences (the number of reads passed on to

sequence alignment) and the share of execution time spent on the filter. The total runtime of Metalign

differs only due to the different execution times in the read mapping stage, i.e., due to different filters. We

thus restrict our runtime analysis to the read mapping stage only. The all-accept filter represents full

sequence alignment. We make four key observations: (1) The number of invocations of each filtering

heuristic is constant across filters and only depends on the read set. This confirms that all filters are

exposed to the same workload, as intended. (2) The main memory footprint is practically independent of

the choice of filtering method. (3) We evaluate pre-alignment filters in terms of accuracy by examining the

number of accepted sequence pairs. Given no false negatives in the final taxonomic profile, we expect

highly accurate filters to accept as few sequences as possible to achieve the greatest reduction in

workload for later sequence alignment. We observe SneakySnake, MAGNET, and Edlib to reject the most

sequences. (4) The pre-alignment filtering methods SneakySnake, Edlib, Hamming Distance, and

Adjacency allow for the greatest speedup across all read sets. We achieve the best speedup of

approximately 4x when benchmarked against full, unfiltered sequence alignment for CAMI high reads with

SneakySnake and Hamming Distance.

We conclude that all examined pre-alignment filtering methodologies enable strong speedup of

the state-of-the-art metagenomic profiler, Metalign, without compromising accuracy.
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Table 2: A ranking of pre-alignment filters based on the total end-to-end runtime of minimap2, peak main memory usage,
number of accepted reads (i.e., reads with an estimated edit distance below the defined threshold), and workload, with
the workload being determined by counting the number of processed pairs for each filter. We repeat this analysis for
each read set.

CAMI low read set

Filter Runtime Memory Footprint Accepted Pairs Processed Pairs

Adjacency 25.55.50 7261108 1691181 8484773

Edlib 27.17.49 7261000 489965 8484773

Base Counting 28.32.40 7261100 4891290 8484773

GRIM 28.53.27 7261052 8484772 8484773

GRIM (modified) 29.53.98 7261136 8484772 8484773

All Accept 30.49.59 7260892 489957 8484773

Shifted Hamming Distance 31.14.50 7261260 6228291 8484773

Q-Gram (k = 5) 36.34.47 7261004 8484772 8484773

SneakySnake 38.06.54 7261044 768843 8484773

Hamming Distance 40.24.24 7260772 451443 8484773

Shouji 52.58.84 7261020 8366776 8484773

Magnet 58.58.57 7261100 735168 8484773

CAMI high read set

Filter Runtime Memory Footprint Accepted Pairs Processed Pairs

Hamming Distance 34.00.57 7260948 20927589 87266158

SneakySnake 39.14.35 7261012 25719195 87266158

Adjacency 52.09.47 7261144 28071919 87266158

Base Counting 1.00.41 7261072 59015999 87266158

Edlib 1.15.07 7260908 22530549 87266158

Q-Gram (k = 5) 1.29.38 7260868 87266157 87266158

Shifted Hamming Distance 1.33.39 7260900 68199860 87266158

All Accept 2.00.57 7260864 22530538 87266158

GRIM 2.00.58 7260924 87266157 87266158

GRIM (modified) 2.00.59 7260712 87266157 87266158

Shouji 2.04.10 7261060 83499414 87266158

Magnet 2.08.57 7260928 25596661 87266158

TARA Ocean read set

Filter Runtime Memory Footprint Accepted Pairs Processed Pairs

Edlib 28.54.70 7261008 1246472 1794985

Shouji 28.54.52 7261132 1547258 1794985

SneakySnake 29.13.81 7261096 1288836 1794985

Hamming Distance 29.54.48 7261036 1226234 1794985

Q-Gram (k = 5) 30.54.93 7261008 1555669 1794985

Shifted Hamming Distance 31.55.07 7261132 1501273 1794985

GRIM 32.59.55 7260920 1555669 1794985

GRIM (modified) 34.10.21 7260816 1555669 1794985

All Accept 38.14.08 7261064 1245332 1794985

Base Counting 39.03.07 7261024 1378134 1794985

Adjacency 39.17.82 7261036 1398847 1794985

Magnet 49.01.53 7261076 1284956 1794985
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Discussion and Future Work

Filtering heuristics are vital for handling large genomic datasets and accelerating their applications,

making them more accessible. Our review focuses on the interplay between technological and algorithm

development. It guides the choice of the appropriate algorithm and identifies new algorithmic research

directions in response to the advancement of long-read technologies and novel sequencing protocols.

Given the importance and prominence of genomic sequence comparison across domains and

applications, we anticipate that our study will be a valuable resource for many academic and industrial

research groups performing broad biomedical research.

Directions for improving genomic sequence comparison

There is a great need for new filters to address our uncovered shortcomings. There are no satisfactory

filters for ONT and HiFi. Five directions hold promise: 1) Making a smart tradeoff between having a

slightly above zero false reject rate. This should allow designers to decrease FAR significantly. The

benchmarking suite allows designers to measure this tradeoff and find a great balance. 2) Use filter

combinations for HiFi data to improve overall accuracy and performance. 3) Develop entirely new

algorithms to tackle these new data types. 4) Accelerate existing low FAR but slow filters using FGPAs,

GPUs, or Processing-in-Memory. 5) Dynamically adapting which filtering technique to use based on the

edit distance threshold, sequence length, and technology type.

Availability of data and materials

We exclusively used publicly available datasets in this paper. The CAMI results from our metagenomic

analysis are based on the CAMI challenge datasets. Information on CAMI challenge data is available on

the official CAMI Website or can be downloaded from the GigaDB website. The prokaryote-isolated Tara

Oceans reads used in our study on metagenomic applications are available on EBI:

https://www.ebi.ac.uk/ena/data/view/PRJEB1787. The run accessions are ERR598952 and ERR598957.

SequenceLab source code is available on GitHub: https://github.com/CMU-SAFARI/SequenceLab.

For inquiries or if you wish to collaborate, please contact arvid.gollwitzer@safari.ethz.ch.
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