
ETH Library

Predicting glaucoma progression
using deep learning framework
guided by generative algorithm

Journal Article

Author(s):
Hussain, Shaista; Chua, Jacqueline; Wong, Damon; Lo, Justin; Kadziauskiene, Aiste; Asoklis, Rimvydas; Barbastathis, George;
Schmetterer, Leopold; Yong, Liu

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000642912

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Scientific Reports 13(1), https://doi.org/10.1038/s41598-023-46253-2

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000642912
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-023-46253-2
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19960  | https://doi.org/10.1038/s41598-023-46253-2

www.nature.com/scientificreports

Predicting glaucoma progression 
using deep learning framework 
guided by generative algorithm
Shaista Hussain 1*, Jacqueline Chua 2,3, Damon Wong 2,4,5, Justin Lo 6, Aiste Kadziauskiene 7,8, 
Rimvydas Asoklis 7,8, George Barbastathis 9,10, Leopold Schmetterer 2,3,5,11,12,13,14* & Liu Yong 1

Glaucoma is a slowly progressing optic neuropathy that may eventually lead to blindness. To 
help patients receive customized treatment, predicting how quickly the disease will progress is 
important. Structural assessment using optical coherence tomography (OCT) can be used to visualize 
glaucomatous optic nerve and retinal damage, while functional visual field (VF) tests can be used to 
measure the extent of vision loss. However, VF testing is patient-dependent and highly inconsistent, 
making it difficult to track glaucoma progression. In this work, we developed a multimodal deep 
learning model comprising a convolutional neural network (CNN) and a long short-term memory 
(LSTM) network, for glaucoma progression prediction. We used OCT images, VF values, demographic 
and clinical data of 86 glaucoma patients with five visits over 12 months. The proposed method was 
used to predict VF changes 12 months after the first visit by combining past multimodal inputs with 
synthesized future images generated using generative adversarial network (GAN). The patients were 
classified into two classes based on their VF mean deviation (MD) decline: slow progressors (< 3 dB) and 
fast progressors (> 3 dB). We showed that our generative model-based novel approach can achieve the 
best AUC of 0.83 for predicting the progression 6 months earlier. Further, the use of synthetic future 
images enabled the model to accurately predict the vision loss even earlier (9 months earlier) with an 
AUC of 0.81, compared to using only structural (AUC = 0.68) or only functional measures (AUC = 0.72). 
This study provides valuable insights into the potential of using synthetic follow-up OCT images for 
early detection of glaucoma progression.

Glaucoma is a group of progressive eye diseases, characterized by degeneration of retinal ganglion cells (RGC) 
and thinning of retinal nerve fiber layer (RNFL) resulting in visual field (VF) defects1. It is the leading cause 
of blindness worldwide2, with 111.8 million cases expected by 20403. The progressive glaucomatous damage 
involves RGC loss in the asymptomatic stages of the disease followed by VF defects at the more advanced stage 
of glaucoma with significant RGC death. Although treatment is available for reducing intraocular pressure 
(IOP) it is difficult to customize individual treatment regimens because of the challenges in predicting the risk of 
progression. Hence, there is a considerable interest to use artificial intelligence (AI) to predict progression rates 
and facilitate immediate treatment for early-stage glaucoma patients and provide a means to identify rapidly 
progressing patients who are at high risk of visual disability and may therefore require escalation in treatment.

Progression can be assessed based on functional and/or structural parameters. Structural parameters associ-
ated with the RNFL and ganglion cell-inner plexiform layer (GCIPL) complex4,5 can be obtained using imaging of 
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the optic nerve head (ONH), macula, and surrounding regions using optical coherence tomography (OCT)6. The 
most commonly used functional test of glaucoma is based on standard automated perimetry, which is regarded as 
the clinical gold standard for assessing visual function. Clinicians use this test to assess the regions of a patient’s 
field of vision affected by glaucoma and the severity of vision loss4. However, this assessment is challenging due 
to VF variability which can be due to several factors like cataracts, the severity of glaucoma with frequent fixation 
losses, learning effects or distraction7. Hence, several studies have combined structural and functional data to 
address the VF variability issue and improve glaucoma detection performance as well as functional progression8,9.

Machine and deep learning models have been used for the classification of glaucoma based on fundus 
images10–12 as well as OCT13. The majority of OCT-based models used parameters extracted from segmented 
images as input for the AI-based prediction of VFs. This limits the generalizability of deep learning models to 
pre-defined structural features which are prone to errors because of segmentation issues. The ability of these 
models to discover new structural biomarkers, which are not quantified by the scanners, is also limited. Recently, 
several authors have developed techniques using convolutional neural networks (CNNs) to directly input 2-D 
or 3-D information from OCT images to predict VF14–17.

AI has also been utilized for predicting glaucoma progression. Different unsupervised and supervised machine 
learning models including random forests, Bayesian techniques, and recurrent neural networks (RNN) have been 
used to model glaucoma progression18–23. A deep learning model was used to estimate longitudinal changes in 
RNFL thickness from fundus photographs in order to predict the future development of glaucomatous visual 
field defects24. Yousefi et al.25 combined structural data with visual field inputs and reported that the accuracy 
of machine learning classifiers in discriminating stable versus progressing glaucoma patients did not improve 
when VFs were complemented with RNFL data. However, Garway-Heath et al. showed that glaucoma progres-
sion rates could be estimated with higher accuracy by combining VF and OCT data compared to only VF data8. 
Similar results were obtained by Dixit et al. by using a convolutional long short-term memory (LSTM) model for 
identifying glaucoma progression and showing that supplementing VF data with basic clinical data (cup-to-disc 
ratio, corneal thickness, and IOP) could improve the performance of the predictive model9.

Some studies on glaucoma as well as other diseases have attempted to model expected disease progression on 
patient images directly, through the use of generative models like generative adversarial networks (GAN) and 
variational autoencoders (VAE) in estimating disease-relevant images at certain future time points in order to 
predict the disease progression. This was achieved by leveraging on the ability of GAN to translate images from 
the source to the target domain with high precision and has been applied to MRI images26,27, radiographs28 and 
OCT images29. In glaucoma, one study used conditional GAN architecture to predict glaucoma progression by 
reconstructing cross-sectional OCT images from three or two prior measurements30,31. A GAN-based approach 
was used to learn to translate fundus images to corresponding OCT images, after which the generated images 
were used for early glaucoma detection32. Another glaucoma study used VAE for modelling spatiotemporal data 
corresponding to longitudinal visual fields from a cohort of glaucoma patients33.

In this paper, we propose a glaucoma progression prediction framework consisting of multimodal deep-
learning model aided by a generative algorithm. The proposed method is used to assess if synthesized follow-up 
OCT images can boost the accuracy of predicting glaucoma progression.

Results
Multimodal dataset
The longitudinal dataset used for training comprised measurements from 105 glaucomatous eyes. This number 
reduced to 86 after removing the cases with incomplete patient visit data. This longitudinal multimodal patient 
dataset comprised baseline patient characteristics and OCT images, VF MD and IOP values measured at five 
visits—baseline, and at 3 months (M3), 6 months (M6), 9 months (M9) and 12 months (M12). The demographic 
and clinical characteristics of the patients at baseline are presented in Table 1. A deep learning-based predic-
tion pipeline, aided by a generative model (Fig. 1) was used to predict the glaucoma progression. Our approach 
involved predicting change in VF MD (∆VF) at M12 with respect to baseline by utilizing the longitudinal 

Table 1.   Demographic and clinical characteristics pf patients at baseline. BCVA best-corrected visual acuity, 
REFR refractive error, D diopters, CCT​ central corneal thickness, AXL axial eye length, IOP intraocular 
pressure, VF visual field, MD mean deviation, dB decibels, RNFL retinal nerve fiber layer. Values expressed as 
mean ± standard deviation, unless otherwise indicated.

Baseline characteristic Range

Age, years 67.28 ± 8.92

Gender (female:male) 47:53

BCVA, decimal scale 0.68 ± 0.25

REFR, D − 0.40 ± 1.85

CCT, µm 519.45 ± 31.22

AXL, mm 23.60 ± 0.93

IOP, mmHg 27.36 ± 6.69

VF MD, dB − 14.68 ± 8.43

Global RNFL thickness, μm 53.38 ± 13.62
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multimodal patient data. For this, we formulated a binary classification problem, where ∆VF values were divided 
into 2 classes, with ∆VF > − 3 dB categorized as slow glaucoma progressors (Class-1) and ∆VF < − 3 dB as fast 
progressors (Class-2). Specifically, we have used baseline, M3, M6 and M9 multimodal data, combined with 
synthetic future OCT images (from pix2pix GAN) to predict ∆VF at M12.

Figure 2a shows examples of OCT B-scans of two patients (rows) at five visit times, i.e. baseline, M3, M6, M9 
and M12 (columns). These images were used for training the progression prediction model by first extracting 
OCT image features using a pre-trained ResNet-34 architecture backbone. This step resulted in a 512-dimensional 
feature vector for all OCT B-scan patient images across different visits.

Figure 2b–d show the distributions of demographic and clinical features listed in Table 1. The IOP distribu-
tions in Fig. 2b show the IOP lowering associated with trabeculectomy performed after the baseline visit. We 
can also see that the median IOP values of Class-1 patients are higher than that of Class-2 patients at all visits 
except at M12. Figure 2c shows that there is improvement in VF MD values after the baseline visit for Class-1 
patients, while Class-2 patients experience a decline in VF. Moreover, the fast progressing Class-2 patients have 
lower initial VF values than the Class-1 patients, indicating that more advanced cases of glaucoma decline faster. 
Figure 2d shows the distributions of some baseline clinical features of patients in the two glaucoma progressor 
classes. In terms of the differences between the two classes, fast progressing Class-2 patients have lower best-
corrected visual acuity (BCVA), lower central corneal thickness (CCT), higher axial eye length (AXL), lower 
RNFL thickness as compared to Class-1 patients.

Model training and testing strategy
For training the deep learning pipeline, the data samples were split into 75% for training and 25% for testing at 
the patient level, i.e. 65 patient samples in the training dataset and 21 in the test dataset. The training samples 
were further used for 5-fold cross-validation based training. The choice of − 3 dB threshold for classifying patients 
into slow and fast progressing cases led to the patient dataset consisting of fewer cases of fast progressing patients 
(12/86), with 56 Class-1 and 9 Class-2 patients in the training set and 18 Class-1 and 3 Class-2 patients in the 
test set. This problem of class imbalance was addressed by adopting the following strategies:

	 (i)	 Oversampling by randomly duplicating samples from the under-represented minority class (Class-2) 
during training. This resulted in 44 Class-2 samples in the training set and 12 in the validation set.

	 (ii)	 Focal loss instead of binary cross-entropy loss during model training. In case of class imbalance, the 
cross-entropy loss function gets overwhelmed by the majority class “easy” samples, leading to the model 
performing well for majority class and poorly on the “hard” minority samples. The use of focal loss 

Figure 1.   Progression prediction framework using OCT images, VF MD values, IOP and patient baseline 
characteristics to predict the slow vs fast progression of glaucoma patients 12 months (M12) after the baseline 
visit. The framework comprises CNN (ResNet-34) for feature extraction from OCT images, LSTM models to 
learn the temporal relationships within longitudinal inputs and pix2pix GAN for generating the M12 images 
using baseline images.
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addresses class imbalance by down-weighting the easy samples, such that the model can focus on learn-
ing the hard samples.

	 (iii)	 Performance metrics which are more meaningful for a class imbalance problem. We used confusion 
matrix, F1 score and area under the ROC curve (AUC) instead of classification accuracy.

Moreover, due to the small size of the dataset, we trained our model on OCT B-scans instead of OCT volumes, 
where each volume consisted of 49 slices. This resulted in a total of 4214 OCT B-scans for model training and 
testing. The model prediction was obtained at the B-scan slice-level, which was then converted to patient-level 
outcome.

Figure 2.   Multimodal longitudinal (a–c) and baseline inputs (d) used for training the progression prediction 
model. (a) Examples of OCT images used for glaucoma progression prediction task. Each row corresponds 
to OCT B-scans of a patient at the five visit times (Baseline and M3-M12) over 12 months. (b) The IOP 
distributions at baseline and M3–M12 visit times for two glaucoma classes used in this work, where Class-1 
(green) refers to slow progressing cases (∆VF > − 3 dB) and Class-2 (red) refers to fast progressing cases 
(∆VF < − 3 dB). (c) VF MD distributions for Class-1 and Class-2 patients at the five visit times. (d) Distributions 
of baseline demographic and clinical features—age (years), best-corrected visual acuity (BCVA in decimal scale), 
refractive error (REFR in D), central corneal thickness (CCT in µm), axial eye length (AXL in mm), retinal 
nerve fiber layer (RNFL in µm) thickness of patients belonging to Class-1 and Class-2 progressing classes.
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As mentioned earlier, focal loss was used for the progression classification task. Focal loss adds a modulating 
term to the standard cross entropy loss in order to reduce the impact of easy samples on the loss function and 
focus on hard samples from the minority class. The focal loss is defined as:

where (1− pt)
γ is the modulating term, γ is the focusing parameter and pt is the model’s estimated probability 

for class with label y = 1 (Class-2 in our case). By setting γ > 0, the loss for easy, well-classified samples ( pt > 0.5 ) 
is down-weighted, while the loss for hard, misclassified examples with small pt remains unaffected. We used 
γ = 2 for this work.

The Adam optimizer was used with a learning rate of 0.001 which was linearly reduced by a factor of 0.9 if 
there was no reduction in the validation loss for 5 epochs. The training and validation batch size was 32 and the 
model was trained for 10 epochs. After training, the performance of the model was evaluated on the test dataset 
by computing metrics like Area Under the Receiver Operating Characteristic (ROC) curve (AUC), confusion 
matrix and F1 score. AUC is used to measure the performance of a model for classification problems, in terms 
of the degree of separability of different classes. The ROC curve is plotted as true positive rate (TPR) against 
false positive rate (FPR), where:

A confusion matrix can be used to evaluate the performance of an ML classification model by comparing 
the actual labels (Class-1 and Class-2 in our case) with those predicted by the model. F1 score is used to assess 
the class-wise predictive performance of a model and is defined as the harmonic mean of precision and recall 
where precision refers to the percentage of correctly predicted positive samples out of all the samples predicted 
as positive, and recall is a measure of how many positive samples are correctly predicted out of all the actual 
positive samples.

All the experiments in this paper were conducted on an Ubuntu 20.04 server with two GeForce RTX 3090 
GPUs with Cuda 10.2 platform, 10-core Intel Xeon CPU (W-2255 3.70 GHz) and 128 GB memory. We used 
Python 3.7.10 distributed with Anaconda 4.13.0 (64-bit) to implement deep learning models using the PyTorch 
library.

Importance of input modalities
Firstly, we compared the effects of different modalities on visual loss prediction performance. For this, we com-
bined the baseline demographic and clinical patient data (Table 1) with the time-series inputs of OCT image 
features, VF MD and IOP values until M9 to predict ∆VF at M12. We compared three scenarios where baseline 
patient data was combined with (1) OCT time series image inputs, (2) VF MD time series inputs, and (3) both 
OCT and VF time series inputs. The top panel of Fig. 3 shows AUC scores for the classification of ∆VF into slow 
and fast progressing classes based on different combinations of inputs along with statistical annotations. The mean 
AUC corresponding to “OCT + Baseline” inputs is 0.68 and F1 score is 0.73. “VF + Baseline” leads to increase in 
AUC and reduction in F1 score, but these changes are not statistically significant. However, when longitudinal 
OCT images and VF values are combined with the baseline inputs (“OCT + VF + Baseline”), the prediction AUC 
increases significantly to 0.81, with a P value of 0.002 compared to the AUC obtained with “OCT + Baseline” 
inputs, and P value = 0.014 when compared to “VF + Baseline” inputs. Further, when longitudinal IOP values 
are also combined with OCT, VF and baseline data, the mean AUC drops significantly to 0.76, and increase in 
F1 score to 0.74 is not significant.

Figure 3 also shows the confusion matrices for the three cases of “OCT + Baseline”, “VF + Baseline” and 
“OCT + VF + Baseline”. As shown, “OCT + Baseline” input combination performs best for the slow progressing 
Class-1 patients while it doesn’t do well for the fast progressing Class-2 patients, failing to correctly predict almost 
50% of the patients. “VF + Baseline” inputs yield similar performance for both Class-1 and Class-2 samples. When 
OCT and VF inputs are combined (“OCT + VF + Baseline”), the model performs well for Class-1 samples and 
gives best performance for Class-2 patients, correctly predicting 70% of the cases while also misclassifying 30% 
of Class-1 patients as belonging to Class-2 (false positive error). Hence, this combination of inputs can predict the 
vision loss for slow progressing patients and can also achieve the best prediction for more critical fast progressing 
patients. Based on these results, we found that “OCT + VF + Baseline” achieves the best AUC for predicting slow 
vs fast vision loss as well as the best prediction performance for fast vision loss. Hence, we chose it as the input 
combination for further analysis in the rest of the paper.

Early prediction of visual loss
Next, we performed progression prediction by utilizing the multimodal inputs at different time-points of patient 
visits. To determine how early our glaucoma progression model can predict the visual loss, we trained the model 
based on baseline patient characteristics combined with OCT images and VF MD values from baseline until M3, 
M6 and M9. As shown in Fig. 4, when only baseline visit information is available, AUC = 0.71, which increases to 
0.76 when M3 visit information is also included. The AUC further increases significantly to 0.82 (P value = 0.013) 
when M6 inputs are combined with the previous visit inputs. As more near future information is included, AUC 
doesn’t improve further, with AUC = 0.81 (P value = 0.662) achieved by including M9 visit inputs. This can be 

(1)FL(pt) = −
(

1− pt
)γ

log(pt)

(2)TPR =
TP

TP + FN

(3)FPR =
FP

TN + FP
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explained by noting that as we add data at more time points closer to the future, the progression model has 
extracted enough information at some point of time (M6 in our case) to achieve significantly accurate prediction 
of vision loss and more temporal data (M9 data) doesn’t further improve the model performance significantly.

Hence, our progression prediction model can perform visual loss prediction 6 months ahead in time with 
AUC = 0.82 and F1 score = 0.76 by classifying patients into slow and fast glaucoma progressors.

Progression prediction based on synthetic future OCT images
We used pix2pix GAN to: (a) synthesize OCT B-scans at a future time point, and (b) to utilize the synthetic future 
B-scans in the progression prediction pipeline and investigate if it helps to improve the prediction accuracy of 
ΔVF at M12. Specifically, we generated M6, M9 and M12 OCT images conditioned on the baseline images. We 
evaluated the use of synthetic OCT images for accurate and early glaucoma prediction by considering both time 
of prediction and the corresponding AUC. Figure 5 shows real and synthesized OCT B-scans of two patients 
(rows). The baseline (left), real M12 (center) and synthetic M12 (right) B-scans are shown highlighting the thin-
ning of RNFL (coloured demarcations) between baseline and real M12 images, which have been captured by the 
synthetic M12 images. In the top row, the baseline and M12 images of a slow progressing glaucoma patient show 
the RNFL thinning with an orange boundary, which is replicated well in the synthetic M12 image. Similarly, the 
red boundaries in the bottom row point to the thinning of RNFL in a fast progressing patient, shown as a change 
occurring from baseline to M12, as captured by both real and synthetic M12 images.

Figure 3.   Top panel shows the prediction AUCs obtained when baseline demographic and clinical data is used 
with only OCT images (blue), only VF MD values (orange), combined OCT and VF MD inputs (green), and 
OCT images combined with VF MD and longitudinal IOP values (red). Statistical annotations are as follows: 
**P value < 0.01, *P value < 0.05 and ns denotes “not statistically significant”. Confusion matrices shown in the 
bottom panel for three input combinations to the progression model suggest that the “OCT + VF + Baseline” 
input combination performs well for both Class-1 and Class-2 patients, correctly predicting 73% of the fast 
progressing cases (Class-2).
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Next, we looked at the feature distributions of real and synthetic OCT images extracted using pre-trained 
ResNet-34. We used Uniform Manifold Approximation and Projection (UMAP) method to learn low dimen-
sional representation of the image features and then visualized the first dimension of the transformed features. 
Figure 6 (top) shows the feature distributions of real baseline, M6 and M12 OCT images (solid boundary) plotted 
alongside the distributions of synthetic M6 and M12 images (dashed boundary). The real and synthetic image 
feature distributions corresponding to both M6 (green) and M12 (red) show significant overlaps. We see that 
there is a greater overlap between real and synthetic image distributions at the same time point (M6/M12) than 
between the baseline (blue) and M6/M12 distributions. To compute the similarity/distance between these feature 
distributions, we performed the Kolmogorov–Smirnov (KS) test and obtained P value to determine if the two 
samples are significantly different. P value for KS test of both baseline vs real/synthetic M6 and baseline vs real/
synthetic M12 features is < 0.001, while for real vs synthetic M6 images, P value = 0.557, and for real vs synthetic 
M12 images, P value = 0.678. Hence, we can conclude that the baseline image distribution is significantly differ-
ent from both real and synthetic M6/M12 image distributions, while real and synthetic M6/M12 images have 
similar feature distributions suggesting that the generated images are realistic.

Next, we employed the synthetic OCT images to predict glaucoma progression. To do this, we trained the 
model on real images and tested it on synthetic images in the following manner. We started from our best results 
in the previous section, which showed that ∆VF prediction can be done at M6 with the best AUC of 0.82. Further, 
we investigated if we could improve this result and/or achieve similar performance at an earlier time point with 
the help of synthetic future OCT images. We took the multimodal visit data from baseline until M6 and combined 
it with real M9 and M12 OCT images for training the progression model. The trained model was then tested 
using synthetic M9 and M12 images combined with prior data. We repeated this experiment for previous time 
point, M3, to test for early prediction and next time point, M9, to test for improved performance. As shown in 
Fig. 6 (bottom), when M9 and M12 synthetic images are combined with visit data until M6, the AUC increases 
from 0.82 (blue bars, same as Fig. 4) to 0.83 (orange bars, real + synthetic data). However, this improvement is 
statistically not significant with P value of 0.478. When ΔVF prediction is done at the previous time point M3, 
AUC increases significantly from 0.76 (only real data) to 0.81 (real + synthetic M6, M9, M12) with a P value of 
0.038. Similar to the trend seen at M6, when prediction is done at M9, synthetic images fail to contribute to any 
significant improvement in AUC compared to when only real images are used.

Figure 4.   AUC for progression prediction by utilizing multimodal inputs comprising baseline patient inputs, 
OCT images and VF MD values at different time-points of patient visits from baseline (blue) until M3 (orange), 
M6 (green) and M9 (red). Statistical annotations are as follows: *P value < 0.05 and ns denotes “not statistically 
significant”.
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Since, the progression model achieved the best AUC (= 0.83) at M6 with the help of synthetic M9 and M12 
images, we also investigated if M6 instead of baseline images can be used to synthesize more realistic future 
images. To test this, we conducted an experiment where future M9, M12 OCT images were synthesized using the 
real M6 images. To compare the synthetic images generated using baseline and M6 images, we have plotted the 
image feature distributions (low dimensional representation using UMAP), which show that the synthetic M12 
images generated using both baseline (dashed red) and M6 (dotted red) images have similar feature distributions 
as that of real M12 images (solid red), with P values of 0.066 and 0.337 respectively (Fig. 7, left). These real and 
synthetic M12 distributions are significantly different from the baseline image distribution (blue, P value < 0.001). 
Further, we also used the synthetic M12 images conditioned on M6 real images to predict the vision loss at M12. 
The AUC obtained when the progression model used real data until M6 combined with M6-derived synthetic M9 
and M12 OCT images to predict the class of ΔVF, was 0.84, which is very similar (P value = 0.934) to the AUC 
(= 0.83) when baseline images were used to generate M9 and M12 synthetic images, as shown in Fig. 7 (right).

The high similarity between synthetic images generated using real baseline and real M6 images is due to very 
small changes in the OCT images of patients from one visit to another. As seen in Fig. 2a, the longitudinal OCT 
B-scans of patients show very little change across visits, which can be attributed to the fact that these patients 
are advanced glaucoma patients and may have already experienced significant structural changes in their retina, 
as captured by the OCT imaging method.

Based on these results, we can conclude that our progression model aided by synthetic images can predict 
ΔVF at M3, i.e. 9 months ahead in time, with a statistically significant mean AUC of 0.81 compared to pro-
gression model without synthetic images, which achieves a mean AUC of 0.82 (P value = 0.850) later at M6, 
i.e. 6 months ahead in time. Hence, the use of synthesized future OCT images can enable early and accurate 
glaucoma prediction.

Discussion
Our study aimed to develop a framework for predicting glaucoma progression by generating future OCT images 
and predicting visual loss. The key contributions of our work are: (1) the first glaucoma prediction model using 
multimodal data, including OCT images, VF values, and baseline demographic and clinical data; (2) the first use 
of synthetic OCT images in a progression prediction pipeline for enhancing prediction accuracy. Specifically, we 
used a pix2pix GAN to synthesize OCT images at 6 months (M6), 9 months (M9) and 12 months (M12) after the 
first patient visit, and then employed a CNN-LSTM network to predict changes in VF MD at the M12 visit based 
on patient data from earlier time-points combined with the synthesized images. Our approach is highly effective 
in accurately predicting fast or slow progressors, with the best AUC of 0.83. This is a significant improvement 
over existing studies that use only structural or functional measures and have lower AUC values. The findings of 

Figure 5.   Real and pix2pix GAN based synthesized OCT B-scans of two patients (rows) showing baseline (left), 
real M12 (center) and synthetic M12 (right) B-scans. The RNFL thinning in a slow progressing case (top row) 
and a fast progressing case (bottom row) is demarcated by orange and red coloured outlines respectively. The 
thinning of RNFL as shown from the baseline to M12 images is also captured well by the synthetic M12 images.
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this study suggest that our approach has the potential to improve the early detection of glaucoma progression, 
leading to better patient outcomes and potentially reducing the risk of vision loss.

Most of the earlier work on glaucoma progression prediction employed traditional machine learning models 
including random forest, support vector machine and naïve Bayes classifier20. The majority of these studies were 
based on visual functional inputs like SAP-measured VF sensitivity at various locations and global parameters 
like MD and pattern standard deviation (PSD)18,20,21. Very few studies have used only structural inputs like OCT 
measurements combined with demographic/clinical data to detect visual field progression in glaucoma patients22. 
In contrast, traditional machine learning models like random forest and Bayesian modeling approaches have 
been used to combine structural and functional measures in order to improve glaucoma prediction23–25. Deep 
learning applications in predicting glaucoma progression have used CNN and RNN based on VF and clinical 
data9,34,35. While existing AI-based glaucoma prediction models utilize a combination of structural and functional 
inputs, none of these methods use OCT images directly as input to the models. Here, we show how our progres-
sion prediction model compares with some of these earlier works. Since, we could not access the datasets used 
in these studies, we applied their methods on our glaucoma dataset to predict the VF loss 12 months after the 
first patient visit (Table 2). We also present the AUCs and 95% confidence intervals (CI) obtained by our model 
using different combinations of inputs and the corresponding P values.

Some earlier studies have utilized generative models like GAN and variational autoencoders (VAE) to enable 
glaucoma detection and prediction. In one study, conditional GAN was used to reconstruct cross-sectional 
OCT images from past patient visits for predicting glaucoma progression26. GAN was also used to generate cor-
responding OCT images from fundus images to achieve early glaucoma detection based on the generated OCT 
images32. Kumar et al.27 used progressively growing GAN model to generate circumpapillary OCT scans, which 

Figure 6.   Probability density distribution for OCT image features (top panel) corresponding to baseline (blue), 
real and synthetic M6 images (green) and real and synthetic M12 images (red). AUCs obtained without (blue 
bars) and with (orange bars) synthetic OCT images (bottom panel). * indicates P value < 0.05 and ns denotes 
“not statistically significant”.
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were then evaluated on glaucoma detection task. Berchuch et al.33 demonstrated the use of VAE for modeling 
spatiotemporal data corresponding to longitudinal visual fields from a cohort of glaucoma patients. In this work, 
we have explored the use of pix2pix GAN to generate future OCT images based on OCT images from the first 
patient visit. These synthesized future images, representative of glaucoma induced degradation, when combined 
with past inputs, were found to enhance the accuracy of glaucoma progression prediction model.

Our study is important because it uses a combination of structural, functional, demographic, and clinical 
factors to predict progression. This approach can be more clinically relevant as it represents a more holistic 
integration of the acquired information since there is no consensus on specific tests and measurements needed 
to predict glaucoma progression. The use of combined inputs enables automatic extraction of information rel-
evant to glaucoma progression. We have developed a deep learning architecture that can incorporate multiple 
data sources with different modality inputs, including images, temporal and cross-sectional numeric data. The 
use of OCT images without relying on pre-defined structural features helps to avoid the time-consuming and 
error-prone image segmentation process.

A limitation of our study is the small dataset used for training and evaluating the deep learning models, and 
the class imbalance arising due to much smaller number of fast vs slow progressing glaucoma cases in our dataset. 
These factors can affect the ability of our model to identify all input features relevant for predicting glaucoma 
progression. Nevertheless, we used cross-validation and stratified subsets of data to ensure that both slow and 
fast progressing cases were represented in training and testing, and to prevent overfitting of the model on train-
ing data. Moreover, the dataset belongs to patients of a particular ethnicity, where all of them have undergone 
the trabeculectomy procedure for surgical lowering of IOP. This may limit the generalizability of our model and 
the conclusions obtained through our analysis.

Figure 7.   Real and synthetic OCT image feature distributions (left) showing that M12 images synthesized using 
baseline images (dashed red) and M6 images (dotted red) have similar distributions, which are significantly 
different from baseline image distribution (blue). The AUCs obtained using synthetic images derived from 
baseline and M6 images are similar (right). ns denotes “not statistically significant”.

Table 2.   Glaucoma progression prediction AUCs using earlier AI-based methods as compared with our 
proposed method. Here “Baseline” inputs refer to the demographic and clinical parameters at the first visit as 
listed in Table 1, i.e. AGE, GENDER, BCVA, REFR, CCT, AXL, RNFL, IOP and VF MD. AUCs and 95% CI are 
listed for results achieved by our model using different input combinations, where the statistical significance 
was determined by performing t-test and computing the P values. We considered a P value of less than 0.05 as 
statistically significant.

Modeling approach Inputs used AUC (95% CI) P value

Traditional machine learning models

VF18,20 0.71 –

OCT + Baseline22 0.61 –

VF + OCT25 0.58 –

Deep learning models VF + Baseline9 0.72 –

Single modal deep learning OCT + Baseline [Current work] 0.68 (0.62, 0.74) < 0.001

Single modal deep learning VF + Baseline [Current work] 0.72 (0.66, 0.77) 0.003

Multimodal deep learning OCT + VF + Baseline at M3 [Current work] 0.76 (0.71, 0.80) 0.038

Multimodal deep learning with generative model OCT + VF + Baseline at M3 + Future Synthetic OCT [Current work] 0.81 (0.79, 0.84) Reference

Multimodal deep learning with generative model OCT + VF + Baseline at M6 + Future Synthetic OCT [Current work] 0.83 (0.80, 0.86) 0.264
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In future, we will address the limitations of our study by training and testing the proposed approach on larger 
balanced datasets of patients belonging to early, moderate, and severe glaucoma stages. We will also apply our 
model on datasets from other patient cohorts to validate its robustness and generalizability. Further, we will 
also investigate the impact of other factors, like genetic inputs, on prediction of VF loss. Currently, our method 
utilizes a generative model to synthesize future OCT images, which are then used for progression prediction. 
We will extend the generative model to synthesize OCT images at any given time-point. This method can be 
used to address the problem of missing longitudinal data, which is a big challenge faced in disease progression 
modeling problems. Moreover, the predicted follow-up images can also aid clinicians in forecasting potential 
glaucoma induced changes and making more intuitive clinical decisions.

In conclusion, we developed a deep learning model using GANs for predicting VF loss in glaucoma patients 
based on OCT images, VF values, demographic and clinical data. The results showed that the combination of 
structural and functional inputs with baseline patient characteristics resulted in the highest predictive perfor-
mance (AUC = 0.83) 6 months ahead in time. The use of synthetic OCT images generated using GAN also allowed 
us to achieve similar performance (AUC = 0.81) even earlier, at 9 months prior to the vision loss. The model’s 
predictive ability improved with more time-series data, and it could predict visual loss early in the disease course, 
outperforming other existing models (AUC = 0.61–0.73). Overall, this research contributes to the growing field 
of AI-assisted prediction of glaucoma progression and has the potential to improve patient outcomes and reduce 
the burden of glaucoma on society.

Methods
Dataset
This work is based on a longitudinal study of consecutive patients, who underwent trabeculectomy for surgical 
lowering of IOP at the Vilnius University Hospital Santaros Klinikos (2014–2017) in Lithuania. Details on the 
study design and the procedures can be found in previous publications36,37. Briefly, 130 glaucomatous eyes were 
enrolled to this study based on the following inclusion criteria: (1) clinical diagnosis of primary or secondary 
glaucoma; (2) indicated trabeculectomy because of observed progression of glaucoma or at high risk of progres-
sion due to high IOP; (3) best-corrected visual acuity of ≥ 0.1; and (4) refractive error from − 6.0 D to + 6.0 D 
of sphere and ± 3.0 D of cylinder. Finally, 105 glaucomatous eyes of 100 patients were used after removing the 
cases with pre-perimetric glaucoma, poor OCT quality, failed trabeculectomy, postoperative complications, and 
inadequate number of VFs/OCTs measurements or duration of follow-up.

Glaucoma was defined based on the presence of glaucomatous optic neuropathy (neuroretinal rim thinning, 
notching or RNFL defects) with associated glaucomatous VF defect. In addition to a clinical examination includ-
ing Goldmann applanation tonometry to measure intraocular pressure (IOP), standard automated perimetry 
based on 30-2 Swedish Interactive Threshold Algorithm Standard strategy (Humphrey VF analyzer; Carl Zeiss 
Meditec, Dublin, CA, USA), and spectral-domain OCT imaging (Heidelberg Spectralis; Heidelberg Engineering, 
Dossenheim, Germany) were performed.

The IOP measurements, OCT imaging and VF testing were performed at five visits—baseline, and postop-
eratively at 3 months (M3), 6 months (M6), 9 months (M9) and 12 months (M12). The OCT imaging involved 
15 × 10° rectangle scan centered on the optic nerve head with each OCT volume consisting of 49 serial horizontal 
B-scans scans (4.5 mm long lines, 40 images averaged) spaced at approximately 63 µm intervals. The RNFL thick-
ness was measured from a circumferential OCT scan of 3.4 mm diameter centred at the ONH as provided by the 
software of the manufacturer. The VF tests were considered reliable if false positive and false negative errors were 
< 33% and fixation losses < 20%. The baseline test was conducted twice to prevent potential learning effects and 
the second VF report was used for further analysis. In this work, we used VF measurement of VF mean deviation 
(MD), where MD reflects the overall depression of the VF and is calculated as a weighted average decibel devia-
tion from age normal database. As MD value goes lower, visual function of the patient becomes more damaged.

A decline in VF MD of more than 3 dB was used as glaucoma progression criterion. Here, 3 dB threshold was 
chosen to identify fast progressing glaucoma patients as per advice from clinical experts and also to address the 
class imbalance issue, which arises if the number of samples belonging to different classes (Class-1: VF decline 
< 3 dB, Class-2: VF decline > 3 dB) is highly skewed. A higher threshold greater than 3 dB can identify faster 
progressing cases, but the number of such cases is small (minority class), making it a class imbalance problem 
for the deep learning model. This results in models that have poor predictive performance, specifically for the 
minority class. Hence, a threshold of 3 dB was chosen to alleviate the class imbalance problem while identifying 
the fast progressing glaucoma cases.

Proposed deep learning framework
The overview of the proposed deep learning model for glaucoma progression prediction is shown in Fig. 1. 
Firstly, a generative model (GAN) is utilized to synthesize OCT images at a future time-point (M6, M9, M12) 
conditioned on the baseline images. Next, a multimodal deep learning-based model is used to predict ∆VF class 
(slow vs fast progressor) at M12 based on baseline, M3, M6 and M9 data, which comprises OCT images, IOP, 
and VF MD values, combined with synthetic images. We performed a set of experiments to evaluate the model 
performance under different scenarios: (1) to compare the relevance of different input modalities in predicting 
glaucoma progress, (2) to ascertain the effect of adding data from more patient visits and test how early can 
glaucoma progress be predicted accurately, and (3) to test the effect of training the model on future synthetic 
OCT images along with past inputs on progression prediction performance. The statistical significance of results 
obtained using these different schemes of model training was determined by performing t-test and computing 
the P values, where we considered a P value of less than 0.05 as statistically significant.
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Multimodal deep learning model
To account for different input modalities and their effects on glaucoma prediction, we used a multimodal model 
to learn ∆VF progression. We used an approach of extracting modality specific features first and then performing 
late fusion of different sources of temporal data as well as patient’s baseline data to learn the common distinctive 
features for the classification task. The three time series modalities (OCT, IOP, ∆VF) at regular time steps (i.e., 
baseline, M3, M6 and M9) were fed separately into the model, along with baseline patient characteristics. Firstly, 
a CNN was used to learn the local features from OCT B-scan images, followed by an LSTM model to learn the 
temporal relationships between the OCT image features at different time-points. Secondly, ∆VF and IOP values 
recorded at each patient visit were fed to separate LSTM models to learn the temporal features within a single 
time series. The demographical and clinical characteristics of each patient taken on the first visit (baseline) were 
processed by a fully connected (FC) layer with ReLU activation function to extract representative deep features. 
Finally, the deep features learned from all networks processing different modality inputs were fused and fed to 
an FC layer with ReLU activation to extract the common features. This was followed by an FC layer and finally 
sigmoid activation function to generate the classification output to predict if a glaucoma patient is slow or fast 
progressor. Next, we give the details of the deep learning models comprising the progression prediction pipeline.

CNN for extracting image features
A CNN was used to learn the local spatial features from OCT images. To alleviate the problem of limited patient 
data, we utilised transfer learning by using ResNet architecture as the backbone of the CNN model. ResNet net-
work was initialized with the weights based on pre-training on ImageNet dataset. This model has been shown 
to perform well in medical image classification problems38 and hence, was chosen for our OCT image-based 
prediction model. The ResNet network uses convolutional and max-pooling layers to create a deep network that 
can learn the intricacies of a given image. At the end of the convolutional layers, the data is flattened, and an FC 
layer is applied to convert the convolution features to feature vectors. Therefore, a pre-trained CNN model was 
used to extract feature vectors for each B-scan of the OCT volume data for each patient visit, resulting in multi-
dimensional time-series data corresponding to patient OCT images.

RNN for learning temporal relationships
An RNN was used to capture the temporal dependencies in the sequential OCT, VF and IOP data collected over 
recurring patient visits. The RNNs learn from sequential data by utilising hidden state acting as the memory of 
the network by combining information from prior inputs to influence the current input and output. In this work, 
we have used a special type of RNN, an LSTM network, which is capable of learning long-term dependencies39 
by utilizing “cells” in the hidden layers to regulate the flow of information These cells have three gates—an input 
gate, an output gate, and a forget gate. These gates determine which information needs to be retained to predict 
the output of the network.

GAN for synthesis of future images
We have used a pix2pix conditional GAN40 for translating OCT images in time by synthesizing OCT image at 
follow-up visit conditioning on the OCT image from earlier patient visits. The generator network of the pix2pix 
GAN is based on U-Net architecture which uses an encoder-decoder type structure, along with skip connections. 
The encoder forms the contraction path, which allows to capture the context in the image by using convolutional 
and max pooling layers. The second expanding path is the decoder, which uses transposed convolutions to enable 
precise localization.

The discriminator of pix2pix GAN uses patch-wise method that only penalizes structure at the scale of 
patches. While most complex discriminators in GAN architectures utilize the whole image for establishing a 
synthetic or real (0 or 1) value, the patch GAN tries to classify if each N × N patch in an image is real or synthetic. 
The N × N patch size can vary for each specific task, but the ultimate final output is the average of all the responses 
of the patches considered. The primary advantages of the Patch GAN discriminator occur from the facts that 
they have fewer training parameters, run faster, and can be applied to arbitrarily large images.

Data availability
The dataset used for the analysis in the current study is not publicly available due to the terms of consent to which 
the participants agreed but is available from the corresponding author on reasonable request.
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