
DISS. ETH NO. 29662

CCKit: FPGA acceleration in
symmetric

coherent heterogeneous platforms

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

ABISHEK RAMDAS

Master of Science in Computer Engineering, NYU

born on 01.10.1988

citizen of India

accepted on the recommendation of

Prof. Dr. Gustavo Alonso (ETH Zurich), examiner
Prof. Dr. Timothy Roscoe (ETH Zurich), co-examiner

Dr. Alberto Lerner (University of Fribourg), co-examiner
Prof. Dr. Ryan Stutsman (University of Utah), co-examiner

2023

Abstract

FPGA-based accelerators are becoming pervasive in the cloud and data centers due to their
architectural flexibility (they are used in many different configurations) and functionality
(they can be reconfigured and reprogrammed at runtime). At the same time, standards
like CXL raise questions of how a cache coherence protocol should be presented to hetero-
geneous applications running on, for example, a closely-coupled FPGA-based accelerator.
To address these questions, we present CCKit, an open-source toolkit comprising a com-
plete cache coherency stack for FPGAs with software support, and enabling interesting
and novel designs beyond simple coherence or, indeed, any requirement for caching on the
FPGA. We describe the implementation of CCKit in detail, show through benchmarks
that it is highly competitive with hardware-based implementations, but also, critically,
that it enables important use-cases for CPU-FPGA coherence beyond those supported by
emerging standards.

i

Zusammenfassung

FPGA-basierte Beschleuniger sind in der Cloud und in Rechenzentren aufgrund ihrer
architektonischen Flexibilität (sie werden in vielen verschiedenen Konfigurationen verwen-
det) und ihrer Funktionalität (sie können zur Laufzeit neu konfiguriert und neu program-
miert werden) immer beliebter geworden. Gleichzeitig werfen Standards wie CXL die
Frage auf, wie ein Cache-Kohärenzprotokoll heterogenen Anwendungen präsentiert wer-
den sollte, die beispielsweise auf einem eng gekoppelten FPGA-basierten Beschleuniger
laufen. Um diese Fragen zu beantworten, stellen wir CCKit vor, ein Open-Source-Toolkit,
das einen vollständigen Cache-Kohärenz-Stack für FPGAs mit Softwareunterstützung um-
fasst und interessante und neuartige Designs ermöglicht, die über einfache Kohärenz oder
überhaupt jede Anforderung für Caching auf dem FPGA hinausgehen. Wir beschreiben
die Implementierung von CCKit im Detail, zeigen anhand von Benchmarks, dass es im
Vergleich zu hardwarebasierten Implementierungen äußerst konkurrenzfähig ist, aber vor
allem auch, dass es wichtige Anwendungsfälle für die CPU-FPGA-Kohärenz ermöglicht,
die über die von neuen Standards unterstützten hinausgehen.

iii

Acknowledgments

I am deeply indebted to my advisor and chair of my committee Dr. Gustavo Alonso for
giving me this opportunity and for his invaluable patience and feedback. I would like to
express my deepest gratitude to my defense committee, Prof. Dr. Timothy Roscoe, Dr.
Alberto Lerner and Prof. Dr. Ryan Stutsman, for generously providing their expertise
and enthusiasm. Special thanks to Dr. David Cock and Adam Turowski for their insights
and guidance that enabled a lot of work presented in this thesis.

I am also grateful to Dr. Ghislain Fourny for his kindness and our tea-time discussions.
Thanks should also go to my colleagues, Daniel, Michael G., Andrea, Michal F., Michal
W., Zhenhao, Dario, Monica, Fabio, Anastasiia, Wenqi, Lukas, Melissa, Nora, Ben, Tom,
Roman, Jasmin, and Marko, for making the Systems Group such a wonderful place to
work at. Many thanks to the administrators Simonetta, Nadia, Jena and Natasha for
organizing amazing retreats and their help in general.

Finally, I would be remiss not mentioning my spouse Alena, son Roman and my parents
for their unconditional love and support.

v

Contents

1 Introduction 1

1.1 Background and Motivation . 3

1.1.1 Symmetric vs. asymmetric protocols 3

1.1.2 The evolution of interconnects . 4

1.1.3 Coherence in MPSoCs . 5

1.1.4 FPGA operating systems . 6

1.2 Approach and Design . 7

1.2.1 Target platform and assumptions 7

1.2.2 Coherence protocol specification . 8

1.2.3 High-level architecture . 8

1.2.4 FPGA-side interface . 9

1.2.5 CPU-side interface . 11

1.2.6 CCKit acceleration model . 11

1.3 Related Work . 12

1.4 Contributions . 14

1.5 Structure of the Dissertation . 14

2 Primer on Cache Coherence 17

2.1 Introduction . 17

2.2 Baseline Multicore System without Caches 18

vii

Contents

2.3 Baseline Multicore System with Caches . 19

2.3.1 Problem of incoherence . 19

2.3.2 Shared memory consistency . 20

2.3.3 Coherence vs consistency . 21

2.3.4 Coherence invariants . 21

2.3.5 Cache line . 22

2.3.6 Maintaining coherence invariants 22

2.3.7 Coherence protocol design space . 27

2.3.8 MSI, MESI, MOESI protocol . 28

2.3.9 Scaling: Snooping vs Directory based protocols 28

2.4 Baseline System with Directory Based Protocol 29

2.4.1 Maintaining coherence invariants in directory based protocol 30

2.5 Directory Based Coherence in NUMA Systems 34

2.5.1 Symmetric vs Asymmetric coherent platforms 35

3 CCKit Baseline System Model and Enzian 37

3.1 Introduction . 37

3.2 CCKit Baseline System Model . 38

3.2.1 CCKit target platform assumptions 39

3.2.2 CCKit fundamental design choices 40

3.3 Enzian . 41

3.3.1 Enzian Coherent Interconnect (ECI) 42

3.4 CCKit protocol layers . 45

3.4.1 Two components of a protocol layer 47

3.4.2 DC protocol state machine design space on Enzian 48

3.5 Summary . 48

viii

Contents

4 Directory Protocol Modeling and Specification 49

4.1 Introduction . 49

4.2 Directory Protocol Model . 52

4.3 Rules of CPU-DC Interaction . 54

4.3.1 Rules of event reordering by the interconnect 56

4.4 Coherence Messages . 57

4.4.1 Coherence message classes . 64

4.5 Memory Transactions, Events and Message Classes 66

4.6 Specifying Coherence Transactions . 67

4.6.1 State equation representation of coherence transactions 67

4.6.2 Specification of coherence transactions 68

4.6.3 Effect of scrambler on state equations 69

4.6.4 DC protocol state machine design choices 71

4.7 State Space Exploration Tool . 73

4.7.1 Operators on state equations . 73

4.7.1.1 Substitution operator . 75

4.7.1.2 Stall operator for reordering state equations 78

4.7.1.3 Create operator to create intermediate state 79

4.8 Summary . 80

5 Specifying Coherence Transactions Initiated by CPU 81

5.1 Introduction . 81

5.2 Initial Conditions . 83

5.3 Maintaining Coherence Invariants . 83

5.4 CPU State: I, DC State: I:I . 84

5.4.1 CPU pathways . 84

5.4.2 Specification and maintaining coherence invariants 85

5.4.3 Reordering effects and maintaining coherence invariants 87

ix

Contents

5.4.4 Building the state machine . 87

5.5 CPU State: I, DC State: I:S . 91

5.5.1 CPU pathways . 91

5.5.2 Specification and maintaining coherence invariants 92

5.5.3 Reordering effects and maintaining coherence invariants 94

5.5.4 Building the state machine . 98

5.6 CPU state: E, DC State: I:E . 101

5.6.1 CPU pathways . 102

5.6.2 Specification and maintaining coherence invariants 103

5.6.3 Reordering effects and maintaining coherence invariants 105

5.6.4 Building the state machine . 108

5.7 Summary . 115

6 Specifying Coherence Transactions Initiated by DC 117

6.1 Introduction . 117

6.2 Forward-Downgrade Transactions . 118

6.3 Initial Conditions . 119

6.4 DC State: I:S, DC Issues F21 . 119

6.4.1 CPU pathways . 120

6.4.2 Specification and maintaining coherence invariants 125

6.4.3 Building the state machine . 127

6.5 DC State: I:E, DC Issues F32 . 127

6.5.1 CPU pathways . 128

6.5.2 Specification and maintaining coherence invariants 136

6.5.3 Building the state machine . 139

6.6 DC State: I:E, DC Issues F31 . 140

6.6.1 CPU pathways and specification . 140

6.7 Summary . 141

x

Contents

7 Specifying Coherence Transactions Initiated by Applications 143

7.1 Introduction . 143

7.2 Local Coherence Transactions . 145

7.3 Local Coherence Messages . 146

7.4 Local Coherence Message Classes . 147

7.5 Specification of Local Coherence Transactions 147

7.5.1 Effective remote state . 150

7.6 Guarantees Provided at DC’s Application Interface 150

7.7 Modifying DC’s Application Interface For Locking Capabilities 153

7.7.1 Local coherence messages for locking capabilities 154

7.7.2 Local coherence message classes for locking capabilities 154

7.7.3 Specification of local coherence transactions for locking capabilities 155

7.7.4 Guarantees provided at DC’s modified application interface 156

7.7.5 Starvation in the modified DC interface 156

7.8 Application Layer on top of DC Protocol Layer 158

7.9 Directory Maintenance Operations . 161

7.9.1 Specification of ICI transaction . 162

7.10 Miscellaneous Local Coherence Transactions 163

7.11 Local Events Packet Formats . 163

7.11.1 LC and LCI request packet formats 163

7.11.2 LCA and LCIA responses packet formats 165

7.11.3 Unlock (UL) response packet format 165

7.12 Summary . 166

8 Distributed Directory Controller 169

8.1 Introduction . 169

8.2 DC Interfaces . 170

8.3 Overview of DC Architecture . 172

xi

Contents

8.3.1 DC directory sizing . 172

8.3.2 Indexing into the DC directory . 174

8.3.3 Directory controller units and slices 175

8.3.4 Non-existent memory in address space exposed by DC 178

8.3.5 DC architecture top level . 179

8.4 Directory Controller Slice (DCS) Architecture 180

8.4.1 DCS interface . 180

8.4.2 DCS control and data-paths . 183

8.4.3 Memory descriptor interface to AXI interface 186

8.4.4 Saturating ECI transmit bandwidth 188

8.4.5 Saturating ECI receive bandwidth 189

8.5 Directory Controller Unit (DCU) Architecture 189

8.5.1 Interface and basic operation . 189

8.5.2 Design considerations . 191

8.5.3 DCU interface with DCS . 194

8.5.4 Design of DCU . 196

8.5.5 Protocol scenarios and DCU pathways 198

8.5.6 Design of DCU’s directory: Tag State Unit (TSU) 200

8.5.6.1 Tag state ram (TSR) . 200

8.5.6.2 Why non-existent memory 202

8.5.6.3 Building TSU with TSRs 203

8.5.6.4 Optional registering outputs of TSR 204

8.6 Customizing the Protocol State Machine 204

8.7 Summary . 204

9 Evaluation & Applications 207

9.1 Introduction . 207

9.2 Interfacing FPGA Application to DC . 208

xii

Contents

9.3 Advantages of symmetric protocols over asymmetric protocols 210

9.4 DC Cache Line Addressing . 211

9.5 Performance Evaluation of CCKit’s DC . 212

9.5.1 Implementation details . 212

9.5.2 Experimental setup . 212

9.5.3 Directory Controller (DC) read-write throughput and latency . . . 214

9.5.4 DC clean-invalidate throughput and latency 216

9.6 Applications . 218

9.6.1 Steps to consider when developing applications 218

9.6.2 Concurrent access to shared data structures 220

9.6.3 Maintenance of materialized database views 221

9.6.4 Implementation details . 225

9.7 Summary . 228

10 Conclusions 229

10.1 Summary . 229

10.2 Directions for Future Work . 231

10.2.1 Fixing issues with the current work 231

10.2.2 Formally specifying and verifying the protocol 232

10.2.3 Relaxing fundamental design choices 232

10.2.4 Explore applications . 232

A Miscellaneous Specifications and State Diagrams 233

B Not-so-distributed Directory Controller 243

B.1 Introduction . 243

B.1.1 Insights . 244

B.2 DC Architecture . 245

B.2.1 Directory Controller Unit (DCU) 246

xiii

Contents

B.2.2 Directory implementation . 248

B.2.3 Action handlers implementation . 250

B.3 Performance and Resource Consumption 251

xiv

1
Introduction

There is increasing interest in extending cache coherence, long regarded as essential for par-
allel programming on homogeneous multiprocessors, to other parts of a computer system
and in opening up hardware coherence protocols for other uses. The main trend driving
this renewed interest in coherence protocols is the rise of heterogeneous hardware in the
form of Systems-on-Chip (SoCs), and accelerators such as GPUs, FPGAs, TPUs, etc. Such
a shift in hardware design is in turn driven by performance scaling [CCP+16, FPM+18],
parallel machine learning workloads [CFO+18], and specialization [TS21]. When a com-
puter is a collection of heterogeneous processing elements of equal standing, the question
arises as to how much of the system should be coherent.

The proliferation of accelerators has also driven innovation in the interconnects linking
them to the CPU. Because PCI Express (PCIe) lacks the necessary features to support
increasingly sophisticated and powerful accelerators, new proposals like CCIX [CCI19],
GenZ [Gen20], and OpenCAPI [SSI+18] emerged. These have now converged and been
merged into CXL [CXL20a] which seems to have become the agreed upon standard for
future interconnects. Similar, more specialized developments exist for GPUs (NVIDIA
NVLink [FD17, LSC+20], AMD’s Infinity Fabric [BWPN18]), and RISC-V processors
and embedded systems (TileLink [Ber22]). Interestingly, all these efforts provide cache
coherence and/or coherent memory access in ways unavailable before. While traditional
coherence used proprietary interconnects between parts from a single vendor, it is now
closer in spirit to network protocols (see, e.g., [LBH+23]).

1

Chapter 1. Introduction

These emerging interconnects enable innovative architectural designs exploiting coher-
ence, such as disaggregated memory [CIP+21] or crash consistency for persistent mem-
ory [BTP+22]. Some even argue that cache coherence protocols should be tailored to
the application [MHEH+19, ZGK+21] rather than offered as a black box. However, this
requires the tools and sufficiently high-level interfaces to allow applications to interact
with the hardware cache protocol. Working with coherence protocols, even those designed
with interoperability in mind, is highly challenging. Real coherence protocols are complex,
with hundreds of transient states and many potential race conditions [NSHW20a]. Im-
plementing a coherent endpoint as part of an application is difficult and time-consuming.
Reusing an implementation is even harder, particularly when the protocol is being used
non-traditionally.

Simulation fares poorly in these scenarios: either the simulator is painfully slow, making
it hard to derive meaningful results in the presence of I/O and real-world interactions,
or it achieves better performance by simplifying the protocol, potentially losing critical,
real-world practical issues.

To address this, we present CCKit, an open-source, server-grade, modular, reusable, and
highly flexible coherence protocol design and implementation. We focus on Field Pro-
grammable Gate Arrays (FPGAs) as their reconfigurable nature is ideal both for exploring
the design space and meeting the performance requirements of CPU interaction at such a
low level. Many of the proposals taking advantage of coherent interconnects are based on
FPGAs [CPK+19, CIP+21, BTP+22] and some compare already patenting use-cases based
on cache coherent FPGAs [CGKS20a, CGKS20b]. FPGAs are also a standard component
in the cloud (Microsoft [PCC+14], Amazon [Ama23], Alibaba [CLL+18]), with novel appli-
cations in, e.g., acceleration of database engines [ZWC+20, PMR+23] that would greatly
benefit from using a cache coherent FPGA.

Prototyping with CCKit is fast and faithful: its first implementation already runs natively
on a real hardware platform [CRS+22], and includes a performant coherence implemen-
tation matching the speed of the CPU. CCKit is also flexible: it exposes to applications
much more about protocol events than emerging standards do. Crucially, it is also much
easier to use, abstracting most of the state machine complexity of the real coherence
protocol while still exposing enough low-level access to allow a wide range of use-cases.
To ensure flexibility, CCKit is built as an intermediate layer between the raw coherency
messages delivered from the interconnect and the application logic and offers high level
and well-defined interfaces, making it portable to future standards providing symmetric

2

1.1. Background and Motivation

coherence such as CXL 3.0.

We show the performance and versatility of CCKit through micro-benchmarks and a range
of acceleration use cases. The former demonstrate that CCKit on an FPGA has perfor-
mance in the same range as a CPU, despite the lower clock frequency on the FPGA. Our
use cases explore (a) the implementation of a custom pre-fetcher on the FPGA (doubling
the throughput when reading the FPGA memory from the CPU versus no pre-fetching,
17.4 GiB/s vs. 7.8 GiB/s for 4 threads); (b) the maintenance of database views with
update propagation from base tables to an aggregated view (running at the interconnect
speed of 19.5 GiB/s); and (c) synchronous RPC from CPU to FPGA based on the CCKit
directory controller that outperforms both programmed I/O and Direct Memory Access
(DMA) with a null RPC time of 1.2 µs.

1.1 Background and Motivation

In this section we briefly discuss the hardware trends behind CCKit to pose the two
questions we aim to answer with this thesis. First, how to explore the design space of
coherent accelerators without the limitations of simulation – essentially, how to implement
FPGA applications that interact with a CPU over a coherent interconnect? Second, by
taking a wider perspective on the integration of accelerators in the overall architecture,
what is the appropriate application interface to this interconnect from FPGAs?

1.1.1 Symmetric vs. asymmetric protocols

A crucial aspect in cache coherence protocols is who controls the protocol. In this regard,
models of cache coherence broadly fall into two categories [NSHW20b].

Asymmetric protocols preserve the host-device relationship between CPU and accelerator:
both sides can implement caching agents (and cache data), but only the CPU implements
a home agent which tracks ownership of cache lines. This simplifies accelerator implemen-
tation but limits scalability and flexibility as well as significantly affecting performance:
to access areas of its local memory marked as shared with the CPU, an accelerator must
make a request to the CPU. The rationale is that, in the common case, data is copied
in bulk to the accelerator in advance of computing on it, as with traditional GPUs (see
below). In such a model, the underlying idea is that the data in the accelerator is, from

3

Chapter 1. Introduction

the start, a copy and there is no notion of the accelerator actually owning data that the
CPU could be caching as well.

In contrast, symmetric protocols have home agents on both CPU and accelerator, es-
sentially as in a homogeneous NUMA system. While more complex to implement, they
provide seamless integration between the CPU and accelerator as full coherence protocols.
Less obviously, they also allow the accelerator to participate in the protocol in more uncon-
ventional ways. Rather than just observing transactions on the CPU cache and be notified
of these actions by the CPU, the accelerator can actively generate its own notifications
and manage its own memory independently. More details can be found in subsection 2.5.1.

Most of the protocols used to date in accelerators are asymmetric. While CCKit can also
support them, our main goal is to support symmetric protocols as they are more powerful
and open up far more possibilities. Symmetric protocols also seem to be the direction in
which current standards are going, making CCKit the first readily available stack that can
be used as a means to explore cache coherence in accelerators in general and symmetric
coherence in particular, as well as a tool to exploit cache coherence at the application level.

1.1.2 The evolution of interconnects

Until recently, accelerators like GPUs used a “host-device” computational model based
on PCIe where the host CPU manages external accelerator resources. Data is offloaded
in bulk for processing and the results copied back to the host. This is the model used
by CUDA [NBGS08], OpenCL [SGS10], and modern accelerators such as TPUs [JYP+17]
and VCUs [RSC+21]. It arose in part from the lack of cache coherence between host and
device, and favors highly structured workloads that can be expressed as offloaded batches.
This model implicitly assumes the accelerator takes a copy of the input data, performs a
task, and returns results without engaging in any complex exchange or interaction with
the CPU [OSC+11].

As accelerators have become more powerful (in some cases, many CPUs are needed to
feed a single accelerator [ZAB+22]) the lack of PCIe bandwidth has led to better PCIe
standards with much higher bandwidths. However, the underlying principals of PCIe
have remained unchanged, despite its limitations in terms of protocol and features, and
the proliferation and diversity of accelerators emerging recently.

Early attempts at better ways to integrate accelerators into the system were Intel HARPv2
[OSC+11] and IBM CAPI [SBJS15], which coherently connected a server-class CPU and

4

1.1. Background and Motivation

FPGA. HARPv2 used an asymmetric implementation of the symmetric QuickPath Inter-
connect (QPI) protocol [Cor09] in contrast to other approaches available at the time [WMW+16],
while CAPI used a PCIe Host Bridge and Coherent Accelerator Processor Proxy on the
CPU, and a service layer on the FPGA. In both cases the protocol is asymmetric and
closed: the application on the FPGA has only limited access and control over the co-
herency protocol.

More recent developments in more modern interconnects include the Cache Coherent In-
terconnect for Accelerators (CCIX) [CCI19] which supports a symmetric protocol by ex-
tending PCIe, and OpenCAPI [SSI+18] which implements an asymmetric protocol over
PCIe and Bluelink. Both require accelerators to work with caching enabled and use virtual
addresses, translated by the CPU’s MMU. Performance studies of FPGAs attached using
CCIX [TSK+22] have emphasized the importance of cache coherence in heterogeneous
architectures involving FPGAs. Compute Express Link (CXL) [CXL20a] builds coher-
ence and memory semantics above PCIe and, to date, provides a unified coherent memory
space between CPU and accelerators using an asymmetric protocol with coherence bypass
for direct access to unshared device memory. These standards were developed in closely-
guarded industrial settings, and are evolving rapidly, having largely converged on CXL. At
the time of writing, the first CXL 1.1 hardware is becoming available. Symmetric coherence
is planned for CXL 3.0 [SA22], and the advent of the specification has already triggered
interesting ideas around what it will allow, based on simulations that promise impressive
throughput and latency, as well as extensibility beyond one machine [LBH+23, MWD+23].
However, it remains unclear when suitable 3.0 hardware will appear, and CXL retains a
somewhat prescriptive position on the use of cache coherence messages.

1.1.3 Coherence in MPSoCs

Alongside these developments in server architecture, processors have started to evolve
towards more eclectic and less monolithic designs using chiplets and SoC architecture as
the basis for more powerful processors.

The most mature and broadly adopted coherent CPU-FPGA systems combine both on a
single Multiprocessor System-on-chip (MPSoC), such as Xilinx Zynq UltraScale+ [Xil22b]
and Intel Agelix [Int20]. This simplifies the physical interconnect, and provides both
coherent and non-coherent ports between CPU and FPGA. Coherent access is generally
asymmetric: the FPGA can access the CPU’s Last Level Cache (LLC). This tightly-

5

Chapter 1. Introduction

engineered integration significantly limits both application flexibility and available CPU
performance, the norm being simple dual or quad-core ARM processors aimed at embedded
systems rather than servers.

RISC-V’s TileLink takes a more general approach [Ber22, Ter17, CTL17], aimed at low-
latency connectivity between CPUs, caches, accelerators, memory, and other SoC com-
ponents. TileLink comprises three protocols (increasing in functionality): Uncached
Lightweight (TL-UL), Uncached Heavyweight (TL-UH), and Cached (TL-C), and a num-
ber of coherence policies which can be subsets of the MOESI protocol (MESI, MEI, MSI,
etc.). Multi-socket coherence can be achieved with TileLink-over-Ethernet (TLoE) with
OmniXtend [RTLV19]. While TileLink targets the on-chip memory hierarchy [Ber22]
and implementations for high-end server CPUs and accelerators (including FPGAs) have
yet to appear, TileLink shows a clear response to the demand for customizable coher-
ent interconnects in increasingly heterogeneous systems, a demand also observed by oth-
ers [MHEH+19, ZGK+21, GSL+22].

1.1.4 FPGA operating systems

A final motivation for CCKit is recent work on operating systems for FPGAs. Coy-
ote [KRA20], Optimus [MZL+20], AmorphOS [KLP+18], Feniks [ZXX+17], and ViTAL [ZL20]
provide, to varying degrees, spatial and temporal multiplexing of FPGA resources (includ-
ing externally-attached memory) between applications implemented in user logic, memory
translation, and other services such as networking. They all target PCIe-based accelerator
cards, and so adopt a DMA-based approach to copying the contents of memory to and
from the FPGA. This works well for traditional GPU-style application acceleration, but
rules out both the straightforward use of cache coherence between FPGA and CPU, and
the flexibility afforded to applications which have direct access to the coherence protocol.

CCKit rectifies this, as a potential component of an FPGA OS which implements cache
coherence memory access to both FPGA and CPU memory, and as a critical OS abstrac-
tion to make coherence protocols accessible to developers of heterogeneous CPU-FPGA
applications. It also exposes limitations of existing operating systems when dealing with
modern accelerators (subsection 1.2.5).

6

1.2. Approach and Design

1.2 Approach and Design

CCKit allows FPGA applications to interact directly with a cache coherence protocol
in a more flexible way than assumed by simple coherence, hiding most of the protocol’s
complexity. It therefore provides a portable interface for application logic to coherently
access memory alongside the CPU and also, crucially, to interact with the CPU’s LLC.
Behind this interface, we show an efficient, deadlock-free, and scalable design providing
access to the full address space while maintaining coherence invariants.

A key idea in CCKit is to factor out as much of the complexity of the coherence protocol
into scalable re-usable units (part of the CCKit toolkit). The design is, in principle,
applicable to a range of hardware platforms, but any implementation will be specific to a
particular CPU, coherence protocol, and platform. The first implementation of CCKit is
based on the Enzian platform [CRS+22] (section 3.3).

1.2.1 Target platform and assumptions

CCKit makes fairly relaxed assumptions about the underlying hardware. We target 2-node
systems where one node is a conventional multicore CPU, and the other is an FPGA, and
a MOESI-like directory-based write-invalidate cache coherence protocol connects the two.
Physical address space is partitioned between the two nodes (i.e. high-order bits of the
physical address determine the node where the memory is accessed). CCKit assumes an
architecture-specific layer on the FPGA side which exchanges coherence messages with
the CPU, guaranteeing delivery but not order, and deadlock freedom.

These assumptions are reasonable: most modern coherent multi-socket systems adopt a
directory-based [Tan76, CF78] approach rather than less-scalable, broadcast-based snoop-
ing [RG83] protocols. In directory-based systems every cache line has a “home” node,
i.e. the location for storing both the line data in main memory and the directory data on
where the cache line is held and in what states [NSHW20b]. Write-invalidate protocols
include the well-known MSI, MESI, MOESI, MOSI, and Intel MESIF, and most modern
systems implement a variant of MOESI, supporting cache-to-cache transfers and multiple,
consistent-but-dirty copies of data. More details on target platforms and assumptions are
discussed in subsection 3.2.1.

In practice, race conditions, message reordering by the interconnect, and concurrency

7

Chapter 1. Introduction

mean that real implementations have many more hidden, intermediate states than the five
textbook MOESI states, greatly complicating the protocol [NSHW20b]. More that than
100 states is not unusual in a multi-socket system, and this complexity is even cited as an
argument for using asymmetric protocols or no coherency at all in connecting an FPGA
and CPU [CXL20b]. CCKit stands as evidence against this, providing a full symmetric
protocol implementation that (as we show in subsection 9.5.3) keeps pace with the native
CPU implementation.

1.2.2 Coherence protocol specification

Implementing CCKit requires the full coherence protocol to be specified (indeed, we gen-
erate the state machine from a formal specification of the protocol), but within these
constraints on hardware the interface provided by CCKit to user logic is completely inde-
pendent of the protocol details.

The coherence protocol on Enzian is the CPU’s native coherence protocol which is propri-
etary and its specification is not available to us. To overcome this, we reverse engineered
the coherence protocol from traces and developed a model of the coherence protocol. Using
this model, we were able to identify coherence transactions and develop a specification of
the CPU’s native coherence protocol. We then expanded this specification to also include
the interface provided to user-logic. Then we built a state space exploration tool that takes
in this specification to generate the coherence protocol.

The advantage of this methodology is that the specification of the coherence protocol as
well as the interface to the user logic can be changed easily and a new state machine,
with the modified specifications, can be automatically generated using the state space
exploration tool.

1.2.3 High-level architecture

CCKit distinguishes between the case where a cache line is homed on the FPGA or on the
CPU. In neither case does CCKit actually cache the line itself – this is left as a choice to
the application logic. Instead, CCKit abstracts the complexity of the protocol, timing, and
state machine maintenance and presents a simplified interface to the FPGA application.
In the FPGA-homed case, a DC component maintains the directory information for a line,
including the local protocol state and the state it believes the line to be in on the CPU.

8

1.2. Approach and Design

Cores

Last
Level
Cache

DRAM DRAM

DC
App
Logic

CPU FPGA

System
Address SpaceC

P
U

 H
o
m

e
d

FP
G

A
 H

o
m

e
d

DC

CC

App
Logic

Figure 1.1: CCKit architecture.

The CPU-homed case is handled similarly by a Cache Controller (CC) component on the
FPGA. Since CCKit does not perform any caching per se, the CC is much simpler than
the DC, and is to some extent a subset of its functionality. We therefore concentrate on
the DC in this thesis; all applications in chapter 9 use the DC.

Figure 1.1 shows the high-level architecture. Each DC or CC is responsible for a different
region of the physical address space. By varying the number of units, performance can be
traded off against FPGA resources and flexibility (since different units can be configured
with variants of the protocol end-point) This mirrors the behavior of a CPU LLC, except
that in a CPU the controllers’ parameters are hardwired (the only “application” to be
supported is the cache itself) thus it makes sense to completely integrate all functionality
into the LLC controller.

1.2.4 FPGA-side interface

All request and response messages originating on the CPU and referring to FPGA-homed
coherent addresses are routed to a DC, which tracks the state of all lines held on the CPU
and initiates and responds to MOESI transactions (e.g. upgrade/downgrade) on behalf
of the rest of the FPGA. The interface to the remainder of the FPGA logic is much sim-

9

Chapter 1. Introduction

pler: An Advanced eXtensible Interface (AXI) interface for reads and writes (to service
upgrade and downgrade requests, respectively), plus a request-acknowledge interface al-
lowing FPGA logic to trigger a clean (write-back without invalidate) or clean+invalidate
operation on the CPU’s LLC. In the simplest implementation, the AXI interface can be
connected directly to the FPGA-side DRAM controllers to provide coherent read/write
access to FPGA-side DRAM from the CPU. Most non-trivial applications will instantiate
their own logic between these two components to interact with the coherent interconnect
(chapter 9).

The request-acknowledge interface to FPGA application and the directory protocol are
generated from a machine-readable specification and can be configured easily. This can be
used to tailor the protocol and interface. Using CCKit, an FPGA programmer does not
have to track the state of individual cache lines and can rely on the messages observed at
CCKit’s interface to infer certain guarantees. For example, an application observing an
AXI read request for a cache line can infer that the cache line is invalid in the CPU’s cache
and the FPGA memory has the most up-to-date copy. Similarly, an AXI write request,
when observed, guarantees the cache line is either Invalid or Shared in the CPU’s cache
but never Exclusive or Modified. Applications that do not require interacting with the
request-acknowledge interface can rely on these guarantees provided by the AXI interface.
For interactions with the request-acknowledge interface, in the simplest version of the
protocol, applications can issue clean and clean-invalidate requests for cache lines and rely
on messages observed in both acknowledge and AXI channels to perform what is required
(subsection 9.6.3).

Changing the directory protocol can provide additional guarantees for the application,
simplifying its design. For example, the application described in subsection 9.6.2 requires
a cache line to be invalid in the CPU’s cache until the application modifies it and releases
control. For this, we generated a version of the protocol where the application can lock
a cache line upon performing a clean or clean-invalidate, and we added an additional
interface channel for applications to unlock cache lines. This locking mechanism prevents
the CPU from upgrading a cache line thereby guaranteeing its state when the request is
acknowledged. It also guarantees that the FPGA memory has the most up-to-date value.
The cache line remains in this state until the application relinquishes control using an
unlock message issued to the DC. This simplifies the application design by moving a part
of its state machine into the DC.

By having a more flexible message format at the request-acknowledge interface can reduce

10

1.2. Approach and Design

the state that needs to be maintained by applications by packing information that would be
required to handle request-acknowledge transactions, as part of the request. For example,
if the application needs to store and retrieve a certain (nominal) value when handling
request-acknowledge transactions, the value can be embedded into the request and received
as part of the acknowledgment.

1.2.5 CPU-side interface

The CCKit interface to software is, compared to FPGA user logic, relatively simple: co-
herence is mostly transparent to software on the CPU, and what explicit cache operations
there are on the CPU (flush, invalidate, etc.) simply translate into coherence messages.

The main functionality CCKit exposes to software is the ability to map part of the physical
address space serviced by DCs into the virtual address space of a process. We support
this in Linux via a kernel module which creates a device for the FPGA’s memory space.
This can be mapped into a process address space using mmap().

While the MMU can achieve this trivially, assumptions in the Linux memory manage-
ment implementation introduce challenges. In CCKit we want super-page mappings for
efficiency, and because fine-grained translation does not really benefit FPGA applications.
We also want the page mappings to be set up eagerly in advance to avoid, for example,
prefetch hints from the CPU being ignored by the cache controller because the prefetch
would cause a page fault. Unfortunately, both the MAP_HUGETLB flag to mmap to request
large pages and the MAP_POPULATE flag to create mappings in advance only apply to mem-
ory that the kernel believes to be RAM [BK22], which is not the case here. Essentially
Linux so far has no notion of memory that should be treated as RAM for mapping into
virtual address space, but not for anything else. For this reason, CCKit bypasses the
standard in-kernel interfaces for page mapping for now. The design of better (CPU-side)
OS support for heterogeneous memory is ongoing work.

1.2.6 CCKit acceleration model

The acceleration model in PCIe-based non-coherent CPU-FPGA platforms typically uses
the FPGA as offload accelerators. The source data that is to be processed is DMA’d into
the FPGA and the results are DMA’d back to the CPU. This requires the source and

11

Chapter 1. Introduction

result pages to be marked as non-cacheable since PCIe protocol does not have a coherence
layer.

Coherent CPU-FPGA platforms limits user logic on the FPGA to perfroming load and
store operations through a CC, just like cores on the CPU. This limits the observability
and interaction of FPGA applications with the coherence protocol and targets to acceler-
ate applications that benefit due to “fine-grained” interaction between CPU and FPGA
([CCF+16]) where both nodes are accessing a shared address space. This model of accel-
eration is possible using CCKit (see subsection 9.6.2).

A different acceleration model that is made possible by CCKit is where user logic on the
FPGA can transparently extend the notion of coherence for software running on the CPU.
As will be seen in chapter 2, coherence protocols maintain coherence of each cache line
(cache line) independently. That is coherence transactions on one cache line is not affected
by coherence messages on another cache line. In CCKit, the FPGA application can make
interesting associations between unrelated cache lines by observing coherence transactions
on one set of cache lines to cause coherence traffic on a different set of cache lines (an
example is shown in subsection 9.6.3). Thus in CCKit’s acceleration model, applications
on FPGA interact with the coherence protocol through the DC to transparently provide
certain coherence and consistency guarantees to software on the CPU.

1.3 Related Work

As discussed in section 1.1, there is growing interest in new models of coherence and
applications benefiting from coherence.

Researchers have demonstrated the need for non-standard or even dynamically customized
coherence protocols. For example, Cohmeleon demonstrates that, for different types of
accelerators, the best performing cache coherence protocol varies at runtime [ZGK+21].
Similarly, CoNDA demonstrates the benefits of finer-grained coherence, and proposes a
more customizable protocol to increase efficiency and performance [BGP+19].

FPGAs have been used to optimize a number of algorithms; many of these could greatly
benefit from coherence provided by CCKit. For example, FPGAs have been used to effi-
ciently balance a tree data structure [ZWC+20]. The addition of cache coherence would
allow for concurrent access during rebalancing without the need for external signaling or
explicit data transfers. Similarly, many features of Alibaba’s OLTP X-Engine [HCW+19]

12

1.3. Related Work

could benefit from customizable cache coherence protocols, including the operators ex-
plored in chapter 9.

The movement towards data center disaggregation raises questions on how to handle the
additional complexity of new memory tiers. Both POND [LBH+23] and TPP [MWD+23]
are built around CXL, but are primarily interested in the near-NUMA latency of the in-
terconnect and not coherence per se. However, others have demonstrated the utility of
fine-grained cache coherence in disaggregated systems [CIP+21, LYT+21]. For example,
MIND advocates a flexible cache coherence protocol integrated into the network [LYT+21].
Clio argues that customizable, application-accessible coherence is desirable in these sys-
tems for limiting coherence overhead [GSL+22].

SmartNICs often employ FPGAs to accelerate common networking tasks such as RPC
calls [LXA+21] or RDMA [SWC+20, YHS+23]. These systems provide significant improve-
ment, but the addition of coherence using techniques provided by CCKit could provide
added benefit. For example, in Dagger, coherence could allow the use of low-latency
synchronization primitives instead of complex application-level interactions [LXA+21].
StRoM, when ported to CCKit, could enable RDMA atomic operations by directly ma-
nipulating the cache using customizable cache coherence. Rambda proposes several archi-
tectural changes for accelerating memory-intensive applications which are centered around
accelerator coherence [YHS+23].

A complete discussion of cache coherence simulators is beyond the scope of this section (see
[BKP20] for a more thorough discussion). There is no doubt that simulation tools (e.g.
ZSim [SK13], gem5 [BBB+11], or CMP$im [JCLJ08]) are essential for the development
of protocols and architectures. However, simulating a real application with these tools
is slow, and often simulators trade off architectural fidelity and accuracy for speed. To
evaluate the low-level correctness of controllers and protocols, RTL simulations are often
necessary, requiring HDL descriptions of the CPU, interconnect, and accelerator which
are seldom available to researchers. Even if these models are available, cutting-edge cycle
accurate simulators run in the scale of kHz [Ver, EKK+23], making the simulation of
complex systems and applications under real workloads nearly impossible.

CCKit complements these techniques by providing a real-world implementation that can
faithfully interact with not only real hardware (e.g. off-chip memory, accelerators)and
software, but as a part of a networked or rack-scale system.

13

Chapter 1. Introduction

1.4 Contributions

In this section, we try to address the wider implications of CCKit beyond Enzian. One
of the aims of CCKit is to be platform agnostic: the principles of CCKit should be appli-
cable to any symmetric coherent platform that implements a directory-based MOESI like
coherence protocol. To achieve this, we take a layered approach when modeling CCKit.
We identify the set of services and abstractions each layer has to provide for the layer on
top to build upon.

Furthermore, we separate out the coherence protocol modeling and the protocol state ma-
chine generation from its implementation. The modeling and state machine generation
are platform-agnostic which makes the design principles of CCKit applicable to any sym-
metric coherent platform, whereas the implementation is tailored to the characteristics of
the target platform for maximum performance (Enzian in our case). We also show that it
is possible to have a performant implementation of the home-agent on the FPGA even if
it operates at a much lower frequency when compared to the CPU.

Finally, we define a simplified and platform-agnostic interface for applications to inter-
act with the coherence protocol. This interface aims to provide high controllability and
observability for applications to the coherence protocol while simplifying its interaction.
Through this interface we explore both traditional and non-traditional acceleration models
that are enabled by CCKit. Thus the contributions of this thesis are as follows.

1. A generic model for directory protocol and a state space exploration tool that gen-
erates a platform agnostic directory protocol state machine for CCKit.

2. A customizable, performant and platform specific implementation of CCKit’s direc-
tory protocol state machine on the FPGA, tailored to Enzian.

3. An abstract interface to the directory protocol for applications to interact with.

4. Exploring traditional and non-traditional acceleration models using CCKit.

1.5 Structure of the Dissertation

Chapter 2 provides an introduction to cache coherence. It shows the baseline system mod-
els for different types of coherence protocols like snooping and directory based protocols

14

1.5. Structure of the Dissertation

and extends it to provide the baseline system model for Enzian. It also goes into detail
on a number of fundamental design choices that were made before building the coherence
stack on the FPGA.

Chapter 4 describes the model of DC protocol that was developed by reverse engineering
the CPU’s native coherence protocol. In the absence of a formal specification of the CPU’s
native protocol, this model is used to identify transactions that need to be handled by
the DC and build a specification. This chapter introduces state equations as a way of
specifying the protocol and describes how these state equations can be solved to generate
a state machine with intermediate states necessary to carry out the DC protocol.

Chapter 5 uses the DC protocol model to identify and specify coherence transactions
that would allow the CPU to coherently access the FPGA attached memory. It also
provides design choices and an algorithm for a state space exploration tool that solves the
specification state equations to generate a DC protocol state machine automatically.

Chapter 6 extends the specification by including the state equations of coherence transac-
tions that are generated by the DC and incorporates them in the protocol state machine.

Chapter 7 further extends the specfication by describing the interface exposed by the
protocol state machine to applications. It shows examples of how the interface can be
customized for different application requirements and uses the state space exploration
tool to automatically generate the state machine.

Chapter 8 describes how the DC protocol state machine is implemented on the FPGA.
It shows the design choices made to build a customizable and high performance DC that
provides a simplified interface to applications. The interfaces and architecture of different
components that make up the DC are described in detail.

Chapter 9 focuses on building applications on top of the directory protocol layer. It
evaluates the performance of the DC through a number of benchmarks and showcases
different ways in which FPGA user logic can be interact with the coherence protocol
through the DC when accelerating applications.

If the reader is interested in building applications using the DC, they can focus on chapter 7
to get an idea of DC’s application interface, and chapter 9 to understand how the example
applications are developed. The reader might also be interested in the figures in Chapter
8 that goes into detail on DC’s interface signals.

If the reader is more interested in the specification of the protocol, for they want to
formally verify it, or would like to generate a new protocol state machine, they can focus

15

Chapter 1. Introduction

on chapters 5, 6 and 7.

16

2
Primer on Cache Coherence

2.1 Introduction

This chapter summarizes cache coherence from the point of view of Enzian. The descrip-
tion given here is by no means comprehensive. Readers can refer to [NSHW20b] for a
more elaborate and formal discussion.

The structure of this chapter is as follows.

1. Section 2.2 describes a baseline system without caches and how there is no problem
of incoherence in such a system.

2. Section 2.3 describes a baseline system with caches and shows the problem of inco-
herence. It also details how the problem of incoherence is solved using the coherence
protocol. This chapter focuses on snooping based coherence protocol and its disad-
vantages.

3. Section 2.4 shows the baseline system for a directory based protocol and how it solves
problems that were present in a snooping based mechanism.

4. Section 2.5 details a baseline NUMA system with directory based coherence protocol.
The difference between symmetric and asymmetric NUMA systems is also discussed.

17

Chapter 2. Primer on Cache Coherence

5. Section 3.3 shows the baseline system model for Enzian and introduces its various
components. The layered approach to building a coherence stack on the FPGA is
also introduced here.

6. Section 3.2.2 describes the fundamental design choices that were made before build-
ing the coherence stack.

2.2 Baseline Multicore System without Caches

Core Core

Request/Grant

Bus/Interconnect

Memory
Controller Main

Memory

Figure 2.1: Baseline model for a multicore system without caches: Multiple cores interact
with the main-memory controller through a shared bus.

Figure 2.1 shows a simplified multicore system model without any caches. In this model,
each core can make a load or store request to the shared bus. The bus uses an arbitration
scheme to choose one core and grant access to main memory. The core can then perform
its load or store operation directly on the main memory through the memory controller.

This system offers two advantages: first, only one core can write to a memory location at
any given time. Second, there is only one copy of the data for a memory location and the

18

2.3. Baseline Multicore System with Caches

most up-to-date data for the memory location resides in the main memory. The drawback
of such a system without caches is the quick exhaustion of memory bandwidth by the
processor load [TSS88]. To overcome this drawback caches were introduced.

2.3 Baseline Multicore System with Caches

The baseline system model with caches is described in detail in [NSHW20b] and shown
in Figure 2.2. In this system, each core has a private level 1 (L1) cache that is accessible
through its CC. The cache controller for all cores are connected to a shared bus or in-
terconnect. Then there can be multiple levels of shared caches before the main memory,
though for the sake of simplicity, only one is shown in Figure 2.2 called the LLC. The
LLC and main memory are both accessible through the LLC/Memory controller. The
difference between L1 and LLC caches are that L1 is private to each core whereas LLC
is shared among all cores. In this memory hierarchy as the levels increase, the memory
access latency also increases with the main memory having the highest access latency.
Although this model does not encompass all the different flavors of caching systems that
exist in modern multicore systems, it is sufficiently representative to introduce the entities
that are present in a multicore system with caches.

Whenever a core wants to read a memory location, it issues a load request to its L1 CC.
The CC then fetches a copy of the memory location from the memory hierarchy and places
it in the private L1 cache of that core. The value can then be loaded into a register in
the core from the L1 cache. If a core wants to write to a memory location, the core issues
a store request to its L1 CC, which then fetches the memory location into its private L1
cache before updating it with the store value from the core. Since any update by a core
happens in the private L1 cache of that core, it can lead to the problem of incoherence.

2.3.1 Problem of incoherence

Consider two cores core-1 and core-2 with their private L1 caches. Initially core-1 and
core-2 both loads the value of a memory location into their private caches. If core-1
modifies its private copy of the memory location in its L1 cache and if this change is not
propagated to the copy on core-2, both cores have different values for the same memory
location. Furthermore, the main memory also has a copy which can be potentially stale.
This is the problem of incoherence which arises in systems with caches.

19

Chapter 2. Primer on Cache Coherence

Core

Cache
Controller

Private
L1 Data
Cache

Load
Store

Load
Values

Core

Cache
Controller

Private
L1 Data
Cache

Load
Store

Load
Values

Bus/Interconnect

LLC/Memory
Controller

LLC
Main
Memory

Figure 2.2: Baseline model for multicore system with caches: Each core has a private
cache accessible through a cache controller. Cache controllers communicate with each other
and memory controller through a shared bus. The shared bus allows for a snooping based
coherence mechanism.

2.3.2 Shared memory consistency

A second issue with the correctness of memory accesses in a multicore system with caches
is shared memory consistency. When multiple threads are accessing a shared memory
simultaneously, there can be many possible ways how the memory is accessed. Even
within a a single thread, modern ISAs allow multiple possible interleavings of instructions

20

2.3. Baseline Multicore System with Caches

which can change how the memory gets accessed. In order to account for this variety
when writing programs, a programmer needs to know what sort of memory accesses can
be expected from a system. A memory consistency model defines the correct shared
memory behavior by providing rules about correctness of memory accesses. It separates
out all possible correct executions from incorrect alternatives for the programmer. There
are different consistency models and executions that are correct in one model might be
incorrect in another. [NSHW20b] describes in detail different consistency models such as
Sequential Consisteny (SC), Total Store Order (TSO) and relaxed memory models.

2.3.3 Coherence vs consistency

Coherence plays an important role in supporting the consistency model by making the
caches functionally invisible in a shared memory system. This means the caching hierarchy
need not be considered when defining rules of consistency.

Given a memory location that is being accessed by multiple cores, consistency refers to
the order in which the cores get access to the memory location and coherence ensures
that irrespective of which core gets access first, both cores see the most up-to-date value
for that memory location. For example consider a memory location that serves as a lock
which is being accessed atomically by two cores, core-1 and core-2. The order of access
can be core-1 followed by core-2, or vice versa. Depending on the consistency model, one
or both these access patterns can be valid. Coherence on the other hand, ensures that
when one core atomically modifies the lock in its cache, the other core observes that the
lock is taken irrespective of the order of access.

2.3.4 Coherence invariants

The problem of incoherence can be solved by maintaining two invariants namely: Single
Writer Multiple Reader (SWMR) and data-value invariant. These coherence invariants
are maintained by coherence controllers in the system such as CCs and LLC/Memory
controllers using a protocol called coherence protocol. The description of these invariants
are as follows.

SWMR invariant: For a memory location A, at a given time, there exists only one core
that may write to A (and can also read it) or a number of cores that may only read A.
That is, when a core wants to modify a memory location, only the private cache of that

21

Chapter 2. Primer on Cache Coherence

core can have a copy and the rest of the cores cannot have a copy. When reading a memory
location, all cores that want to read can have a read only copy of the memory location in
their private L1 caches.

This invariant is used to define an epoch in the lifetime of a memory location. The lifetime
of a memory location can be split into a number of epochs where in each epoch there is
atmost one core with read-write access to the memory location, or few cores (potentially
zero) have read-only access.

Data-value invariant: The value of the memory location at the start of an epoch is the
value of the memory location at the end of its last read-write epoch. To illustrate this,
consider a core (core-1) that has a modified copy of a memory location in its L1 cache and
the contents of the main memory for this memory location is stale. When core-2 wants
to read a copy of the memory location into its L1 cache, the data obtained should be the
most up-to-date copy from the private cache of core-1 and not the stale copy from main
memory.

2.3.5 Cache line

Although cores can load and store data at the granularity of bytes, the data transfer be-
tween caches and main memory happen at a much larger granularity called cache line.
This is done to offset the higher memory access latency as the levels in memory hierarchy
increases. Typically the size of a cache line is 64 Bytes but in Enzian it is 128 Bytes. Co-
herence is maintained in the granularity of a cache line and not individual bytes. Thus the
“memory locations” discussed previously are cache lines and not individual byte addresses.

2.3.6 Maintaining coherence invariants

As seen in subsection 2.3.4 coherence invariants are maintained by coherence controllers
such as the cache controller and LLC/memory controller. These coherence controllers
maintain states of its copy of the cache line. Whenever coherence invariants have to
be maintained, these coherence controllers exchange coherence messages pertaining to
the cache line. The protocol of communication that is to be followed by the coherence
controllers is called the coherence protocol.

To illustrate this, let us look at a simple coherence protocol based on the baseline model
shown in Figure 2.2 for a cache line A with two cores (core-1 and core-2). Initially both

22

2.3. Baseline Multicore System with Caches

Core-1 CC

Broadcast
GetS on
Shared Bus

Core-2 CC LLC/MemC

I (State of
CL A)

I I

GetS(A)
GetS(A)

Ignored

Data(A)
Data(A)

Ignored

I ➔ ISd

I ➔ S

ISd ➔ I

Figure 2.3: Coherence transaction where core-1 reads cache line A in shared state: Co-
herence controllers track (intermediate and stable) states and exchange coherence messages
to participate in the coherence protocol.

cores do not have a copy of the cache line in their private caches. That is the state of
cache line A as maintained by the L1 CC of both cores is Invalid (Invalid (I)). Thus the
only copy of cache line A resides in the main memory. The LLC/memory controller also
maintains a state of this cache line. From the point of view of the LLC/memory controller,
none of the cores have a copy of this cache line and so it also has the state of the cache line
as Invalid. An I in a CC means that cache does not have a copy of the cache line whereas
an I in the LLC/Memory controller means that none of the private L1 caches have a copy
of the cache line.

If core-1 wants to read a copy of cache line A, it makes a load request to its CC. The CC
then looks up the state of this cache line in its L1 cache. Since there is no copy of the cache
line in its L1 (state of cache line A is I in L1 cache of core-1), the CC places a Get-Shared
(GetS) coherence request for cache line A on the shared bus or interconnect as seen in
Figure 2.3. The GetS request implies that the cache controller wants a read-only (Shared)
copy of the cache line. Once the GetS request has been issued, core-1’s CC modifies the
state of this cache line in its L1 cache from I to an intermediate state ISd, indicating that
it is waiting for data (“d” in ISd) before transitioning from I to Shared (S).

Since the bus is shared among all coherence controllers, the GetS request gets broadcasted

23

Chapter 2. Primer on Cache Coherence

to all coherence controllers and can be observed by both the CC of core-2 as well as the
LLC of the memory controller. The CC of core-2 identifies that it does not have a copy
of the cache line and ignores the coherence request. The LLC/memory controller on the
other hand knows from its internal state that none of the cores have a copy of the cache line
and that the most up-to-date copy resides in the main memory. Thus the LLC/memory
controller reads the main memory and places the cache line data on the shared bus as a
response to the GetS request from core-1 CC. The LLC/memory controller can also infer
that at least one of the cores now has a valid read-only copy of the cache line and so it
transitions its state of cache line A from I to S. A S state in the LLC/memory controller
implies that at least one of the cores has a private read-only copy of the cache line.

With the data for cache line A on the bus, both core-1 and core-2’s CCs can observe it.
Core-2 from its internal state knows that it is not expecting any data for cache line A
whereas core-1 from its internal state (ISd) knows that it is waiting for cache line A data.
Core-1 puts the data into its L1 cache and then updates the internal state for cache line
A from ISd to S. This coherence transaction is shown in Figure 2.3.

Coherence transactions are a chain of coherence events towards a common goal. For
example, the chain of coherence messages and memory events that provide shared access
for a cache line to a coherence controller. Both coherence messages and memory events
are together referred to as coherence events in this Thesis. Each coherence transaction is
either initiated by a request or a response event and subsequent events in the chain of a
transaction are all responses i.e. there can be at most one request event per coherence
transaction.

From the perspective of maintaining coherence invariants for this coherence transaction,
SWMR is maintained because there are no writers and core-1 is the only reader. The
data-value invariant is also maintained because core-1 gets the most up-to-date copy of
the cache line from the main memory. Thus both coherence invariants are maintained for
this coherence transaction.

Next lets look at the coherence transactions involved when core-1 wants to write to cache
line A instead of reading it. The coherence transaction is shown in Figure 2.4. Initially all
three coherence controllers have the state of cache line A as I. The CC of core-1 broadcasts
a Get-Modified (GetM) coherence request to all coherence controllers and transitions from
I to an intermediate state IMd, indicating that it is waiting for data.

When core-2’s CC observes this message, it has to invalidate its copy of cache line A in

24

2.3. Baseline Multicore System with Caches

Core-1 CC

Broadcast
GetM on
Shared Bus

Core-2 CC LLC/MemC

I (State of
CL A)

I I

GetM(A)
GetM(A)

Invalidate(A)

Data(A)
Data(A)

Ignored

I ➔ IMd

I ➔ M

IMd ➔ M

Figure 2.4: Coherence transaction where core-1 writes cache line A and core-2 does not
have a copy.

order to maintain SWMR. Since core-2’s cache does not have a copy of the cache line, the
coherence request can be safely ignored by core-2’s CC. But the LLC/memory controller
from its internal state knows that none of the cores have a copy of the cache line and it
responds to the GetM request with the most up-to-date copy of the data from the main
memory. Once the data is put on the bus, the LLC/ memory controller updates its internal
state of cache line A to Modified (M) indicating that there is a modified copy in one of
the private caches.

Once core-1 observes the data on the shared bus, it moves the data into its private cache,
modifies the data and updates its state from IMd to M. SWMR is maintained because
when core-1 issues a GetM request, core-2 tries to invalidate its copy thereby ensuring that
only core-1 would have a copy of cache line A, the data-value invariant is also met because
the LLC/ memory controller responds with most up-to-date data from the memory. This
coherence transaction is shown in Figure 2.4.

Finally, lets look at the coherence transaction where core-1 has a modified copy of cache
line A, and core-2 wants to modify it. Initially core-1’s cache controller would have the
cache line in M, core-2’s CC would have the cache line in I (to maintain SWMR) and the
LLC/memory controller also has the cache line in M state.

Core-2 would broadcast the GetM message on the shared bus. When the LLC/memory

25

Chapter 2. Primer on Cache Coherence

Core-1 CC Core-2 CC LLC/MemC

M(State of
CL A)

I M

GetM(A)
GetM(A)

write
Invalidate(A)

Data(A)

Data(A)

Ignored

I ➔ IMd

MM ➔ I

IMd ➔ M

Figure 2.5: Coherence transaction where core-2 writes cache line A after core-1. core-1
has to invalidate its copy and provide the most up-to-date data to core-2 in order to main-
tain coherence invariants.

controller observes this request, from its internal state, it knows that one of the L1 caches
has the most up-to-date copy and the contents of main memory are stale. So it does not
respond to the GetM request. When core-1 observes the GetM, from its internal state
(M), it infers that it has the most up-to-date copy and so it has simultaneously respond
to the request with data and invalidate its own copy to maintain SWMR. Thus the core-2
gets the most up-to-date copy from the L1 cache of core-1 thereby maintaining data-value
invariant. This coherence transaction is shown in Figure 2.5.

Write-invalidate snooping: These examples illustrate a few coherence transactions of
the MSI coherence protocol (there are 3 stable states for a cache line: modified, shared
or invalid). In this protocol, we observed that a write by one core on a cache line will
cause all other cores to invalidate their copy of the cache line. Such a protocol is classified
as write-invalidate protocol. Moreover, the shared bus acts as a point of serialization
for coherence messages, and all cores snoop the shared bus to take actions and maintain
coherence invariants. Thus this protocol is a write-invalidate, snooping protocol.

In all these three examples, whether the data gets loaded into the LLC depends on the
configuration of the system. In an inclusive configuration, if the data is loaded into the
private cache, it would also be loaded into the LLC. In an exclusive system, only data

26

2.3. Baseline Multicore System with Caches

that is evicted from the private caches would be present in the LLC. Finally we also have
a neither inclusive nor exclusive (NINE) which is a combination of both.

2.3.7 Coherence protocol design space

From the example coherence transactions shown in subsection 2.4.1, we can observe the
following:

• There are states associated with cache lines. These states can be further
classified into stable states such as M, S or I, and intermediate states such as ISd,
IMd.

• Different types of coherence controllers maintain different types of cache
line states. For example, the CCs and LLC/memory controllers both maintain
state of cache line with different interpretations.

• Coherence transactions are initiated and terminated by exchanging co-
herence messages. All coherence transactions should ensure that the coherence
invariants (SWMR and data-value invariants) are maintained.

• It is also to be noted that coherence transactions on one cache line is not affected by
coherence messages on a different cache line. In other words, the cache lines are
mutually independent from the coherence protocol point of view.

• Next we have the coherence protocol which identifies all possible coherence
transactions between coherence controllers. There are different types of pro-
tocols such as MSI, MESI, MOESI and MESIF with their own set of transactions
and optimizations.

• We have also seen that the protocol can be different for different coherence
controllers. For example, the protocol for a CC is different from the protocol for a
LLC/memory controller.

• Protocol specification - The protocol specification provides all possible trans-
actions in the coherence protocol. The specification of the CC and LLC/memory
controller protocols is together form the protocol specification. The same type of
protocol (e.g. MOESI) can have different proprietary specifications.

27

Chapter 2. Primer on Cache Coherence

2.3.8 MSI, MESI, MOESI protocol

Here we briefly discuss two variants of MSI protocol namely MESI and MOESI and how
they are useful. Typically coherence protocols are named after the stable states in which a
cache line can be cached. In subsection 2.4.1 we have seen the MSI protocol, named after
its three stable states: I when a cache line is not cached in a cache, S when a cache has
a read-only copy of a cache line and M when the cache has a read-write copy of a cache
line.

In addition to these states, coherence protocols can have other stable states with the aim
of optimizing certain pathways in the coherence protocol. An example is the Exclusive
(E) state in the MESI protocol. To illustrate the optimization provided by the E state,
consider a cache line that is not cached anywhere (i.e. I state in LLC/memory controller)
in a system that implements MESI protocol. Whenever a CC issues a Get-Shared request
for this cache line, the LLC/memory controller can provide exclusive access instead of
shared access, indicating to the CC that it has the only copy of a cache line. If this copy
of the cache line is to be modified at a later point, the CC can silently (without any
coherence traffic) upgrade the state of the cache line from E to M thereby reducing the
latency of this operation.

Similarly, the Owned (O) state expands a MESI protocol into MOESI, which allows for
a dirty copy of a cache line to be shared (read-only) between multiple caches without
requiring the data to be written back to the main memory. Such inter-cache transfers are
faster than accessing the data from main memory. More details on these protocols can be
found in [NSHW20b].

2.3.9 Scaling: Snooping vs Directory based protocols

Snooping protocols such as the one discussed in subsection 2.4.1 rely on a shared bus
to broadcast coherence messages to all coherence controllers in the system. Electrical
constraints limit the scalability of such a shared bus and so snooping protocols are not
scalable as the number of cores (and coherence controllers) increase. Directory based
protocols are designed to overcome the scalability issue.

28

2.4. Baseline System with Directory Based Protocol

2.4 Baseline System with Directory Based Protocol

Core

Cache
Controller

Private
L1 Data
Cache

Core

Cache
Controller

Private
L1 Data
Cache

Point-to-point Interconnect

Directory
Controller

LLC
Main
Memory

Directory

Figure 2.6: Baseline system model with directory based coherence protocol: The shared
bus is replaced with a point-to-point interconnect and a directory is maintained by the
directory controller to track global cache line states.

The baseline system model for a system with directory based coherence protocol is shown
in Figure 2.6. There are three main differences compared to the baseline model with
snooping protocol shown in Figure 2.2. First, the shared bus is replaced with a point-to-
point interconnect. Second, the LLC/memory controller is now called a DC. Third, a new
component called directory is added to the system.

29

Chapter 2. Primer on Cache Coherence

Point-to-point interconnect: Unlike a shared bus, the point-to-point interconnect al-
lows for targeted messaging to a specific coherence controller. Messages can be unicast to
selected coherence controller without being broadcasted.

DC: The DC is now responsible for maintaining a directory in addition to handling the
LLC and main memory.

Directory: The directory holds the global view of the coherence state of each cache line
that resides in the main memory. For example, in a multicore system with two cores,
core-1 and core-2, if cache line A is held in S by core-1’s private cache and is not cached
by core-2. The directory holds the information shown in Table 2.1.

Cache Line Core-1 Core-2
A S I

Table 2.1: Directory holds the global view of the coherence state of each cache line.

The directory is a limited resource and the main memory can have a large number of cache
lines. One optimization that is done to reduce the size of directory is to use the directory
to keep track of only cache lines that are cached somewhere in the system. A cache line
that is not cached anywhere would be in the I state in all private caches. So if an entry is
not found for a cache line in the directory, we can assume the state of the cache line in all
coherence contollers is I. This would limit the directory to tracking only cache lines that
are cached somewhere in the system.

2.4.1 Maintaining coherence invariants in directory based pro-
tocol

In a directory based system, coherence requests for a cache line are always unicasted to
the DC. The directory controller then looks up the global state of this cache line before
deciding course of action. The DC is responsible for maintaining the coherence invariants,
reading the main memory and unicasting responses. To illustrate how coherence invariants
are maintained in a directory based protocol, let us look at the same examples we had
seen in but with a DC.

The system in the example has two cores, core-1 and core-2, connected to their private L1
caches through CCs. The CCs and DC are connected by a point-to-point interconnect.
To begin with we have cache line A that is not cached anywhere in the system. That is,

30

2.4. Baseline System with Directory Based Protocol

the state of cache line A in core-1 and core-2’s L1 cache is I, which is also reflected in the
directory.

Core-1 CC

Unicast
GetS to DC

Core-2 CC DC

I I I, I

GetS(A)

Data(A)

I ➔ ISd

I,I ➔ S,I

ISd ➔ S

Figure 2.7: Directory coherence protocol: core-1 reads cache line A in shared state.
Coherence requests are unicasted to the directory controller which maintains coherence
invariants and provides access to cache lines.

In the first scenario, core-1 wants to get a shared copy of the cache line. In this case,
the CC of core-1 unicasts a GetS request to the DC and updates the internal state of
this cache line to intermediate state ISd. Once the DC receives the request, it looks up
the directory to identify that the state of this cache line is I in both core-1 and core-2’s
caches and that the main memory has the most up-to-date value. The DC then reads the
memory, unicasts the data to core-1’s CC, and updates the global coherence state of the
cache line to indicate that core-1 has cache line in S and core-2 has it in I.

Since core-1’s CC is waiting for a response, it loads the data into its cache and updates
its state of this cache line from ISd to S. Both coherence invariants are maintained in this
coherence transaction: there are no writers and only readers so SWMR is maintained, and
the DC provides the most up-to-date copy of the cache line to the requesting core thereby
maintaining data-value invariant. This coherence transaction is shown in Figure 2.7. It
is to be noted that the coherence request is always unicasted by a CC to the DC. The
response from the DC is also unicasted to the requesting CC.

31

Chapter 2. Primer on Cache Coherence

Core-1 CC

Unicast
GetM to DC

Core-2 CC DC

I I I, I

GetM(A)

Data(A)

I ➔ IMd

I,I ➔ M,I

IMd ➔ M

Figure 2.8: Directory coherence protocol: core-1 writes to cache line A. The directory
controller has information that core-2 does not have a copy and allows core-1 to modify
the cache line.

In the second scenario, both core-1 and core-2 do not have copies of cache line A and
core-1 wants to modify this cache line. Core-1’s CC would unicast a GetM request for this
cache line to the DC and transition to an intermediate state IMd. When the DC receives
the request, it has to ensure that none of the other cores have a copy of this cache line to
ensure SWMR. By looking at the global coherence state of this cache line in its directory
the DC knows that core-2 does not have a copy and core-1 would be the only writer and
the most up-to-date copy residing in the memory would have to be sent as a response.
The DC reads the memory and sends the data to the requesting CC and updates the
global state of the cache line to indicate that core-1 has a modified copy. Once the data is
received by core-1’s CC, it gets loaded into the private cache in M state and gets updated
in the cache. This coherence transaction is shown in Figure 2.8.

Finally in the third scenario, core-1 has a modified copy of cache line A and core-2 wants to
write to it. In this scenario, core-2’s CC unicasts a GetM request to the DC and transitions
to intermediate state IMd. The DC has to ensure that coherence invariants are maintained
and from its internal state identifies that core-1 has a modified copy which is also the most
up-to-date value. The DC issues a Forward-GetM message to core-1 to request it to send
the modified data to core-2. The DC also updates the directory indicating that core-1 will

32

2.4. Baseline System with Directory Based Protocol

have an invalid copy and core-2 gets the modified copy. When core-1’s CC receives the
Fwd-GetM request, it unicasts the modified data to core-2 and transitions to invalid. This
coherence transaction is shown in Figure 2.9.

Core-1 CC Core-2 CC DC

M I M,I

GetM(A)

Data(A)

I ➔ IMd

I,M

M ➔ I
Fwd-GetM(A, core-2)

IMd ➔ M

Figure 2.9: Directory coherence protocol: core-2 writes to cache line A. The directory
controller forwards the request to core-1 which has the most up-to-date copy. Core-2 gets
data from core-1.

The forward messages from DC can also be used to evict cache lines from private L1
caches. As a result, the DC can use it to perform directory maintenance and free up
directory resources when it gets full. Thus the size of the directory plays an important
role in the number of cache lines that can be cached anywhere in the system. In a system
with many large caches and a comparatively small directory, the directory would be the
performance bottleneck since a forward round-trip transaction would be required to free
up directory resources and evict cache lines from caches that are not full. The size of the
directory would also limit the caching capacity of the system. Thus an optimal directory
would be able to hold the global state of as many cache lines that can be cached in the
system. In other words, the size of the directory would track the total caching capacity
in the system. This also improves performance as it eliminates round-trip invalidations
arising from capacity misses.

Takeaway 2.1. The directory holds the global states of only cache lines that are cached
somewhere in the system. The size of the directory limits the caching capacity of the system

33

Chapter 2. Primer on Cache Coherence

as well as affects performance due to round-trip invalidations due to capacity misses. An
optimal directory size would match the total caching capacity in the system.

2.5 Directory Based Coherence in NUMA Systems

The baseline system model for a NUMA system with directory based coherence is shown
in Figure 2.10. The system has two nodes, with each node connected to its own memory.
The two nodes are connected by a coherent interconnect that allows the nodes to exchange
coherence messages. Each node can access the remote node’s memory through the coherent
interconnect albeit non-uniformly.

Main
Memory

Core

CC L1$

Core

CC L1$

Interconnect

DCDir LLC

Core

CC L1$

Core

CC L1$

Interconnect

DCDir LLC

Main
Memory

Coherent
Interconnect

Figure 2.10: Baseline system model for symmetric NUMA systems: Each node is re-
sponsible for maintaining coherence of the memory attached to it.

Within each node, the coherence protocol can be snooping or directory based but across
the nodes it is directory based. The node to which a memory is connected to is the home
node for that memory. A cache line in a memory belongs to the home node. For this
cache line any other node is remote node. The home node is responsible for maintaining
the coherence of all cache lines that belong to it. Coherence invariants for a cache line is
maintained by the DC of its home node. Any coherence request for a cache line should be
unicasted to the DC of the home node. The directory of the home node keeps track of the
global coherence state of only cache lines that belongs to it, and does not track any state

34

2.5. Directory Based Coherence in NUMA Systems

of cache lines that belong to remote nodes. For example, in a two-node NUMA system
cache lines A and B belong to node 1. cache line A is in S state in both node-1 and
node-2, whereas cache line B is in M state in node-1 and I in node-2, then the directory
of node-1 would have the information shown in Table 2.2. Since both cache lines belongs
to node-1, the home-state (HS) is the state in node-1 and remote state (RS) is the state
in node-2

Cache Line HS RS
A S S
B M I

Table 2.2: Contents of the directory of node-1 based on the example given above for cache
lines A, B that belong to it.

2.5.1 Symmetric vs Asymmetric coherent platforms

We had briefly discussed about platforms implementing symmetric and asymmetric pro-
tocols in subsection 1.1.1, here we go a bit deeper in the advantages offered by symmetric
protocols over asymmetric.

In a coherent platform with a symmetric protocol, both nodes are equal partners in the
coherence protocol. Each node is responsible for maintaining the coherence of the memory
attached to it and has a DC to do this. The baseline model of a symmetric system is shown
in Figure 2.10. Traditional CPU-CPU NUMA systems are symmetric in nature.

In a coherent platform with asymmetric protocol, one node is responsible for maintaining
coherence for memories attached to both nodes. As a result, only the node responsible
implements a DC and the other node only implements CCs to interact with the DC.
Asymmetric model has been proposed for CPU-Accelerator systems (CPU-FPGA or CPU-
GPU etc) with complexity cited as an argument [CXL20b].

The baseline system model for asymmetric NUMA system with two nodes is shown in
Figure 2.11. For example, in a CPU-FPGA NUMA system, CPU would be the node on
the left which implements a DC whereas FPGA would be the node on the right which
does not implement a directory controller but rather only CCs.

The first drawback of such an asymmetric platform is the FPGA cannot maintain coher-
ence of its own memory. Although there is a bypass available for non-coherent access, the

35

Chapter 2. Primer on Cache Coherence

Main
Memory

Core

CC L1$

Core

CC L1$

Interconnect

DCDir LLC

Core

CC L1$

Core

CC L1$

Interconnect

Mem Controller

Main
Memory

Coherent
Interconnect

Bypass (not coherent)

Figure 2.11: Baseline system model for asymmetric NUMA systems: Only one node
maintains coherence of memory attached to both nodes.

application on the FPGA would always have to make a request to the CPU to be able
to access its own memory coherently which increases latency. Secondly, the FPGA loses
control over the entire section of the coherence protocol. For example, applications can-
not issue messages that belong to the directory protocol such as the forward downgrade
messages (e.g. Fwd-GetM message in Figure 2.9) that can cause cache lines to be cleaned
or evicted from the remote node’s LLC. Thirdly, the FPGA also loses observability over
the directory protocol section of the coherence protocol. For example, applications on
the FPGA cannot observe any messages that are issued by other coherence controllers to
the DC for its own memory. Finally, with the concurrency and dynamism of coherence
protocols, not being able to access the global view of the states of cache lines reduces the
guarantees that can be inferred on cache lines by applications making it difficult to design
applications that can be proved to be correct.

36

3
CCKit Baseline System Model and

Enzian

3.1 Introduction

In the previous chapter, we introduced the basics of coherence protocols and introduced
simplified system models for different types of multi-core systems. In this chapter we ask
ourselves the question: What would the baseline system model look like for CCKit?

We develop a baseline system model for CCKit, and look at the design choices made to
limit the scope of CCKit. Next, we will define the general characteristics of a platform that
is targeted by CCKit, and introduce Enzian [CRS+22], our platform of choice to implement
CCKit. Finally we will provide an alternate way of looking at the components of CCKit,
which would be useful to understand its acceleration model and how applications can be
developed using CCKit.

The structure of this chapter is as follows.

1. Section section 3.2 describes the baseline system model for CCKit, the target plat-
form assumptions, and the scope of this work.

2. Section section 3.3 describes the Enzian platform and its coherent interconnect called
Enzian Coherent Interconnect (ECI).

37

Chapter 3. CCKit Baseline System Model and Enzian

3. Section section 3.4 describes the protocol stack that will be useful to understand
application development on the FPGA.

3.2 CCKit Baseline System Model

Main
Memory

Core

CC L1$

Core

CC L1$

Interconnect

DCDir LLC

Coherent Interconnect

DCDir LLC

Applications

FPGACPU

Main
Memory

Figure 3.1: Baseline system model for CCKit: CCKit is implemented on a coherent
symmetric NUMA CPU-FPGA heterogeneous platform. Only FPGA-homed scenario (DC)
is considered here and CPU-homed case (CC) is not.

In this section, we will look at CCKit’s baseline system model and the assumptions that
go into it. This model builds on the baseline system model of symmetric NUMA systems
described in section 2.5. We will also discuss the design choices made in this model as well
as the reasons and drawbacks of each choice.

Previously in subsection 1.2.3 we discussed the high level architecture of CCKit and its
two components namely CC for CPU-homed cache lines and DC for FPGA-homed cache
lines. In this thesis we concentrate on the DC and the baseline system model for CCKit
is shown in Figure 3.1.

In this model, the CPU and FPGA are connected through a symmetric coherent inter-
connect where both nodes are equal partners in the coherence protocol. On the FPGA
we have a DC that abstracts the complexity of the directory protocol, and state machine

38

3.2. CCKit Baseline System Model

maintenance and provides a simplified interface to the application on the FPGA. It also
provides coherent access to the FPGA main memory.

The coherent interconnect exposes the coherence protocol to the FPGA by allowing the
CPU and FPGA to exchange coherence messages. The coherence protocol in CCKit’s
baseline model should be symmetric, directory-based, write-invalidate MOESI coherence
protocol with no NACKs (no-acknowledgments). Additional assumptions on the rules of
interaction between the CPU and DC are described in section 4.3. These simple assump-
tions cover a wide variety of real-world coherence protocols including those exposed by
ECI on Enzian and, hopefully, CXL 3.0.

The assumptions made on the implementation of the coherent interconnect are as follows.
First, the interconnect should allow for deadlock-free exchange of coherence messages.
Secondly, the interconnect should guarantee the delivery of coherence messages. Thirdly,
the interconnect does not have to guarantee the ordering of coherence messages.

3.2.1 CCKit target platform assumptions

In the previous section, we briefly discussed CCKit’s baseline system model and assump-
tions made by CCKit on the platforms it targets. In this section, we will delve a bit deeper
into these assumptions.

Symmetric coherent CPU-FPGA platforms: CCKit targets symmetric coherent
CPU-FPGA platforms. We did not choose asymmetric coherent platforms because the
FPGA is not an equal partner in the coherence protocol in such systems. This choice
allows us to explore the role of FPGA’s in symmetric platforms but comes at the cost of
handling the complexities of the coherence protocol on the FPGA.

Directory based protocol: CCKit targets NUMA systems which always implement a
directory based protocol instead of snooping protocols as snooping protocols do not scale
well. Snooping protocols are used to asymmetrically connect FPGAs to the processing
system in MPSoCs which are used mostly in embedded applications. The choice made
allows us to target platforms with server grade CPUs and large FPGAs.

Write-invalidate protocols: Write-update protocols, which are alternatives to write-
invalidate protocols, are rarely implemented because of their complexity [NSHW20b].
Well-known coherence protocols like MSI, MESI, MOESI, MOSI and MESIF are write
invalidate protocols. Thus CCKit targets coherence protocols that are write-invalidate.

39

Chapter 3. CCKit Baseline System Model and Enzian

MOESI protocols with no NACKs: MOESI protocols are widely used in commer-
cial systems and hence is a nature choice to base CCKit on. Additional assumptions
on the rules of interaction between the CPU and DC are described in section 4.3. No-
acknowledgments (NACKs) are not widely used in commercial coherence protocols because
they can lead to livelock problems [KCA92] and so are not considered here.

Coherent interconnect: CCKit expects the coherent interconnect to be deadlock-free.
This is typically achieved by having several virtual channels for different coherence mes-
sage classes in the interconnect’s implementation. CCKit also expects guaranteed delivery
of messages. This assumption is nominal because modern interconnects such as ECI and
PCIe have layers of infrastructure that check for errors in data exchanged and retry trans-
mission upon failure. Finally, CCKit makes no assumptions on the ordering of coherence
messages in the interconnect. Ordering requirements on coherence messages can limit the
peformance of interconnects and so high performance interconnects will not provide any
ordering guarantees.

3.2.2 CCKit fundamental design choices

In addition to the assumptions we make about the target platfrom, we also made the
following design choices to restrict the scope of this work.

Design Choice 3.1. No LLC would be implemented on the FPGA. The first reason for
this design choice is having a caching layer prevents FPGA applications from directly
interacting with the coherence protocols; Applications only perform loads and stores on the
cache. The second reason is that the FPGA operates at a much lower frequency (order of
MHz) compared to the CPU (order of GHz) and caches on the FPGA might not be useful.
The drawback of this design choice is foregoing any performance benefits in case a cache
is useful.

Design Choice 3.2. A MESI variant of the protocol would be implemented on the FPGA
instead of MOESI. The reason for this design choice is that the O state of MOESI protocol
is useful only for inter-cache transfer between the CPU and FPGA (see subsection 2.3.8).
Since the FPGA does not have an LLC, this optimization is not needed and a MESI variant
would suffice. Alternatively, how a MOESI protocol would look like without an LLC is an
interesting question that can be explored in the future. Such a study can identify the
drawbacks in the current choice.

40

3.3. Enzian

Design Choice 3.3. CPU application to FPGA memory: The DC would fully
support coherent caching operations from the CPU to the FPGA memory. This is the
best case scenario and an alternative would be to support the traditional DMA acceleration
model using only coherent non-caching operations.

Design Choice 3.4. FPGA application to FPGA memory: The DC would only
support coherent non-caching operations from applications on the FPGA to FPGA’s mem-
ory. This means FPGA applications cannot cache FPGA homed cache lines but rather read
and write to them in a coherent non-caching manner. The alternative choice would be to
allow both caching and non-caching operations but, as will be seen later in chapter 9, this
design choice does not restrict the capabilities of FPGA applications.

Design Choice 3.5. FPGA application to CPU memory: The DC on the FPGA
is not responsible for providing access to CPU’s memory. There would be no support on
the DC for FPGA applications to access CPU’s memory. Coherent access from FPGA
applications to the CPU attached memory requires a CC to be implemented on the FPGA
and is not in the scope of this work.

3.3 Enzian

In section 3.2 we had discussed the nature of a platform that on which CCKit can be
implemented. Enzian [CRS+22] is one such 2-socket heterogenous server platform. In this
section we will look into details of Enzian and its coherent interconnect called ECI.

Overlaying CCKit’s system model shown in Figure 3.1 on Enzian, we have two nodes, the
first node is a Marvell ThunderX-1 1 CN8890-NT 48-core ARMv8-A CPU running at 2.0
GHz. The second node is a Xilinx VU9P UltraScale+ FPGA [Xil21] that runs at 322MHz.
These nodes are connected by the CPU’s native coherent interconnect.

The CPU has a snooping based protocol for coherence between the 48-cores within the
CPU and exposes a directory based coherence protocol across the two nodes through the
coherent interconnect. The CPU has 16MiB of 16-way associative LLC and the private L1
caches are all write-through. The interconnect offers a theoretical bandwidth of 30 GiB/s
and the cache lines are 128 Bytes wide. The CPU implements a proprietary variant of
MOESI protocol and comes with its own implementation of the DC and directory that
provides access to 128 GiB of CPU main memory.

41

Chapter 3. CCKit Baseline System Model and Enzian

The FPGA is connected to the serial lanes of the CPU’s native coherent interconnect
through 24 10 Gb/s transceiver lanes and is otherwise a blank slate. These lanes are
organized into two 12-lane links with the coherence traffic load is shared between them.
This means that although two links are necessary for peak interconnect perfomance, one
link is sufficient to run the coherence protocol (at half the performance).

Infrastructure is needed on the FPGA to decode/encode data from the serial lanes and
expose interfaces to send and receive coherence messages. This infrastructure is called ECI
(Enzian Coherent Interconnect). ECI exposes the coherence protocol at the message level
to applications on the FPGA and abstracts all the lower communication layers. Since ECI
is their own implementation of all layers of the CPU’s native coherent interconnect, the
interconnect in Enzian is called ECI.

Upto 1 TiB of main memory can be attached to the the FPGA and current systems use
either 512 GiB or 64 GiB of memory. Since, Enzian implements a symmetric protocol, a
DC along with its directory is necessary on the FPGA to be able to coherently access this
memory.

Thus comparing to CCKit’s baseline system model shown in and Figure 3.1, the coher-
ent interconnect on the FPGA is ECI. Applications running on both CPU and FPGA
can coherently access the FPGA attached memory through ECI and DC. Moreover En-
zian implements a symmetric MOESI based protocol which makes it suitable platform to
implement and evaluate CCKit.

Note 3.1. In this thesis, the coherent interconnect on Enzian is refered to as ECI instead
of the name given to the CPU’s native interconnect. This is because ECI is the Enzian
team’s own open-sourced implementation of all communication layers of the interconnect.
In a twist of fate, the Enzian team is also us wearing a different hat.

3.3.1 Enzian Coherent Interconnect (ECI)

As mentioned in the previous section, ECI exposes the coherence protocol to the FPGA
at the message level. The implementation of ECI on Enzian provides deadlock-free and
high performance exchange of coherence messages with guaranteed delivery but no guar-
antees in ordering of coherence messages. This satisfies CCKit’s requirements on coherent
interconnects discussed in section 3.2. In this section, we look a bit deeper into how these
guarantees are provided by ECI.

42

3.3. Enzian

Physical Layer

Link Layer

Block Layer

VC Layer

ECI

Coherence messages
From protocol layer

TX RX

Links and serial lanes

IO Mem IO Mem

Figure 3.2: Layers of ECI: ECI allows deadlock free exchange of coherence messages.
ECI guarantees delivery of messages but does not guarantee ordering.

ECI follows a layered approach to provide deadlock-free exchange of coherence messages
with guaranteed delivery. Layers of ECI are shown in Figure 3.2 and are described below.

VC layer: Coherence messages are classified into a number message classes by the CPU’s
native interconnect. Each message class is assigned to one or more VCs to avoid deadlocks
during exchange of coherence messages. Each VC can be viewed as a First In First Out
(FIFO) that has a credit-based flow control to throttle the rate of sending and receiving
coherence messages in each message class.

Each VC is assigned a VC number by the CPU’s native interconnect and ECI follows the
same numbering scheme. The different VCs and their numbers are shown in Table 3.1. It
is to be noted that for message classes with two VC numbers, the odd VC number carries
even cache line indices and vice versa.

ECI splits the physical address space in two, namely the IO address space and memory
address space. The IO address space is used for configuration registers and is not coherent.
The messages for IO address spaces are exchanged through the IO request and response
VCs (VC0, VC1). At the application level, these coherence messages are exposed as an
Advanced eXtensible Interface Lite (AXI-Lite) interface. The AXI-Lite has a data-bus

43

Chapter 3. CCKit Baseline System Model and Enzian

Message Classes VC Number
IO Requests VC0

IO Responses VC1
Request with Data VC2, VC3

Response with Data VC4, VC5
Request w/o Data VC6, VC7
Forward w/o Data VC8, VC9
Response w/o Data VC10, VC11

Multiplexed coprocessor VC12
Multicore Debug VC13

Table 3.1: ECI message classes and their VC numbers: Coherence messages are classified
into message classes, with each message class having a VC to exchange coherence messages.
This allows deadlock free exchange of coherence messages over ECI.

width of 64 bits and each coherence message in the IO address space can only carry 64
bits of data (as opposed to 1024 bits or 128 bytes that can be carried by coherence messages
on memory address space).

VCs 2 to 11 are used to exchange coherence messages for the memory address space with
the protocol layer that resides above the VC layer. Messages of type requests, responses
and forwards have separate VCs. This helps avoid deadlocks, for example if a single VC
is required for both requests and responses, then a response that is needed to handle a
request might get stuck behind the request in the VC leading to a deadlock. The request
and response message classes are further split into ones with cache line data and without.
This classification helps separate the control plane from data plane which is useful during
implementation of layers above the VC layer.

VCs 12 and 13 are not used for exchanging coherence messages but pertain to co-processor
or debug messages. It is not yet known how to use these VCs.

It is to be noted that ECI provides separate sets of VCs for odd and even cache line indices
to increase parallelism and improve performance.

ECI block layer: Coherence messages can be of different sizes depending on the type and
amount of data present in them. These messages are packed into “blocks” or “ECI frames”
that are of fixed size and have a specific format. The data from all VCs are effectively
packed into blocks in the ECI block layer. This layer keeps track of blocks using a sequence

44

3.4. CCKit protocol layers

number and helps in re-transmission of the block when a cyclic redundancy check (CRC)
error is detected. This ensures that once a coherence message is pushed into a VC, it is
guaranteed to be delivered but might not be delivered in the same order in which it was
sent.

ECI link layer: This layer is responsible for implementing the link state machine that
brings up the two links and maintain them. The ECI link layer on the FPGA communicates
with the link layer of the CPU to ensure the links stays up and working.

ECI physical layer: This is the lower most layer of ECI that is responsible for encoding
and transmitting, or decoding and receiving data from serial lanes.

Thus ECI provides the following guarantees to layers that are built above it.

• ECI provides deadlock free exchange of coherence messages.

• ECI guarantees delivery of coherence messages.

• ECI does not guarantee the ordering of coherence messages.

• Delivery of messages by ECI is not instantaneous.

• ECI is optimized for performance.

3.4 CCKit protocol layers

An alternate way of viewing the components of CCKit is in the form of the layers that are
stacked on top of each other, where the lower layers provide certain services to the higher
layers. This view is useful when reasoning about the acceleration models that are enabled
by CCKit. In this section we will look at the three layers of CCKit, and the services
offered by each.

We have seen in subsection 1.2.6 that the acceleration model in CCKit is for user logic
on the FPGA to extend the notion of coherence to software on the CPU by coherently
associating unrelated cache lines. To achieve this, CCKit’s components can be viewed in
terms of two more layers of protocols built on top of ECI. The protocols are shown in
Figure 3.3 and are as follows.

We have already seen the guarantees (a.k.a services) provided by ECI in subsection 3.3.1.
The DC protocol layer is built on top of ECI. So in addition to guarantees provided by
ECI, the DC protocol layer provides the following guarantees.

45

Chapter 3. CCKit Baseline System Model and Enzian

FPGA Application

DC

ECI

Figure 3.3: CCKit protocol layers: Each layer provides certain guarantees and is built
on the guarantees provided by the layer below it.

• DC guarantees that coherence invariants are maintained at the granularity of a cache
line by maintaining their coherence states.

• DC ensures coherence transactions on different cache lines are mutually independent.

• DC accounts for conflict conditions that can arise due to reordering of coherence
messages by ECI and latency of message transfer in ECI.

• DC is deadlock free.

• DC is optimized for performance in critical paths.

Finally we have the application protocol built on top of DC layer. This layer changes from
application to application without any modifications to either DC or ECI layers. The
application protocol can make associations and guarantee invariants across different cache
lines. A simple example of such invariant is if cache line A is cached in CPU’s cache then
cache line B should not be cached in CPU’s cache. The considerations when building
application layer protocol are as follows.

• The application layer does not have to maintain coherence states of cache lines and
and rely on the DC to ensure coherence invariants are maintained.

• The application layer can also rely on the DC to keep coherent transactions on
different cache lines mutually independent. This means, the application can stall
coherence transaction on one cache line to initiate a different coherent transaction
on another cache line and wait for it to finish before continuing with the stalled
transaction.

46

3.4. CCKit protocol layers

• The application must adhere to the specification of DC’s interface when interacting
with the DC to avoid deadlocks.

• The application protocol itself must be deadlock free.

• The application can be optimized for performance.

More information on building the application protocol on top of DC protocol can be found
in section 7.8.

3.4.1 Two components of a protocol layer

Both DC and application protocol layers consist of two components, namely the protocol
state machine and its implementation. The protocol state machine handles coherence
events by identifying the state transitions and actions to be performed to comply with the
protocol. It should be deadlock free and any deadlocks in the protocol state machine is
referred to as protocol deadlocks. The protocol state machine should also be optimized for
performance.

The second component is the implementation of the state machine on the FPGA. The
protocol state machine does not take into account resource availability and it is the re-
sponsibility of the implementation to faithfully recreate the protocol state machine in
spite of having limited resources. The implementation should also be performant and
avoid deadlocks that arise due to resource conflicts. These deadlocks are referred to as
resource deadlocks.

Having protocol state machine that is optimized for performance and has no protocol
deadlocks is necessary for the implementation itself to be deadlock free and performant
but it is not enough. The implementation also should be performant and free of resource
deadlocks.

Reason for protocol deadlocks: A protocol deadlock can occur if the protocol state
machine waits for a coherence event that it might never receive. One reason this might
happen is if the protocol specification is buggy. The second reason protocol deadlocks
can occur is when handling a coherence event by the state machine is dependent on other
events being received. For example, the state machine waits for a response before handling
a new coherence request. In this case, a deadlock can occur if the response is behind the

47

Chapter 3. CCKit Baseline System Model and Enzian

request in a queue which necessitates that the request be handled for the response to be
received by the state machine.

3.4.2 DC protocol state machine design space on Enzian

The DC protocol state machine handle coherence requests from coherence controllers,
maintain coherence invariants and provides coherent access to the FPGA attached memory.
In order to build the directory protocol state machine, we need to explore the protocol
design space as we did in subsection 2.3.7 and answer the following questions.

• State of cache line in DC: What are the stable and transient states that are
required to maintain coherence for FPGA homed cache lines?

• Coherence transactions: We have a list of coherence messages that were provided
to us by Cavium but do not have any information on the allowed coherence transac-
tions. What are the coherence transactions that can be initated by CPU CCs and
FPGA applications in the system that would have to be handled by the DC?

• Coherence protocol: Would a full MOESI protocol need to be implemented on
the DC?

• Protocol specification: There is no specification of the directory protocol and it
would have to be reverse engineered.

• The CPU’s native coherence protocol was never designed to inter-operate with an
FPGA, how do you make the CPU believe it is talking to another CPU and not an
FPGA (even if FPGA operates at a much lower frequency).

3.5 Summary

In conclusion, we have developed a baseline system model for CCKit. We have also
identified the characteristics of a platform that is targeted by CCKit. Next, we looked at
how components of CCKit can be viewed as layers of a protocol stack that would help us
understand what role the FPGA can play in its interaction with the coherence protocol.
Finally, we also defined the services that would have to be provided by each layer in the
protocol stack. In the next chapter, we will model the interaction between the CPU and
the FPGA’s DC.

48

4
Directory Protocol Modeling and

Specification

4.1 Introduction

Previously in Figure 3.1 we have seen the baseline model of a symmetric coherent CPU-
FPGA system. In this system, the CPU’s LLC exchanges coherence messages with the DC
through a coherent interconnect (ECI in case of Enzian). The DC, in turn, implements the
directory protocol and provides coherent access to the FPGA attached memory. Before
we consider how the directory protocol will be implemented, we need to understand what
is the model of interaction different components of this system and the DC. Towards this
direction, we first ask the question what is the model of interaction between, specifically,
the CPU and the DC in this symmetric system? The directory protocol specification
should provide an answer to this question, provided it exists. In our case, we did not have
a formal specification of the directory protocol which leads us to our next question How
do we model and specify a directory protocol? This is the topic of this chapter.

Before delving into modeling the directory protocol, we had mentioned in section 3.4 the
guarantees that the directory protocol should provide: First, it should guarantee that
coherence invariants are maintained at the granularity of a cache line. Second, coherence
transactions on different cache lines should be mutually independent. Third, the it should

49

Chapter 4. Directory Protocol Modeling and Specification

account for conflicts that can arise due to the highly concurrent nature of the protocol
and interconnect. Last, it should be deadlock free and optimized for performance. These
guarantees will decide the design choices made in this and subsequent chapters.

To keep principles of CCKit platform agnostic, the directory protocol is split into two
components: a platform-agnostic directory protocol state machine and a platform-specific
implementation of the protocol state machine called DC that is tailored to Enzian. The
protocol state machine identifies the necessary state transitions on cache lines and actions
to be performed to provide all the guarantees discussed above. Any deadlock scenarios in
the protocol state machine is referred to as protocol deadlocks. This state machine should
be derived from a formal specification of the directory protocol which would identify all
possible coherence transactions that guarantee coherence invariants. Due to the highly
concurrent nature of directory protocols, these state machine have hundreds of interme-
diate (or transient) states to achieve their goals and should be automatically generated
from the specification.

The second component of the directory protocol is the actual implementation of the proto-
col state machine on the FPGA (i.e. DC). The protocol state machine does not take into
account resource availability or limitations when providing its guarantees. It is the respon-
sibility of the implementation to faithfully recreate the protocol state machine guarantees
in spite of having limited resources. For example, the implementation should maintain a
separate state machine for each cache line to ensure cache lines are mutually independent.
In addition to the guarantees of the state machine, the implementation should also avoid
deadlocks (due to resource conflicts) and be performant. These deadlocks due to resource
conflicts are called resource deadlocks. Just because the protocol state machine is perfor-
mant and does not have any protocol deadlocks does not mean its implementation is also
performant and free of resource deadlocks. An example implementation of DC on Enzian
is discussed in chapter 8.

In order to build the two components of directory protocol, we first need its specification.
Although a list of coherence messages is available, the formal specification of the directory
protocol (i.e. all possible coherence transactions that can occur) is not available to us due
to the proprietary nature of the CPU’s native protocol in Enzian. So by reverse engineering
traces collected between two CPUs, we were able to identify certain rules of interaction
between the coherence controllers (specifically between LLC and DC) and thus build a
model that represents the directory protocol. Applying the rules of interaction to the pro-
tocol model allowed us to extrapolate all possible coherence transactions (i.e. the directory

50

4.1. Introduction

protocol specification) that would have to be handled by the protocol state machine. It is
to be noted that the protocol model and rules of interaction are not specific to Enzian and
are applicable to any write-invalidate protocol with no NACKs (no-acknowledgments). It is
impossible to build a model that exactly represents the CPU’s native protocol but having
a model that is an approximation of reality, which can be tuned to new observations, is
sufficient to build the protocol state machine.

Once we have all possible coherence transactions from the protocol model, we would have
to specify them. In this chapter, we develop a notation for specifying coherence trans-
actions called state equations. With this notation, we can specify the directory protocol
and use it to automatically generate the protocol state machine. The idea is that through
proper design choices and by repeatedly applying certain operators, we will be able to solve
these state equations to get a state machine that provides all guarantees required by the
directory protocol. An advantage of such a representation is any modifications to the co-
herence protocol can be incorporated in these state equations thereby making the protocol
specification flexible.

In order to automatically generate the protocol state machine from its specification, we
developed a state space exploration tool. This tool is introduced in this chapter and
generates a deterministic state machine that shows all state transitions required by a
single cache line for maintaining coherence invariants (subsection 2.3.4). Next, The tool
checks for protocol deadlocks by looking for circular dependencies in the state transitions.
Finally, it also explores the trade-off between state-space and performance to optimize for
performance of the protocol state machine in the critical path. The need for customization
is one reason to automate the generation of state machine. An application developer should
be able to quickly change the protocol specification, generate a state machine and have it
implemented without too many modifications to existing infrastructure.

The formalisms and techniques developed in this chapter are applicable to any symmetric
coherent platform. Any examples would be based on ECI and Enzian. This chapter
consists of the following sections.

1. Section 4.2 describes the model we have developed for directory protocol.

2. Section 4.3 describes the expected rules of interaction between CPU’s LLC on one
node and DC on the other node.

51

Chapter 4. Directory Protocol Modeling and Specification

3. Sections 4.4 and 4.5 goes into details of coherence messages exchanged over a coherent
interconnect as well as memory events.

4. Section 4.6 describes how we specify coherence transactions with state equations
and the operations that are required to solve them. We also enumerate a number of
design choices and the reason for making them.

Subsequent chapters will go into details of identifying all coherence transactions as well
as how to build the state space exploration tool to generate the state machine.

4.2 Directory Protocol Model

I(1)

S(2)

E/M
(3)

CPU LLC

S
cra

m
b
le

r

FPGA DC HS RS

I I

Directory

Figure 4.1: Directory protocol model

In this section, we model the interaction between the CPU and FPGA when the CPU
coherently accesses the FPGA attached memory. We also rationalize the assumptions
made by this model in representing a generic system, one that is not specific to Enzian.

The simplified model of the interaction between the LLC on the CPU and DC on the
FPGA for a single FPGA-homed cache line is shown in Figure 4.1. Only considering a
single cache line in the model ensures that all cache lines are treated identically by the
model and no associations between cache lines are made (each cache line has a separate
state machine whose transitions are mutually independent from transitions on other cache
lines). On the left hand side is the CPU’s LLC that can cache an FPGA-homed cache line
in I, S or Exclusive/Modified (E/M) state. This is represented by the flight of stairs with
each state enumerated as shown in figure (I is step 1, S is step 2 and E/M is step 3). On

52

4.2. Directory Protocol Model

the right hand side is the DC that maintains a directory tracking the current state of the
cache line in FPGA (Home State (HS)) and CPU (Remote State (RS)), based on messages
received by it. Since there are no caches on the FPGA, the HS is always I. The RS is
equivalent to which step the CPU is on as perceived by the DC. It is the responsibility
of the DC to accurately track the remote state and maintain coherence invariants when
handling requests from the CPU. The DC reads and writes to the FPGA memory through
a separate memory bus, which is not shown here. For the remainder of this section, the
terms state and step would be used interchangeably. Although this model is generic, its
principles would be illustrated with examples from Enzian and ECI. A follow-up work that
characterizes the coherence protocol on Enzian can be found at [Sch23].

Takeaway 4.1. Directory protocol guarantee: Transitions on cache lines are
mutually independent. We model the interaction between the CPU and DC for a single
cache line. Only considering a single cache line in the model ensures that all cache lines
are treated identically by the model and no associations between cache lines are made (each
cache line has a separate state machine whose transitions are mutually independent from
transitions on other cache line state machines).

The CPU and DC communicate through a coherent interconnect (ECI in case of Enzian).
We assume that the interconnect guarantees the delivery of in-flight messages but not
its ordering. That is, if the CPU sends two messages one after the other, the DC will
receive them but can receive them in either order. The guaranteed delivery of messages
is a reasonable assumption as modern interconnects (including PCIe) have several layers
that detect errors and request re-transmissions. The reordering of in-flight messages by
the interconnect is modeled by the scrambler shown in Figure 4.1, which will be discussed
in detail later in subsection 4.3.1. It is to be noted that the scrambler affects ordering of
events only on the coherent interconnect and never on the memory bus.

We assume a typical MOESI protocol where an upgrade from E to M state in the CPU’s
LLC is silent (without any coherence message). As a result, the DC cannot distinguish
between these two states, as shown by a single E/M step in Figure 4.1. Furthermore, there
is no O state on the CPU. The CPU’s LLC would get a cache line in O state only when a
cache line that is dirty in FPGA’s cache is transferred to the CPU’s cache without being
cleaned. Since there are no caches on the FPGA, this scenario would never occur.

Next, lets look at the rules of interaction imposed by the coherence protocol between these
two coherence controllers.

53

Chapter 4. Directory Protocol Modeling and Specification

Note 4.1. In this chapter, the term CPU is used interchangeably with CPU’s LLC and
the term interconnect refers to the coherent interconnect.

4.3 Rules of CPU-DC Interaction

In this section, we describe 7 rules of interaction between CPU’s LLC and FPGA’s DC
in the context of the directory protocol model in Figure 4.1. Although we developed
these rules by observing the communication traces between two ThunderX-1 CPUs, they
are generic enough for any directory-based MOESI protocol without no-acknowledgments
(NACKs). In addition, we also describe the properties that we expect of the underlying
interconnect. The 7 rules of interaction are as follows.

Rule 1 (Going up the stairs). The CPU can make a request to go up the stairs and waits
for a response from DC.

• The request can be from any lower step to any higher step (step 1 to 2, 1 to 3 or 2
to 3).

• The DC has to ensure coherence invariants and always reply with an acknowledgment
(No NACKs). Upon replying the DC updates its directory.

• Once the CPU receives the response from DC it goes up to the requested step.

• This interaction is the upgrade request-response pair where the CPU wants to
upgrade an FPGA-homed cache line in its LLC.

Rule 2 (Coming down the stairs). The CPU can voluntarily come down the stairs anytime
but cannot do so silently.

• The CPU can come down from any higher step to any lower step (step 3 to 2, 3 to
1 or 2 to 1) and it does so by issuing a message.

• The CPU does not require any response from the DC when coming down the stairs.

• The DC updates its directory when it receives the message.

• This interaction is a voluntary-downgrade response and occurs when the CPU
wants to downgrade or evict an FPGA-homed cache line from its LLC. This inter-
action is posted i.e. does not require any response.

54

4.3. Rules of CPU-DC Interaction

Rule 3 (DC requesting CPU to go up the stairs). The DC cannot make the CPU go up
the stairs.

• This means that an FPGA-homed cache line cannot be loaded by the DC into the
LLC of the CPU without the CPU making an explicitly upgrade request.

Rule 4 (DC requesting the CPU to come down the stairs). The DC can request the CPU
to come down the stairs and wait for a response.

• The DC can request the CPU to come down from any step to any step.

• The CPU should send an acknowledge response and come down the stairs (no NACKs).

• Upon receiving the response, the DC updates its directory.

• This interaction is the forward request-response pair and occurs when the DC
wants to either clean or clean-invalidate an FPGA-homed cache line that is present
in the CPU’s LLC.

Rule 5 (No changing of minds). Once a message is issued by either the CPU or the DC
for a cache line, the message cannot be canceled.

• For example, if the CPU requests to upgrade from I to S state, it cannot cancel this
request to issue an upgrade from I to E/M state instead.

• This also means that for each coherence controller there can only be one on-going
transaction for a cache line.

Rule 6 (Properties of interconnect). The coherent interconnect is deadlock free, ensures
delivery of messages but does not guarantee ordering. Delivery of messages is not instan-
taneous

• Guaranteed delivery means that both CPU and DC does not have to resend a message
multiple times, and each message is received only once.

• Not guaranteed ordering means the messages can be received in any order by the
counterpart.

• Not having immediate delivery implies that the interconnect has a latency in deliv-
ering messages.

55

Chapter 4. Directory Protocol Modeling and Specification

Rule 7 (Timeouts leading to system checks). Since there are no NACKs in the protocol,
not receiving an expected coherence message implies an error. Coherence controllers can
wait for a certain amount of time for reception of a coherence message before they time out
and cause a system check. We assume that the timeout limit is much higher than rate at
which coherence messages are exchanged. For example, in Enzian the CPU’s timeout limit
is in the order of milli-seconds whereas coherence messages are exchanged within hundreds
of nano-seconds. There is no upper-limit on the timeout.

Note 4.2. Timeouts can arise only due to catastrophic failure such as complete failure of
the interconnect or if the coherence protocol is not implemented correctly. In Enzian, the
timeout mechanism is only implemented by the CPU’s LLC (the current DC implementa-
tion has an infinite limit on the timeout). Timeouts in Enzian are almost always due to
either the FPGA responding incorrectly or not responding at all.

4.3.1 Rules of event reordering by the interconnect

Having seen the rules of interaction between the CPU and DC, we will look at the effect
of reordering by interconnect next. The scrambler shown in Figure 4.1 models the fact
that in-flight messages can be reordered by the interconnect and the reordering rule is as
follows. If there are N in-flight messages sent by an entity, they can be received in N !
ways by its counterpart. For example, if there are three message M1, M2, M3 sent by the
CPU to the DC in this order, they can be received by the DC in the following (3!) 6 ways.

• M1, M2, M3

• M1, M3, M2

• M2, M1, M3

• M2, M3, M1

• M3, M1, M2

• M3, M2, M1

The first thing of note is that, the scrambler can only affect the ordering of in-flight
messages in the coherent interconnect, it cannot affect the state of the cache line in the
CPU’s LLC or the end goal of a coherence transaction. In other words, it cannot affect

56

4.4. Coherence Messages

the step the CPU is in or the contents of the DCs’ directory when a coherence transaction
is complete. Next, the scrambler reorders only coherence messages and never events from
the memory. Finally, by factoring all possible ways of reordering, this model is agnostic
to the implementation specifics of interconnect. Let us next look at coherence messages
exchanged between the CPU and DC through the coherent interconnect given the model
and rules of interaction.

4.4 Coherence Messages

Applying the rules of interaction from section 4.3 to directory protocol model in Figure 4.1,
lets us identify the coherence messages that can be exchanged between the CPU and the
DC for an FPGA-homed cache line.

Note 4.3. The coherence messages shown here are not specific to Enzian CPU’s native
protocol as they are obtained by applying a set of rules on a generic model, but there is a
one-to-one mapping between them. This mapping is given in Table A.1.

Upgrade request-response pairs: Rule 1 indicates that the CPU can request to go up
from any lower step to any higher step and the DC has to acknowledge the request. Thus
the CPU can make the following upgrade requests: request to go from step 1 to 2, request
to go from step 1 to 3 or request to go from step 2 to 3. Furthermore the DC cannot deny
(or NACK) the request and always has to acknowledge with a response. To describe a bit
more on the naming convention for these messages, upgrade requests begin with the letter
“R” followed by the lower step from which the CPU wants to upgrade from, and the higher
step the CPU wants to upgrade to. For example, R12 is request made by CPU to upgrade
from step 1 to 2. Upgrade responses begin with “RA” (request acknowledge) followed by
the higher step to which access was granted. For example, RA2 is the response from the
DC for an R12 upgrade request allowing the CPU to go to step 2.

Since the CPU can request to go from any lower step to any higher step, we have the
following upgrade request-response pairs.

• R12, RA2 (Request to upgrade from I to S, response has cache line data)

• R13, RA3 (Request to upgrade from I to E, response has cache line data)

• R23, RA3 (Request to upgrade from I to S, response does not have cache line data)

57

Chapter 4. Directory Protocol Modeling and Specification

What this means outside the model is that for an FPGA-homed cache line, the LLC of
the CPU can make upgrade requests from I to S state, or from I to E state or from S to E
state to which the DC has to acknowledge. The upgrades from E to M state in the CPU’s
LLC are silent and the DC does not get notified. The responses for upgrade requests from
I to S or E will carry cache line data (read from the FPGA memory) because the CPU is
upgrading from I state and does not have any copies of the cache line. Whereas response
to upgrade request from S to E does not carry any data as the CPU already has a copy
of the cache line in S state.

Note 4.4. An observation made in Enzian is that an upgrade to E by the CPU is always
accompanied by a silent upgrade to M but we do not make this assumption when building
the directory protocol.

Voluntary downgrade response: Rule 2 says that the CPU can come voluntarily down
the stairs from any higher to any lower step but has to send a voluntary downgrade
response when doing so. These messages are do not require a response from the DC and
are referred to as posted messages. In order to name these responses, we use the following
convention: Voluntary downgrade responses start with the letter “V” followed by the
higher step from which the CPU comes down, and then the lower step to which the CPU
comes down to. For example, if the CPU comes down from step 2 to step 1, it issues a
voluntary downgrade response V21. Since step 3 means the CPU can be either in E or M
state, there are two flavors of coherence messages when the CPU comes down from step
3; One with dirty data and one without. The presence of dirty data is indicated by the
letter “d”. For example, if the CPU comes down from E to I (clean cache line), it issues
a message V31 whereas if CPU comes down from M to I with dirty data, the message
issued is a V31d. Dirty data has to be written back to the FPGA memory since there are
no caches on the FPGA. Note that when the CPU comes down from S to I, there cannot
be any dirty data.

Thus we have the following voluntary downgrade response messages from the CPU.

• V21 (Voluntary downgrade from S to I)

• V31 (Voluntary downgrade from E to I, cache line is clean)

• V31d (Voluntary downgrade from E to I, cache line is dirty)

• V32 (Voluntary downgrade from E to S, cache line is clean)

58

4.4. Coherence Messages

• V32d (Voluntary downgrade from E to S, cache line is dirty)

In the real world, the voluntary downgrade responses are issued by the LLC of the CPU
when downgrading (cleaning) or evicting (clean invalidating) a cache line from its cache.
Downgrades of a dirty cache lines will be accompanied with data whereas downgrades of
clean cache lines are not. The downgraded dirty data would have to be written back to
the FPGA memory by the DC (since there are no caches on the FPGA).

Note 4.5. Another observation made in Enzian is the CPU never voluntarily downgrades
from E to S but we do not make this assumption when building the protocol.

Forward downgrade request-response pairs: Rule 4 says the DC can request the CPU
to come down the stairs. These requests from the DC are forward downgrade requests and
are always accompanied by an acknowledgment forward downgrade response (the CPU
cannot deny or NACK the request). Depending on what step the DC has the CPU in
its directory, it can issue forward downgrade requests from step 3 to 2 or step 3 to 1 or
step 2 to 1. These forward downgrade requests are named to begin with an “F” (forward)
followed by the higher step, and then the lower step. For example, F21 is the request
issued by the DC when it wants the CPU to come down from step 2 to 1. The forward
downgrade responses begin with an “A” followed by the step from which the CPU comes
down from to the step the CPU goes down to. For example, the CPU would respond to
F21 with an A21 and come down from step 2 to 1.

When it comes to step 3, there are no clean and dirty variants of forward requests as the
DC does not have a way of knowing whether a cache line in E state is clean or dirty. But,
just like in voluntary downgrade responses, there can be clean and dirty variants for the
forward downgrade response from the CPU. For example, if the DC wants the CPU to
come down from step 3 to 2, it issues F32, and the CPU can respond with A32d (dirty
cache line) or with A32 (clean cache line).

This gives the following forward downgrade request-response pairs.

• F21, A21 (Forward request, response to downgrade from S to I in CPU’s LLC)

• F32, A32 or A32d (Forward request, response to downgrade from E to S)

• F31, A31 or A31d (Forward request, response to downgrade from E to I)

59

Chapter 4. Directory Protocol Modeling and Specification

These messages show that the DC can either clean or clean-invalidate an FPGA-homed
cache line from the CPU’s LLC. Cleaning a cache line means the cache line is either S
or I state in the CPU’s cache but never E or M. Clean-invalidating guarantees that the
cache line is in the I state in CPU’s cache. For both operations, any dirty data would be
written back to the FPGA memory and, at this point, the FPGA memory has the only,
most up-to-date copy of the cache line.

Takeaway 4.2. The FPGA can clean or clean-invalidate an FPGA-homed cache line that
is cached in CPU.

CPU DC

HS:RSState
3 1:3

F32V323 to 2
Conflict: F32? I

am already
at step 2

1:Wait A32

Conflict: Waiting
for A32 but
recieved V21?

A22

1:2Conflict
Response

Figure 4.2: Conflicts due to latency of interconnect: When a forward downgrade request
from DC is in transit, the CPU voluntarily downgrades. These conflicts are resolved by
exchanging additional messages called conflict responses.

Forward downgrade conflict responses: Since the CPU can come down the stairs
either voluntarily or at the request of the DC, conflicts arise when both operations are
happening at the same time. For example, lets say the CPU is in step 3, which is also
reflected in the directory of the DC. The DC issues an F32 requesting the CPU to come
down from step 3 to 2. Since the interconnect is not instantaneous, this message takes
sometime to reach the CPU. While F32 is in transit, the CPU decides to voluntarily come
down from step 3 to step 2 by issuing a V32. From the CPU’s perspective when it receives
the F32, it is already at step 2, and from the DC’s perspective, it is has received the
voluntary downgrade response (V32) but is still waiting for a response for the forward

60

4.4. Coherence Messages

downgrade request (F32). This race condition due to latency of the interconnect is shown
in Figure 4.2 and to handle this, the CPU can issue conflict forward-downgrade responses in
addition to the standard forward-downgrade responses. There are two forward-downgrade
conflict responses namely A22 and A11. An A22 response from the CPU means that
when the CPU received the forward-downgrade request to go to step 2, it was already at
step 2 and that there might be voluntary downgrade responses in transit. Similarly, the
CPU issues an A11 when it receives any forward downgrade request (F32, F31, F21) when
it is already at step 1, implying there is one or more voluntary downgrade responses in
transit. Both these messages do not have a “dirty” variant as they are not issued when
the cache line is in E state.

CPU DC

HS:RSState
3 1:3

F32

V32/V32d3 to 2

Conflict:
F32 at step 2

1:Wait A32

A22

1:2

2 to 2

CPU DC

HS:RSState
3 1:3

F32

V31/V31d3 to 1

Conflict:
F32 at step 1

1:Wait A32

A11

1:1

1 to 1

Figure 4.3: Conflicts responses for F32: In left, DC has CPU in step 3 when issuing
F32 but CPU is already at step 2 when receiving it. In right, DC has CPU in step 3 when
issuing F31 but CPU is already at step 1 when receiving it. Conflict responses A22 and
A11 are issued.

Now lets enumerate all conflicts that can happen in our model due to latency of the
interconnect. The first conflict scenarios are shown in Figure 4.3. In this scenario the
DC has the CPU in step 3 and requests the CPU to come down from step 3 to 2 (issues
F32). In this case, conflict arises when the CPU is in step 2 or step 1 when it receives the
downgrade request. If the CPU is in step 2, it sends an A22 as a conflict response and
remains in step 2. if the CPU is in step 1, it sends A11 as conflict response and remains
in step 1. Note that if the CPU is already in step 1, the DC cannot make the CPU to go

61

Chapter 4. Directory Protocol Modeling and Specification

up the stairs to step 2, using the forward downgrade request F32.

CPU DC

HS:RSState
3 1:3

F31
V32/V32d3 to 2

Conflict:
F31 at step 2

1:Wait A31

A21

1:1

2 to 1

CPU DC

HS:RSState
3 1:3

F31

V31/V31d3 to 1

Conflict:
F31 at step 1

1:Wait A31

A11

1:1

1 to 1

Figure 4.4: Conflicts responses for F31: In left, DC has CPU in step 3 when issuing
F31 but CPU is already at step 2 when receiving it. In right, DC has CPU in step 3 when
issuing F31 but CPU is already at step 1 when receiving it. Conflict responses A21 and
A11 are issued.

In the second scenario (shown in Figure 4.4), the DC has the CPU in step 3 in its directory
and asks the CPU to come down from step 3 to 1 by issuing an F31. Again conflict arises
when the CPU is in step 2 or step 1 by the time it receives the downgrade request. If
the CPU is in step 2, it has to come down to step 1 and it does so by issuing an A21
(acknowledge F31 but CPU coming down from step 2 to 1 instead of 3 to 1). If the CPU is
already in step 1, it issues an A11 as conflict response to downgrade request and remains
in step 1.

Finally in the third scenario, the DC has the CPU in step 2 and asks the CPU to come
down from step 2 to 1 by issuing an F21. In this case conflict arises when the CPU is
already in step 1 when it receives the downgrade request. The CPU resolves this conflict
by issuing an A11 and remaining in step 1. This conflict scenario is shown in Figure 4.5

Takeaway 4.3. Conflicts can arise due to the latency of interconnect given the highly
concurrent nature of coherence protocols. These conflicts are handled by exchanging ad-
ditional coherence messages. As will be seen later in subsection 5.5.3 another source of
conflicts is the reordering of messages by the interconnect. There are no other sources of
conflicts.

62

4.4. Coherence Messages

CPU DC

HS:RSState
2 1:2

F21V212 to 1
Conflict:

F21 at step 1

1:Wait A21

A11

1:1

1 to 1

Figure 4.5: Conflicts responses for F21: DC has CPU in step 2 when issuing F21 but
CPU is already at step 1 when receiving it. Conflict response A11 is issued.

Direction Initiating Message Expected Response Conflict Response
CPU to DC R12 RA2 -

R13 RA3 -
R23 RA3 -

CPU to DC V21 - -
V31d/V31 - -
V32d/V32 - -

DC to CPU F21 A21 A11
F31 A31d/A31 A21, A11
F32 A32d/A32 A22, A11

Table 4.1: Coherence messages involved in the DC protocol model.

In this section, we have considered only coherence messages that are predicted by the
model even if there are a lot more coherence messages (for example, atomic and coherent
non-caching operations). Table 4.1 summarizes all messages in coherence transactions that
are obtained by applying the rules of interaction to the directory protocol model. In the
next section, we classify these coherence messages into specific message classes.

63

Chapter 4. Directory Protocol Modeling and Specification

4.4.1 Coherence message classes

In section 4.4 we applied the CPU-DC rules of interaction to the directory protocol model
to identify all the coherence messages that would be exchanged between the two entities.
These coherence messages are exchanged through the coherent interconnect.

An interconnect typically classifies messages into a number of message classes and provides
a dedicated VC for each message class to allow for deadlock free exchange of messages. The
most basic distinction that an interconnect should make is between requests and response
message classes. That is, the interconnect should provide separate VCs for request and
response messages. To illustrate how deadlocks can occur due to a single VC, consider a
controller that requires response Rsp1 before it can handle request Req1. If the response
is stuck behind the request in a VC as shown in Figure 4.6, the response would never
be received by the controller which will lead to a deadlock. This problem is resolved by
having separate VCs for request and response message classes.

C
o
n
tro

lle
r

Req1Rsp1

StallVC

Figure 4.6: Deadlock can arise when interconnect provides a single VC for both request
and response message classes. Here the controller is waiting for a response to handle a
request but the response is stuck behind the request in the VC. Having separate VCs for
different message classes removes this problem.

In addition to request-response classification, the interconnect can further classify messages
based on the presence of data in the coherence message for performance reasons. Thus we
can have separate VCs for requests-without-data, requests-with-data, response-without-data
and response-with-data. Thus depending on the interconnect, the coherence messages
shown in Table 4.1 would be classified into a number of message classes. We will now
illustrate this classification on Enzian.

64

4.4. Coherence Messages

Section 3.3.1 describes the message classes that are provided by ECI. The classification of
coherence messages in Table 4.1 into ECI message classes (and ECI VCs) is as follows.

Request-without-data message class: This message class comprises of upgrade re-
quests (R12, R13, R23) that are made up of only a 64-bit header without any data. ECI
assigns VCs 6 and 7 for this message class.

Response-with-data message class: This message class includes all response messages
that have a header and up to 128-Bytes of cache line data. This includes voluntary
downgrade responses with data (V31d, V32d), responses to upgrade requests with data
(RA2, RA3) and responses to forward downgrade requests with data (A31d, A32d). ECI
allows data transfer to happen at Sub-Cache-Line (SCL) granularity. A cache line can be
split into 4 SCLs with each SCL being 32 Bytes. The number of SCL in a response-with-
data message is identified using the dmask field in the header of the message. ECI assigns
VCs 4 and 5 for this message class.

Response-without-data message class: This message class includes all response mes-
sages that only have a header and have no data associated. For example, the response RA3
that is sent for upgrade request R23 does not require data and this version of RA3 falls
under response-without-data message class. Other messages in this class include voluntary
downgrade responses without data (V31, V32, V21) and responses to forward-downgrade
requests that do not carry data (A31, A32, A21, A22, A11). ECI assigns VCs 10 and 11
for this message class.

Forward-requests-without-data message class: The final message class includes
forward-downgrade requests (F31, F32, F21) that have only a header and no data. ECI
assigns VCs 8 and 9 for this message class.

Note 4.6. ECI provides separate sets of VCs for odd and even cache lines indices to
increase parallelism and improve performance. VCs with odd VC number carry events for
even cache line indices and even VCs carry events for odd cache line indices. This is
convention that is established by ECI and can vary with the interconnect.

It is to be noted that there are more message classes associated with the DC (at its
interface to ECI as well as local interface within the FPGA), I have only described a
subset of them here and will describe additional message classes as needed. The message
classes are summarized in Table 4.2

Takeaway 4.4. Coherence messages are classified into a number of message classes. The
implementation of the interconnect should provide separate VCs for each message class to

65

Chapter 4. Directory Protocol Modeling and Specification

ECI Message Class VC # Message
Request-without-data 6, 7 R12, R13, R23
Response-with-data 4, 5 V31d, V32d

A31d, A32d
Response-without-data 10, 11 RA3 (for R23)

V31, V32, V21
A31, A32, A21, A22, A11

Forward-request-without-data 8, 9 F31, F32, F21

Table 4.2: ECI message classes and associated coherence messages.

avoid deadlocks. The number of VCs provided per message class depends on the intercon-
nect and its implementation.

4.5 Memory Transactions, Events and Message Classes

The DC provides coherent access to the FPGA attached memory. Memory transactions
are initiated by the DC to read or write cache line data to FPGA memory. Memory
transactions are classified into read and write transactions. The events associated with
memory transactions are as follows:

Memory read request-response pair: A read transaction has a read request (RDD)
event that is issued by the DC to memory followed by a read response event (RDDA) from
the memory. Each event forms its own message class and have independent channels for
communication.

Memory write request-response pair: A write transaction has a write request event
(WDD) that is issued by the DC to memory followed by a write response event (WDDA)
from the memory. Write events also form their own message classes and have separate
channels for communication.

Although memory message classes have independent channels, they are not assigned a VC
number. The memory message classes are summarized in Table 4.3. It is to be noted
that memory events and transactions are agnostic to the interconnect and its coherence
protocol.

66

4.6. Specifying Coherence Transactions

Message Class VC # Message
Read-request NA RDD

Read-response (with data) NA RDDA
Write-request (with data) NA WDD

Write-response NA WDDA

Table 4.3: Memory message classes and associated memory events.

4.6 Specifying Coherence Transactions

As defined in chapter 2 coherence transactions are a chain of coherence messages exchanged
between the DC and the CPU towards a common goal. These coherence transactions form
the specification and are required to generate the protocol state machine.

Since the model described in section 4.2 sets the rules of communication between CPU’s
LLC and FPGA’s DC, it is also used to identify all coherence transactions that are to be
handled by the DC. Before delving into identifying all coherence transactions, let look at
how they are specified using state equations.

4.6.1 State equation representation of coherence transactions

We have developed a notation called state equations to specify coherence transactions.
We use state equations to specify coherence transactions from the perspective of DC: The
state maintained by it and the coherence events it sends and receives.

The DC maintains both home and remote state of a cache line in its directory. The DC
can then issue or receive coherence messages as part of a coherence transaction that can
alter these states and require the DC to perform certain actions to maintain coherence
invariants. Eventually the coherence transaction completes leaving the cache line in the
state intended by the coherence transaction. These coherence transactions are described
using state equations that have the following format.

Initial HS : RS, {M1,M2,M3...} → Final HS : RS, (Action) (4.1)

Where Initial HS : RS is the initial home and remote states of a cache line in DC’s
directory, {M1,M2,M3...} is the ordered set of coherence events (both coherence messages

67

Chapter 4. Directory Protocol Modeling and Specification

and memory events) received by the DC, Final HS : RS is the home and remote state
of the cache line after all coherence messages are handled. (Action) is the action to be
performed by the DC such as issuing coherence responses and initiating coherence and
memory transactions.

A coherence transaction is always associated with a single coherence request (or none at
all). As such, the state equation that represents a single coherence transaction can have
atmost one coherence request in its ordered set of coherence events and not more.

Each coherence event that is received by the DC can be associated with an action that
has to be performed by the DC. When the action is performed is determined by the
specification of coherence transactions and the constraints imposed on DC protocol state
machine in order to maintains coherence invariants. As will be seen in subsequent sections,
actions for certain coherence events will be performed as soon as the coherence event is
received and for other coherence events, the state of the cache line would determine when
the action is performed.

Design Choice 4.1. We use a state equation to specify a coherence transaction. The
state equation represents the coherence transaction from the DC’s perspective. This choice
helps us to record the state transitions and the actions that should be performed by the
DC within the state equation. The alternate way of specifying transactions from CPU’s
perspective would be useful for generating test cases.

4.6.2 Specification of coherence transactions

A specification of the coherence protocol contains only the subset of state equations in
which the ordering of events is linearizable. There is an inherent ordering of coherence
events which gets reordered due to the nature of the system. For example, the CPU
issues coherence events for a cache line in a specific order which can be reordered by the
interconnect. Furthermore, coherence events can initiate memory transactions in which a
memory request is always followed by a response. The specification describes all coherence
transactions in the protocol where the ordering of coherence messages is the same as the
order in which they were issued by the CPU. In the specification, memory operations are
initiated immediately following its coherence event and memory operations are atomic,
i.e. that the response is received as soon as the request is sent.

Note 4.7. Linearizablity is ordering within a transaction. For example, a coherence event
that initiates a memory request is always followed by a memory response. In contrast,

68

4.6. Specifying Coherence Transactions

serializability is across transactions. For example, memory transactions are serialized
when the second transaction starts after the first transaction completes. Serialization of
transactions leads to performance bottlenecks.

Since we did not have a formal specification of the CPU’s coherence protocol, we base the
specification on the DC protocol model. Using this model, we idetnfy all pathways the CPU
can take given an initial state and use this to identify the order of coherence messages issued
by the CPU. The model also provides a layer of abstraction from the actual implementation
of the coherence protocol and thus by changing just the model and applying the same
principles we can build the protocol state machine of other implementations like CXL.

Given a state equation from the specification, it is the responsibility of the state space
exploration tool to identify all possible reorderings that can happen and build the state
machine. In order to do this, we need to understand how the scrambler in the protocol
model affects a state equation.

Takeaway 4.5. A specification of directory protocol contains only the set of state equations
where the ordering of coherence events is the same as the order in which the events were
issued by the CPU. It is the responsibility of the state space exploration tool to identify
state equations that arise due to reordering when building the state machine.

4.6.3 Effect of scrambler on state equations

Section 4.3.1 describes how the scrambler models the reordering of coherence messages by
the interconnect in the DC protocol model. Since the scrambler cannot affect the state
of the cache line in the CPU’s LLC or the intended goal of a coherence transaction, it
follows that the scrambler cannot affect the initial or final state of the cache line in the
DC’s directory. What it does affect is the number of coherence transactions that would
have to be handled by the DC, that is, the number of DC state equations.

With this in mind, consider a state equation in which the CPU issues three messages M1,
M2, M3 in that order. The DC can receive the message in 3! ways giving us 6 possible
coherence transactions (with state equations shown in equation 4.2) to be handled by the
DC for the same initial and final DC states and action to be performed.

69

Chapter 4. Directory Protocol Modeling and Specification

Initial HS : RS, {M1, M2, M3} → Final HS : RS, (Action) specification

Initial HS : RS, {M1, M3, M2} → Final HS : RS, (Action) reordered

Initial HS : RS, {M2, M1, M3} → Final HS : RS, (Action) reordered

Initial HS : RS, {M2, M3, M1} → Final HS : RS, (Action) reordered

Initial HS : RS, {M3, M1, M2} → Final HS : RS, (Action) reordered

Initial HS : RS, {M3, M2, M1} → Final HS : RS, (Action) reordered

(4.2)

We also noted previously that only coherence messages sent through the interconnect
can be reordered by the scrambler and memory responses received by the DC cannot be
reordered. For example, consider the following state equation in 4.3 where the CPU issues
coherence message M1 followed by another coherence message M2 and message M1 causes
the DC to issue a write request. Since memory transactions are represented atomically in
the specification, the coherence message M1 will be followed by a write response (WDDA)
and then coherence message M2. Even if there are three coherence events (2 coherence
messages and 1 memory response event) there can be only 2! reordering since a write
response cannot precede the coherence message M1 which issues the write request.

Initial HS : RS, {M1,WDDA,M2} → Final HS : RS, (Action) specification

Initial HS : RS, {M2,M1,WDDA} → Final HS : RS, (Action) reordered

Initial HS : RS, {WDDA,M1,M2} → Final HS : RS, (Action) not possible
(4.3)

Takeaway 4.6. With the specification of a coherence transaction in the form of state
equation without any reordering, it is possible for the state space exploration tool to identify
all possible reordering scenarios and generate corresponding state equations.

Messages in transit: It was noted earlier in subsection 4.6.1 that the state equation can
have at most one coherence message of the request message class. Thus, in a state equation
with multiple coherence events in its ordered set, any messages that are present after a
request message indicate responses messages that are in transit and would be eventually
received by the DC.

70

4.6. Specifying Coherence Transactions

4.6.4 DC protocol state machine design choices

Before enumerating all possible state equations predicted by the protocol model and gen-
erating the protocol state machine, let us look at some design choices made for building
the protocol state machine. The main aim here is to define the scope of the state space
exploration tool that is used to generate the protocol state machine.

In the previous section we have seen that the DC state equations are specified at the gran-
ularity of a coherence transaction; it gives the final state and action given an initial state
and set of coherence events. The protocol state machine that handles these transactions
have to account for the fact that not all events in the coherence transaction arrive simul-
taneously. As such the state machine would benefit from a specification at the granularity
of a single coherence event rather than with the set of coherence events in a transaction.

For example, consider a coherence transaction with two coherence events (M1, M2) out of
which only the first event M1 has arrived at a given point.

Initial HS : RS, {M1,M2} → Final HS : RS, (Action) (4.4)

Instead of the protocol state machine waiting for the second coherence event (M2) to
arrive before handling the coherence transaction, it can consume the first event into an
intermediate state and continue handling other coherence transactions. Eventually when
the second event arrives, the state machine can complete the coherence transaction us-
ing information from the intermediate state. This effectively splits the coherence state
equation in 4.4 into two sub equations as shown below.

Initial HS : RS, {M1} → Intermediate HS:RS

Intermediate HS:RS, {M2} → Final HS : RS, (Action)
(4.5)

It is the responsibility of the state space exploration tool to split the state equations into
smaller equations and identify the intermediate states required. Having intermediate states
increases the number of states and thus the complexity of the protocol but it improves the
performance of the state machine by allowing it to handle multiple outstanding coherence
transactions on different cache lines (i.e. avoiding serialization of transactions).

If the state space exploration tool has information on message classes and their VCs (which
is specific to an interconnect), it can further optimize the state machine by looking to con-
sume more than one event at a given time. For example, if there is a coherence transaction

71

Chapter 4. Directory Protocol Modeling and Specification

with three coherence events out of which two have arrived at a given point in different
VCs, it can consume both events simultaneously by transitioning to an intermediate state
as shown in equation 4.6. Although this optimization can improve performance in this
very specific (non-critical) scenario, it increases the number of states and the complexity
of the state space exploration tool.

Initial HS : RS, {M1,M2} → Intermediate HS : RS

Intermediate HS : RS, {M3} → Final HS : RS, (Action)
(4.6)

In order to keep the state space exploration tool simple, we choose to not perform this
optimization. At the cost of being able to consume only one coherence event at a time, we
limit the number of states and keep the state space exploration tool agnostic to message
parallelism provided by VC (and thereby agnostic to the nature of the interconnect).

Design Choice 4.2. The protocol state machine handles only one coherence event at a
time even if there are multiple outstanding coherence events belonging to a coherence trans-
action on different VCs. This design choice makes the state machine generation process
agnostic to the implementation details of the interconnect but removes the possibility of
performing certain performance optimizations.

Cardinality of state equations: The number of events in the ordered set of events in
a state equation is the cardinality of a state equation. For example, all state equations in
equation 4.2 have three coherence events and thus have a cardinality of 3. When comparing
two state equations, the smaller state equation has lesser cardinality than larger state
equation. The cardinality of a state equation is always a positive integer greater than or
equal to 1.

Reducing state equations: The process of converting a state equation of cardinality
N(∀N > 1) to multiple state equations of cardinality K(∀K < N) with intermediate
states is called reducing the state equation.

Solving state equations: As per our design-choice 4.2, it is beneficial to reduce state
equations with cardinality N > 1 to state equations with cardinality of 1 to build the state
machine. The process of reducing a state equation of cardinality N(∀N > 1) to multiple
state equations of cardinality 1 is called solving state equations.

Deterministic state machine: The second design choice made is that we want the state
space exploration tool to generate a deterministic state machine where the next state and

72

4.7. State Space Exploration Tool

action to be performed is only determined by the present state and coherence event being
handled. This helps simplifying the state machine to a simple table where the present state
and coherence event can be looked up to get the next state and action to be performed.

Design Choice 4.3. The protocol state machine has to be deterministic where the next
state and action to be performed only depend on the present state and coherence event
being handled. This is done to reduce the state space by collapsing equivalent states into a
single state.

4.7 State Space Exploration Tool

Putting it all together, we have seen the DC protocol model and its rules of interaction.
Using these we identified all coherence messages that can be exchanged and their message
classes. We have developed a notation to specify coherence transactions, although we
havent specified any. In the subsequent chapters we will apply the rules of interaction
to the protocol model to identify the coherence transactions in the directory protocol
specification. We also made certain design choices that will help simplify the state space
exploration tool.

The state space exploration tool is a term rewriting system [BKdV03] which repeatedly
applies certain operators on state equations to reduce them. This tool takes in a specifi-
cation of state equations that represent coherence transactions with a linearized order of
events. The tool identifies all possible reordering of the state equations and reduces them
to state equations of cardinality 1 (solves them) with intermediate states. These single-
event state equations are then used by the tool to generate a deterministic DC protocol
state machine that handles one coherence event at a time. The generated state machine
should be performant, deadlock free and guarantee that coherence invariants are met. This
state machine is represented in the form of a table Table 4.4 where given a present state
and a coherence event, each cell identifies the next state and action to be performed. Next
lets look at what operators can be applied by the tool on state equations to reduce them.

4.7.1 Operators on state equations

The state equation or cardinality 1 has only one coherence event and the state transition is
directly specified in the state equation. For example equation 4.7 shows two state equations

73

Chapter 4. Directory Protocol Modeling and Specification

Present HS:RS M1 M2
S1 S2 (Action) S3 (Action)
S2 S4 (Action) S5 (Action)

Table 4.4: State machine in the form of a table where each cell identifies the next state
and action to be performed given a present state and coherence event. S1 to S5 are states
and M1, M2 are coherence events.

with a single coherence event where given the initial state S1 the state transitions are
defined when coherence event M1 or M2 is received.

S1, {M1} → S2, (Action1)

S1, {M2} → S3, (Action2)
(4.7)

These state equations can directly be represented in the state machine as shown in Ta-
ble 4.5 where given a state, one can look up the next states and actions for different
coherence messages.

Present HS:RS M1 M2
S1 S2 (Action1) S3 (Action2)

Table 4.5: State machine for state equations with a single coherence event can be trivially
generated.

Slightly more complex are state equations with two coherence events (cardinality of state
equation is 2). Since the state machine handles only one coherence event at a time (design-
choice 4.2), these state equations have to be split into smaller state equations. Equation
4.8 gives an example where a state equation with two coherence events is split into two
state equations with one coherence event each. This is done with S2 as a new intermediate
state.

S1, {M1,M2} → S3, (Action1) given

S1, {M1} → S2, (Action2) split 1

S2, {M2} → S3, (Action1) split 2

(4.8)

The split equations can then be represented in the form of a table shown in Table 4.6
where X represents state transitions that are not possible given these state equations.

Thus to generate the state machine, multi-event state equations have to be reduced to
single-event state equations by identifying intermediate states. To do this, we define

74

4.7. State Space Exploration Tool

Present HS:RS M1 M2
S1 S2 (Action2) X
S2 X S3 (Action1)

Table 4.6: State equations with more than one coherence event has to be split down to
state equations with one coherence event to be able to generate the state machine.

three operators on state equations: substitution and creation and stall operator for
reordering. The substitute and create operators help split state equations with two or
more coherence events into state equations with lesser number of coherence events. When
these operators are applied repeatedly, we can reduce the cardinality of state equation to
1. Thus the substitution and creation operators are together called reduction operators.
The smaller state equation that is obtained by applying the reduction operators on a larger
state equation is referred to as the inferred state equation.

In contrast, the stall operator does not split larger state equations into smaller state equa-
tions but rather reorders a state equation. Let us first look at the substitution operator.

4.7.1.1 Substitution operator

We can define a substitution operator where a known state equation with cardinality 1
is substituted into a given (specified) state equation with larger cardinalty N to create
a new state equation with smaller cardinality K(∀K < N). This is akin to the state
machine handling the first event in the ordered set of events in the given state equation
and updating the directory with the new state prescribed by the known state equation.
Substitution results in a new state equation whose present state is dictated by the known
state equation and the ordered set of events is the same as the set of events in the given
state equation but with the first event removed (as it has been already handled). Shown
below in Equation 4.9 is an example of substituting a known state equation into a given
state equation with two coherence events.

S1, {M1,M2} → S3, (Action1) Given

S1, {M1} → S2, (Action2) Known

S2, {M2} → S3, (Action1) Inferred by substituting known in given

(4.9)

To explain, the given (or specified) state equation begins with initial state S1, receives
two coherence messages M1 and M2 before transitioning to state S3. If, for example,

75

Chapter 4. Directory Protocol Modeling and Specification

the specification provides a smaller state transition from state S1 to S2 when encountering
coherence event M1, then this can be substituted into the given state equation by replacing
the present state (S1) and first coherence event (M1) with the state described by the known
state equation (S2). Equation 4.9 also shows the resulting state equation with one less
coherence event (indicating that the first event has been handled by the state machine).
New state transitions can be inferred from the resulting state equation that has to be
honored by the state machine. In the example above, it can be inferred from the resulting
state equation that when handling coherence event M2 given present state S2, the next
state should be S3 and Action1 has to be performed. It can also be inferred that Action2
has been completed.

This gives us an idea of “knowing” state equations. A state equation in the specification
with a single coherence event is a “known” state equation by default. Any single-event
state equation that are inferred will also be added to the compendium of known equations.
Thus known state equations are single-event state equations that are either specified or
inferred and known state equations can be substituted into larger state equations to get
smaller state equations.

Algorithm 1 shows the pseudo code of the substitution operator. As shown the substitution
operator replaces the current state and first event in the list of events with a known
intermediate state to infer a new state equation.

Since the inferred state equation prescribes what the state machine has to do, it has to be
consistent with the prescriptions of previously known state equations if the state machine
has to be deterministic. For example in Equation 4.10, say we already know that the state
machine transitions from S2 to S4 when event M2 is encountered but a newly inferred
state equation prescribes a transition from S2 to S3 when M2 is encountered, then the
inferred state equation is inconsistent with a previously known state equation and leads
to non-determinism. Such inconsistencies point to a problem with the specification of
coherence transactions.

S2, {M2} → S4, (Action4) Known

S2, {M2} →((((((((
S3, (Action1) Result inconsistent with known

(4.10)

The state space exploration tool can check for any inconsistencies when an inferred state
equation is being added to the set of known state equations. Algorithm 2 shows a pseudo
code of how this can be done. It checks an inferred state equation with a set of known

76

4.7. State Space Exploration Tool

Algorithm 1 Substitution operator to reduce state equations: substitute known smaller
equation into larger equation to reduce the larger equation and infer new state equations.

equation S1, {M1,M2} → S3, (Action1)
Known S1, {M1} → S2, (Action2)

1: cur stt← S1
2: evt lst← [M1,M2]
3: fnl stt← S3
4: acn← Action1
5: known[(S1, M1)]["next state"]← S2
6: known[(S1, M1)]["action"]← Action2
7: procedure substitution(known, cur stt, evt lst, fnl stt, acn)
8: int stt← cur stt

9: if (cur stt,evt lst[0]) in known then . Substitute
10: cur evt← evt list.popleft()
11: int stt← known[(cur stt, cur evt)]["next state"]

12: cur stt← int stt
13: return (cur stt, evt lst, fnl stt, acn)

14: Output: Reduced state equation
15: cur stt← S2
16: evt lst← [M2]
17: fnl stt← S3
18: acn← Action1

state equations. If the state transition or action prescribed by the inferred state equation
differs from those of known state equations then the inferred state equation is inconsistent.

Thus substitution operator when applicable, splits a larger state equation into a set of
smaller state equations which can easily be converted into a state machine.

Takeaway 4.7. known state equations are single-event state equations that are either
specified and inferred. Known state equations can be substituted into larger state equations
to get smaller state equations that would have to be honored by the state machine. New state
transitions can be inferred from the resulting state equation and this should be consistent
with previously known state equations. Any inconsistencies between previously known and
newly inferred state equations will lead to non-determinism, indicating a problem with the
specification of the coherence protocol.

77

Chapter 4. Directory Protocol Modeling and Specification

Algorithm 2 State equation consistency check: Check if an inferred state equation is
consistent with previously known state equations.

1: procedure check se consistency(known, cur stt, cur evt, fnl stt, acn)
2: if (cur stt,cur evt) in known then
3: if fnl stt 6= known[(cur stt,cur evt)]]["next state"] or

acn 6= known[(cur stt,cur evt)]]["action"] then
4: return ("inconsistent")

5: return ("consistent")

4.7.1.2 Stall operator for reordering state equations

Stall operators are intended to reorder the set of coherence events in a state equation.
When conflicts arise due to interconnect reordering coherence events, a stall operator
can be useful to identify the correct order of events as issued by the CPU. In contrast to
substitution and creation operators, a stall operator can never create a new state equation.
From the state machine point of view, a stall operator on the state equation is similar to the
state machine delaying a coherence event from being handled till another coherence event
is received. Delaying a coherence event does not require transitioning to an intermediate
state.

S1, {M1,M2} → S3, (Action1) Ordering of events by CPU

S1, {M2,M1} → S3, (Action1) Effect of reordering by interconnect

S1, {M2} → S1, (Stall) Stalling M2 till M1 arrives

S1, {M1,M2} → S3, (Action1) Stalling results in reordering of events

(4.11)

It was noted earlier in subsection 4.6.1 that a state equation can contain at most one
message of the request message class. It was also noted that any messages in the ordered
message set of a state equation, that is present after a request message indicate response
messages that are in transit and would be eventually received by the DC. In this scenario,
stalling the request message till one or more messages in transit are received can be
beneficial. For example, stalling an upgrade request till all downgrade responses with
dirty data is received is essential to maintain the data-value invariant. That said, stalling
coherence events can lead to deadlocks and requires careful design choices to avoid them.
This is discussed in detail in section 5.5.

78

4.7. State Space Exploration Tool

4.7.1.3 Create operator to create intermediate state

Algorithm 3 Create new intermediate state: Whenever a state transition is not known,
create an intermediate state in the format given by the algorithm.

Input S1, {M1,M2,M3} → S3, (Action1)
Output int stt for S1, {M1} : S3 M2 M3

1: cur stt← S1
2: evt lst← [M1,M2,M3]
3: fnl stt← S3
4: acn← Action1
5: cur evt← evt lst.popleft()
6: procedure create int stt(known, cur stt, evt lst, fnl stt, acn)
7: int stt← fnl stt
8: N← length(evt lst)
9: for k ← 0 to N − 1 do

10: int stt← append(int stt, ‘‘ ’’, evt lst[k])

11: return (int stt)

A create operator can be used to reduce state equations when a substitution is not possible.
The create operator creates a new intermediate state which can then be substituted in the
larger state equation to get a smaller state equation.

For example, consider the following state equation (equation 4.12). Here the state of the
cache line is initially S1 when coherence event M1 is received. The specification does not
indicate the next state and action for this situation. Assuming maintaining data-invariants
allows for action corresponding to M1 be performed (M1 is not stalled), we can consume
the message M1 into an intermediate state IS1 and perform action corresponding to the
message M1. This transition is deterministic and should be added to the set of known
equations to avoid non-determinism.

S1, {M1,M2,M3} → S3, (Action1) given

S1, {M1} → unknown, (Action for M1) if M1 is not stalled

S1, {M1} → IS1, (Action for M1) create new state

add to known

IS1, {M2,M3} → S3, (Action1) inferred by substitution

(4.12)

79

Chapter 4. Directory Protocol Modeling and Specification

Substituting the intermediate state into the original state equation will result in a smaller
state equation that would have to be honored by the DC protocol.

S1, {M1,M2,M3} → S3, (Action1) given

S1, {M1} → S3 M2 M3, (Action for M1) create new state

add to known

S3 M2 M3, {M2,M3} → S3, (Action1) inferred by substitution
(4.13)

The name of the intermediate state can be arbitrary and the convention shown in equation
4.13 is used for naming intermediate states. The intermediate state name contains the
final state and remaining coherence messages from the given state equation, separated by
underscore. This is done to improve readability. The pseudo code is given in algorithm 3.

4.8 Summary

In pursuit of generating the DC protocol state machine, so far we have developed a model
for the directory protocol and identified all coherence events that would have to be involved
in the model. We also looked at how coherence transactions can be specified using state
equations and how solving them can help generate the protocol state machine. We then
looked at a few basic operations that can be used by the state space exploration tool to
solve state equations though we havent seen how. Finally we have seen the first set of
design choices made before building the DC protocol state machine.

The main reason to build a model, specify the protocol and have the protocol state machine
generated automatically is to keep everything customizable and agnostic to the nature of
the interconnect.

As for the guarantees that are to be provided by the DC protocol state machine, we have
only ensured one: Coherence transactions on different cache lines would be independent
of each other. We have also seen how conflicts arising due to latency of interconnect can
be handled by issuing a special class of conflict responses. In the next chapter we look at
how to enumerate coherence transactions from the model and build the first version of the
DC protocol state machine.

80

5
Specifying Coherence Transactions

Initiated by CPU

5.1 Introduction

In chapter 4 we introduced the DC protocol model along with the rules of interaction
between the CPU and the DC on the FPGA for accessing an FPGA-homed cache line.
We also looked at the notation of state equations and how they can be used to specify
coherence transactions. The next question is how do we identify all possible coherence
transactions that can occur in our model? To answer this question, we look at a subset
of coherence transactions in this chapter; transactions that are initiated by the CPU. We
specifically answer the question: how do we identify and specify all possible coherence
transactions that can be initiated by the CPU?

The second question this chapter begins to answer is what would be the algorithm of
the state space exploration tool? As mentioned earlier, the state space exploration tool
must generate the directory protocol state machine from its specification. Based on the
guarantees that are to be provided by the directory layer (discussed in section 3.4), we
define the goals of this tool as follows. First, it has to account for the fact that the
interconnect can reorder coherence messages. Second, it has to guarantee the coherence
invariants (discussed in subsection 2.3.4) are met. Third, it should guarantee there are

81

Chapter 5. Specifying Coherence Transactions Initiated by CPU

no deadlocks in the DC protocol state machine. Finally, it should optimize the state
machine for performance in its critical path. This chapter addresses how such a state
space exploration tool can be built.

Since we do not have a formal specification of coherence transactions (subsection 4.6.2 for
more details), we rely on the DC protocol model to create our own specification. To begin
with, we identify certain initial conditions and then apply the rules of interaction to get
all coherence transactions that are possible given the initial conditions.

We limit the number of initial conditions by only considering coherence transactions that
are initiated by the CPU in this chapter. This means that forward-downgrade transactions
that can be initiated by the DC are not considered. In other words, we only consider
transactions that allow the CPU to coherently access the FPGA attached memory. In
subsequent chapters we will relax this constraint to allow forward-downgrade transactions
and application issued coherence messages.

Thus we have three main objectives in this chapter. The first is to use the DC protocol
model from section 4.2 to obtain a specification of the DC protocol. The second objective
is to develop an algorithm for the state space exploration tool. The final objective is to
construct a DC protocol state machine using the state space exploration algorithm, that
allows CPU to coherently access FPGA address space.

This chapter does not make any new assumptions on the nature of the interconnect and
is organized as follows.

1. Sections 5.3 and 5.2 establishes three initial conditions in the DC protocol model
from which we can build the DC protocol state machine.

2. Sections 5.4, 5.5 and 5.6 goes into detail of building the protocol state machine given
the initial conditions. All these sections are structured to address how the goals of
state space exploration tool are achieved.

• A section to identify all pathways the CPU can take.

• A section to build the specification state equations based on these pathways and
how identify how coherence invariants can be maintained for these coherence
transactions.

• A section to consider reordering of coherence transactions and identify how
coherence invariants can be maintained for each coherence transaction.

82

5.2. Initial Conditions

• A section to build the actual state machine that is deadlock free and performant.

3. Section 5.6 distills the method of solving state equations into an algorithm which
can be used to automatically generate the state machine.

Takeaway 5.1. Goals of state space exploration tool: First, it has to account for the
fact that the interconnect can reorder coherence messages. Second, it has to guarantee the
coherence invariants are met. Third, it should guarantee there are no deadlocks in the DC
protocol state machine and finally, it should optimize the state machine for performance
in the critical path.

5.2 Initial Conditions

An initial condition is where state of a cache line is one of the stable states (I, S or E)
and the state of the cache line in the CPU’s LLC matches the remote state (RS of HS:RS
shown in Figure 4.1) of the cache line that is tracked in the DC’s directory. Given an
initial condition, coherence transactions can be initiated by the CPU which causes the
states in the LLC and DC’s directory to diverge briefly till the transaction is completed.
Once the transaction is completed, the CPU and FPGA will again converge on the remote
state of the cache line. This gives us the following initial conditions:

• State of cache line in CPU’s LLC and RS in DC’s directory are both I.

• State of cache line in CPU’s LLC and RS in DC’s directory are both S.

• State of cache line in CPU’s LLC and RS in DC’s directory are both E/M.

5.3 Maintaining Coherence Invariants

One of the design choices made was to not allow applications on the FPGA to cache FPGA-
homed cache lines (design-choice 3.4). The CPU’s LLC is the only coherence controller
that can issue coherent caching messages and coherence controllers on the FPGA interact
with the DC through coherent non-caching messages. This also means that the CPU is
the only writer to copies of cache lines and that state of cache line on the FPGA (HS) is
always I. Thus the SWMR invariant is maintained by default.

83

Chapter 5. Specifying Coherence Transactions Initiated by CPU

It is the responsibility of the DC protocol state machine to maintain the data-value in-
variant and provide the most up-to-date copy of an FPGA-homed cache line for caching
requests from the CPU. How this can be done by the state space exploration tool is
discussed in the following sections.

Takeaway 5.2. CPU’s LLC is the only coherence controller that can write to cached
copies of FPGA-homed cache lines. So SWMR invariant is maintained by default and HS
of all cache lines are I. This also implies FPGA applications can only perform coherent
non-caching operations on FPGA-homed cache lines.

The steps taken to maintain coherence invariants are as follows. We first identify a set of
initial conditions that can occur in the system. Next, for each of these initial conditions,
we apply the rules of interaction between the CPU and DC to the DC protocol model and
identify all possible coherence transactions that can occur based on the initial conditions.
This is done in two sub-steps. In the first sub-step, we look at the coherence transactions
that can occur if there is no reordering by the interconnect. These coherence transactions
form the specfication of the protocol given the initial conditions. In the second sub-step, we
identify all possible message reorderings that can occur in these coherence transactions by
the interconnect. Then we go through each of the coherence transaction (both specification
and reordered transactions) to look at the design choices needed to maintain coherence
invariants.

By carefully identifying the set of initial conditions and checking each coherence trans-
action derived from the model for coherence invariants should guarantee that coherence
invariants are maintained by the protocol state machine.

5.4 CPU State: I, DC State: I:I

To begin with, we start with a subset of interactions that happen for an FPGA-homed
cache line that is Invalid in CPU’s cache and is also marked Invalid in the DC’s directory
(HS:RS is I:I or 1:1). The most up-to-date value for this cache line is in the FPGA memory.

5.4.1 CPU pathways

This case is represented in our model (Figure 4.1) with the CPU being in step 1 and the
DC has CPU’s step recorded as 1 in its directory. Looking at all possible paths the CPU

84

5.4. CPU State: I, DC State: I:I

can take from step 1, the CPU has two options of going up the stairs, from step 1 to
step 2, or step 1 to step 3. Interaction rule 5 forbids the CPU from altering its request
before receiving a response. Also the CPU cannot come further down the stairs as it is at
its lowest step. Thus there can only be three pathways the CPU can take, the CPU can
continue remaining in step 1, or it can issue a read-shared (R12) or read-exclusive (R13)
and wait for a response from the DC. These pathways are shown in Figure 5.1

CPU was in step 1

DC has CPU in step 1

Wait RA3Step 1

R12 R13

Step 1

Wait RA2

Figure 5.1: Pathways CPU can take from step 1: The CPU can continue remaining in
step 1 or make upgrade requests (R12, R13) and wait for a response from DC.

When the DC receives the upgrade request, it has to ensure that the coherence invariants
are met and respond to the request with the cache line data.

5.4.2 Specification and maintaining coherence invariants

When the cache line is invalid in both home and remote nodes, the most up-to-date copy
of the cache line is in the memory of the home node. Thus to maintain data-value invariant
for CPU’s upgrade requests, the DC should read the FPGA memory for the cache line
and respond to the CPU. Since the CPU is the only node that can currently read or write
to the cache line, SWMR invariant is trivially maintained.

The transactions for both scenarios are shown in Figure 5.2. Upon receiving an upgrade
request from the CPU, the DC reads the cache line data from its memory and sends
a response to the CPU. The DC also updates the remote state of this cache line in its
directory; For read-shared (R12) request, the DC sends an RA2 and updates its remote
state to S (1:2), and for the read exclusive (R13) request, the DC sends an RA3 and
updates its remote state to E (1:3). The CPU upgrades to the new state upon receiving
a response from the DC.

85

Chapter 5. Specifying Coherence Transactions Initiated by CPU

CPU DC

RA2

R12
HS:RS

Mem

RDD

RDDA

1:1

1:2

1
(Wait RA2)

State

2

CPU DC

RA3

R13
HS:RS

Mem

RDD

RDDA

1:1

1:3

1
(Wait RA3)

State

3

Figure 5.2: Read-Shared and Read-Exclusive transactions: Since FPGA memory has the
most up-to-date value, the DC should read the memory and send its content as a response.

Note 5.1. If the HS of a cache line is I, the DC is free to provide exclusive access for a
read-shared request from the CPU since the CPU will hold the only copy of the cache line.
In this case, the DC can send an RA3 instead of RA2 and this optimization is optional
and can differ between platforms. The CPU’s native protocol in Enzian allows for this
optimization.

The two transactions in Figure 5.2 can be be represented in terms of the following state
equations which forms the specification given the initial conditions (check subsection 4.6.1
for the format of state equations).

1 : 1, {R12} → 1 : 2, (read memory and Send RA2)

1 : 1, {R13} → 1 : 3, (read memory and Send RA3)
(5.1)

For both equations, the present home and remote states of the the cache line in DC’s
directory is 1:1. When the DC observes an R12 (or R13), it reads the memory and
responds to the CPU with an RA2 (or RA3). The DC finally updates the state of this
cache line to from 1:1 to 1:2 (or 1:3) in its directory.

86

5.4. CPU State: I, DC State: I:I

5.4.3 Reordering effects and maintaining coherence invariants

For a cache line, the CPU can issue a single upgrade request before waiting for a response.
No other coherence messages can be issued by the CPU for this cache line till the response
is received. Since there is only one message in transit, there can be no reordering by the
interconnect for these coherence transactions.

5.4.4 Building the state machine

Equations 5.1 can be also be represented in the form of a protocol state machine shown
in Table 5.1, where given a present-state and coherence message, the contents of the cell
gives the next state and action to be performed by the DC (check subsection 4.7.1 for
more details on representing state equations in the form of a a table).

Present HS:RS R12 R13
1:1 1:2 (read memory and send RA2) 1:3 (read memory and send RA3)

Table 5.1: DC protocol state machine (aka state table) to handle coherence transactions
issued by the CPU for a cache line that is invalid in CPU’s LLC.

Deadlocks in protocol state machine: Given the initial condition the state machine
in Table 5.1 only waits for messages that are defined by the specification and there is no
dependency between events for handling them. If we assume that the DC protocol model
is correct, there are no deadlocks in the protocol state machine. Check subsection 3.4.1
for more information on protocol deadlocks.

Note 5.2. We assume the model is correct because it works in practice and there is no
real way to prove that the model matches the CPU’s native protocol specification.

Performance of protocol state machine: The protocol state machine described above
suffers from performance bottleneck due to latency of the read/write operation. The state
machine requires issuing a request to memory and waiting for a response before it can
handle new upgrade requests. This leads to serialization of memory transactions, blocking
of coherence transactions and does not allow for multiple outstanding or out-of-order
memory transactions. This bottleneck is illustrated by Figure 5.3 where upgrade request
on a second cache line is blocked till the read operation on the first cache line completes.

87

Chapter 5. Specifying Coherence Transactions Initiated by CPU

CPU DC

RA3 (2)

R12 (1)

HS:RS
Mem

RDD(1)

RDDA (1)

1:1 (1)
1:1 (2)

CL1 - 1
(Wait RA2)

State

CL2 - 1
(Wait RA3)

RDD(2)

CL2 - 3

RDDA (2)

RA2 (1)
CL1 - 2

R13 (2)

1:2 (1)
1:1 (2)

1:2 (1)
1:3 (2)

Figure 5.3: Serializing memory transactions lead to performance bottleneck in the protocol
state machine due to blocking of upgrade request for a second cache line by the DC till a
read response for the first cache line is received from memory. The cache line corresponding
to a coherence event and DC state is shown within parenthesis.

Since most upgrade requests require reading from the memory, these transactions are in
the critical path and can quickly become the performance bottleneck.

The solution to this problem is to have the state machine transition to an intermediate
state upon issuing the read request and continue handling new transactions. Eventually
when the read response arrives, the intermediate state provides context on what is to be
done. Thus at the cost of increased state machine size, we can optimize for performance
in the read critical path.

This optimization is illustrated by Figure 5.4. When the DC receives a read-shared request
for the first cache line, it issues a read request to memory (RDD) and updates its directory
with an intermediate state (1:2pRA2) for this cache line. The DC is now free to handle
the read-exclusive request for the second cache line by issuing an RDD and transitioning
to an intermediate state (1:3pRA3). Eventually when read responses from the memory
(RDDA) arrives, the intermediate state would dictate the response sent and new states
of the cache lines. This also allows the DC to handle transactions that are out of order

88

5.4. CPU State: I, DC State: I:I

CPU DC

RA3 (2)

R12 (1)

HS:RS

Mem

RDD(1)

RDDA (2)

1:1 (1)
1:1 (2)

CL1 - 1
(Wait RA2)

State

1:2pRA2 (1)
1:1 (2)CL2 - 1

(Wait RA3)
R13 (2) RDD(2)

1:2pRA2 (1)
1:3pRA3 (2)

1:2pRA2 (1)
1:3 (2)

CL2 - 3

RDDA (1)

1:2 (1)
1:3 (2)

RA2 (1)
CL1 - 2

Figure 5.4: Having the state machine transition to intermediate state prevents blocking
and serialization of transactions. It also allows the DC to handle transactions out of order.

as shown in Figure 5.4 where the read response from the memory for the second cache
line is received before the first. first. Note that the names of intermediate remote state
2pRA2 and 3pRA3 are arbitrary with the following convention for naming: 2pRA2 means
the final remote state will be 2 (S) pending (’p’ in 2pRA2) a response RA2.

Design Choice 5.1. Serializing read and write transactions can cause performance bottle-
necks. Using intermediate states, the memory transactions can be split to handle requests
and responses independently and improve performance. The downside of this design choice
is that it increases the number of states in the state space.

Revisiting specification state equations to include performance optimizations:
State equations 5.2 show the modifications made to equations 5.1 to allow for this opti-
mization for a single cache line. The event R12 transitions the RS of a cache line from

89

Chapter 5. Specifying Coherence Transactions Initiated by CPU

state 1 to intermediate state 2pRA2 and triggers the RDD (memory read request) event.
Eventually when the memory response event (RDDA) arrives, the cache line transitions
from RS 2pRA2 to state 2. Note that read requests (RDD) are sent to the memory whereas
coherence messages (RA2 and RA3) are sent to the CPU.

1 : 1, {R12} → 1 : 2pRA2, (Send RDD)

1 : 2pRA2, {RDDA} → 1 : 2, (Send RA2)

1 : 1, {R13} → 1 : 3pRA3, (Send RDD)

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3)

(5.2)

Effect of reordering of coherence events on state equations: All state equations
in equation 5.2 have only one coherence event in transit for a cache line and so there are
no reordering effects.

Building the state machine: Table Table 5.2 shows the protocol state machine for equa-
tions 5.2, where “X” denotes coherence events that are not possible under the constraints
of the state equations.

Present HS:RS R12 R13 RDDA
1:1 1:2pRA2 (Send RDD) 1:3pRA3 (Send RDD) X

1:2pRA2 X X 1:2 (Send RA2)
1:3pRA3 X X 1:3 (Send RA3)

Table 5.2: DC protocol state machine to handle coherence transactions issued by the
CPU for a cache line that is invalid in CPU’s LLC. The state machine is optimized for
performance along the read critical path.

Deadlocks in protocol state machine: By simply observing the state machine in Ta-
ble 5.2 we can convince ourselves that the state machine only waits for coherence messages
that are defined by the specification and that there are no dependencies between events
when it comes to handling them. Thus according to subsection 3.4.1 there should not be
any protocol deadlocks.

To summarize, we started with an initial condition and used the DC protocol model to
identify all pathways the CPU can take given the initial condition. Using these pathways,
we identified the coherence transactions (represented in the form of state equations) that
form the specification of the protocol given the initial condition.

90

5.5. CPU State: I, DC State: I:S

We then optimized the specification to avoid performance bottlenecks in the critical path.
Finally, we looked at all possible re-orderings of the specification coherence transactions (in
this case there was only one possible ordering and no conflicts), verified if the coherence
invariants are maintained, and built a state machine (or state table). We also visually
checked that the state machine adheres to the specification and no protocol deadlocks are
possible.

5.5 CPU State: I, DC State: I:S

Now we look at the subset of coherence transactions that can happen when an FPGA-
homed cache line is Shared in the CPU’s LLC which is also reflected in the directory of
the DC (HS:RS is I:S or 1:2). To begin with, we have assumed that the DC does not
initiate any forward downgrade transactions and this assumption will be removed in the
next chapter. Since home state is I and remote state is S the most up-to-date value of the
cache line resides in the FPGA memory with a read-only copy in the CPU’s LLC.

5.5.1 CPU pathways

The first step is to get the specification of coherence transactions possible under this
scenario. For this we need to investigate all possible pathways the CPU can take in the
protocol model given the initial conditions.

This case is represented in our model with the CPU being in step 2 and the the DC has
CPU’s step recorded as 2 in its directory (initial condition). Figure 5.5 shows all possible
paths the CPU can take from step 2. Under each pathway is the state equation that the
DC would observe given the event-ordering of the CPU is maintained i.e. the specification
of the protocol given the initial condition. The pathways are as follows.

1 The CPU can continue remaining on step 2 (no coherence message issued to DC).
This means the CPU continues to hold a Shared copy of the cache line in its LLC.

2 The CPU can make a request to go up from step 2 to 3 by issuing upgrade request,
R23, and waiting for a response. This corresponds to CPU requesting an upgrade of
the Shared cache line to Exclusive.

91

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Step 2

CPU was in step 2

DC has CPU in step 2

Wait RA3

R23V21

Step 2

Wait RA3Step 1
R12 R13

Step 1

Wait RA2
1:2, {V21} ➔ 1:1

(No action)
1:2,{V21, R12} ➔

 1:2pRA2,(RDD)

1:2pRA2,{RDDA} ➔

 1:2,(Send RA2)

1:2,{V21, R13} ➔

 1:3pRA3,(RDD)

1:3pRA3,{RDDA} ➔

 1:3,(Send RA3)

1:2, {R23} ➔ 1:3

(Send RA3 without data)

Figure 5.5: Pathways CPU can take from step 2: remain at step 2 or request to go up
from step 2 to 3 or come down to step 1 and then remain at step 1 or request to go up from
step 1 to 2 or 3. Coherence message issued by CPU and state equation in each scenario
is also shown.

3 The CPU can voluntarily come down from step 2 to 1 by issuing V21. This corre-
sponds to CPU invalidating its copy of the cache line in its LLC.

4 At step 1, the CPU can choose to remain at step 1 or issue an upgrade request to
step 2 (R12) or step 3 (R13) as described in section 5.5.

Given the pathways, lets look at the state equations that describe the pathways. These
state equations describe the specification of the protocol given the initial conditions.

5.5.2 Specification and maintaining coherence invariants

The current design choices do not allow the FPGA to make caching requests on a cache
line. This means the home state of the cache line is always I. Thus to maintain SWMR
invariant for pathway 2 the CPU requests an upgrade from shared to exclusive (R23),
the DC does not have to perform any invalidations on the home node before issuing the

92

5.5. CPU State: I, DC State: I:S

upgrade response. Furthermore, the DC does not have to respond with the cache line data
since the CPU already has the most up-to-date copy of the cache line in its LLC. This
guarantees data-value invariant and eliminates the need for a DC initiated memory-read
transaction. Thus the DC state equation for this pathway is

1 : 2, {R23} → 1 : 3, (Send RA3 without data) (5.3)

Deviating a bit from writing the specification, it should be noted that specification is
written by us and can be altered according to our needs. For example, read requests from
the DC can be used as a notification signal by applications on the FPGA. A common
concern is that the upgrade request from S to E (shown in equation 5.3) does not generate
a read request and thus does not signal the application at all. It is at this point the reader
should not despair and remember that the state equations are written by us and can be
altered to generate the read request signal. For example equation 5.4 shows how equation
5.3 can be changed to generate a read request.

1 : 2, {R23} → 1 : 2pRA3nod, (Send RDD)

1 : 2pRA3nod, {RDDA} → 1 : 3, (Send RA3 without data)
(5.4)

This comes with the responsibility that the new state equation should guarantee that the
coherence invariants are met, don’t leads to deadlocks and is performant. For now we
continue to have equation 5.3 in our specification instead of equation 5.4 and continue
with the next pathway.

Takeaway 5.3. The DC specification state equations are written by us. As a result, we
have control over what each coherence transaction should do. We can break up coherence
transactions to make them intercept-able at the application level or add new signaling in-
terfaces with different properties. The only responsibility being that all guarantees required
of coherence transactions at the DC protocol must be provided by our state equation as
well. This can be very useful to reduce the burden of applications that interact with the
DC.

For pathway 3 , when the CPU invalidates its Shared copy of a cache line (by issuing
V21), the FPGA memory continues to have the most up-to-date version of the cache line.
Thus the DC does not have to perform any action to maintain coherence invariants other

93

Chapter 5. Specifying Coherence Transactions Initiated by CPU

than accounting for the voluntary downgrade coherence message. This gives the DC state
equation

1 : 2, {V 21} → 1 : 1, (No action) (5.5)

For pathway 4 , the CPU issues a voluntary downgrade (V21) followed by an upgrade
request (R12 or R13). In order to get the specification state equation, we consider the
coherence transaction in which the DC receives these coherence events in the same order
(see linearizablity for specification in subsection 4.6.2). Once the voluntary downgrade
response is received by the DC, the remote state of the cache line in its directory transitions
from S to I. So when the upgrade request is received, the DC behaves exactly as it did
in section 5.4 for which we have the specification in equation 5.2. Thus the DC state
equations for this pathway are as follows.

1 : 2, {V 21, R12} → 1 : 2pRA2, (RDD)

1 : 2pRA2, {RDDA} → 1 : 2(SendRA2)

1 : 2, {V 21, R13} → 1 : 3pRA3, (RDD)

1 : 3pRA3, {RDDA} → 1 : 3(SendRA3)

(5.6)

These state equations combined with the specification from section 5.4 form the speci-
fication of the protocol given the initial conditions. We have also seen how coherence
invariant is maintained for all state equations in the specification. Next lets look at the
state equations that arise due to reordering of coherence events in the specification.

5.5.3 Reordering effects and maintaining coherence invariants

Conflicts due to message reordering: For pathways 1 to 3 there is only one
message involved in the coherence transaction so there are no conflicts due to message
reordering by the interconnect. For pathway 4 when there are two messages in transit
(voluntary downgrade response and upgrade request), the messages may be reordered by
the interconnect. The scrambler (subsection 4.3.1) in the directory protocol model predicts
that these two messages can be reordered in 2! ways. Thus the DC can receive either the
voluntary downgrade first followed by the upgrade request or the upgrade request first
followed by the voluntary downgrade.

94

5.5. CPU State: I, DC State: I:S

In the latter scenario, conflicts arise when the DC observes an upgrade request from I to S
or E (R12 or R13) when the remote state of this cache line is still S in its directory. Under
such conditions, it is the responsibility of the DC to infer that the state of the cache line
is currently I in the CPU’s LLC, a voluntary downgrade message from S to I is in transit
and to maintain coherence invariants.

Takeaway 5.4. Previously in takeaway 4.3 we have seen conflict scenarios can arise due
to latency of the interconnect which is handled by conflict responses. The second source
of conflict scenarios is reordering of coherence messages by interconnect as described here.
In this case, based on the coherence event received, the DC should infer the actual state of
the cache line in the CPU’s LLC and assume some other coherence events are in transit.
Interconnect latency and message reordering are the only sources of conflicts in our system.

For pathway 4 with reordering conflicts where the DC observes an upgrade request
before the downgrade response, based on the state of the cache line in its directory, the
DC can infer that a voluntary downgrade message from S to I is in transit. Since the CPU
invalidated a read-only copy of the cache line, the downgrade message does not have any
dirty data and FPGA memory has the only copy of the cache line. Thus to maintain data-
value invariant and service upgrade requests, the DC is free to read the FPGA memory
and serve the request as long as it can account for the voluntary downgrades that are in
transit. Thus the state equations are:

1 : 2, {R12, V 21} → 1 : 2pRA2, (RDD)

1 : 2pRA2, {RDDA} → 1 : 2(SendRA2)

1 : 2, {R13, V 21} → 1 : 3pRA3, (RDD)

1 : 3pRA3, {RDDA} → 1 : 3(SendRA3)

(5.7)

Given the two-message DC state equations without any reordering in equation 5.6, the
reader can convince themselves that state equations in equations 5.6 and 5.7 cover all 2!
possible reordering scenarios and their corresponding state equations.

Accounting for messages in transit under conflict scenarios: In order to keep track
of the aforementioned voluntary downgrades in transit, intermediate states can be used as
shown in Figure 5.6 and described below.

The CPU invalidates a shared cache line by issuing V21 and follows it up with an upgrade
request from I to S state (R12). For some reason this V21 is delayed by the interconnect.

95

Chapter 5. Specifying Coherence Transactions Initiated by CPU

CPU DC

2
State HS:RS

1:2

R12
2 to 1

1 to 2
1:2_V21

RA2

2 to 1
R12

RA2 1:2_V21_V21
1 to 2
2 to 1 R12

RA21 to 2

V21

1:2_V21_V21_V21

V21

V21

Figure 5.6: The voluntary downgrade (V21) sent before the upgrade request (R12) by the
CPU is delayed by the interconnect causing a conflict. This conflict is resolved by creating
an intermediate RS (2 V 21) indicating that a voluntary downgrade is in transit. Since
there is no upper bound on the number of times this conflict can occur, adding a new state
every time will lead to state space explosion.

The DC has the cache line in state 1:2 when it receives the first R12 upgrade request.
The DC can infer that a voluntary downgrade is in transit and transition to intermediate
state 1 : 2 V 21 (meaning: state of cache line in CPU will be 2 but a V21 is in transit)
and respond to the upgrade request with data from the FPGA memory. If this cycle is
repeated multiple times with the downgrade message delayed every time, the number of
states that are required to keep track of voluntary downgrades also increases which can
lead to explosion on the number of intermediate states as shown in Figure 5.6. One way
to avoid this is limit the number of times the cycle is allowed to happen by stalling any
upgrades and waiting for the downgrade messages. In order to simplify the state machine
(and in the future, to maintain coherence invariants when dirty data is involved) we make
the choice of stalling requests at the first sign of conflict in the state space exploration
tool. Although this affects performance, these conflict scenarios are not expected to happen
often and thus are not in the critical path.

Design Choice 5.2. When faced with a conflict due to the interconnect reordering co-
herence messages, stall requests till all inferred responses in transit are received. Another
options is to consume the request into an intermediate state instead of stalling it and de-

96

5.5. CPU State: I, DC State: I:S

lay responding to the request until all in-flight responses have arrived. The first option
was chosen but in hindsight, the second option could have simplified DC implementation.
Stalling an event in its VC causes head-of-line blocking which can be avoided with the
second approach but this statement needs to be explored and verified.

CPU DC

2
State HS:RS

1:2
2 to 1 V21

R12 1:2
(Stall)

1:1

RA2 1:21 to 2

1
(Wait RA2)

Figure 5.7: Avoiding state explosion by stalling requests (R12) till all responses in transit
(V21)are received. The request is not consumed into an internal state but rather continues
to sit at the head of its VC.

Figure 5.7 illustrates this design choice. The DC has the cache line in state 1 : 2 when
it receives R12. Since this is the upgrade request from step 1 to 2, the DC can detect a
conflict, infer that the CPU is currently in step 1, and that a V21 downgrade message is
in transit. The DC then stalls the upgrade request till all responses in transit are received
and then responds to the upgrade request. This gives us the following state equations.

1 : 2, {R12} → 1 : 2, (Stall)

1 : 2, {R13} → 1 : 3, (Stall)
(5.8)

Takeaway 5.5. Conflicts due to reordering of coherence events is handled by the DC
through a combination of stall operations and having intermediate states.

Deadlocks due to stalling: Stalling coherence events across message classes can lead to
deadlocks. For example, consider a scenario (shown in Figure 5.8) where both a request
Req1 in request channel and a response Rsp1 in response channel need response Rsp2 to
be handled. If both request and response channels are stalled, Rsp2 never reaches the
state machine due to head-of-line blocking and causes a deadlock.

97

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Req1

Request VC

Response VC

Rsp1Rsp2
S

ta
te

 M
a
ch

in
e

Stall

Stall

Figure 5.8: Stalling both requests and responses can cause deadlocks: Req1 and Rsp1 are
both stalled waiting for Rsp2 to be handled but Rsp2 is stuck between Rsp1 in the response
VC.

In order to avoid this we allow the state space exploration tool to stall only requests and
never responses. Responses will always be consumed into an internal state and the action
corresponding to the event will be performed immediately. Applying this rule to previous
example, Req1 can be stalled but Rsp1 should be popped off the channel and consumed
into a state in the state machine. This brings Rsp2 to the top of the channel allowing the
state machine to eventually handle Req1.

Design Choice 5.3. The DC protocol state machine can only stall messages of request
message-classes. Messages in the response message-classes can never be stalled and must
be consumed into an internal state to avoid deadlocks. Any action associated with the
response event will also be performed immediately. This is more of a design necessity than
choice.

5.5.4 Building the state machine

Earlier (design-choice 4.2) we made the decision that the state machine handles only one
coherence event at a time. Building the state machine for state equations with a single
coherence event (equations 5.3 and 5.5) is straight forward as shown in subsection 4.7.1.
Now let us see how to build the state machine for state equations with more than one
coherence event, specifically equations in 5.6 and 5.7

98

5.5. CPU State: I, DC State: I:S

Let us consider the following state equation from 5.6 (again repeated in equation 5.9) with
two messages where the present state of a cache line is 1:2 in the DC’s directory. Here
the voluntary downgrade V21 arrives first and needs to be handled by the state machine.
The question is what is next state and action to be performed by the state machine in
this scenario.

1 : 2, {V21, R12} → 1 : 2pRA2, (RDD) spec 5.6

1 : 2, {V21} → next state?, (action?)
(5.9)

State equation 5.5 already gives us an answer to this question.

1 : 2, {V 21} → 1 : 1, (No action) (5.10)

Substituting (see substitution operator in subsubsection 4.7.1.1) equations 5.10 into 5.9
allows us to infer new state equations with fewer coherence events.

1 : 2, {V 21, R12} → 1 : 2pRA2, (RDD) spec 5.6

1 : 2, {V 21} → 1 : 1, (No action) known from 5.5

1 : 1, {R12} → 1 : 2pRA2, (RDD) inferred by substitution

consistent with 5.2

(5.11)

The inferred state equation can either give us a brand new state equation or it should be
consistent with a previously known state equation. In this case the inferred state equation
is consistent with the previously defined equation 5.2. Thus through substitution, we have
broken down a 2-message state equation into two 1-message state equations.

Applying the same reasoning for the next 2-message state equation in 5.6, we get:

1 : 2, {V 21, R13} → 1 : 3pRA3, (RDD) spec 5.6

1 : 2, {V 21} → 1 : 1, (No action) known from 5.5

1 : 1, {R13} → 1 : 3pRA2, (RDD) inferred by substitution

consistent with 5.2

(5.12)

Now lets look at the 2-message state equations where an upgrade request is received before
the voluntary downgrade response as seen in equation 5.7. In these scenarios the CPU
issues a voluntary downgrade followed by an upgrade request which is then reordered by
the interconnect before being observed by the DC. The state machine in this case stalls (for

99

Chapter 5. Specifying Coherence Transactions Initiated by CPU

stall operator see subsubsection 4.7.1.2) the upgrade request till the voluntary downgrade
response is received (design-choice 5.2). Thus we have the following equations:

1 : 2, {R12, V 21} → 1 : 2pRA2, (RDD) spec 5.7

1 : 2, {R12} → 1 : 2, (Stall) known from 5.8

1 : 2, {V 21, R12} → 1 : 2pRA2, (RDD) order after stalling

consistent with 5.6

1 : 2, {R13, V 21} → 1 : 3pRA3, (RDD)

1 : 2, {R13} → 1 : 3, (Stall) known from 5.8

1 : 2, {V 21, R13} → 1 : 3pRA3, (RDD) order after stalling

consistent with 5.6

(5.13)

It can also be seen that stalling a coherence event by the state machine is akin to reordering
the state equation to get the intended order in which the events were issued by the CPU
and that no new state equations are created.

Now that we have solved all the multiple message state equations we have the following
single message state equations shown in equation 5.14. This can be used to build the state
machine shown in Table 5.3.

1 : 1, {R12} → 1 : 2pRA2, (RDD) from 5.2

1 : 2pRA2, {RDDA} → 1 : 2, (Send RA2) from 5.2

1 : 1, {R13} → 1 : 3pRA3, (Send RDD) from 5.2

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3) from 5.2

1 : 2, {R23} → 1 : 3, (Send RA3 no data) from 5.3

1 : 2, {V 21} → 1 : 1, (No action) from 5.5

1 : 2, {R12} → 1 : 2, (Stall) from 5.8

1 : 2, {R13} → 1 : 3, (Stall) from 5.8

(5.14)

Deadlocks in protocol state machine: Given the initial condition the state machine
in Table 5.3 only waits for messages that are defined by the specification. Furthermore the
dependency between requests and response messages will not cause a deadlock because
these messages arrive in different VCs and response messages are always sunk (consumed
into an internal state) by the state machine. This guarantees that the state machine is
deadlock free.

100

5.6. CPU state: E, DC State: I:E

Present HS:RS R12 R13 R23 V21 RDDA

1:1
1:2pRA2

(Send RDD)
1:3pRA3

(Send RDD)
X X X

1:2pRA2 X X X X
1:2

(Send RA2)

1:3pRA3 X X X X
1:3

(Send RA3)

1:2
1:2

(Stall)
1:2

(Stall)

1:3
(Send RA3
no data)

1:1
(No action)

X

Table 5.3: DC protocol state machine (aka state table) to handle coherence transactions
issued by the CPU for a cache line that is shared or invalid in CPU’s LLC.

Performance of protocol state machine: The read critical path has already been
optimized in section 5.4 which gets carried over to this section.

5.6 CPU state: E, DC State: I:E

Now we look at the subset of coherence transactions that can happen when an FPGA-
homed cache line is Exclusive in the CPU’s LLC which is also reflected in the directory
of the DC (HS:RS is I:E or 1:3). As mentioned before, we assume no forward-downgrade
transactions are initiated by the DC. Since home state is I, remote state is E, and upgrade
from E to M in CPU’s LLC is silent, it is safe to assume that the most up-to-date value
of the cache line resides in the CPU’s LLC and the copy of the cache line in the FPGA
memory is stale.

First we investigate all pathways the CPU can take under the protocol model, given these
initial conditions. These pathways would be used to identify the state equations that form
the specification of the protocol.

101

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Step 2

Step 3

CPU was in step 3

DC has CPU in step 3

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Figure 5.9: Pathways CPU can take from step 3: remain at step 3, or come down to
step 2, or come down to step 1 (shown in a different color). At step 2: remain at step 2
or request to go up from step 2 to 3 or come down to step 1. At step 1: remain at step
1 or request to go up from step 1 to 2 or 3. Coherence message issued by CPU and state
equation in each scenario is also shown.

5.6.1 CPU pathways

Figure 5.9 shows all pathways the CPU can take at step 3 in our protocol model. It is to
be noted that step 3 is the highest step in the model and the CPU cannot go further up
the stairs. The remaining pathways are described below:

1 The CPU can continue remaining in step 3 and no coherence message is issued to
the DC. This means the CPU continues to hold an exclusive/modified copy of the
cache line in its LLC.

2 The CPU can voluntarily come down from step 3 to step 2 and it does so by issuing
a V32 if data in CPU’s LLC is clean, or V32d if the data is modified in the CPU’s
LLC. This corresponds to CPU cleaning its copy of the cache line and continuing to
hold a read-only copy of the cache line by transitioning from exclusive to shared.

102

5.6. CPU state: E, DC State: I:E

3 The CPU alternatively can voluntarily come down from step 3 to step 1 and it does
so by issuing a V31 (if data is clean) or V31d (if data is dirty). This corresponds to
the CPU clean-invalidating its copy of the cache line by transitioning from exclusive
to invalid, cleaning any dirty data in the process. The CPU does not hold any copy
of the cache line after issuing the downgrade message.

4 Once the CPU is at step 2 or step 1, the pathways are exactly the same as the ones
discussed in section 5.5 and section 5.4.

Next we identify the specification state equations that are introduced by this initial con-
dition, which will also be added to the growing specification list.

5.6.2 Specification and maintaining coherence invariants

For pathway 2 , the DC has the home state of the cache line as I and remote state as E
(initial state is 1:3) when it receives the voluntary downgrade message (V32 or V32d). If
the voluntary downgrade message has dirty data, it has to be written back to the FPGA
memory before transitioning the remote state from E to S. Since write operation is a high
latency operation on a critical path, having an additional state to transition to after issuing
a write request (WDD) will avoid serialization and allow for multiple outstanding write
transactions, thereby improving performance. This gives us the following state equations,
V32d is the coherence event that generates a write request (WDD) which is implicit in
the state equation, the write response (WDDA) arrives eventually.

1 : 3, {V 32} → 1 : 2, (No action)

1 : 3, {V 32d,WDDA} → 1 : 2, (No action)
(5.15)

It is to be noted that the voluntary downgrade response with dirty data is of the response
message class and would have to be handled immediately (without stalling design-choice
5.3). This means there is an implicit write request issued by the DC to the memory, as soon
as the downgrade response is handled and the state machine would have to transition to an
intermediate state. This implicit write action (WDD) is not shown in the state equation
and is initiated as soon as the coherence event is received, but the response from memory
is part of the state equation. Since in the specification we treat memory operation on a
cache line as atomic, the memory response immediately follows the coherence event that
generates the memory request.

103

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Following a downgrade from step 3 to 2, the DC might receive an upgrade request from
step 2 to 3. Since the CPU already has the most up-to-date shared-copy of the cache
line and is the only controller that can have the cache line in exclusive, it is sufficient if
the DC responds to the upgrade request without data after accounting for the voluntary
downgrade response to maintain data-value invariant. This is shown in equation 5.16
shown below.

1 : 3, {V 32, R23} → 1 : 3, (Send RA3 no data)

1 : 3, {V 32d,WDDA,R23} → 1 : 3, (send RA3 no data)
(5.16)

Alternatively, following the downgrade message from step 3 to 2, the DC can receive
another voluntary downgrade from step 2 to 1. The DC issues a write request (WDD) as
soon as the voluntary downgrade V32d is received.

1 : 3, {V 32, V 21} → 1 : 1, (No action)

1 : 3, {V 32d,WDDA, V 21} → 1 : 1, (No action)
(5.17)

As previously discussed, the DC can receive upgrade requests from step 1 to 2 or step 1 to
3 once voluntary downgrades from step 3 to 2 and step 2 to 1 are received. Since the CPU
does not have a copy of the cache line at this point, any dirty data that was previously sent
by the CPU must be written to the memory (for consistency) before reading it back and
sending a response. Writing dirty data into the memory ensures that the FPGA memory
has the most up-to-date value, which can be read back and issued as a response to the
upgrade request. This ensures the upgrade requests get the most up-to-date copy of the
cache line from the FPGA memory thereby holding data-value invariant.

1 : 3, {V 32, V 21, R12} → 1 : 2pRA2, (RDD)

1 : 3, {V 32d,WDDA, V 21, R12} → 1 : 2pRA2, (RDD)

1 : 2pRA2, {RDDA} → 1 : 2(SendRA2)

(5.18)

1 : 3, {V 32, V 21, R13} → 1 : 3pRA3, (RDD)

1 : 3, {V 32d,WDDA, V 21, R13} → 1 : 3pRA3, (RDD)

1 : 3pRA3, {RDDA} → 1 : 3(SendRA3)

(5.19)

For pathway 3 , the DC receives a voluntary downgrade from step 3 to 1 with or without
dirty data (V31/V31d). The dirty data in this case has to be written back to memory.

104

5.6. CPU state: E, DC State: I:E

1 : 3, {V 31} → 1 : 1, (No action)

1 : 3, {V 31d,WDDA} → 1 : 1, (No action)
(5.20)

Following the voluntary downgrade from step 3 to 1, the DC can again receive an upgrade
from step 1 to 2 or step 1 to 3. The DC has to ensure that any dirty data is written
back before reading the memory to service these upgrade requests to maintain data-value
invariant.

1 : 3, {V 31, R12} → 1 : 2pRA2, (RDD)

1 : 3, {V 31d,WDDA,R12} → 1 : 2pRA2, (RDD)

1 : 2pRA2, {RDDA} → 1 : 2(SendRA2)

(5.21)

1 : 3, {V 31, R13} → 1 : 3pRA3, (RDD)

1 : 3, {V 31d,WDDA,R13} → 1 : 3pRA3, (RDD)

1 : 3pRA3, {RDDA} → 1 : 3(SendRA3)

(5.22)

The state equations above specify what coherence messages the DC can enc outer given
the state of the cache line is 1 : 3. Now let us look at all possible re-orderings of these
state equations by the interconnect.

5.6.3 Reordering effects and maintaining coherence invariants

We begin by looking at equation 5.15. The first state equation has only one coherence
event and so there are no re-orderings possible for this state equation. The second state
equation has two coherence events but the the memory write response event (WDDA)
will always arrive after the memory write request issued as a consequence of the voluntary
downgrade with data. Thus there can be no reordering of the second state equation as
well.

Takeaway 5.6. Memory write requests are always initiated by a voluntary downgrade with
dirty data, memory write responses cannot arrive before the coherence event that generates
the memory requests.

Next we look at equation 5.16. The first state equation has two coherence messages
which can be reordered in 2! ways: The voluntary downgrade arrives before the upgrade

105

Chapter 5. Specifying Coherence Transactions Initiated by CPU

request or the upgrade request arrives before the voluntary downgrade. In the second state
equation, the write response (WDDA) will always follow the voluntary downgrade with
data (V32d) that initiates the write request. Thus this equation can only be reordered on
2! ways. The reordered state equations are shown below.

1 : 3, {R23, V 32} → 1 : 3, (Send RA3 no data)

1 : 3, {R23, V 32d,WDDA} → 1 : 3, (send RA3 no data)
(5.23)

When the upgrade request arrives before the voluntary downgrade from exclusive, there
can be dirty data in transit making the contents of the FPGA memory stale. As such,
serving the upgrade request immediately upon arrival by reading the FPGA memory would
violate the data-value invariant. Here design choice (design-choince 5.2) made earlier to
stall requests till all inferred responses in transit are received helps with maintaining the
data-value invariant. Thus we have

1 : 3, {R23} → 1 : 3, (Stall) (5.24)

In equation 5.17 again there are two coherence events in transit which can be reordered in
2! ways, the voluntary downgrade from step 3 to 2 arrives before voluntary downgrade from
step 2 to 1, or voluntary downgrade from step 2 to 1 arrives before voluntary downgrade
from step 3 to 2. Coherence invariants are maintained irrespective of the order in which
the response messages are handled. The reordered equations are

1 : 3, {V 21, V 32} → 1 : 1, (No action)

1 : 3, {V 21, V 32d,WDDA} → 1 : 1, (No action)
(5.25)

Equation 5.18 has two state equations with three coherence messages in transit which can
be reordered in 3! (6) ways. As described before, upgrade requests are stalled till all
voluntary downgrade messages in transit are handled to maintain coherence invariants.

106

5.6. CPU state: E, DC State: I:E

The reordered state equations are

1 : 3, {V 32, R12, V 21} → 1 : 2pRA2, (RDD)

1 : 3, {V 21, V 32, R12} → 1 : 2pRA2, (RDD)

1 : 3, {V 21, R12, V 32} → 1 : 2pRA2, (RDD)

1 : 3, {R12, V 32, V 21} → 1 : 2pRA2, (RDD)

1 : 3, {R12, V 21, V 32} → 1 : 2pRA2, (RDD)

1 : 3, {V 32d,WDDA,R12, V 21} → 1 : 2pRA2, (RDD)

1 : 3, {V 21, V 32d,WDDA,R12} → 1 : 2pRA2, (RDD)

1 : 3, {V 21, R12, V 32d,WDDA} → 1 : 2pRA2, (RDD)

1 : 3, {R12, V 32d,WDDA, V 21} → 1 : 2pRA2, (RDD)

1 : 3, {R12, V 21, V 32d,WDDA} → 1 : 2pRA2, (RDD)

(5.26)

Similarly equation 5.19 also has two state equations with three coherence messages that
can be reordered in the following 3! ways. Note that stalling upgrade requests till all
voluntary downgrades are handled is enough to maintain data-value invariant.

1 : 3, {V 32, R13, V 21} → 1 : 3pRA3, (RDD)

1 : 3, {V 21, V 32, R13} → 1 : 3pRA3, (RDD)

1 : 3, {V 21, R13, V 32} → 1 : 3pRA3, (RDD)

1 : 3, {R13, V 32, V 21} → 1 : 3pRA3, (RDD)

1 : 3, {R13, V 21, V 32} → 1 : 3pRA3, (RDD)

1 : 3, {V 32d,WDDA,R13, V 21} → 1 : 3pRA3, (RDD)

1 : 3, {V 21, V 32d,WDDA,R13} → 1 : 3pRA3, (RDD)

1 : 3, {V 21, R13, V 32d,WDDA} → 1 : 3pRA3, (RDD)

1 : 3, {R13, V 32d,WDDA, V 21} → 1 : 3pRA3, (RDD)

1 : 3, {R13, V 21, V 32d,WDDA} → 1 : 3pRA3, (RDD)

(5.27)

State equations in equation 5.20 has only one coherence message and so no re-orderings are
possible. State equations in equation 5.21 and 5.22 have two coherence messages which can
be reordered in 2! ways, the following equations show the reordered state equations. Again,

107

Chapter 5. Specifying Coherence Transactions Initiated by CPU

stalling requests till in-transit response messages are received is sufficient to maintain data-
value invariant.

1 : 3, {R12, V 31} → 1 : 2pRA2, (RDD)

1 : 3, {R12, V 31d,WDDA} → 1 : 2pRA2, (RDD)

1 : 2pRA2, {RDDA} → 1 : 2(SendRA2)

(5.28)

1 : 3, {R13, V 31} → 1 : 3pRA3, (RDD)

1 : 3, {R13, V 31d} → 1 : 3pRA3, (RDD)

1 : 3pRA3, {RDDA} → 1 : 3(SendRA3)

(5.29)

From all the reordered state equations, it can be seen that maintaining data-value invariant
requires that upgrade requests be stalled till all downgrade responses in transit are handled.
This ensures that any dirty data in transit is written back to the memory before an upgrade
request is handled.

1 : 3, {R12} → 1 : 3, (Stall)

1 : 3, {R13} → 1 : 3, (Stall)
(5.30)

Takeaway 5.7. The design choice 5.2 to stall requests till all in-flight responses are re-
ceived helps maintain data-value invariant by ensuring any dirty data in transit gets writ-
ten back to memory before the upgrade requests are handled. This ensures that when the
memory is read for the upgrade request, the most up-to-date copy is in the memory and
not in transit.

Now we have the specification state equations and all possible re-orderings of these equa-
tions that can be observed by the DC. The next step is to build the state machine.

5.6.4 Building the state machine

In this section, we will try to develop an algorithm that will solve the newly identified
state equations. From equation 5.14 we have state equations from the CPU being in step
2 and step 1. We will consider them known state equations as they would have to hold
even when the CPU steps down from step 3.

We start with the two single-event state equations from the current set (equations 5.15
and 5.20) and since they do not have any re-orderings they can be directly added to the

108

5.6. CPU state: E, DC State: I:E

known set of state equations. Thus the following equations will be added to the known
set of state equations.

1 : 3, {V 32} → 1 : 2, (No action) add to known

1 : 3, {V 31} → 1 : 1, (No action) add to known
(5.31)

Algorithm 4 gives the pseudo-code of adding a single-event state equation to the known set
of state equations. The algorithm checks if the newly added state equation is consistent
with the prescriptions of previously known state equations to ensure that there are no
problems with the specification (check 4.7.1.1 for more details on consistency of state
equations). When the state equation is consistent, it gets added to the known set of state
equations.

Algorithm 4 Adding a new state equation with cardinality of 1 to a set of known state
equations.

Input Eqn : S1, {M1} → S2, (Action1), known
Output known(known set of state equations)

1: procedure fill state 1(known, S1,M1, S2, Action1)
2: res← check se consistency(known, S1, M1, S2, Action1) . Algorithm 2
3: if res is ‘‘inconsistent’’ then
4: exit . Problems in specification
5: known[(S1,M1)]]["next state"]← S2
6: known[(S1,M1)]]["action"]← Action1
7: return(known)

Next we look at two-event state equations, we iterate through all two-event state equations
in our specification list, identify all possible re-orderings and apply the state equation re-
duction operators to split the multiple-event state equation to single-event state equations.

The first two-event state equation and its re-orderings are

1 : 3, {V 32d,WDDA} → 1 : 2, (No action) specification

No reorderings
(5.32)

We have seen that it is advantageous to split latency sensitive write operation by transi-
tioning to an intermediate state. This is done since write optimization is in the critical
path and we do not want to serialize on write transactions.

109

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Receiving a V32d requires a write action to be performed but the state to transition to
after performing the write action is not present in the known set of transitions. Thus we
create an intermediate state and infer a new single-event state equation by substituting
the intermediate state into the two-event state equation.

1 : 3, {V 32d} → 1 : 2 WDDA, (WDD) create

add to known

1 : 2 WDDA, {WDDA} → 1 : 2, (No action) substitute in 5.32

add to known

(5.33)

The second two-event state equation in our specification list and its possible re-orderings
are shown below.

1 : 3, {V 32, R23} → 1 : 3, (Send RA3 no data) spec 5.16

1 : 3, {R23, V 32} → 1 : 3, (Send RA3 no data) reordered from spec
(5.34)

We then split these multiple-event state equations into single-event state equations using
state-equation operators described earlier.

1 : 3, {V 32, R23} → 1 : 3, (Send RA3 no data) spec 5.16

1 : 3, {V 32} → 1 : 2, (No action) known 5.31

1 : 2, {R23} → 1 : 3, (Send RA3 no data) inferred by substitution

consistent with 5.14

(5.35)

1 : 3, {R23, V 32} → 1 : 3, (Send RA3 no data) reordered 5.34

1 : 3, {R23} → 1 : 3, (Stall) known 5.24

1 : 3, {V 32, R23} → 1 : 3, (Send RA3 no data) order after stalling

consistent with 5.16

(5.36)

The third two-event state equation from the specification list and its re-orderings are,

1 : 3, {V 32, V 21} → 1 : 1, (No action) spec 5.17

1 : 3, {V 21, V 32} → 1 : 1, (No action) reordered from spec
(5.37)

110

5.6. CPU state: E, DC State: I:E

Applying state equation reduction operators on them to split the multiple-event state
equations into single-event state equations.

1 : 3, {V 32, V 21} → 1 : 1, (No action) spec 5.17

1 : 3, {V 32} → 1 : 2, (No action) known 5.31

1 : 2, {V 21} → 1 : 1, (No action) inferred by substitution

consistent with 5.14

(5.38)

1 : 3, {V 21, V 32} → 1 : 1, (No action) reordered 5.37

1 : 3, {V 21} → 1 : 1 V 32, (No action) not known, create

add to known

1 : 1 V 32, {V 32} → 1 : 1, (No action) inferred by substitution

add to known

(5.39)

The fourth two-event state equation from the specification list and its re-orderings are,

1 : 3, {V 31, R12} → 1 : 2pRA2, (RDD) spec 5.21

1 : 3, {R12, V 31} → 1 : 2pRA2, (RDD) reordered from spec
(5.40)

Applying state equation reduction operators on them to split the multiple-event state
equations into single-event state equations.

1 : 3, {V 31, R12} → 1 : 2pRA2, (RDD) spec 5.21

1 : 3, {V 31} → 1 : 1, (No action) known 5.31

1 : 1, {R12} → 1 : 2pRA2, (RDD) inferred by substitution

consistent with 5.14

(5.41)

1 : 3, {R12, V 31} → 1 : 2pRA2, (RDD) reordered 5.40

1 : 3, {R12} → 1 : 3, (Stall) known 5.30

1 : 3, {V 31, R12} → 1 : 2pRA2, (RDD) order after stalling

consistent with 5.21

(5.42)

Finally, the fifth two-event state equation from the specification list and its re-orderings
are,

1 : 3, {V 31, R13} → 1 : 3pRA3, (RDD) spec 5.22

1 : 3, {R13, V 31} → 1 : 3pRA3, (RDD) reordered from spec
(5.43)

111

Chapter 5. Specifying Coherence Transactions Initiated by CPU

Applying state equation reduction operators on them to split the multiple-event state
equations into single-event state equations.

1 : 3, {V 31, R13} → 1 : 3pRA3, (RDD) spec 5.22

1 : 3, {V 31} → 1 : 1, (No action) known 5.31

1 : 1, {R13} → 1 : 3pRA3, (RDD) inferred by substitution

consistent with 5.14

(5.44)

1 : 3, {R13, V 31} → 1 : 3pRA3, (RDD) reordered 5.43

1 : 3, {R13} → 1 : 3, (Stall) known 5.30

1 : 3, {V 31, R13} → 1 : 3pRA3, (RDD) order after stalling

consistent with 5.22

(5.45)

The steps performed in examples above is generalized in algorithm 5 where we apply
the substitution, creation and stall operators to reduce a two-event state equation into
single-event state equation. When solving the two-event state equation, priority is given
to substitution operator where a known single-event state equation is substituted into the
multi-event state equation to reduce its cardinality. When substitution is not possible,
create operation is used to create a new intermediate state, which can then be added to
the set of known state equations. This is done except when the current event is a request
in which case it gets stalled to maintain data-value invariant.

By applying the same principles, state equations with multiple events can be recursively
reduced to single-event state equations as shown. Algorithm 5 is a dynamic programming
algorithm with memoization for single-event state equation.

Now that all two-event state equations have been reduced, we proceed with reducing
three-event state equations. Algorithm 5 can be applied here as well. In equation 5.46 we
show an example of reduction of a state equation with a cardinality of three. It is to be
noted that even if this state equation has three coherence events, they are only 2! possible
because memory responses will always follow the coherence event that creates the memory
request. The three-event state equation and its re-orderings are as follows.

1 : 3, {V 32d,WDDA, V 21} → 1 : 1, (No action) spec 5.17

1 : 3, {V 21, V 32d,WDDA} → 1 : 1, (No action) reordered 5.25
(5.46)

112

5.6. CPU state: E, DC State: I:E

Algorithm 5 Recursively solving multiple-event state equation to single-event state equa-
tion through state equation operators such as substituion, creation and stalling.

Input S1, {M1,M2} → S3, (Action1), known
Output known(solved state equations)

1: cur stt← S1
2: evt lst← [M1,M2]
3: fnl stt← S3
4: acn← Action1
5: procedure fill state n(known, cur stt, evt lst, fnl stt, acn)
6: cur evt← evt list.deque()
7: if empty(evt list) then . Single-event state equation
8: known← fill state 1(known, cur stt, cur evt, fnl stt, acn) . Alg 4
9: else . Multiple-event state equation

10: int stt← None
11: int acn← None
12: if (cur stt,cur evt) in known then . Substitute
13: int stt← known[(cur stt, cur evt)]["next state"]
14: int acn← known[(cur stt, cur evt)]["action"]
15: if int acn is ‘‘Stall’’ then
16: return
17: else . Stall or create
18: if evt type(cur evt) is ‘‘Request’’ then
19: known[(cur stt, cur evt)]["next state"]← cur stt
20: known[(cur stt, cur evt)]["action"]← ‘‘Stall’’
21: return
22: else
23: int stt← create int stt(evt lst) . Alg 3
24: int acn← get evt acn(cur evt) . Perform event-based action

25: known[(cur stt, cur evt)]["next state"]← int stt
26: known[(cur stt, cur evt)]["action"]← int acn

27: cur stt← int stt . Infer new state equation with one less event
28: fill state n(known, cur stt, evt lst, fnl stt, acn)
29: . Reduce inferred state equation recursively
30: return(known)

113

Chapter 5. Specifying Coherence Transactions Initiated by CPU

These equations are reduced in equations 5.47 and 5.48.

1 : 3, {V 32d,WDDA, V 21} → 1 : 1, (No action) spec 5.17

1 : 3, {V 32d} → 1 : 2 WDDA, (WDD) known 5.33

1 : 2 WDDA, {WDDA, V 21} → 1 : 1, (No action) inferred by substitution

1 : 2 WDDA, {WDDA} → 1 : 2, (No action) known 5.33

1 : 2, {V 21} → 1 : 1, (No action) inferred by substitution

consistent with 5.14
(5.47)

1 : 3, {V 21, V 32d,WDDA} → 1 : 1, (No action) reordered 5.25

1 : 3, {V 21} → 1 : 1 V 32, (No action) known 5.39

1 : 1 V 32, {V 32d,WDDA} → 1 : 1, (No action) inferred by substituion

1 : 1 V 32, {V 32d} → 1 : 1 WDDA, (WDD) not known, create

add to known

1 : 1 WDDA, {WDDA} → 1 : 1, (No action) inferred by substitution

add to known

(5.48)

Putting it all together,by progressively solving state equations of increasing cardinal-
ity from the specification and their re-orderings, we can identify all possible transitions
required to generate the DC protocol state machine as shown in algorithm 6. The
sort by cardinality() function in algorithm 6 sorts specification state equation in increas-
ing order of cardinality and within a cardinality, the equations can be solved in any order.
The selected state equation and its possible re-orderings are then solved, with the individ-
ual state transitions stored to be reused later. Finally we have a list of single-event state
equations that can be used to build the DC protocol.

Deadlocks in protocol state machine: Once the protocol state machine is generated,
we can represent it in the form of a graph and by checking if the graph is acyclic, we
can ensure there are no circular dependencies in a coherence transactions and hence no
deadlocks in the protocol state machine.

114

5.7. Summary

Algorithm 6 Solve specification state equations one by one in order of increasing cardi-
nality. All possible reorderings of specification state equations are also solved.

Input spec st eqns lst (specification state equations)
Output known (solved state equations set)

1: procedure solve spec(spec st eqns lst)
2: known← {}
3: for cur stt,evt lst,fnl stt,acn in sort by cardinality(spec st eqns lst) do
4: for evt lst order in permute(evt lst) do . reorderings
5: if possible(evt lst order) then
6: known← fill state n(known,cur stt,evt lst order,fnl stt,acn)
7: . Alg 5
8: return (known)

5.7 Summary

In this chapter, we considered the interaction between the CPU’s LLC and FPGA’s DC
and limited our scope to DC not issuing forward downgrade transactions. The aim of this
chapter was to construct a state machine that allows CPU to coherently access FPGA
attached memory. Since we did not have a formal specification of the CPU’s protocol, we
used the DC protocol model to enumerate all possible pathways the CPU can take in its
interaction with the DC.

Using these pathways, we were able to identify the coherence transactions that would
constitute the specification and represent them in the form of state equations. Then we
solved each state equation from the specification along with all of its re-orderings, all the
while making design choices that allows coherence invariants to be maintained, conflicts
to be handled, no possibility of deadlocks, and for optimization of performance along the
critical path.

We then converted these design choices and steps taken to solve these state equations into
an algorithm that takes in the state equations from the specification, identifies all possible
reordered state equations and solves them to generate a DC protocol state machine in the
form of a state table that allows the CPU to coherently access the FPGA address space.

An important point to be noted is that the specification state equations are written by us
and hence are modifiable within reason. These modifications can reduce the burden of the

115

Chapter 5. Specifying Coherence Transactions Initiated by CPU

protocol at the application level and should be a considered when building an application.
A second point is that the formalism developed in this chapter will not change as long as
we have a directory-based write-invalidate coherence protocol with no NACKs.

In the next chapter, we build upon the contents of this chapter by allowing the FPGA to
initiate forward downgrade coherence transactions.

116

6
Specifying Coherence Transactions

Initiated by DC

6.1 Introduction

In chapter 5, we looked at building a state machine that handles CPU initiated coher-
ence transactions accessing an FPGA homed cache line. We restricted ourselves to CPU
initiated coherence transactions and assumed that the DC does not initiate any forward-
downgrade transactions. Rule 4 in section 4.3 allows the FPGA to initiate forward-
downgrade coherence transactions for FPGA-homed cache lines. In this chapter we will
update the specification with more state equations that represents forward-downgrade co-
herence transactions and how it affects the RS of the cache line in the DC’s directory. We
will also see how no changes have to be made to the algorithms discussed in the previous
chapter to accommodate solving these new state equations.

We continue to assume that the FPGA applications cannot issue any caching transactions
and the HS of the cache line is I in DC’s directory.

The structure of this chapter is as follows.

1. Section 6.2 discusses forward-downgrade transactions.

117

Chapter 6. Specifying Coherence Transactions Initiated by DC

2. Section 6.3 provides three initial conditions that we want to apply to the DC protocol
model to identify forward-downgrade coherence transactions.

3. Sections 6.5, 6.5 and 6.6 shows how forward-downgrade transactions can be specified
for the three initial conditions. It also discusses about generating the state machine.

6.2 Forward-Downgrade Transactions

Section 4.4 identifies the coherence messages involved in a forward-downgrade transaction.
Depending on the remote state (RS) of the cache line in the DC’s directory, the DC can
issue three different forward-downgrade requests. If the RS of the cache line is S (step 2),
the FPGA can issue an F21 to downgrade the state of the cache line from S to I (step 2
to 1). If the RS of the cache line is E/M (step 3), the FPGA can issue an F32 to request
downgrade from E/M to S (step 3 to 2), or issue an F31 to request downgrade from E/M
to I (step 3 to 1). The forward-downgrade requests F32 and F31 also causes any dirty
data in the CPU’s LLC to be written back (cleaned).

Clean and clean-invalidate operations: Based on these coherence messages, we can
define two types of operations that can be achieved through forward-downgrade transac-
tions namely, clean and clean-invalidate. A clean operation on a cache line, upon comple-
tion, ensures that the CPU’s LLC does not have any dirty copy of the cache line and the
FPGA memory has the most up-to-date value. Alternatively, it ensures the state of the
cache line is either S or I in the CPU’s LLC but never E/M. A clean-invalidate operation,
upon completion, ensures that the CPU’s LLC does not have any (dirty or clean) copy of
the cache line. That is, the state of the cache line in the CPU’s LLC is I and the FPGA’s
memory has the most up-to-date value for the cache line

There can be multiple reasons for the DC to initiate a forward-downgrade coherence
transaction for example, to free up internal directory resources, or handling clean or clean-
invalidate requests made by applications in the application layer. Irrespective of the cause,
when initiating a forward-downgrade transaction, the DC protocol state machine issues
a forward-downgrade request for a cache line and transitions to an intermediate remote
state. This intermediate RS indicates that a forward-downgrade transaction is in progress
and that the protocol state machine is waiting for a response.

118

6.3. Initial Conditions

6.3 Initial Conditions

Similar to initial conditions in section 5.2, We identify the following initial conditions in
the DC model, to which we apply the rules of interaction to get all forward-downgrade
coherence transactions that are possible. The initial conditions are as follows.

• DC State: I:I, No forwards issued: When the RS of the cache line is I in
the DC’s directory, no forward-downgrade transactions can be issued since the CPU
does not have the cache line cached.

• DC State: I:S, DC issues F21: When the RS of the cache line is S, the DC
can request a downgrade from S to I by issuing an F21. The RS of the cache line
gets updated to intermediate state 1 A21. This intermediate state indicates that
a forward-downgrade transaction is in progress and that the RS of the cache line
would transition from 1 A21 to 1 (I) when coherence message A21 is received.

• DC State: I:E, DC issues F32: When the RS of the cache line is E/M, the DC
can request a downgrade from E/M to S by issuing an F32. The RS of the cache
line gets updated to intermediate state 2 A32d indicating that the cache line would
transition from RS 2 A32d to 2 when coherence message A32d is received.

• DC State: I:E, DC issues F31: When the RS of the cache line is E/M, the DC
can request a downgrade from E/M to I state by issuing an F31. The RS of the
cache line gets updated to intermediate state 1 A31d indicating that the cache line
would transition from RS 1 A31d to 1 when coherence message A31d is received.

In the following sections, we apply the rules of interaction to these initial conditions to
identify the state equations to be added to the specification.

6.4 DC State: I:S, DC Issues F21

In this initial condition, the DC had the remote state of a cache line as S in its directory
when trying to clean-invalidate a cache line. The DC issues an F21 request to the CPU,
with an intention of downgrading the state of the cache line from S to I in the CPU’s LLC.
Once F21 is sent, the RS of the cache line gets updated to 1 A21 in the DC’s directory.

119

Chapter 6. Specifying Coherence Transactions Initiated by DC

Although the state of the cache line in the CPU’s LLC was S at some point, the state
could have changed while the forward-downgrade request was in transit. As such, what
the CPU does in response to the forward request depends on the actual state of the cache
line in the CPU’s LLC when it receives the forward request. From the context of the DC
protocol model (section 4.2), lets look at all possible states in which the CPU could receive
the forward-downgrade request.

6.4.1 CPU pathways

Figure 6.1 shows all possible states for the cache line in the CPU when the forward-
downgrade request F21 can be received. Each scenario is depicted by an encircled alphabet
and is described below.

Step 2

CPU was in step 2

DC has CPU in step 1_A21

Wait RA3

R23V21

Step 2

Wait RA3Step 1

R12 R13

Recd F21
Send A21
Goto Step 1

Recd F21
Send A21
Goto Step 1
Wait for RA3

Recd F21
Already at Step 1
Send A11

Recd F21
Already at Step 1
Send A11
Wait for RA2

Recd F21
Already at Step 1
Send A11
Wait for RA3

Step 1

Wait RA2

A B

C D E

Figure 6.1: Possible states of cache line in CPU (step) when F21 is received: The cache
line can be at step 2, or could have made a request from step 2 to 3, or could have come
down to step 1, or could have come down to step 1 and made requests to go to either step
2 or step 3 when F21 was received by the CPU.

A The state of the cache line is S in the CPU’s LLC when it receives F21.

B The state of the cache line was originally S and the CPU has issued an upgrade
request to E (R23) when it receives F21.

120

6.4. DC State: I:S, DC Issues F21

C The CPU has voluntary downgraded the cache line from S to I state by issuing a
V21 and, at this point, it receives F21.

D The CPU has voluntary downgraded the cache line from S to I state by issuing a
V21 and has then requested an upgrade to S (R12). The CPU receives F21 when
waiting for a response to the upgrade request.

E The CPU has voluntary downgraded the cache line from S to I state by issuing a
V21 and has then requested an upgrade to E (R13). The CPU receives F21 when
waiting for a response to the upgrade request.

The reader can convince themselves that based on the DC protocol model in section 4.2,
there cannot be any more scenarios given the initial condition. We will now apply the rules
of interaction (section 4.4) for each of these scenarios in order to identify the pathways
the CPU can take.

Step 2

CPU was in step 2

DC has CPU in step 1_A21

Wait RA3

R23V21

Step 2

Wait RA3Step 1

R12 R13

Recd F21
Send A21
Goto Step 1

A21
Step 1

Wait RA2

A

Figure 6.2: Pathways CPU can take when F21 is received, scenario A: The CPU was
at step 2 when it received F21. The CPU sends A21 and comes down to step 1. Then it
can remain at step 1 or issue upgrade requests to step 2 or 3 (R12, R23) and wait for a
response.

CPU pathways scenario A : In scenario marked A in Figure 6.1, the CPU has
the cache line in S state in its LLC when it receives F21. There are no conflicts in this
scenario and the CPU acknowledges the forward downgrade request with response A21
and downgrades the state of the cache line from S to I in accordance with interaction-rule
Rule4. Let us look at what pathways CPU can take from there.

121

Chapter 6. Specifying Coherence Transactions Initiated by DC

This case is represented in our model with the CPU being in step 2 when it receives F21.
The CPU would acknowledge this request with an A21 and come down to step 1. At
step 1, it can continue remaining in step 1 or request to go up to step 2 or step 3. Upon
issuing an upgrade request, the CPU waits for a response. These pathways are shown in
Figure 6.2 and are described below.

1 The CPU issues A21 to invalidate the cache line and the cache line remains invalid
(CPU continues to remain in step 1).

2 The CPU issues A21 to invalidate the cache line and follows it up with an upgrade
request to S (R12). It then waits for RA2, the response to upgrade request.

3 The CPU issues A21 to invalidate the cache line and follows it up with an upgrade
request to E (R13). It then waits for RA3, the response to upgrade request, RA3.

Step 2

CPU was in step 2

DC has CPU in step 1_A21

Wait RA3

R23V21

Step 2

Wait RA3Step 1

R12 R13

Recd F21
Send A21
Goto Step 1
Wait for RA3

A21
Step 1

Wait RA2

B

Figure 6.3: Pathways CPU can take when F21 is received, scenario B: The CPU has
made an upgrade request R23 when it receives F21. The CPU comes down to step 1 by
issuing A21 and continues to wait for a response to the upgrade request.

CPU pathways scenario B : In scenario B in Figure 6.1, the CPU had a S copy of
the cache line and has made an upgrade request to E (R23) by the time F21 was received.
Since the CPU has not received a response to the upgrade request yet, it is effectively still
in S state. The CPU issues an A21 and downgrades to I where it continues to wait for a
response to the previously issued upgrade request.

122

6.4. DC State: I:S, DC Issues F21

This case is represented in our model where the CPU is in step 2, has issued an upgrade
from step 2 to step 3 and is waiting for a response when it receives an F21. In this
case, the CPU is effectively in step 2 when it receives the downgrade request and so it
acknowledges the request with an A21 and goes down to step 1. At step 1 it cannot make
a new upgrade request since it already has an upgrade request (R23) in progress that was
issued previously (Rule 5). So the CPU continues to wait for a response (RA3) at step 1.
This gives the pathway shown in Figure 6.3 and described below.

4 The CPU issues A21 to invalidate the cache line and continues to wait for response
RA3 for its previously issued upgrade request R23.

Step 2

CPU was in step 2

DC has CPU in step 1_A21

Wait RA3

R23V21

Step 2

Wait RA3Step 1

R12 R13

Recd F21
Already at Step 1
Send A11

A11

Step 1

Wait RA2

C

Figure 6.4: Pathways CPU can take when F21 is received, scenario C: The CPU has
already voluntarily come down to step 1 (by issuing V21) when it receives F21. Since the
CPU is already at step 1, it issues A11 as a conflict response. The CPU can then continue
to remain in step 1 or make upgrade requests from step 1 to 2 (R12) or 3 (R13).

CPU pathways scenario C : In the scenario C in Figure 6.1 The CPU had vol-
untarily downgraded the S cache line to I state by issuing a V21 when it received the
forward-downgrade F21. Since the cache line is already invalid, the CPU responds with
conflict response A11 as a response to F21 (Figure 4.5). Through A11, the CPU commu-
nicates that it has received the forward-downgrade request but has already downgraded
at that point and there would be voluntary downgrades in transit.

123

Chapter 6. Specifying Coherence Transactions Initiated by DC

This case is represented in our model where the CPU has come down to step 1 voluntarily
by issuing a V21 and is at step 1 when it receives F21. The CPU issues A11 and then can
either continue remaining in step 1 or make upgrade requests from step 1 to step 2 or step
3. Once upgrade requests are issued, the CPU cannot issue any more coherence messages
and waits for the response. This gives the pathway shown in Figure 6.4 and described
below.

5 The CPU issues A11 and continues to have I copy.

6 The CPU issues A11 to indicate the state of the cache line is already I. It then makes
an upgrade request (R12) from I to S and waits for response RA2.

7 The CPU issues A11 to indicate the state of the cache line is already I. It then makes
an upgrade request (R13) from I to E and waits for response RA3.

Step 2

CPU was in step 2

DC has CPU in step 1_A21

Wait RA3

R23V21

Step 2

Wait RA3Step 1

R12 R13

Recd F21
Already at Step 1
Send A11
Wait for RA2

Recd F21
Already at Step 1
Send A11
Wait for RA3

Step 1

Wait RA2

D E

A11 A11

Figure 6.5: Pathways CPU can take when F21 is received, scenarios D and E: The CPU
has voluntarily come down from step 2 to 1 by issuing V21 and has made upgrade requests
(R12 or R13). The CPU receives F21 when it is waiting for a response to the upgrade
requests. The CPU issues conflict response A11 indicating that it is already at step 1 and
continues to wait for a response to the upgrade request.

CPU pathways scenarios D E : In both these scenarios (Figure 6.1), the CPU had
voluntarily downgraded from S to I state by issuing V21. Once downgraded, it has made

124

6.4. DC State: I:S, DC Issues F21

an upgrade request from I to S (D) or from I to E (E). The CPU is waiting for a
response to these upgrade requests when it receives the forward-downgrade request F21.
Since the CPU has not received a response to its upgrade request from invalid state, the
effective state of the cache line is still I. The CPU hence responds with conflict response
A11 and continues waiting for a response.

In our model, this case is represented by the CPU coming down from step 2 to 1 by
issuing voluntary downgrade V21. At step 1, the CPU has issued an upgrade request
and is waiting for a response. The CPU responds with an A11 indicating that F21 was
received and voluntary downgrades are in transit and continues waiting for a response to
the upgrade requests. The CPU cannot issue any more coherence messages since Rule 5
would be violated. These pathways are shown in Figure 6.5 and described below.

8 The CPU issues A11 and waits for upgrade response RA2.

9 The CPU issues A11 and waits for upgrade response RA3.

Now we have seen the different ways the CPU can act depending on the state of the cache
line in the CPU’s LLC when it receives the forward-downgrade request F21 given this
initial condition. Next we will specify the coherence transactions in these pathways from
the perspective of DC using state equations.

6.4.2 Specification and maintaining coherence invariants

When the DC issues F21, the cache line could be in either S or I state in the CPU’s LLC
and never E/M. This means the CPU can, at best, have a read-only copy of the cache line
and the FPGA memory has the most up-to-date value of the cache line. Since the CPU
is the only node that can currently read or write to the cache line, SWMR invariant is
trivially maintained.

For all pathways, the initial HS:RS of the cache line in the DC’s directory is 1:1 A21 when
the DC starts receiving forward-downgrade responses.

For CPU pathway 1 , the DC receives forward-downgrade-response A21. Receiving A21
confirms that the CPU has received the forward-downgrade request and has downgraded
the state of the cache line from S to I in its LLC as a response. It also guarantees that
there are no voluntary downgrades in transit. In this case, the RS of the cache line in

125

Chapter 6. Specifying Coherence Transactions Initiated by DC

DC’s directory can be updated to I. This is represented by state equations in equation 6.1
and can be added to our list of specification state equations.

1 : 1 A21, {A21} → 1 : 1, (No action) Handles CPU pathway 1 (6.1)

For CPU pathway 2 and 3 , the DC receives A21 followed by an upgrade request R12
and R13 respectively. The DC has to account for the voluntary downgrade and read the
FPGA memory to respond to the upgrade request (RA2 for R12 and RA3 for R13) to
maintain coherence invariants. Once the response is sent, the state of the cache line is
updated to S (for R12) or E (for R13) depending on the upgrade request. This gives the
following state equations shown in equation 6.2 optimized for read critical path.

1 : 1 A21, {A21, R12} → 1 : 2pRA2, (RDD) Handles 2

1 : 2pRA2, {RDDA} → 1 : 2, (Send RA2)

1 : 1 A21, {A21, R13} → 1 : 3pRA3, (RDD) Handles 3

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3)

(6.2)

For CPU pathway 4 , the DC receives an upgrade request R23 followed by forward-
downgrade response A21 (order issued by the CPU). The CPU does not have a valid copy
of the data and is waiting for exclusive access for this cache line. The DC has to read the
FPGA memory and respond to the upgrade request with exclusive access RA3 to maintain
coherence invariants. Once RA3 is sent, the RS of the cache line is updated to E in the
DC’s directory. This is represented by the state equation in equation 6.3.

1 : 1 A21, {R23, A21} → 1 : 3pRA3, (RDD) Handles 4

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3)
(6.3)

For CPU pathway 5 , if the DC receives coherence events in the order issued by the CPU,
it would receive V21 followed by A11. The DC has to account for both response messages
before updating the RS of the DC’s directory with I. In pathways 6 and 7 , the CPU
issues additional upgrade from I to S or E requests. Since the CPU does not have any
copies of the cache line, it is the responsibility of the DC to read the FPGA memory,
respond to the requests and update its internal RS. The specification state equations are
shown in equation 6.4

126

6.5. DC State: I:E, DC Issues F32

1 : 1 A21, {V 21, A11} → 1 : 1, (No action) Handles 5

1 : 1 A21, {V 21, A11, R12} → 1 : 2pRA2, (RDD) Handles 6

1 : 2pRA2, {RDDA} → 1 : 2, (Send RA2)

1 : 1 A21, {V 21, A11, R13} → 1 : 3pRA3, (RDD) Handles 7

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3)

(6.4)

In CPU Pathways 8 and 9 , the order of issuing coherence messages by CPU is V21,
followed by R12, and then A11. The DC has to account for all these responses and then
read the FPGA memory to respond to the upgrade requests. This is shown in specification
state equations in equation 6.5

1 : 1 A21, {V 21, R12, A11} → 1 : 2pRA2, (RDD) Handles 8

1 : 2pRA2, {RDDA} → 1 : 2, (Send RA2)

1 : 1 A21, {V 21, R13, A11} → 1 : 3pRA3, (RDD) Handles 9

1 : 3pRA3, {RDDA} → 1 : 3, (Send RA3)

(6.5)

Thus we have got specification state equations on how the DC should handle all possible
CPU pathways given the initial conditions.

6.4.3 Building the state machine

The design choices and algorithm described in chapter 5 can be used without any modifi-
cations to solve the additional specification state equations and its reorderings introduced
in this section. Once all state equations are solved, the protocol state machine can be gen-
erated and checked for deadlocks. The state machine will be optimized for performance
along the read critical path since that optimization is baked into the specification.

6.5 DC State: I:E, DC Issues F32

In this initial condition, the DC had the remote state of a cache line as E in its directory
when trying to clean the cache line. The DC issues an F32 forward request to the CPU,
with an intention of downgrading the state of the cache line from E to S in the CPU’s
LLC. Upon issuing the request, the RS in the DC’s directory is updated to 2 A32d to
indicate that this forward-downgrade transaction is in progress.

127

Chapter 6. Specifying Coherence Transactions Initiated by DC

Although the state of the cache line in the CPU’s LLC was E, the state could have changed
while the forward-downgrade request was in transit. As a result, what the CPU does in
response to the forward request depends on the state of the cache line in the CPU’s LLC
when it receives the request. From the context of the model (section 4.2) lets look at all
possible states in which the CPU could receive the forward-downgrade request.

6.5.1 CPU pathways

Figure 6.6 shows all possible states for the cache line in CPU’s LLC when the forward-
downgrade request F32 could be received. Each scenario is depicted by an encircled
alphabet and is described below.

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F32
Send A32/A32d
Goto Step 2

A

Recd F32
Already in step 2
Send A22

B

Recd F32
Already in step 2
Send A22
Wait for RA3

C

Recd F32
Already in step 1
Send A11

D

E

Recd F32
Already in step 1
Send A11
Wait for RA2

F
Recd F32
Already in step 1
Send A11
Wait for RA3

Figure 6.6: Possible states of CL in CPU when F32 is received: The CPU could have
been at step 3, or come down to step 2, or come down to step 2 and made an upgrade
request to step 3, or come down from step 2 to 1, or could have come down from step 3
to 1 where it could remain at step 1 or make upgrade requests to step 2 or 3 and wait for
response when it received F32.

128

6.5. DC State: I:E, DC Issues F32

A The state of the cache line is E in the CPU’s LLC when it receives F32.

B The state of the cache line was originally E and the CPU had issues a voluntary
downgrade (V32 or V32d with dirty data) and downgraded to S state. At this state
F32 is received by the CPU.

C The state of the cache line was originally E and the CPU had issued a voluntary
downgrade (V32 or V32d with dirty data) and downgraded to S state. The CPU has
then made an upgrade request from S to E state (R23). The F32 requests is received
at this point when the CPU is waiting for a response (RA3) from the FPGA.

D The state of the cache line was originally E and the CPU had downgraded this cache
line to I state, at which point, the CPU receives the F32. The transition of cache
line from E to I state in CPU’s LLC could have happened in two ways, the CPU
could have downgraded from E to S (by issuing a V32/V32d) and then downgraded
from S to I (by issuing a V21), or the CPU could have directly downgraded from E
to I by issuing a V31 or V31d (shown by blue-dotted transition line in Figure 6.6).
The state of the cache line is I when it receives F32.

E This scenario is the same as scenario D in the fact that the CPU has downgraded
the state of the cache line from E to I. In addition, the CPU has made an upgrade
request from I to S state by issuing R12. F32 is received by the CPU when it is
waiting for a response (RA2) for the upgrade request.

F In this scenario as well, the CPU has downgraded the state of the cache line from
E to I like in scenario D . In addition the CPU has made an upgrade request from
I to E state by issuing R13. F32 is received by the CPU when it is waiting for a
response (RA3) for the upgrade request.

Given the DC protocol model section 4.2 and initial condition, there cannot be any other
scenario where an F32 is received by the CPU. Lets apply the rules of interaction to each
of these scenarios and identify all pathways the CPU can take.

CPU pathways scenario A : For scenario A in Figure 6.6 the CPU has the cache line
in E state when it receives F32. The CPU acknowledges the forward-downgrade request
with response A31 (or A31d for dirty data) and downgrades the state of the cache line to
S.

129

Chapter 6. Specifying Coherence Transactions Initiated by DC

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F32
Send A32/A32d
Goto Step 2

A

A32d/
A32

Figure 6.7: Pathways CPU can take when F32 is received, scenario A: The CPU was in
step 3 when it received F32. The CPU issues A32 (or A32d) if dirty and comes down to
step 2. Then the CPU can remain at step 2, make an upgrade request to go from step 2 to
3 (R23) or come down to step 1 (V21). At step 1, the CPU can continue to remain there
or make upgrade requests to steps 2 (R12) or 3 (R13)

In the DC protocol model, this is represented by the CPU stepping down from step 3 to
step 2 as a response to F32. The CPU can then continue remaining at step 2, or make a
request to go up to step 3 and wait for a response. From step 2, the CPU can also choose
to come down the stairs to step 1. The CPU can then continue remaining in step 1 or
make requests to go up the stairs to either step 2 or step 3 and wait for a response. These
pathways are shown in Figure 6.7 and are summarized below with the coherence messages
the CPU issues in order.

1 The CPU issues A32/A32d as a response to the F32 and downgrades the cache line
to S state, it does not send any more coherence messages for this cache line.

2 The CPU issues A32/A32d to downgrade the cache line to S and follows it up with
R23 to request an upgrade from S to E.

3 The CPU issues A32/A32d to downgrade the cache line to S and then voluntarily
downgrades to I state by issuing a V21.

130

6.5. DC State: I:E, DC Issues F32

4 The CPU issues A32/A32d to downgrade the cache line to S, then voluntarily down-
grades to I state by issuing a V21 and then requests an upgrade from I to S state by
issuing an R12.

5 The CPU issues A32/A32d to downgrade the cache line to S, then voluntarily down-
grades to I state by issuing a V21 and then requests an upgrade from I to E state
by issuing an R13.

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F32
Already in step 2
Send A22

B

A22

Figure 6.8: Pathways CPU can take when F32 is received, scenario B: The CPU had
already come down from step 3 to 2 by issuing V32 (or V32d if dirty) when it receives
F32. The CPU issues conflict response A22 and then can continue to remain at step 2 or
come down to step 1 (V21). At step 1, it can remain there or make upgrade requests to
step 2 (R12) or step 3 (R13).

CPU pathways scenario B : In this scenario, the CPU has already downgraded the
cache line from E to S when it receives the F32. The CPU acknowledges the F32 with
conflict response A22 indicating that the cache line is already in S state and that conflict
responses are in transit.

This case is represented in the model where the CPU has already voluntarily stepped
down from step 3 to step 2 by issuing either V32 or V32d when it receives F32. The CPU

131

Chapter 6. Specifying Coherence Transactions Initiated by DC

responds with A22 and can continue remaining in step 2 or make a request to go to step
3 by issuing an R23. Alternatively, the CPU, after issuing A22, can choose to voluntarily
come down to step 1 by issuing a V21. At step 1, the CPU has three choices: remain at
step 1, or request to go to step 2 by issuing R12, or request to go to step 3 by issuing R13.
These pathways are shown in Figure 6.8 and described below.

6 The CPU has already issued V32 or V32d when it receives the F32. The CPU issues
A22 as a response to F32 and does not issue any more coherence messages for this
cache line.

7 The CPU has V32 or V32d in transit when it issues A22. After issuing A22, the
CPU issues an R23 and waits for a response.

8 The CPU has V32 or V32d in transit when it issues A22. After issuing A22, it
voluntarily invalidates this cache line by issuing a V21.

9 The CPU has V32 or V32d in transit when it issues A22. After issuing A22. The
CPU then voluntarily invalidates the cache line by issuing a V21. The CPU then
makes a request to upgrade the cache line to S state by issuing R12 and waiting for
a response.

10 The CPU has V32 or V32d in transit when it issues A22. After issuing A22. The
CPU then voluntarily invalidates the cache line by issuing a V21. The CPU then
makes a request to upgrade the cache line to E state by issuing R13 and waiting for
a response.

CPU pathways scenario C : In this scenario, the CPU has downgraded the state of
the cache line from E to S and then has issued an upgrade request to E when it receives
F32. Since the effective state of the cache line is still S, the CPU responds with an A22
and continues waiting for a response to the upgrade request.

In the DC protocol model, the CPU was initially in step 3 and has come down to step 2
by issuing a V32 or V32d. At step 2, it has then requested to go up to step 3 by issuing an
R23 when it receives F32. Since the CPU is waiting for a response to the upgrade request,
it cannot issue any further coherence events other than response to the forward-downgrade
request. For example Rule 5 explicitly forbids the CPU to voluntarily come down to step
1 when the upgrade request from step 2 to 3 is still pending. Thus the only pathway is
shown in Figure 6.9 and described below.

132

6.5. DC State: I:E, DC Issues F32

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F32
Already in step 2
Send A22
Wait for RA3

C

A22

Figure 6.9: Pathways CPU can take when F32 is received, scenario C: The CPU has
come down from step 3 to 2 by issuing V32 (or V32d if dirty) and has made upgrade
request from step 2 to 3 (R23) when it receives F32. Since CPU is already in step 2, it
sends conflict response A22 and continues to wait for a response to the upgrade request.

11 The CPU has V32 or V32d followed by R23 in transit when it receives F32. The
CPU responds with A22 and continues waiting for response to the R23 request.

CPU pathways scenario D : In this scenario, the CPU has voluntarily downgraded
the cache line from E to I when it receives F32. Since the cache line is invalid when
the forward-downgrade request is received, the CPU responds with A11 indicating that
voluntary downgrades are in transit.

This case is represented in our model where the CPU was initially in step 3 and has
voluntarily come down to step 1. The CPU could have done this in two ways: Come
down from step 3 to 2 and then from step 2 to 1 by issuing a V32 or V32d followed by
V21, or come down directly from step 3 to 1 by issuing V31 or V31d. At this point the
CPU receives the forward-downgrade request to come from step 3 to 2, but since the CPU
is already in step 1, it responds with a conflict response A11 indicating some voluntary
downgrades might be in transit. Once the CPU has issued A11, it can continue to remain
at step 1 or make a request to go to step 2 or step 3. The pathways are shown in Figure 6.10

133

Chapter 6. Specifying Coherence Transactions Initiated by DC

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F32
Already in step 1
Send A11

D

A11

Figure 6.10: Pathways CPU can take when F32 is received, scenario D: The CPU had
voluntarily downgraded to step 3 to step 1 either directly (V31d/V31) or through step 2
(V32d/V32 followed by V21) when it receives F32. Since CPU is in step 1, it responds
with conflict response A11 and then can continue remaining in step 1 or make upgrade
requests to step 2 (R12) or step 3 (R13).

and the order of coherence messages issued by the CPU is summarized below.

12 The CPU has voluntarily downgraded from E to I by issuing a V32 or V32d followed
by a V21. The CPU receives F32 at this point and responds with A11. It does not
send any other coherence messages for this cache line.

13 The CPU has voluntarily downgraded from E to I by issuing a V32 or V32d followed
by a V21. The CPU receives F32 at this point and responds with A11. The CPU
then issues an upgrade request R12 to upgrade the cache line from I to S state.

14 The CPU has voluntarily downgraded from E to I by issuing a V32 or V32d followed
by a V21. The CPU receives F32 at this point and responds with A11. The CPU
then issues an upgrade request R13 to upgrade the cache line from I to E state.

134

6.5. DC State: I:E, DC Issues F32

15 The CPU alternatively downgrades from E to I by issuing a V31 or V31d (blue-
dotted lines in Figure 6.10) and then receives F32. The CPU responds with A11 and
does not issue any other coherence messages for this cache line.

16 The CPU downgrades from E to I by issuing a V31 or V31d. It receives F32 at this
point and responds with an A11. The CPU then issues R12 upgrade request to get
the cache line in S state.

17 The CPU downgrades from E to I by issuing a V31 or V31d. It receives F32 at this
point and responds with an A11. The CPU then issues R13 upgrade request to get
the cache line in E state.

Step 2

Step 3

CPU was in step 3

DC has CPU in step 2_A32d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

E

Recd F32
Already in step 1
Send A11
Wait for RA2

F
Recd F32
Already in step 1
Send A11
Wait for RA3

A11 A11

Figure 6.11: Pathways CPU can take when F32 is received, scenario E, F: The CPU
has come down from step 3 to 1 either directly (V31d/V31) or through step 2 (V32d/V32
followed by V21) and has made upgrade request either to step 2 (R12) or step 3 (R13)
when it receives F32. The CPU responds with conflict response A11 and continues waiting
for a response to the upgrade request.

135

Chapter 6. Specifying Coherence Transactions Initiated by DC

CPU pathways scenario E , F : In both these scenarios, the CPU has voluntarily
downgraded the cache line from E to I state. The CPU then makes an upgrade request to
S (E) or E (F) and receives F32 when waiting for a response. Since the CPU has not
received a response to the upgrade request, the cache line is effectively in I state and the
CPU responds with the conflict response A11. The CPU continues to wait for a response to
the upgrade request in both the scenarios and cannot issue any other coherence messages.

This is represented in the protocol model with the CPU coming down from step 3 to step 1
by either issuing a V32/V32d followed by V21 or by issuing V31d. The CPU then requests
to go up the stairs to step 2 or 3 when it receives F32. The CPU responds with A11 and
continues waiting for a response to the upgrade request. These pathways are shown in
Figure 6.11 and described below.

18 The CPU has issued V32 or V32d, followed by a V21, followed by an R12 when it
receives F32. The CPU responds with A11 and continues waiting for a response for
request R12.

19 The CPU has issued V32 or V32d, followed by a V21, followed by an R13 when it
receives F32. The CPU responds with A11 and continues waiting for a response for
request R13.

20 The CPU has issued V31 or V31d, followed by an R12 when it receives F32. The
CPU responds with A11 and continues waiting for a response for request R12.

21 The CPU has issued V31 or V31d, followed by an R13 when it receives F32. The
CPU responds with A11 and continues waiting for a response for request R13.

Now we have identified all pathways the CPU can take given the initial conditions, we
can define the specification state equations and check how coherence invariants can be
maintained.

6.5.2 Specification and maintaining coherence invariants

The DC should have provided exclusive access for the cache line to the CPU in order for
it to have its RS marked as E in its directory. Thus when the DC issues the forward-
downgrade, the CPU has the most up-to-date copy of the cache line and the contents of
the FPGA would be stale. In section 5.1 we discussed how SWMR invariant is always

136

6.5. DC State: I:E, DC Issues F32

maintained in our system. To maintain data-value invariant, any upgrade requests that
arrive before the dirty data is written to memory would have to be stalled. The design
choice (design-choice 5.2 to stall all upgrade requests till all inferred responses in transit
are handled ensures that data-value invariant will be maintained. The specifications for the
pathways are listed in equations 6.6 and 6.7. The reader can compare the state equations
with the pathways to check if they are correct.

137

Chapter 6. Specifying Coherence Transactions Initiated by DC

pathway

1 : 2 A32d, {A32} → 1 : 2, (No action) 1

1 : 2 A32d, {A32d,WDDA} → 1 : 2, (No action) 1

1 : 2 A32d, {A32, R23} → 1 : 3, (Send RA3 no data) 2

1 : 2 A32d, {A32d,WDDA,R23} → 1 : 3, (Send RA3 no data) 2

1 : 2 A32d, {A32, V 21} → 1 : 1, (No action) 3

1 : 2 A32d, {A32d,WDDA, V 21} → 1 : 1, (No action) 3

1 : 2 A32d, {A32, V 21, R12} → 1 : 2pRA2, (RDD) 4

1 : 2pRA2, {RDDA} → 1 : 2(Send RA2)

1 : 2 A32d, {A32d,WDDA, V 21, R12} → 1 : 2pRA2, (RDD) 4

1 : 2 A32d, {A32, V 21, R13} → 1 : 3pRA3, (RDD) 5

1 : 3pRA3, {RDDA} → 1 : 3(Send RA3)

1 : 2 A32d, {A32d,WDDA, V 21, R13} → 1 : 3pRA3, (RDD) 5

1 : 2 A32d, {V 32, A22} → 1 : 2, (No action) 6

1 : 2 A32d, {V 32d,WDDA,A22} → 1 : 2, (No action) 6

1 : 2 A32d, {V 32, R23, A22} → 1 : 3, (Send RA3 no data) 7

1 : 2 A32d, {V 32d,WDDA,R23, A22} → 1 : 3, (Send RA3 no data) 7

1 : 2 A32d, {V 32, A22, V 21} → 1 : 1(No action) 8

1 : 2 A32d, {V 32d,WDDA,A22, V 21} → 1 : 1(No action) 8

1 : 2 A32d, {V 32, A22, V 21, R12} → 1 : 2pRA2(RDD) 9

1 : 2 A32d, {V 32d,WDDA,A22, V 21, R12} → 1 : 2pRA2(RDD) 9

1 : 2 A32d, {V 32, A22, V 21, R13} → 1 : 3pRA3(RDD) 10

1 : 2 A32d, {V 32d,WDDA,A22, V 21, R13} → 1 : 3pRA3(RDD) 10

1 : 2 A32d, {V 32, R23, A22} → 1 : 3(Send RA3 no data) 11

1 : 2 A32d, {V 32d,WDDA,R23, A22} → 1 : 3(Send RA3 no data) 11
(6.6)

138

6.5. DC State: I:E, DC Issues F32

pathway

1 : 2 A32d, {V 32, V 21, A11} → 1 : 1(No action) 12

1 : 2 A32d, {V 32d,WDDA, V 21, A11} → 1 : 1(No action) 12

1 : 2 A32d, {V 32, V 21, A11, R12} → 1 : 2pRA2(RDD) 13

1 : 2 A32d, {V 32d,WDDA, V 21, A11, R12} → 1 : 2pRA2(RDD) 13

1 : 2 A32d, {V 32, V 21, A11, R13} → 1 : 3pRA3(RDD) 14

1 : 2 A32d, {V 32d,WDDA, V 21, A11, R13} → 1 : 3pRA3(RDD) 14

1 : 2 A32d, {V 31, A11} → 1 : 1(No action) 15

1 : 2 A32d, {V 31d,WDDA,A11} → 1 : 1(No action) 15

1 : 2 A32d, {V 31, A11, R12} → 1 : 2pRA2(RDD) 16

1 : 2 A32d, {V 31d,WDDA,A11, R12} → 1 : 2pRA2(RDD) 16

1 : 2 A32d, {V 31, A11, R13} → 1 : 3pRA3(RDD) 17

1 : 2 A32d, {V 31d,WDDA,A11, R13} → 1 : 3pRA3(RDD) 17

1 : 2 A32d, {V 32, V 21, R12, A11} → 1 : 2pRA2(RDD) 18

1 : 2 A32d, {V 32d,WDDA, V 21, R12, A11} → 1 : 2pRA2(RDD) 18

1 : 2 A32d, {V 32, V 21, R13, A11} → 1 : 3pRA3(RDD) 19

1 : 2 A32d, {V 32d,WDDA, V 21, R13, A11} → 1 : 3pRA3(RDD) 19

1 : 2 A32d, {V 31, R12, A11} → 1 : 2pRA2(RDD) 20

1 : 2 A32d, {V 31d,WDDA,R12, A11} → 1 : 2pRA2(RDD) 20

1 : 2 A32d, {V 31, R13, A11} → 1 : 3pRA3(RDD) 21

1 : 2 A32d, {V 31d,WDDA,R13, A11} → 1 : 3pRA3(RDD) 21

(6.7)

6.5.3 Building the state machine

The design choices and algorithm described in chapter 5 can be used to solve the additional
specification state equations and its reorderings introduced in this section.

139

Chapter 6. Specifying Coherence Transactions Initiated by DC

6.6 DC State: I:E, DC Issues F31

In this section, the DC had given exclusive access for a cache line to the CPU. The DC
then wants to downgrade the state of this cache line from E to I in the CPU’s LLC. The
DC does this by issuing a forward-downgrade exclusive to invalid (F31) and transitioning
the RS of the cache line to intermediate state 1 A31d in its directory. The DC then waits
for a response to the forward-downgrade request.

As in the previous cases, the state of the cache line in the CPU’s LLC could have changed
while F31 is in transit and how the CPU responds to F31 depends on the actual state
of the cache line in the CPU’s LLC when it receives the request. From the context of
our model lets look at all possible states in which the CPU could receive the forward
downgrade request.

6.6.1 CPU pathways and specification

The CPU can receive the forward-downgrade request F31 in any of these situations. The
pathways taken by the CPU are described in Figure 6.12. No changes have to be made to
algorithms in chapter 5 to solve these incorporate these additional state equations.

• The pathways for each scenario A is shown in Figure A.1. Please note the specifi-
cation for each pathway is also shown.

• Pathways for scenario B is shown in Figure A.2 along with the specification state
equations.

• Pathways for scenario C is shown in Figure A.3 along with the specification state
equations.

• Pathways for scenario D is shown in Figure A.4 along with the specification state
equations.

• Pathways for scenarios E , F is shown in Figure A.5 along with the specification
state equations.

The design choices made previously will guarantee the coherence invariants for all the
specification state equations and its reorderings and no additional changes are required
for the algorithm of the state space exploration tool.

140

6.7. Summary

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F31
Send A31/A31d
Goto Step 1

A

Recd F31
In step 2
Send A21
Goto step 1

B

Recd F31
In step 2
Send A21
Goto step 1
Wait for RA3

C

Recd F31
Already in step 1
Send A11

D

E

Recd F31
Already in step 1
Send A11
Wait for RA2

F
Recd F31
Already in step 1
Send A11
Wait for RA3

Figure 6.12: Possible states of CL in CPU when F31 is received: The CPU could have
received F31 at step 3, or it could have come down to step 2, or it could have come down
to step 2 and made an upgrade request to step 3, or it could have come down to step 1
where it could have made upgrade requests as well.

6.7 Summary

In this chapter, we identified the different forward downgrade transactions that are possible
between the CPU and FPGA. We specifically looked at how these transactions affect the
RS of a cache line in DC’s directory. We specified the forward downgrade transactions
using state equations, which can be fed to the state space exploration tool to generate the
state machine.

With each state equation in the specification, we have considered conflicts arising due to
reordering by the interconnect, how coherence invariants can be maintained, how deadlocks
can be avoided and how performance is optimized at the read and write critical paths.

In this chapter, we limited our discussion to how the RS of the cache line in the DC’s

141

Chapter 6. Specifying Coherence Transactions Initiated by DC

directory would change once forward-downgrade transactions are initiated. In the next
chapter we will look at what can cause the DC to initiate forward-downgrade transactions.
Specifically we will look at how applications on the FPGA interact with the DC.

142

7
Specifying Coherence Transactions

Initiated by Applications

7.1 Introduction

In the three layer model (Figure 3.3), the application (also known as user logic) layer on
the FPGA is built on top of the DC protocol layer and relies on the guarantees provided
by the protocol and interconnect layers below it. In this chapter we ask the question:
What interface should the DC expose to applications so as to provide useful functionality
while abstracting the inner workings of the coherence protocol?

The lowermost interconnect layer allows for deadlock free exchange of coherence messages.
It is optimized for performance and guarantees delivery of messages but does provide any
ordering guarantees. Next, The DC protocol layer treats every cache line as independent
and maintains coherence invariants at the granularity of a cache line. This layer is deadlock
free, optimized for performance and also accounts for reordering of coherence messages by
the interconnect layer. Finally the application layer can be built on top of the DC protocol
layer and can be used to make interesting associations between unrelated cache lines to
achieve certain objectives.

These associations can be in the form of invariants that would have to be maintained across
different cache lines and address spaces. An example of such an invariant is guaranteeing

143

Chapter 7. Specifying Coherence Transactions Initiated by Applications

that when a specific cache line is in E/M state in CPU’s LLC, another (unrelated) cache
line is always in I state in CPU’s cache. Separating the application layer from the protocol
layer allows the FPGA developer to implement different applications without needing to
change the protocol layer.

Takeaway 7.1. Traditionally, coherence protocols aim only to maintain coherence invari-
ants across multiple copies of a single cache line. As a result, applications always interact
with the protocol layer through a cache. Not having a cache on the FPGA, allows us to
provide a flexible interface between the protocol layer and application layer. This interface
can be used by applications on the FPGA to extend the notion of coherence beyond copies
of a single cache line to associate multiple unrelated cache lines and address spaces.

Advantage of the FPGA application layer: The main aim is to target applications
on heterogeneous systems where the application has a software component running on the
CPU cores and user logic running on the FPGA (FPGA application). The operations
performed by memory hierarchy with respect to maintaining coherence is not visible di-
rectly to software running on the CPU: software interacts with the CPU’s LLC through
load, store, clean and invalidate instructions. The aim of the FPGA application is to
transparently extend the notion of coherence to software on the CPU. For example, ap-
plication specific coherence requirements can be offloaded to the FPGA application and,
can be taken for granted by the software component (see materialized view application in
subsection 9.6.3 for example).

Local coherence transactions: The DC protocol layer allows for interaction with the
application layer through local coherence transactions. In this chapter, we focus on local
transactions that applications on the FPGA can initiate with the DC protocol state ma-
chine. The DC provides a simplified interface for applications on the FPGA to interact
with the coherence protocol, specifically for FPGA-homed cache lines. The aim of such an
interface is to relive the applications from the burden of maintaining the state of FPGA-
homed cache lines. Applications, without knowing the state of a cache line, can initiate
local transactions on a cache line with the DC. Upon completion of the transaction, the
DC provides certain guarantees on the state of the cache line while abstracting all the
complexity involved in interacting directly with the coherence protocol.

The coherence transactions can be specified and modified depending on the needs of an
application. The only consideration when defining coherence transactions is the following.
The design choices we have made in the previous chapters (takeaway 5.2) prevent appli-

144

7.2. Local Coherence Transactions

cations on the FPGA from caching FPGA-homed cache lines (HS of a cache line is always
I). As a result, applications on the FPGA are required to interact with the DC through
coherent non-caching transactions.

Takeaway 7.2. Users are free to define coherence transactions based on the needs of
an application. The only caveat being these operations should be coherent non-caching
operations.

In this chapter, we will look at defining and redefining DC’s interface to suit different
applications. In this process, we will define local coherence transactions (section 7.2) and
see how an application that has no information on the state of a cache line can extract
certain guarantees using these transactions. We also look at defining coherence messages
for local transactions (section 7.3) and how to classify them into separate message classes
to avoid deadlocks. Once the semantics of coherence transactions are decided, we will look
at how to specify them for the state space exploration tool to automatically generate the
state machine (section 7.4).

In detail, we first specify a set of coherence transactions that allow applications to clean or
clean-invalidate FPGA homed cache lines from CPU’s LLC (section 7.6). Then we modify
this specification to include locking capabilities for cache lines (section 7.7) to demonstrate
the flexibility of this approach and to discuss things to be considered when building your
own set of transactions (for example, avoiding deadlocks and starvation). We then look
at a sample application layer protocol that interacts with the DC to extend the notion
of coherence across multiple cache lines (section 7.8). We also specify certain coherence
transactions that can be used for resource maintenance (section 7.9) and are not visible
to the application layer. Finally we look at at the message packet format for all local
coherence messages as they are currently implemented (section 7.11).

It is to be noted that the DC interface shown in this chapter is not specific to Enzian but
can be applied to any symmetric coherent system with aforementioned assumptions on
the coherence protocol and interconnect.

7.2 Local Coherence Transactions

How applications can interact with the DC is not defined by CPU’s coherence protocol.
As a result, we have complete control on what coherence transactions would be exposed

145

Chapter 7. Specifying Coherence Transactions Initiated by Applications

by the DC to applications. In this section, we focus on a DC interface that provides two
specific transactions namely local-clean and local-clean-invalidate coherence transactions.
The semantics of these transactions are as follows.

Local-clean transaction: An application can initiate a local-clean transaction on a
cache line by issuing a local-clean request to the DC. This would cause the DC to clean
(downgrade to S state) the cache line if it is dirty in CPU’s LLC. Once the cache line has
been cleaned, the DC responds to the application with an acknowledgment indicating that
the transaction has been completed.

Local-clean-invalidate transaction: A local-clean-invalidate transaction for a cache
line causes the DC to clean and invalidate the cache line (downgrade from E/M or S to I)
if it is present in the CPU’s LLC. This is also a request-response interaction.

These two transactions were chosen for implementation as a lot of other coherent non-
caching operations can be built using these operations and application’s access to DC’s
memory transactions as described later in section 7.10.

It is also to be noted that the applications do not have to worry about the state of a
cache line or, how to interact with the CPU when initiating a local coherence transaction.
Once the request is issued by the FPGA application, the DC transparently ensures the
semantics of the transaction before responding to the request. In the next section, we see
the coherence messages that are involved in these transactions.

7.3 Local Coherence Messages

The coherence messages involved in local-clean and local-clean-invalidate transactions are
described in this section. Depending on needs of applications, other local messages and
transactions can be defined as well.

Local-clean request-response pair: The local-clean coherence transaction can be initi-
ated by issuing a local-clean request (LC) to the DC. Upon completion of the transaction,
the DC responds to the application with a local-clean-acknowledge (LCA).

Local-clean-invalidate request-response pair: The local-clean-invalidate coherence
transaction can be initiated by issuing a local-clean-invalidate request (LCI) to the DC.
Upon completion of the transaction, the DC responds to the application with a local-
clean-invalidate-acknowledge (LCIA).

146

7.4. Local Coherence Message Classes

7.4 Local Coherence Message Classes

Similar to the interconnect’s message classes in subsection 4.4.1, local coherence messages
are also classified into message classes with each message class having a dedicated VC to
exchange coherence messages. These message classes are not part of the message classes
offered by the interconnect but are created specifically to support interaction with appli-
cation layer. The reason for classifying coherence messages in to different message classes
and VCs is to avoid deadlocks as discussed in section 5.5.

Only the classes of messages involved in local-clean and local-clean-invalidate transactions
are defined here. Additional message classes can be defined depending on the local interface
exposed by the DC. The numbers assigned to the VC are arbitrary and should not overlap
with VC numbers assigned to the interconnect’s message classes (ECI VC numbers in our
case). The local coherence message classes are described below and the local coherence
messages along with their message classes are summarized in Table 7.1.

Local-forward-request-without-data message class: This message class consists of
requests for local clean and clean-invalidate transactions, namely LC and LCI messages.
VCs 16 and 17 are assigned for this message class. Following the same convention as ECI,
odd VCs carry events for even cache line indices and vice versa. This odd/even split is
done only for performance reasons.

Local-response-without-data message class: This message class consists of acknowl-
edgments from the DC for previously issued requests by applications, namely LCA and
LCIA messages. VCs 18 and 19 are assigned for this message class.

Message Class VC # Message
Local-forward-request-without-data 16, 17 LC, LCI

Local-response-without-data 18, 19 LCA, LCIA

Table 7.1: Local message classes, their VC numbers and associated messages that can be
used by FPGA applications to initiate clean and clean-invalidate transactions.

7.5 Specification of Local Coherence Transactions

As seen in subsection 4.6.2, all transactions with the remote CPU node is specified in
the form of state equations. Although such a representation could be extended to local

147

Chapter 7. Specifying Coherence Transactions Initiated by Applications

coherence transactions, for the sake of simplicity, these transactions are specified through
two look-up tables: one to specify when a local coherence transaction starts and another
to specify when the local transaction completes. Specifying local transactions through
look-up tables is quick but prone to errors. Coming up with a rigorous way of specifying
local coherence transactions is part of future work.

Both local-clean and clean-invalidate transactions can potentially cause the DC to initiate
a forward-downgrade transaction with the remote node through the coherent interconnect.
We had seen in section 6.2 how the RS of the cache line in the DC’s directory is used to
keep track of coherence transactions with the remote node. But tracking just remote
transactions are not enough, ongoing local transactions would have to be tracked in the
DC’s directory as well. Since the HS of the cache line is always I and unused, we modify
the HS to indicate that a local transaction is ongoing.

Design Choice 7.1. The HS of a cache line in the DC’s directory is used to keep track of
ongoing local transactions and RS is used to keep track of ongoing coherent transactions
with the remote node.

Table 7.2 shows the initial conditions for a local coherence request to be consumed by the
DC. Till the initial conditions are met, the local request would be stalled by the DC. In
this table, the RS of a cache line indicates when a local request would be consumed. When
a request is consumed, the next HS and RS for the cache line is given in the table along
with the action to be performed. This table does not specify when a local transaction is
to be completed.

For example, in the first line, the local request LC is received when RS of the cache line
in 1 (Invalid). Since the cache line is invalid in the CPU’s LLC, the cache line is clean so
the local request (LC) is consumed and a response LCA is sent to the application. There
is no change in both HS and RS of the cache line after the DC performs the action. The
same reasoning can be applied for the second and third lines of the table.

In the fourth line, a local clean-invalidate request is being handled when the RS of the
cache line is S (2). Since the cache line has to be downgraded from S to I state in the
CPU’s cache, the DC issues an F21 (Action column in Table 7.2) coherence request to
the CPU. The DC transitions the RS to 1 A21 (Next RS column in Table 7.2) to indicate
that a forward downgrade transaction is in progress. It also transitions that HS (Next HS
column in Table 7.2) of the cache line to intermediate state 1pCI (final state 1 pending
clean invalidate) indicating that a local clean-invalidate transaction is in progress. The

148

7.5. Specification of Local Coherence Transactions

progress of the forward-downgrade transaction with the CPU is tracked in the RS according
to its specification described in chapter 6.

RS Local Request Next HS Next RS Action
1 (I) LC 1 1 Send LCA
1 (I) LCI 1 1 Send LCIA
2 (S) LC 1 2 Send LCA
2 (S) LCI 1pCI 1 A21 Send F21

3 (E/M) LC 1pC 2 A32d Send F32
3 (E/M) LCI 1pCI 1 A31d Send F31

Table 7.2: Conditions to initiate local coherence transactions: Given the RS that identifies
when a local request is to be handled, what should be the next HS, RS and action to be
performed by the DC.

From lines 1 to 2 in Table 7.2, it is to be noted that both local clean and clean-invalidate
transactions would not cause an already invalid cache line (invalid in CPU’s cache) to
transition to an intermediate state. Transitions only happen to cache lines that are already
cached in the CPU’s LLC. This is important because both clean and clean-invalidate
requests do not require an empty spot in DC’s directory when the cache line is not cached
in the CPU.

Table 7.3 gives the conditions that specify when a local transaction is completed. The
status of when a cache line is clean or clean-invalid is defined by its RS. Hence, RS of the
cache line identifies when an ongoing local clean or clean-invalidate transaction completes.
For example, in the first two lines of Table 7.3, we have a specification for an on-going
local-clean transaction as indicated by the intermediate HS, 1pC. When the RS of the
cache line is effectively S or I, the local transaction is completed by issuing the LCA
response and transitioning the HS of the cache line from 1pC to 1 (I, Next HS).

Thus the semantics provided by local coherence transactions have been specified. This
specification is used by the state space exploration tool to schedule and complete local
coherence transactions. This specification can also be expanded to other coherent non-
caching transactions.

149

Chapter 7. Specifying Coherence Transactions Initiated by Applications

HS Effective RS Next HS Action
1pC 2 (S) 1 (I) Send LCA
1pC 1 (I) 1 (I) Send LCA
1pCI 1 (I) 1 (I) Send LCIA

Table 7.3: Conditions to complete local coherence transaction: Given the HS and effective
RS that identify when a local coherence transaction is completed, what should be the next
HS and action to be performed by the DC.

7.5.1 Effective remote state

The RS of a cache line can be one of the stable states: I, S, E/M or one of the many
intermediate states. Each intermediate state can be assigned an effective stable state
based on coherence messages that are in transit. The effective state of an intermediate
state corresponds to the highest stable state that can be deduced with certainty given the
coherence messages that are received and those in transit when the intermediate state was
created.

For example, consider intermediate RS, 1 V32 that was created in state equations 5.39.
From the state equation, we can deduce that a voluntary downgrade from E to S is in
transit when the intermediate state is reached, which makes the cache line to effectively
still be in E state in the CPU.

Similarly, the intermediate RS 2 WDDA from equation 5.33 has a write transaction in
progress and the effective state of 2 WDDA is still E/M till the write transaction is com-
pleted.

The idea of effective state is a heuristic and is used instead of maintaining epoch for
cache lines. In hindsight, maintaining epochs for cache lines would be the correct way of
identifying when local transactions complete.

7.6 Guarantees Provided at DC’s Application Inter-
face

As stated previously, one of the goals of DC is to allow an application to infer certain
guarantees on the state of cache lines in CPU’s LLC by interacting with the DC. In

150

7.6. Guarantees Provided at DC’s Application Interface

this section we look at what guarantees the application can infer by observing the local
and memory interfaces of the DC. The applications on the FPGA can interact with the
DC state machine through the local clean and clean-invalidate transactions. In addition,
applications can also observe and intercept memory transactions from DC.

({I, Se, Ee, Mf}, Re)
({I, Sf}, Rf); clean
({I}, Rf); invalid

State Guarantees:

Pend:
RDDA

Recv
 W

DD
Pend:
RDDA

IDLE
Recv RDD

Send RDDA

Pend:
WDDA

Send W
DDA

Send LCI
Wait
LCIA

Recv LCIA Pend:
WDDA

Recv WDD
Send WDDA

Pend:
RDDA

Recv RDDSend RDDA

S
e
n
d
 L

C

R
e
cv

 L
C

A

Wait
LCA

Pend:
WDDA

Recv WDD
Send WDDA

Pend:
RDDA

Recv RDDSend RDDA

Figure 7.1: State guarantees provided to applications by the DC through its local and
memory interfaces at the granularity of a cache line.

Figure 7.1 shows what an application can infer as RS of a cache line and where the most up-
to-date data for the cache line resides by observing the coherence events issued by the DC
protocol. Each circle represents an application state with certain guarantees represented
in the format of ({possible RS}, epoch of data in FPGA memory).

A “red” state implies the application has no information on the state of the cache line as
indicated by the state-guarantee ({I, Se, Ee,Mf}, Re) in the legend. That is, the RS of
the cache line can be invalid (I), or shared with FPGA memory having the most up-to-
date copy (Se), or exclusive with FPGA memory having the most up-to-date copy (Ee),
or modified with CPU LLC memory having the most up-to-date copy (Mf). The suffixes
“e” and “f ” indicate different versions of the cache line data with suffixt f being the most
up-to-date copy. For example, if the RS of the cache line is modified, the most up-to-date

151

Chapter 7. Specifying Coherence Transactions Initiated by Applications

copy is present in CPU’s LLC (indicated by Mf) and the FPGA memory has a stale copy
(indicated by Re).

An “yellow” state implies the application can infer the RS to be either I or S with both
CPU’s LLC and the FPGA memory having the most up-to-date copies. This is indicated
by the state-guarantee ({I, Sf}, Rf).

A “green” state implies that the application can infer the RS of the cache line to be I
with the FPGA memory having the most up-to-date copy as indicated by state-guarantee
({I}, Rf).

To begin with, the application is in IDLE state where it does not have any information on
the state of a cache line. At the IDLE state, the application might intercept a read request
(RDD) that is issued by the DC. From the DC protocol model (section 4.2) we know that
a read request will be issued by the DC only when the CPU makes an upgrade request for
a cache line that is not cached in its LLC. Thus by observing the read request on a cache
line, the application can infer that the state of the cache line in the CPU’s cache is I and
that the FPGA memory has the most up-to-date copy as indicated by legend ({I}, Rf).
This continues to be the case till a response (RDDA) is sent to the read request, at which
point there can be no more guarantees on the state of the cache line. This is shown by
the transition between IDLE and Pend:RDDA states in Figure 7.1.

From the IDLE state, the application might also intercept a write request (WDD) for a
cache line from the DC. Write requests are issued by the DC only when dirty cache lines
are written back from the CPU’s cache. Furthermore design-choice 5.2 guarantees that
upgrades for this cache line would be stalled till the memory write transaction for this
cache line completes. As a result, intercepting a write request, the application can infer
that the state of the cache line is either S or I in the CPU’s LLC (never E/M) and the
data being written is the most up-to-date value for this cache line (indicated by Rf). This
is shown in the transition between IDLE and Pend:WDDA states in Figure 7.1.

Instead of passively intercepting memory transactions, the application can also initiate a
local-clean or local-clean-invalidate transactions from the IDLE state. From Table 7.3 it
can be seen that the response to both clean and clean-invalidate requests are sent only
when the state of the cache line in the CPU, matches the semantics of the transaction.
That is, response LCA will be sent only if the state of the cache line is either S or I, and
LCIA is sent only when the state of the cache line is I. However, this does not guarantee
that the cache line continues to remain in this state when the response is eventually

152

7.7. Modifying DC’s Application Interface For Locking Capabilities

received by the application. For example, the CPU could have upgraded the cache line
while the clean or clean-invalidate response is in transit.

This is shown by transitions from IDLE to Wait LCA and Wait LCIA states in Figure 7.1.
The application can issue a clean or clean-invalidate request before waiting for a response.
While waiting for the response, applications can observe memory transactions in order to
infer guarantees discussed above. But there are no guarantees on the cache line’s state or
the location of the most up-to-date copy when the response is actually received.

These conditions imposed by the application interface of the DC might not be suitable for
all types of applications. For example, certain applications would want the semantics of
clean or clean-invalidate transactions to hold even after the responses are received. This
further highlights the importance of having a flexible interface to provide different types
of guarantees to the application. Next section discusses how the application interface can
be modified to provide different guarantees.

Takeaway 7.3. Having a flexible local interface for applications allows for the DC to
provide different guarantees for different types of applications.

7.7 Modifying DC’s Application Interface For Lock-
ing Capabilities

In this section, we want to modify the guarantees that the DC provides to applications.
Specifically, the clean and clean-invalidate transactions would be modified in such a way
that the semantics of these transactions hold even after transaction responses are received
and till the application relinquishes control. The aim of this section is to show that the
application interface to the DC protocol is highly customizable and can be modified easily
by changing the specification of local coherence transactions.

For example, in a clean-invalidate transaction the application issues a clean-invalidate
request for a cache line. The DC should ensure that the CPU does not have a copy of
the cache line and the most up-to-date copy resides in FPGA memory before sending a
response to the application. When the clean-invalidate transaction completes, the DC
locks the cache line from further upgrades by the CPU, before sending a response to the
application. When the application receives the response, the cache line is guaranteed to

153

Chapter 7. Specifying Coherence Transactions Initiated by Applications

be in I state in CPU’s cache till the application specifically unlocks the cache line using
an unlock coherence message.

Similarly, for clean transaction, the application issues a clean request to the DC. The DC
ensures that the CPU has a read-only copy and the FPGA memory has the most up-to-date
copy before responding to the application. The DC then completes the clean transaction
by locking the cache line and responding to the application. When the application receives
the response, it can infer that the cache line is either in S or I state in the CPU’s LLC and
the FPGA memory has the latest copy. The cache line continues to remain in this state
till application issues a message to unlock this cache line to the DC.

Unlock transaction: The clean and clean-invalidate transactions, in addition to the
semantics described in section 7.2, lock the cache line from being upgraded by the CPU.
We introduce an unlock transaction where a single unlock message can be issued by the
application to unlock a previously locked cache line. The unlock transaction is a posted
transaction with a single response event and no request event.

7.7.1 Local coherence messages for locking capabilities

In addition to the local coherence messages defined in section 7.3 for clean and clean-
invalidate transactions, we define an additional local coherence message for the unlock
transaction.

Unlock response (UL): The unlock coherence message is issued by the application to
the DC in order to unlock a cache line that was locked by a local-clean or local-clean-
invalidate transaction. This coherence message is treated as a response (i.e. cannot be
stalled) and have no requests associated with it.

7.7.2 Local coherence message classes for locking capabilities

We continue to have the message classes described in section 7.4 for clean and clean-
invalidate transactions, namely local-forward-request-without-data and local-response-without-
data. The unlock message is classified as a response and does not have any cache line data
associated with it. So the Unlock message also belongs to local-response-without-data
message class. Table 7.4 modifies the table in Table 7.1 to include the unlock message.

154

7.7. Modifying DC’s Application Interface For Locking Capabilities

Message Class VC # Message
Local-forward-request-without-data 16, 17 LC, LCI

Local-response-without-data 18, 19 LCA, LCIA, UL

Table 7.4: Local message classes and associated messages for FPGA applications to
initiate clean-lock, clean-invalidate-lock and unlock transactions.

7.7.3 Specification of local coherence transactions for locking ca-
pabilities

Section 7.5 describes how local coherence transactions are specified using two look-up
tables. These tables are modified here to incorporate locking capabilities.

Table 7.5 shows the initial conditions that indicate when local coherence transactions can
be initiated by the DC (modifications made to Table 7.2 are highlighted in bold). From
the first three lines it can be seen that the HS of the cache line transitions to intermediate
state 1pUL (1 pending unlock), indicating a lock, as soon as the response to a clean
or clean-invalidate request is sent. The state space exploration tool stalls any upgrade
requests from the CPU when the cache line is locked. For remaining scenarios, clean and
clean-invalidate transactions continue as previously described in section 7.5.

RS Local Request Next HS Next RS Action
1 (I) LC 1pUL 1 Send LCA
1 (I) LCI 1pUL 1 Send LCIA
2 (S) LC 1pUL 2 Send LCA
2 (S) LCI 1pCI 1 A21 Send F21

3 (E/M) LC 1pC 2 A32d Send F32
3 (E/M) LCI 1pCI 1 A31d Send F31

Table 7.5: Conditions to initiate local coherence transactions: for clean-lock, clean-in-
validate-lock and unlock transactions.

Table 7.6 gives conditions under which a local transaction is deemed to be completed.
From the table it can be seen that as soon as the clean or clean-invalidate transaction
completes, the cache line gets locked by transitioning the HS of the cache line to 1pUL.

Finally, whenever home state is 1pUL and unlock message (UL) arrives, the HS transitions
to 1 (I) in the DC’s directory. It is to be noted, since we do not explicitly specify what

155

Chapter 7. Specifying Coherence Transactions Initiated by Applications

HS Effective RS Next HS Action
1pC 2 (S) 1pUL (I) Send LCA
1pC 1 (I) 1pUL (I) Send LCA
1pCI 1 (I) 1pUL (I) Send LCIA

Table 7.6: Conditions to complete local coherence transaction: for clean-lock, clean-in-
validate-lock and unlock transactions.

would happen when an unlock message is received for a non-locked cache line, the state
space exploration tool assumes that this scenario is not allowed when generating the state
machine.

7.7.4 Guarantees provided at DC’s modified application inter-
face

Figure 7.2 shows the guarantees provided by the modified application-interface with lock-
ing capabilities. It follows the same nomenclature provided in section 7.6. Applications
that do not have any information on the state of a cache line can make a clean or clean-
invalidate request to the DC. Once the DC has performed necessary actions, it locks the
cache line and responds to the application. The state of the cache line is guaranteed to
be unaltered when the application receives the response.

The application can proceed to make any modifications to the cache line directly in the
FPGA memory before unlocking the cache line. All the modifications made during this
period are atomic from the perspective of the CPU. Once the cache line is unlocked, the
application does not have any guarantees on the state of the cache line.

7.7.5 Starvation in the modified DC interface

Though the locking capabilities of the modified DC interface are useful, it suffers from the
problem of starvation. It was noted in section 7.5 that for the local coherence transactions
without any locking capabilities, only the states of the cache lines that are cached in the
CPU would require a spot in the directory. As such, the local clean and clean-invalidate
transactions would never occupy an empty spot in the directory. Applications on the
FPGA can only cause cache lines to be downgraded which can potentially free up directory
resources.

156

7.7. Modifying DC’s Application Interface For Locking Capabilities

({I, Se, Ee, Mf}, Re)
({I, Sf}, Rf); clean
({I}, Rf); invalid

State Guarantees:

Pend:
RDDA

Recv
 W

DD
Pend:
RDDA

IDLE
Recv RDD

Send RDDA

Pend:
WDDA

Send W
DDA

Send LCI
Wait
LCIA

Recv LC
IA

Pend:
WDDA

Recv WDD
Send WDDA

Pend:
RDDA

Recv RDDSend RDDA

S
e
n
d
 L

C

Re
cv

 L
C
A

Wait
LCA

Pend:
WDDA

Recv WDD
Send WDDA

Pend:
RDDA

Recv RDD

Send RD
D
A

Pend:
Unlock

Pend:
Unlock

Send Unlock

S
e
n
d
 U

n
lo

ck

Figure 7.2: State guarantees on a cache line that can be inferred by FPGA applications
for modified DC application interface with locking capabilities.

But for the interface with locking capabilities, it can be seen from lines 1 and 2 of Table
7.5, locking a cache line that is not cached in the CPU would require an empty spot in the
directory to store the intermediate (locked) state. This allows the application to fill up the
directory with locked cache lines while upgrade requests by the CPU, even for non-locked
cache lines, starve waiting for a spot.

To overcome this issue, there should be additional types of transactions from the DC that
should cause the application to unlock cache lines, instead of passively waiting for the
application to voluntarily unlock.

This problem was discovered when running experiments where the CPU and multiple

157

Chapter 7. Specifying Coherence Transactions Initiated by Applications

threads on the FPGA where concurrently accessing data. Although this problem would
exist irrespective of the number of FPGA threads, it was observed that this problem is
more pronounced when running a large number of FPGA threads in order to maximize
memory bandwidth utilization. Fixing this problem would be part of future work.

Takeaway 7.4. The DC protocol layer’s application interface, the coherence transactions
it allows and the guarantees it provides can be changed easily by changing the specification
of local coherence transactions. These changes can be taken by the state space exploration
tool to generate new protocol variants automatically. This can be useful for application
developers to tailor the DC’s protocol to simplify the application layer protocol. That said,
care must be taken when defining your own local coherence transactions to avoid deadlocks,
livelocks and starvation.

7.8 Application Layer on top of DC Protocol Layer

In this section we will see how to define the application layer protocol in its interaction with
the DC and memory transactions and considerations to make it deadlock free. Note just
like how DC protocol is different from its implementation, the application layer protocol
is also different from its implementation. So far we have seen that the DC protocol layer
provides a simplified interface for the application layer to interact with the coherence
protocol: An application can intercept memory transactions and initiate local transactions.
The DC protocol layer also guarantees that coherence transactions between different cache
lines would be independent of each other. This implies that the application layer can, for
example, stall a memory transaction one cache line (cache line A) and initiate a local
transaction for a different cache line (cache line B) and expect the local transaction on
cache line B to complete before allowing the stalled memory transaction on cache line A
to continue.

This allows applications on the application layer to make associations and guarantee in-
variants across different cache lines which can be useful in extending the idea of coherence
to software on the CPU. To illustrate this let us consider how an application guarantee
the following invariant: Whenever cache line A is cached in CPU’s LLC we want cache
line B to not be cached in CPU’s LLC and vice versa. That is if RS of cache line A is S
or E/M, RS of cache line B should be I and vice versa.

158

7.8. Application Layer on top of DC Protocol Layer

DC App Mem

RDD(A)

LCI(B)

LCIA(B)

RS A, B
X, X

I, X

I, I(pend UL)

RDD(A)

RDDA(A)

RDDA(A)

{Se, Mf}, IUL(B)

RDD(A) indicates
RS of A is Invalid.
Stall RDD(A),
issue LCI(B), and
wait for LCIA(B)

LCI(B) guarantees
RS of B is Invalid.
Resume RDD(A)
and unlock B once
RDDA(A) is sent.
A is cached B is
not.

RDD(B)

LCI(A)

LCIA(A)

{Se, Mf}, I

I(pend UL), I
RDD(B)

RDDA(B)

RDDA(B)

I, {Se, Mf}UL(A)

RDD(B) indicates
RS of B is Invalid.
Stall RDD(B),
issue LCI(A), and
wait for LCIA(A)

LCI(A) guarantees
RS of A is Invalid.
Resume RDD(B)
and unlock A once
RDDA(B) is sent.
B is cached A is
not

Figure 7.3: Application layer protocol that guarantees when cache line A is cached in the
CPU’s LLC, cache line B is not cached and vice versa. The application can infer remote
states of cache lines A and B by exchanging coherence messages with the DC.

159

Chapter 7. Specifying Coherence Transactions Initiated by Applications

Let us assume initially cache line A is not cached in the CPU’s LLC. When the CPU
wants to cache cache line A, the DC would generate a memory read request (RDD) for
cache line A. The DC also guarantees that the RS of cache line A would be I till a memory
read response is received (see Pend:RDDA state in Figure 7.2).

The application can intercept the memory read request on cache line A and stall it.
Meanwhile, the application can initiate a clean-invalidate-lock local transaction (LCI) on
cache line B. Since cache lines A and B are different cache lines, we can expect the DC to
complete the LCI transaction on cache line B even when read response (RDDA) on cache
line A is pending. Once response LCIA is received for cache line B, the DC guarantees
that RS cache line B is locked at I (See Wait LCIA transition in Figure 7.2) at which
point, the application can respond to the read request for cache line A and unlock cache
line B. The RS of cache line A would be S or E/M, and the RS of cache line B would be
I till a memory read request is observed for cache line B. This application layer protocol
is shown in for both cache lines A and B in Figure 7.3.

It is also to be noted that the DC does not guarantee independence of coherence transac-
tions on a single cache line even if the coherence transactions are different. For example,
a memory transaction and local transaction on a cache line are not guaranteed to be inde-
pendent. This means that if a memory request (RDD or WDD) on cache line A is stalled
before issuing a local transaction on the same cache line, it is not guaranteed that the
local transaction on cache line A would complete before the memory response (RDDA or
WDDA) is sent. Assuming that the opposite can lead to application protocol deadlock.
The conditions for application protocol deadlock are shown in Figure 7.4. For the imple-
mentation of the application protocol to be deadlock free, the application protocol itself
has to be deadlock free, and in addition the implementation should also consider deadlocks
that arise due to limited availability of resources.

Takeaway 7.5. The DC guarantees independence of coherence transactions on different
cache lines (each cache line is independent). This means an application can interrupt
coherence transaction on one cache line to initiate and complete coherence transactions
on other cache lines. But the DC does not guarantee independence of different transactions
within a cache line, therefore interrupting a transaction to initiate a different transaction
on the same cache line by an application when interacting with the DC can cause deadlocks.

Now we have seen how applications can handle local coherence transactions. In the next
section, we will see some coherence transactions that are used by the DC to perform

160

7.9. Directory Maintenance Operations

DC App Mem

RDD/WDD(A)

LCI(A)
Wait LCIA(A)

DEADLOCK

Stall
RDD/WDD(A)

DC App Mem

RDD/WDD(A)

LCI(A)
Wait LCIA(A)

DEADLOCK

Stall
RDD/WDD(A)

Figure 7.4: Application protocol deadlock scenarios: Applications stalling coherence
events on a cache line that are issued by the DC while initiating new coherence trans-
actions on the same cache line can lead to deadlocks.

resource maintenance, and are not exposed to applications.

7.9 Directory Maintenance Operations

The directory on the FPGA’s DC is a limited resource. As such, there might be a need for
the DC to maintain and free-up this resource whenever necessary. The directory holds the
states of cache lines that are cached in the CPU. The DC would have to clean-invalidate
previously cached cache lines from CPU’s LLC if it has to free up directory resources.

The main caveat here that the clean-invalidate transaction is not initiated by any appli-
cation on the FPGA but rather by the DC whenever it needs to perform resource mainte-
nance. This means that directory maintenance operation is not initiated by a coherence
event received through a VC but rather by some conditions within the DC. Also, the DC

161

Chapter 7. Specifying Coherence Transactions Initiated by Applications

does not have to issue any coherence messages to indicate that the directory maintenance
operation has completed.

For this reason, we introduce a special coherence transaction called “Induced-Clean-
Invalidate (ICI)” transaction. It begins with the DC issuing an ICI request to the protocol
state machine and the state machine along with a cache line address. The state machine
clean-invalidates the cache line from the CPU’s LLC. The transaction completes when the
RS of the cache line is I and no coherence event is generated to indicate completion. Upon
completion, the directory has an empty spot. This transaction is not visible to applications
that interact with the DC and do not provide any guarantees to applications.

7.9.1 Specification of ICI transaction

The two table scheme described in section 7.5 is used to specify the induced-clean-invalidate
transaction. Table 7.7 specifies what the state machine would have to do when an ICI
event is invoked by the DC. If the RS of the cache line is already invalid, no specific
action needs to be taken. If the RS of the cache line is S or E/M, a forward downgrade
transaction is initiated and the RS of the cache line transitions to an intermediate state to
keep track of the forward downgrade transaction. The HS of the cache line also transitions
to intermediate state 1pICI to indicate that an induced-clean-invalidate transaction is in
progress.

RS Local Request Next HS Next RS Action
1 (I) ICI 1 1 No Action
2 (S) ICI 1pICI 1 A21 Send F21

3 (E/M) ICI 1pICI 1 A31d Send F31

Table 7.7: Conditions to initiate induced-clean-invalidate (ICI) transaction.

Table 7.8 shows when an induced-clean-invalidate transaction is completed. If the RS of
the cache line is I, the transaction completes by transitioning the HS to I as well. No
action needs to be performed by the state machine when the transaction completes.

HS Effective RS Next HS Action
1pICI 1 (I) 1 (I) No Action

Table 7.8: Conditions to complete induced-clean-invalidate (ICI) transaction.

162

7.10. Miscellaneous Local Coherence Transactions

7.10 Miscellaneous Local Coherence Transactions

In addition to local clean and clean-invalidate transactions, a few other local transactions
are specified but have not been tested. Although these transactions are present in the
protocol state machine, they are not supported by the current DC implementation. The
reason for this that an application can implement these transactions by interacting with
both DC and memory directly.

The first coherence transaction is “Local Read (LR)” which allows an application to per-
form a coherent non-caching read. Any dirty data is cleaned from the CPU’s LLC into the
FPGA memory and provided as a response to the application. The state machine signals
the end of the transaction using “Local Read Acknowledge (LRA)” coherence message.

With the current DC implementation, an application can do the same by clean-locking
the cache line and reading the memory once the acknowledgment for the clean request is
received. Once the memory is read, the application can unlock this cache line.

The second coherence transaction is “Local Write (LW)” which is allows the application
on the FPGA to perform a coherent non-caching write. The protocol state machine, clean-
invalidates any dirty data present in the CPU’s LLC and overwrites this with the data
provided by the application. The state machine also signals the end of transaction to the
application through “Local Write Acknowledge (LWA)” coherence event.

With the current DC implementation, an application can do the same by clean-invalidate-
locking the cache line and writing to the memory once the acknowledgment for the clean-
invalidation is received. Once the data is written, the application can unlock this cache line.
These transactions are evaluated with the current DC implementation in subsection 9.6.2.

7.11 Local Events Packet Formats

In this section, the format of coherence messages exchanged between the application and
DC are provided. The description of each field and behavior of DC are also provided.

7.11.1 LC and LCI request packet formats

local-clean (LC) and clean-invalidate (LCI) requests do not have any data associated with
them. Similar to coherence headers in ECI, these messages are 64-bits wide and have the

163

Chapter 7. Specifying Coherence Transactions Initiated by Applications

format shown in Table 7.9.

QWord 63:59 58:56 55:50 49:46 45 44 43:42 41:40 39:0
0 opcode xb3 hreq id dmask ns xb1 rnode xb2 address

[4:0] [2:0] [5:0] [3:0] [0:0] [0:0] [1:0] [1:0] [39:0]

Table 7.9: Local clean and clean-invalidate packet format.

The description of the fields are as follows:

• opcode: This 5-bit field along with the VC number is used to identify the coherence
event and decode its bit-fields. As seen in Table 7.1, both local clean and clean-
invalidates are assigned to VCs 16 and 17. The opcode for local-clean request is 0
(5’b00000) and opcode for local-clean-invalidate request is 1 (5’b00001).

• xb3 : This field is 3 bits of don’t-cares (Xs) and are ignored. Default value can be 0.

• hreq id: This 6-bit field can be used by application to track the coherence transac-
tions if necessary. The response associated with this request will be tagged with the
same transaction ID. There are no ordering guarantees for multiple coherence trans-
actions tagged with the same transaction ID. In other words, the order of responses
received for these transactions will not match the order in which the requests were
sent. The default value can be 0.

• dmask: This 4-bit field is currently unused but can be used to clean or clean-
invalidate cache lines at sub-cache-line granularity. The default value can be 15
(4’b1111) indicating all sub-cache-lines.

• ns: This 1-bit field is used to indicate if the memory is non-secure. The default value
can be 1 (1’b1).

• xb1 : 1-bit of don’t-care. The default value can be 0.

• rnode: This 2-bit field identifies the node that issues this request. The default value
can be the node ID of the FPGA, which is 1 (2’b01).

• xb2 : 2-bits of don’t-care, default value can be 0.

• address: This is the 40-bit cache line physical byte address. In this case it would be
an address in the FPGA address space.

164

7.11. Local Events Packet Formats

7.11.2 LCA and LCIA responses packet formats

local-clean-acknowledge (LCA) and clean-invalidate-acknowledge (LCIA) responses do not
have any data associated with them. Similar to coherence headers in ECI, these messages
are 64-bits wide and have the format shown in Table 7.10.

QWord 63:59 58:56 55:50 49:46 45 44:40 39:0
0 opcode xb3 hreq id dmask ns xb5 address

[4:0] [2:0] [5:0] [3:0] [0:0] [4:0] [39:0]

Table 7.10: Local-clean-acknowledge and clean-invalidate-acknowledge packet format.

The description of the fields are as follows:

• opcode: The VC number and 5-bit opcode is used to uniquely identify a coherence
message and decode its bit-fields. As seen in Table 7.1, both acknowledgments are
assigned are assigned to VCs 18 and 19. The opcode for LCA is assigned opcode 0
(5’b00000) and LCIA is assigned opcode 1 (5’b00001).

• xb3 : 3-bits of don’t-cares, can be any value.

• hreq id: 6-bits of transaction identifier. This will have the same value as the hreq id
of the request that initiated the transaction.

• dmask: Currently unused, will always return 15 (4’b1111) indicating that an entire
cache line was cleaned or clean-invalidated.

• ns: Non-secure bit as returned by the CPU.

• xb5 : 5-bits of don’t-cares, can be any value.

• address: 40-bits of cache line physical byte address that was cleaned or clean-
invalidated.

7.11.3 Unlock (UL) response packet format

The unlock response packet also has only a 64-bit header and does not have any data
associated with it. The packet format is shown in Table 7.11.

The descriptions of the fields are as follows:

165

Chapter 7. Specifying Coherence Transactions Initiated by Applications

QWord 63:59 58:40 39:0
0 opcode xb19 address

[4:0] [18:0] [39:0]

Table 7.11: Unlock response packet format.

• opcode: The VC number of 18 or 19 and an opcode of 2 (5’b00010) is used to uniquely
identify an unlock response header and decode its bit-fields.

• xb19 : 19-bits of don’t-cares.

• address: 40-bit physical cache line byte address from the FPGA address space that
has to be unlocked.

The format of the packets do not change between the locking and non-locking variants,
just the guarantees provided changes.

7.12 Summary

In this chapter, we have seen how the DC protocol layer provides a simplified interface for
the application layer to interact with the coherence protocol. Applications do not have
to keep track of the state of cache lines but rather interact with the DC to initiate local
transactions and get guarantees on the cache line state. All underlying coherent trans-
actions with the remote node are handled by the DC thereby simplifying the application
state machine.

We have also seen how local coherence transactions can be specified without starvation
and deadlocks, and how different specification for local transactions affect the interface
and guarantees exposed to the application layer.

Furthermore, we saw how different types of applications can rely on the guarantees pro-
vided by local coherence transactions, without having a need to modify the underlying
protocol layer, while extending the notion of the coherence protocol to software on the
CPU. Examples of such applications will be presented in chapter 9. Finally, we looked at
coherence transactions that are defined for directory maintenance and not exposed to the
application layer.

166

7.12. Summary

It is to be noted that the DC protocol and its application interface is highly customizable
and can be changed by modifying their specification (takeaways 5.3 and 7.4). Care must be
taken when modifying the specification to ensure that coherence invariants are maintained
and that there are no deadlocks. The state space exploration tool can take this specification
and automatically generate a state machine making it easy for application developers to
quickly develop and deploy new protocol variants and application interfaces.

In the next chapter, we will look at how the DC protocol layer is implemented on the
FPGA.

167

8
Distributed Directory Controller

8.1 Introduction

In section 4.1, we discussed about the two components of directory protocol layer, namely
the protocol state machine and its implementation. Building the protocol state machine
was extensively discussed in chapters 5, 6 and 7. In this chapter, we discuss about how it
can implemented on the FPGA. Our implementation is tailored to the Enzian platform.

Based on the guarantees expected of the directory layer, the expectations of a generic DC
implementation is as follows. The DC on the FPGA implements the protocol state machine
to provide coherent access to the FPGA attached byte-addressable memory. Although the
FPGA has limited resources, the DC should faithfully reproduce all guarantees provided
by the protocol state machine. The DC should ensure that each FPGA-homed cache
line has its own state machine (i.e. cache lines are mutually independent). It should also
ensure that the transitions within a cache line are faithful to the state machine to maintain
coherence invariatns (i.e. there should be no hazards during state transitions). Even if the
protocol state machine is deadlock free and performant, it is not guaranteed that DC, its
implementation on the FPGA, is deadlock free or performant. Deadlocks can arise due to
limited availability of resources (resource deadlocks described in subsection 3.4.1). Hence
these also would have to be considered when designing the DC.

Moreover, we want the generic DC implementation to be highly customizable. Previously

169

Chapter 8. Distributed Directory Controller

we have seen that the protocol state machine is generated from a specification and by
changing the specification, we can have a different state machine (check takeaway 5.3).
Furthermore, we have also seen in section 7.7 how applications on the FPGA that interact
with the DC can benefit from having a flexible interface. Thus it can be advantageous to
have a flexible DC design that can accommodate different protocol state machines as well
as have an application interface that can be expanded with only minor modifications.

In this chapter, we will look at how a DC with such properties can be implemented on the
FPGA. The structure of this chapter is as follows.

1. Section 8.2 describes the interface of DC.

2. Section 8.3 provides an overview of the distributed DC’s architecture with Directory
Controller Slices (DCSs) and multiple Directory Controller Units (DCUs), along with
the reasons for choosing such an architecture.

3. Section 8.4 goes into the implementation details of the DCS.

4. Section 8.5 goes into implementation details of the DCU and how it provides the
guarantees required for the protocol layer.

Note 8.1. In this chapter, the term DC refers to our implementation of a DC on Enzian.

Note 8.2. There was a version of DC that was built before the current version which
had different design choices. These design choices lead to performance bottlenecks and
the insights gained by experimenting with it has lead to the current set of design choices.
Section B highlights the difference in design choices and Section section B.1 provides a
summary of the insights gained for readers who want more information.

8.2 DC Interfaces

Coherence controllers on the CPU interact with the DC through the coherent interconnect
and controllers on the FPGA have a local interface on the DC to interact with it. In
addition to other coherence controllers, the DC also deals with memory events, that is,
issuing read/write requests to memory and receiving responses. Our implementation of the
DC has an interface to Enzian’s coherent interconnect (ECI), a local interface to FPGA
applications and an interface to the memory as shown in Figure 8.1

170

8.2. DC Interfaces

CPU

E
C
I

DC
DC

Mem

APPLCL

A
X
I

VCs 2-11

VCs 16-19

Figure 8.1: DC interfaces: The DC has the ECI interface to interact with CPU, the local
interface to interact with applications on the FPGA, and an AXI interface to interact with
memory. Both ECI and local interfaces have a number of independent VCs for different
message classes.

Both ECI and local coherence messages are classified into message classes with each class
having its own VC in order to avoid message-level deadlocks due to messages of different
classes blocking each other (subsection 4.4.1). VCs are essentially FIFO buffers managed
by credit-based flow control in ECI and by valid-ready flow control on the FPGA. Each VC
has a number that can be used to identify the message class. Depending on the message
class, a coherence message either contains a 64-bit coherence header and up-to 128-byte
payload or only a 64-bit coherence header.

All coherence headers (ECI and local) have the following bit-fields in common: a 5-bit
opcode, a 5/6-bit transaction ID, a 4-bit dmask (data mask) and a 40-bit cache line byte
address. The opcode and the VC number are used to uniquely identify a coherence message
and dmask is used to identify the size of the payload. In addition to these, there are also
message specific bit-fields for different messages.

These VCs decouple individual coherence messages from the interface of the DC. That
is, the DC does not have to provide a separate interface for each coherence message but
have a standard VC interface for different message classes. The generic nature of such an
interface allows the DC to provide a flexible local interface for applications on the FPGA.

Design Choice 8.1. The applications on the FPGA interact with the DC through a
standard VC FIFO interface. Similar to ECI, each message class has a separate VC

171

Chapter 8. Distributed Directory Controller

interface. This implies that the local interface to the DC would not change if a new local
coherence message is assigned to an existing message class. The interface would change
only if new local message classes are added.

Coherence controllers can initiate coherence transactions on a cache line, which are a
chain of coherence messages towards a specific goal. For example, the DC can initiate a
transaction with the CPU to clean-invalidate a cache line to which the CPU will respond.
Each transaction is associated with a cache line address and is tagged with a transaction
ID. All coherence messages in a transaction will have the same transaction ID and there
can be multiple outstanding transactions on a cache line.

In addition to coherence transactions, there are also memory transactions on a cache
line made up of AXI read request-response and write request-response pairs to a byte
addressable memory. Memory transactions are also tagged with an ID which has no
relation to a coherence transaction ID. More details on ECI, local and memory events are
given in chapter 4 through chapter 7. In the next section, we will look at the directory of
a DC and how it shapes the DC’s architecture.

8.3 Overview of DC Architecture

8.3.1 DC directory sizing

In our system, there are no caching entities on the FPGA and CPU is the only entity that
can cache FPGA-homed cache lines (see design choices in subsection 3.2.2). The state of
these cache lines in the CPU’s cache is tracked in the DC’s directory. The LLC of CPU is
16-way set-associative and has a capacity of 16MB or 128K cache lines. By matching the
size of DC’s directory to the caching capacity of the CPU (the directory should be able to
hold the states of at least 128K cache lines) conflict misses, arising due to the directory
being full, and round-trip invalidations, to free up directory slots, can be avoided (see
takeaway 2.1). More details on directories can be found in subsection 2.4.1.

Another implication of matching the directory size to the CPU’s caching capacity is that
the DC can piggy back on CPU’s cache maintenance operations to maintain its directory
resources, removing the need for the DC to have explicit directory maintenance operations.
For example, when a set is full in the CPU’s LLC, the set is also full in the DC’s directory.
In case the CPU wants to cache a new cache line in an already-full set, it has to create an

172

8.3. Overview of DC Architecture

empty spot in that set by evicting one of the previously cached cache lines. This eviction
by the CPU will also empty a spot in the same set in DC’s directory, there by freeing up
directory resources.

The draw back of relying on the CPU to maintain directory resources on the FPGA is that
it does not factor in any directory resource consumption by applications on the FPGA. For
example, say a set in CPU’s LLC is not full but the same set in the DC’s directory is full
due to applications on the FPGA occupying empty spots. When the CPU caches a new
cache line, it would not perform any cache maintenance operation to free up resources
in the full directory set, leading to a deadlock. This effectively limits the interaction
between the DC and FPGA applications to transactions that do not require an empty
spot in the DC’s directory such as clean and clean-invalidate transactions (section 7.2).
Any transactions with locking capabilities such a clean-lock or clean-invalidate-lock as
seen in section 7.7 would require applications to use empty spots in DC’s directory, which
can potentially cause resource deadlocks. Note that the deadlock issue described here
is different from the starvation issue discussed in subsection 7.7.5, the former is caused
by not having directory maintenance operations on the DC whereas the latter is caused
by incorrect protocol transaction design, although both are related to limited directory
resources.

Design Choice 8.2. For optimal performance, the size of DC’s directory should be tuned
to the charecteristics of the platfrom on which it is implemented. In our Enzian implemen-
tation, the directory can hold the state of up to 128K cache lines. This choice matches the
size of the directory to the caching capacity of CPU’s LLC (16 MiB) and avoids conflict
misses, round-trip invalidations and explicitly maintenance of directory resources by the
DC. Having the CPU maintain DC’s directory resources simplifies DC design but limits
what local transactions are allowed.

Thus the directory of the DC can be viewed as a table where each set (row) has 16 ways
(columns) and each cell stores the state of 1 cache line. There are 213 sets to store states
of all 128K cache lines. The cache line address defines the set into which the state of the
cache line would be stored and the DC is free to place it in any of the ways available in
this set. A tag is stored along with the state in a way to identify the cache line to which
the state corresponds to. This is shown in Figure 8.2.

173

Chapter 8. Distributed Directory Controller

16 Ways

213 Sets

Directory Table

Figure 8.2: DC directory can be viewed as a table where each cell stores the tag and state
of an FPGA-homed cache line that is cached in the CPU’s LLC. The size of the directory
tracks the caching capacity of the CPU.

8.3.2 Indexing into the DC directory

Although ECI supports addressing up to 1 TiB of memory, the DC exposes a 256 GiB
of coherent address space on the FPGA. Thus ECI can have up to 40-bits of cache line
byte-address, the DC uses only the lower 38-bits to address the byte addressable memory.
The reasons for this would be explained in subsubsection 8.5.6.1.

Design Choice 8.3. Although ECI allows addressing up to 1 TiB of FPGA memory, the
DC exposes only 256 GiB of coherent address space on the FPGA. That is the AXI buses
to the memory have 38-bit addresses. This design choice is done to optimize the resource
consumption of Enzian’s FPGA. Allowing access to full 1 TiB would lead to sub-optimal
utilization of resources, increase utilization and add more congestion.

The 38-bit cache line byte address is split into a 7-bit byte offset (bits 6 to 0), followed by a
13-bit set index (bits 19 to 7) and an 18-bit tag (bits 37 to 18) as shown in Figure 8.3. The
7-bit byte-offset addresses one of the 128 bytes of data within a cache line. The 13-bit set
index identifies which of the 213 sets corresponds to this cache line. The remaining 18-bits
are tag information that is stored in the directory along with the state in a way to identify
the cache line corresponding to the cache line address. In the current configuration, the

174

8.3. Overview of DC Architecture

16 ways

Directory Table

18-bit Tag, 18-bit State

18-bit
Tag

13-bit
Set-index

7-bit
Byte-offset

38-bit CL Byte-address

Set-Index

Figure 8.3: Indexing into the directory using the cache line byte-address: The cache line
byte-address contains a 13-bit set-index that is used to index into all ways of a particular
set in the directory.

state of a cache line is limited to 18 bits. Thus a specific way, storing 18-bit tag and an
18-bit state, is 36 bits wide as seen in Figure 8.3. The reason for this is that each row in
an FPGA Block RAM (BRAM) is 36-bits wide and we would like to store contents of 1
way in a single BRAM row.

Design Choice 8.4. The state of a cache line can be up to 18-bits in size (i.e. the
protocol state machine can have a maximum of 262144 states). This choice is based on
the fact that in the configuration we would like to use, each row in the BRAM is 36-bits
wide (on Enzian’s FPGA); enough to store an 18-bit tag and an 18-bit state. Our biggest
DC protocol state machine has 77 states which is much less than the maximum limit.

8.3.3 Directory controller units and slices

As seen earlier in takeaway 4.1, the state transitions on a given cache line is independent
of the state transitions on other cache lines within the directory protocol. This enables
us to split the directory across multiple DCUs with each DCU having a disjoint subset of
the sets and combined together holds all sets in the directory.

175

Chapter 8. Distributed Directory Controller

DCU

DCU-ID

18-bit
Tag

13-bit
Set-index

7-bit
Byte-offset

6/7/8-bit
Set-within-DCU

7/6/5-bit
DCU-ID

DCU

Directory Subset
64/128/256 sets
per DCU

16 ways

DCU-ID: 0

DC

38-bit CL Byte-address

DCU

Directory Subset
64/128/256 sets
per DCU

16 ways

DCU-ID: N-1;
N = 128/64/32

Set-within-DCU

Figure 8.4: DC is split into a number of parallel DCUs. Each DCU has a portion of
DC’s directory and can track a disjoint subset of cache lines.

In current implementation, the number of sets within a DCU can be configured between
64/128/256 sets-per-DCU for reasons described in subsection 8.5.6. Thus to hold all 213

sets we would need 128/64/32 DCUs depending on the number of sets-per-DCU. In order
to index into the directory that is distributed across multiple DCUs, the 13-bit set index is
further split into 7/6/5-bit DCU Identifier (DCU-ID) that chooses the DCU corresponding
to this set and 6/7/8-bit set-within-DCU to identify the set within a given DCU as seen
in Figure 8.4.

176

8.3. Overview of DC Architecture

Furthermore, ECI allows for two independent channels of communication by providing
separate sets of VCs for odd and even cache lines. To take advantage of this parallelism,
the DCUs are organized evenly between odd and even DCSs as shown in Figure 8.5. Each
DCS contains half the total number of DCUs (i.e. each DCS has 64/32/16 DCUs). The
way this factors into directory indexing is that the DCU-ID is split into 1-bit odd/even
DCS identifier and remaining 6/5/4 bits point to the DCU within a DCS (referred to as
DCU-Index (DCU-IDX)). It is to be noted that even numbered VCs transport coherence
messages for odd cache line indices. So the DCS connected to even VCs serve odd cache
line indices and vice versa.

Design Choice 8.5. The DC has 2 DCSs, one for odd cache line indices and the other
for even. This is due to ECI having parallel channels of communication for odd and even
cache lines. Each DCS contains 64/32/16 DCUs depending on the chosen configuration.
Each DCU has a disjoint subset of the directory’s sets with 64/128/256 sets per DCU and
all 16 ways. This organization of the DC is based on the characteristics of ECI, Enzian
and can vary between platforms.

177

Chapter 8. Distributed Directory Controller

DCU
DCU-IDX: 0

DCU

DCU-IDX: K-1;
K= 64/32/16

EVEN DCS

18-bit
Tag

13-bit
Set-index

7-bit
Byte-offset

6/7/8-bit
Set-within-DCU

7/6/5-bit
DCU-ID

6/5/4-bit
DCU-IDX

1-bit
ODD/EVEN DCS

ODD/EVEN DCS

DCU-IDX

DCU
DCU-IDX: 0

DCU

DCU-IDX: K-1;
K= 64/32/16

ODD DCS

DC

38-bit CL Byte-address

Figure 8.5: DCUs are organized between odd and even DCSs. This is done to take advan-
tage of parallelism offered by ECI which provides independent channels of communication
for odd and even cache lines.

8.3.4 Non-existent memory in address space exposed by DC

As mentioned earlier, the DC exposes a 256 GiB FPGA address space and has a directory
big enough to match the caching capacity of the CPU. In order to optimize on the per-
formance of the directory, a portion of the address space where the 18-bit tag is all 1s is
considered to be non-existent. Why this “non-existent” region is needed within the FPGA

178

8.3. Overview of DC Architecture

address space is described in subsubsection 8.5.6.2. Thus we have a 1 MiB region in the
end of the 256 GiB region that is considered to be non-existent as shown in Figure 8.6.
Any access to this region would result in an error. The presence of such a region will
depend on the platform characteristics.

256 GiB Region

FPGA Address Space

18-bit
Tag

13-bit
Set-index

7-bit
Byte-offset

38-bit CL Byte-address

18-bit
Tag all ones

20-bit
all zeros

18-bit
Tag all ones

20-bit
all ones

1 MiB
Non-existant
memory
(Tag is all ones)

Figure 8.6: Of the 256 GiB of memory exposed by DC, 1 MiB is non-existent and is not
usable. The non-existent region is identified by cache line address where the tag field is all
ones. This is done to optimize performance of DC.

8.3.5 DC architecture top level

The reason for organizing DCUs into two DCSs is to take advantage of the inherent odd,
even channel parallelism provided by ECI. It only makes sense to extend it further into
the memory channels as well. Each DCS exposes an AXI interface that access mutually
independent (odd and even) regions of the FPGA address space.

Putting it all together, the overview of the DC architecture is as shown in Figure 8.7.
The DC has two DCSs. Odd numbered VCs (both ECI and local) channels are connected
to one DCS and even numbered VCs are connected to the other. Each DCS exposes an

179

Chapter 8. Distributed Directory Controller

AXI bus to access memory. The two AXI channels are mutually independent. For sake of
simplicity when depicting the DC, the two AXI channels are represented as one as shown
in Figure 8.1. Next we will look into the architecture of the DCS.

Channel for
even CL Indices

Channel for
odd CL Indices

DCS
ODD

ECI ODD VCs
AXI

LCL ODD VCs

DCS
EVEN

ECI EVEN VCs
AXI

LCL EVEN VCs

DC

Figure 8.7: DC architecture top level: The DC consists of two parallel DCSs units.

8.4 Directory Controller Slice (DCS) Architecture

8.4.1 DCS interface

The DC comprises of two DCSs where each DCS has a number of DCUs. Each DCU has
a unique DCU-ID and within a DCS, each DCU is identified by its DCU-IDX as shown in
Figure 8.5. The DCS receives coherence messages of different types from multiple sources.
Each coherence message is associated with a cache line address, and part of the cache line
address is the ID of the DCU responsible for handling it.

The different types of interfaces exposed by a DCS to receive coherence messages are as
follows: An interface to connect to ECI to exchange coherence messages with the CPU, a
second interface that exposes read, write descriptor interface to be converted to AXI and
connected to the memory, and finally a local interface for applications on the FPGA to
interact with the coherence protocol through DCS. Each interface is made up of one or
more channels with valid-ready flow control. These interfaces are shown in Figure 8.8.

180

8.4. Directory Controller Slice (DCS) Architecture

Req-wo-data
(64-bit header)
Rsp-wo-data
(64-bit header)
Rsp-wth-data
(64-bit header,
128 Byte payload)
Fwd-wo-data
(64-bit header)
Rsp-wo-data
(64-bit header)
Rsp-wth-data
(64-bit header,
128-byte payload)

Rd Req
(7-bit ID,
38-bit
Addr)

Rd Rsp
(7-bit ID,
128-byte
Data)

Wr Req
(7-bit ID,
38-bit Addr,
128-byte Data
128-bit Strb)

Wr Rsp
(7-bit ID,
2-bit
BRSP)

lcl-fwd-wo-data
(64-bit header)

lcl-rsp-wo-data
(64-bit header)

lcl-rsp-wo-data
(64-bit header)

DCS

Figure 8.8: ECI, Local and Memory interfaces to DCS: All interface channels are inde-
pendent of each other and have valid-ready flow control.

The DCS interface to ECI consists of three incoming and three outgoing channels. The
incoming channels are request-without-data, response-without-data and response-with-
data-channels. The request-without-data channel receives upgrade requests from the CPU
and both response channels receive voluntary downgrades as well as forward-downgrade
acknowledgments from the CPU. In contrast, messages are sent to the CPU via out-
going channels namely forward-without-data, response-without-data and response-with-
data.The forward channel is used to issue forward downgrade requests to the CPU. The
response channels are used to issue responses to upgrade requests from the CPU.

In general, all ECI channels have a 64-bit header (of which the cache line address is a
part). Each channel is also assigned a VC number (not shown in figure) to distinguish
between them. Channels with data additionally have up-to 128-bytes of payload. The
size of the payload can vary between 1 and 4 sub-cache-lines (each sub-cache-line being 32
bytes), and is indicated by the dmask-field in its header. The dmask-field also identifies

181

Chapter 8. Distributed Directory Controller

the exact byte-address to which the sub-cache-line is to be written to. This allows for data
that are smaller than a cache line to be compressed, thereby reducing the amount of data
flowing through the interconnect.

The read descriptor interface to memory has an outgoing read request channel and incom-
ing read response channel. The read request channel is used to initiate read transactions
by issuing the cache line byte-address to read along and tagging it with a transaction
identifier. An open read transaction is completed when response data, tagged with the
transaction identifier, is received through the read response channel.

The write descriptor interface also has outgoing write request and incoming write response
channels. The write request channel initiates a write transaction by tagging it with a
transaction identifier and issuing the cache line byte-address to write to along with write
data and byte-enable strobe signals. Similar to read transactions, write transactions are
also terminated with a matching transaction identifier is received in the write response
channel along with information indicating if the write completed successfully.

The memory descriptor channels have 7-bit transaction ID and a data-bus that is cache
line size wide. Additional modules are available to convert these descriptor interfaces
to AXI signals. It is to be noted that in the current design, write requests are at the
granularity of sub-cache-lines whereas reads are always at the granularity full of cache
lines. This is because reading sub-cache-lines is only an optimization which we decided
not to implement.

Design Choice 8.6. The DC supports sub-cache-line granularity write requests to mem-
ory, but read requests are always at the granularity of a cache line. The only impact of
this design choice is reduction in performance.

Finally, the local interface has an incoming forward-without-data channel for the FPGA
application to issue clean or clean-invalidate requests, an outgoing response-without-data
channel containing acknowledgments for previously issued clean, clean-invalidate requests,
and an incoming response-without-data channel for the FPGA application to unlock pre-
viously locked cache lines (if allowed by the protocol state machine). All channels have
a 64-bit header with opcode indicating the type of operation and the cache line address
embedded into it. The local channels also have distinct VC numbers associated with each
channel. There are no data channels in the current iteration of the local interface.

182

8.4. Directory Controller Slice (DCS) Architecture

8.4.2 DCS control and data-paths

In order to simplify routing of coherence and memory events to the numerous DCUs within
a DCS, the information from the various incoming channels are split into control and data.
Control information in a channel is any information except cache line data. This includes
the 64-bit headers in ECI and local interfaces, as well as read/write response transaction
IDs from the memory interface. The control-path routes control information to the DCUs
where as data-path can be used to store and retrieve data as needed. The control and
data-paths are shown in Figure 8.9.

Write Data Path

DCUs

ARB

ARB

RTR

RTR

Wr Req

Rd Req

ECI Hdr Only

HDR

RTR

DCU31

DCU0

ECI

Wr Rsp

Wr Req,
Data

Rd Req

Rd Rsp,
Data

Rd Rsp

DCU0

DCU31

ARB

Wr Rsp

LCL Events

ECI Hdr Only

HDR

ECI Read Data Path

Hdr,
Data

Hdr,
Data

LCL Events

DCU0

DCU1

DCU30

DCU31

Figure 8.9: DCS control and data-paths: Control information is routed to the DCUs that
lie in the control-path and cache line data is stored and retrieved from data-path. The
data-paths are separated for read and write operations to avoid deadlocks.

The DCS has two data-paths, the write-data-path to hold data that is to be written to

183

Chapter 8. Distributed Directory Controller

the memory and the read-data-path to hold data read from the memory. The reason to
separate out read and write data-paths is that read and write operations are independent
of each other and having a single data-path for both operations would create dependencies
between the operations which can lead to deadlock. Each DCU in a DCS is direct-mapped
to one slot in the data-path buffer (indexed by the DCU-IDX) to store and retrieve cache
line data.

Design Choice 8.7. The DCS has separate control and data-paths to avoid routing cache
line data to the DCUs. Only control information is routed to and from the DCUs and
each DCU in a DCS is direct-mapped to a slot in the data-path buffer to store and retrieve
cache line data. Separate data-paths are available for read and write DC operations to
avoid deadlocks. The alternative would be to route data along with control information to
the DCUs which would cause routing congestion.

On the write-data-path, we allow only responses (with data) from the CPU to be written
to the memory through the DCS. This means that if an FPGA application wants to write
to the memory, it has to interact with the DCS through its local interface channels and
have its own data-path outside the DCS. This design choice is made to modularize the
DCS, as not all FPGA applications would require writing to memory. The same goes
for FPGA applications reading from memory. If, in the future, the DCS has to support
reads and writes through the local interface, add additional data-path channels and do not
mix with the existing data path channels as this might lead to deadlocks due to circular
dependencies.

When dirty data from CPU arrives in the response-with-data ECI VC, it gets written in
the write-data-path buffer at a slot that is identified by the DCU-IDX in its cache line
address, provided the slot is empty. If the slot is not empty, both header and data in the
response-with-data ECI VC gets blocked till the previously stored data is retrieved and
the slot becomes free. Once data is stored, the header is routed to the DCU (again using
the DCU-IDX) through the control-path. The DCU would eventually issue write request
control-signals. The write request would be tagged with the DCU-ID as the transaction
ID, and write strobe signals are generated from the dmask-field in the header. The stored
data is then retrieved by indexing the buffer with DCU-IDX from the transaction ID,
before issuing a write request to memory.

On the read-data-path, the read response is stored in the data-path buffer. Similar to write
transactions, read transactions are also tagged with the DCU-ID. Thus the transaction

184

8.4. Directory Controller Slice (DCS) Architecture

ID from the read response is used to identify the index to store data. Once read response
data is stored, the control signals (transaction ID in this case) is routed to the appropriate
DCU. Eventually the DCU generates a 64-bit header (as a response to what caused the
read request), the cache line address of which is used to retrieve the data before sending
it through an outgoing data channel. In the current design, the read-data-path is used
for serving upgrade requests from the CPU. FPGA applications that require reading the
memory must interact with the DCS through the local interface and have its own data-path
outside the DCS.

Architecture of control-path: As shown in Figure 8.9, each incoming interface channel
has routing logic to route control signals to the DCUs. Control signals output from DCUs
are arbitrated to choose one set of signals for an outgoing interface channel. The arbitration
for each outgoing channel is independent of other outgoing channels. For example, the
arbitrated read and write requests can be from different DCUs.

Architecture of data-path: In general, the data-path has to ensure that stored data is
not overwritten before it is retrieved. The data-path achieves this by blocking any writes
to the buffer where this rule is violated. Since each slot corresponds to a single DCU, this
also means that each DCU can have only one outstanding operation on a data-path.

The read and write data-paths are similar in all cases except that writes can happen in
sub-cache-line granularity and reads are always cache line granularity. Incoming data from
ECI response-with-data channel into the write-data-path can be compressed and would
have to be decompressed using the dmask-field i.e. the sub-cache-lines would have to
be mapped to the correct byte-address they should be written to. This operation is not
required in the read-data-path.

The architecture of a generic data-path is shown in Figure 8.10. Control and data are
passed into the gate-keeping module (DP GATE) which ensures that a DCU has only one
ongoing operation in the data-path. When a slot is available, the gate-keeping module
sends the control signals to the DCUs and writes the data into a data-store. A module that
maps compressed ECI data to its byte-address (based on dmask-field) can be optionally
instantiated within the gate-keeping module.

The decompressed cache line size (1024-bit) data is then split into two chunks of 512-bits
each by a serializer module (DP WR SER) before writing into the data-store (DP STORE).
This is done to reduce the size of the bus in order to ease routing and reduce congestion.

Depending on the number of DCUs in a DCS, the data-store has 16/32/64 cache line

185

Chapter 8. Distributed Directory Controller

D
P
_W

R
_S

E
R

D
P
_S

T
O
R
E

Control (to DCU)
DCU_IDX

Control +
Data
(1024b)

map_eci_to_wrd
(optional)

Pipeline
Stages

DCU_IDX
Data (1024b)

{DCU_IDX,0}
Data (512b),
{DCU_IDX,1}
Data (512b)
(2 cycles)

Control (from DCU)
DCU_IDX to retrieve

Control +
Data
(1024b)

Retrieve completed for
DCU_IDX

Store

D
P
_G

A
T
E

Figure 8.10: DCS data-path architecture: Each DCU in a DCS is direct-mapped to a slot
in DP STORE to store and retrieve data. The DP GATE module prevents overwriting
the contents of a slot before it is retrieved. It also splits the incoming coherent message
into control and data. The 1024-bit data is serialized into two chunks of 512-bits by
DP WR SER before being stored in DP STORE. Eventually this data gets retrieved and
issued to the output. Pipeline stages at retrieve input avoids race conditions where retrieve
can happen before store.

sized slots.The data-store uses the DCU-IDX to store cache line sized data in 2 cycles and
retrieve the same in 1 cycle. Since storing data happens in 2 cycles and retrieving data
happens in 1 cycle, there are pipeline registers present at the retrieve interface to ensure
data is stored before retrieval. Upon retrieval, the DCU-IDX is sent by the data-store to
the gate-keeping module indicating that the slot for the DCU has been freed.

8.4.3 Memory descriptor interface to AXI interface

Figure 8.11 shows the modules that are used to convert the memory descriptor interface
of DCS to a standard AXI primary interface. It is up to the FPGA application developer
to choose which interface to work with.

The AXI primary interface consists of five parallel channels with valid-ready flow control.

186

8.4. Directory Controller Slice (DCS) Architecture

Rd Req
(7-bit ID,
38-bit
Addr)

Rd Rsp
(7-bit ID,
128-byte
Data)

Wr Req
(7-bit ID,
38-bit Addr,
128-byte Data
128-bit Strb)

Wr Rsp
(7-bit ID,
2-bit
BRSP)

p_axi_ar*
(id - 7 bits
addr - 38 bits
len - 8 bits
size - 3 bits
burst - 2 bits)

Rd Req to
AXI AR

p_axi_r*
(id - 7 bits
data - 512 bits
resp - 2 bits
last - 1 bit)

AXI R to
Rd Rsp

p_axi_aw*
(id - 7 bits
addr - 38 bits
len - 8 bits
size - 3 bits
burst - 2 bits)

Wr Req to
AXI AW, W

p_axi_w*
(data - 512 bits
strb - 64 bits
last - 1 bit)

AXI B to
Wr Rsp

p_axi_b*
(id - 7 bits
resp - 2 bits
last - 1 bit)

Figure 8.11: DCS to AXI primary interface: The AXI primary interface has 5 sepa-
rate channels address-read (AR), read-data (R), address-write (AW), write-data (W), and
write-bresp (B). It has 7-bit transaction ID and 512-bit data-bus which is different from
1024-bit data-bus of the descriptor interfaces.

The channels are address-read (AR), read-data (R), address-write (AW), write-data (W)
and write-bresp (B). The address-read channel issues the address to read from and read-
data channel carries the return data back. The address-write and write-data channels have
data to be written and write-bresp channel indicates when write has completed. Requests
will be tagged with a 7-bit transaction ID and the response for a request will be tagged
with the same 7-bit transaction ID.

It is to be noted that the data-bus at the AXI interface is 512-bits to match the data-bus
of the DRAM Memory Interface Generators [Xil22a] (aka replica). It is the responsibility
of the modules to bridge between the 1024-bit memory descriptor bus and the 512-bit
AXI bus. Thus on the AXI but there will be two beats in a burst with 512-bits (64-bytes)
per beat and the burst type would always be INCR to indicate that the replica should

187

Chapter 8. Distributed Directory Controller

increment address after each beat.

8.4.4 Saturating ECI transmit bandwidth

In the scenario where there is no coordination required between cache lines, we have seen
that the read and write descriptor channels output from the DCS would be connected
to a DDR memory channel. In this section, we will calculate the number of outstanding
memory (read and write) transactions that would have to be issued by the DCS to saturate
ECI transmit bandwidth.

The ECI transmit bandwidth is used to send cache line data (128 bytes) to the CPU by
reading from DDR memory. Let us assume that the ECI transmit bandwidth is around
16 GiB/s (ballpark from 2 socket ThunderX-1 system) and the memory channels have up
to 36 GiB/s (2 memory channels with each 18 GiB/s). Of the two, ECI channel is the
bottleneck when reading data from DDR and sending it to the CPU. Thus we need to
have enough outstanding read and write transactions to saturate ECI bandwidth to avoid
unnecessary queuing.

In order to do this, we need to calculate the bandwidth-delay product of the ECI channel.
Let us assume that the bandwidth at the output of a single DCS is half the ECI bandwidth,
say 8 GiB/s. The round-trip latency of DDR channels is around 70ns and since often times
we would want an application between the DCS and DDR, we conservatively assume the
latency of this application and DDR channels is around 300ns.

The amount of data transferred per memory request is the size of a cache line, 128 (27)
bytes. Thus the number of requests required per second to saturate the 8 (233) GiB/s
bandwidth would be 233

27 = 226requests/second.

The bandwidth-delay product would give the number of outstanding requests that would
have to be issued.

Nr of outstanding requests = 226 ∗ 300 ∗ 10−9 (Bandwidth− delay product)

≈ 20
(8.1)

Thus with 16/32/64 (powers of 2 close to 20) outstanding memory requests from a DCS
we can expect to saturate ECI bandwidth. This number would also indicate the depth of
the data-store per DCS data-path. Since read and write channels are independent, each
channel should individually have 16/32/64 outstanding memory requests.

188

8.5. Directory Controller Unit (DCU) Architecture

8.4.5 Saturating ECI receive bandwidth

In addition to memory transactions, the DCS can also initiate forward downgrade transac-
tions on FPGA-homed cache lines(chapter 6). Assuming each forward downgrade request
brings back a cache line worth of data on the receive channels, we should have enough
number of outstanding ECI transactions to saturate the receive bandwidth.

The round-trip latency of ECI channel is around 230ns as measured in Figure 9.2. If we
round this off to 300ns, using the same calculation in equation 8.1, we can also saturate
the ECI bandwidth if we have 20 outstanding forward downgrade transactions per DCS.

Thus with 16/32/64 outstanding forward downgrade ECI transactions that are outstanding
per DCS, we can saturate ECI bandwidth as well.

Design Choice 8.8. Based on bandwidth-delay product we need to have 16/32/64 out-
standing memory and forward-downgrade transactions per DCS in order to saturate ECI
transmit and receive bandwidth. This number also indicates the depth (capacity) of data-
store for a single DCS data-path.

8.5 Directory Controller Unit (DCU) Architecture

8.5.1 Interface and basic operation

The DCU is responsible for providing coherent access to a pre-defined subset of the FPGA
address space. The DCU sits in the control-path of the DCS and deals with coherence
transaction headers and memory transaction control signals. It also determines the order
in which these events are handled. Each DCU implements a portion of the directory which
stores the present state of a cache line. It also implements the coherence protocol which
takes a coherence event and present state of a cache line to specify the next state and
action to be performed. The DCU should provide the following guarantees: First, the
DCU provide a separate state machine for each cache line to keep coherence transactions
of cache lines separate. Second, the state transitions on cache lines should be faithful to
the transitions that is dictated by the DC protocol state machine in order to replicate all
guarantees provided by the state machine. Third, the DCU should be deadlock free when
managing its limited resources. Fourth, the DCU should have reasonable performance.

189

Chapter 8. Distributed Directory Controller

In addition to these guarantees, the DCU should be modular enough to accommodate
changes to the protocol as well as FPGA application interface easily.

Performance of the DCS is achieved by running multiple DCUs in parallel. Hence the
design of a DCU is simple, un-pipelined and optimized for resources. The basic operation
of a DCU is as follows: Of the multiple incoming channels, the DCU chooses one event
to handle at a time. The event gets decoded to identify the type of event and the cache
line address. The address is then looked up in the directory to get the present state
of the cache line. The event type and present state are looked up on to the coherence
protocol table which provides the next state and action to be performed. The DCU finally
performs the action and updates the directory with the new state. There are six types of
actions performed by the DCU: no-action (just updating the directory), initiating read
transactions with memory, initiating write transactions with memory, initiating forward-
downgrade transactions with CPU, issuing responses headers to CPU/FPGA initiated
coherence transactions, and delaying an incoming coherence header to be retried later.
When the event completes the basic operation and is not delayed for later, the event is
said to be handled.

Events can be delayed (to be retried later) either by the DC protocol state machine or
when the DCU does not have resources available to handle the event. It is to be noted
that when an event is delayed, the next state that gets written into the directory is the
same as its present state. In other words, the state of the cache line in the directory does
not change when an event is not handled.

Note 8.3. We have seen earlier that the protocol state machine can stall an event to be
handled later (see design-choice 5.2). This delaying of an event by the protocol state ma-
chine is different from delaying of event by the DC. The DC has to delay an event whenever
the protocol state machine calls for it. In addition the DC can delay an event when there is
not enough resources. The protocol state machine only delays coherence requests to avoid
deadlocks but the DC can delay event of any type. For example, a voluntary downgrade
with data event can be delayed by the DC because the write channel is busy. The DC should
guarantee that such delays are temporary and would be resolved when the resource becomes
available.

The interface to the DCU is shown in Figure 8.12. The DCU has separate request-response
interfaces for both memory read and write transactions. Only control information is
generated in these channels which will be used to retrieve the actual data. In addition

190

8.5. Directory Controller Unit (DCU) Architecture

DCU

Rd Req Ctrl
(7-bit ID,
38-bit addr)

Rd Rsp Ctrl
(7-bit ID)

Wr Req Ctrl
(7-bit ID,
38-bit addr,
128-bit strb)

Wr Rsp Ctrl
(7-bit ID,
2-bit BRSP)

ECI/LCL Ctrl (in)
(64-bit header,
5-bit VC)

ECI/LCL Ctrl (out)
(64-bit header,
5-bit VC)

Skip

Debug Signals Performance Counters

Figure 8.12: DCU interface: One incoming channel for all ECI and local VCs, one
outgoing channel to all VCs. For memory read transactions, separate read request and
response channels with only control information. Similarly for memory write transactions,
two separate write request and response control channels. Finally, a skip signal to delay
an incoming coherence event to try again later.

to the memory control interface, the DCU has one incoming and one outgoing channel to
exchange coherence headers with all VCs (both ECI and local). There is only one incoming
VC interface in DCU for all coherence events because the protocol state machine handles
only one coherence event at a time (design-choice 4.2). Finally, it has a skip signal that
indicates whenever an incoming ECI or local event is to be delayed for later. Each channel
has a valid-ready flow control. Note, the DCU here receives only control information and
no data.

8.5.2 Design considerations

Each cache line has a separate state machine: It is to be noted that the basic
operation of the DCU (discussed in subsection 8.5.1) on one cache line does not affect the
state of any other cache line. Handling a coherence event on a cache line only updates
the state of that cache line in DCU’s directory. Furthermore, the DCU maintains a

191

Chapter 8. Distributed Directory Controller

unique state for each cache line in its directory. This ensures that coherence events (and
transactions) on one cache line does not affect the state of a different cache line within
the DCU and each cache line has a separate state machine.

Faithfulness of DCU protocol implementation to DC protocol state machine:
Since the DCU is un-pipelined, its basic operation for a coherence event is atomic: All
steps in the basic operation are completed for an event before the next event is chosen.
With the basic operation being atomic, we can be guaranteed that the state transition in
the DCU will be faithful to the transitions indicated by the DC protocol state machine:
When an event is handled, the next state as dictated by the protocol is updated in the
directory before a next event is chosen, and when the event is not handled, its state in the
directory does not change.

Pipelining the design would consume additional resources that are required to handle
hazards due to control dependencies when multiple events for the same cache line are
being handled simultaneously in the pipeline. For example in a pipelined design, the next
state that would eventually be written back to the directory should be forwarded to a
previous pipelined stage to choose as present state instead of the stale contents of the
directory.

Design Choice 8.9. Each DCU is un-pipelined and optimized for resource consumption.
Having an un-pipelined DCU avoids hazards that can arise due to control dependencies
and guarantee that the implementation of the DC protocol is faithful to the protocol state
machine.

Resource deadlock avoidance: The DCU has finite resources and has to deal with
resource contention. The directory and buffers in memory hierarchy are examples of finite
resources available to the DCU. As such there is a possibility that a DCU is unable to
handle the chosen event at that point in time. Since resources get freed only when DCU
handles coherence events, deadlocks can occur if the DCU stalls waiting for a resource.
For example, consider the scenario where a DCU wants to issue a read request but the
memory is not ready to accept new requests. If the DCU stalls waiting for the memory to
accept its request, it will not be able to sink read responses that might free up memory
resources to handle new requests. Thus the DCU should never stall and be able to skip an
event that cannot be handled, to try a different event. Furthermore, the last message in a
chain of dependencies, the response events in this case, always free up internal resources
and retire transactions. For example, handling a response to a memory request allows the

192

8.5. Directory Controller Unit (DCU) Architecture

DCU to initiate a new memory transaction. It is the responsibility of the coherence protocol
to always sink response events and the DCU prioritizes response channels to aggressively
free resources. This is indeed the case as seen in design-choice 5.3.

Design Choice 8.10. The DCU should never stall waiting for a resource. Whenever a
resource is not available, the DCU should be able to delay the event and try to handle a
different event. This allows the DCU to handle events that can free up internal resources
and avoid deadlocks arising due to resource contention. These delays are temporary and
the DCU should eventually retry the delayed event to handle it when resources get freed.

The DCU also prioritizes events in response channels over requests to aggressively free up
internal resources although this is not necessary to avoid deadlocks.

As will be seen in subsection 8.5.4, resource contention in the DCU can happen either at
the directory or at any of the outgoing valid-ready channels shown in Figure 8.12. Thus
the DCU should never stall waiting for the directory to free up or for handshake to happen
at any of the outgoing valid-ready channels.

That said, the current DCU can potentially deadlock due to two incorrect assumptions that
were made: Stalling when unable to issue an outgoing coherence header and having only
one outgoing channel for all VCs. Stalling is an obvious reason for deadlocks as described
in the previous section. The current version of DCU stalls when a handshake has not
occurred in the outgoing channel that carries the coherence header response. Having only
one outgoing channel for all VCs can lead to headers of different classes stuck behind each
other. Future design changes should reconsider the assumptions. Although, due to the
CPU’s resilient credit-based flow control (the CPU also always sinks response messages
from the DC), we have never run into a deadlock (even under heavy loads) in practice.

Takeaway 8.1. Future version of DCU should not stall if the DCU is unable to issue
coherence messages to the CPU (i.e. if the corresponding VC is not ready). Future version
should also consider having separate channels for different outgoing coherence messages
based on its VC instead of having only one out-going channel for coherence messages as
present in current DCU.

Saturating ECI bandwidth: Each DCU can initiate both ECI and memory transac-
tions. For example, forward downgrade transactions can be initiated by the DCU on
ECI, and memory read and write transactions can be generated with the memory. We
have seen in design-choice 8.8 that have 16/32/64 outstanding read and write and forward

193

Chapter 8. Distributed Directory Controller

downgrade transactions per DCS can saturate memory and ECI bandwidth. Since we
want each DCU to be optimized for resources, we allow each DCU to have one outstand-
ing transaction in each of read, write and forward-downgrade operations which serializes
these transactions. It is to be noted that having an on-going, say, read transaction does
not prevent the DCU from issuing a write or forward-downgrade transaction. Thus to
saturate the ECI bandwidth, we need at least 16/32/64 DCUs per DCS where each DCU
has one outstanding transaction.

Design Choice 8.11. Each DCS should have 16/32/64 outstanding read, write, and ECI
transactions in order to saturate ECI bandwidth. The design choice is made to limit each
DCU have one outstanding transaction of each kind and to have 16/32/64 parallel DCUs
per DCS. Thus each DCU is blocking.

Need for modular DCU design: The DCU also implements the coherence protocol
that, given a coherence event and present-state of a cache line, determines the next state
and action to be performed. Although the CPU implements a full MOESI protocol, the
DCU is free to implement a subset of the protocol that is suitable to its needs. For example,
the owned (O) state is required for inter-cache transfers and since there is no cache on
the FPGA the DCU can implement a MESI variant and still operate seamlessly with the
CPU’s protocol. Furthermore, the application requirements can be used to fine-tune the
protocol. For instance, in an application where only the CPU accesses FPGA memory,
the DCU does not have to support interactions with coherence controllers on the FPGA.
Thus sevaral variants of the protocol are possible and it is beneficial to have a modular
architecture that accomodates this.

8.5.3 DCU interface with DCS

In this section, we will look at how the DCU interfaces with the DCS. As seen in Figure 8.9,
the routing logic in DCS routes control information from a number of VCs and memory
channels to the DCUs based on cache line index. The interface to the DCU is shown in
Figure 8.12. In addition to the memory control interface, it has one incoming and one
outgoing channel to exchange coherence headers with all VCs (both ECI and local).

Since there is only one incoming interface for all VCs in the DCU, arbitration is required
between various VCs of the DCS to select one. Once a VC is chosen, the DCU peeks at
the header at the top of the channel to determine if it can be handled. The DCU would

194

8.5. Directory Controller Unit (DCU) Architecture

then pop the header off the VC if it can be currently handled, or switch to a different VC if
not. This arbitration is performed by a round-robin arbiter as shown in Figure 8.13, with
a special skip signal to switch VCs without popping. It is to be noted that skipping a VC
would cause head-of-line blocking in the skipped channel which might affect performance.

ECI/LCL Ctrl
VC Channels

R
o
u

n
d

-R
o
b

in
 A

rb
ite

r

Skip

DCU

ECI/LCL Ctrl,
VC Num Debug

Signals

Performance
Counters

Rd Req Ctrl

Rd Rsp Ctrl

Wr Req Ctrl

Wr Rsp Ctrl

Pipeline Registers
DCU Top

Figure 8.13: DCU interface to DCS: Incoming coherence messages from ECI and local
VCs are arbitrated to choose one coherence message at a time. This is done because the
protocol state machine itself handles only one coherence event at a time.

On the outgoing VC interface, the DCU issues coherence headers (no data), with the
VC number determining the exact VC to which the header has to be routed to. Finally
memory transactions are initiated and retired through the memory control interface.

It was seen earlier that each DCU is blocking and can have at most one outstanding read,
write, and forward downgrade ECI transaction. All these transactions are tagged with the
DCU-ID to facilitate routing of responses.

All incoming and outgoing channels are registered using pipeline stages. These buffers
isolate the DCU and reduce head-of-line blocking on the DCS VCs by holding coherence
headers as they are being handled.

195

Chapter 8. Distributed Directory Controller

Design Choice 8.12. All memory and ECI transactions that are initiated by a DCU will
be tagged with its DCU-ID. This is done to facilitate routing of responses to the correct
DCU.

8.5.4 Design of DCU

The basic operation of DCU described in subsection 8.5.1 gives us an idea of the compo-
nents required in the DCU: an event decoder, a directory to store and retrieve cache line
state information, a protocol look-up table, individual components for each action to be
performed and a controller that orchestrates everything. These components are shown in
Figure 8.14.

RD Rsp
WR Rsp

Hit /Miss

D
eco

d
e

ECI
Mgr

Write
Mgr

ECI
Msg

CC
Event

CL
Addr

Present
Event

Next
State

ECI
Msg Action

RD
Desc

WR
Desc

MUX

D
irecto

ry

C
C
-R
O
M

Controller

Read
Mgr

E
n
co
d
e

Present
State

Figure 8.14: DCU architecture: Incoming coherence event is decoded to get the event and
cache line address. Then the present state of the cache line is looked up in the directory.
The present state and event is then looked up in the protocol ROM to get the next state
and action. Once the action is performed the state of the cache line gets updated in the
directory. The design is not pipelined and all these operations are guaranteed to be atomic.

The event decoder takes in the coherence header and uses the opcode and VC number to
identify the coherence event and uses this information to extract its bit-fields including
the transaction ID, dmask and cache line address.

In addition to the decoded coherence message, there can be response events from memory
transactions waiting to be processed. The DCU prioritizes these responses over the coher-

196

8.5. Directory Controller Unit (DCU) Architecture

ence message (for reasons discussed in subsection 8.5.2) to select one coherence event and
pass its cache line address to the directory.

The set and tag information from the chosen cache line address is passed to the directory
(also called Tag-State-Unit (TSU)). The set information is used to index into the directory
and the tag information is compared with tags in the ways to check if there is a match.
If a match is found, the directory retrieves the present-state of the cache line along with
the way in which the hit occurs. Not finding a matching tag means the cache line is not
cached anywhere in the system and directory returns the present-state as Invalid(I). The
way information returned by the directory in the case of a hit, would be used later when
updating the state of the cache line in the directory.

The present-state of the cache line and the chosen coherence event are then looked up
the coherence protocol table (Cache Coherence Protocol Read Only Memory (CC-ROM))
to get the next-state and action to be performed. The action is then coordinated by the
controller. Having the coherence protocol as a look-up table allows us to switch coherence
protocols without changing the rest of the design.

For actions that require initiating a new transaction, the controller invokes one of three
Transaction Managers (TMs): read TM, write TM and ECI TM. Each TM stores the
original coherence header that caused the transaction and initiates a single outstanding
transaction. The TMs also indicates to the controller when it is busy so the controller
can delay all events that require this resource. Once the transaction is retired (response
is received), the TM retrieves the stored header, generates a completion event and is now
ready to issue a new transaction. The completion event is then eventually handled by
the DCU as dictated by the coherence protocol. It is to be noted, that all transactions
initiated by the TMs are always tagged with the DCU-ID to facilitate routing of the
remaining chain of coherence events. This also helps decouple coherence transactions
from memory transactions as they have different IDs.

Coherence headers have to be issued when initiating a forward-downgrade or responding
to a previously initiated coherence transaction. These headers are generated by an encoder
module enabled by the controller. The controller identifies the exact coherence message
to be sent based on the action prescribed by the coherence protocol. It also provides
information required to generate the header such as coherence transaction ID and cache
line address. The encoder generates the header along with the VC number and issues it
via the outgoing channel.

197

Chapter 8. Distributed Directory Controller

Finally, for all actions except delaying a coherence event, the directory gets updated with
the next-state defined by the coherence protocol. The directory gets updated with the
present-state when an event is to be retried later.

Design Choice 8.13. By implementing the protocol state machine as a read-only lookup
table, we can easily swap it out for a different variant of the DC protocol. Additionally,
adding new VCs for messages on the local interface does not require changes in the DC.
The only changes that might be required are for decoding and encoding new local coherence
messages.

Resource contention in this DCU design can arise at the directory with its limited storage
for cache lines tags and states, or at the transaction managers which allow only one on-
going transaction. The DCU should not not stall whenever any of these resources are busy
to avoid deadlocks (design-choice 8.10).

8.5.5 Protocol scenarios and DCU pathways

In this section, we will look at the different pathways in the DCU to handle coherence
events. The scenarios described here are to illustrate how the DCU behaves, and to this
end, we assume that the non-locking variant of the coherence protocol is programmed into
the CC-ROM. For all these scenarios we have the following steps in common. The DCU
peeks at the chosen coherence event, decodes it, obtains the cache line’s present state from
the directory and, looks up the CC-ROM to get the next state and action to be performed.
The coherence event is not popped off it’s VC (not handled yet). We will look at how the
DCU executes these actions.

The simplest scenario is for voluntary downgrade responses without data. The DCU does
not have to perform any action other than updating the directory with the next state. In
other words, the action from CC-ROM is no-action. Once the directory is updated, the
coherence event is popped off its VC and is considered to be handled.

Slightly more complex are voluntary downgrade responses with data. The dirty data
would have to be written back to the memory (CC-ROM action is write). In this case, the
controller on the DCU checks if the write TM is busy. If the write TM is busy, the DCU
delays the coherence event and chooses a different event to try.

Note 8.4. For the curious reader who is wondering why the DC delays (or stalls) a
response coherence event when the protocol state machine explicitly forbids it (design-

198

8.5. Directory Controller Unit (DCU) Architecture

choice 5.3), it is to be noted that this delay is temporary as the write TM is guaranteed to
be freed up when the write response is received at which point the delayed coherence event
would be resumed.

If the TM is free, the controller passes on the coherence event along with relevant infor-
mation to the TM, updates the directory with the next state and, marks the coherence
event as handled by popping it off its VC. The DCU is then free to handle other coherence
events. The write TM accepts the information from the DCU controller and sets a busy
flag. It stores the coherence event and initiates a write transaction. The write TM is busy
for the entire duration of the write transaction till the write response arrives. Once the
write response arrives at the TM, it retrieves the stored coherence event and sends it along
with control information from the write response to the DCU and waits for it to accept
this information. The TM would become free, i.e. the write transaction is retired, when
the DCU accepts this information.

The third scenario we see is what the DCU does when it receives a write response in-
formation from the write TM. In this case, the action might be as simple as accept the
information sent by the TM and update the directory (CC-ROM action is no-action).

In the fourth scenario we discuss what the DCU does when it receives an upgrade request.
The DCU controller invokes he read TM to initiate a read transaction. The read TM
behaves exactly like the write TM with the only difference being that a read transaction is
initiated instead of a write. When the read response along with the stored coherence event
is received by the DC, it uses information from the original coherence event to create and
issue a response to the upgrade request. (CC-ROM action is send response headers). The
read transaction is retired when read response information from the read TM is accepted
by the DCU.

Lastly the DCU controller invokes the ECI TM whenever it has to issue a forward down-
grade request. The ECI TM behaves exactly like the read and write TM and sends a
forward downgrade transaction through the outgoing channel. The forward downgrade
transaction is retired when a forward downgrade acknowledgment is received from the
CPU.

199

Chapter 8. Distributed Directory Controller

8.5.6 Design of DCU’s directory: Tag State Unit (TSU)

In this section, we go into the implementation details of DCU’s directory, also called TSU.
To begin with, we consider the smallest unit of non-distributed memory on the FPGA
which is a BRAM. A BRAM can be configured as a true dual-port memory that can hold
up to 36K bits of information.

As seen in Figure 8.4, each set has 16 ways with each way storing 36 bits of information.
Thus with a single BRAM we can store 64 sets (64 sets × 16 ways × 36 bits per way =
36K bits) of the 213 sets in the DC’s directory.

We earlier made the design choice of having 16/32/64 DCUs per DCS (design-choice 8.12).
Thus in a DC with two DCSs, there should be 32/64/128 DCUs. When the 213 sets of the
DC’s directory (Figure 8.4) is striped across 32/64/128 DCUs, each DCU would have to
hold 64/128/256 sets. Since each set has 16 ways and each way stores 36 bits of tag and
state information, the directory in the DCU should be able to hold 36K/72K/144K bits
of information. This can be fit into 1/2/4 BRAMs.

Thus within a DCU, these sets are stored in one or more Tag-State-Rams (TSRs). Each
TSR contains one BRAM to store tag and state information. Depending on the number
of sets per DCU we would have 1/2/4 TSRs in a DCU for its directory. Within a TSR,
the tag and state information of the 64 sets have to be carefully organized so as to be able
to match tags across 16 ways in a given set with lowest possible latency.

Design Choice 8.14. The directory in the DCU is built upon the smallest unit of non-
distributed memory available on the FPGA called the BRAM. Each DCU has one or more
BRAMs to store tag and state information.

8.5.6.1 Tag state ram (TSR)

Each DCU has a number of tag state rams (TSR) to store tag and state information. Each
TSR can store data for up to 64 sets, each set having 16 ways. Each way allows to store
18 bits of tag or state information. The DCU has the option of instantiating 1, 2, 4 TSRs
thereby allowing 64/128/256 sets per DCU. Depending on this configuration, the ways of
a set are split across multiple TSRs. For example, for 64 sets-per-DCU with 1 TSR, all
16 ways of a set are stored in the same TSR. By contrast, for 128 sets-per-DCU with 2
TSRs, ways 0 to 7 of a set are stored in 1 TSR and ways 8 to 15 are stored in the other.

200

8.5. Directory Controller Unit (DCU) Architecture

0

1kx36 Dual Port BRAM

35

Row Way 1
18 bits

Row Way 0
18 bits

0

LO Tag Region

HI Tag Region

LO State Region

HI State Region

256

512

768

Figure 8.15: Tag State Ram (TSR): 1 dual port BRAM with 1K rows and each row being
36 bits wide. Two 18-bit ways can be stored per row. The lower half of the BRAM rows
store tag information and upper half store the state information. The tag and state regions
are further split into LO and HI regions for the two BRAM ports to simultaneously be able
to access.

Each TSR has one true dual port block RAM (BRAM) and is shown in Figure 8.15. The
BRAM is configured to have 1024 rows, with each row being 36 bits wide. A single row in
the BRAM can hold two 18-bit ways. The 1024 rows are split into two regions: with lower
512 rows forming the tag region to store tags and higher 512 rows store the state, forming
state region. A true dual port BRAM has 2 ports for simultaneous reads and writes. To
take advantage of this, each tag/state region is further split into LO and HI regions with
255 rows each. Thus the ways of a set are further split across the HI/LO regions. For
example in the 64 sets-per-DCU configuration with 16 ways in a TSR, ways 0 to 7 are
stored in LO region and 8 to 15 are stored in HI region. For a tag stored in a way in the
tag region, its state is also stored in the same way but in the state region. As a result of
this organization, only 18-bits of tag information can be stored. This is the reason behind
design-choice 8.3, to shrink the 1TiB of FPGA addressable region to 256 GiB.

201

Chapter 8. Distributed Directory Controller

A TSR allows for 3 types of operation, of which only one operation can occur at a time.
The types of operations based on decreasing priority are as follows: write tag and state,
read tags, read state.

The write tag and state operation is used to write the tag and state information into a
given set and way. The writes are simultaneous with one of the BRAM ports writing to
the tag region and the other BRAM port writing to the state region. This operation takes
1 cycle to complete.

The second operation in order or priority is the read tags operation. The read tags
operation compares an input tag to all ways in a given set to find a match. An internal
state machine iterates through all the ways for a given set in the TSR to find a match for
the tag. If there is a hit, the matching way is returned. If there is a miss, an empty way is
returned, and if there are no empty ways, a random way is returned. In order to optimize
reading, both ports of the BRAM are used to read the tag region, with one port reading
the ways in HI TAG region and other port reading the ways in LO TAG region. The state
machine terminates early upon hit and worst case performance depends on the number of
ways that need to be read. A busy signal indicates when the operation is in progress and
goes low upon completion.

The last operation in decreasing order of priority is read state where given a set and way,
one of the ports of the BRAM is used to read the state information. This operation takes
1 cycle to complete.

8.5.6.2 Why non-existent memory

Upon a miss, an empty way has to be returned by the TSR so that a new entry can be
added if necessary. In order to detect a miss, the tags in all ways has to be read to ensure
there is no match and in addition the states would have to be read to make sure that a
way is indeed empty. This can be a performance issue, for example, in the case of 64-sets-
per-DCU, it would take 4 cycles to ensure there is a miss and a maximum of 4 additional
cycles to find a way that is empty. The performance hit due to the first 4 cycles cannot be
avoided but the next 4 cycles can be avoided if we can identify that a way is empty just
by the contents of the tag. In the current implementation, a tag which is all 1s serve this
purpose. We can identify that a way is empty if the contents of the tag in that way is all
1s. This comes at the cost of losing 1 MiB worth of address space. If the 18-bit tag is all
1s, the 13 bit set-index and 7-bit byte offsets are don’t cares, thus we lose 20 bits worth of

202

8.5. Directory Controller Unit (DCU) Architecture

address space for every 256 GiB. If a request is made to the address space where are the
tags are 1s then a “non existent memory” (nxm) signal is set.

8.5.6.3 Building TSU with TSRs

The tag state unit (TSU) is the directory that instantiates one or more TSRs for the DCU.
It also provides a simpler, standardized interface to interact with the TSRs irrespective of
the number of TSRs and how sets and ways between them are distributed.

The TSU provides two operations, one of which can be active at a time. Based on de-
creasing priority, the two operations are write tag and state for a given set and way, and
comparing a given tag to all ways in a set to identify if there is a match and returns its
state.

The first operation takes input tag and state information along with set and way informa-
tion to write the tag and state into its appropriate location in the TSRs. This operation
takes 1 cycle and is indicated by a “busy” signal.

The second operation compares an input tag across all ways for a given set. Upon hit, the
TSRs are automatically read for the state information and the hit way, state are returned.
Upon miss, the state is not read and an empty way is returned. If there are no empty
ways available, this is also indicated with a “Set full” signal. In addition, comparing an
out of bound tag would be indicated by an nxm signal. This operation takes multiple
cycles during which a “busy” signal would be set. It would be cleared upon completion of
this operation. It should not be assumed that the state returned upon miss would be the
invalid state.

It is to be noted that the TSU does not provide any mechanism to free up ways when a
set is full. This is done deliberately because in the current design, we rely on the CPU
to perform directory maintenance thereby eliminating the need for the DCU to maintain
its directory. This feature is very useful for inducing evictions and recovering directory
resources and should be implemented in the future. A previous version of directory had
this feature and is discussed in subsection B.2.2.

Takeaway 8.2. When improving this design of the directory, add mechanism that allows
the DC to perform directory resource maintenance.

203

Chapter 8. Distributed Directory Controller

8.5.6.4 Optional registering outputs of TSR

As number of TSRs per TSU increases, meeting timing on comparing the tags and aggre-
gating results becomes difficult. To overcome this, there is an option to register the output
of each TSR before the results are aggregated in the TSU. This improves timing but at the
cost of added latency. The additional latency depends on number of comparisons to be
done before a match is found. This stage is optional because for 1 TSR per TSU scenario,
it does not affect timing but decreases performance. So care must be taken when using
this parameter.

8.6 Customizing the Protocol State Machine

We had seen in previous chapters how a state space exploration tool can take in a specifi-
cation and automatically generate the DC protocol state machine with all its intermediate
states. We had also seen that modifying the protocol can be as simple as changing the
specification of ECI and local coherence transactions and using the state space exploration
tool to generate a new variant of the DC protocol.

Incorporating this new protocol state machine can be as simple as generating a new proto-
col CC-ROM and instantiating it in the DCU. To facilitate this, tools have been developed
that takes the protocol state machine generated by the state space exploration tool in the
from of a CSV file and generate a system-verilog CC-ROM automatically.

8.7 Summary

Thus in this chapter, we looked at the design choices and implementation details that
went into designing a distributed DC. The DC is the implementation of the DC protocol
state machine and is part of the protocol layer. It should provide the guarantees that are
required of the protocol layer and discussed in section 3.4.

The DC is guaranteed to be faithful to the prescriptions of the protocol state machine and
thus reproduces its guarantees such as maintaining coherence invariants. The DC provides
a separate instance of the protocol state machine for each cache line thereby guaranteeing
the coherence transactions on different cache lines are mutually independent.

204

8.7. Summary

We looked at the design choices made to make the DC deadlock free whenever resource
contention arises, and we also looked at how performance can be achieved by having
multiple DCUs running in parallel. We also looked at how the DC’s protocol state machine
and its interface can be modified to suit the needs of applications. Finally, the DC provides
a simplified interface that is used for building the application layer.

One insight that this implementation provides is that even if the CPU’s native protocol
has never been designed to communicate with anything other than another CPU, we can
have a stable and high performance implementation of the DC on an FPGA that runs at
a much lower frequency (322 MHz compared to CPU’s 2GHz).

205

9
Evaluation & Applications

9.1 Introduction

Traditional CPU-FPGA acceleration models use the FPGA as an offload accelerator: The
CPU provides source and destination descriptors to the FPGA and the FPGA DMA’s the
source data, processes it, writes results to destination and indicates completion after which
the CPU continues operation. This model is followed in heterogeneous systems that do not
have a coherent interconnect (e.g. PCIe) between the CPU and FPGA. The drawbacks
of this system is as follows. First, the CPU and FPGA cannot operate in parallel on a
shared memory region. Second, the source and destination pages would have to be pinned
and marked as non-cacheable. Third, by fixing the acceleration model, the interaction
between the CPU and FPGA is fixed which undermines the highly re-configurable nature
of the FPGA.

As heterogeneous platforms with coherent interconnects between CPU and FPGA become
available, the question arises as to what the interface between the FPGA application and
the coherent interconnect be? Should FPGA applications also be limited to performing
only load and store operations through a cache? Is the only difference between coherent
and non-coherent platforms that coherent platforms can provide “fine-grained accelera-
tion”. What would a non-traditional acceleration model with coherent interconnects look
like?

207

Chapter 9. Evaluation & Applications

CCKit provides a clean and high-performance abstraction of a complex coherence protocol
to hybrid CPU/FPGA applications that is not based on bulk DMA or non-cacheable
register access. This allows us to explore non-traditional acceleration models where user-
logic on the FPGA can extend the notion of coherence for applications running on the CPU
through components of CCKit such as DC. Applications on the FPGA are not limited to
performing loads and stores but are exposed to a much richer interface. For example,
through DC’s local interfaces, applications can associate multiple unrelated cache lines
and address spaces and through DC’s memory interfaces, an application can be notified
whenever the CPU upgrades or downgrades a cache line. As a result, applications on the
FPGA can do much more than just “fine-grained” acceleration.

In section 7.8 we saw how to define an application layer protocol and considerations to
avoid starvation and deadlock at the protocol level. In this chapter, we will look at how
to implement the application layer protocol on top of the DC. We begin in section 9.2
by describing the interface between FPGA application, DC and byte-addressable memory.
section 9.4 talks about the distinction between aliased and un-aliased addressing. We
then evaluating the standalone performance of DC’s memory and local interfaces through
different experimental setups and benchmark applications in sections 9.5.2 through 9.5.4.
This gives us an idea of the DC’s expected performance under different scenarios. Next, we
show two applications that highlight how user-logic on the FPGA can take advantage of
access to the coherence protocol. In the first application (subsection 9.6.2) we demonstrate
concurrent access of shared memory on the FPGA by threads on both CPU and FPGA.
In the second application (subsection 9.6.3) we show how the application can provide a
consistent view of two different address spaces. In this application, the notion of coherence
is extended from between copies of a cache line to between different cache lines in a manner
that is completely transparent to CPU software. Both these applications are examples of
non-traditional acceleration model where no DMA operations are involved and pages can
be cached on the CPU.

9.2 Interfacing FPGA Application to DC

In section 8.2 we saw that the DC exposes a local interface for FPGA applications to
interact with the coherence protocol and an AXI interface to access the FPGA address
space. In section 7.6 and subsection 7.7.4 we saw the guarantees provided by two variants of
the DC protocol (non-locking and locking variants) for an FPGA application that observes

208

9.2. Interfacing FPGA Application to DC

CPU

E
C

I

DC
DC

Mem

LCL

AXILite

A
X

I
A

X
I

A
X

I

A
X

I

Network

A
X

I

APP aka User Logic

Figure 9.1: Different configurations in which FPGA applications can be connected to the
DC: The application can interact with the DC through its local interface to influence the
DC coherence protocol. The application can also tap into the memory channels from the
DC if required and extend the view of FPGA address space as seen by software on the
CPU. Finally, there is the AXI-Lite configuration interface for IO address space exposed
by ECI.

and issues coherence events through the DC’s local and AXI interfaces and section 7.8
discusses the considerations to be taken into account when developing the application
layer on top of the DC protocol layer. Applications, depending on the sort of guarantees
required, can be connected to either or both these interfaces as shown in Figure 9.1.

Moreover, the DC exposes 256 GiB of FPGA address space through its AXI channels
and can be split into several regions as per the needs of an application. For example,
the FPGA address space is split into “source” and “view” address regions in case of the
materialized-views application described later in subsection 9.6.3. There is also no strict
requirement that a byte-addressable memory has to be connected to the AXI channels
and, for example, a networking module could be connected as well.

Through such an interface, FPGA applications can serve as memory controllers or ac-
celerators of application-specific coherence and consistency requirements. In contrast, an

209

Chapter 9. Evaluation & Applications

application that is connected to the coherence protocol through a cache will be able to
perform only load and store operations on cache lines.

AXI interface: As seen in design-choice 8.8, the DC can issue a maximum of 32/64/128
outstanding AXI read and write transactions depending on its configuration. But since
each DCU is blocking (design-choice 8.12), the actual number of outstanding memory
transaction depends on the memory access pattern. The AXI transaction ID of AXI
responses should match the ID of the request and can be out-of-order. The DC always
reads a full cache line but can write at the granularity of sub-cache-lines (design-choice
8.6). The performance of the DC at this interface is benchmarked in subsection 9.5.3.

Local interface: Although the local transactions have a 6-bit transaction ID (as see in
message format in subsection 7.11.1), the actual number of local transactions that can be
handled by the DC depends on the access pattern. The response to local requests will
have the same ID as the requests and the responses will be out-of-order. There are no
ordering guarantees even if same transaction ID is used for different local transactions.
The unlock transaction can have its own transaction ID. The performance of the DC at
the local interfaces are benchmarked for different access patterns in subsection 9.5.4.

AXI-Lite Interface: As seen in subsection 3.3.1, ECI exposes an AXI-Lite configuration
interface that can be used to exchange small amounts of configuration information through
the IO address space. The application can take advantage if this bus if necessary.

9.3 Advantages of symmetric protocols over asym-
metric protocols

Continuing the discussion in subsection 2.5.1, to look at the advantages offered for applica-
tion acceleration by symmetric coherent platforms like Enzian over asymmetric platforms,
we just need to look at the interface provided for applications on both these platforms.
We can see in Figure 2.11 that symmetric platforms allow FPGA applications to interact
with the coherence protocol through only loads and stores through a cache. Whereas
applications on symmetric platforms have more control and observability over the coher-
ence protocol as shown in Figure 9.1. Special modes like the bypass mode in asymmetric
platforms is not required in symmetric platforms.

210

9.4. DC Cache Line Addressing

9.4 DC Cache Line Addressing

A 38-bit byte address exposed by the DC to physically address 256 GiB of FPGA address
space. This 38-bit address can be split into 31-bit cache line index and 7-bit byte-offset.

Although software on the CPU works with virtual addressing, the address sent over ECI
when the CPU accesses the FPGA address space is an aliased physical address. The CPU,
in addition to performing virtual to physical address translation, also aliases the addresses
so as to distribute sequential addresses across parallel tag and data units in its LLC. This
is done to optimize sequential access performance. It is to be noted that aliasing a byte
address affects only the cache line index and not the byte-offset.

The DC operates in the domain of aliased physical addresses. That is, the cache lines
addresses in all coherence messages (both ECI and local) and memory events are aliased
physical addresses. FPGA applications can choose to operate in the domain of unaliased
physical addresses and functions to convert aliased to unaliased and vice versa are available
in the ThunderX-1 manual. But, when communicating with the DC, applications should
always use aliased physical addresses.

The DC has two DCSs, one for odd (aliased physical) cache lines indices and other for even
cache line indices. In ECI, odd VCs carry coherence messages for even cache lines indices
and vice versa. The same rule is applied for local VCs as well. Thus the DCS connected
to odd VCs will handle even cache line indices and conversely DCS connected to even VCs
will handle odd cache line indices. Applications must be careful to issue coherence event
for a cache line to the correct VC (odd cache line index goes to even VC number).

Even if the CPU performs sequential reads, the addresses observed on the AXI memory
interfaces of the DC will not be sequential (even after unaliasing). This is due to the fact
that neither ECI norDC provide any ordering guarantees.

Takeaway 9.1. The DC always works with aliased physical addresses. Applications can
work with unaliased addresses but should convert them to aliased addresses when interacting
with the DC. Applications also should be careful in identifying the correct VC to issue a
coherence message based on if the cache line is odd or even. The addresses observed on
the AXI memory interface of the DC might not be in the same order as it was issued by
the CPU.

211

Chapter 9. Evaluation & Applications

9.5 Performance Evaluation of CCKit’s DC

To evaluate the performance of DC at its interfaces, we ran a number of micro-benchmarks.
Section 9.5.1 describes the implementation details of CCKit and subsection 9.5.2 discusses
the experimental setup on which the micro-benchmarks were run and also the resource
consumption of the DC on the FPGA. Next we have the first micro-benchmark in sub-
section 9.5.3 which measures the read, write throughput and latency of the DC at its
AXI interface. Finally, we have the second micro-benchmark in subsection 9.5.4 where
we measure the throughput and latency of the DC at its local interface. Through these
experiments we aim to show that the DC provides a high performance interface for FPGA
applications to interact with the coherence protocol.

9.5.1 Implementation details

We have implemented the first version of CCKit on the publicly available Enzian com-
puter [CRS+22, The23], a 2-socket heterogeneous server platform. One socket holds a
Marvell ThunderX-1 CN8890-NT 48-core ARMv8-A CPU running at 2.0 GHz, and the
other contains a Xilinx VU9P UltraScale+ FPGA [Xil21].

Both CPU and FPGA have 4 channels of DDR4 memory, and the CPU has a 2-level
cache with a 16 MiB shared LLC, using 128 B lines. The CPU’s native interconnect is
exposed to user FPGA logic as the ECI; the inter-socket link has a theoretical bandwidth
of 30 GiB/s. About 20 GiB/s is achievable in practice with a round-trip latency of 230ns
(see subsection 9.5.3). Two DDR4 channels (on either node) are sufficient to saturate this
link.

On the Enzian machines made available to us, the CPU has 4 x 32 GiB 2133MT/s ECC
DIMMs, and the FPGA has 4 x 16GiB 2400MT/s DIMMs. The only parts of Enzian
relevant to CCKit are the CPU and FPGA, the ECI link, and the DRAM controllers. The
FPGA “shell” provided with Enzian exposes raw inter-socket protocol ECI messages to
the FPGA user logic, which lets us build our own coherence state machines above it.

9.5.2 Experimental setup

Figure 9.2 presents the three topologies we use to evaluate CCKit, and compare it to the
CPU’s native implementation of coherence. As a baseline (LLC+DDR) we take a 2-socket

212

9.5. Performance Evaluation of CCKit’s DC

DC

BRAM

FPGA
322MHz

19.6GiB/s
230ns

38.4GiB/s
3.1ns

CPU

CPU
2GHz

LLC

DRAM 2133

18.3GiB/s
200ns

58GiB/s
90ns

CPU

×4

FPGA
322MHz

DC

19.6GiB/s
230ns

33.2GiB/s
70ns

DRAM 2400

CPU

×2

LLC+DDR DC+DDR DC+BRAM

Figure 9.2: DC configurations and the 2-CPU server: The LLC+DDR configuration
is 2-CPU server configuration which serves as the baseline. The DC+BRAM configura-
tion connects BRAMs to the DC’s AXI interface and isolates performance of DC. The
DC+DDR configuration connects two DDRs to the DC’s AXI interface.

Cavium ThunderX-1 CN8890 server (Gigabyte R150-T61 [GIG23]). Here both sockets are
connected by the Cavium Coherent Processor Interconnect (CCPI), the vendor’s native
implementation. Each CPU runs at 2.0 GHz and each node has four 64 GiB DIMMS
(2133 MT/s)

We add two heterogeneous configurations (DC+DDR and DC+BRAM) in which the sec-
ond ThunderX-1 CPU is replaced with an FPGA, with ECI replacing CCPI as the inter-
connect, using the CCKit DC described in chapter 8. In the DC+DDR configuration, the
FPGA connects the AXI interface of each of the two DCSs to one 16 GiB DIMM (2400
MT/s) with a standard Xilinx DRAM controller IP [Xil22a]. DC+BRAM replaces the
DRAM with two 64 KiB BRAMs, to isolate the performance of the DC from that of the
DRAM IP.

The round-trip latency and throughput figures in Figure 9.2 are the measured performance
of the existing hardware (for LLC+DDR), or the ECI implementation supplied with Enzian
(for DC+DDR and DC+BRAM). The DRAM and BRAM figures are likewise measured
on the unmodified base platform. These thus represent upper bounds on the performance
of the CCKit DC as fixed parameters of the underlying platform. ECI shows 7% higher
throughput at 15% higher latency than the native ThunderX-1 implementation.

213

Chapter 9. Evaluation & Applications

Configuration LUT (%) CLB (%) BRAM Tile (%)
ECI 7.90 11.27 8.24
DC 6.86 12.16 5.93

ECI+DC+BRAMs 14.89 24.03 15.65
ECI+DC+MIGs 19.23 30.26 17.33

Table 9.1: Resource Utilization Footprint on FPGA.

In all configurations, the DC is configured to have 2 DCSs with 64 DCUs each. Table 9.1
shows resources utilized by different components and configurations of CCKit, all with 64
DCUs. The first two lines show the individual resource consumption of the ECI transport
layer and the DC. The remaining lines show usage when the DC is configured to access
BRAM memory or off-chip DDR controllers (via “MIGs”). Even with 32 DCUs per DCS,
CCKit leaves 70% of the FPGA resources for applications.

9.5.3 DC read-write throughput and latency

While the supplied ECI implementation is comparable to the CPU’s own, the DC adds
symmetric coherence between the two sockets. In this section, we evaluate what, if any,
overhead the DC itself introduces. For all three configurations in Figure 9.2, we measure
throughput and latency for sequential and random reads and writes on a contiguous 1 GiB
region. As the ThunderX-1 LLC has no hardware prefetcher, both sequential and random
read throughput tests use prefetch hint instructions to avoid serializing on LLC refills. All
throughput tests use two CPU cores.

Figure 9.3 presents throughput for all combinations. Each bar is the mean of 100 runs,
with standard deviation indicated. For DC+BRAM , sequential reads slightly exceed the
baseline, showing that the distributed DC is able to match the throughput of the CPU’s
LLC at 1/6 the clock rate. Throughput drops significantly once using BRAM is replaced
with DRAM. The cause appears to be the known inefficiency of the Xilinx MIG IP non-
sequential access patterns [Xil22a]. This results from the ThunderX-1 LLC address scram-
bler described in chapter 8 transforming sequential reads to a pseudo-random pattern.
Fully random reads further stress the MIG’s transaction scheduler and begin to cause
contention on DCUs, leading to a moderate slowdown relative to sequential.

Sequential and random writes perform similarly, and are broadly consistent with random

214

9.5. Performance Evaluation of CCKit’s DC

Sequential
Read

Random
Read

Sequential
Write

Random
Write

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Th

ro
ug

hp
ut

 (G
iB

/s
)

Read and Write Throughput

2 x CPU system
FPGA DC+BRAM
FPGA DC+DDR

Figure 9.3: CCKit DC performance vs. two-CPU system.

Configuration Seq. Read (ns) Rand. Read (ns)
LLC+DDR 268 271
DC+BRAM 454 444
DC+DDR 591 601

Table 9.2: Sequential and Random Read Latency

reads. This is likely due to ECI writeback messages to the DC being generated not in
program order but by LLC evictions which introduce additional randomness to the access
order. The overall trend is lower throughput as randomness increases, consistent with
reduced utilization of DCUs, compounded by the low non-sequential performance of the
MIG IP. The bursty nature of write traffic from the ThunderX-1’s 3 KiB per-core write
buffer likely also contributes to exceeding the in-flight transaction capacity of the DC.
Increasing the number of outstanding transactions per DCU would improve performance
for applications with more random or write-heavy access patterns.

Table 9.2 shows the average round-trip latency of reads for all three configurations. These
are the average of 15 runs over the full 1GiB, with one access per cache line and no

215

Chapter 9. Evaluation & Applications

prefetching to ensure serialization. Comparing LLC+DDR with DC+DDR indicates that
CCKit adds 323–330ns (120–122%) latency relative to the CPU, with the random pattern
1–2% slower. Comparing DC+BRAM with DC+DDR isolates the impact of the DC
itself to 173–186ns, with the remaining 137-157ns due to the DRAM latency and the
AXI interconnect. A write instruction consists of a read to the LLC followed by a CPU
write which commits as soon as it hits the write buffer, and as such has the same latency
characteristics as a read.

While the performance of the DC can be further optimized, it already demonstrates that
CPU-comparable performance can be achieved on the FPGA with careful design.

9.5.4 DC clean-invalidate throughput and latency

In addition to allowing the CPU to coherently cache FPGA-homed data, the DC provides a
simplified request-acknowledge interface so that applications on the FPGA can issue clean
or clean-invalidate requests for FPGA-homed cache lines, and wait until the operation
completes. Both operations cause the writeback of an FPGA-homed cache line that is
dirty in the CPU’s LLC, with clean-invalidate additionally invalidating the CPU’s copy.
Many use cases described in this paper rely on these operations and in this section we
evaluate their performance.

For both DC+BRAM and DC+DDR configurations, the CPU first reads 8MiB of sequen-
tial data into its LLC in shared state (clean), which is then invalidated by an FPGA
application via the DC. To measure the latency of a single round-trip invalidation, the
application issues one outstanding request to the DC at a time. To measure throughput,
the application issues as many requests at a time as possible and measures the time taken
to invalidate 8 MiB of CPU-cached data. This throughput will be higher than indicated
by per-request latency as it benefits from pipelining.

The integration of FPGA application with the DC for this experiment is shown in Fig-
ure 9.4. The application monitors the AXI interface to the memory to check if the CPU
has upgraded 8MiB worth of cache lines. Once the count is reached, the application starts
clean-invalidating cache lines through the DC’s local interface. The application has a
counter to hold the next unaliased cache line index to be invalidated. This cache line
index is aliased and padded with 7 zeros for byte offset to generate the address that is sent
to the DC as part of clean-invalidate request. The non-locking variant of DC was used
since the application did not require any locking capabilities.

216

9.5. Performance Evaluation of CCKit’s DC

CPU

E
C
I

DC
DC

Mem

APP

Read
Handshake

LCL

A
X
I

Figure 9.4: Architecture to measure DC clean-invalidate performance

Configuration Throughput (106 CL/s) Latency (ns)
Lower bound 150
DC+BRAM 181 350
DC+DDR 230 350

Upper bound 322

Table 9.3: Directory Controller Clean-Invalidate Performance

Throughput and latency are shown in Table 9.3. The latency of a single invalidate is the
same in both cases, at 350ns, but throughput varies. The throughput is bounded above
by the rate at which the application can issue requests (1 per clock at 322MHz), and
below by the time needed to write back 8MiB of dirty 128B cache lines at the measured
ECI throughput of 20GiB/s: around 150 × 106. The computed throughput varies, as
an unpredictable fraction of the lines are voluntarily evicted by the CPU, in which case
the DC completes immediately without sending a message, but are in both cases solidly
between the indicated bounds.

We conclude that for any application with a non-trivial fraction of dirty data in the CPU
LLC, the FPGA-initiated invalidation rate will be limited by the bandwidth available for
dirty data writeback, and not the DCU.

217

Chapter 9. Evaluation & Applications

9.6 Applications

Applications that take advantage of CCKit have a software component that runs on the
CPU and a hardware component that runs on the FPGA. Specifically with the DC, both
these components operate on FPGA-homed cache lines with the CPU-side interface dis-
cussed in subsection 1.2.5 and the FPGA component interfacing with the DC.

In this section we first look at the steps to consider when developing applications using
DC. Then we look at two example applications.

9.6.1 Steps to consider when developing applications

The following steps might be useful to consider by an application developer when devel-
oping with the DC. These are just guidelines, what is useless for the carpenter might be
useful for the tree.

1. Identify components and interaction between them: To begin with, the de-
veloper has to segment the application into a software part that runs on the CPU
and the user logic that runs on the FPGA. In this stage, the developer also considers
how the software component on the CPU and user logic on the FPGA would interact
with each other. The interaction can happen either through coherence messages, or
through the slower AXI-Lite configuration interface, or both.

The software on the CPU interacts with the CPU’s LLC through loads, stores and
invalidations. This interaction might generate coherence messages that would be
handled by the DC and observed by the user logic.

At this stage the application developer can check if the interface provided by the DC
is sufficient to provide the observability required by user logic on the FPGA and if
not how can the interface and the protocol specification be enhanced to do this.

2. Identify application specific invariants: The next step is to identify the invari-
ants that need to be guaranteed by the user logic on the FPGA to software on the
CPU for this application. These invariants can be in the form of correlating states
of cache lines or address spaces so as to transparently provide certain guarantees to
the software component.

218

9.6. Applications

3. Check guarantees required at DC interfaces: Next the developer can identify
the guarantees that are needed with respect to states of cache lines to satisfy the
chosen invariant and to check if these guarantees can be achieved by interacting with
the DC.

We have seen in section 7.6 and subsection 7.7.4 how modifying DC protocol can
provide different guarantees on states of cache lines. The application developer
can decide if the guarantees provided by default protocol variants (Figure 7.1 or
Figure 7.2) are sufficient or if changes would have to be made.

The developer also can consider how the user logic would interface with the DC and
memory or any other module.

4. Develop protocol state machine: The developer can then develop the protocol
with which the application would interact with the DC to satisfy the invariants.
At this point the developer is not concerned about how to actually implement the
protocol but rather the protocol state machine (check subsection 3.4.1 to know the
difference between a protocol state machine and its implementation). How such a
protocol state machine can be developed is described in section 7.8.

The requirements of application protocol state machine are as follows. First, the
application protocol state machine should guarantee the invariants required by the
application. Second, there should not be any protocol deadlocks. In other words the
protocol should not wait for a message that it would never receive. Third, it can be
optimized for performance but that is up to the developer. If the developer needs
high performance both the protocol state machine and its implementation should be
performant.

The developer can also explore if the application protocol can be simplified by en-
hancing the DC. For example adding new local transactions. To reiterate, any new
coherence transaction that does not create dependencies between cache lines (i.e.
coherence transaction that involves only one cache line) can be pushed into the DC
protocol layer to simplify the application layer protocol.

5. Implement protocol state machine: At this stage, the developer decides how
the protocol state machine would be implemented on FPGA. This is the user logic
that interacts with the DC and should provide all guarantees that is provided by
the protocol state machine. In addition, the implementation should also consider
deadlocks that arise due to limited resources (resource deadlocks) and performance.

219

Chapter 9. Evaluation & Applications

CPU ECI
DC
DC

Mem

APP

LCL

A
X
I

A
X
I

Arbiter

A
X
I

Figure 9.5: Architecture for concurrent access to shared data

9.6.2 Concurrent access to shared data structures

In this first use case, we demonstrate how to use CCKit to enable threads on the CPU and
the FPGA to concurrently work on a shared data structure while maintaining coherency.
As future work, we plan to take this use case as the basis for distributed computing where
the data is being modified through the network directly on the FPGA while threads on the
CPU are also accessing the same data. The experiment also allows us to observe CCKit
under contention and demonstrate that it has the same performance characteristics as a
conventional NUMA system with two CPUs.

The shared data structure we use in this experiment is a table homed in FPGA memory
(BRAM). Each row is padded to the cache line size of 128 B. The table has a size of 8 MiB
(65536 rows). The CPU and FPGA concurrently scan the table and increments the value
of a counter at each row. The CPU always scans the full table, but we vary the contention
rate by limiting the FPGA to only access a part of the table. We run the experiment for
1s and measure the number of rows the CPU is able to process. For comparison we run
the same workload on our 2-socket Gigabyte server. The memory for the shared table
and the thread generating contention are pinned to one of the NUMA nodes using Linux’s
NUMA policy library. The thread that always scans the full table is the same as in the
CPU-FPGA case and is pinned to the other NUMA node. In both cases we warm the L2
cache on the CPU where we perform the measurement.

220

9.6. Applications

Figure 9.5 shows the integration of DC and FPGA application for this use case. The appli-
cation has two threads (one for odd cache lines and other for even) with each thread having
a single outstanding read-modify-write operation. The DC on the FPGA implements the
locking version of directory protocol which allows threads on the FPGA to clean-invalidate
and lock cache lines. Once clean-invalidate operation is completed, the state of the cache
line in CPU’s LLC is Invalid and the BRAM has the most up-to-date value for this cache
line. The FPGA thread can atomically read-modify-write this cache line before unlocking
it. In order to avoid starvation due to locking (subsection 7.7.5), the read-modify-writes
are serialized one after another. The application protocol is shown in Figure 9.6.

Figure 9.7 shows the results. We plot the throughput of the thread that always scans the
full table vs. the fraction of the table that is accessed by the FPGA (CPU-FPGA line)
or the contention thread (CPU-CPU line) respectively. Throughput is given in millions of
rows per second, and we report average and standard deviation for 10 iterations. In the
CPU-FPGA configuration the CPU reaches about 45.5 million rows per second without
contention. This gradually degrades to about 2.5 million rows per second when the FPGA
contends for the entire table. In the CPU-CPU configuration the respective numbers for
the access thread are about 41 million rows per second with no contention and 5 million
rows per second with maximum contention.

We can see from the shape of the curves in Figure 9.7 that the CPU-FPGA setup using
CCKit behaves very similarly to an off-the-shell two socket server with the same CPU. The
slightly lower performance of the CPU-FPGA configuration is explained by the latency
that CCKit adds to migrating a cache line across the interconnect.

9.6.3 Maintenance of materialized database views

In the third use case, we offload view maintenance as used in a relational database to the
FPGA and use the coherence to ensure the CPU always sees consistent data even as the
base table is being modified. Relational engines use views to provide logical data inde-
pendence: the ability to provide different data organizations over a common underlying
schema. Views can be virtual or materialized, meaning that the view corresponds to an
actual table that is the result of running the query defined in the view. Such materialized
views are common for a range of purposes: access control, simplifying query development,
and performance optimization by already pre-computing some parts of common queries.
The use case illustrates how the coherence protocol can be tailored to a particular appli-

221

Chapter 9. Evaluation & Applications

DC App Mem

1. App wants to write
to cache line A so it
clean invalidates and
locks it.

3. The cache line is
unlocked and can
now be freely read
by CPU.

2. Once cache line is invalid in
CPU's cache and locked from
upgrade, the application can
atomically read-modify-write it.

4. To avoid starvation due to
locking, subsequent read-
modify-writes are serialized

LCI (A)

LCIA (A)
RDD(A)

RDDA(A)

WDD(A)

WDDA(A)

UL(A)

LCI (B)

Figure 9.6: Shared data access: application protocol.

cation to exploit the FPGA’s ability to control the CPU’s cache. We use the fact that
CCKit provides access to the cache coherency protocol messages to trigger operations
on the FPGA that take care of the expensive view maintenance tasks the CPU would
otherwise have to perform.

For the experiment, we use a table from the TPC-H benchmark, ORDERS, containing infor-
mation about orders placed by clients. This base table is append-only, and resides in the
DRAM of the FPGA. The attributes of interest are O CUSTKEY (customer identifier) and
O TOTALPRICE (sale price), both stored as 64 b integers. The table is coherently accessible

222

9.6. Applications

0.0 0.2 0.4 0.6 0.8 1.0
Contended Fraction of Table

10

20

30

40
Th

ro
ug

hp
ut

 [m
ill

io
n

ro
w

s/
s] Coherent Table Access Throughput

CPU-FPGA
CPU-CPU

Figure 9.7: Shared data access: CPU–CPU vs. CPU–FPGA.

from the CPU as normal, writable NUMA memory.

We define a materialized view over the base table as follows: SELECT SUM(O TOTALPRICE)
FROM ORDERS GROUP BY O CUSTKEY ORDER BY O CUSTKEY;. This view aggregates the to-
tal price of all orders by each customer and sorts the result by the customer key. The
materialized view is stored in a second coherent address range backed by BRAM on the
FPGA.

The offloaded view maintenance works as follows. On the CPU side, transactions update
the base table with new orders. Each appends a tuple to the table by loading the next
tuple location in exclusive mode into the CPU cache and updating it. Upon transaction
commit, a view maintenance operator on the FPGA is triggered. This operator invalidates
the CPU cache lines holding updated tuples and, as part of the process, reads the data
written back and updates both the base table and the materialized view with the new
aggregate calculations. From this point on the view table is consistent with the base table
and can be read freely. The CPU invokes the operator by issuing a read on a pre-defined
address used for synchronization, triggering an invalidation message to the FPGA that is
then used as the signal to run the operator maintaining the view.

This highlights the advantage of a customizable coherence protocol running on the DC.
Compared to the operator in subsection 9.6.2, the materialized view operator does not
require locking of cache lines that are invalidated. A customized coherence protocol allows

223

Chapter 9. Evaluation & Applications

0

500

1000

Vi
ew

 G
en

er
at

io
n

(
s)

1.69 2.2 5.06 16.49 62.4
245.52

881.21
Materialized View FPGA Performance

View Generation Time (s)
Throughput (GiB/s)

4 16 64 256 1024 4096 16000
Size of Source Table (KiB)

0

10

20

Th
ro

ug
hp

ut
(G

iB
/s

)

Figure 9.8: View materialization performance.

us to switch between protocol versions with and without locking capabilities. Removing
locking and the associated state from the protocol simplifies the design of this operator.

Figure 9.8 (view generation time) shows how long it takes the FPGA to update the base
table and propagate changes to the materialized view. We vary the number of updates
(appends) per transaction on the base table and measure the overall throughput observed
over the interconnect. As the figure shows, the materialization operator is bound by the
interconnect bandwidth, with a response time linear in the base table size since the view is
recomputed by recalculating all aggregations. This could be optimized by computing only
those that need to be modified and updating the corresponding entries in the materialized
view. We did not do this to simplify the interpretation of the results.

This use case shows that CCKit enables the implementation of coherent applications that
go beyond the usual definition of coherence ,e.g., tying the coherence of multiple addresses
related by a computed function.

224

9.6. Applications

CPU ECI
DC
DC

Source
Mem

View
Mem

A
X
I

AXIApp

A
X
I

L
C
L

Clean-Invalidate

Source
Address
Space

View
Address
Space

Figure 9.9: View materialization architecture.

9.6.4 Implementation details

Algorithm 7 shows the pseudocode of a single CPU thread. The CPU first appends new
entries to the source table by reading source cache lines in exclusive and modifying them
in its LLC. Once the appends have completed, there is a barrier and the CPU reads a
pre-defined synchronization address. The barrier ensures that all appends have completed
before the CPU reads the synchronization address. Once the read response arrives, the
results of the query have been calculated by the FPGA and are available for the CPU to
read. After reading the views, the CPU can go back to appending source tables. It is to
be noted that the CPU does not perform any calculations required for the query but the
results are available to them transparently.

On the FPGA side, the FPGA application interfaces with both AXI and local channels of
the DC as shown in Figure 9.9. Depending on the address observed in the AXI channels,
the application splits the FPGA address space into source and view address spaces, with
a memory backing each. In our case, an address with most-significant-bit as 0 is source
memory and 1 is view memory.

When the CPU starts appending to the source table, it reads an address from the source
memory in exclusive. When the application observes the first source read request, it stores
the start address and invalidates any copy of the synchronization address residing in CPU’s
LLC. This invalidation ensures that the FPGA will get a notification (in the form of an

225

Chapter 9. Evaluation & Applications

Algorithm 7 Materialized view pseudocode for software on CPU: CPU appends to source
table and then reads a synchronization address. When the sync address read returns, the
materialized view can be freely read.

1: append src(O CUSTKEY, O TOTALPRICE)
2: append src(O CUSTKEY, O TOTALPRICE)
3: · · ·
4: append src(O CUSTKEY, O TOTALPRICE)
5: barrier()
6: read sync addr()
7: barrier()
8: read view(O CUSTKEY)
9: read view(O CUSTKEY)

10: · · ·
11: read view(O CUSTKEY)
12: barrier()
13: append src(O CUSTKEY, O TOTALPRICE)
14: · · ·

upgrade request) for any subsequent reads of the synchronization address by the CPU.
The FPGA application then provides coherent access to the source memory and keeps
track of number of appends performed.

As appends to source table proceed, the source cache lines with dirty data could be
voluntarily downgraded by the CPU. The application has to ensure that this dirty data is
written back to the source memory and the view memory is updated to reflect the changes
made to source memory. Changing the contents of a view cache line in its memory makes
any copies of it in the CPU’s LLC stale. The application also makes sure that this stale
view gets invalidated.

Once appends have completed, the CPU reads the pre-defined synchronization address.
This upgrade request is observed by the FPGA application and serves as a notification to
make the view table consistent with updates to the source table. The application stalls
this read request and starts cleaning the source cache lines from the CPU’s cache based
on previously stored start address and number of appends made.

As source cache lines get cleaned, the application writes back and dirty data and invalidates
any stale views as previously described. When acknowledgements for all clean and clean-

226

9.6. Applications

Rd Req
Sync Addr

Clean(src addrs)

Clean Ack + Data
{O_CUSTKEY, O_TOTPRICE

Clean Inv

(view(O_CUSTKEY))

Clean Inv Ack(view(O_CUSTKEY))

Rd Rsp

Sync Addr

Write Data

to src mem

view(O_CUSTKEY)

+= O_TOTPRICE

DC App Src
Mem

View
Mem

1. Stall reading
sync add till src and
view mem are
consistent

3. As src data gets
written back,
update src and
view mem.
Invalidate stale
views from CPU LLC

2. Clean src
CLs from CPU LLC.

4. Src, view mem
consistent, respond
to sync addr.

Figure 9.10: View materialization application protocol.

invalidate requests arrive from the DC, the application responds to synchronization address
indicating that the results of the query are available in the view memory. The protocol of
the application is shown in Figure 9.10.

The DC implements the non-locking variant of local clean and clean-invalidate transactions
since the application does not require any locking capabilities.

227

Chapter 9. Evaluation & Applications

9.7 Summary

In this chapter, we show how the DC provides an abstracted interface for user logic on the
FPGA to interact with the coherence protocol. The advantages of such an interface pro-
vided by symmetric platforms over the interface provided by asymmetric platforms were
discussed. We also benchmarked the DC to show that it provides reasonable performance
at its interface for applications. Then we looked at how a developer can approach devel-
oping applications along with two sample applications that showcase acceleration models
different from the traditional DMA based FPGA acceleration.

228

10
Conclusions

10.1 Summary

This dissertation provides a layered approach to build a customizable cache coherence
stack on the FPGA that aims to provide coherent access for applications on the CPU
and FPGA to the FPGA attached memory. The stack is built on Enzian which is a
symmetric heterogeneous CPU-FPGA platform where both nodes are connected by a
coherent interconnect and each node is responsible for maintaining the coherence of its
own memory.

The lower most layer is the ECI layer that allows CPU and FPGA to exchange coherence
messages. It is designed to be deadlock free and guarantees delivery of messages but does
not guarantee any ordering.

The DC protocol layer is built on top of the guarantees provided by the ECI layer. The
DC protocol layer maintains coherence invariants at the granularity of a cache line and
guarantees to treat each cache line are mutually independent from other cache lines. It ac-
counts for conflicts that can arise due to ECI latency and reordering of coherence messages
by ECI. It is deadlock free, optimized for performance in the critical path and provides an
abstracted interface for applications to the coherence protocol.

On top of the DC protocol layer we have the application protocol layer that can extend
the notion of coherence across cache lines and even address spaces. Each application can

229

Chapter 10. Conclusions

guarantee their own set of invariants, should be deadlock free and performant.

The focus of this dissertation is on DC protocol and application protocol layers. Each
protocol layer is split into two components namely the protocol state machine and its
implementation. Both components should provide guarantees required for that layer,
should account for protocol and resource deadlocks, and be optimized for performance.

For DC protocol layer there is no formal specification describing the protocol. So a pro-
tocol model was built by reverse engineering the coherence protocol from traces observed
between two CPUs. This model is then used to iteratively identify all coherence trans-
actions that would be part of the DC protocol layer. First, the coherence transactions
that would be initiated by the CPU to access FPGA memory were identified. Next, the
coherence transactions that can be initiated by the DC to the CPU’s LLC were identified
and Finally, the coherence transactions that applications can use to interact with the DC
were defined.

For all these transactions, a way of specifiying them was developed. With carefully ob-
serving these coherence transactions, we were able to identify design choices for building
a state space exploration tool that would maintain coherence invariants, be deadlock free
and optimized for performance in the critical path. The state space exploration tool takes
in a specification and automatically generates a state machine with intermediate states in
the form of a state table. This state table can then be implemented on the FPGA to build
the DC protocol layer.

We also looked at how to implement the DC protocol state machine on the FPGA, the
design choices that were made for performance and also to provide guarantees required
by this layer. This implementation was evaluated and found to provide reasonable per-
formance: It can saturate the ECI bandwidth and has a sub 400ns round-trip latency.
Moreover, it provides high performance interfaces that allows user logic on the FPGA to
influence the coherence protocol. A unique insight here is that we can have a stable and
high performance implementation of the DC on a slow running FPGA interacting with
the CPU’s native coherence protocol, even if the CPU’s protocol was never designed to
communicate with anything other than another CPU.

A main feature of both the protocol state machine and its implementation is their cus-
tomizability. The protocol is specified in a machine readable format and can be easily
modified. Once the modifications are made, the state space exploration tool, with min-
imal or no alteration, can generate the state table. Tools are available to convert the

230

10.2. Directions for Future Work

state table to the CC-ROM hardware module which can then be plugged into the existing
DC implementation without any or minor modifiecations. The advantage of having such
customizability is that certain features that are required by the application layer can be
pushed into the DC protocol layer easily thereby simplifying the application layer protocol.

The thesis then focuses on the acceleration model that is enabled by such a system.
Applications can interact with the coherence protocol to transparently extend the notion
of coherence to software on the CPU. This acceleration model is compared to the DMA
based acceleration mode on non-coherent platforms as well as the load-store model in
asymmetric coherent platforms. One insight is the abstracted interface provided by the
DC on Enzian allows a larger class of applications than the other acceleration models.
This is demonstrated with application examples.

10.2 Directions for Future Work

10.2.1 Fixing issues with the current work

A few less-than-ideal design choices were made which could be fixed in the future. The
known issues are compiled below.

1. The application initiated local transactions could be more formally described (sec-
tion 7.5 and subsection 7.5.1).

2. Additional local coherence messages are needed to avoid starvation that can be
caused by locking cache lines (subsection 7.7.5).

3. Avoiding potential resource deadlock situations in DC’s implementation that have
not yet manifested (Takeaway 8.1).

4. Adding features to DC’s directory that allows the DC to perform directory resource
maintenance in addition to relying on the CPU. This might be important especially
if local coherence transactions occupy empty slots in the directory (Takeaway 8.2)

231

Chapter 10. Conclusions

10.2.2 Formally specifying and verifying the protocol

An informal approach has been taken throughout the thesis with respect to correctness of
the specification, the state machine and its implementation (for example section 5.3). A
more formal approach might be interesting and valuable.

10.2.3 Relaxing fundamental design choices

Allowing FPGA user logic to perform coherent caching operations on FPGA
memory: The protocol model and specification have their scope tied to fundamental
design decisions discussed in subsection 3.2.2 such as not allowing coherenct caching oper-
ations by FPGA applications. Removing this restriction can be used to study what other
abstractions can be provided by the DC to user logic on the FPGA.

Providing user logic on the FPGA with coherent access to CPU memory (CC):
As discussed in subsection 1.2.3 a CC is needed on the FPGA for FPGA applications
to coherently access CPU memory. Traditionally CC provides a load-store interface for
applications through a cache. It might be interesting to explore the abstractions that can
be provided by a CC that doesn’t use a cache. For example, the CC in CCKit can provide
a coherence transaction that allows FPGA applications to read-modify-write a cache line
without a cache. It can also provide a coherence transaction that does read-and-hold
where the application would read a CPU-homed cache line in Exclusive and holds it till a
downgrade notification comes from the CPU.

10.2.4 Explore applications

The guarantees that are provided by the DC on states of cache lines can be very useful
to provide persistence guarantees. Applications can also extend the materialized view
application to provide different coherent views of data. For example, coherent row and
column views where modifications to the row major view will be transparently visible on
the column major view as well. More applications that take advantage of the coherence
protocol are described in section 1.3.

232

A
Miscellaneous Specifications and

State Diagrams

This chapter gives the specification digarams for F31 forward downgrade transactions.
The DC has issued forward downgrade request to downgrade from E to I and is waiting
for a response. It also shows the state diagram for DC protocol state machines with
and without locking capabilities along with a one-to-one mapping between the names of
coherence messages used in this thesis to the actual coherence message names used by the
CPU’s native protocol.

233

Appendix A. Miscellaneous Specifications and State Diagrams

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F31
Send A31/A31d
Goto Step 1

A

A31/A31d

1_A31d, {A31}➔1:1(No
Action)
1_A31d, {A31d, WDDA}
➔1:1(No Action)

1_A31d, {A31, R12}
➔1:2pRA2(RDD)
1_A31d, {A31d, WDDA,
R12}➔1:2pRA2(RDD)

1_A31d, {A31, R13}
➔1:3pRA3(RDD)
1_A31d, {A31d, WDDA,
R13}➔1:3pRA3(RDD)

Figure A.1: Pathways CPU can take when F31 is received, scenario A: The CPU receives
F31 when it is at step 3. The CPU issues A31 (or A31d if dirty) and comes down to step
1. At step 1, it can continue to remain there or make upgrade requests to step 2 (R12) or
step 3(R13). The specification state equations are given below each pathway.

234

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F31
In step 2
Send A21
Goto step 1

B

A21

1_A31d, {V32, A21} ➔
1:1 (No Action)
1_A31d, {V32d, WDDA,
A21} ➔ 1:1 (No Action)

1_A31d, {V32, A21,
R12} ➔1:2pRA2 (RDD)
1_A31d, {V32d, WDDA,
A21, R12} ➔ 1:2pRA2
(RDD)

1_A31d, {V32, A21,
R13} ➔1:3pRA3 (RDD)
1_A31d, {V32d, WDDA,
A21, R13} ➔ 1:3pRA3
(RDD)

Figure A.2: Pathways CPU can take when F31 is received, scenario B: The CPU has
stepped down from step 3 to 2 (V32d/V32) when it receives F31. Since the CPU is at step
2, it issues A21 and comes down to step 1. At step 1, it can make upgrade requests to step
2 (R12) or step 3 (R13). The specification state equations are shown below each pathway.

235

Appendix A. Miscellaneous Specifications and State Diagrams

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F31
In step 2
Send A21
Goto step 1
Wait for RA3

C

A21

1_A31d, {V32, R23, A21}➔1:3pRA3(RDD)
1_A31d, {V32d, WDDA, R23, A21}➔1:3pRA3(RDD)

Figure A.3: Pathways CPU can take when F31 is received, scenario C: The CPU has
come down from step 3 to 2 (V32d/V32) and has made an upgrade request R23. It receives
F31 when waiting for a response. Since CPU is in step 2, it issues A21 to come down to
step 1 and continues to wait for a response to the upgrade request. The specification state
equations are shown below each pathway.

236

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

Recd F31
Already in step 1
Send A11

D

1:1_A31d, {V32, V21,
A11} ➔ 1:1 (No action)
1:1_A31d, {V32d,
WDDA, V21, A11} ➔ 1:1
(No action)

1:1_A31d, {V31, A11}
➔ 1:1 (No action)
1:1_A31d, {V31d,
WDDA, A11} ➔ 1:1 (No
action)

1:1_A31d, {V32,
V21, A11, R12} ➔
1:2pRA2 (RDD)
1:1_A31d, {V32d,
WDDA, V21, A11,
R12} ➔ 1:2pRA2
(RDD)

A11

1:1_A31d, {V31,
A11, R12} ➔
1:2pRA2 (RDD)
1:1_A31d, {V31d,
WDDA, A11, R12}
➔ 1:2pRA2 (RDD)

1:1_A31d, {V32,
V21, A11, R13} ➔
1:3pRA3 (RDD)
1:1_A31d, {V32d,
WDDA, V21, A11,
R13} ➔ 1:3pRA3
(RDD)

1:1_A31d, {V31,
A11, R13} ➔
1:3pRA3 (RDD)
1:1_A31d, {V31d,
WDDA, A11, R13}
➔ 1:3pRA3 (RDD)

Figure A.4: Pathways CPU can take when F31 is received, scenario D: The CPU has
come down from step 3 to 1 either directly (V31d/V31) or through step 2 (V32d/V32
followed by V21). The CPU receives F31 at step 1, so it issues conflict response A11
and can continue remaining in step 1 or make upgrade requests to step 2 (R12) or step 3
(R13). The specification state equations are shown below each pathway.

237

Appendix A. Miscellaneous Specifications and State Diagrams

Step 2

Step 3

CPU was in step 3

DC has CPU in step 1_A31d

Wait RA3

R23V21

Step 2

R12

Step 3

Step 1

V32d/V32

Step 1 Wait RA2 Wait RA3

R13

V31d/V31

R12 R13

E

Recd F31
Already in step 1
Send A11
Wait for RA2

F
Recd F31
Already in step 1
Send A11
Wait for RA3

1:1_A31d, {V32, V21, R12,
A11} ➔ 1:2pRA2 (RDD)
1:1_A31d, {V32d, WDDA,
V21, R12, A11} ➔ 1:2pRA2
(RDD)

A11

A11

1:1_A31d, {V31, R12,
A11} ➔ 1:2pRA2 (RDD)
1:1_A31d, {V31d, WDDA,
R12, A11} ➔ 1:2pRA2
(RDD)

1:1_A31d, {V32, V21, R13,
A11} ➔ 1:3pRA3 (RDD)
1:1_A31d, {V32d, WDDA,
V21, R13, A11} ➔ 1:3pRA3
(RDD)

1:1_A31d, {V31, R13,
A11} ➔ 1:3pRA3 (RDD)
1:1_A31d, {V31d, WDDA,
R13, A11} ➔ 1:3pRA3
(RDD)

Figure A.5: Pathways CPU can take when F31 is received, scenario E and F: The CPU
has come down from step 3 to 1 either directly (V31d/V31) or through step 2 (V32d/V32
followed by V21). Then the CPU has made upgrade requests R12 or R13 and receives F31
when waiting for a response. The CPU issues conflict response A11 and continues waiting
for a response to the upgrade requests. The specification state equations are shown below
each pathway.

238

Figure A.6: DC state machine with locking capabilities: The state machine has 79 states
and 304 transitions and is automatically generated by the state space exploration tool. It
shows that coherence protocols can be complex.

239

Appendix A. Miscellaneous Specifications and State Diagrams

Figure A.7: DC state machine without locking capabilities: The state machine has 73
states and 282 transitions and is automatically generated by the state space exploration
tool. It shows that coherence protocols can be complex.

240

DC Model CCPI Comment
LC - Local clean
LCI - Local clean invalidate
LR - Local read
LW - Local write
LCA - Local clean ack
LCIA - Local clean invalidate ack
LRA - Local read ack
LWA - Locak write ack
R12 RLDI/RLDD Remote upgrade I to S
R13 RLDX Remote upgrade I to E
R23 RC2DS Remote upgrade S to E
RA2 PSHA upgrade-ack S
RA3 PEMN upgrade-ack E
V32 VICC.N (VICN) Voluntary E to S no data.
V32d VICC Voluntary E to S with data.
V31 VICD.N Voluntary E to I no data.
V31d VICD Voluntary E to I with data.
V21 VICS Voluntary S to I no data.
F32 FLDRS 2H.E Fwd E to S
F31 FEVX 2H.E Fwd E to I
F21 SINV 2H Fwd S to I
A32 HAKN S Fwd-ack E to S no data
A32d HAKD Fwd-ack E to S with data
A31 VICDHI.N Fwd-ack E to I no data
A31d VICDHI Fwd-ack E to I with data
A21 HAKN (HAKD.N) Fwd-ack S to I no data
A22 HAKS Fwd-ack conflict S to S
A11 HAKV/HAKI Fwd-ack conflict I to I
RR RLDT Remote read immediate
RW RSTT Remote write immediate
RRA PSHA Response to RR
RWA PEMN Response to RRA

Table A.1: Mapping the names used for coherence messages in the DC protocol model to
the names used in CCPI.

241

B
Not-so-distributed Directory

Controller

B.1 Introduction

This chapter discusses the design and performance of a preliminary version of the DC. In
this version, the DC has only two DCUs. The directory of this DC is not sized to match
the caching capacity of the CPU. With 8K directory entries, this DC allowed the CPU to
cache only 1 MiB of FPGA cache lines. Moreover, this DC did not depend on the CPU
to perform directory resource maintenance but rather self-maintained the directory using
Induced-Clean-Invalidate transactions (section 7.9).

This DC also had two other differences when compared to the version of DC in chapter 8.
First, each DCU could issue up to 64 on-going ECI, memory read and memory write
transactions when compared to only one on-going transaction per DCU in the current
version. The second difference is the presence of retry-buffers which stores coherence events
that could not be handled. In the current version, whenever an event is not handled, it
remains at the top of its channel and thus causes head-of-line blocking in that channel.
With retry buffer, the un-handleable event is popped off its channel and pushed into the
retry-buffer to be retried later.

243

Appendix B. Not-so-distributed Directory Controller

B.1.1 Insights

Experimenting with this DC showed us what could be a major bottleneck in performance.
The directory in the preliminary version of DC could hold the states of up to 8K cache
lines. Once the CPU has cached 8K cache lines (1 MiB of data), the directory gets full
and subsequent upgrades by the CPU would cause the DC to invalidate a previously
cached cache line from the CPU’s LLC to make space in its directory. Since each upgrade
would require a round-trip invalidation, this becomes a major performance bottleneck.
The solution to avoid these round-trip invalidations, the directory should be able to hold
the states of as many cache lines that could be cached in the system.

Takeaway B.1. The size of the directory matters limits the caching capacity in the sys-
tem and also matters for performance. To avoid round-trip invalidations, the size of the
directory should match the caching capacity in the system. If we assume that the CPU is
the only node that can cache FPGA data and there are no caches in the FPGA, it makes
sense to size the directory to match the 16 MiB caching capacity of the CPU.

If we assume that each BRAM on the FPGA can store the state of 1K cache lines, we
need 128K BRAMs to store the states of 128K cache lines (16 MiB of data). The FPGA
has enough BRAM resources to accommodate for this [Xil21] but we still have two design
choices to choose from.

First, we can continue having two DCUs per DC, with each DC having a directory that
can hold 64K cache line states. This DCU would be highly pipelined, can issue 64 on-
going transactions which can saturate ECI bandwidth and has retry buffers to reduce
head-of-line blocking in incoming VCs. The problem with this approach is we need to
place and route 64 BRAM units that communicate with a centralized DCU. This could
lead to routing congestion and difficulty in meeting timing. Moreover the FPGA operates
at a small frequency of 322MHz which can impact the latency of each DCU.

In the second option, we can have 128 DCUs with each DCU communicating with only 1
BRAM. This can simplify placement and routing of the directory but each DCU has to be
extremely simple and optimized for resources for this to work. Since performance in the
FPGA is achieved through parallelism this is the route we decided to go with.

In order to make each DCU as simple as possible, each DCU is not pipelined to get rid of
resources that are required to track control hazards and scheduling of coherence events.
Moreover, the resources that kept track of 64 on-going transactions are stripped to leave

244

B.2. DC Architecture

each DCU with enough resources to track only one on-going transaction. This is not a
problem because we have 128 DCUs that can track 128 on-going transactions combined.
Finally, the coherence events are routed to the cache lines through a routing logic with
pipeline stages. These pipeline stages allow the coherence event at the top of a VC to be
popped off as it gets routed to the DCUs. Thus these pipeline stages reduce head-of-line
blocking, removing the need for additional retry buffers.

Takeaway B.2. It is beneficial to have multiple parallel units of simple DCUs on the
FPGA where each DCU is not pipelined, keeps track of one on-going coherence transaction
and has pipeline stages at its input to reduce head-of-line blocking at the VCs.

The rest of this chapter is organized as follows.

1. Section B.2 describes the architecture of the preliminary version of DC.

2. Section B.3 discusses the experiments that were run and highlights the performance
bottlenecks in the design.

B.2 DC Architecture

The DC on the FPGA provides coherent access to FPGA-attached memory. It maintains a
directory storing the home and remote states of every FPGA-homed cache line. Coherence
controllers on CPU and FPGA exchange coherence messages with the DC at cache line
granularity. Given a coherence message and the state of a cache line, the coherence protocol
implemented by the DC dictates two things: First, what is the action to be performed
and, second, what is the new cache line state once the action is performed. The DC
performs four types of actions: reading from memory, writing to memory, issuing an
outgoing coherence message, and delaying an incoming coherence message to be retried
again later. After performing the protocol-specified action, the DC finishes by updating
the directory with the new cache line state.

Although the CPU implements a full MOESI protocol, the DC on the FPGA is free to
implement a subset of the protocol that is suitable to its needs. For example, the owned
(O) state is required only in a three node system to allow inter-cache transfer of a dirty
cache line between two remote nodes, bypassing the home node. Consequently, in a two
node system, the FPGA can implement the MESI variant and still operate seamlessly with

245

Appendix B. Not-so-distributed Directory Controller

the CPU’s protocol. Furthermore, the application’s requirements can be used to fine-tune
the protocol. For instance, in an application where only the CPU accesses the FPGA
memory, the DC protocol does not have to support interactions with coherence controllers
on the FPGA. This means that several variants of the protocol are possible and therefore
it is beneficial to have a flexible architecture for the DC.

Any protocol variant can be represented as a table in which an event on a cache line
and its present state can be looked up to get the next state and action. In spite of
the hundreds of intermediate states to handle race conditions, the state transitions are
always deterministic. Moreover the transition for a given cache line is independent of
events and states of other cache lines. This implies the entire FPGA address space can
be split across multiple DC units (DCUs), with each unit only responsible for a disjoint
subset of cache lines that collectively cover the entire address space. This also presents
an important design choice: A single, highly optimized DC for the entire FPGA address
space or multiple simpler DCUs for exhaustive coverage of disjoint address spaces. In this
paper we focus on the latter, a distributed directory controller, where each DCU is simple,
un-pipelined, and optimized for resource utilization.

B.2.1 Directory Controller Unit (DCU)

In a distributed DC, coherence messages from multiple sources and virtual channels are
routed to their corresponding DCU based on their cacheline address. In addition to co-
herence events, the DCU should also handle read and write responses from the byte-
addressable memory. As a result, there can be events in multiple buffered channels wait-
ing to be handled by a single unit at any given point in time. In line with keeping the
design simple, the DCU chooses one event to handle at a time with a strict round-robin
arbitration between all incoming channels. Although this choice simplifies the design, it
can lead to deadlocks. For example, if the DCU stalls on an event due to unavailability
of resources, any subsequent event that would free up this resource would also get stalled
leading to a deadlock. To overcome this, the DCU must be able to switch to a different
event in case the chosen event cannot be handled and, although not necessary, can choose
to prioritize events that free up internal resources.

Whether the chosen event can be handled currently, depends on the protocol and avail-
ability of internal resources. In a simple un-pipelined design, the DCU can peek at the
event at the head of the chosen channel to check if it can be handled. In case the event can

246

B.2. DC Architecture

RD Rsp
WR Rsp

Hit /Miss

Invalidate

1

2

3

4

D
eco

d
e

ECI
Mgr

Write
Mgr

ECI
Msg

CC
Event

CL
Addr

Present
Event

Next
State

ECI
Msg

Retry Event

Action

RD
Desc

WR
Desc

MUX

D
irecto

ry

C
C
-R
O
M

Controller

Read
Mgr

E
n
co
d
e

Mem
Rsp

Original Event

Miss!

Free ID

Invalidate

Present
State

Figure B.1: DC Unit Architecture

be handled, it would be popped off its channel and the protocol-specified action would be
performed. But if the event cannot be handled, the DCU can delay it by simply not pop-
ping it from its channel and choosing a different channel. One drawback of this approach is
the head-of-line blocking on the ignored channel, which can affect performance especially
in designs with fewer distributed units. This drawback can be mitigated by popping the
event off its channel, even when it cannot be handled, and pushing it into a retry buffer
channel to be tried again later. Bringing all this together, we can define the interfaces of
a DCU. The current implementation has one interface to receive coherence messages, one
interface to issue coherence messages, an interface each for read/write descriptors with
independent request and response channels, and one interface to connect an optional retry
buffer.

Expanding on the basic operation, the DCU must first decode the incoming event to
extract, among other information, the cache line address. This cache line address is
indexed into the directory to get the present states of the cache line. State information
along with the decoded event is then found in the protocol table to get the next state and
action. Finally the action is performed and the directory is updated with the cache line’s
new state. This gives us an idea of the components required: an event decoder, a directory
to store and retrieve state information, a protocol look-up table, individual components
for each action to be performed, and a controller that orchestrates everything. These
components are shown in Figure B.1. Sorted by implementation complexity, the simplest
component is the coherence protocol look-up table. It can be implemented as read-only
memory since the protocol is fixed for the entire duration of the application, irrespective of

247

Appendix B. Not-so-distributed Directory Controller

Byte OffsetSet IndexTag CL Address

36 bits

1024
Rows

. . .

= =

MUX

HS:RSHit/Miss

Random way
(when miss and
set is full)

1 BRAM

23 10

1739 16 7 6 0

Way 0 Way 3
Tag HS RS Tag HS RS

Figure B.2: Directory Implementation

protocol variant. Next is the event decoder which uses the ECI specification to decode the
64-bit header information in the coherence message to get its type, cache line address, size
of payload, etc. The implementation of the directory and action handlers are described in
the following sections.

B.2.2 Directory implementation

In a two node system, a cache line from home node can be cached either in home or remote
or both. The state of a cache line in home and remote node is tracked in a directory.
Ideally, the directory contains separate entries for all cache lines that belong to the home
node but this consumes significant resources. One property that can be used to reduce
the directory size is that, for a line not cached anywhere, both home and remote states
default to invalid and need not be tracked. Although this reduces the size requirements of
the directory, it can still be prohibitively large for a system with large caching capacity. In
order to overcome this, we take advantage of the symmetric write-invalidate protocol. In a
symmetric protocol, the home node has the ability to invalidate any of its cache lines that
are cached anywhere in the system thereby limiting the total number of cacheable home
lines. An invalidation can be done by the home node by issuing a downgrade-to-invalid
coherence request to all caching units that have a copy of the cache line. Caching units

248

B.2. DC Architecture

invalidate their copies and acknowledge the request, at which point home marks the cache
line as invalid in its directory. So, at the cost of extra communication and loss of locality,
we can have a fixed-size directory that invalidates previously-cached cache lines to make
space for new entries.

A fixed-size directory requires a placement policy for cache lines, the most general of which
is n-way set-associative mapping shown in Figure B.2. Here, the directory can be viewed
as a table with n columns (ways) and certain number of rows (sets). The set to which a
cache line gets mapped depends on its address which is split into three fields: tag, set-
index, and byte offset. After determining set-index, the cache line is placed in one of the
available “free” ways by writing the state, tag information, and a valid bit to mark the
way as occupied. If all ways are full, the replacement policy determines which cache line
should be invalidated to create an empty spot. When reading the directory for a cache
line, all n ways of the set are read in parallel and the cache line tag to be read is compared
with the tags in the ways. A hit provides the present home and remote states of the cache
line and a miss indicates that the cache line is not cached anywhere. Updating the state
of an already existing cache line requires only writing the new state to the hit way.

In the current implementation, we have a 4-way set-associative directory where each way
fits into 1 BRAM unit. In Ultrascale FPGAs, a unit of BRAM provides 36 Kb of storage
and can be configured to have 1 K entries of 36-bit data. The 40-bit cacheline address
is split into 10-bit set-index for 1K rows, 7-bit offset and remaining 23 bits are the tag.
Of the 36-bit data entry, 23 bits would be occupied by the tag which leaves 13 bits for
the home state, remote state and valid bit (sufficient for this application). In addition, a
simple dual port configuration of the BRAM provides separate channels for reading and
updating states making the design simpler. The DC implements an on-demand random
replacement policy: When a set is full and a new entry needs to be added, a tag is chosen
at random from the 4 ways and invalidated. This replacement policy was chosen with a
sequential workload in mind and multiple invalidations can be batched together for better
performance. To support the replacement policy, whenever the directory is read and there
is a miss, in addition to indicating that the set it is full, the directory also returns tag
and state information from a randomly selected way in this set, which can be used to
trigger invalidations. Although not implemented in the current version, other replacement
policies are possible (e.g. LRU).

249

Appendix B. Not-so-distributed Directory Controller

B.2.3 Action handlers implementation

In lieu of describing each action handler separately, we discuss them in terms of the protocol
pathways. These pathways are marked using numbers in Figure B.1. All pathways start
by decoding the event, followed by reading the directory, and looking up the action to
be performed in the protocol table. The pathways differ in the action specified and upon
completion, most pathways update the directory. The simplest pathway is when an event
must be delayed or retried 1©. The action can be as simple as pushing the event into a
retry buffer or switching to a different input channel. No updates to the directory are
required. Next pathway complexity occurs when the only action is updating the directory.
For example, when the DCU receives a downgrade-to-invalid with no payload, the DCU
only updates the directory, completing the transaction.

Slightly more complex are pathways that require accessing byte-addressable memory, in-
dicated by pathway 2©. In this case the action generates read or write descriptors, stores
the causal event for future needs, and updates the directory. These actions are performed
by transaction managers (TMs). Read/Write TMs start a memory transaction by stor-
ing the original event in a transaction table and generating memory-access-descriptors
from the decoded event. They decouple memory and coherence transactions by providing
the transaction table index as an identifier to track the memory transaction downstream.
Eventually when a memory response is received, the identifier can be used to extract the
original event and free up the transaction table. Thus the only action to be performed by
the DCU while issuing memory requests is to enable the appropriate TM and update its
directory. But a TM might not always be ready to issue new memory transactions. For
example, the transaction table might be full or the memory is not ready to accept new
transactions. In this scenario, the DC delays the current event and switches to handling
a different event. Handling memory responses is similar to handling any other event and,
depending on the protocol, might require issuing a coherence message (pathway 3©). The
message header is generated from the message retrieved from the transaction table and
the optional payload is obtained from the memory response itself. Since memory response
events free up internal resources, they are prioritized over coherence events.

Finally, certain events require a new entry to be created in the directory. When the di-
rectory is not full, reading the directory after decoding the event would result in a miss
and would return the index (set and way) of an empty spot. Once the protocol-prescribed
action is performed, the new cache line state can be updated in the spot returned by the

250

B.3. Performance and Resource Consumption

R
o
u
te
r
X

Link 1

Link 2

Odd Lines

Even Lines

VCs

VCs

VCs

VCs
A
R
B

A
R
B

D
C
U

D
C
U

B
R
A
M

B
R
A
M

Read
Descriptor

Write
Descriptor

Read
Descriptor

Write
Descriptor

R
o
u
te
r

Figure B.3: Experimental Design

directory. But if the directory is full (pathway 4©), it returns the state and tag infor-
mation of a evictable cache line. Instead of continuing with the chosen event, the DCU
performs resource maintenance by identifying the action required to invalidate the cache
line returned by the directory. Once the action is performed, the invalidated cache line
state is updated in the directory and the original event is delayed to be retried later. The
action typically involves issuing a downgrade-to-invalid message, marked by a transaction
identifier, to all coherence controllers that have a copy. These transaction identifiers are
provided by a transaction manager which tracks ongoing coherence transactions issued
by the DC. This transaction manager is similar the to read/write transaction manager
except that it does not have to store the original event. In time, when the all downgrade
acknowledgments from the coherence controllers are received, the cache line is invalidated
and an empty spot is available. The performance of such a policy is affected by the inval-
idation process latency, thus multiple invalidations must be batched together to improve
performance. For a given application, the number of batched invalidations depends on the
number of DC units, the size of the retry buffer connected to each unit, and the number
of on-going coherence requests that can be issued.

B.3 Performance and Resource Consumption

The design used in the DCU evaluation is shown in Figure B.3. Only one of two ECI links
is used, capping the maximum theoretical performance to 15 GiB/s. Although the number

251

Appendix B. Not-so-distributed Directory Controller

Retry Delay In-flight Evicts Throughput (GiB/s) Latency (ns)

Read Write
0 2 0.346 0.665 600
4 8 1.731 1.778 600
16 32 2.471 2.024 593
32 64 2.470 2.014 673

Table B.1: Performance of distributed directory controller

of DCUs is limited only by resource availability, in this paper, and for reasons of space,
we cover an implementation with just two. The FPGA address space is split into odd and
even cache line indices with a DCU each, providing coherent access to the disjoint address
spaces. For the experiment, an application on the CPU performs sequential caching reads
and writes to a block of FPGA memory. Consequently, the directory controller only
implements a protocol subset allowing CPU-only coherent access to FPGA memory. To
avoid caching locality effects in CPU’s cache, the block size accessed by the CPU is twice
its caching capacity.

The performance of a distributed directory controller depends on several factors. The
first is the number of DCUs. Each DCU has a fixed directory size which limits the total
amount of cacheable FPGA data. For example, the current configuration has 8 K directory
entries which limits the total cacheable FPGA data in the CPU to 1 MiB. Trying to cache
more data results in an invalidation round trip and performance becomes latency sensitive.
One way of hiding this latency is to batch invalidation requests. This batch size depends
on the retry buffer size and the number of DCUs. In the existing design with only two
directory controllers, the retry buffer size plays an important role in performance because
without it there can be head-of-line blocking and only two outstanding invalidations. A
second factor that influences performance is the memory access latency and the number
of possible on-going memory transactions. The transaction table size and the number
of DCUs determine the total number of on-going memory transactions. By tuning these
parameters, the memory access latency can be hidden. That said, in the current system
memory access latency is lower than the DCU latency and thus the measurements indicate
best-case performance. Finally, DCUs are not pipelined and can handle only one event at
a time. This places a cap on single unit performance. Throughput can be improved by
increasing the number of DCUs, so optimizing resource usage of each unit is important.

252

B.3. Performance and Resource Consumption

LUT Reg CARRY8 F7 MUX F8 MUX BRAM
0.13% 0.11% 0.003% 0.01% 0.006% 0.003%

Table B.2: DCU Resource Utilization

Read/write throughput and latency are measured by implementing the 2-unit distributed
directory controller on Enzian FPGA running at 322 MHz. Each DCU has a 4 K entry
directory. The retry buffer can be implemented as a FIFO but, to simplify the design, it
is implemented as a register pipeline. The retry buffer pipeline depth specifies the number
of cycles after which an event would be retried and also influences the number of in-flight
invalidations. All transaction managers can issue 64 on-going transactions, though this
has no effect on performance as the memory access latency is negligible. The steady state
performance of two DCUs is shown in Table B.3.

The first observation is that batching invalidations together increases performance up to
a saturation point, beyond which the delay between retries adversely affects latency. The
second observation is that write performance is slightly lower than read performance due to
event arbitration. In this scheme, memory responses are prioritized over coherence events,
and read responses are given a higher priority than write responses. This asymmetry is
only an artifact of the current implementation and can be changed by implementing a
round-robin arbitration between read and write responses. Our third observation is that
round-trip invalidations, even when batched together, play a significant role in the system
design and performance.

Finally, Table B.3 shows that each DCU utilizes only a minuscule portion of the FPGA
resources. This means that the DCU can be duplicated many times depending on perfor-
mance requirements. Given the caching capacity for the current system is 16 MiB (128K
cache lines), with a directory of 1K sets and 16 ways per DCU, only 8 DCUs are required
to keep track of all the cachelines in CPU’s LLC. Such a design would use about 5% of
the available BRAM and avoid any conflict invalidations.

253

List of Tables

2.1 Directory holds the global view of the coherence state of each cache line. . 30

2.2 Contents of the directory of node-1 based on the example given above for
cache lines A, B that belong to it. 35

3.1 ECI message classes and their VC numbers: Coherence messages are classi-
fied into message classes, with each message class having a VC to exchange
coherence messages. This allows deadlock free exchange of coherence mes-
sages over ECI. 44

4.1 Coherence messages involved in the DC protocol model. 63

4.2 ECI message classes and associated coherence messages. 66

4.3 Memory message classes and associated memory events. 67

4.4 State machine in the form of a table where each cell identifies the next state
and action to be performed given a present state and coherence event. S1
to S5 are states and M1, M2 are coherence events. 74

4.5 State machine for state equations with a single coherence event can be
trivially generated. 74

4.6 State equations with more than one coherence event has to be split down
to state equations with one coherence event to be able to generate the state
machine. 75

5.1 DC protocol state machine (aka state table) to handle coherence transac-
tions issued by the CPU for a cache line that is invalid in CPU’s LLC.
. 87

255

List of Tables

5.2 DC protocol state machine to handle coherence transactions issued by the
CPU for a cache line that is invalid in CPU’s LLC. The state machine is
optimized for performance along the read critical path. 90

5.3 DC protocol state machine (aka state table) to handle coherence transac-
tions issued by the CPU for a cache line that is shared or invalid in CPU’s
LLC. 101

7.1 Local message classes, their VC numbers and associated messages that can
be used by FPGA applications to initiate clean and clean-invalidate trans-
actions. 147

7.2 Conditions to initiate local coherence transactions: Given the RS that iden-
tifies when a local request is to be handled, what should be the next HS,
RS and action to be performed by the DC. 149

7.3 Conditions to complete local coherence transaction: Given the HS and ef-
fective RS that identify when a local coherence transaction is completed,
what should be the next HS and action to be performed by the DC. . . . 150

7.4 Local message classes and associated messages for FPGA applications to
initiate clean-lock, clean-invalidate-lock and unlock transactions. 155

7.5 Conditions to initiate local coherence transactions: for clean-lock, clean-
invalidate-lock and unlock transactions. 155

7.6 Conditions to complete local coherence transaction: for clean-lock, clean-
invalidate-lock and unlock transactions. 156

7.7 Conditions to initiate induced-clean-invalidate (ICI) transaction. 162

7.8 Conditions to complete induced-clean-invalidate (ICI) transaction. 162

7.9 Local clean and clean-invalidate packet format. 164

7.10 Local-clean-acknowledge and clean-invalidate-acknowledge packet format. . 165

7.11 Unlock response packet format. 166

9.1 Resource Utilization Footprint on FPGA. 214

9.2 Sequential and Random Read Latency . 215

9.3 Directory Controller Clean-Invalidate Performance 217

256

List of Tables

A.1 Mapping the names used for coherence messages in the DC protocol model
to the names used in CCPI. 241

B.1 Performance of distributed directory controller 252

B.2 DCU Resource Utilization . 253

257

List of Figures

1.1 CCKit architecture. 9

2.1 Baseline model for a multicore system without caches: Multiple cores in-
teract with the main-memory controller through a shared bus. 18

2.2 Baseline model for multicore system with caches: Each core has a private
cache accessible through a cache controller. Cache controllers communicate
with each other and memory controller through a shared bus. The shared
bus allows for a snooping based coherence mechanism. 20

2.3 Coherence transaction where core-1 reads cache line A in shared state: Co-
herence controllers track (intermediate and stable) states and exchange co-
herence messages to participate in the coherence protocol. 23

2.4 Coherence transaction where core-1 writes cache line A and core-2 does not
have a copy. 25

2.5 Coherence transaction where core-2 writes cache line A after core-1. core-1
has to invalidate its copy and provide the most up-to-date data to core-2 in
order to maintain coherence invariants. 26

2.6 Baseline system model with directory based coherence protocol: The shared
bus is replaced with a point-to-point interconnect and a directory is main-
tained by the directory controller to track global cache line states. 29

2.7 Directory coherence protocol: core-1 reads cache line A in shared state.
Coherence requests are unicasted to the directory controller which maintains
coherence invariants and provides access to cache lines. 31

259

List of Figures

2.8 Directory coherence protocol: core-1 writes to cache line A. The directory
controller has information that core-2 does not have a copy and allows core-1
to modify the cache line. 32

2.9 Directory coherence protocol: core-2 writes to cache line A. The directory
controller forwards the request to core-1 which has the most up-to-date
copy. Core-2 gets data from core-1. 33

2.10 Baseline system model for symmetric NUMA systems: Each node is respon-
sible for maintaining coherence of the memory attached to it. 34

2.11 Baseline system model for asymmetric NUMA systems: Only one node
maintains coherence of memory attached to both nodes. 36

3.1 Baseline system model for CCKit: CCKit is implemented on a coher-
ent symmetric NUMA CPU-FPGA heterogeneous platform. Only FPGA-
homed scenario (DC) is considered here and CPU-homed case (CC) is not. 38

3.2 Layers of ECI: ECI allows deadlock free exchange of coherence messages.
ECI guarantees delivery of messages but does not guarantee ordering. . . . 43

3.3 CCKit protocol layers: Each layer provides certain guarantees and is built
on the guarantees provided by the layer below it. 46

4.1 Directory protocol model . 52

4.2 Conflicts due to latency of interconnect: When a forward downgrade request
from DC is in transit, the CPU voluntarily downgrades. These conflicts are
resolved by exchanging additional messages called conflict responses. 60

4.3 Conflicts responses for F32: In left, DC has CPU in step 3 when issuing
F32 but CPU is already at step 2 when receiving it. In right, DC has CPU
in step 3 when issuing F31 but CPU is already at step 1 when receiving it.
Conflict responses A22 and A11 are issued. 61

4.4 Conflicts responses for F31: In left, DC has CPU in step 3 when issuing
F31 but CPU is already at step 2 when receiving it. In right, DC has CPU
in step 3 when issuing F31 but CPU is already at step 1 when receiving it.
Conflict responses A21 and A11 are issued. 62

4.5 Conflicts responses for F21: DC has CPU in step 2 when issuing F21 but
CPU is already at step 1 when receiving it. Conflict response A11 is issued. 63

260

List of Figures

4.6 Deadlock can arise when interconnect provides a single VC for both request
and response message classes. Here the controller is waiting for a response
to handle a request but the response is stuck behind the request in the VC.
Having separate VCs for different message classes removes this problem. . . 64

5.1 Pathways CPU can take from step 1: The CPU can continue remaining in
step 1 or make upgrade requests (R12, R13) and wait for a response from
DC. 85

5.2 Read-Shared and Read-Exclusive transactions: Since FPGA memory has
the most up-to-date value, the DC should read the memory and send its
content as a response. 86

5.3 Serializing memory transactions lead to performance bottleneck in the pro-
tocol state machine due to blocking of upgrade request for a second cache
line by the DC till a read response for the first cache line is received from
memory. The cache line corresponding to a coherence event and DC state
is shown within parenthesis. 88

5.4 Having the state machine transition to intermediate state prevents blocking
and serialization of transactions. It also allows the DC to handle transac-
tions out of order. 89

5.5 Pathways CPU can take from step 2: remain at step 2 or request to go
up from step 2 to 3 or come down to step 1 and then remain at step 1 or
request to go up from step 1 to 2 or 3. Coherence message issued by CPU
and state equation in each scenario is also shown. 92

5.6 The voluntary downgrade (V21) sent before the upgrade request (R12) by
the CPU is delayed by the interconnect causing a conflict. This conflict is
resolved by creating an intermediate RS (2 V 21) indicating that a voluntary
downgrade is in transit. Since there is no upper bound on the number of
times this conflict can occur, adding a new state every time will lead to
state space explosion. 96

5.7 Avoiding state explosion by stalling requests (R12) till all responses in tran-
sit (V21)are received. The request is not consumed into an internal state
but rather continues to sit at the head of its VC. 97

261

List of Figures

5.8 Stalling both requests and responses can cause deadlocks: Req1 and Rsp1
are both stalled waiting for Rsp2 to be handled but Rsp2 is stuck between
Rsp1 in the response VC. 98

5.9 Pathways CPU can take from step 3: remain at step 3, or come down to
step 2, or come down to step 1 (shown in a different color). At step 2:
remain at step 2 or request to go up from step 2 to 3 or come down to step
1. At step 1: remain at step 1 or request to go up from step 1 to 2 or 3.
Coherence message issued by CPU and state equation in each scenario is
also shown. 102

6.1 Possible states of cache line in CPU (step) when F21 is received: The cache
line can be at step 2, or could have made a request from step 2 to 3, or
could have come down to step 1, or could have come down to step 1 and
made requests to go to either step 2 or step 3 when F21 was received by
the CPU. 120

6.2 Pathways CPU can take when F21 is received, scenario A: The CPU was
at step 2 when it received F21. The CPU sends A21 and comes down to
step 1. Then it can remain at step 1 or issue upgrade requests to step 2 or
3 (R12, R23) and wait for a response. 121

6.3 Pathways CPU can take when F21 is received, scenario B: The CPU has
made an upgrade request R23 when it receives F21. The CPU comes down
to step 1 by issuing A21 and continues to wait for a response to the upgrade
request. 122

6.4 Pathways CPU can take when F21 is received, scenario C: The CPU has
already voluntarily come down to step 1 (by issuing V21) when it receives
F21. Since the CPU is already at step 1, it issues A11 as a conflict response.
The CPU can then continue to remain in step 1 or make upgrade requests
from step 1 to 2 (R12) or 3 (R13). 123

262

List of Figures

6.5 Pathways CPU can take when F21 is received, scenarios D and E: The CPU
has voluntarily come down from step 2 to 1 by issuing V21 and has made
upgrade requests (R12 or R13). The CPU receives F21 when it is waiting for
a response to the upgrade requests. The CPU issues conflict response A11
indicating that it is already at step 1 and continues to wait for a response
to the upgrade request. 124

6.6 Possible states of CL in CPU when F32 is received: The CPU could have
been at step 3, or come down to step 2, or come down to step 2 and made
an upgrade request to step 3, or come down from step 2 to 1, or could
have come down from step 3 to 1 where it could remain at step 1 or make
upgrade requests to step 2 or 3 and wait for response when it received F32. 128

6.7 Pathways CPU can take when F32 is received, scenario A: The CPU was
in step 3 when it received F32. The CPU issues A32 (or A32d) if dirty
and comes down to step 2. Then the CPU can remain at step 2, make an
upgrade request to go from step 2 to 3 (R23) or come down to step 1 (V21).
At step 1, the CPU can continue to remain there or make upgrade requests
to steps 2 (R12) or 3 (R13) . 130

6.8 Pathways CPU can take when F32 is received, scenario B: The CPU had
already come down from step 3 to 2 by issuing V32 (or V32d if dirty) when it
receives F32. The CPU issues conflict response A22 and then can continue
to remain at step 2 or come down to step 1 (V21). At step 1, it can remain
there or make upgrade requests to step 2 (R12) or step 3 (R13). 131

6.9 Pathways CPU can take when F32 is received, scenario C: The CPU has
come down from step 3 to 2 by issuing V32 (or V32d if dirty) and has made
upgrade request from step 2 to 3 (R23) when it receives F32. Since CPU is
already in step 2, it sends conflict response A22 and continues to wait for a
response to the upgrade request. 133

6.10 Pathways CPU can take when F32 is received, scenario D: The CPU had
voluntarily downgraded to step 3 to step 1 either directly (V31d/V31) or
through step 2 (V32d/V32 followed by V21) when it receives F32. Since
CPU is in step 1, it responds with conflict response A11 and then can
continue remaining in step 1 or make upgrade requests to step 2 (R12) or
step 3 (R13). 134

263

List of Figures

6.11 Pathways CPU can take when F32 is received, scenario E, F: The CPU has
come down from step 3 to 1 either directly (V31d/V31) or through step 2
(V32d/V32 followed by V21) and has made upgrade request either to step
2 (R12) or step 3 (R13) when it receives F32. The CPU responds with
conflict response A11 and continues waiting for a response to the upgrade
request. 135

6.12 Possible states of CL in CPU when F31 is received: The CPU could have
received F31 at step 3, or it could have come down to step 2, or it could
have come down to step 2 and made an upgrade request to step 3, or it
could have come down to step 1 where it could have made upgrade requests
as well. 141

7.1 State guarantees provided to applications by the DC through its local and
memory interfaces at the granularity of a cache line. 151

7.2 State guarantees on a cache line that can be inferred by FPGA applications
for modified DC application interface with locking capabilities. 157

7.3 Application layer protocol that guarantees when cache line A is cached in
the CPU’s LLC, cache line B is not cached and vice versa. The application
can infer remote states of cache lines A and B by exchanging coherence
messages with the DC. 159

7.4 Application protocol deadlock scenarios: Applications stalling coherence
events on a cache line that are issued by the DC while initiating new co-
herence transactions on the same cache line can lead to deadlocks. 161

8.1 DC interfaces: The DC has the ECI interface to interact with CPU, the local
interface to interact with applications on the FPGA, and an AXI interface
to interact with memory. Both ECI and local interfaces have a number of
independent VCs for different message classes. 171

8.2 DC directory can be viewed as a table where each cell stores the tag and
state of an FPGA-homed cache line that is cached in the CPU’s LLC. The
size of the directory tracks the caching capacity of the CPU. 174

264

List of Figures

8.3 Indexing into the directory using the cache line byte-address: The cache
line byte-address contains a 13-bit set-index that is used to index into all
ways of a particular set in the directory. 175

8.4 DC is split into a number of parallel DCUs. Each DCU has a portion of
DC’s directory and can track a disjoint subset of cache lines. 176

8.5 DCUs are organized between odd and even DCSs. This is done to take ad-
vantage of parallelism offered by ECI which provides independent channels
of communication for odd and even cache lines. 178

8.6 Of the 256 GiB of memory exposed by DC, 1 MiB is non-existent and is not
usable. The non-existent region is identified by cache line address where
the tag field is all ones. This is done to optimize performance of DC. . . . 179

8.7 DC architecture top level: The DC consists of two parallel DCSs units. . . 180

8.8 ECI, Local and Memory interfaces to DCS: All interface channels are inde-
pendent of each other and have valid-ready flow control. 181

8.9 DCS control and data-paths: Control information is routed to the DCUs
that lie in the control-path and cache line data is stored and retrieved from
data-path. The data-paths are separated for read and write operations to
avoid deadlocks. 183

8.10 DCS data-path architecture: Each DCU in a DCS is direct-mapped to a slot
in DP STORE to store and retrieve data. The DP GATE module prevents
overwriting the contents of a slot before it is retrieved. It also splits the
incoming coherent message into control and data. The 1024-bit data is
serialized into two chunks of 512-bits by DP WR SER before being stored
in DP STORE. Eventually this data gets retrieved and issued to the output.
Pipeline stages at retrieve input avoids race conditions where retrieve can
happen before store. 186

8.11 DCS to AXI primary interface: The AXI primary interface has 5 separate
channels address-read (AR), read-data (R), address-write (AW), write-data
(W), and write-bresp (B). It has 7-bit transaction ID and 512-bit data-bus
which is different from 1024-bit data-bus of the descriptor interfaces. . . . 187

265

List of Figures

8.12 DCU interface: One incoming channel for all ECI and local VCs, one out-
going channel to all VCs. For memory read transactions, separate read
request and response channels with only control information. Similarly for
memory write transactions, two separate write request and response control
channels. Finally, a skip signal to delay an incoming coherence event to try
again later. 191

8.13 DCU interface to DCS: Incoming coherence messages from ECI and local
VCs are arbitrated to choose one coherence message at a time. This is done
because the protocol state machine itself handles only one coherence event
at a time. 195

8.14 DCU architecture: Incoming coherence event is decoded to get the event and
cache line address. Then the present state of the cache line is looked up in
the directory. The present state and event is then looked up in the protocol
ROM to get the next state and action. Once the action is performed the
state of the cache line gets updated in the directory. The design is not
pipelined and all these operations are guaranteed to be atomic. 196

8.15 Tag State Ram (TSR): 1 dual port BRAM with 1K rows and each row
being 36 bits wide. Two 18-bit ways can be stored per row. The lower half
of the BRAM rows store tag information and upper half store the state
information. The tag and state regions are further split into LO and HI
regions for the two BRAM ports to simultaneously be able to access. . . . 201

9.1 Different configurations in which FPGA applications can be connected to
the DC: The application can interact with the DC through its local interface
to influence the DC coherence protocol. The application can also tap into
the memory channels from the DC if required and extend the view of FPGA
address space as seen by software on the CPU. Finally, there is the AXI-Lite
configuration interface for IO address space exposed by ECI. 209

9.2 DC configurations and the 2-CPU server: The LLC+DDR configuration is
2-CPU server configuration which serves as the baseline. The DC+BRAM
configuration connects BRAMs to the DC’s AXI interface and isolates per-
formance of DC. The DC+DDR configuration connects two DDRs to the
DC’s AXI interface. 213

266

List of Figures

9.3 CCKit DC performance vs. two-CPU system. 215

9.4 Architecture to measure DC clean-invalidate performance 217

9.5 Architecture for concurrent access to shared data 220

9.6 Shared data access: application protocol. 222

9.7 Shared data access: CPU–CPU vs. CPU–FPGA. 223

9.8 View materialization performance. 224

9.9 View materialization architecture. 225

9.10 View materialization application protocol. 227

A.1 Pathways CPU can take when F31 is received, scenario A: The CPU receives
F31 when it is at step 3. The CPU issues A31 (or A31d if dirty) and comes
down to step 1. At step 1, it can continue to remain there or make upgrade
requests to step 2 (R12) or step 3(R13). The specification state equations
are given below each pathway. 234

A.2 Pathways CPU can take when F31 is received, scenario B: The CPU has
stepped down from step 3 to 2 (V32d/V32) when it receives F31. Since the
CPU is at step 2, it issues A21 and comes down to step 1. At step 1, it can
make upgrade requests to step 2 (R12) or step 3 (R13). The specification
state equations are shown below each pathway. 235

A.3 Pathways CPU can take when F31 is received, scenario C: The CPU has
come down from step 3 to 2 (V32d/V32) and has made an upgrade request
R23. It receives F31 when waiting for a response. Since CPU is in step 2,
it issues A21 to come down to step 1 and continues to wait for a response
to the upgrade request. The specification state equations are shown below
each pathway. 236

A.4 Pathways CPU can take when F31 is received, scenario D: The CPU has
come down from step 3 to 1 either directly (V31d/V31) or through step 2
(V32d/V32 followed by V21). The CPU receives F31 at step 1, so it issues
conflict response A11 and can continue remaining in step 1 or make upgrade
requests to step 2 (R12) or step 3 (R13). The specification state equations
are shown below each pathway. 237

267

List of Figures

A.5 Pathways CPU can take when F31 is received, scenario E and F: The CPU
has come down from step 3 to 1 either directly (V31d/V31) or through step
2 (V32d/V32 followed by V21). Then the CPU has made upgrade requests
R12 or R13 and receives F31 when waiting for a response. The CPU issues
conflict response A11 and continues waiting for a response to the upgrade
requests. The specification state equations are shown below each pathway. 238

A.6 DC state machine with locking capabilities: The state machine has 79 states
and 304 transitions and is automatically generated by the state space ex-
ploration tool. It shows that coherence protocols can be complex. 239

A.7 DC state machine without locking capabilities: The state machine has 73
states and 282 transitions and is automatically generated by the state space
exploration tool. It shows that coherence protocols can be complex. . . . 240

B.1 DC Unit Architecture . 247

B.2 Directory Implementation . 248

B.3 Experimental Design . 251

268

Bibliography

[Ama23] Amazon Web Services. “Amazon EC2 F1 Instances: Enable faster FPGA
accelerator development and deployment in the cloud.”, 2023.

[BBB+11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. “The Gem5 Simulator.”
SIGARCH Comput. Archit. News, vol. 39, no. 2, 1âĂŞ7, 2011.

[Ber22] Berkeley Architecture Research. “TileLink.”, 2022.

[BGP+19] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarung-
nirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu.
“CoNDA: Efficient Cache Coherence Support for near-Data Accelerators.” In
Proceedings of the 46th International Symposium on Computer Architecture,
pp. 629–642. 2019.

[BK22] A. Brouwer and M. Kerrisk. “mmap(2) – Linux manual page.”, 2022.

[BKdV03] M. Bezem, J. W. Klop, and R. de Vrijer. Term rewriting systems. Cambridge
University Press, 2003.

[BKP20] H. Brais, R. Kalayappan, and P. R. Panda. “A Survey of Cache Simulators.”
ACM Comput. Surv., vol. 53, no. 1, 2020.

[BTP+22] A. Bhardwaj, T. Thornley, V. Pawar, R. Achermann, G. Zellweger, and
R. Stutsman. “Cache-Coherent Accelerators for Persistent Memory Crash
Consistency.” In Proceedings of the 14th ACM Workshop on Hot Topics in
Storage and File Systems, HotStorage ’22, pp. 37–44. Association for Com-
puting Machinery, New York, NY, USA, 2022.

269

Bibliography

[BWPN18] N. Beck, S. White, M. Paraschou, and S. Naffziger. ““Zeppelin”: An SoC for
multichip architectures.” In 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), pp. 40–42. 2018.

[CCF+16] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. “A Quanti-
tative Analysis on Microarchitectures of Modern CPU-FPGA Platforms.” In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp.
1–6. IEEE Press, 2016.

[CCI19] CCIX Consortium and others. “Cache Coherent Interconnect for Accelera-
tors (CCIX).”, 2019.

[CCP+16] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massen-
gill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger. “A Cloud-Scale Acceleration Architecture.” In The 49th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-
49. IEEE Press, 2016.

[CF78] L. M. Censier and P. Feautrier. “A New Solution to Coherence Problems in
Multicache Systems.” IEEE Transactions on Computers, vol. C-27, no. 12,
1112–1118, 1978.

[CFO+18] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Mas-
sengill, M. Liu, M. Ghandi, D. Lo, S. Reinhardt, S. Alkalay, H. Angepat,
D. Chiou, A. Forin, D. Burger, L. Woods, W. Gabriel, M. Haselman, and
D. Zhang. “Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave.” IEEE Micro, vol. 38, 8–20, 2018.

[CGKS20a] I. Calciu, J. Gandhi, A. Kolli, and P. Subrahmanyam. “Using cache coherent
FPGAs to accelerate remote access.”, 2020. US Patent US10761984B2, Filed
2018-07-27, Issued 2020-09-01.

[CGKS20b] I. Calciu, J. Gandhi, A. Kolli, and P. Subrahmanyam. “Using cache
coherent FPGAs to track dirty cache lines.”, 2020. Worldwide Patent
WO2020023791A1, Filed 2018-07-25, Published 2020-01-30.

[CIP+21] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli. “Rethinking Software Runtimes for Disaggregated Memory.”

270

Bibliography

In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2021,
pp. 79–92. Association for Computing Machinery, New York, NY, USA, 2021.

[CLL+18] J. Choi, R. Lian, Z. Li, A. Canis, and J. Anderson. “Accelerating Memcached
on AWS Cloud FPGAs.” In Proceedings of the 9th International Symposium
on Highly-Efficient Accelerators and Reconfigurable Technologies, HEART
2018. Association for Computing Machinery, New York, NY, USA, 2018.

[Cor09] I. Corporation. “An introduction to the Intel Quickpath Interconnect.”, 2009.

[CPK+19] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi, O. Mutlu, and P. Sub-
rahmanyam. “Project PBerry: FPGA Acceleration for Remote Memory.” In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’19, pp. 127–135. Association for Computing Machinery, New York, NY,
USA, 2019.

[CRS+22] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He, N. Hossle,
D. Korolija, M. Licciardello, K. Martsenko, R. Achermann, G. Alonso, and
T. Roscoe. “Enzian: an open, general CPU/FPGA platform for systems
software research.” In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2022, pp. 590–607. Association for Computing Machinery, New
York, NY, USA, 2022.

[CTL17] H. Cook, W. Terpstra, and Y. Lee. “Diplomatic Design Patterns: A TileLink
Case Study.” In First Workshop on Computer Architecture Research with
RISC-V (CARRV 2017). 2017.

[CXL20a] CXL Consortium. “Compute Express Link.”, 2020.

[CXL20b] CXL Consortium. “CXL Webinar: Introduction to Compute Express Link
(CXL).”, 2020. See in particular slide 14, time 30:58.

[EKK+23] M. Emami, S. Kashani, K. Kamahori, M. S. Pourghannad, R. Raj, and J. R.
Larus. “Manticore: Hardware-Accelerated RTL Simulation with Static Bulk-
Synchronous Parallelism.” arXiv preprint arXiv:2301.09413, 2023.

271

Bibliography

[FD17] D. Foley and J. Danskin. “Ultra-Performance Pascal GPU and NVLink In-
terconnect.” IEEE Micro, vol. 37, no. 2, 7–17, 2017.

[FPM+18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva,
M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg. “Azure Accelerated Networking:
SmartNICs in the Public Cloud.” In Proceedings of the 15th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’18, pp. 51–64.
USENIX Association, USA, 2018.

[Gen20] Gen-Z Consortium. “Gen-Z Core Specification 1.1.”, 2020.

[GIG23] GIGA-BYTE Technology Co., Ltd. “R150-T61 rev. 110) 2U ARM Rack-
mount Server.”, 2023.

[GSL+22] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang. “Clio: A Hardware-
Software Co-Designed Disaggregated Memory System.” In Proceedings of the
27th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’22, pp. 417–433. Associ-
ation for Computing Machinery, New York, NY, USA, 2022.

[HCW+19] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang, F. Li, S. Wang,
W. Cao, and Q. Li. “X-Engine: An Optimized Storage Engine for Large-Scale
E-Commerce Transaction Processing.” In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD ’19. 2019.

[Int20] Intel. “Intel Agilex FPGA Product Brief.”, 2020.

[JCLJ08] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. “CMP $im: A Pin-based
on-the-fly multi-core cache simulator.” In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located
with ISCA, pp. 28–36. 2008.

[JYP+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,

272

Bibliography

C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tut-
tle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. “In-
Datacenter Performance Analysis of a Tensor Processing Unit.” In Proceed-
ings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pp. 1–12. Association for Computing Machinery, New York, NY,
USA, 2017.

[KCA92] J. Kubiatowicz, D. Chaiken, and A. Agarwal. “Closing the window of vul-
nerability in multiphase memory transactions.” ACM SIGPLAN Notices,
vol. 27, no. 9, 274–284, 1992.

[KLP+18] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Ross-
bach. “Sharing, Protection, and Compatibility for Reconfigurable Fabric
with AmorphOS.” In Proceedings of the 13th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’18, pp. 107–127. USENIX
Association, USA, 2018.

[KRA20] D. Korolija, T. Roscoe, and G. Alonso. “Do OS abstractions make sense on
FPGAs?” In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 991–1010. USENIX Association, 2020.

[LBH+23] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah,
S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bian-
chini. “Pond: CXL-Based Memory Pooling Systems for Cloud Platforms.”
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, AS-
PLOS 2023, pp. 574–587. Association for Computing Machinery, New York,
NY, USA, 2023.

273

Bibliography

[LSC+20] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker.
“Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch
and GPUDirect.” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, 94–110, 2020.

[LXA+21] N. Lazarev, S. Xiang, n. Adit, Z. Zahng, and C. Delimitrou. “Dagger: Ef-
ficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfig-
urable NICs.” In ASPLOS. 2021.

[LYT+21] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattacharjee.
“MIND: In-Network Memory Management for Disaggregated Data Centers.”
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, pp. 488–504. Association for Computing Machinery,
New York, NY, USA, 2021.

[MHEH+19] S. W. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, and W.-m.
Hwu. “Analysis and Optimization of I/O Cache Coherency Strategies for
SoC-FPGA Device.” In 2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 301–306. 2019.

[MWD+23] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhattacharya,
C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan. “TPP: Trans-
parent Page Placement for CXL-Enabled Tiered-Memory.” In Proceedings
of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3, ASPLOS 2023, pp.
742–755. Association for Computing Machinery, New York, NY, USA, 2023.

[MZL+20] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi, and
B. Kasikci. “A Hypervisor for Shared-Memory FPGA Platforms.” In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’20, pp.
827–844. Association for Computing Machinery, New York, NY, USA, 2020.

[NBGS08] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel Pro-
gramming with CUDA: Is CUDA the Parallel Programming Model That Ap-
plication Developers Have Been Waiting For?” Queue, vol. 6, no. 2, 40–53,
2008.

274

Bibliography

[NSHW20a] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence. Synthesis Lectures on Computer
Architecture. Springer CHAM, second ed., 2020.

[NSHW20b] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence: Second Edition. Morgan and Claypool,
2020.

[OSC+11] N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco, A. Grier,
N. Ijih, Y. Liu, P. Marolia, H. Mitchel, S. Subhaschandra, A. Sheiman,
T. Whisonant, and P. Gupta. “A Reconfigurable Computing System Based
on a Cache-Coherent Fabric.” In Proceedings of the 2011 International Con-
ference on Reconfigurable Computing and FPGAs, RECONFIG ’11, pp. 80–
85. IEEE Computer Society, USA, 2011.

[PCC+14] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. “A Reconfig-
urable Fabric for Accelerating Large-Scale Datacenter Services.” SIGARCH
Comput. Archit. News, vol. 42, no. 3, 13–24, 2014.

[PMR+23] T. I. Papon, J. H. Mun, S. Roozkhosh, D. Hoornaert, A. Sanaullah, U. Drep-
per, R. Mancuso, and M. Athanassoulis. “Relational Fabric: Transparent
Data Transformation.” In 2023 IEEE International Conference on Data En-
gineering (ICDE). Anaheim, California, USA, 2023.

[RG83] C. Ravishanicar and J. R. Goodman. “Cache implementation for multiple
microprocessors.” In Proceedings of the 26th IEEE Computer Society Inter-
national Conference (COMCON). 1983.

[RSC+21] P. Ranganathan, D. Stodolsky, J. Calow, J. Dorfman, M. Guevara, C. W.
Smullen IV, A. Kuusela, R. Balasubramanian, S. Bhatia, P. Chauhan,
A. Cheung, I. S. Chong, N. Dasharathi, J. Feng, B. Fosco, S. Foss, B. Gelb,
S. J. Gwin, Y. Hase, D.-k. He, C. R. Ho, R. W. Huffman Jr., E. Indupalli,
I. Jayaram, P. Kongetira, C. M. Kyaw, A. Laursen, Y. Li, F. Lou, K. A.
Lucke, J. Maaninen, R. Macias, M. Mahony, D. A. Munday, S. Muroor,

275

Bibliography

N. Penukonda, E. Perkins-Argueta, D. Persaud, A. Ramirez, V.-M. Rautio,
Y. Ripley, A. Salek, S. Sekar, S. N. Sokolov, R. Springer, D. Stark, M. Tan,
M. S. Wachsler, A. C. Walton, D. A. Wickeraad, A. Wijaya, and H. K.
Wu. “Warehouse-Scale Video Acceleration: Co-Design and Deployment in
the Wild.” In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pp.
600–615. Association for Computing Machinery, New York, NY, USA, 2021.

[RTLV19] M. Radi, W. W. Terpstra, P. Loewenstein, and D. Vucinic. “OmniXtend:
Direct to Caches Over Commodity Fabric.” In 2019 IEEE Symposium on
High-Performance Interconnects (HOTI), pp. 59–62. 2019.

[SA22] D. D. Sharma and I. Agarwal. “Compute Express Link 3.0 Standard.” Tech.
rep., 2022.

[SBJS15] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. “CAPI: A Coherent Ac-
celerator Processor Interface.” IBM Journal of Research and Development,
vol. 59, no. 1, 7:1–7:7, 2015.

[Sch23] J. Schult. “Characterization and validation of an in-silicon cache coherence
protocol implementation.” Master’s thesis, 2023.

[SGS10] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A parallel programming
standard for heterogeneous computing systems.” Computing in science &
engineering, vol. 12, no. 3, 66, 2010.

[SK13] D. Sanchez and C. Kozyrakis. “ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems.” SIGARCH Comput. Archit. News,
vol. 41, no. 3, 475âĂŞ486, 2013.

[SSI+18] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner,
C. Wollbrink, and B. Allison. “IBM POWER9 Opens up a New Era of
Acceleration Enablement: OpenCAPI.” IBM Journal of Research and De-
velopment, vol. 62, no. 4–5, 8:1–8:8, 2018.

[SWC+20] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso. “StRoM: Smart
Remote Memory.” In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20. Association for Computing Machinery, New
York, NY, USA, 2020.

276

Bibliography

[Tan76] C. K. Tang. “Cache System Design in the Tightly Coupled Multiprocessor
System.” Association for Computing Machinery, New York, NY, USA, 1976.

[Ter17] W. W. Terpstra. “TileLink: A free and open-source, high-performance scal-
able cache-coherent fabric designed for RISC-V.” In Proc. 7th RISC-V Work-
shop. 2017.

[The23] The Enzian Project. “Enzian.”, 2023.

[TS21] N. C. Thompson and S. Spanuth. “The Decline of Computers as a General
Purpose Technology.” Commun. ACM, vol. 64, no. 3, 64–72, 2021.

[TSK+22] S. Tamimi, F. Stock, A. Koch, A. Bernhardt, and I. Petrov. “An Evalu-
ation of Using CCIX for Cache-Coherent Host-FPGA Interfacing.” In 2022
IEEE 30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2022.

[TSS88] C. Thacker, L. Stewart, and E. Satterthwaite. “Firefly: a multiprocessor
workstation.” IEEE Transactions on Computers, vol. 37, no. 8, 909–920,
1988.

[Ver] Verilator. “Verilator RTL Simulator.”

[WMW+16] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. C. Hoe. “A
Study of Pointer-Chasing Performance on Shared-Memory Processor-FPGA
Systems.” In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16. 2016.

[Xil21] Xilinx. “UltraScale Architecture and Product Data Sheet: Overview.”, 2021.
DS890 (v4.0).

[Xil22a] Xilinx. “UltraScale Architecture-Based FPGAs Memory IP (PG150).” Tech.
rep., 2022.

[Xil22b] Xilinx. “Xilinx Zynq Ultrascale+ MPSoC.”, 2022.

[YHS+23] Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. K. Ports, Y. Wang,
R. Wang, C. Tai, and N. S. Kim. “Rambda: RDMA-driven Acceleration
Framework for Memory-intensive Âţs-scale Datacenter Applications.” In

277

Bibliography

2023 IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA), pp. 499–515. 2023.

[ZAB+22] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Komuravelli,
J. Pan, T. Bao, H. Lu, S. Narayanan, J. Langman, K. Wilfong, H. Rastogi,
C. Wu, C. Kozyrakis, and P. Pol. “Understanding Data Storage and Inges-
tion for Large-Scale Deep Recommendation Model Training.” In ISCA 2022 -
Proceedings of the 49th Annual International Symposium on Computer Archi-
tecture, Proceedings - International Symposium on Computer Architecture,
pp. 1042–1057. Institute of Electrical and Electronics Engineers Inc., 2022.

[ZGK+21] J. Zuckerman, D. Giri, J. Kwon, P. Mantovani, and L. P. Carloni.
“Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Het-
erogeneous SoCs.” In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’21, pp. 350–365. Association for
Computing Machinery, New York, NY, USA, 2021.

[ZL20] Y. Zha and J. Li. “Virtualizing FPGAs in the Cloud.” In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’20, pp. 845–858. As-
sociation for Computing Machinery, New York, NY, USA, 2020.

[ZWC+20] T. Zhang, J. Wang, X. Cheng, H. Xu, N. Yu, G. Huang, T. Zhang, D. He,
F. Li, W. Cao, Z. Huang, and J. Sun. “FPGA-Accelerated Compactions
for LSM-based Key-Value Store.” In 18th USENIX Conference on File and
Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27,
2020. 2020.

[ZXX+17] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and T. Mosci-
broda. “The Feniks FPGA Operating System for Cloud Computing.” In
Proceedings of the 8th Asia-Pacific Workshop on Systems, APSys ’17. Asso-
ciation for Computing Machinery, New York, NY, USA, 2017.

278

Curricilum Vitae

Abishek Ramdas

Education

2018 - 2023 Doctoral Candidate in Computer Science
ETH Zurich, Switzerland

2010 - 2013 Master of Science in Computer Engineering
NYU Tandon School of Engineering, United States of America

2006 - 2010 Bachelors in Electrical and Electronics Engineering
PSG College of Technology, India

Professional Experience

2018-2023 Doctoral Candidate, Institute of Computing Platforms (Sys-
tems Group)
ETH Zurich, Switzerland

- Advisor: Prof. Dr. Gustavo Alonso.
- Part of the team that built Enzian, an heterogeneous platform

combining a server-class ARM CPU and an FPGA using a coher-
ent interconnect.

- Developed an open, customizable cache coherency stack on the
FPGA, bringing coherence to FPGA attached memory.

2013-2018 Senior Engineer, Yield Engineering Team
Qualcomm Communication Technologies, United States of America

279

Curricilum Vitae

- Developed and maintained a large volume diagnostics flow that
supports diagnosis of failure logs from more than 20 projects
across multiple technology nodes.

- Worked with multiple stakeholders and tool vendors to deploy
new diagnostic methodologies.

2010-2013 Researcher, Design for Excellence Lab
NYU United States of America, United Arab Emirates

- Investigated and designed several DFT techniques to provide a
controlled cost-quality trade-off.

Selected Publications

Enzian: An Open, General, CPU/FPGA Platform for Systems Soft-
ware Research in ASPLOS22.

Slack removal for enhanced reliability and trust in DTIS 2014.

Testing Chips With Spare Identical Cores in TCAD 2013.

Toggle-masking scheme for X-filtering in ETS 2012.

280

	Contents
	Introduction
	Background and Motivation
	Symmetric vs. asymmetric protocols
	The evolution of interconnects
	Coherence in MPSoCs
	FPGA operating systems

	Approach and Design
	Target platform and assumptions
	Coherence protocol specification
	High-level architecture
	FPGA-side interface
	CPU-side interface
	CCKit acceleration model

	Related Work
	Contributions
	Structure of the Dissertation

	Primer on Cache Coherence
	Introduction
	Baseline Multicore System without Caches
	Baseline Multicore System with Caches
	Problem of incoherence
	Shared memory consistency
	Coherence vs consistency
	Coherence invariants
	Cache line
	Maintaining coherence invariants
	Coherence protocol design space
	MSI, MESI, MOESI protocol
	Scaling: Snooping vs Directory based protocols

	Baseline System with Directory Based Protocol
	Maintaining coherence invariants in directory based protocol

	Directory Based Coherence in NUMA Systems
	Symmetric vs Asymmetric coherent platforms

	CCKit Baseline System Model and Enzian
	Introduction
	CCKit Baseline System Model
	CCKit target platform assumptions
	CCKit fundamental design choices

	Enzian
	Enzian Coherent Interconnect (ECI)

	CCKit protocol layers
	Two components of a protocol layer
	DC protocol state machine design space on Enzian

	Summary

	Directory Protocol Modeling and Specification
	Introduction
	Directory Protocol Model
	Rules of CPU-DC Interaction
	Rules of event reordering by the interconnect

	Coherence Messages
	Coherence message classes

	Memory Transactions, Events and Message Classes
	Specifying Coherence Transactions
	State equation representation of coherence transactions
	Specification of coherence transactions
	Effect of scrambler on state equations
	DC protocol state machine design choices

	State Space Exploration Tool
	Operators on state equations
	Substitution operator
	Stall operator for reordering state equations
	Create operator to create intermediate state

	Summary

	Specifying Coherence Transactions Initiated by CPU
	Introduction
	Initial Conditions
	Maintaining Coherence Invariants
	CPU State: I, DC State: I:I
	CPU pathways
	Specification and maintaining coherence invariants
	Reordering effects and maintaining coherence invariants
	Building the state machine

	CPU State: I, DC State: I:S
	CPU pathways
	Specification and maintaining coherence invariants
	Reordering effects and maintaining coherence invariants
	Building the state machine

	CPU state: E, DC State: I:E
	CPU pathways
	Specification and maintaining coherence invariants
	Reordering effects and maintaining coherence invariants
	Building the state machine

	Summary

	Specifying Coherence Transactions Initiated by DC
	Introduction
	Forward-Downgrade Transactions
	Initial Conditions
	DC State: I:S, DC Issues F21
	CPU pathways
	Specification and maintaining coherence invariants
	Building the state machine

	DC State: I:E, DC Issues F32
	CPU pathways
	Specification and maintaining coherence invariants
	Building the state machine

	DC State: I:E, DC Issues F31
	CPU pathways and specification

	Summary

	Specifying Coherence Transactions Initiated by Applications
	Introduction
	Local Coherence Transactions
	Local Coherence Messages
	Local Coherence Message Classes
	Specification of Local Coherence Transactions
	Effective remote state

	Guarantees Provided at DC's Application Interface
	Modifying DC's Application Interface For Locking Capabilities
	Local coherence messages for locking capabilities
	Local coherence message classes for locking capabilities
	Specification of local coherence transactions for locking capabilities
	Guarantees provided at DC's modified application interface
	Starvation in the modified DC interface

	Application Layer on top of DC Protocol Layer
	Directory Maintenance Operations
	Specification of ICI transaction

	Miscellaneous Local Coherence Transactions
	Local Events Packet Formats
	LC and LCI request packet formats
	LCA and LCIA responses packet formats
	Unlock (UL) response packet format

	Summary

	Distributed Directory Controller
	Introduction
	DC Interfaces
	Overview of DC Architecture
	DC directory sizing
	Indexing into the DC directory
	Directory controller units and slices
	Non-existent memory in address space exposed by DC
	DC architecture top level

	Directory Controller Slice (DCS) Architecture
	DCS interface
	DCS control and data-paths
	Memory descriptor interface to AXI interface
	Saturating ECI transmit bandwidth
	Saturating ECI receive bandwidth

	Directory Controller Unit (DCU) Architecture
	Interface and basic operation
	Design considerations
	DCU interface with DCS
	Design of DCU
	Protocol scenarios and DCU pathways
	Design of DCU's directory: Tag State Unit (TSU)
	Tag state ram (TSR)
	Why non-existent memory
	Building TSU with TSRs
	Optional registering outputs of TSR

	Customizing the Protocol State Machine
	Summary

	Evaluation & Applications
	Introduction
	Interfacing FPGA Application to DC
	Advantages of symmetric protocols over asymmetric protocols
	DC Cache Line Addressing
	Performance Evaluation of CCKit's DC
	Implementation details
	Experimental setup
	dc read-write throughput and latency
	dc clean-invalidate throughput and latency

	Applications
	Steps to consider when developing applications
	Concurrent access to shared data structures
	Maintenance of materialized database views
	Implementation details

	Summary

	Conclusions
	Summary
	Directions for Future Work
	Fixing issues with the current work
	Formally specifying and verifying the protocol
	Relaxing fundamental design choices
	Explore applications

	Miscellaneous Specifications and State Diagrams
	Not-so-distributed Directory Controller
	Introduction
	Insights

	DC Architecture
	Directory Controller Unit (DCU)
	Directory implementation
	Action handlers implementation

	Performance and Resource Consumption

	Lists of Tables
	Lists of Figures
	Bibliography

