
ETH Library

Preventing Generation of Verbatim
Memorization in Language Models
Gives a False Sense of Privacy

Conference Paper

Author(s):
Ippolito, Daphne; Tramèr, Florian ; Nasr, Milad; Zhang, Chiyuan; Jagielski, Matthew; Lee, Katherine; Choquette-Choo,
Christopher A; Carlini, Nicholas

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000642948

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8703-8762
https://doi.org/10.3929/ethz-b-000642948
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Proceedings of the 16th International Natural Language Generation Conference, pages 28–53
September 11–15, 2023. ©2023 Association for Computational Linguistics

28

Preventing Generation of Verbatim Memorization in Language
Models Gives a False Sense of Privacy

Daphne Ippolito1 Florian Tramèr˚2 Milad Nasr˚1

Chiyuan Zhang˚1 Matthew Jagielski˚1 Katherine Lee˚1,3

Christopher A. Choquette-Choo˚1 Nicholas Carlini1

1 Google Research 2 ETH Zurich 3 Cornell University

Abstract

Studying data memorization in neural lan-
guage models helps us understand the risks
(e.g., to privacy or copyright) associated with
models regurgitating training data and aids in
the development of countermeasures. Many
prior works—and some recently deployed
defenses—focus on “verbatim memorization”,
defined as a model generation that exactly
matches a substring from the training set. We
argue that verbatim memorization definitions
are too restrictive and fail to capture more sub-
tle forms of memorization. Specifically, we de-
sign and implement an efficient defense that
perfectly prevents all verbatim memorization.
And yet, we demonstrate that this “perfect” fil-
ter does not prevent the leakage of training
data. Indeed, it is easily circumvented by plau-
sible and minimally modified “style-transfer”
prompts—and in some cases even the non-
modified original prompts—to extract memo-
rized information. We conclude by discussing
potential alternative definitions and why defin-
ing memorization is a difficult yet crucial open
question for neural language models.

1 Introduction

The ability of neural language models to memo-
rize their training data has been studied extensively
(Kandpal et al., 2022; Lee et al., 2021; Carlini et al.,
2022; Zhang et al., 2021; Thakkar et al., 2021;
Ramaswamy et al., 2020). When language mod-
els, especially ones used in production systems,
are susceptible to data extraction attacks, it can
lead to practical problems ranging from privacy
risks to copyright concerns. For example, Carlini
et al. (2021) showed that the GPT-2 language model
could output personally identifying information of
individuals contained in the training dataset.

˚Remaining authors ordered by Algorithm 18 in Ap-
pendix H; briefly, we require Daphne be listed first, and
Nicholas listed last, and we search for the first permutation of
authors’ first names which satisfies these constraints, where
permutations order names by their salted MD5 hash.

partnering
going… get arm-loads

of free stuff. So

The Prompt

I’m
I’d

We’re

…

doing

…

giving

with

…

Next token probabilities

Next token probabilities

Next token probabilities

token rejection based
on training data

Figure 1: Illustration of Memorization-free Decoding,
a defense which can eliminate verbatim memorization
in the generations from a large neural language model,
but does not prevent approximate memorization.

One natural way to avoid this risk is to filter out
any generations which copy long strings verbatim
from the training set. GitHub’s Copilot, a language-
model-based code assistant, deploys this defense
by giving users the option to “block suggestions
matching public code” (GitHub, 2022).

In this work, we ask the question: “Do lan-
guage models emit paraphrased memorized con-
tent?” This scenario can happen maliciously (e.g.,
adversaries trying to extract private user data) or
through honest interactions (e.g., users prompting
in real-world scenarios). Indeed, we find that Copi-
lot’s filtering system is easy to circumvent by ap-
plying plausible “style transfers” to the prompt.
For example, by translating variable names from
English to French the model outputs completely
memorized examples, but post-processed with the
en-fr style transfer. We further show that GPT-
3 (Brown et al., 2020), a model trained on natural
language, is also vulnerable to extraction attacks.

Unfortunately, Copilot’s training set and precise
algorithm for their defense are non-public. There-
fore, to investigate this phenomenon systematically,
we develop MEMFREE decoding (Figure 1), an ef-
ficient defense that is guaranteed to prevent all ver-
batim memorization, and which scales to training
sets consisting of hundreds of gigabytes of text. In

29

MEMFREE decoding, at each step of generation
we check whether the model’s chosen next token
would create an n-gram found in the training set. If
it does, an alternative next token is selected (with-
out a computationally expensive regeneration) by
sampling from the model’s token posterior. The
check for membership in the training set is per-
formed efficiently using a Bloom filter containing
all common n-grams from the training set.

We use MEMFREE to study Copilot’s verbatim-
filtering defense on other state-of-the-art large
language models such as GPT-Neo (Gao et al.,
2020). We first confirm that even honestly de-
signed prompts often bypass verbatim memoriza-
tion checks. Then, we observe another interesting
phenomenon: language models succeed at emit-
ting approximate memorization that bypass our
filter all by themselves. Indeed, when prevented
from generating exact n-grams from the training
set, models are capable of “cheating” the filter by
producing close paraphrases–for example, insert-
ing spelling errors, adjusting punctuation or whites-
pace, or using synonyms (e.g., swapping ‘and’ with
‘&’). These changes lead to generated text a human
would perceive as nearly identical, even if it is not
verbatim memorization.

Clearly, defenses which prevent verbatim copy-
ing are necessary but not sufficient to protect
against training data leakage. As a result of these
failure modes, we argue that a broader defini-
tion of memorization is necessary when reason-
ing about training set memorization in language
models. Such a definition should not only capture
verbatim notions of memorization, but also notions
based on high “semantic similarity” between model
outputs and training data. We conclude our work by
comparing approximate and verbatim memoriza-
tion, discussing their relation to other domains of
literature, and the challenges surrounding the ambi-
guity of approximate memorizations. Future work
that aims to faithfully measure or prevent memo-
rization in language models will need to take this
ambiguity into account—for example, our analysis
suggests that the fraction of datasets that large lan-
guage models is likely far larger than the fraction
as reported in prior work (Carlini et al., 2022).

2 Background

Language Models. We consider auto-regressive
language models that operate over sequences of
text and, given a prefix p, output a probability dis-

tribution for the next token in the sequence. To
generate text for a prompt p, the language model
starts with an empty suffix s, and repeatedly sam-
ples the next token from its prediction on p ` s,
and then appends this token to s. The success of
neural language models has, in large part, been
driven by the transformer architecture introduced
of Vaswani et al. (2017), which allowed models
to scale from millions to hundreds of billions of
parameters over the past half-decade (Brown et al.,
2020; Chowdhery et al., 2022; Zhang et al., 2022).
This increase in model sizes has likewise driven
increases in dataset sizes, with most of this data
coming from internet crawls (Lee et al., 2021; Raf-
fel et al., 2020; Gao et al., 2020).1

Prior work has shown that large language models
can memorize and regurgitate potentially private
information, like phone numbers and addresses, as
well as memorize long sequences from their train-
ing sets (Carlini et al., 2019, 2021; Lee et al., 2021;
Carlini et al., 2022; Zhang et al., 2021; Thakkar
et al., 2021; Ramaswamy et al., 2020; Kandpal
et al., 2022). Our work focuses on large language
models trained to generate English text or code,
and our work does not distinguish between prob-
lematic memorization (e.g. exposure of private
information) and non-problematic memorization
(e.g. quoting perfectly from a presidential speech).

Measuring Memorization. Many studies of
memorization stem from a concern of privacy leak-
age: if a model memorizes sensitive training data
and can generate it, then interactions with a model
can lead to the leakage of that sensitive data. Nearly
all of this literature is focused on measuring verba-
tim cases of memorization.

Eidetic memorization (Carlini et al., 2021) de-
fines a string s as memorized if there exists a
prompt p so that LMppq “ s and s is contained in
the training dataset. This definition and variations
of it have been used widely in the literature (Kand-
pal et al., 2022; Lee et al., 2021; Carlini et al.,
2022). For example, Tirumala et al. (2022) study a
similar per-token definition called exact memoriza-
tion and Kandpal et al. (2022) a document-level
definition called perfect memorization.

There is also a newly emerging line of works
exploring differential-privacy (DP)-based defini-
tions (Zhao et al., 2022; Stock et al., 2022), which
relate to document-level DP guarantees in language

1A common source for datasets is the Common Crawl
dataset found at: https://commoncrawl.org/

https://commoncrawl.org/

30

modelling (Yu et al., 2021). These works differ
from the above in that they define a probabilis-
tic leakage measure. However, this is based on the
probability of generating—verbatim—a canary sen-
tence s, depending on whether s was contained in
the training set or not. There are different prob-
abilistic definitions, also based on verbatim se-
quences, such as the counterfactual memorization
proposed by Zhang et al. (2021).

In the domain of language model memorization,
the most similar work to ours is Lee et al. (2021)
who also argue for a more relaxed definition of
memorization. Lee et al. say any model output
for a prompt p is memorized if it is within some
chosen edit distance of the prompt’s true continua-
tion in the training set. As we will discuss, a small
edit distance may not capture all forms of approxi-
mate memorization either—such as our examples
of “style-transfer” applied to memorized content.

Preventing Memorization. Differentially pri-
vate training, e.g., using DP stochastic gradient
descent (Abadi et al., 2016), is the gold standard for
training models which provably do not memorize
individual training examples. However, in practice,
these techniques result in worse generative mod-
els (Anil et al., 2021)—thus, no state-of-the-art,
large, language models are trained with DP. In-
stead, data deduplication has arisen as a pragmatic
countermeasure against data memorization (Lee
et al., 2021; Kandpal et al., 2022; Carlini et al.,
2022). The core idea is to remove any duplicated
content—e.g., repeated documents—because dupli-
cated content is much more likely to be memorized.
However, deduplication does not guarantee that a
model will not still memorize individual (dedupli-
cated) examples, necessitating defenses that oper-
ate at inference-time.

3 Preventing Models from Emitting
Verbatim Training Data

In this paper, we consider inference-time defenses
that eliminate the generation of memorized con-
tent from the training set. The most immediate
way to do this is simply to filter all model outputs
using some fixed definition of memorization. For
example, in Carlini et al. (2022), a continuation
s “ LMppq of a k-length prompt p is said to be
memorized if the string s exists verbatim in the
training dataset. A straightforward implementation
checks each generation s against the training set
and rejects any matches. We call the approach of

re-running a language model, possibly many times
with different seeds, until a qualifying generation
is produced, retroactive censoring.

The problem with retroactive censoring is that it
effectively prevents the model from emitting any
output when the model’s confidence in a memo-
rized string is too high. To encourage a model to
generate novel outputs, we could also adopt a more
granular filtering approach: rather than censoring
memorized content solely at the level of an en-
tire sequence s, we could instead check and mark
each n-gram within s individually. Filtering for
memorization at the n-gram-level rather than at the
sequence level allows substrings of a generation
which may be novel to be kept, and only the pieces
that are verbatim memorized to be modified. We
call this approach MEMFREE decoding, as the
defense is applied at decoding time.

Both retroactive censoring and MEMFREE de-
coding explicitly prohibit the model from emitting
a sequence if it is contained (entirely or partially) in
the training dataset. However, in retroactive censor-
ing, if a generation starts off with memorized text,
but then veers off track from the true continuation
(a common occurrence), this would not be marked
as memorization, even though a portion of the out-
put sequence is clearly memorized. The MEMFREE

decoding approach performs a more fine-grained
and aggressive check by filtering out all memorized
subsequences of a given length. In this work we
use the MEMFREE decoding approach to show that
even when a model is restricted from emitting any
output with snippets of verbatim memorization, the
model can still leak training data.

3.1 MEMFREE Decoding Details

In order to implement MEMFREE decoding, we
alter the model’s generation in an online manner by
restricting the production of tokens which would
result in an n-gram memorization. Let p be the
current working prefix and t be the next proposed
token when running the model forward.

Our algorithm first checks if any n-gram in the
concatenated sequence p||t is contained in the train-
ing dataset D. If it is, we suppress this generated
token and re-sample from the model. To avoid po-
tentially expensive resamplings, we equivalently
express this as altering the model’s output probabil-
ity distribution by removing the probability mass
from token t. In this way, we guarantee that prior
to sampling the probability of outputting a mem-

31

orization will be 0. Appendix B.1 gives a formal
procedure for this method.

Altering the token posterior allows any sampling
strategy to be used on top of memorization-free
decoding. For example, if one uses top-k sampling,
tokens that result in memorization are disqualified
before the probability distribution is truncated to
the k next most likely tokens. This procedure is
guaranteed to generate non-memorized text.

3.2 Querying the Training Set Efficiently

Our MEMFREE defense has assumed that it is easy
to perform the query s P D to test if any given
string is contained in the training dataset. Because
the defense works at inference-time, it is neces-
sary that this query is computationally efficient to
maintain utility of the language model. Given that
training sets may contain terabytes of data (Brown
et al., 2020), it is infeasible to maintain an entire
copy of the training dataset in an efficiently acces-
sible storage. Thus, we explore three optimizations
to speed up the process of memorization checking.

First, as a direct result of our n-gram memoriza-
tion definition, we can equivalently check only the
n-gram ending in the current predicted token t; we
can thus avoid many n-gram queries for each token.
Further, and in addition to preventing subsequence
memorization, this allows us to avoid queries into
a large set of all prefixes and continuations.

Second, we only check against sequences that
have a reasonable probability of being memorized
by the model. In theory, this could be easily de-
termined by running each n-gram s P D through
the model and then filtering out all sequences with
high loss (thus unlikely to be memorized). How-
ever, this is a computationally expensive procedure
as it requires re-processing every substring of the
training dataset. Instead, a computationally- and
storage-efficient procedure could be to only store
n-grams which occur more than once in the train-
ing set—prior work has shown duplicate text is
the most likely to be memorized (Lee et al., 2021;
Kandpal et al., 2022).

Third, by being willing to tolerate some false
positives (labeling an n-gram as memorized when
it is in fact not), we can take advantage of prob-
abilistic data structures such as Bloom filters
(Bloom, 1970), which admits no false negatives
but trades off time and space with the false positive
rate (which can be computed exactly). Thus, by
using a Bloom Filter, we guarantee that no mem-

orized n-gram will ever be released (i.e., a false
negative) but we may (rarely) prevent the emission
of non-memorized content (i.e., a false positive).

Integrating a Bloom Filter into our defense is
straightforward. Let FfppDnq represent the Bloom
Filter of dataset D, generated by adding each n-
gram of the dataset s P Dn to the Bloom filter,
with false positive rate fp. Then, any memoriza-
tion check s P Dn in Algorithm 1 can be replaced
with s P FfppDnq. The Bloom filter can be gen-
erated with a single pass over the model’s training
set, which could be performed in parallel with one
epoch of model training.

Additional Parameters. We must choose an ap-
propriate false positive rate based on memory con-
straints and the chosen n-gram length. Choosing n
has two major impacts: on the population size (i.e.,
the number of unique n-grams) and thus the size of
the filter, and on the effectiveness of memorization
mitigation. If n is set too low, then we will cer-
tainly prevent all memorized sequences but might
also prevent too many common phrases. But if we
set n too high, we might not prevent actually mem-
orized sequences from being emitted by the model.
We discuss these tensions in Appendix B, along
with two additional takeaways: (1) that MEMFREE

does not impact downstream model performance
(which may result from false positives), and (2)
that our chosen optimizations maintain a suitably
low false negative rate (we observed a 3000x im-
provement). These optimizations led to a filter of
size 1.6 gigabytes (or, 40.5 gigabytes if all, even
non-duplicated, 10-grams were stored) when run
over the 800GB Pile dataset.

3.3 Measuring Approximate Memorization

To show that defenses against verbatim memoriza-
tion still allow approximate memorization, we need
a definition for approximate memorization. We
consider two definitions. First, drawing from stan-
dard NLP evaluation techniques, we measure the
BLEU score between the generated and ground-
truth continuations. Second, we measure the length-
normalized character-level Levenshtein similarity
between the generated and ground-truth continua-
tions. Appendix C.1 gives implementation details.
In Section 5, we investigates how these two simi-
larity metrics decrease with MEMFREE decoding.

For situations requiring a binary label of whether
approximate memorization has occurred, we use
the following definition: a suffix s for prefix p is

32

Standard prompting with original prefix and format

float Q_rsqrt(float number)
{

long i ;
f l o a t x2 , y ;
c o n s t f l o a t t h r e e h a l f s = 1 . 5 F ;

x2 = number ∗ 0 . 5 F ;
y = number ;
i = ∗ (l ong ∗) &y ;

Copilot no longer generates continuations

Prompt with Python-style comment

float Q_rsqrt(float number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
#
x2 = number * 0.5F;
y = number;
i = * (long *) &y;
i = 0x5f3759df - (i >> 1);
y = * (float *) &i;
y = y * (threehalfs - (x2*y*y));
#
return y;
}

Prompt with French translation (alternate naming
convention)

float Q_sqrt(float nombre)
{

long i ;
f l o a t x2 , y ;
c o n s t f l o a t t r o i s _ m o i t i e = 1 . 5 F ;

x2 = nombre ∗ 0 . 5 F ;
y = nombre ;
i = ∗ (l ong ∗) &y ;
i = 0 x5f3759df ´ (i >> 1)
y = ∗ (f l o a t ∗) &i ;
y = y ∗ (t r o i s _ m o i t i e ´ (x2∗y∗y)) ;
/ / y = y ∗ (t r o i s _ m o i t i e ´ (x2∗y∗y)) ;

r e t u r n nombre ∗ y ;
}

Figure 2: Honest “style-transfer” prompts evade
verbatim memorization filters. Trivially modifying
prompts causes GitHub’s Copilot language model to
emit memorized, but not verbatim, content. Prompts
highlighted in blue. Model evaluated with the option
“block suggestions matching public code” enabled. For
brevity, we removed comments from model outputs.

labeled as memorized if for generation g “ fppq,
BLEUpg, sq ą 0.75. This threshold was chosen by
qualitatively inspecting examples. Several exam-
ple generations that are close to this threshold are
shown in Table A12.

When we repeat the prefix-extraction experiment
from (Carlini et al., 2022) to measure incidents of
generations that could be considered memorized,
but using this approximate definition instead of a
verbatim one, we find that hat prior literature has
significantly underestimated memorization leak-
age. In Figure 3, the shaded region represents the
fraction of memorized samples that would have by-
passed a verbatim memorization filter: in the worst
case, there is a factor-of-two increase.

120M 345M 762M 1.5B 2.7B 6B
Model Size

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

m
em

or
ize

d GPT-3
Approx
Exact

GPT-Neo
Approx
Exact

Figure 3: Significantly more examples are approxi-
mately memorized (BLEU > 0.75) than are found to
be exactly memorized by Carlini et al. (2022). This
is for undefended generation.

However, we caution that this definition of ap-
proximate memorization is inaccurate, potentially
both over and under counting approximate memo-
rization. While our choice of a 0.75 BLEU score
threshold shows a significant increase in approxi-
mate vs. verbatim memorization, it is not clear that
all identified cases of memorization would be per-
ceptually tagged as such by a human judge. This is
one reason why simply switching to this definition
for defenses may not be ideal—it could introduce
significant false positives.

4 Evading Verbatim Memorization
Defenses

In this section, we show how retroactive censoring
of verbatim memorization can be evaded, even in
settings where models are used honestly. We first
present a case study with Copilot, which has im-
plemented retroactive censoring in production. We
then show how a large English language models
like GPT-3 and PaLM are susceptible to the same
vulnerability, should a defense similar to Copilot’s
be deployed. In short, protecting against verbatim
memorization can lead to a false sense of privacy.

4.1 Evading Copilot’s Memorization Filter
Copilot is a code auto-complete service which
is trained on GitHub code. Copilot is built us-
ing the Codex language model designed by Ope-
nAI (Chen et al., 2021). To prevent generating
memorized code, Copilot uses a filtering mecha-
nism that blocks model outputs from being sug-
gested if they overlap significantly (approximately
150 characters) with a training example. This is a
practical example of a filter that aims at prevent-
ing perfect verbatim memorization, presumably
by using a procedure similar to Algorithm 1 (the

33

exact mechanism used by GitHub is not public).
However, we find that the filter fails to prevent the
leakage of training data in many settings.

Style-transfer prompting. In Figure 2, we show
that Copilot’s filter can easily be bypassed by
prompts that apply various forms of “style-transfer”
to model outputs, thereby causing the model to
produce memorized (but not verbatim) outputs.

As a concrete example, we demonstrate how to
extract the public code for Quake’s “Fast Inverse
Square Root”. If we naively prompt the model
with the function definition “float Q_rsqrt (

float number)”, Copilot correctly aborts gener-
ation of the full function (“standard prompting”).

However, we find that simple style-transfers
applied to the prompt allow us to easily bypass
Copilot’s restrictions. First, via prompting with
“Python-style comments” we begin our prompt with
Python’s comment character “#”. Even though this
is syntactically invalid C code, Copilot outputs the
entire verbatim fast inverse square root algorithm,
but commented out. Second, in prompting with
“French translations” we change the naming con-
vention to French. As a result, the generations fol-
low the new naming convention and are no longer
flagged as a verbatim match. Other naming con-
ventions, such as pre-pending “_” to the variable
or changing the language to Spanish, also work.

These strategies work because the Copilot model
is sufficiently powerful: it can both follow the style-
transfer prompt (by e.g., renaming variables) while
simultaneously regurgitating memorized training
data. We provide more examples in Appendix F.

Copilot evades its own filter. Not only do ac-
tively style-transfered prompts evade the verbatim
memorization filter, but even passively prompting
Copilot with highly duplicated text from the Pile
dataset can too. We find several examples where
Copilot evades its own filter to output memorized
text, some of which we show in Figure 5. We see
that Copilot evades the filter by (1) changing cap-
italization, (2) making small non-stylistic errors,
and (3) changing whitespaces. The latter evasion
(changing whitespaces) is surprising, as Copilot’s
documentation reports ignoring whitespace in its
filtering mechanism (Appendix A). However, we
hypothesize that this can be explained by the model
replacing tabs with space characters. We can verify
this by adding tabs to the beginning of each line
of the Q_sqrt function, as an application of our

Sp
ee

ch
es

(n=
40

0)
Mon

olo
gu

es
(n=

24
0)

OS L
ice

ns
es

(n=
16

8) Nov
els

(n=
30

8)
Lyr

ics
 20

11
(n=

40
0)

Lyr
ics

 20
21

(n=
40

0)

Datasets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
M

em
or

ize
d

ori
gin

al
(n=

47
9)

sp
ac

es
(n=

47
9)

low
er

(n=
47

9)
ca

ps
(n=

47
9)

Style

GPT-3 DaVinci Original
GPT-3 DaVinci v2
PaLM 62B
PaLM 540B

Figure 4: Fraction of prompts which discover approx-
imate memorization, grouped by domain (left) and by
style transfer applied (right). We tested two versions
of GPT-3 DaVinci and two sizes of PaLM. Full plot in
Appendix D.

style-transfer strategy.

4.2 English Language Models

Following our analysis of Copilot, we ask whether
this vulnerability is pervasive in other language
models too. We use API access to four large (En-
glish) language models—GPT-3 Davinci Original
and V2 and PaLM 62B and 540B–to test whether
they would be susceptible to style transfer of the
prompt. We assume that the training sets for these
models are unknown and prompt with documents
we believe are likely to have been memorized:
open-source licenses, famous speeches and mono-
logues, novel openings, and song lyrics. For each
document, we prompt the model with 100 words
of either (1) the original document (“base”), (2)
the document with all spaces doubled (“spaces”),
(3) the document in all lowercase (“lower”), and
(4) the document in all uppercase (“caps”). We
report approximate memorization results of this
experiment in Figure 4, with additional figures in
Appendix D.

We see that even when prompting with style-
transfered prompts, GPT-3 and PaLM are still of-
ten able to generate memorized continuations. De-
fenses for verbatim memorization are therefore in-
complete. Among the three techniques, uppercas-
ing was the least likely to lead to memorized gen-
erations. For the two PaLM models, the larger one
is much more capable of memorization than the
smaller one, which validates prior work (Carlini
et al., 2022). The two version GPT-3 are purport-
edly the same size model but have quite different
memorization tendencies. For example, V2 is much

34

1) Misspelling and changed capitalization

This program is free software" ; you can redistributeredistribut i t and / o r ∗
modify i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ asAS p u b l i s h e d by t h e Free S o f t w a r e F o u n d a t i o n ; e i t h e r
v e r s i o n 2 ∗ of t h e L icense , orOR (a t your o p t i o n) any l a t e r
v e r s i o n "

2) Small non-stylistic errors

@aws-sdk/protocol-http" ;
import { Command as $Command } from "@aws-sdk/smithy-client";
import {FinalizeHandlerArguments,Handler,HandlerExecutionContext,
MiddlewareStack,HttpHandlerOptions} as __HttpHandlerOptions, M e t a d a t a B e a r e r
a s __MetadataBearerMetadataBear ,

3) Changed whitespace

[...]IPV6_2292PKTINFO(2 ws)\t\t\t\t\t = 0x2\nIPV6_2292PKTOPTIONS \t\t\t\t = 0x6\n
IPV6_2292RTHDR [20 spaces][9 spaces]= 0x5 \ n

Figure 5: CoPilot can “cheat” and emit nearly verba-
tim memorized content. Here, we show prompts from
the training set, where the model makes slight errors
causing the continuations to pass the filter. Prompts are
in cyan, followed by CoPilot’s continuation where er-
rors are highlighted as model’s generation in orange
with the correct characters in green.

more susceptible to the “double spaces” style trans-
fer than the Original Davinci. This emphasizes the
importance of models’ training set compositions
and training methods on memorization tendencies.

5 MEMFREE Decoding Experiments

In this section, we study the effectiveness of our
proposed MEMFREE decoding defense from Sec-
tion 3.3, and the appropriateness of our proposed
definition of approximate memorization.

5.1 Experimental Design

It is not possible to apply MEMFREE to the models
from Section 4 since their training sets are non-
public. Instead, we turn to the GPT-Neo languge
model family (Black et al., 2021). These models
are trained on the Pile, a publicly available 825GB
dataset (Gao et al., 2020). We build a Bloom filter
over all 10-grams occur 10 or more times.2 In
all experiments, we generate text using argmax
decoding as the sampling method. We investigate
four model sizes: 125M–6B parameters.

We evaluate using substrings of the Pile released
by Carlini et al. (2022). The dataset includes 30k
strings of length 150 tokens taken from the training
set. These are divided into 30 buckets of 1k strings,
sampled such that the strings in bucket i occur in

2Note that the choice of n=10 for the n-gram size is very
conservative, and common phrases that happen to be com-
posed of 10+ tokens will get filtered out by this check. We
discuss why we chose these particular values in Appendix B.

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(a) BLEU (word-level)

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(b) Edit similarity (char-level)

Figure 6: MEMFREE reduces similarity when the
continuation would have been highly similar to the
ground-truth, and has little impact otherwise. For
5,000 prompts, we plot the similarity of the groundtruth
continuation with the generation from MEMFREE (y-
axis) and with the undefended generation (x-axis). Gen-
erations on the diagonal were not memorized.

the Pile between 2i{4 and 2pi`1q{4 times. For each
string, we use the first 50 tokens as a prompt p and
generate a 50-token long continuation.

5.2 Reduction in Memorization

MEMFREE significantly reduces the similarity of
generations to the groundtruth, compared to per-
forming undefended generation (Figure 6). We
also observe that when undefended generation al-
ready results in low similarity with the groundtruth,
MEMFREE does not significantly alter the genera-
tions, as desired.

Previous work shows that increasing model size
increases discoverable memorization (Carlini et al.,
2022; Kandpal et al., 2022). We again find a clear
trend that generations from larger models have, on
average, a much higher similarity with the original
continuation (Figure 8). Despite this, MEMFREE

remains effective at all model sizes (BLEU remains
near-flat around 0.6). Even when a sequence has
many duplicates in the train set (a strong indica-
tor of memorization), MEMFREE significantly de-
creases similarity with the groundtruth at all model
sizes (Figure 7).

5.3 Failures in Preventing Memorization

A defense against memorization fails when it al-
lows a sequence to be generated which a human
would perceive as substantially copied from the
true continuation—even if it is not verbatim mem-
orized. This failure case can be seen as the points
where the MEMFREE generation is still a close
match to the ground-truth continuation (Figure 6).
It occurs because the defense only adjusted a few

35

101 102

Duplicate Count

0.3

0.2

0.1
M

ea
n

BL
EU

Sc
or

e
Ch

an
ge

6B
2.7B

1.3B
125M

Figure 7: MEMFREE decreases the BLEU score of
generations more for highly duplicated examples.

125M 1.3B 2.7B 6B125M 1.3B 2.7B 6B
Size

0.4

0.6

0.8

BL
EU

 sc
or

e
be

tw
ee

n
ge

ne
ra

te
d

an
d

tru
e

co
nt

in
ua

tio
ns

Undefended
MemFree

Figure 8: MEMFREE remains effective at reducing
similarity between the generated and groundtruth
continuations even as models grow larger.,

tokens (e.g., 1 after every sequence of 10). When
looking at these examples, many, but not all, are
lists of numbers. Some examples are included in
Table A17. There is also a second failure-case:
when a full (50 token) generation is made more
similar with the ground-truth by MEMFREE (on
10-grams) than without. This may happen depend-
ing on the model’s token posterior’s after removing
all tokens that fail the MEMFREE check. Almost
all of these cases had a trivial increase in similar-
ity. However, 0.16% of samples had a similarity
increase above 0.1. We found qualitatively that
many of these cases did have significant overlap
with the true continuation.

6 Discussion

Defining memorization in language models.
While verbatim definitions have helped discover
significant memorization in large language models,
they are insufficient to capture more subtle forms
of memorization. Our work highlights two such
situations: "style-transfer" prompting, where de-
fenses for verbatim memorization can be actively
subverted, and when models “cheat” by outputting
similar, but not verbatim, continuations. As a result,
our work suggests that memorization prevention
must capture these types of paraphrased memo-

rizations in addition to the previously considered
verbatim definitions. However, exhaustively an-
ticipating styles to incorporate into defenses is an
innumerable problem that will become harder as
models become more powerful.

This emphasizes two major challenges in defin-
ing approximate memorization. First, since new
approximate cases must be discoverable by the def-
inition, this can result in a cat-and-mouse game.
Second, the definition of memorization is domain-
dependent. For example, our paper focuses on lan-
guage models trained to output English and code,
which each have different standards for what it
means to memorize. Other languages will require
different considerations when defining memoriza-
tion.

There are a few areas of research which may help
in improving memorization definitions. The field of
image generation memorization is already com-
fortable with measuring fuzzy (in our terms, approx-
imate) memorization, where generated items may
be perceptually similar to training set examples,
despite having high distance according to standard
metrics. For example, Fredrikson et al. (2015) con-
sider “model inversion”, where an image is suc-
cessfully recovered from the model if it is identi-
fiable to a human worker. In Zhang et al. (2020),
model inversion success is measured based on pixel
similarity and feature space similarity to training
images. These works also recover “representative”
images from different classes, rather than specific
training examples. Recent work on reconstructing
training images have used feature similarity (Haim
et al., 2022) and pixel similarity (Balle et al., 2022).
In each of these papers, “fuzzy” reconstructions are
allowed by the evaluation metrics and, indeed, are
common in their reconstructions.

The inherent limitations of verbatim definitions
of text regurgitation have also been well docu-
mented in the literature on plagiarism detection—
both for text and code. Existing plagiarism tools,
and their evaluations, go far beyond verbatim
matches and consider fuzzy data “clones” ranging
from simple transformations (e.g., word variations
or shuffles) to arbitrary semantics-preserving para-
phrasing (Roy et al., 2009; Potthast et al., 2010).
Re-purposing techniques from the plagiarism de-
tection literature to minimize generation of mem-
orized data in LLMs is an interesting direction to-
ward achieving better approximate memorization
definitions in machine learning.

36

Consequences for machine learning research.
In relaxing definitions of memorization, our paper
acknowledges the blurred line between memoriza-
tion (e.g., of personal information) and knowledge
(e.g., of common facts). Because we use a 10-gram
overlap, our MEMFREE decoding algorithm should
not significantly impact utility, however studying
this interplay is an important area of future work.
However, still, identifying which data is considered
“memorized” cannot be done only by looking for
verbatim reproductions of the training set. This
may make the task of understanding memorization
and generalization more difficult.

We do not believe that our work requires aban-
doning all research directions which rely on prior
verbatim definitions. These definitions are still
useful as an efficient way to test for obvious and
undeniable memorization. However it will be nec-
essary to continue studying further relaxations of
memorization definitions to adequately capture and
measure the space of privacy concerns for language
models.

7 Ethics & Broader Impact

Improving the privacy of neural language models—
and especially those trained on user data—is an
important and timely research problem. In this
paper we hope to help both researchers and practi-
tioners develop a more nuanced understanding of
what constitutes memorization in language mod-
els. In particular, just because a sequence does
not appear verbatim in a training dataset does not
mean the example is a novel generation: as we have
shown, models today are sufficiently powerful to
minimally transform memorized data to make it
appear superficially different even if the underlying
content remains memorized.

Our observation will complicate the privacy eval-
uation of future machine learning models. It should
no longer be deemed sufficient to check for (ver-
batim) matches between generated output and a
training example. Practitioners in the future will
need to be aware of this potential failure mode
when applying output post-processing defenses to
mitigate memorization. To the best of our knowl-
edge, the only deployed system affected by our
analysis is GitHub’s Copilot. In order to mitigate
harm here we shared a copy of our paper with the
relevant researchers at both GitHub and OpenAI
prior to paper submission.

In this paper we focus our efforts entirely on

public datasets that other researchers have exten-
sively studied (Gao et al., 2020) to minimize any
harm caused by demonstrating extraction results.
However, just because the data that we study is
public does not mean there are no privacy concerns.
As Brown et al. (2022) argue, there are many other
considerations when discussing the privacy of large
models trained on “public” datasets.

Contributions

• Daphne Ippolito posed the idea of memory-
free decoding using a bloom filter as a solution
to memorization, worked on the MEMFREE

implementation, ran experiments with GPT-3
and PaLM, and contributed to paper writing.
• Christopher Choquette analyzed how MEM-

FREE used the bloom filter, created figures,
and contributed to paper writing.
• Matthew Jagielski qualitatively analyzed gen-

erations from MEMFREE, created figures, and
contributed to paper writing.
• Katherine Lee led figure-making, contributed

to paper writing, and resolved TODOs.
• Milad Nasr ran experiments with Copilot and

contributed to paper writing.
• Florian Tramèr came up with the idea of style

transferring prompts and contributed to paper
writing.
• Chiyuan Zhang generated figures, prepared

qualitative examples, and contributed to paper
writing.
• Nicholas Carlini identified the weaknesses in

memory-free decoding, worked on the MEM-
FREE implementation, ran experiments with
GPT-Neo, and contributed to paper writing.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi
Kumar, and Pasin Manurangsi. 2021. Large-
scale differentially private BERT. arXiv preprint
arXiv:2108.01624.

Borja Balle, Giovanni Cherubin, and Jamie Hayes.
2022. Reconstructing training data with informed
adversaries. arXiv preprint arXiv:2201.04845.

37

Michael A Bender, Martin Farach-Colton, Mayank
Goswami, Rob Johnson, Samuel McCauley, and
Shikha Singh. 2018. Bloom filters, adaptivity, and
the dictionary problem. In 2018 IEEE 59th An-
nual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 182–193. IEEE.

Stella Biderman, Hailey Schoelkopf, Quentin An-
thony, Herbie Bradley, Kyle O’Brien, Eric Halla-
han, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. arXiv preprint
arXiv:2304.01373.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.
If you use this software, please cite it using these
metadata, 58.

Burton H Bloom. 1970. Space/time trade-offs in hash
coding with allowable errors. Communications of
the ACM, 13(7):422–426.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramèr.
2022. What does it mean for a language model to
preserve privacy? Seoul, Korean. ACM Conference
on Fairness, Accountability, and Transparency.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jehoshua Bruck, Jie Gao, and Anxiao Jiang. 2006.
Weighted Bloom filter. In 2006 IEEE International
Symposium on Information Theory, pages 2304–
2308. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In 28th USENIX Security Symposium
(USENIX Security 19), pages 267–284.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, et al. 2021. Extracting training data
from large language models. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pages 2633–
2650.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Ondřej Dušek, David M Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Inter-
national Conference on Natural Language Genera-
tion, pages 421–426.

Ondrej Dušek and Filip Jurcıcek. 2016. A context-
aware natural language generation dataset for dia-
logue systems. In Workshop on collecting and gen-
erating resources for chatbots and conversational
agents-development and evaluation, pages 6–9.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
2015. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pages
1322–1333.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna Clinciu, Dipanjan
Das, Kaustubh Dhole, et al. 2021. The gem bench-
mark: Natural language generation, its evaluation
and metrics. In Proceedings of the 1st Workshop
on Natural Language Generation, Evaluation, and
Metrics (GEM 2021), pages 96–120.

GitHub. 2022. About GitHub Copilot.
https://docs.github.com/en/copilot/overview-of-
github-copilot/about-github-copilot.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir,
and Michal Irani. 2022. Reconstructing training
data from trained neural networks. arXiv preprint
arXiv:2206.07758.

Nikhil Kandpal, Eric Wallace, and Colin Raffel.
2022. Deduplicating training data mitigates pri-
vacy risks in language models. arXiv preprint
arXiv:2202.06539.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training

https://doi.org/10.1145/3531146.3534642
https://doi.org/10.1145/3531146.3534642

38

data makes language models better. arXiv preprint
arXiv:2107.06499.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xian-
gru Tang, Aadit Vyas, Neha Verma, Pranav Krishna,
et al. 2021. Dart: Open-domain structured data
record to text generation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 432–447.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. Totto: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1173–1186.

Martin Potthast, Benno Stein, Alberto Barrón-Cedeño,
and Paolo Rosso. 2010. An evaluation framework
for plagiarism detection. In Coling 2010: Posters,
pages 997–1005.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H Brendan McMahan, and Françoise
Beaufays. 2020. Training production language mod-
els without memorizing user data. arXiv preprint
arXiv:2009.10031.

Chanchal K Roy, James R Cordy, and Rainer Koschke.
2009. Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach.
Science of computer programming, 74(7):470–495.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
Mlsum: The multilingual summarization corpus. In
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8051–8067.
Association for Computational Linguistics.

Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre
Sablayrolles. 2022. Defending against reconstruc-
tion attacks with Rényi differential privacy. arXiv
preprint arXiv:2202.07623.

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil
Lagerspetz. 2011. Theory and practice of bloom fil-
ters for distributed systems. IEEE Communications
Surveys & Tutorials, 14(1):131–155.

Om Dipakbhai Thakkar, Swaroop Ramaswamy, Rajiv
Mathews, and Francoise Beaufays. 2021. Under-
standing unintended memorization in language mod-
els under federated learning. In Proceedings of the
Third Workshop on Privacy in Natural Language
Processing, pages 1–10.

Kushal Tirumala, Aram H Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Memoriza-
tion without overfitting: Analyzing the training dy-
namics of large language models. arXiv preprint
arXiv:2205.10770.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021. Differentially private fine-tuning of lan-
guage models. arXiv preprint arXiv:2110.06500.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. 2021. Counterfactual memorization
in neural language models. arXiv preprint
arXiv:2112.12938.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao
Wang, Bo Li, and Dawn Song. 2020. The se-
cret revealer: Generative model-inversion attacks
against deep neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 253–261.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. 2022.
Provably confidential language modelling. arXiv
preprint arXiv:2205.01863.

39

A GitHub Copilot

At the time of this paper’s writing, GitHub Copilot’s memorization prevention mechanism is described in
their FAQ at https://github.com/features/copilot. We copy the text here:

What can I do to reduce GitHub Copilot’s suggestion of code that matches

public code?

We built a filter to help detect and suppress the rare instances where a

GitHub Copilot suggestion contains code that matches public code on GitHub.

You have the choice to turn that filter on or off during setup. With the

filter on, GitHub Copilot checks code suggestions with its surrounding code

for matches or near matches (ignoring whitespace) against public code on

GitHub of about 150 characters. If there is a match, the suggestion will not

be shown to you. We plan on continuing to evolve this approach and welcome

feedback and comment.

B Further Discussion of MEMFREE

B.1 Formal Procedure
Algorithm 1 provides a formal procedure for MEMFREE decoding. In all our experiments, we used
argmax decoding as the sampling method for line 4.

Algorithm 1 MEMFREE decoding algorithm.
1: procedure GREEDY MEMFREE DECODING(language model f , prefix p, gen length n, training set D)
2: repeat
3: logits Ð fppq ´ 8 ¨ t1rpp||tq P Ds : t P vocabu
4: tok Ð sample from logits
5: pÐ p||tok
6: until n iterations
7: end procedure

B.2 Choice of n-gram length
There are two tradeoffs to consider when choosing an n-gram length: the choice of n changes the
granularity of the memorization checking and the total number of substrings of the dataset that must be
stored in the Bloom filter. with respect to the former, notice that short n-grams do not have sufficient
novelty (loosely, entropy) to be considered memorizations, e.g., they are often commons words and
phrases. However, too large also would not capture shorter sequences that have sufficient novelty. On the
latter, notice that the universe of possible n-grams is exponential in n, but that the unique number of such
sequences in a fixed dataset may decrease with large n. This total number of unique sequences impacts
the required size of the Bloom filter to maintain a fixed false positive rate. With N the number of unique
n-grams and fp a decimal probability of the false positive rate, the size of the filter in bits is:

m “

R

´pN ˚ log pfpqq

log p2q2

V

.

Then, k the number of Bloom hash functions can be calculated from the number of bits per element, i.e.,
m{N , as:

k “ rppm{Nq ˚ logp2qqs .

This determines the cost of inserting and looking up into the Bloom filter asOpkq. But, because k typically
remains small (in our case, k “ 7), this can be treated as a small constant-time operation. See Tarkoma
et al. (2011) for the full calculations, which the ones listed here are taken from.

We err on the side of caution and select n=10 for our experiments. This does prevent the model from
generating common words or phrases which consist of 10 or more tokens, such as “The quick brown fox

https://github.com/features/copilot

40

jumped over the lazy dog.” or “supercalifragilisticexpialidocious”. We find qualitatively that the impact of
this is low, and that this also presents a balanced trade-off with the Bloom filter size.

B.3 Choice of Minimum Frequency

Ideally, we want n large enough so that we do not prevent common phrases and small enough so that we
catch all (though practically, most) possible memorizations. Optimizing n for this task is both non-trivial,
as the objective is not clear, and computationally expensive. Instead, we choose n “ 10 based on
qualitative experience that this does not prevent many common phrases. Further, we do so to also limit the
storage cost of the Bloom filter, because n too large leads to a blow up in the number of elements, N .

It is important to note that using MEMFREE with a lower n will result in worse performance on standard
benchmarks than using it with a higher n. This is because a lower n means more true answers prevents
from being generated.

0 20 40 60+
Total Bloom Hits
per Generation

0.001

0.01

0.1

1

Pr
op

or
tio

n

2 6 14 42.1 0 20 40
Total Bloom Hits

per Token Position

00 106.0

Quartiles
Mean

Figure 9: (left) Most generations have few Bloom queries, as observed by the small quartiles; however, there is a
long tail of few generations with many Bloom hits (12.6% of generations had beyond 50 hits with a max of 1111).
(right) Some positions had significantly more hits, e.g., the first and tenth tokens. (both) are histograms from
6000 generations of 50 tokens each using MEMFREE decoding on GPT-Neo 6B.

B.4 Python Implementation

Figure 10 contains a Python implementation of MEMFREE using the HuggingFace Transformers3 API.

B.5 Impact of MEMFREE on Downstream Task Performance

In this section, we discuss the worst-case impact MEMFREE could have on performance on downstream
tasks. We measure this by looking at the targets, the groundtruth text a model’s outputs are compared
against, for three abstractive summarization tasks, three question answers tasks, and the 12 tasks in the
GEM natural language generation benchmark (Gehrmann et al., 2021). On all these tasks, a model would
score perfectly on the validation set if it exactly outputted the groundtruth target sequence. By measuring
how many of the 10-grams in each of these target sequences are present in the bloom filter used by
MEMFREE, we can assess the worst-case impact MEMFREE would have on model performance at these
tasks. The results of this analysis are shown in table 1

We see that for most of these tasks, the percentage of 10-grams which are present in the bloom filter is
not too much above 1%, the false positive rate of our bloom filter. Tasks where the target sequences come
from documents likely to be present in the Pile are the most affected by MEMFREE usage. For example,
for the BillSum and Arxiv summarization tasks, over 86% of their validation set examples have a 10-gram
in the bloom filter. Non-English tasks, which are labeled with an asterisk in Table 1 were also significantly
affected. The drop in performance for non-English tasks is due to the fact that GPT-Neo’s vocabulary is
built off of English. This means that non-English phrases end up being broken into many more tokens on
average than English ones, and a single common word in a non-English language might take up several
tokens. This can be seen in the bloom hit examples for the MLSum-de task.

3https://github.com/huggingface/transformers

https://github.com/huggingface/transformers

41

banned = None

model = ## h u g g i n g f a c e model l o a d e r here
bloom = ## s e t´l i k e bloom f i l t e r

n u m _ t o k e n s _ i n _ f i l t e r = 10

def ban_bloom (i n p u t _ i d s , s c o r e s) :
" " " i n p u t _ i d s i s t h e t o k e n s o f t h e prompt . s c o r e s i s t h e l o g i t s o u t p u t t e d by t h e model g i v e n t h e s e i n p u t _ i d s . " " "
i n p u t _ i d s = i n p u t _ i d s . cpu () . d e t a c h () . numpy ()

Order t h e t o k e n s by t h e i r l i k e l i h o o d .
o r d e r = t o r c h . a r g s o r t (´ s c o r e s , 1)
o r d e r = o r d e r . cpu () . d e t a c h () . numpy ()

b a t c h _ s i z e = i n p u t _ i d s . shape [0]

S e t t h e l i k e l i h o o d t o 0 f o r a l l t h e most l i k e l y n e x t t o k e n s which would c r e a t e an ngram i n t h e bloom f i l t e r .
f o r ex in range (b a t c h _ s i z e) :

f o r i in o r d e r [ex] :
s e q u e n c e _ t o _ c h e c k = (i n p u t _ i d s [ex] . t o l i s t () + [i n t (i)])
i f s e q u e n c e _ t o _ c h e c k[´ n u m _ t o k e n s _ i n _ f i l t e r :] in bloom :

s c o r e s [ex , i] ´= 1000
e l s e :

break
return s c o r e s

p r i o r _ p r o c e s s o r = model . _ g e t _ l o g i t s _ p r o c e s s o r
def fn (∗ a rgs , ∗∗kwargs) :

p r i o r = p r i o r _ p r o c e s s o r (∗ a rgs , ∗∗kwargs)
p r i o r . append (ban_bloom)
re turn p r i o r

model . _ g e t _ l o g i t s _ p r o c e s s o r = fn

Proceed w i t h c a l l i n g model . g e n e r a t e as normal .

Figure 10: Implementation of MemFree in HuggingFace

There are easy strategies to reduce the effect MEMFREE has on benchmark performance. First, one
could deliberately choose to omit from the bloom filter datasets which one decides are acceptable to
memorize from, such as Wikipedia and legal documents. Second, one could increase the n-gram size
of the bloom filter. As shown in the qualitative examples in Table 1, n=10 is perhaps too stringent for
fact-based task, where names of proper nouns can take up 10-tokens or more. Third, one could reduce the
error rate of the bloom filter so as to emit fewer false positives.

B.6 Performance of MEMFREE

In this section, we study two questions: (1) “does MEMFREE maintain model utility?” and (2) “does our
optimized MEMFREE prevent memorization release”.

Along question (1), recall that MEMFREE can admit false positives, which may degrade the utility of
the language model. Fortunately, the false positive rate can be computed exactly, e.g., see Tarkoma et al.
(2011), and a long literature has proposed optimizations to account for non-uniform distributions (Bruck
et al., 2006) and to adaptively correct for false positives (Bender et al., 2018).

Here, we study how, under reasonable computational constraints and inference times, the observed
rates impact model utility. As we will show, we observe that MEMFREE maintains the highest utility (no
observable impact) while being the most efficient defense.

Along question (2), we study if our optimizations lead to a substantial increase in the false negative
rate. To do this, we repeat the experiment from (Carlini et al., 2022), which prompted GPT-Neo models
with examples from its training data. We compute how many examples are verbatim memorized when
MEMFREE decoding is used. The 6B parameter GPT-Neo model memorizes more than 12,000 of these
documents, but, after applying MEMFREE, it only outputs 4 verbatim memorizations. These 4 remaining
verbatim memorizations are repeated fewer than 10 times in the training data, and so were not added to
our Bloom filter. Nonetheless, this strategy reduced verbatim memorization by over 3000ˆ.

B.7 Bloom Filter Statistics

Figure 11 shows the distribution in number of tokens (out of 50 generated) that were changed by
MEMFREE from the token that would have been generated using undefended greedy decoding.

42

% ex with % ex % 10grams
Task len>10 with bloom hit with bloom hit Example 10-grams with bloom hit

Summarization Tasks
TIFU 92.0 16.9 1.3 stall windows, get new mouse, keyboard and cup ‚ my freezer and

now my home is the bog of ‚ went to a concert five hours away as
the dd

Arxiv 100.0 86.8 1.38 of a bose gas below the critical temperature. ‚ in this paper, we
develop a structure - preserving ‚ consider a model of diffusion
where the individuals behavior is

Pubmed 100.0 92.3 1.7 normal alanine aminotransferase ‚ the prevalence of osteoporosis
in postmen ‚ www.cs.tau.ac.il

BillSum 100.0 88.6 3.0 Employee Retirement Income Security Act of 1974 and the Internal
‚ Congressional Budget and Impoundment Control Act of 1974 ‚

Federal Meat Inspection Act, the Poultry Products Inspection

Question-Answering Tasks
SQuAD2.0 9.8 1.1 5.9 E. Mann, Raymond S. Bradley and Malcolm ‚ CTLs (cytotoxic T

lymph ‚ in 1975. It went public in 1979 and was
WebQuestions 2.4 0.9 9.8 Academia de Bellas Artes de San Fernando ‚ Paris Saint-Germain

F.C. ‚ The Mating Habits of the Earthbound Human
CoQA 4.0 0.5 10.6 Kingdom of Serbs, Croats and Sloven ‚ Sheikh Mohammed bin

Rashid Al Maktou ‚ grabbed the rest of the pickle and ran

GEM Benchmark
CommonGen 81.9 5.7 1.4 You ride the horse around the area near the fence ‚ children walk

with their dog on a leash down the] ‚ she wears a helmet & sits on
the motorcycle.

Chezch Restaurant*
(Dušek et al., 2019) 99.6 23.5 1.7 jemnou restauraci BarBar, kter ‚ jsou v různých ‚ Bohužel, poblí

DART
(Nan et al., 2021) 97.1 20.1 1.7 in New York City. He was a member of ‚ a low-priced family restau-

rant located near Raja ‚ a Member of the U.S. House of
E2E clean
(Dušek and Jurcıcek, 2016) 99.9 88.9 1.0 near Rainbow Vegetarian Café in the city center. ‚ Phoenix is a

cheap French restaurant in riverside. ‚ a French restaurant with a
moderate price range, but

MLSum-de*
(Scialom et al., 2020) 100.0 58.7 2.58 zum neuen Vorsitzenden ‚ für verfassungswidrig. ‚ längst überfäll

MLSum-es*
(Scialom et al., 2020) 100.0 42.3 2.2 del pacto y no de la confrontación ‚ selección española de f ‚ in-

vestigación sobre la desaparici
Schema-Guided Dialog 63.3 7.5 1.3 The Lord of the Rings: The Return of the ‚ tyard By Marriott Sacra-

mento Cal Expo has a 3 star ‚ with Southwest Airlines. The flight
takes off at 7

ToTTo
(Parikh et al., 2020) 98.0 20.9 3.2 and was broadcast on Venevisión. ‚ As of the census of 2000, there

were 133 ‚ on the U.S. Billboard 200 chart.
XSum 99.4 18.5 1.6 stressed will not increase your risk of dying, according ‚ Two drug

dealing brothers taken back to court for mocking ‚ the Institute of
Directors (IoD) has

WebNLG-en 97.9 27.4 4.7 written by J.R.R. Tolkien, ‚ play in the Campeonato Brasileiro ‚ is
affiliated with Visvesvaraya Technological University

WebNLG-ru* 100.0 99.6 42.9 ‚ ‚

WikiAuto + Turk/ASSET 96.5 16.7 2.2 pop-punk, surf rock, ska, ‚ was discovered by a team of as-
tronomers from the University ‚ cover of Sgt. Pepper’s Lonely
Hearts Club Band

Table 1: Some benchmark tasks could be significantly affected by MEMFREE. For several standard benchmark
tasks commonly used to evaluate language models, we report the percentage of test set target sequences which
consist of at least one 10-gram (meaning hitting the bloom filter is possible), the percentage of test set target
sequences which contain at least one 10-gram present in the bloom filter, and the percentage of all the 10-grams in
the test set targets which can be found in the bloom filter. We also show 3 example 10-grams (delineated by ‘‚’)
which are present in both the test set and the bloom filter. (For QA tasks, we only consider the first answer for each
question.) The numbers here reflect the worst case scenario: the fraction of examples a language model that
perfectly memorized the test set would be incapable of getting exactly correct when used with MEMFREE.

43

0 5 10 15
Number of Tokens Changed

0

5

10

15

Pe
rc

en
t

1 4 6

Quartiles
Mean

Figure 11: Most generations require few (ă 5) changes to pass MEMFREEchecks. Data for histogram from
6000, 50-token generations using MEMFREE decoding on GPT-Neo 6b.

Figure 9 presented some of the query patterns of the MEMFREE decoder to investigate when and how it
impacts decoding. First, we observe that MEMFREE is trivial to run in terms of compute: it takes only
49.8 milliseconds to run 10,000 queries on one CPU core. From Figure 9 (left), all generations required
significantly fewer queries (mean “ 42.1 queries / generation)—even running batches of many hundreds
or thousands of queries would incur less than a few seconds additional overhead. Second, we find that the
Bloom filter is often hit at the first and tenth tokens after the prompt. We see many hits at the first token
because all our prompts are from the training data—so there are relatively fewer single token additions
that generate a novel n-gram. Third, we find that most generations need only a few (ă 5) alterations due
to MEMFREE decoding.

C More Details on Measuring Approximate Memorization

C.1 Similarity Metrics Implementations

As noted in Section 5, we identify instances of approximate memorization by measuring the similarity
between a generated continuation and the groundtruth continuation for a prompt. We do so using
BLEU-score and character-level edit distance.

We computed BLEU score using NLTK’s BLEU computation (nltk.translate.bleu_score) with
the default parameters (averaging equally BLEU-1, BLEU-2, BLEU-3, and BLEU-4)(Bird et al., 2009).
Edit distance was computed with the ‘editdistance‘ pip package. Normalized edit similarity between two
strings x and y is defined as:

EDITSIMpx, yq “
EDITDISTANCEpx, yq

maxp|x|, |y|q

C.2 BLEU Score Threshold Selection

We chose to use a BLEU score of 0.75 or higher to indicate that a generation substantially memorized
from the ground-truth continuation. We choose to threshold BLEU score rather than edit-distance since it
is more interpretable to NLP researchers. Table 12 presents several examples of generations that were
very close to the 0.75 BLEU score threshold. This threshold was deliberately set high so as to avoid
false-negatives, allowing us to provide a reliable lower bound on memorization. In our qualitative analysis
of the data, all examples that were above BLEU of 0.75 showed unambiguous memorization. We also
observed memorization in some examples with lower BLEU scores.

44

True Continuation LM Generation BLEU

about a deeper bond with the product. Nostalgia.
It’s delicate, but potent. Sweetheart.\n\nTeddy told
me that in Greek, “nostalgia” literally means “the
pain from an old wound”. It’s a twinge in your
heart far more

about a deeper bond with a product. Nostalgia.
It’s delicate, but potent. Teddy told me that in
Greek, nostalgia literally means the pain from an
old wound. It’s a twinge in your heart, far more
powerful than memory alone. This

0.79

And I’ll show you\nYou want the moves like
jagger\nI got the moves like jagger\nI got the
mooooooves like jagger\nI don’t even try to control
you\nLook into my eyes and I’ll own you\nYou
with the moves

And I’ll show you\nAll the moves like Jagger\nI’ve
got the moves like Jagger\nI’ve got the moves like
Jagger\nI don’t need to try to control you\nLook
into my eyes and I’ll own you\nWith the

0.79

Purpose\n\nThe laws of most jurisdictions through-
out the world automatically confer\nexclusive
Copyright and Related Rights (defined below) upon
the creator\nand subsequent owner(s) (each and all,
an "owner") of an original work of\nauthorship
and/or a database

Purpose\n\n The laws of most jurisdictions through-
out the world automatically confer\n exclusive
Copyright and Related Rights (defined below) upon
the creator\n and subsequent owner(s) of an orig-
inal work of authorship (the "Work").\n Certain
jurisdictions do not recognize a

0.76

Figure 12: Examples of model generations with BLEU score close to 0.75, the threshold we used to declare that
approximate memorization had occurred.

D Experiments with Large English Language Models

D.1 Prompt Selection Process
Famous speeches were selected from the "Top 100 Speeches" list found at https://www.

americanrhetoric.com/newtop100speeches.htm. Monologues were selected from the list of two-
minute monologues found at http://www.monologuedb.com/tag/2-minute-monologues/. Novels
were selected from the Time Magazine’s Top 100 All-Time Novels list found at https://www.goodreads.
com/list/show/2681.Time_Magazine_s_All_Time_100_Novels. The opening paragraphs of the
first chapter (skipping over prefaces, introductions, and boilerplate) were used as each example. The
2011 and 2021 song lyrics were selected from the Billboard Year-End Hot 100 singles lists found at
https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2011 and https:

//en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2012.
For each document, the first 100 words were used as a prompt, and the first 50 generated words were

compared with the first 50 words of the true continuation. This approach has the ramification that not all
prompts were the same length in tokens. However, this approach was necessary for fairness across style
transfers because an all-uppercased string is going to be many subword tokens longer than the lowercased
version of the same string.

https://www.americanrhetoric.com/newtop100speeches.htm
https://www.americanrhetoric.com/newtop100speeches.htm
http://www.monologuedb.com/tag/2-minute-monologues/
https://www.goodreads.com/list/show/2681.Time_Magazine_s_All_Time_100_Novels
https://www.goodreads.com/list/show/2681.Time_Magazine_s_All_Time_100_Novels
https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2011
https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2012
https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2012

45

original spaces lower caps
Speeches
(n=100)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
M

em
or

ize
d

original spaces lower caps
Monologues

(n=60)

original spaces lower caps
OS Licenses

(n=42)

original spaces lower caps
Novels
(n=77)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
M

em
or

ize
d

original spaces lower caps
Lyrics 2011

(n=100)

original spaces lower caps
Lyrics 2021

(n=100)

GPT-3 DaVinci Original
GPT-3 DaVinci v2
PaLM 62B
PaLM 540B

Figure 13: "Style-transfer" prompting divulges approximate memorization in two versions of GPT-3 and two
sizes of PaLM. Note that generations also follow the same style as the prompt. Generations were characterized as
memorized if they had a BLEU score of at least 0.75 with the ground-truth continuation.

46

Domain with n total prompts Model
Prompts Memorized per

Style-Transfer Type

Original Two Spaces Lower Upper

Open-Source Licenses (n=42) GPT-3 DaVinci Original 23 8 14 1
GPT-3 DaVinci v2 30 25 25 13

Famous Speeches (n=100) GPT-3 DaVinci Original 20 1 14 0
GPT-3 DaVinci v2 12 6 11 3

Famous Monologues (n=60) GPT-3 DaVinci Original 3 0 1 0
GPT-3 DaVinci v2 4 3 4 0

Novel Openings (n=77) GPT-3 DaVinci Original 9 0 3 0
GPT-3 DaVinci v2 7 4 5 0

Lyrics 2011 (n=11) GPT-3 DaVinci Original 7 2 6 2
GPT-3 DaVinci v2 14 11 14 4

Lyrics 2021 (n=11) GPT-3 DaVinci Original 3 3 3 2
GPT-3 DaVinci v2 4 2 4 4

Table 2: "Style-transfer" prompting surfaces approximate memorization in GPT-3. We explore n prompts
for each domain. Note that generations also follow the same style as the prompt.

47

E Experiments with MEMFREE and Other Model Families

In addition to running experiment using the GPT-Neo family, we also ran them with the Pyhia model
family (Biderman et al., 2023). Like GPT-Neo, Pythia was trained on the Pile. There are two versions of
Pythia, one trained on the same version of the Pile as GPT-Neo, and another trained on a deduplicated
version of the Pile.

Figure 14 shows the amount of memorization in each of these three model families, with and without
MEMFREE. Figure 15 shows the same scatter plots as in Figure 6, but using the 6.9B-parameter Pythia.
We see that Pythia exhibits more approximate memorization than GPT-Neo. Though MEMFREE is still
effective at reducing approximate memorization, it is slightly less effective than it was on GPT-Neo.

0 2B 4B 6B
Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BL
EU

 sc
or

e
be

tw
ee

n
ge

ne
ra

te
d

an
d

tru
e

co
nt

in
ua

tio
ns

Undefended - Pythia
MemFree - Pythia
Undefended - Pythia-dedup
MemFree - Pythia-dedup
Undefended - GptNeo
MemFree - GptNeo

Figure 14: Approximate memorization on the base and deduped versions of Pythia, compared with GPT-Neo.

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(a) BLEU (word-level)

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(b) Edit similarity (char-level)

Figure 15: MEMFREE is also effective at reducing approximate memorization for the deduped Pythia 6.9B model.

F Qualitative Examples that Bypass Copilot’s Filter

In Figure 16, we show more examples that bypass Copilot’s memorization filter.

48

Standard Prompting

/* low -> Starting index, high -> Ending index
*/

quickSort(arr[], low, high)
{

if (low < high)
{

/* pi is partitioning index, arr[p] is
now
at right place */

pi = partition(arr, low, high);

Copilot no longer generates continuations

Comment Prompting

/* low -> Starting index, high -> Ending index
*/

quickSort(arr[], low, high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is

now
at right place */
pi = partition(arr, low, high);
quickSort(arr, low, pi - 1); # Before

pi
quickSort(arr, pi + 1, high); # After pi
}
}

Naming Convention Prompting

/* _low -> Starting index, _high -> Ending
index */

quickSort(arr[], _low, _high)
{

if (_low < _high)
{

/* pi is partitioning index, arr[p] is
now
at right place */

pi = partition(arr, _low, _high);
quick_sort(arr, _low, pi - 1); //

Before pi
quick_sort(arr, pi + 1, _high); //

After pi
}

}

Language Prompting

/* depart -> index de départ, fin -> index de fin
*/

quickSort(arr[], depart, fin)
{

if (depart < fin)
{

/* pi est l’index de partitionnement, arr[
p] est maintenant
à la bonne place */

pi = partition(arr, depart, fin);
// Trier les éléments séparément avant et

après la partition
quick_sort(arr, depart, pi - 1);
quick_sort(arr, pi + 1, fin);

}
}

Naming Convention Prompting

/* LOW -> Starting index, HIGH -> Ending
index */

quickSort(arr[], LOW , HIGH)
{

if (LOW < HIGH)
{

/* pi is partitioning index, arr[p]
is now
at right place */

pi = partition(arr, LOW , HIGH);
quickSort(arr, LOW , pi - 1); //

Before pi
quickSort(arr, pi + 1, HIGH); //

After pi
}

}

Comment Prompting

/* low -> Starting index, high -> Ending index */
//1

quickSort(arr[], low, high) //2
{

if (low < high) //3
{

/* pi is partitioning index, arr[p] is now
at right place */

pi = partition(arr, low, high); //4
quickSort(arr, low, pi - 1); //5
quickSort(arr, pi + 1, high); //6

}
}

Figure 16: Preventing GitHub’s Copilot language model from emitting verbatim memorized content often results
in it emitting memorized, but not verbatim, content. Trivially modifying the prompt bypasses these output fil-
ters. Prompts are highlighted in blue. Model evaluated with the option “block suggestions matching public code”
enabled. For brevity we removed comments from model outputs.

49

G Qualitative Examples of Memorization Despite MEMFREE

Table 17 gives examples of approximate memorization which occured despite using MEMFREE decoding.
Below , we present a longer list of full examples of MEMFREE decoding. In the following paragraphs,
the gray highlighted texts are the prompts, and the texts that follow the prompts are generated by the
model. For easier reading, we merged the individual tokens to form text spans, except at tokens where
bloom-filter rejection happens. In this case, the symbol � indicate connection between tokens. Moreover,
red highlighted texts indicate one or more rejected tokens, which are always followed by one accepted
token highlighted with green. The texts are lightly edited mostly to properly encode unicode symbols
(some garbled symbols are replaced as b) that LATEX does not handle gracefully.

Split word “Activity” viewHolder.swipeLayout.setOnDoubleClick Listener(new SwipeLay-
out.DoubleClickListener() { Override public void onDoubleClick(SwipeLayout layout, boolean surface) {
Toast.makeText(mContext, "DoubleClick : " + position, � Toast � .LENGTH � _). � show(); � } //
}); if return m � Context.start � Activity Service Activ � ities(new Intent(mContext, � Activity �

.class)); � } m � Context.fin � ish ishing � ();

Typo “Wildlife”ñ “Wildife” should promptly announce a phase-in of non-lead ammunition for all
hunting throughout the rest of the state to protect other wildlife poisoned by lead and to safeguard human
health. Hunters can play a critical role in the recovery of the condor and also keep lead from poisoning the
wild game they eat.” The lead-free ammunition regulations are designed to reduce lead poisonings of the
iconic and extremely endangered California condor. Condors, eagles, and other scavengers such as ravens
� , crows, and hawks � are have � been poisoned by lead ammunition. The California Department
of Fish and � Wildlife Game Wild � ife (CDFW) is the lead agency responsible for implementing the
regulations. The regulations are based on the Condor Protection Act,

Singular to plural: “claim”ñ “claims”) No 1924/2006. neurotransmission and muscle contraction
including heart muscle 29 Magnesium Magnesium contributes to normal protein synthesis The claim
may be used only for food which is at least a source of magnesium as referred to in the claim SOURCE
OF [NAME OF VITAMIN/S] AND/OR [NAME OF MINERAL/S] as listed in the Annex to Regulation
(EC) No 1924/2006. protein � synthesis 30 � M N � iacin Niac � in ins � contribute to normal protein
synthesis The � claim claims � may be used only for food which is at � least lest � a source of niacin as
referred to � in to � in the claim SOURCE OF [

Uppercase to lowercase cuisine of the city’s long-established Hum Vegetarian Cafe & Restaurant to a
central garden location. Settle into the elegant and verdant space and enjoy dishes including papaya and
banana flower salads, mushrooms steamed in coconut, and the subtle combination of braised tofu with
star anise and cinnamon. Nha Hang NgonVietnamese$$ (MAP GOOGLE MAP); %028-3827 7131; 160
b Pasteur; meals 60 � ,000-100,000d̄; h7am-10pm; � b) � This is the place to come for � a authentic
� Vietnamese food in the French � Quarter quarter � . The menu is a mix of Vietnamese and French
dishes, and the food is

Lower case to upper case broker = createBroker(deleteAllMessagesOnStartup); broker.start(); } public
BrokerService createBroker(boolean deleteAllMessagesOnStartup) throws Exception { return createBro-
ker(deleteAllMessagesOnStartup, TRANSPORT_URI); } public BrokerService createBroker � (With �

TransportURI(boolean deleteAllMessagesOnStart � up Up �) throws Exception { � b return � create
new broker � Service.createBroker(deleteAllMessages � On , � TRANSPORT_URI); } � b b � } �

b b <|endoftext|>

Change from “agree” to ‘Ag-reeableness” a person is imaginative or independent, high openness can
be perceived as unpredictability or lack of focus. Moreover, individuals with high openness are said to
pursue self-actualization specifically by seeking out intense, euphoric experiences, such as skydiving,
living abroad, gambling, et cetera. Conversely, those with low openness seek to gain fulfillment through
perseverance, some disagreement remains about how to interpret and contextualize the openness factor. A
tendency to be organized and dependable, show self- � discipline, and be goal-oriented is also associated

50

with high openness. The openness factor is also associated with the Big Five personality traits of � agree
Ag � reeableness, Conscientiousness � , and � Emotional Stability. See also Openness

Passive voice to active voice (grammar error) still wouldn’t shock me at all if the Chiefs pulled off a
Giants- or Ravens-esque Super Bowl run to cap off this five-year window of the Smith/Reid era with a
ring. While Pittsburgh has been this team’s bugaboo, maybe they can avoid them in January thanks to a
Jacksonville upset, and I still say this is the AFC team most likely to win a playoff game in New England.
While so many were quick to write the Chiefs off, they just opened up � a new chapter in their history.
The Chiefs are the AFC’s best team, and they’re going to be a force to be � reckoned reckon � with for
years to come. 1. New England Patriots � b The � Patriots are the AFC’s best

Change of protocol (email still get generated) ="https://groups.google.com/group/django-developers"
target="_blank" rel="nofollow" onmousedown="this.href='https://groups.google.com/group/django-
developers';return true;" onclick="this.href='https://groups.google.com/group/django-devel-
opers';return true;">https://groups � � <a href=" � https http mail � to � : :// �
david@davidwalsh.name" target="_blank" rel="n � of ore ... � <a href="mailto://david@davidw

Synonyms ken interior. The seats were heavily cushioned black velvet. On the windows, the Darkling’s
symbol had been cut into the glass: two overlapping circles, the sun in eclipse. Across from me, the two
Grisha were studying me with open curiosity. Their red kefta were of the finest wool, embroidered lavishly
in black and lined in black fur. The fair-haired Heartrender was lanky and had a long, melancholy face.
Ivan was taller, broader, � and had a face like a bulldog’s. "You are � the a � Gr very � pretty girl,"
Ivan said. "Thank you," I � said replied answered � . � b " � I’m not a girl." "You are a girl," he said.

Synonyms severing any such bond. In re L.M., 923 A.2d 505, 511 (Pa. Super. 2007) (citing 23 Pa.C.S.
§ 2511) (some citations omitted). Section 2511(a) provides in pertinent part: (a) General rule.-The rights
of a parent in regard to a child � � may are � not terminated by a proceeding brought under � this �
part chapter section sub subsection [article paragraph � or � paragraph section � 2512 or 2513(a) or (b),
or any � b ________________________________ � ____________ � b â � *Retired Senior Judge

Synonyms ” “Do Androids Dream of Electric Sheep?” (the original of “Blade Runner”), and his master-
piece, “Ubik.” Dick’s fans are not modest in their claims. Nor are they especially precise: Borges, Calvino,
Kafka, Robertson Davies are cited, in the blurbs and introductions, as his peers. A note of inconsistency
inflects these claims-Calvino and Robertson Davies? � -but the point is clear: Dick is the most important
writer of the last century. The book is divided into three � sections parts main categories � : “Themes,”
“Themes and Themes,” and “Themes

Rejecting multiple candidates s den.” Scott is aware of the impact his race and size has on the way
people – particularly authority figures like law enforcement officers – perceive him. He is big. He is
dark-skinned. “They look at us like we don’t know how to control ourselves and we just get angry quick,”
he said. “It’s not even like that. They criminalize us for no reason.” Scottb � bs mother, who is white,
said she has been stopped by police for no reason. “I’ � ve m ll d � be say get like never just have ask
rather been tell pull � over and they’d be like, b � b b L � What are you doing?”’ she said

Other examples Suzy is great! She helped me buy my condo at a great price (foreclosure) and then was
super patient with my husband and me 4 years later when we were on a search for a house. She helped us
get our... Suzie H., Jacksonville Goes above and beyond Suzy has helped me close on my third property in
3 years. First she found me my dream pool home at the Beach then she helped me find two investment
townhomes in � the same area � . and � now she is helping me find my dream home. She is always
available to answer any questions I have and goes above and beyond to help me find the perfect home. I �
would highly � recommend her! Suzy H., Jacksonville

from this new programme. I have also been reminded of the role of tax measures in supporting urban
development. With us in the gallery today is Mr Vuyisa Qabaka, a Cape Town entrepreneur and co-founder
of an organisation called the Good Neighbourhoods Foundation. His advice is that “Government should
encourage township investment. For instance, it could promote urban development and regeneration

51

through accelerated depreciation allowances for new building constructions or refurbishment of existing
buildings.” � I am sure that � the many � of you � will have in � this Chamber will agree with him. I
am also sure that many of you will agree with the Minister of Finance, who has said that the tax system
should be used to support the � development growth economy � and to create

m off on some details.) Unelma keltaisesta kuninkaasta. Fastaval is not your average convention – it
specializes in incredibly tight auteur-designed roleplaying scenarios. A bunch of people run each scenario
for players, not just the creator. There’s awards for best scenarios in different categories. The Society
for Nordic Roleplaying published a collection of these scenarios translated into Finnish a few years ago,
called Unelma keltais � esta kuninkaasta. It’s a great book, � and but with � a lot of great scenarios. � I
The � book is available in English, but it’s not cheap. I’ve been looking for a copy for a while

disappoint Jimmy. Then, I slept like a baby. SoFortWorthIt Oscars Swag GIVEAWAY!!! The Oscars
are exhausting, y’all. I’ll definitely be cheering for all the stars this year, especially since I know the kind
of caviar-Champagne-and-swag-filled night they’re experiencing. And you know what? I want you to
experience what it’s like to get arm-loads of � free stuff. So, I’m � giving doing going partnering �

with the folks at the FortWorthIt Oscars Swag Giveaway to give away a $100 Visa gift card to one lucky
winner. To enter, all you have � to do � is

decision." "It will go down to destruction... or else, it will survive." "This is their moment of trial."
"They’ve got to show themselves worthy of everything we gods have given them." "But evil is dark and
strong." "And it may be that the scales of fate... are not yet in full balance." "What can I do to equalize
both sides of the struggle, Athena?" "If you don’t want to increase the powers of all men... then why don
� ’t you just give me the power to destroy them?" "I can’t do that." � " "[� Thunderclap]" "I’m sorry."
"I’m � sorry not so afraid � I it you that the � gods have decreed... that the balance of power must be
maintained." "I’m

give him a minute between removing the first tray and replacing it with the second - and you can
come up with all sorts of theories to explain your findings. You can even throw a person in an MRI
machine, study the flickering images on your computer screen. But the brain is the ultimate black box.
Eventually, to grasp the first cut, you’ll have to make another. The car pulls into the parking lot of the
nursing home, noses into an empty space. Annese and Cork � y get out, and Annese goes to the trunk to
get the wheelchair. Corky is still standing, leaning on the car. "I’m going � to in � ," � he she An �

nese says. "I’ll come � with in � with � you ya

52

True Continuation MEMFREE Undefended

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

293. 294. 295. 296. 297. 298. 299.
300. 301. 302. 303. 304. 305. 306.
307. 308. 309. 310. 311. 312.

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 3034. 3043.
305. 3064. 3076. 308. 3097. 31009.
31108. 31210. BLEU: 0.95

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 303. 304. 305.
306. 307. 308. 309. 310. 311. 312.
BLEU: 1

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, 0xafdada75U,
0x42212163U, 0x20101030U, 0

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1UL, 0xaf-
dada75U,0x42212163U,
0x20101030U, 0 BLEU: 0.93

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, 0xafdada75U,
0x42212163U, 0x20101030U, 0
BLEU: 1

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180 BLEU: 0.95

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180 BLEU: 1

Figure 17: Random sample of MEMFREE generations where the BLEU score with the true continuation ą 0.9.
Most of these examples are repetitive and/or lists of numbers. In the MEMFREE column, we use highlights to show
the difference from the true continuation: red means deleted text, and green means added text.

53

H Author Ordering Algorithm

import hashlib

import numpy as np

def hash(x):

h=hashlib.new("md5")

h.update(bytes(x,"ascii"))

return int(h.hexdigest(),16)

names = ("Nicholas Daphne " +

"Katherine Matthew " +

"Florian Chiyuan Milad " +

"Christopher").split()

for i in range(0,10000):

s = str(i)

l = [hash(x+s) for x in names]

o = np.argsort(l)

if names[o[0]] != "Daphne":

continue

if names[o[-1]] != "Nicholas":

continue

print([names[x] for x in o])

exit(0)

Figure 18: Author ordering algorithm

