The dynamic nature of aTiO₂: Implications for Ti-based thermometers in magmatic systems

Journal Article

Author(s): Fonseca Teixeira, Ludmila Maria; <u>Troch, Juliana</u> (b); Bachmann, Olivier

Publication date: 2024-01-01

Permanent link: https://doi.org/10.3929/ethz-b-000643070

Rights / license: Creative Commons Attribution 4.0 International

Originally published in: Geology 52(1), https://doi.org/10.1130/G51587.1

Funding acknowledgement: 178928 - Dynamics of magma reservoirs in the earth's crust; focusing on the role of volatile elements (SNF)

The dynamic nature of *a*TiO₂: Implications for Ti-based thermometers in magmatic systems

3

L. M. Fonseca Teixeira^{1,2*}, J. Troch², and O. Bachmann¹ 4 ¹ Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland 5 ² Division of Earth Sciences and Geography, Faculty of Georesources and Materials, RWTH 6 7 Aachen University, 52072 Aachen, Germany * ludmila.fonseca@erdw.ethz.ch 8 9 https://doi.org/10.1130/G51587.1 10 11 Published online 20 November 2023 12 **ABSTRACT** 13 14 In recent decades, new Ti-based thermometers have found widespread use in geosciences, providing a convenient and powerful tool for investigating crystallization 15 16 temperatures of quartz and zircons in magmatic systems. However, an often-overlooked aspect is the constraint of TiO₂ activity (aTiO₂^{liquid-rutile}). Many studies assume aTiO₂ to be 17 constant or equate the presence of Ti-rich phases, such as ilmenite, with fixed activity levels. 18 Using solubility models and data from natural systems, we demonstrate that $a TiO_2$ is a 19 dynamic parameter, influenced by temperature, mineral assemblage, and TiO₂ content in the 20 21 melt. Focusing on examples from several volcanic fields (Bishop Tuff, Fish Canyon Tuff,

22 Yellowstone, and Shiveluch), we discuss the impact of these factors on aTiO₂ and highlight

23 how inadequate constraint of aTiO₂ can lead to erroneous interpretations of magma storage

24 conditions.

25

26 INTRODUCTION

27 Temperature profoundly controls chemical systems by governing exsolution and solubility, and thus is critical for phase saturation, fluid exsolution, crystal structure and 28 chemistry. In Earth sciences, accurately determining the temperatures of these processes, e.g., 29 30 through mineral-based thermometry, is essential for understanding the evolution of igneous, 31 metamorphic, and hydrothermal systems. Titanium (Ti) thermometry finds extensive use in petrology, particularly for common phases like quartz (e.g. Wark and Watson, 2006; Huang 32 33 and Audétat, 2012) and zircon (e.g. Ferry and Watson, 2007; Loucks et al., 2020), known for 34 their resistance to weathering and alteration. In situ Ti contents can be easily analyzed via laser-ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) or electron probe 35 microanalysis (EPMA). 36

All TiO₂-based thermometers fundamentally hinge on constraining the titanium oxide activity in the melt from which minerals crystallize ($aTiO_2^{liquid-rutile}$, [the TiO₂ activity in the melt with respect to rutile saturation] hereinafter $aTiO_2$). $aTiO_2$ is usually inferred from the presence of Ti-rich phases (e.g., rutile, ilmenite, Schiller and Finger, 2019), and assumed to be static. Small variations in $aTiO_2$ are typically deemed to have a minor impact on estimated temperatures.

In this paper, we discuss the underlying concepts of *a*TiO₂ and its substantial influence
on the application of widely used thermometers. We argue that *a*TiO₂ is unlikely to remain
constant in evolving magmatic systems and may exhibit significant temporal variations,
underlining the importance of understanding the different methods to constrain *a*TiO₂.
Ultimately, a comprehensive and integrated approach considering multiple lines of evidence
is necessary to establish and confidently utilize Ti-based geothermometers.

49

50 RUTILE SOLUBILITY MODELS

Solubility models based on experimental constraints help understand the behavior of
Ti and *a*TiO₂. Models for Ti solubility were first developed by Hayden and Watson (2007)
and later revised by Zhang et al. (2020), showing temperature (T) as a primary control of Ti
solubility:

55
$$log(Ti, ppm) = 6.5189 - \left(\frac{3006.5}{T(K)}\right) - 461 * \left(\frac{P^{0.2}}{T(K)}\right) + 0.1155 * FM$$
 (Eq. 1)

Where P is pressure and FM is a compositional factor. is The compositional factor FM is less 56 57 relevant for comparisons within the same system, as it varies significantly only between 58 different melts (e.g., FM varies from ~4 in basalts to 1.5 in rhyolites, Hayden and Watson, 2007). Fractionation-induced variations in FM have negligible influence on Ti solubility since 59 60 FM is multiplied by ~ 0.1 , and melt compositions rarely span the entire range from basalt to rhyolite within the same system. Pressure variations (of more than several kilobars) affect 61 62 TiO₂ solubility, but are unlikely within a given reservoir, making temperature the main varying factor. 63

64

In line with most solubility models, we consider $aTiO_2$ in the melt relative to rutile saturation, i.e. $aTiO_2 = 1$ when the system is rutile saturated. Thermodynamically, $aTiO_2$ is calculated as:

68
$$aTiO_2^{liquid-rutile} = \frac{XTiO_2^{liquid}*\gamma TiO_2^{liquid}}{XTiO_2^{liquid-saturated}*\gamma TiO_2^{liquid-saturated}}$$
 (Eq. 2)

Where XTiO₂ is the TiO₂ mole fraction in the melt, and γTiO₂ is the activity coefficient,
influenced by melt composition, pressure and temperature (Borisov and Aranovich, 2020 –
see the Supplemental Material).

72 It is evident that *a*TiO₂ depends strongly on XTiO₂ in the saturated melt, which
73 according to the solubility equation, is primarily influenced by temperature. If the TiO₂

content of the melt remains constant, *a*TiO₂ should increase as the system's temperature
decreases (Fig. 1).

76

77 MELT TIO₂ CONCENTRATIONS AND *a*TIO₂ IN NATURAL SYSTEMS

Evolving magmas may not maintain a constant TiO_2 concentration in the melt. TiO_2 concentrations can either (1) increase due to precipitation of non-Ti-bearing minerals such as quartz and feldspar, resulting in the removal of other oxide components and the associated relative increase in TiO_2 content (Fig. 2), or (2) decrease due to formation of Ti-bearing phases (e.g., rutile, ilmenite, titanite, or major minerals containing minor TiO_2 such as pyroxenes and amphiboles). Consequently, $aTiO_2$ should not remain constant in an evolving magma reservoir.

By definition, a magma is at $a \text{Ti}O_2^{\text{liquid-rutile}} = 1$ when rutile is present. However, rutile 85 86 is almost never found in volcanic rocks, and rare in plutons. Hence, aTiO₂ must typically be lower than 1, and can be estimated by different techniques: (1) from co-crystallizing Fe-Ti 87 88 oxides (Ghiorso and Gualda, 2013), providing *a*TiO₂ estimates over the temperature range of 89 oxide crystallization, or (2) using thermodynamic software, such as MELTS or PerpleX 90 (Connolly, 2005; Gualda et al., 2012). When both methods are applied to the same unit, 91 results are not always consistent, e.g., in the Bishop Tuff, rhyolite-MELTS generally yields lower $a \text{TiO}_2$ than those from oxides (Fig. 2), despite being calibrated on this unit (Gualda et 92 93 al., 2012). The inability of thermodynamic software to accurately predict saturation and 94 composition of Fe-Ti oxides suggests that insufficient thermodynamic data currently hinders 95 accurate determination of *a*TiO₂ through these programs.

When comparing multiple examples based on Fe-Ti oxides (Fig. 1), some systems
exhibit increasing *a*TiO₂ with decreasing temperature, consistent with the expected downtemperature increase in TiO₂ solubility. Others show the opposite, recording a down-

99	temperature decrease in <i>a</i> TiO ₂ , suggesting efficient TiO ₂ removal from the melt by Ti-bearing
100	phases to compensate for the increase in a TiO ₂ resulting from cooling (Fig. 3). We used this
101	data to model <i>a</i> TiO ₂ evolution in four natural systems (Bishop Tuff, California, western USA;
102	Fish Canyon Tuff, Colorado, western USA; Shiveluch, Kamchatka, Russia; and Yellowstone,
103	western USA; Fig. 1) as a function of different rates of TiO2 change with decreasing
104	temperature ($\partial TiO_2/\partial T$ in ppm/°C; see supplemental Material). More negative $\partial TiO_2/\partial T$
105	indicates greater fractionation of Ti phases and thus decrease of TiO2 with decreasing
106	temperature. Two observations are noteworthy: (1) the trends in Fig. 1 cannot be fitted with
107	constant $\partial TiO_2/\partial T$, but require that $\partial TiO_2/\partial T$ varies with temperature, and (2) the contrasting
108	trends in <i>a</i> TiO ₂ (e.g., Yellowstone and Shiveluch) occur over similar temperature and
109	$\partial TiO_2/\partial T$ ranges, but are associated with high- $aTiO_2$ (Shiveluch) and low- $aTiO_2$ systems
110	(Yellowstone). Our calculated values align with observations in these systems: for example,
111	the hotter late-erupted Bishop Tuff, following a higher $\partial TiO_2 / \partial T$ trend, contains ~0.5% of
112	ilmenite and titanomagnetite, while the early-erupted Bishop Tuff contains only $\sim 0.05\%$ of
113	these Ti-bearing oxides (Hildreth, 1979).
114	Unlike high-TiO ₂ systems near rutile-saturation, low-TiO ₂ systems are very sensitive
115	to crystallization of Ti-bearing phases, as even minor TiO ₂ removal can decrease <i>a</i> TiO ₂ (Fig.
116	3). However, TiO_2 removal from the melt through crystallization does not necessarily
117	stabilize or decrease <i>a</i> TiO ₂ unless it occurs on a scale that compensates for the decreasing
118	solubility and passive enrichment from non-TiO ₂ -bearing phase crystallization. The
119	logarithmic relationship between solubility and temperature suggests that <i>a</i> TiO ₂ in most
120	magmas increases with decreasing temperature (Fig. 3), unless the crystallizing mineral
121	assemblage decreases the TiO ₂ content by more than ~ 5 ppm/°C.
122	

123 DO MINERALS BUFFER *a*TIO₂ IN MAGMAS?

124	Ilmenite has been suggested to crystallize at $a TiO_2 \sim 0.5$ (Schiller and Finger, 2019)
125	based on rhyolite-MELTS and PerpleX, and its presence is commonly used to constrain a
126	system's aTiO ₂ . However, the presence of ilmenite in rutile-saturated rocks (e.g., Pikes Peak
127	batholith, Colorado, Fonseca Teixeira et al., 2022) and experiments (Ryerson and Watson,
128	1987) demonstrate that ilmenite can crystallize at much higher a TiO ₂ than 0.5. Co-existing
129	Fe-Ti oxides indicate ilmenite precipitation at <i>a</i> TiO ₂ between 0.3 and 0.9 (Fig. 1), suggesting
130	ilmenite saturation requires a minimum <i>a</i> TiO ₂ near 0.3 and can occur up to TiO ₂ saturation.
131	Among the units with Fe-Ti oxide estimates (Fig. 1), none consistently exhibit a TiO ₂ <0.3.
132	We suggest that extremely low values (e.g., 0.1) are unlikely near the solidus due to the
133	temperature effect on solubility. A system starting at low TiO ₂ (e.g., 500 ppm at 1100°C,
134	equivalent to $a \text{TiO}_2 \sim 0.03$) would reach $a \text{TiO}_2 = 0.6$ at the solidus (660°C, Fig. 1) through the
135	temperature effect alone. The only way to reach <i>a</i> TiO ₂ as low as 0.1 near the solidus is
136	through significant fractionation of TiO ₂ -bearing phases, which is unlikely at extremely low
137	<i>a</i> TiO ₂ . When disregarding the effect of Ti-free (or Ti-poor) silicate crystallization, only
138	extremely TiO ₂ -poor melts (<100 ppm TiO ₂) could reach a TiO ₂ ~ 0.1 at 660 °C. We are not
139	aware of any evolved igneous systems of such compositions.
140	Unlike rutile, ilmenite stability depends not only on a TiO ₂ , but also on other
141	constituents, including oxygen fugacity, ferrous/ferric and Fe/Mg ratios (Frost, 1991),
142	affecting the saturation and the mass of ilmenite crystallization. Hence, rocks with rutile do
143	not necessarily contain ilmenite, and ilmenite presence cannot be used to assign a static <i>a</i> TiO ₂

144 value.

145

146 ERRORS FROM FIXED *a*TIO₂

Slightly over- or underestimating *a*TiO₂ is often suggested to yield insignificant
deviations from the true temperature (Fu et al., 2008). While this assumption can be valid, it

must be assessed carefully. Small discrepancies in aTiO₂ are particularly relevant in lowaTiO₂ systems, e.g., at aTiO₂ = 0.9 and 3 kbar, a quartz crystal with 50 ppm Ti yields 692 °C based on Huang and Audétat (2012). If aTiO₂ is overestimated by 0.1, the same quartz gives a temperature of 705 °C (deviation of <15 °C). At lower aTiO₂, the same discrepancy in aTiO₂ leads to higher deviations, e.g., 60 °C difference for quartz with 50 ppm Ti at aTiO₂ of 0.2 and 0.3.

155 Temperature ranges of quartz crystallization (from saturation to low-T, interstitial 156 quartz) are typically calculated assuming fixed $aTiO_2$. However, as discussed above, $aTiO_2$ is 157 unlikely to be constant unless the system is rutile-saturated, leading to significant 158 discrepancies in Ti-in-quartz temperatures (Fig. 4). We compare Ti contents in quartz for a 159 fixed *a*TiO₂ of 0.5 and a dynamic *a*TiO₂ value in the same system (Fig. 4 – see Suppl. Data 160 for additional information). For a single point, the highest deviation (~100 °C) is at high-161 aTiO₂ (Shiveluch). However, the largest error in the estimated temperature range occurs for 162 Bishop Tuff, where the range is ~100 °C larger at aTiO₂=0.5 than with a dynamic aTiO₂, 163 leading to potential misinterpretations of the system's crystallization range. Furthermore, low-164 Ti quartz or zircon may be falsely interpreted as crystallized below the solidus (e.g., 165 temperatures as low as 620 °C for Yellowstone). For the Fish Canyon Tuff, Ti-in-quartz 166 temperatures at dynamic aTiO2 are consistently 50 °C cooler, and are more consistent with 167 guartz crystallization needing to be at lower temperatures than those measured by Fe-Ti 168 oxides and amphibole-plagioclase thermometry immediately pre-eruption ($\sim 760 \,^{\circ}\text{C}$; Whitney 169 and Stormer, 1985; Johnson and Rutherford, 1989; Bachmann and Dungan, 2002) to explain 170 the resorbed appearance of quartz in this unit (Bachmann et al., 2002). 171 Dynamic *a*TiO₂ also affects the cathodoluminescence (CL) response of crystals and 172 must be considered when interpreting CL images. Quartz with weak CL zoning might be

173 interpreted as having formed over a narrow temperature range. However, if *a*TiO₂ increases

174 sufficiently to compensate for the temperature decrease, quartz Ti contents vary minimally, 175 resulting in weakly zoned crystals despite significant temperature variation. In summary, 176 assuming a constant aTiO₂ of 0.5 can lead to significant temperature discrepancies, and it is 177 impossible to ascertain the scale of this effect without an accurate estimation of the aTiO₂ 178 evolution.

- 179
- 180

THE ROLE OF *a*TIO₂ IN THE BISHOP TUFF

181 One of the main sources of controversy in studies on the Bishop Tuff is the origin of Ti-rich (80-100 ppm) rims in quartz crystals of the late-erupted Bishop Tuff, in abrupt contact 182 183 to lower-Ti (40-50 ppm) cores (Peppard et al., 2001; Wark et al., 2007). Mafic recharge has 184 been suggested to have induced the rim crystallization by elevating the temperatures and 185 adding enough CO₂ to allow quartz saturation at temperatures of ~800 °C (Wark et al., 2007). 186 However, recharging the upper crustal magma reservoir with a less-differentiated, more Ti-187 rich melt would also affect Ti concentrations, e.g., mixing of early-erupted Bishop Tuff with 188 5-13% of a Long Valley (California) andesite (Bailey, 1962) results in an increase of melt 189 TiO₂ from ~0.07 wt% to 0.12-0.19 wt%, comparable with late-erupted Bishop Tuff glass 190 compositions (Suppl. Data). At a recharge mass fraction of ~13 %, aTiO₂ post-mixing would 191 be at 0.8 at 750°C. A quartz with 100 ppm of Ti, at $aTiO_2 = 0.8$ would crystallize at the same 192 ~ 750°C (based on Huang and Audétat, 2012), 50 °C lower than the temperatures originally 193 calculated by Wark et al. (2007), and more compatible with experimental and modelled 194 phased stabilities in the late-erupted Bishop Tuff (Gardner et al., 2014). Hence, only limited 195 increase of temperature or addition of CO₂ would be required to explain conditions recorded 196 by the late-erupted Bishop Tuff: simply increasing the $aTiO_2$ in the magma chamber to 0.8 197 could explain crystallization of the high-Ti quartz rims (although such deeper, more mafic recharge would certainly add heat and CO_2 to the system as well). Hence, we concur with 198

199 previous publications (e.g. Evans et al., 2016) that adding a small fraction of a less-

200 differentiated melt from deeper in the system to the Bishop Tuff rhyolitic composition allows

for the formation of high-Ti quartz rims . This highlights the role of aTiO₂ regarding its most

202 important parameters: temperature and TiO₂ content in the melt.

203

204 CONCLUSIONS

205 Constraining $a TiO_2$ in geological systems is a challenge, requiring careful 206 consideration of various observations. Rutile reliably indicates TiO₂ saturation. While it does 207 not guarantee constant saturation throughout crystallization, substantial removal of TiO₂ is 208 needed to lower aTiO₂ in rutile-saturated or near-saturated conditions. In rutile-undersaturated 209 systems, ilmenite has traditionally been used to indicate $aTiO_2 = 0.5$, but this contradicts 210 observations in natural and experimental samples. The presence of ilmenite suggests that 211 *a*TiO₂ should be *at least* 0.3. Substantial precipitation of ilmenite and other Ti-bearing phases 212 can lead to decreasing $a TiO_2$ trends, counteracting the effect of cooling. 213 Further constraints can be derived from Ti concentrations in quartz and zircon. In 214 quartz-saturated granitic systems close to haplogranite eutectic or minimum composition, the 215 lowest Ti content of magmatic quartz (excluding dark-CL fluid inclusion trails and 216 hydrothermal rims) can be approximated to solidus temperatures (650-680°C; Tuttle and 217 Bowen, 1958; Luth et al., 1964; Piwinskii, 1968). Combining these observations not only

allows us to estimate *a*TiO2 at the final stage of magmatic crystallization but also to inferpotential evolution paths.

The overall Ti content also helps constrain probable aTiO₂ values, e.g., Ti-rich quartz (>200 ppm) likely formed at high aTiO₂ (>0.8). Similarly, zircon crystals with >30 ppm Ti likely precipitated at high aTiO₂. In contrast, low Ti quartz and zircons can mean low T and/or low aTiO₂. CL provides valuable insights, as abrupt changes signal events such as

224	recharge (Wark et al., 2007) and depressurization (Gualda and Ghiorso, 2013), that affect
225	temperature, <i>a</i> TiO ₂ , or both. In such cases, <i>a</i> TiO ₂ should be considered separately for quartz
226	and zircon before and after the change. For example, significant <i>a</i> TiO ₂ increase following
227	recharge and mixing may result in weak or even reverse Ti zoning in quartz (as seen in many
228	volcanic systems). It is therefore essential to account for <i>a</i> TiO ₂ variations in evolving
229	magmatic systems to be able to recover meaningful temperatures from Ti-based mineral
230	thermometers.
231	
232	ACKNOWLEDGMENTS
233	This research was supported by Swiss SNF fund 200021_178928 to Bachmann, and by the
234	Grubermann-Burri Fund at ETHZ. We thank Rebecca Lange and two anonymous reviewers
235	for feedback that helped clarify the discussion, and Andrew Barth for editorial handling.
236	
237	REFERENCES
238	
239 240 241	Bachmann, O., and Dungan, M.A., 2002, Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado: American Mineralogist, v. 87, p. 1062–1076, doi:10.2138/am-2002-8-903.
242 243 244 245	Bachmann, O., Dungan, M.A., and Lipman, P.W., 2002, The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith: Journal of Petrology, v. 43, p. 1469–1503, doi:10.1093/petrology/43.8.1469.
246 247 248 249	 Bailey, R.A., 1962, Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism: U.S. Department of the Interior, U.S. Geological Survey, 88 p.
250 251 252	Blundy, J., Cashman, K., and Humphreys, M., 2006, Magma heating by decompression- driven crystallization beneath andesite volcanoes: Nature, v. 443, p. 76–80, doi:10.1038/nature05100.
253 254 255	Borisov, A., and Aranovich, L., 2020, Rutile solubility and TiO2 activity in silicate melts: An experimental study: Chemical Geology, v. 556, p. 119817, doi:10.1016/j.chemgeo.2020.119817.

- Cathey, H.E., and Nash, B.P., 2004, The Cougar Point Tuff: Implications for Thermochemical
 Zonation and Longevity of High-Temperature, Large-Volume Silicic Magmas of the
 Miocene Yellowstone Hotspot: Journal of Petrology, v. 45, p. 27–58,
 doi:10.1093/petrology/egg081.
- Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for
 geodynamic modeling and its application to subduction zone decarbonation: Earth and
 Planetary Science Letters, v. 236, p. 524–541, doi:10.1016/j.epsl.2005.04.033.
- Evans, B.W., Hildreth, W., Bachmann, O., and Scaillet, B., 2016, In defense of magnetiteilmenite thermometry in the Bishop Tuff and its implication for gradients in silicic
 magma reservoirs: American Mineralogist, v. 101, p. 469–482, doi:10.2138/am-20165367.
- Ferry, J.M., and Watson, E.B., 2007, New thermodynamic models and revised calibrations for
 the Ti-in-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and
 Petrology, v. 154, p. 429–437, doi:10.1007/s00410-007-0201-0.
- Fonseca Teixeira, L.M., Troch, J., Allaz, J., and Bachmann, O., 2022, Magmatic to
 hydrothermal conditions in the transition from the A-type Pikes Peak granite
 (Colorado) to its related pegmatite: Frontiers in Earth Science, v. 10,
 https://www.frontiersin.org/articles/10.3389/feart.2022.976588 (accessed July 2023).
- Frost, B.R., 1991, Introduction to oxygen fugacity and its petrologic importance, *in* Oxide
 minerals, Donald H. Lindsley, Berlin, De Gruyter, p. 1–10.
- Fu, B., Page, F.Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., and
 Valley, J.W., 2008, Ti-in-zircon thermometry: applications and limitations:
 Contributions to Mineralogy and Petrology, v. 156, p. 197–215, doi:10.1007/s00410008-0281-5.
- Gardner, J.E., Befus, K.S., Gualda, G.A.R., and Ghiorso, M.S., 2014, Experimental
 constraints on rhyolite-MELTS and the Late Bishop Tuff magma body: Contributions
 to Mineralogy and Petrology, v. 168, p. 1051, doi:10.1007/s00410-014-1051-1.
- Ghiorso, M.S., and Gualda, G.A.R., 2013, A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides: Contributions to Mineralogy and Petrology, v. 165, p. 73–81, doi:10.1007/s00410-012-0792-y.
- Gualda, G.A.R., and Ghiorso, M.S., 2015, MELTS_Excel: A Microsoft Excel-based MELTS
 interface for research and teaching of magma properties and evolution: Geochemistry,
 Geophysics, Geosystems, v. 16, p. 315–324, doi:10.1002/2014GC005545.
- Gualda, G.A.R., and Ghiorso, M.S., 2013, The Bishop Tuff giant magma body: an alternative
 to the Standard Model: Contributions to Mineralogy and Petrology, v. 166, p. 755–
 775, doi:10.1007/s00410-013-0901-6.
- Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., 2012, Rhyolite-MELTS: a
 Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic
 Systems: Journal of Petrology, v. 53, p. 875–890, doi:10.1093/petrology/egr080.

- Harrison, T.M., Watson, E.B., and Aikman, A.B., 2007, Temperature spectra of zircon
 crystallization in plutonic rocks: Geology, v. 35, p. 635, doi:10.1130/G23505A.1.
- Hayden, L.A., and Watson, E.B., 2007, Rutile saturation in hydrous siliceous melts and its
 bearing on Ti-thermometry of quartz and zircon: Earth and Planetary Science Letters,
 v. 258, p. 561–568, doi:10.1016/j.epsl.2007.04.020.
- Hildreth, W., 1981, Gradients in silicic magma chambers: Implications for lithospheric
 magmatism: Journal of Geophysical Research: Solid Earth, v. 86, p. 10153–10192,
 doi:10.1029/JB086iB11p10153.
- Hildreth, W., 1979, The Bishop Tuff: evidence for the origin of compositional zonation in
 silicic magma chambers, in Chapin, C.E., and Elston, W.E., eds., Ash-Flow Tuffs:
 Geological Society of America Special Paper, v. 180, p. 43–75.
- Hildreth, E.W., 1977, The magma chamber of the Bishop Tuff: Gradients in Temperature,
 Pressure, and Composition: University of California, Berkeley.
- Huang, R., and Audétat, A., 2012, The titanium-in-quartz (TitaniQ) thermobarometer: A
 critical examination and re-calibration: Geochimica et Cosmochimica Acta, v. 84, p.
 75–89, doi:10.1016/j.gca.2012.01.009.
- Johnson, M.C., and Rutherford, M.J., 1989, Experimental calibration of the aluminum-inhornblende geobarometer with application to Long Valley caldera (California)
 volcanic rocks: Geology, v. 17, p. 837–841, doi:10.1130/00917613(1989)017<0837:ECOTAI>2.3.CO;2.
- Loucks, R.R., Fiorentini, M.L., and Henríquez, G.J., 2020, New Magmatic Oxybarometer
 Using Trace Elements in Zircon: Journal of Petrology, v. 61, p. egaa034,
 doi:10.1093/petrology/egaa034.
- Luth, W.C., Jahns, R.H., and Tuttle, O.F., 1964, The granite system at pressures of 4 to 10
 kilobars: Journal of Geophysical Research (1896-1977), v. 69, p. 759–773,
 doi:10.1029/JZ069i004p00759.
- Osborne, Z.R., Thomas, J.B., Nachlas, W.O., Angel, R.J., Hoff, C.M., and Watson, E.B.,
 2022, TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for
 thermobarometry: Contributions to Mineralogy and Petrology, v. 177, p. 31,
 doi:10.1007/s00410-022-01896-8.
- Peppard, B.T., Steele, I.M., Davis, A.M., Wallace, P.J., and Anderson, A.T., 2001, Zoned
 quartz phenocrysts from the rhyolitic Bishop Tuff: American Mineralogist, v. 86, p.
 1034–1052, doi:10.2138/am-2001-8-910.
- Piwinskii, A.J., 1968, Experimental Studies of Igneous Rock Series Central Sierra Nevada
 Batholith, California: The Journal of Geology, v. 76, p. 548–570, doi:10.1086/627359.
- Ryerson, F.J., and Watson, E.B., 1987, Rutile saturation in magmas: implications for TiNbTa
 depletion in island-arc basalts: Earth and Planetary Science Letters, v. 86, p. 225–239,
 doi:10.1016/0012-821X(87)90223-8.

- Schiller, D., and Finger, F., 2019, Application of Ti-in-zircon thermometry to granite studies:
 problems and possible solutions: Contributions to Mineralogy and Petrology, v. 174,
 p. 51, doi:10.1007/s00410-019-1585-3.
- Thomas, J.B., Bruce Watson, E., Spear, F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A.,
 2010, TitaniQ under pressure: the effect of pressure and temperature on the solubility
 of Ti in quartz: Contributions to Mineralogy and Petrology, v. 160, p. 743–759,
 doi:10.1007/s00410-010-0505-3.
- Troch, J., Ellis, B.S., Harris, C., Bachmann, O., and Bindeman, I.N., 2020, Low-δ18O silicic
 magmas on Earth: A review: Earth-Science Reviews, v. 208, p. 103299,
 doi:10.1016/j.earscirev.2020.103299.
- Tuttle, O.F., and Bowen, N.L., 1958, Origin of granite in the light of experimental studies in
 the system NaAlSi3O8–KAlSi3O8–SiO2–H2O, *in* Tuttle, O.F. and Bowen, N.L. eds.,
 Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–
 KAlSi3O8–SiO2–H2O, Geological Society of America, v. 74, p. 0,
 doi:10.1130/MEM74-p1.
- Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J., and Watson, E.B., 2007, Pre-eruption
 recharge of the Bishop magma system: Geology, v. 35, p. 235–238,
 doi:10.1130/G23316A.1.
- Wark, D.A., and Watson, E.B., 2006, TitaniQ: a titanium-in-quartz geothermometer:
 Contributions to Mineralogy and Petrology, v. 152, p. 743–754, doi:10.1007/s00410-006-0132-1.
- Whitney, J.A., and Stormer, J.C., JR., 1985, Mineralogy, Petrology, and Magmatic Conditions
 from the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado: Journal of
 Petrology, v. 26, p. 726–762, doi:10.1093/petrology/26.3.726.
- Zhang, C., Li, X., Almeev, R.R., Horn, I., Behrens, H., and Holtz, F., 2020, Ti-in-quartz
 thermobarometry and TiO2 solubility in rhyolitic melts: New experiments and
 parametrization: Earth and Planetary Science Letters, v. 538, p. 116213,
 doi:10.1016/j.epsl.2020.116213.
- 362
- 363 FIGURES

Fig. 1: TiO₂ activity (*a*TiO₂) in natural systems from co-existing magnetite-ilmenite pairs 365 366 (Ghiorso and Gualda, 2013): Bishop Tuff (California, USA; full sequence, Hildreth, 1977), Yellowstone (western United States; Lava Creek and Huckleberry Ridge Tuffs, Hildreth, 367 368 1981, Cougar Point Tuff, Cathey and Nash, 2004), Shiveluch (Kamchatka, Russia; 2001-2004) eruptions, Blundy et al., 2006), and Fish Canyon Tuff (Colorado, USA; outflow sheet, 369 370 Whitney and Stormer, 1985). Grey lines mark solubility relationships in melts with constant 371 TiO₂ (in ppm). Colored lines mark best-fit *a*TiO₂-temperature (T) relationships as function of 372 variable $\partial TiO_2/\partial T$ (variation in ppm TiO₂ per 1°C decrease); black numbers show $\partial TiO_2/\partial T$ 373 along this trend.

Fig. 2: Left axis: *a*TiO₂ and TiO₂ in the Early Bishop Tuff calculated with MELTS for Excel
(Gualda and Ghiorso, 2015). Right axis: mass of crystallized phases. The vertical line marks
the start of ilmenite precipitation.

Fig. 3: $aTiO_2$ evolution for melts with different initial TiO₂ contents at different $\partial TiO_2/\partial T$ calculated for an average Yellowstone-Heise composition (Troch et al., 2020) and calculating $aTiO_2$ with the method from (Borisov and Aranovich, 2020).

382

383

Fig. 4: (A) aTiO₂ evolution for examples from Fig. 1. (B) Hypothetical Ti content in quartz co-crystallizing with Fe-Ti oxides, based on Huang and Audetat (2012) and aTiO₂ activities in (A). (C) Ti-in-quartz thermometry for fixed aTiO₂ = 0.5. Note how all lines from B collapse into a single trend. (D) Temperature offset between dynamic and fixed aTiO₂.