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Abstract 

 

Risk assessment due to typhoon events is an important issue for decision makers in 

many different areas like the insurance markets or in governance. Towards this end a 

number of typhoon models have been developed so far. Whereas the development of 

improved models is one of the relevant issues to enhance optimal decision making, an 

equally or even more important issue is to develop a framework that can incorporate all 

relevant available information. Using all the available information enables a more 

precise risk assessment in two different ways: (1) For a risk assessment of an 

approaching typhoon event, actual information can be used to condition the model. 

This reduces the uncertainties for a specific risk analysis. (2) By using the information 

to update the parameters in the model, the overall modelling uncertainties can be 

reduced over time. 

 

The objective of this thesis is to develop a Bayesian framework for the probabilistic 

modelling of typhoon risks. This framework includes not only the methodology to 

establish a typhoon model but also considers consistently the involved uncertainties 

and provides the mechanisms which enable the decision makers to take into account 

the available information during the process of decision making and thus facilitate 

conditioning the model and updating the parameters in the model over time. 

 

The methodology employed in the thesis takes basis in Bayesian statistics and 

Bayesian probabilistic modelling, which provides the rationale to condition and to 

update the probabilistic model with additional data. As an example, the Bayesian 

framework is applied to the region of Japan and a typhoon risk model is established 

with the focus on the following features which facilitate the incorporation of the 

available information: typhoon events are modelled for the entire life of typhoons, i.e. 

from occurrence to dissipation; the effects of sea surface temperature (hereafter, SST) 

on the evolution of typhoon events are accounted for; seasonal differences in the 

probabilistic characteristics of the transition of typhoons are accounted for. The 

typhoon model established based on the proposed framework consists of two parts; a 

hazard model and a vulnerability model. The hazard model is composed of 

sub-models, describing all phases of the typhoon hazard process starting with the 

occurrence of typhoons over the spatial and temporal development of typhoons 

including landfall and possible filling and ending with the probabilistic 

characterization of extreme wind speeds at any location in Japan. The vulnerability 

model represents the probability distribution of the loss of individual exposures as a 

function of the wind speed. Based on the developed typhoon model, the consistently 

consideration of the involved uncertainties are investigated and a framework for 

updating the model is proposed. 

 

The usefulness of the proposed Bayesian framework is demonstrated in three practical 

examples. The application to insurance portfolio risk analysis shows how the 
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uncertainties and the correlation between the individual losses can be considered. The 

second application shows how the Bayesian framework can be used to assess the effect 

of a climate change by conditioning and updating the model with new available 

information and data. The third application demonstrates how the proposed Bayesian 

framework can be used for real-time decision making in the case of an approaching 

typhoon by conditioning the models with the new available information. 

 

The proposed framework is implemented in several software tools, which facilitate the 

practical use of the proposed Bayesian framework. These software tools allow a 

user-friendly typhoon risk analysis and to condition and update the typhoon model. 

 

The scientific contribution of this thesis is a better phenomenological insight on 

typhoon events in probabilistic terms and provides a first step to a full probabilistic 

treatment of typhoon risks. The societal benefit is to enhance decision making by 

providing a framework where the underlying uncertainties can be reduced by 

incorporating all available information. The implementation of the Bayesian 

framework in a software tool supports decision makers in practical applications. 
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Zusammenfassung 

 

Risikoabschätzungen von Taifunereignissen ist eine wichtige Aufgabe für 

Entscheidungsträger in vielen verschiedenen Gebieten, wie zum Beispiel den 

Versicherungsmärkten oder in Regierungen. Für diesen Zweck wurden schon einige 

Taifun-Modelle entwickelt. Während die Entwicklung von verfeinerten Modellen 

wichtig für die Verbesserung der optimalen Entscheidungsfindung ist, ist es ähnlich 

wichtig oder sogar noch wichtiger, ein Framework zu entwickeln, welches es erlaubt, 

alle relevanten verfügbaren Informationen zu integrieren. Die Verwendung dieser 

Informationen ermöglicht eine präzisere Risikoabschätzung in zwei verschiedenen 

Situationen: (1) Während der Risikoabschätzung für einen sich nähernden Taifun 

können aktuelle Informationen verwendet werden, um das Modell zu konditionieren. 

Dies reduziert die Unsicherheit für die spezifische Risikoanalyse. (2) Die Verwendung 

aller verfügbaren Informationen zur Aktualisierung der Modelparameter reduziert die 

Modelunsicherheit über die Zeit hinweg.  

 

Das Ziel dieser Dissertation ist es, ein Bayes'sches Framework für die probabilistische 

Modellierung von Taifunrisiken zu entwickeln. Dieses Framework beinhaltet nicht nur 

die Methodik ein Taifunmodell zu erstellen, sondern berücksichtig konsistent die 

involvierten Unsicherheiten und bietet einen Mechanismus, welcher dem 

Entscheidungsträger ermöglicht, die verfügbaren Informationen während des 

Entscheidungsprozesses zu berücksichtigen um das Modells zu konditionieren und die 

Modellparameter über die Zeit hinweg zu aktualisieren. 

 

Die Methodik, welche in dieser Dissertation angewandt wird, basiert auf der 

Bayes'schen Statistik und der Bayes'schen Wahrscheinlichkeitsmodellierung. Diese 

stellen die Grundprinzipien zur Verfügung, um das probabilistische Modell mit neuen 

Informationen und Daten zu konditionieren und zu aktualisieren. Das Bayes'sche 

Framework wird als Beispiel für die Region des Nordwest-Pazifiks angewendet. Das 

Taifunmodell wurde entwickelt mit Fokus auf den folgenden Eigenschaften, welche es 

ermöglichen, alle verfügbaren Informationen zu verwenden: Die gesamte Lebensdauer 

eines Taifunereignisses, von der Entstehung bis zur Auflösung, wird modelliert; der 

Effekt der Meeresoberflächentemperatur auf die Entwicklung der Taifune wird 

berücksichtigt; saisonale Unterschiede der probabilistischen Eigenschaften der 

Bewegung und Entwicklung der Taifune sind berücksichtigt. Das auf dem 

vorgeschlagenen Framework basierend entwickelte Taifun-Modell besteht aus zwei 

Komponenten; einem Gefahrenmodell und einem Schadensmodell. Das 

Gefahrenmodell besteht aus Sub-Modellen, welche alle Phasen eines Taifuns 

beschreiben, beginnend mit der Entstehung eines Taifuns, über die räumliche und 

zeitliche Entwicklung eines Taifuns, bis zur probabilistischen Charakterisierung 

extremer Windgeschwindigkeiten an beliebigen Orten in Japan. Das Schadensmodell 

repräsentiert die Wahrscheinlichkeitsdichtefunktion des Verlustes als eine Funktion der 

Windgeschwindigkeit. Basierend auf dem entwickelten Taifun-Modell wird die 
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konsistente Berücksichtigung der involvierten Unsicherheiten untersucht und ein 

Framework für das Aktualisieren des Modells vorgeschlagen. 

 

Die Nützlichkeit des vorgeschlagenen Bayes'schen Frameworks ist in drei praktischen 

Beispielen demonstriert. Die Anwendung des Frameworks für die Risikoanalyse eines 

Versicherungsportfolio zeigt, wie die Unsicherheiten und die Korrelationen zwischen 

den einzelnen Verlusten berücksichtigt werden können. Die zweite Anwendung zeigt, 

wie das Bayes'sche Framework verwendet werden kann, um den Effekt eines 

Klimawandels, durch Konditionieren und Aktualisieren des Models mit neu 

verfügbaren Informationen und Daten, abzuschätzen. Die dritte Anwendung 

demonstriert, wie das Bayes'sche Framework durch Konditionierung des Modells mit 

neuen Information verwendet werden kann um Echtzeit-Entscheidungsfindungen zu 

unterstützen für die Situation, dass ein neuer Taifun sich nähert. 

 

Das vorgeschlagene Framework ist in einige Softwaretools implementiert, welche die 

praktische Benutzung des Bayes'schen Frameworks ermöglichen. Diese Softwaretools 

ermöglichen eine benutzerfreundliche Taifunrisikoanalyse und das Konditionieren und 

das Aktualisieren des Taifunmodells. 

 

Der wissenschaftliche Beitrag dieser Dissertation ist, dass das Phänomen Taifun in 

Begriffen der Statistik besser verstanden wird und bietet einen ersten Schritt zu einer 

komplett probabilistischen Behandlung der Taifunrisiken. Der soziale Nutzen ist es, 

Entscheidungsfindungen zu verbessern durch die Zurverfügungstellung eines 

Frameworks, welches durch die Verwendung alle verfügbaren Informationen die 

Unsicherheiten verringert. Das Framework wurde in ein Softwaretool implementiert, 

um die Entscheidungsträger bei ihrer Arbeit zu unterstützen. 
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1. Introduction 

1.1. Background and motivation 

Efficient processing of information and consistent modeling of physical phenomena are 

important requisites for rational risk management of natural hazards. Any tool for the 

management of risks due to natural hazards should be developed to provide a sound 

basis for optimizing decision making with the purpose of reducing risks, and at the same 

time facilitate the incorporation of all relevant information and best knowledge 

available. 

 

Consistent and precise loss estimation due to typhoon damages is an important issue for 

decision makers, for example in the insurance markets. Typhoon models have been 

developed to estimate portfolio losses. The results from the models help the decision 

makers by determining insurance premiums for portfolios. So far, several models have 

been proposed and implemented into software tools, whereby the parameters which the 

decision makers are required to input are the information on the portfolio, e.g., locations 

and values of buildings in the portfolio and the insurance policy etc.. All the other 

parameters related to the phenomenological characteristics of typhoons and the 

meteorological environment surrounding typhoons, which are necessary to estimate the 

portfolio losses, are fixed and cannot be changed by the decision maker as a user of the 

software. In many cases some additional information or data or strong belief, which the 

decision makers may possess, is available; there seems no way to reflect this in the 

process of loss estimation in the presently available software tools. 

 

Whereas the development of more sophisticated and improved models is a key to keep 

advantages in the insurance markets, this is not the only way and possibly not the most 

relevant way. In order to explain the idea behind this thesis, three terminologies are 

differentiated: knowledge, data and information and the corresponding terminologies: 

modeling, updating and conditioning, see Figure 1.1. Seen in the light of this 

differentiation, most available software tools have been aimed to develop the models by 

implementing more scientific and professional knowledge. The philosophy behind 

developing the presently available software is to take into account as much 

professionally reliable knowledge as possible into the model. Once the model is fixed, 

there is no need to change it in daily use. This thesis, explores this direction to some 

extent, but this is not the main target. Instead, a Bayesian framework is established 

within which the data and the information which the decision makers possess can be 

implemented into the model runningly as information becomes available, namely, the 

model is updated by data and conditioned by information. Here, information refers to 

factual information or a belief which is available to a decision maker in the decision 

making process and data refers to an organized set of information in such a way that the 
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data can be utilized for updating the parameters in the model. For instance, sea surface 

temperature is information which may affect the intensity of typhoons, while the 

accumulation of information on the relationship between sea surface temperature and 

the intensity of typhoon can be used to update the model. In a decision process, if such 

information is available, the decision maker should implement it into the model 

(conditioning), because the conditioned model gives an estimation of portfolio loss with 

a smaller variance and thereby enhances decision making. The parameters in the model 

should be modified with data (updating), because the updated model gives more reliable 

estimations. Apart from the professional knowledge necessary to construct a basic 

model, such information and data are readily available and accessible even to decision 

makers. The full utilization of data and information which becomes available over time 

is another key to ensure market advantage and competiveness. 

 

 

Figure 1.1: Integration of knowledge, data and information. 

 

To ensure the consistent use of the available information and data it is essential to 

consider the uncertainties involved in the modelling of the phenomena. This type of 

variability is generally understood as epistemic uncertainty, which arises from the lack 

of sufficient data and/or knowledge. Note that in contrast to the epistemic uncertainty, 

randomness in nature is called aleatory uncertainty. The general treatment of both types 

of uncertainty in risk assessment and formal decision analysis has been, since decades, 

an issue of attention in civil engineering and other fields. 

 

However, in practice the epistemic uncertainty is often ignored, mixed up with aleatory 

uncertainty otherwise treated in ad hoc manners, which can lead to erroneous 

assessment of risks. Such examples are investigated in detail in Nishijima et al. (2008b).  

Considering consistently the involved uncertainties allow a more precise and realistic 

assessment of the typhoon risk. 
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1.2. Aim 

 

The dissertation aims to develop a Bayesian framework for the probabilistic modelling 

of typhoon risk for the quantitative and rational risk management. The proposed 

framework is designed for decision-makers responsible for insurance portfolios, for the 

assets of large areas such as cities or the safety of personnel. The framework is generic 

in the sense that it is formulated in terms of observable indicators and can thus be easily 

implemented for the characteristics of a specific region. The framework is applied as an 

example for the region of the North West Pacific and is calibrated and verified for the 

Japanese Islands. The aim of the Bayesian framework is to deliver a first step towards a 

full probabilistic treatment of typhoon risk analysis, which considers all involved 

uncertainties and is able to update and condition the typhoon model with new available 

data and information. The framework includes: 

 

 a probabilistic typhoon model which satisfies the requirements for the proposed 

framework. 

 the consideration of the uncertainties involved in the modelling of the typhoons 

and in the portfolio risk analysis. 

 the means to update and condition the typhoon model. 

 

The application of the framework is illustrated in three examples which show how the 

framework can be used for insurance portfolio risk analysis, for an assessment 

considering global warming and for real time decision making in the case of an 

approaching typhoon. 

 

1.3. Scope 

 

The objective of the present thesis is to develop a Bayesian framework for probabilistic 

modelling of typhoon risks. The framework includes not only a probabilistic typhoon 

model but also the mechanisms which enable the decision makers to reflect the 

information and data during the process of loss estimation. Most of the efforts in this 

thesis are devoted to establish a typhoon model rather than towards detailed modeling of 

the damage process of buildings due to typhoons. 

 

Probabilistic modelling of natural hazard events generally aims at describing the 

probabilistic characteristics of the underlying physical phenomena associated with the 

events. The degree of detail and requirements to the probabilistic models should be 

determined in accordance with their applications, i.e. the type of risk management and 

more generally decision situations. Seen in this light, it can be said that most of the 

existing typhoon models are developed primarily for assessing wind hazards for the 

purpose of facilitating structural design in regard to wind loads and estimating 



1. Introduction 

-14- 

 

individual exposure as well as portfolio losses. Whereas these are some of the most 

relevant and successful applications of the typhoon models, there are other relevant 

applications where the typhoon model can potentially be useful. The typhoon model 

developed during this thesis is developed with the scope of applying the model for a 

broader range of decision situations. Such decision situations include: real-time decision 

making for the evacuation of people and shut-down of engineered facilities in the face 

of emerging typhoon events; adaptation of building codes in regard to wind loads to the 

possible increase of wind hazards that might be caused by global climate change. 

 

Taking basis in the state-of-the-art research work on the modelling of typhoon events, 

the presented typhoon model is developed to facilitate the incorporation of all available 

information. The focus is on the following features: (1) typhoon events are modelled for 

the entire life of typhoons, i.e. from occurrence to dissipation; (2) the effects of sea 

surface temperature (hereafter, SST) on the evolution of typhoon events are accounted 

for; (3) seasonal differences in the probabilistic characteristics of the transition of 

typhoons are accounted for. The developed typhoon model can, in principle, represent 

the wind hazards due to typhoons in the North West Pacific region, whereas the 

developed typhoon model is verified and validated primarily for the area of the Japanese 

islands. 

 

The established framework is general, but the region of the North West Pacific is 

selected as an example. Three main features are included in the framework: (1) 

estimation of annual average loss/probable maximum loss; (2) estimation of loss of any 

given portfolio when a typhoon event has initiated and is approaching the considered 

region; (3) updating of the models with all the data available after one or more typhoon 

events have occurred. 

 

In the first feature, the framework facilitates the estimation of a portfolio loss when a 

decision maker determines the insurance premium year to year. During the process, if 

the decision maker possesses the information which conditions the model, e.g., the 

prediction of sea surface temperature in a year, this information can be implemented. 

 

In the second feature, since the typhoon has already initiated, some information should 

be readily available, e.g., the track of the typhoon, the central pressure of the typhoon or 

meteorological environment surrounding the typhoon. This information conditions the 

model, enabling a loss estimation with a smaller uncertainty. This feature is useful, for 

instance, when a financial department in a company prepares for the post-disaster 

financing or when the decision maker makes an additional reinsurance contract to avoid 

a catastrophic insurance payment. 

 

The third feature serves to update the typhoon model after a certain period of time for 

example at the end of a year, when all the information is organized as data. So, over 

time, the model will better represent the underlying physical phenomena. 
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The use of the framework is shown in three applications. The first application shows 

how this framework can be used to estimate portfolio losses due to typhoons with the 

consideration of the involved uncertainties and is implemented into a software decision 

support tool. The second application investigates how the framework can be used to 

assess the effects of global warming by updating the typhoon model with new available 

data. The third application demonstrates how the framework can be used for real time 

decision making in the case of an approaching typhoon by conditioning the typhoon 

model with new available information. 

 

The proposed framework is implemented in three software tools. (1) a model builder 

software tool is developed, which enables to establish a typhoon model using all 

available information. (2) a hazard event set creator software tool is developed, which 

establishes a data base of stochastic typhoon events using the typhoon model to simulate 

typhoon events and (3) the software tool TRAST (Typhoon Risk Analysis Software 

Tool), which provides a user friendly graphical interface to perform a risk analysis for a 

insurance portfolio based on the hazard events set data base in combination with a 

vulnerability model. 

 

1.4. State of the art 

In the risk management and loss estimation for natural hazards, the physical modeling 

of the hazard event plays a key role. Since strong natural hazards are rare events, only a 

limited amount of recorded data is available at specific locations where measurement 

stations are located. To estimate the risk due to natural hazards the temporal and spatial 

distribution of the hazard index (e.g. for tropical cyclones the wind speed) is needed. To 

use the available data in a most efficient way, physical and statistical models are 

established and fitted to the data to represent the temporal and spatial distribution of the 

hazard index. A literature review of the development of natural hazard loss model can 

be found, for example, in (Walker, 1997) and specific for typhoons in (Nishijima and 

Faber, 2007). 

 

The first frameworks for natural hazard risk modelling have been proposed by Friedman 

in the early 1970's for different natural hazards (Friedman, 1975). Typhoon/hurricane 

models which were based on Monte Carlo simulations were originally introduced in the 

field of offshore engineering (see e.g. (Russell, 1971)). 

 

Over the last years the standard methodology for the probabilistic modeling of typhoon 

events has been established. Presently, typhoon models developed based on the 

methodology are widely utilized in the assessment of typhoon hazards and risks. The 

relevant practical applications include the identification of design wind loads in 

performance based structural design and portfolio loss analysis in the insurance 
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industry, see e.g. (Matsui et al., 2002; Yasui et al., 2002; Emanuel, 2006a; Vickery et 

al., 2006a; Lee and Rosowsky, 2007; Rumpf et al., 2007). For example, the 

Architectural Institute of Japan proposes a design wind speed map for the design of 

structures subjected to strong wind in Japan (Architectural Institute of Japan, 2004). 

This is established on the basis of typhoon simulation as proposed by (Matsui et al., 

2002). The HAZUS-MH Hurricane model, which also takes basis in hurricane 

simulation, is used for the prediction of possible losses of buildings subject to hurricane, 

see e.g. (Vickery et al., 2006a). The approaches described in the literature mentioned 

above correspond to a standard methodology which is comprised of the following model 

components:  

 

 Occurrence model 

 Transition model 

 Wind field model 

 Surface friction model 

 Vulnerability model 

 

Other literature on typhoon simulations suggest a similar methodology, see e.g. 

(Katsuchi and Yamada, 2005). Differences in the approaches described in the literature 

exist mainly in the development of each individual model component rather than in the 

general methodology. In the private industry several commercial hurricane/typhoon 

models are developed, for example, by Risk Management Solutions (RMS), EQECAT 

or Applied Insurance Research (AIR), for which no detailed information is publicly 

available. 

 

Many typhoon/hurricane models have been developed for different hurricane prone 

regions e.g. Northern Atlantic, Northwest Pacific, Australian region etc. and in several 

different research fields e.g. in civil engineering, offshore engineering, wind 

engineering, atmospheric science, financial and insurance sectors. Depending on their 

requirements, research fields have different focus areas that define which components of 

the typhoon model are more important for their applications; these are therefore further 

enhanced. 

 

The civil engineering community is interested in the wind load due to strong winds 

induced by typhoons on the structures. Since the majority of the structures are located 

on land, the greatest uncertainty in the estimation of strong winds due to typhoons 

comes from the different properties of the ground (i.e. land use) and the presence of 

escarpments, hills and ridges which act as obstacles to the boundary layer and accelerate 

the wind speed at surface level. Therefore more efforts are devoted to develop 

sophisticated surface friction models. 

 

As a special field of civil engineering, offshore engineering is concerned about 

structures on the ocean and therefore on the wind speeds due to typhoons on the sea. 
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Since the surface of the water has a quite low friction and the surroundings of the 

considered location are homogenous (i.e. water) and have no obstacles (e.g. hills) the 

offshore engineers do not have to develop a detailed surface friction model. They focus 

on enhancing the transition and the wind field models. In addition to the estimation of 

the strong winds, offshore engineers are also interested in the estimation of the wave 

heights induced by typhoons. 

 

During 1950-1977, typhoon/hurricane wave models based on wave height and period 

were developed (e.g. (Bretschneider, 1959; Ross, 1976)). Young (1988) proposed a 

parametric hurricane wave model, which uses the radius of the maximum wind speed, 

the maximum surface wind and the transition speed of a typhoon as input parameters.  

The wind engineers are more focused on the detailed wind speed on surface level and 

the influence of the wind load on structures. The common practice is to perform a 

Computational Fluid Dynamics (CFD) analysis of the considered structure and the 

surrounding area to analyze the wind flow and the wind load on the structure in detail 

(e.g. (Tomokiyo and Maeda, 2004; Kwok and Hitchcock, 2009)). 

 

To define the boundary conditions for a CFD simulation, reanalyzed historical  

typhoon data from metrological measurement stations can be used. For the case that a 

typhoon is approaching and no measurement data is available or for estimating the 

probability distribution of the wind speeds for a selected location the relevant 

parameters from a hurricane/typhoon model are used to set the boundary conditions of a 

CFD simulation (e. g. (Ishihara et al., 2005)). 

 

The atmospheric scientists focus their attention on weather forecasting and the 

prediction of typhoon development. For the prediction of the hurricane intensity, several 

models have been proposed; for example, the coupled hurricane intensity prediction 

scheme (CHIPS) (Emanuel, 1988) and statistical hurricane intensity prediction scheme 

(Ships) (DeMaria and Kaplan, 1994; DeMaria and Kaplan, 1999; DeMaria et al., 2005; 

DeMaria, 2009) analog for the region of the north west pacific the typhoon intensity 

prediction scheme (TIPS) (Fitzpatrick, 1997), which is extended to the statistical 

typhoon intensity prediction scheme (STIPS) (Knaff et al., 2005). 

 

The climate and environmental science community investigates the effect of climate 

change on the intensity of tropical cyclones. Previous studies have indicated that global 

warming would increase the intensity of future tropical cyclones with a possibility of a 

decrease in numbers of relatively weak tropical cyclones and an increase of intense 

tropical cyclones, see (Emanuel, 1987; Knutson and Tuleya, 2004; Emanuel, 2005; 

Solomon et al., 2007; Knutson et al., 2010). Whereas the results from such previous 

studies depend largely on the employed climate models as well as the assumed 

scenarios on the emission of greenhouse gases e.g. CO2, thus subject to significant 

uncertainties, it is likely that tropical cyclones will bring more often stronger wind to 

structures and consequently result in more severe consequences for societies. Yet the 
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magnitude of such consequences and the effectiveness of implementing new policies on 

the design and maintenance of structures in the face of global warming are not obvious. 

 

The financial and insurance sectors are interested in the financial losses due to 

hurricanes/typhoons. Therefore the focus here lies on the development of vulnerability 

models to represent the loss due to hurricanes/typhoons. 

 

This thesis focuses on the wind speed as the hazard index which is used for the risk 

assessment. Rainfall during typhoon events is also a relevant factor which may 

influence the losses to buildings. Observations on the precipitation distribution during 

typhoon events have been made by e.g. (Frank, 1985; Atallah and Bosart, 2003). A 

quantitative modeling of rainfall during typhoon events is quite complicated, and only 

very simple models have been proposed. In the HAZUS-MH Hurricane model (Vickery 

et al., 2006a), the precipitation at any given location during a typhoon event is modeled, 

based on statistical analysis, as a function of the radius of maximum wind speed and the 

distance from the center of the typhoon. 

 

The state of the art of the individual components of the typhoon models (occurrence, 

transition, wind field, surface friction and vulnerability model) are described below. 

Occurrence model 

Many existing typhoon models generate the simulated typhoons at the coastline (e.g. 

(Shapiro, 1983; Fujii and Mitsuta, 1986)), or at “simulation circles” around the site of 

interest(e.g. (Tryggvason et al., 1976; Georgiou et al., 1983; Vickery and Twisdale, 

1995a)). Since these studies are mostly concerned about the wind speed at each 

individual site, the spatial dependency of wind speeds at different sites cannot be 

considered appropriately. 

 

Another approach is to simulate the entire life of a typhoon, from the occurrence to the 

dissipation of a typhoon. Recent studies proposing typhoon models, which start the 

simulation of the typhoons on the ocean and then continue with the simulation of the 

transition and development of a typhoon till the dissolving of the typhoon. (e.g. (Yasui 

et al., 2002; Katsuchi and Yamada, 2005; Emanuel, 2006b). This approach enables the 

integration of additional parameters (e.g. the SST) which affect the development of a 

typhoon over time. Yonekura and Hall (2011) propose an occurrence model which also 

considers influence by El Nino–Southern Oscillation (ENSO). 

Transition model 

The common practice for the modeling of the transition of a typhoon is to perform a 

Monte Carlo simulation which takes basis in the nonhomogenous Markov process (see 

e.g. (Vickery et al., 2000; Yasui et al., 2002; Katsuchi and Yamada, 2005)). The 

translation speed, translation direction and intensity of a typhoon are simulated 
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conditioned on the previous state of the relevant parameters which characterize the state 

of a typhoon. Hall and Jewson (2007) follow the same methodology but they propose a 

modeling scheme for transition modeling, which considers all tropical cyclones with 

different weights as a function of distance, instead of discretization. 

 

If a typhoon makes a landfall, a filling model considers the decay of the intensity of a 

typhoon, which may be represented in terms of the change of the central pressure. Based 

on statistical analyses Batt (1980) proposes to model the change of the central pressure 

as a function of the time after landfall. Another approach is to model the decay of the 

intensity of a typhoon after landfall as a function of the time after landfall and the angle 

between the typhoon direction and the coastline at the point of landfall (Vickery and 

Twisdale, 1995b; Fujii, 1998). 

Wind field model 

In previous studies two different approaches can be found to model the spatial 

distribution of the wind speed as a function of the parameters describing the state of a 

typhoon obtained from the transition model. The first approach models the wind field 

without considering the pressure field; here parameters which describe the rate of decay 

of wind speed with respect to the distance from the center of typhoon are used, see e.g. 

(Miller, 1967; Brand et al., 1977). 

 

The second approach models the wind speed based on the pressure field. The pressure 

field is normally modeled in accordance with (Schloemer, 1954b), or by assuming the 

extended model by (Holland, 1980). To obtain the wind speed the Navier-Stokes 

equations or variants of the Navier-Stokes equations under some assumptions are 

solved, e.g. (Yoshizumi, 1968; Shapiro, 1983; Meng et al., 1995b). This obtained wind 

speed corresponds to the wind speed at free atmosphere. To take the surface roughness 

into account, a surface friction model has to be established to represent the relationship 

between the wind speed at free atmosphere and the wind speed at surface level at the 

selected location. 

 

The validity of the wind field model for the second approach is investigated e.g. in 

(Fujii, 1998; Nishijima et al., 2004), by comparing the reproduced wind field using the 

wind field model and the observed wind speeds at meteorological stations. 

 

Surface friction model 

If the wind field is modeled according to the second approach described above, the 

obtained wind speed corresponds to the wind speed at free atmosphere. The surface 

friction model describes the relation between the wind speed at free atmosphere and the 

wind speed at surface level by considering the surface friction of the selected location. 

In the literature, e.g. (AS1170.2, 1989; Wieringa, 1993; Simiu and Scanlan, 1996; 
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ASCE7-98, 2000), the surface friction is characterized by the land use as well as the 

density and height of buildings. The affection of the wind speed is described by the 

surface roughness in the surface friction model. In the literature there are mainly two 

approaches for the estimation of the surface roughness. An overview can be found at 

(Grimmond and Oke, 1999). 

 

The first approach is to estimate the surface friction using measurements of the gust 

ratio as proposed by (Davenport, 1961). This approach was further investigated by 

several authors see e.g. (Wieringa, 1976; Ashcroft, 1994). This approach enables to 

estimate the surface friction only for locations where wind speed measurements are 

available. For locations where no wind speed measurements are available, Wieringa 

(1986) proposed an interpolation scheme. 

 

The second approach is to estimate the roughness length using the aerodynamic 

parameters of the surface morphometry. This approach was proposed by (Lettau, 1969) 

and is used e.g. by (Kondo and Yamazawa, 1986; Bartheelmie et al., 1993). The 

advantage of this approach is that it is possible to estimate the roughness length at any 

location where information about the surface morphometry (e.g. Land use data) is 

available. 

  

Recent studies, e.g. (Itoi et al., 2005), suggest to use GIS information together with 

numerical simulation techniques to obtain a better surface friction representation, taking 

into account directional aspects. 

The wind speed at surface level is also dependent on the topography of the surrounding 

area at the considered location. Escarpments, hills and ridges act as obstacles to the 

boundary layer and accelerate the wind speed at surface level. An overview of how the 

topographic effect is considered in the different codes can be found in (Ngo and 

Letchford, 2008). 

Vulnerability model 

The vulnerability model describes the relation between a hazard index (in case of 

typhoon normally the wind speed) and the damage or the loss associated with a building 

or a insurance portfolio composed of many buildings. 

 

Many vulnerability models have been developed in the insurance sector. However, most 

of them are unpublished because they are based on confidential client data. Among the 

published literature, a general overview is given in (Klugman et al., 2004), an 

engineering approach is proposed in HAZUS-MH Hurricane model (Vickery et al., 

2006b). Pinelli (2004) describes how the damage of buildings due to strong winds 

caused by hurricanes can be modeled. Watson and Johnson (2004) propose an approach 

on how different vulnerability models can be combined to assess the variability of 

different models. 
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1.5. Hypothesis 

The hypothesis is that a Bayesian framework for the probabilistic modelling of typhoon 

risk together with phenomenological models of the typhoon event as well as associated 

damage/losses to the built environment can be developed such as to accommodate the 

means to condition the models with new available information and update the models 

with new available data and such as to accommodate the consistently consideration and 

treatment of the different types of uncertainty associated with the random processes and 

the modeling in general. The purpose of the Bayesian framework is to support decision 

making for different fields of the society, e.g. industry, public authorities and 

individuals. 

 

In this thesis the components of the Bayesian framework are subsequently proposed, 

tested and verified in terms of comparing the model results with observable 

characteristics. The examples thereafter serve to demonstrate the usefulness of the 

framework and of the developed tools. 

 

1.5.1.Typhoon model 

The first step for the proposed Bayesian framework for the probabilistic modelling of 

typhoon risk is to establish a probabilistic typhoon model. This model has to be 

developed in such a way that it satisfies the requirements for the proposed Bayesian 

framework. The involved uncertainties have to be consistently considered and treated 

and the framework has to provide the feasibility to update the typhoon model with new 

available data and to condition the typhoon model with new available information. 

 

Whenever possible, the typhoon model is established on existing state of the art research 

and whenever necessary the work of previous researchers is modified or new 

components are developed so that the typhoon model satisfies the requirements for the 

proposed framework. Sub-models have to be formulated for all phases of the typhoon 

hazard process starting with the occurrence of typhoons, over the spatial and temporal 

development of typhoons including landfall and possible filling and ending with the 

probabilistic characterization of extreme wind speeds at any location in Japan. 

 

These results together with historical damage observations made available by Aon 

Benfield Japan facilitated the establishment of the portfolio loss distribution. Emphasis 

has been given to the consistent treatment of uncertainties facilitating that the 

contributions to the uncertainty associated with the total losses from each sub-model 

may be assessed. 

 

The developed model facilitates risk updating such that the losses can be estimated 

probabilistically in the event of an evolving typhoon as a function of the available 

information regarding location, central pressure, direction and velocity. 
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For the probabilistic typhoon model the following components are established:  

 

 A new occurrence model is developed, which represents the occurrence of a 

typhoon as a function of the location, the season (month) and the SST.  

 For the transition model the proposed approach from (Vickery et al., 2000) is 

followed, but the model is adapted for the region of the North West Pacific and 

modified so that the development of a typhoon is also a function of the season 

(month) and the SST. 

 The wind field model is established as proposed by (Georgiou et al., 1983). 

 The surface friction model is developed as proposed by (Meng et al., 1997). A 

new scheme for the estimation of the roughness length is developed which 

combines the two approaches described in the state of the art. 

 A model to estimate the portfolio losses is developed containing a new 

vulnerability model which considers the epistemic uncertainties. 

 

The hypothesis is that this typhoon model can be developed and be implemented in a 

hazard event set builder software tool, which facilitates to automatically create a 

stochastic event set using the described typhoon model. This typhoon model has to 

provide the feasibility of conditioning with new available information. 

1.5.2. Treatment of epistemic uncertainties in the typhoon model 

The proposed Bayesian framework has to be developed in such a way that the  

different types of uncertainty associated with the random processes and the modeling in 

general are consistently considered and treated. The epistemic uncertainties in the  

typhoon model due to the modelling of the phenomena have to be quantified for each 

sub model and the epistemic uncertainties due to the model selection and the 

assumptions in the typhoon model have to be considered. 

1.5.3. Updating the typhoon model 

The proposed Bayesian framework has to provide the means to update the typhoon 

model with new available data with all the data available after one or more typhoon 

events have occurred. 

The hypothesis is that the Bayesian framework can be developed so that it facilitates the 

updating of the models and that a model builder software tool can be created which 

automatically updates the typhoon model by establishing the typhoon model using as 

input all the available information. 
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1.5.4. Portfolio risk analysis 

The application of the Bayesian framework to the estimation of insurance portfolio risk 

analysis demonstrates the usefulness of the framework. The hypothesis is that this 

example can show how the Bayesian framework can be used to estimate the risk  

insurance portfolios due to strong winds induced by typhoons and to demonstrate how 

the uncertainties can be considered. 

 

A model to estimate the portfolio losses has to be developed which considers the 

epistemic uncertainties and the correlation between the individual building losses. The 

portfolio loss model is implemented in Typhoon Risk Analysis Software Tool (TRAST) 

which provides a user friendly graphical interface to perform a portfolio risk analysis. 

TRAST uses for the risk analysis a database of a stochastic event sets, which was created 

using the hazard event set builder software tool. 

  

1.5.5. Global warming 

The hypothesis is that the Bayesian framework can be used to investigate the effects of  

climate change. Therefore two studies are performed. The first study shows how the 

typhoon model can be conditioned by an increased SST and how the change of 

structural reliability considering the effect of the increased SST on tropical cyclone 

activity can be assessed. The second study shows how the typhoon model can be 

updated by using the  data obtained from the mesoscale meteorological model 

JMA-NHM. This in turn is used to estimate the change in the wind risk of residential 

buildings in Japan under a future climate. 

 

1.5.6. Risk assessment of a approaching typhoon 

 

The hypothesis is that the Bayesian framework can be used for real time decision 

making in the case of an approaching typhoon by conditioning the typhoon model with 

new available information. The function to perform a risk analysis for a approaching 

typhoon has to be implemented in TRAST and a framework for real-time decision 

analysis is provided. 

 

1.6. Outline of the thesis 

The thesis is structured as follows: Chapter 2 describes the developed typhoon model in 

detail. Chapter 3 shows the verifications and the validations of the developed typhoon 

model. Chapter 4 explains how the uncertainties of the typhoon model are treated and 

proposes a framework for the incorporation of the uncertainties due to the model 
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selection in the risk assessment and the decision analysis. Chapter 5 explains how a 

hazard model can be updated by new information in a most efficient way. Further, the 

developed model builder software tool is presented which allows to establish a typhoon 

model containing all available information. Chapters 6 to 8 present three different 

applications of the developed typhoon model. In the first application described in 

Chapter 6, it is shown how the typhoon model can be used for a portfolio risk analysis. 

The proposed procedure is implemented in the software tool TRAST which provides a 

user friendly graphical interface to perform a portfolio risk analysis. Chapter 7 shows 

how the developed typhoon model can be used to perform studies to assess possible 

effects of global warming on the risk assessment. Chapter 8 illustrates how the 

developed typhoon model can be used for real time decision making in the case when a 

new typhoon is approaching. Chapter 9 discusses the conclusions of the thesis and 

identifies future tasks in the outlook. 

 



2. Typhoon model 

-25- 

 

2. Typhoon model 

2.1. Main features of the developed typhoon model 

The components of the typhoon model are developed in such a way that the typhoon 

model satisfies the requirements for the proposed Bayesian framework. The components 

of the typhoon model facilitate the consideration of the uncertainties and the typhoon 

model can be conditioned and updated with new available information and data. 

 

Taking basis in the state-of-the-art research works on the modelling of typhoon events, 

the presented typhoon model is developed with the focus on the following features: (1) 

typhoon events are modelled for the entire life of typhoons, i.e. from occurrence to 

dissipation; (2) the effects of sea surface temperature (hereafter, SST) on the evolution 

of typhoon events are accounted for; (3) seasonal differences of the probabilistic 

characteristics of the transition of typhoons are accounted for. The developed typhoon 

model can, in principle, represent the wind hazards due to typhoons in the northwest 

Pacific region, whereas the developed typhoon model is verified and validated primarily 

for the area of the Japanese islands. 

 

Within the present framework for risk management the entire lives of typhoons are 

modeled. An advantage of this approach is that it enables conditional loss estimation 

given a typhoon has developed, since the information on the current state of typhoon 

can be used to simulate the rest life of the typhoon. This is especially useful in practical 

situations where decision makers in e.g. local authorities prepare for precautious actions 

as well as post-disaster actions. 

2.2. Applications of the developed typhoon model 

One of the main applications of the developed typhoon model is to estimate the statistics 

of insured portfolio losses in the insurance industries (described in detail in Chapter 6). 

Therein, due to the feature that the seasonal differences of the probabilistic 

characteristics of typhoon events are considered, it is possible to estimate portfolio 

losses in a certain period in a year. This is useful in practice when the assessments of 

portfolio losses are required for the remaining period of a year. 

 

Another potential application of the developed model is the investigation of the effects 

of the global climate change on the probabilistic characteristics of strong wind speed 

induced by typhoons (described in detail in Chapter 7). A preliminary study on this is 

undertaken in (Graf et al., 2008). In this study, assuming several scenarios on the future 

change of SST, it is found that the upper quantile values of the annual maximum wind 

speed distribution may significantly increase as a consequence of an increase of the 

SST; in turn, the probability of failure of structures due to wind loads may also 
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significantly increase. In a second study the typhoon model is re-established using the 

output of a climate model as a possible future dataset to investigate the change of the 

risk due to climate change. 

 

Another application concerns real-time decision making (described in detail in Chapter 

8) e.g. in the context of evacuation of people and shut-down of operation of engineered 

facilities in the face of an approaching typhoon, see (Nishijima et al., 2009). For this, 

the feature that the entire life of a typhoon is modelled is useful for simulating possible 

tracks and changes of the intensity of the approaching typhoon. Furthermore, the 

consideration of the SST and the seasonal differences of probabilistic characteristics of 

typhoon events enables utilizing additional information such as the current SST around 

the location of the typhoon and current season; consequently, the uncertainties 

associated with the transition of the typhoon can be reduced and decisions may be made 

more precisely. 

2.3. Components of the typhoon model 

The typhoon model developed during this thesis consists of two parts; a hazard model 

and a vulnerability model. The hazard model is composed of four components, i.e. 

occurrence model, transition model, wind field model and surface friction model, see 

Figure 2.1. The hazard model describes the probabilistic nature of the entire life-time of 

typhoons from their occurrence to dissipation. The occurrence model represents the 

probabilistic characteristics of the location and frequency of the initiation of typhoon 

events as a function of season and sea surface temperature (SST). The transition model 

concerns the probabilistic representation of the movement and change of intensities 

taking into account the spatial in-homogeneity of the probabilistic characteristics, 

seasonal differences and SST. The wind field model describes the wind fields induced 

by typhoons as a function of the relevant parameters characterizing the states of the 

typhoons. The surface friction model represents, as a function of surface roughness, the 

relation between the wind speed at the surface and the wind speed at gradient height at 

which the wind fields induced by typhoons are modeled. Finally, the vulnerability 

model represents the loss ratio of given types of exposure as a function of the wind 

speed acting on the exposures. In the next chapter, the datasets utilized for developing 

these models are introduced and, in the subsequent chapters, the methodology for the 

development of the typhoon model and the underlying assumptions are explained in 

detail. 
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Figure 2.1: Components of the developed typhoon model. 

To fulfill the requirements of the proposed Bayesian framework for probabilistic 

modelling of typhoon risks, a probabilistic typhoon model is established; the model is 

composed of the following components: 

 

 A new occurrence model is developed, which represents the occurrence of a 

typhoon as a function of the location, the season (month) and the SST.  

 For the transition model the proposed approach from (Vickery et al., 2000) is 

followed, but the model is adapted for the region of the North West Pacific and 

modified so that the development of a typhoon is also a function of the season 

(month) and the SST. 

 The wind field model is established as proposed by (Georgiou et al., 1983). 

 The surface friction model is developed as proposed by (Meng et al., 1997). A 

new scheme for the estimation of the roughness length is developed which 

combines the two approaches described in the state of the art (see Section 1.4). 

 A model to estimate the portfolio losses is developed containing a new 

vulnerability model which considers the epistemic uncertainties (explained in 

Section 6.1). 

 

2.4. Utilized datasets 

 

The datasets utilized for developing the typhoon model are summarized in Table 2-1. 

The table contains the official titles of the datasets, the abbreviation of the title of each 

dataset that is used in this technical note, the components of the models established 

using each dataset, the period during which the observations in the datasets are recorded 

and the name of the provider of each dataset. 

Table 2-1: Summary of utilized datasets. 
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Dataset title Abbreviation Model* Period  Provider 

Best track data of RSMC 

Tokyo-Typhoon Center 

 

Oceanographic normals and 

analyses 

 

JMA annual observation 

report 

 

Tochiriyou 3ji-mesh data*** 

 

Digital Map 50m Grid 

(Elevation) 

 

Exposure data 

 

Loss data 

Best track data 

 

 

SST data 

 

 

Meteorological 

data 

 

Land-use data 

 

Elevation data 

 

Exposure data 

 

Loss data 

O and T 

 

 

O and T 

 

 

W and S 

 

 

S 

 

S 

 

V 

 

V 

1951-2006 

 

 

1971-2000 

 

 

1961-2005 

 

 

2006 

 

2008 

  

****** 

 

****** 

JMA** 

 

 

JMA** 

 

 

JMA** 

 

 

MLIT**** 

 

JMC***** 

 

Aon Benfield 

Japan 

 

Aon Benfield 

Japan 

* O, T, W, S and V abbreviate occurrence model, transition model, wind field model, surface friction 

model and vulnerability model respectively. 

** JMA abbreviates the Japan Meteorological Agency. 

*** No official title is available in English. 

**** MLIT abbreviates the Ministry of Land, Infrastructure, Transport and Tourism. 

*****JMC abbreviates the Japan Map Center. 

****** The period from which data is available differs between the data sets. 
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The best track data contains the information on the following typhoon characteristics at 

discrete times during the historical typhoon events: 

 

 Storm category 

 Location of typhoon (longitude and latitude) 

 Central pressure 

 Maximum 10-miniute sustained wind speed 

 Direction of the longest radius of 50-knot wind 

 The longest radius of 50-knot wind 

 Direction of the shortest radius of 50-knot wind 

 The shortest radius of 50-knot wind 

 Direction of the longest radius of 30-knot wind 

 The longest radius of 30-knot wind 

 Direction of the shortest radius of 30-knot wind 

 The shortest radius of 30-knot wind 

 

Depending on the location of the typhoons and the occurrence year of the typhoon 

events the time interval of the records varies between 6 hours and 1 hour. The typhoon 

characteristics are recorded at shorter time intervals when typhoons are closer to the 

Japanese islands with higher intensities. The radiuses of 30-knot and 50-knot winds are 

available from 1977. 

 

The SST data contains the information on the following parameters: 

 

 10-day mean SSTs in the northwestern Pacific ocean 

 Monthly mean SSTs in the northwestern Pacific ocean 

 Monthly mean SSTs in the oceans 

 Monthly mean subsurface temperatures at the depth of 100 meter at seas around 

Japan 

 Comparison between the SST means in 1971-2000 and the SST means in 

1961-1990 

 Coastal water temperature 

 Long-term variations of SST 

 

For the development of the occurrence model and the transition model, only the 10-day 

mean SST observations are utilized. 
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The meteorological data contains the information on the following atmospheric 

characteristics measured at meteorological stations (156 stations as of 2005): 

 

 Temperature, vapor pressure and relative humidity 

 Atmospheric pressure 

 Wind speed and wind direction 

 Cloud cover 

 General weather condition 

 Amount of evaporation 

 Amount of global solar radiation 

 Duration of sunshine 

 Precipitation 

 Snow cover and snow fall 

 

Whereas this dataset contains a variety of statistics of these parameters, e.g. daily 

maximum, monthly average etc. the statistics utilized in the development of the wind 

field model and the surface friction model are the following: 

 

 10-minute sustained wind speed 

 Maximum wind speed 

 Atmospheric pressure adjusted to sea surface level 

These parameters are recorded on an hourly basis. 

 

The land-use data contains the information on the use of land at each grid on the 

100m-by-100m grid system defined by the MLIT. The land use is differentiated by the 

following categories: 

 

 Rice field 

 Plowed field 

 Fruit farm 

 Tree farm 

 Woodland 

 Waste land 

 Building zone (sub urban) 

 Building zone (city) 

 Main line traffic zone  

 Other land 

 Lakes 

 River zone (unused) 

 River zone (artificial used) 

 Beach 

 Seawater 

 Golf 
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For each grid, the land-use category is recorded. The categories are utilized for 

identifying the roughness length, see Section 2.10.3. 

 

The elevation data contains the information about elevation at each grid on the 

50m-by-50m grid system defined by the JMC. The elevation data is used to estimate the 

topological factor, see Section 2.10.4. 

 

The exposure data and loss data provided by Aon Benfield Japan are utilized to develop 

the vulnerability model. The data of each client is utilized only for the purpose of 

developing the vulnerability model and the data is not utilized for developing the other 

models. The content of the exposure and the loss data is explained in detail in Section 

6.1.2. A confidentiality agreement between Aon Benfield Japan and ETH Zurich has 

been contracted. The confidentiality agreement includes that the data provided by Aon 

Benfield Japan and all results which are obtained by this data are made anonymous and 

censored in this thesis. 

 

2.5. Occurrence model  

The occurrence model describes the probabilistic characteristics of the initiation of 

typhoon events. Since the probabilistic characteristics vary with location and season it is 

required to consider the non-homogeneity of the characteristics in terms of time and 

space. The developed occurrence model represents the occurrence of a typhoon as a 

function of the location, of the season (month) and of the SST. 

 

Within the present framework for risk management the entire lives of typhoons are 

modeled. This approach also enables a conditional simulation for the case of a 

approaching typhoon, since the information on the current state of typhoon can be used 

to simulate possible development of the typhoon. 

 

2.5.1. Definition of the initiation of typhoon events 

Typhoons are an alias of intensified tropical storms which occur in the northwest Pacific 

region. Typically, tropical storms are not categorized as typhoons at their occurrences; 

only a few tropical storms develop and eventually become to be categorized as 

typhoons. The best track data provided by the JMA contains the records of all the tracks 

of the historical tropical storms that during their life-times are categorized as typhoons. 

It contains the records of the tracks of these tropical storms not only during the periods 

when the tropical storms are being categorized as typhoons but also during the periods 

before and after the storms are categorized as typhoons; however, the criteria are not 

clearly set for the condition under which the track of tropical storms begins to be 

recorded. In contrast, it is possible that the historical tropical storms that occurred but 
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dissipated before they became to be categorized as typhoons may not be recorded in the 

best track data. Thus, defining the initiations of the typhoon events, in the development 

of the occurrence model, in accordance with the location at which the track of 

individual tropical storms starts to be recorded in the best track data may lead to a 

biased estimation of the probabilistic characteristics of the initiation of typhoon events. 

On the other hand, if the definition of the initiation of typhoon events was assumed 

given in accordance with the JMA definition – typhoons are defined as tropical storms 

which induce the wind speed equal or larger than 17.2 [m/s] – a number of track records 

would be disregarded, which are useful for establishing the transition model. Thus, in 

the development of the occurrence model the initiation of typhoon events is, by trial and 

error, assumed to be defined by the moment at which the central pressure of each 

tropical storm becomes less than 1000 [hPa] for the first time in the life-time of the 

tropical storm. If the track record of a tropical storm starts with the central pressure 

being less than 1000 [hPa] the first record of the tropical storm track is assumed to 

represent the initiation of the typhoon event
1
. The geographical distribution of the 

location of the initiation of typhoon events thus obtained is shown in Figure 2.2. 

 

The initial condition of the historical typhoon events, i.e. location, translation direction 

and speed, and central pressure of typhoons at the time of the initiation of typhoon 

events and several times before the initiation are also obtained from the best track data, 

see Section 2.6 for the initial condition required for the simulation of typhoon events. 

 

Figure 2.2: Geographical distribution of the location of the initiation of historical 

typhoon events. 

                                                 
1 This is the case for 164 out of 1488 historical typhoon events considered in the development of the 

typhoon model. 



2. Typhoon model 

-33- 

 

2.5.2. Probabilistic model for the occurrence of typhoons 

The development of the probabilistic model for the occurrence of typhoons considering 

SST changes is examined using Bayesian probabilistic networks, see Figure 2.3 as an 

example. A Bayesian probabilistic network consists of nodes and edged links; the nodes 

in the network represent (random) variables and the directed edges represent the 

probabilistic dependence of the variables. For instance, in the network shown in Figure 

2.3 the probabilistic characteristics of the random variable Occurrence is defined as a 

function of the states of the SST, Latitude and Longitude and the probabilistic 

characteristics of the random variable SST is defined as a function of the states of the 

Latitude, Longitude and Month. The quantitative probabilistic dependencies of all the 

variables are estimated using EM-Learning algorithm (Hugin, 2006) and the using the 

historical data, i.e. the best track data and the SST data. The probability density and the 

probabilistic dependencies for each variable is represented by an empirical distribution. 

 

Figure 2.3: Bayesian probabilistic network for the occurrence of typhoons. 

Presently, it is possible to simulate the occurrence of typhoons in consistency with 

historical data, see Section 3.1. However, further investigation is required for the cases 

where the SST is assumed to be increased to the extent that no or not sufficient 

historical observations are available. For this, references and comparisons to the 

outcomes from other scientific works are needed, which rely on several physics-based 

climate models, see the report published by the Intergovernmental Panel on Climate 

Change (Solomon et al., 2007) for overview. Furthermore, the probabilistic model for 

the initial states of typhoons given the occurrence of the typhoons must be developed. 

 

Thus, the occurrence model that is developed is not employed; instead, historical 

observations of the initiation of the historical typhoon events, i.e. location of the 

occurrence and the initial state of the typhoons, are utilized (resampled) in the 

assessment of portfolio losses. Nevertheless, the comparison of the simulation results of 

the occurrence of typhoons using the occurrence model developed and the historical 

observations is shown in Section 3.1. 
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2.6. Transition model 

The transition model describes the probabilistic characteristics of the movement of 

typhoons and the change of the intensity of typhoons. The variables considered in the 

transition model are; the translation speed and direction, central pressure and radius of 

maximum wind speed of typhoons. Therein, the non-homogeneity of the characteristics 

of these variables in terms of space and season are considered: The probabilistic model 

for the translation is developed for each month (from January to December) and for 

each 5 -by-5  grid over the entire northwest Pacific area (see Figure 2.4) and the 

probabilistic model for the central pressure is developed for each month and for each of 

the 18 different zones (see Figure 2.5) over the entire northwest Pacific area. 

Furthermore, the models for the translation are developed for the typhoons which are 

travelling eastwards and westwards respectively for the grids located at latitude equal to 

or lower than 30 N. These gridding and zoning are established by trial and errors. In 

contrast, the radius of maximum wind speed is modelled as a random variable, which is 

applied for all the months and the areas close to the Japanese islands
2
. 

 

Figure 2.4: Grids and months for the probabilistic model for translation. 

                                                 
2 The assumption here is that the radius of the maximum wind speeds of a typhoon remains constant 

during the period when the typhoon is travelling close to the Japanese islands. 
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Figure 2.5: 18 zones for the probabilistic model for central pressure.                

(The model is developed for each individual month in the same way as the model for 

translation, but it is not illustrated in the figure.) 

2.6.1. Probabilistic model for the translation of typhoons 

The translation of typhoons is modeled by: 

1 2 3ln lni i i VV a a V a        (2.1) 

1 2 3 4 1i i i ib b V b b           (2.2) 

where iV  is the translation speed [km/h] at time step i , i  is the translation direction 

[ ] measured clockwise from north in the range of ( 180 ,180 ]  at time step i . 

ln iV  and i  are the difference of each respective quantity at the subsequent time 

steps, i.e. 1ln ln lni i iV V V    and 1i i i    . The time interval of the 

subsequent time steps is equal to 6 hours
3

. The coefficients 1 2 3( , , )Ta a aa , 

1 2 3 4( , , , )Tb b b bb  are constants for a given grid and month. V  and   are the 

residual terms, which are random variables representing the random fluctuations of the 

translation speed and angle. The residual terms V  and   are assumed to follow the 

normal distribution with the mean value equal to zero and the standard deviations equal 

to 
V

  and  
 respectively. Since the coefficients are estimated separately for 

eastwards ( (0,180]  ) and westwards ( ( 180,0]   ) moving typhoons, it is possible 

                                                 
3 In the simulation of typhoon events, the transition of typhoons is first simulated with the time interval 

of 6 hours using the transition model. Then, the simulated states of the typhoons, i.e. location, 
translation speed and central pressure, are linearly interpolated with the time interval of 10 minutes; the 
wind field of the typhoon is simulated using these interpolated states with the time interval of 10 
minutes. 
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that this model approach lead to a small discontinuity at 0  and 180  . The model is 

continuous at 0  and an investigation of the model results shows that the discontinuity 

at 180   is so small that it can be neglected, since the parameters are estimated and 

empirical calibrated using real data.  

 

The coefficients a  and b  and the standard deviations 
V

  and  
 are estimated 

by statistical analyses using the best track data for each individual grid and month and 

for each travelling direction, i.e. eastwards or westwards, if the grid is located at latitude 

equal to or lower than 30 N. In the case where sufficient data is not available for the 

statistical analyses for a particular grid and month, the values of the coefficients and the 

standard deviations estimated for one of the neighboring grids are substituted to the 

coefficients and the standard deviations for the grid and month. Thereby, the 

neighboring grid is chosen as such has the largest number of data in the neighboring 

grids for the month. Figure 2.6 shows the number of available data for the month July, 

August and September for eastwards and westwards moving typhoons. 

 

 

Figure 2.6: Number of data 

 

Some criteria were introduced such that they prohibit the realizations of unrealistic 

translation speed in the simulation. The thresholds in the criteria were determined based 

on the historical data. Figure 2.7 shows the translation speed of the historical typhoons 

at different latitudes for the month September and the thresholds (represented by the red 

line) were set to 60 km/h for latitude below 30° and 120 km/h above 30°. 
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Figure 2.7: Translation speed 

 

2.6.2. Probabilistic model for the central pressure of typhoons 

The change of the central pressure when typhoons are at sea is modeled by: 

, 1 1 2 , 3 , 1 4 , 2 5 6 CC i C i C i C i i i PP c c P c P c P c T c T            (2.3) 

where ,C iP  is the central pressure at time step i , iT  is the SST at the location where 

the considered typhoon is located at time step i  and 1i i iT T T   . The time interval 

of the subsequent time steps is the same as in the models for the translation and is equal 

to 6 hours. The coefficients 1 2 3 4 5 6( , , , , , )Tc c c c c cc  are constants for a given zone and 

month. 
CP  is the residual term, which is a random variable representing the random 

fluctuation of the change of the central pressure. 

The coefficients c  are estimated by statistical analyses using the best track data
4
 and 

SST data. The cumulative distribution function of the residual term 
CP  is estimated by 

the empirical distribution; i.e. the realizations of the residual term, which are calculated 

using the estimated coefficients and the data, are used to represent the distribution of 

CP
5
. This is because, by visual inspections of the realizations of the residual terms, it 

seems that the distributions of 
CP  significantly differ for different zones and months 

and any one of the common distribution families does not fit to the distribution of 
CP  

for all zones and months. The model for the central pressure is established for all the 

relevant zones and months without the substitutions as are employed in the case of the 

development of the model for the translation
6
. Note that since the SST data are not 

available for the periods of 1951-1970 and 2001-2006, the mean value of the SSTs at 

                                                 
4 The records of the track of typhoons that are at sea are used for the statistical analyses. 
5 In the simulation of typhoon events, these realizations of the residual terms are randomly re-sampled. 
6 In the case where the models are not established due to insufficient number of the data for the statistical 

analyses - which occurs only in irrelevant zones and months in the assessment of portfolios in Japan - 
the central pressure of typhoons is assumed not to change in these zones and months. 
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each location and month during the period of 1971-2000 is assumed to represent the 

SSTs for these periods and these SSTs are used for the statistical analyses. 

 

2.6.3. Interpolation of the typhoon tracks 

 

As described in Section 2.6.1, the typhoon track is estimated in 6h time steps. The 

discretization in 6h time steps has two disadvantages. First, it can happen that the 

simulated typhoon track points are not necessarily the points of the typhoon track which 

were the closest to the selected location and the track point which produces the highest 

wind speed for the selected location is missed. Second, it is possible that a simulated 

typhoon crosses the Japanese Islands within 6 hours. This would imply that the 

simulation produces a track point before and a track point after the Japanese islands, 

without applying the filling model in between. To overcome these drawbacks the 

typhoon tracks are linearly interpolated in 10min time steps if the typhoon is on land or 

close to the Japanese Islands as shown in Figure 2.8. 

 

Figure 2.8: Interpolation area 

2.6.4.Typhoon lysis 

 

It is assumed, that a typhoon is dissolved when the central pressure is equal or higher 

than the peripheral standard pressure (here, 1013 [hPa] is assumed) or if the typhoon 

leaves the considered area as shown in Figure 2.4. 
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2.7. Filling model 

The model thus established for the central pressure can be applied only when typhoons 

are at sea; after a typhoon makes landfall on the Japanese islands, the filling model 

explained below is applied until the typhoon either dissipates or passes through the land 

and is at sea again. 

 

The filling model is modeled as: 

  0 1 2 0exptP P d d P t        (2.4) 

where 0P  is the difference of the central pressure of a typhoon at the moment of the 

landfall and the peripheral pressure (here, 1013 [hPa] is assumed), tP  is the 

difference of the central pressure of the typhoon at time t  and the peripheral pressure, 

and t  is the time [hour] elapsed since the landfall. The coefficients 1 2( , )d dd  are 

constants and are estimated by statistical analyses using the best track data
7
. 

 

The uncertainties associated with the assumed functional form and the estimations of 

the coefficients are not considered in the simulation of typhoon events; that is, the 

deterministic function (2.4) with the estimated coefficients is utilized in the simulation 

of the typhoon events. Further investigation is required for the modelling of the change 

of the intensity of typhoons when they are on lands. This is addressed as one of future 

tasks. 

2.8. Probabilistic model for the radius of maximum wind speed 

The radius MR  of the maximum wind speed is assumed to be random but constant for 

each typhoon during the period when the typhoon is traveling around the Japanese 

islands. In order to estimate the probability distribution of MR , first the radiuses of 

maximum wind speed of the historical typhoons are estimated.  

 

The approach to estimate the radiuses of maximum wind speed of the historical 

typhoons is to employ the pressure field model proposed by (Schloemer, 1954a), which 

is utilized as part of the wind field model described in the subsequent section.  

exp M
r C

r
P P P

r

 
     

 
 (2.5) 

Whereby Mr  
is the radius of maximum wind speed, r  is the distance from the center 

of the typhoon to the considered location, CP  is the central pressure of the typhoon, 

rP  is the pressure at the considered location and 1013 CP P    is the difference 

between the peripheral pressure and the central pressure. 

                                                 
7 The records of the track of the typhoons which are on the Japanese lands are used for the statistical 

analyses. 
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Using both the observations for the pressure at the meteorological stations 
rP  and the 

central pressures of the typhoons CP , the radius of the maximum wind speed 
Mr  can 

be estimated by linearizing the equation and using a linear regression: 

1
ln r C

M

P P
r

P r

 
   

 
 (2.6) 

However, this approach can fail when typhoons are relatively far away from the 

Japanese islands since the number of the observations for the pressure at the 

meteorological stations that can be used for the statistical analysis is limited; for this 

reason only the data of the typhoons which were close to the Japanese Islands (in a 

radius of 250km) were used to estimate the probability distribution of MR . 

 

Using this approach the radius of the maximum wind speeds is estimated for all 

typhoons after 1970 which made landfall to the Japanese Islands. Based on these 

estimated values the radius of maximum wind speed is represented with a truncated 

lognormal distribution with the parameters 4.8  , 0.4815   and the distribution is 

truncated below 30 km and above 400 km. 

 

2.9. Wind field model 

The wind field model developed in this thesis is a deterministic model which describes 

the wind fields as a function of the relevant variables of the state of a typhoon. The 

variables required to describe the wind field are the central pressure Cp , the radius Mr  

of maximum wind speed, the translation speed v  and translation direction   of the 

typhoon. 

2.9.1. Model for pressure fields 

Using the central pressure Cp  and the radius Mr  of maximum wind speed of a 

typhoon at a given time, the pressure field is modeled as proposed by (Schloemer, 

1954a) as: 

( ) exp M
C

r
p r p p

r

 
     

 
 (2.7) 

where ( )p r  is the pressure at the location whose distance from the center of the 

typhoon is r  and p  is the difference between the central pressure and the peripheral 

pressure, i.e. 1013 Cp p    [hPa]. 
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2.9.2. Model for wind field as a function of pressure field 

 

The wind field induced by the typhoon at the time is modeled as proposed by Georgiou 

et al. (1983) and applied in other models, see e.g. (Meng et al., 1995a) using the 

pressure field ( )p r  represented by Equation (2.7) as: 

2
sin sin ( )

( , )
2 2

g

v fr v fr r p r
u r

r

 




   
   

 
 (2.8) 

where ( , )gu r   is the wind speed at gradient height at the location whose distance 

from the center of the typhoon is r  and whose angle measured clock-wise relative to 

the translation direction of the typhoon is  , see Figure 2.9. ( ) /p r r   is calculated 

using Equation (2.7). f  is the Coriolis parameter and   is the air density. Measuring 

the parameters in Equation (2.8) in terms of [kg] for mass, [m] for length and [s] for 

time, the Coriolis parameter is written as 41.46 10 sinf     [1/s] where   is the 

latitude of the representative location
8
 of the typhoon. 1.275   [ 3kg/m ] is adopted 

as the air density. Figure 2.10 shows an example of the wind field calculated using the 

wind field model, i.e. Equations (2.7) and (2.8). 

 

Figure 2.9: Coordinate system used in the wind field model. 

 

                                                 
8 The centers of typhoons are used as the representative locations of the typhoons. 
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Figure 2.10: Example of the wind field calculated using the wind field model. 

The wind speed gu  calculated in accordance with Equation (2.8) corresponds to the 

instant wind speed at the moment of the time step of the typhoon simulation and does 

not correspond to the 10-minute sustained wind speed
9
. The wind speed will vary with 

time due to the change of the characteristics of a typhoon (e.g. position, central pressure, 

translation speed and direction). Therefore it is assumed that the wind speed gu  

corresponds to a wind speed averaged during a one-hour period or longer, see e.g. 

(Vickery and Twisdale, 1995c) and (Matsui et al., 1998). However, the exact time period 

during which the wind speeds calculated by the wind field model are considered to be 

averaged is not necessarily required for the development of the hazard model. What is 

required in the development of the hazard model is the relation between the wind speed 

calculated by the wind field model and the 10-minute sustained wind speed at surface 

(as a function of land-use as explained in section 2.10); this relation can be empirically 

established by comparing the wind speeds reproduced using the wind field model and 

the observed 10-minute sustained wind speeds at meteorological stations during the 

historical typhoon events. 

 

                                                 
9 In the present typhoon model the maximum of 10-minute sustained wind speeds during each typhoon 

event is used as the hazard index. However, in principle other hazard indices may also be suitable. One 
of the reasons why the maximum of 10-minute sustained wind speeds is chosen as the hazard index in 
the present typhoon model is that it allows for the direct comparison of the wind hazard map 
established using the present typhoon model with the wind hazard map provided by the Architectural 
Institute of Japan Architectural Institute of Japan (2004). AIJ Recommendations for Loads on 
Buildings.. 
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2.9.3.Calculation of maximum 10-minute sustained wind speeds 

The meteorological data contains the records of the 10-minute sustained wind speeds 

only for the first 10 minutes every hour. Thus, it is possible that the true maximum 

10-minute sustained wind speed during a historical typhoon event may be larger than 

the maximum of the 10-minute sustained wind speeds during the event, which are 

recorded in the meteorological data. In order to take this into consideration in the 

assessment of the maximum 10-minutes sustained wind speeds using the hazard model, 

the following logic is assumed. 

 

First, it is assumed that each 10-minute sustained wind speed recorded in the 

meteorological data represents the wind speed over the next one hour; i.e. the recorded 

10-minute sustained wind speeds are assumed to be equal to the one-hour sustained 

wind speeds. Hence, the surface friction model described in Section 2.10 represents the 

relation between the wind speeds calculated by the wind field model and the one-hour 

sustained wind speeds at surface. 

 

Then, the one-hour sustained wind speeds are related to the maximum of the 10-minute 

sustained wind speeds during the corresponding one-hour periods as follows. Assuming 

that six non-overlapping 10-minute sustained wind speeds in one hour are independent 

and identically distributed and each of them follows a normal distribution with mean 

value equal to ,60su  and standard deviation equal to 
,10su , the cumulative distribution 

function of the maximum ,10sU  of the six 10-minute sustained wind speeds is obtained 

as: 
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 (2.9) 

where ( )   is the standard normal cumulative distribution function, ,60su  is the 

one-hour sustained wind speed and 
,10su  is the standard deviation of the 10-minute 

sustained wind speed at surface. By substituting into Equation (2.9) 
,10

2.6
su   [m/s], 

which is estimated for strong winds at surface using the detailed records of the wind 

speeds during several historical typhoons by (Matsui et al., 1998), the mean value of the 

maximum of the six 10-minute sustained wind speeds is approximated as: 

,10 ,60[ ] 3.3s sE U u   [m/s] (2.10) 

Finally, in the simulation of typhoon events, (1) the wind speeds at gradient height 

calculated by the wind field model are converted to the one-hour sustained winds using 

the surface friction model (see Section 2.10) and then (2) the one-hour sustained wind 

speed at surface are converted to the mean 10-minute sustained wind speeds at surface 

using Equation (2.10), see Figure 2.11. These conversions of the wind speeds are made 

for each location. In the following, the mean value ,10[ ]sE U  is referred to as the 
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10-minute sustained wind speed at surface calculated by the hazard model unless stated 

otherwise. 

 

Figure 2.11: Conversions of wind speeds ( gu  is the abbreviation of ( , )gu r   for any 

given location). 

2.9.4. Wind direction 

The wind direction is taken into account by the following assumption. The wind 

direction at gradient height at a considered location is the tangential vector (counter 

clock wise) at the circle with the center of the typhoon as center and the distance 

between the center of the typhoon and the considered location as radius of the circle as 

shown in figure 2.10. 

  

 

Figure 2.12: Coordinate system used in the wind field model. 

The consideration of wind direction facilitate to assess wind speeds at surface in more 

detail since different profiles of surface in different directions can be taken into account 

for the conversion of wind speeds at gradient height to wind speeds at surface (See 
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Section 2.10). The process for estimating the wind direction at surface level is explained 

in Section 2.10.2. 

2.10. Surface friction model 

The surface friction model developed describes the relation between the wind speeds at 

gradient height and the wind speeds at nominal height on surface and the relation 

between the wind directions at gradient height and the wind directions at nominal height 

on surface. The definition of the nominal height is explained later. Further, the surface 

friction model developed in this thesis is deterministic. 

2.10.1.Relation between the wind speeds at gradient height and at nominal 

height 

Taking basis in Davenport (1965) and Meng et al. (1997) the relation between the wind 

speed at gradient height and the wind speed at nominal height is assumed to be 

represented as: 

 

a

g g

g

z
u z u E

z

 
   

 

 (2.11) 

where gu  is the wind speed at gradient height at any given location calculated by the 

wind field model (see Equation (2.8); here, the augment ( , )r  is abbreviated), gE is 

the topological factor (see the explanation in Section 2.10.4) gz  is the gradient height 

and ( )u z  is the one-hour sustained wind speed at the height of z  (see the explanation 

in Section 2.9.3). These heights are measured from the adjusted surface level defined by 

the following equation (Simiu et al., 1976) , see Figure 2.13: 

0.75d h  (2.12) 

where h  represents the average height [m] of roughness elements, e.g. buildings, at the 

considered area, which is written as; 
0.86

0h Az  (Lettau, 1970) and , 11.4A

(Helliwell, 1971; Kondo and Yamazawa, 1986), see (Meng et al., 1995a). 0z  is the 

roughness length [m]. The nominal height is defined as the height of 10 [m] from the 

adjusted surface level. The exponent   and the gradient height gz  are assumed to be 

represented respectively as: 

   
2 3

10 0 10 0 10 00.27 0.09log 0.018 log 0.0016 loga z z z     (2.13) 
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where the modified Rossby number is written as  0/gRo u f z   , f  and   are 

the two parameters proposed by (Meng et al., 1997) for describing the structure of 

strong wind in the typhoon boundary layer and are given as: 

 

     
1 1

2 2, , ,
2

g g gu r u r u r
f f f

r r r


     
       

   
 (2.15) 
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  


   
      
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 (2.16)  

 

 

Figure 2.13: Coordinate system in vertical direction. 

 

Thus, the exponent   and the gradient height gz  can be calculated given the value of 

the roughness length 0z  using Equations (2.12) - (2.16). 

 

The procedure to identify the roughness length 0z  at each location on the Japanese 

islands is described in Section 2.10.3.  
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2.10.2. Relation between the wind direction at gradient height and at nominal 

height 

 

Taking basis in Meng et al. (1997) the inflow angle, which is describing the difference 

between the wind direction at gradient height and the wind direction at nominal height, 

is assumed to be represented as: 

 

 

1.1

1 0.4s

g

z
z

z
 

 
   

 

 (2.17) 

where  z  is the inflow angle at the height z , gz  is the gradient height and with 

   
1.13

1069 100 logS Ro 


   (2.18) 

where Ro  is the modified Rossby number and, f  and   are the two parameters 

proposed by (Meng et al., 1997) for describing the structure of strong wind in the 

typhoon boundary layer (see Equation (2.15) and (2.16)). 

 

 

Figure 2.14: Coordinate system used in the surface friction model. 

 

Figure 2.15 shows the wind field induced by the typhoon Songda (2004 18) at gradient 

height (left) and the wind field converted to surface height considering the roughness 

and the effect of the topography (right). 



2. Typhoon model 

-48- 

 

 

Figure 2.15: Wind field at gradient height (left) and wind field at surface height (right) 

of the typhoon Songda 2004 18.  

2.10.3. Roughness length 

The value of the roughness length 0z
 
is estimated for the surrounding area of the JMA 

stations using the gust factor (Grimmond and Oke, 1999; Verkaik, 2000) by applying 

the approach proposed by (Wieringa, 1986; Wieringa, 1993). In a next step the 

roughness lengths for the different land use categories are optimized by maximizing the 

correlation between the roughness length estimated from the gust factor and the 

roughness length estimated using the land use data. To estimate the roughness length for 

any selected location on the Japanese Islands, the following approach has been applied: 

 

It is assumed that the vertical profile of the wind speed is influenced by the state of the 

roughness within the range of 3 km of the upwind terrain (Wieringa, 1986). Following 

this assumption, the area around meteorological stations within a radius of 3 km is 

divided into 16 sectors with equal angles, and then the roughness length 0z  is 

estimated using the gust factor calculated out of the wind speed measurements as 

proposed by (Wieringa, 1986): 

 

  3
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 (2.19) 

 

Where Sz  is the height of the measurement device [m], U  is the average wind speed 

(10min sustained wind speed [m/s]), t  is the duration of the record [sec.] and G  is 

the gust factor calculated as (Ashcroft, 1994; Vickery and Skerlj, 2005): 

10

gustu
G

u
  (2.20) 
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Where gustu  is the gust wind speed and 
10u

 
is the 10-min sustained wind speed in m/s. 

Thereby, in order to exclude possible effects of local terrain on the wind speeds, such as 

steep slope, only the meteorological stations and the sectors where the tangent of the 

average slope is smaller than 7.5° are considered. 

 

In order to estimate the roughness length not only for the surrounding area of the 

meteorological stations but for the entire Japanese Islands the GIS-based land-use data 

is utilized. The land-use data contains the information on the use of the land at each grid 

on the 100m-by-100m grid system defined by the MLIT. The land use is differentiated 

by the categories in Table 2-2. 

 

In the land-use data from 2006 (compared to the previous years), there is no 

differentiation between the land-use category 7 "Building zone (sub urban)" and  8 

"Building zone (city)" (see Figure 2.16). In order to separate these two categories the 

map of city centres (available at: http://nlftp.mlit.go.jp/) was used to determine which 

"Building zone" belongs to the city and which to the sub urban area (see Figure 2.17). 

 

 

Figure 2.16: Land use data 

http://nlftp.mlit.go.jp/
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Figure 2.17: Land use data and map of city centers 

 

Then, the “optimal” values of the roughness lengths for each of the land use categories 

are identified by maximizing the correlation coefficient between the roughness length 

estimated using the gust factor and the roughness length estimated using the land use 

data. The roughness length for a considered location using the land use data is estimated 

by the following procedure: 

 

For estimating the roughness length for a considered location, the land use data within  

the circle segment with an angle of 22.5° and a radius of 3km of the upwind terrain is 

considered (Bartheelmie et al., 1993). This circle segment is divided into three areas as 

shown in Figure 2.18, in each of these three areas the average of the roughness length of 

the individual categories of the land use data is calculated. The average of the roughness 

length of these three areas is used as the roughness length for the considered location. 

 

Figure 2.18:Considered segment for estimating the roughness length. 
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Table 2-2: Categories of the land use data and the according roughness length 

Land use  Categories  Roughness length 

Rice field  1  0.01 

Plowed field  2  0.15 

Fruit farm  3  N/A 

Tree farm  4  N/A 

Woodland  5  0.60 

Waste land  6  0.01 

Building zone (sub urban)  7  0.60 

Building zone (city)  8 0.95 

Main line traffic zone  9  0.30 

Other land  A  0.10 

Lakes  B  0.0001 

River zone (unused)  C N/A 

River zone (artificial used)  D  N/A 

Beach  E  0.12 

Seawater  F  0.0001 

Golf  G  0.13 

No Data  H 0.0001 

2.10.4.Topography 

Topographic features, such as hills, escarpments and ridges, have strong effects on the 

wind speed profiles. These topographic features act as obstacles to the boundary layer 

and accelerating the wind near the surface. In many codes, there are methods to estimate 

this wind speed-up effect, a overview can be found at (Ngo and Letchford, 2008). 

 

The effect of the wind speed-up due to the topography is represented with the 

topography factor gE  as proposed in the AIJ load recommendations (Architectural 

Institute of Japan, 2004) and was investigated in detail in (De Sanctis et al., 2008). 
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Where 1 2 3, ,C C C  are the parameters determining the topography factor and depending 

on the topography shape (see Appendix B 10.2), inclination 
S  and distance  sX m  

from the top of the topographic feature to the construction site. When the inclination 
S  

is greater than 60 , the topography factor is assumed to be 60 .  Z m  is the height 

above ground. It is assumed to have the same value as bZ  when it is smaller than bZ . 

 SH m is the height of the topography and  SL m is the horizontal distance from the 

top of topographic feature to the point where the height is half the topography height as 

shown in Figure 2.19 and Figure 2.20. 

 

Figure 2.19: Escarpments 

 

Figure 2.20: Ridge-shaped topography 

 

For a particular inclination S  and a horizontal location /S SX H , the topography 

factor is calculated by linearly interpolating from the values at the nearest inclinations 

and horizontal locations. 

 

The inclination S  and the horizontal location is obtained from the elevation data, 

which contains the information on elevation at each grid on the 50m-by-50m grid 

system defined by the JMC. Figure 2.21 shows a section of the elevation data in the area 

of Tokyo. 
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Figure 2.21: Topographic map 

 

The topography factor gE  is calculated for each point on a 100m by 100m grid over 

entire Japan. For estimating the topography factor for a cell in the 1km by 1km grid the 

average of the 100 points within this grid is taken. 

2.11. Software tool for creating a hazard event set using the hazard 

model 

 

A hazard event set builder software tool is developed to create a stochastic event set 

using the typhoon model described in this chapter. This hazard event set builder is 

written in MATLAB and simulates (using a Monte Carlo simulation) typhoon events 

which correspond to a specified number of years. The output of this hazard event set 

builder are the simulated typhoon tracks and the corresponding wind speeds in the 

defined 1km by 1km grid over the Japanese Islands. A stochastic event set, which 

contains the typhoon events of 24'000 years, is established and used for the portfolio 

risk analysis described in Chapter 6. The hazard event set builder is also used to perform 

the simulations used for the studies described in Chapters 7 and 8. 
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3. Verification and validation of the typhoon model 

 

All the individual components of the developed typhoon model and the typhoon model 

as a whole are verified. The verification here refers to checking the consistency of the 

outcomes from these component models with respect to the historical observations. 

 

The validation of the developed typhoon model is done by establishing the typhoon 

model using only a part of the available historical observations. The statistics obtained 

from this established model is compared against the historical observations which aren't 

used for establishing the model. 

3.1. Occurrence of typhoons 

The simulation results of the occurrence of typhoons using the probabilistic model 

presented in Section 2.5 are compared with the historical observations. Figure 3.1 shows 

the occurrence rate of typhoons in each 1°-by-1° grid calculated using the historical data 

(left) and simulated using the probabilistic model (right). Whereas these figures show 

good agreement it is not verified to which extent the probabilistic model can be 

extrapolated to higher SST. 

  
Figure 3.1: Comparison of the occurrence of typhoons.  
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3.2. Transition of typhoons 

The simulation results of the transitions of typhoons are compared with the historical 

observations with respect to: (1) the frequency of the typhoons with certain intensities 

which cross certain latitudes, (2) translation angle and (3) translation speed of the 

typhoons at the moment when the typhoons cross these latitudes. Furthermore, the mean 

values of the number of the landfalls to the Japanese islands in each month are 

compared. 

 

First, the cumulative frequencies of typhoons crossing different latitudes ( 25 , 30 , 35  

and 40 ) between longitudes [120 , 160 ]  (see Figure 3.2) are compared as a function 

of the central pressure as shown in Figure 3.3. In the figure the comparison is shown for 

August and September. In the horizontal axis in the figure, a bar at "<950", for example, 

represents the mean frequency of the typhoons crossing the latitude with the central 

pressure smaller than 950 [hPa] at the moment when they cross the latitude. As it can be 

seen in the figure, the simulation results well represent the historical observations. The 

comparisons are made for other relevant months and they also show good agreements. 

 

 

Figure 3.2: Lines and area which the probabilistic characteristics of typhoons travelling 

through are compared. 
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Figure 3.3: Cumulative mean frequencies of typhoons crossing different latitudes 

between longitudes [120, 160 ]  for August and September. 
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Second, the probability distribution of the translation speed and direction of the 

typhoons at the moment when they cross certain latitudes is compared. Figure 3.4 shows 

the comparison in September and at latitude equal to 30 . As it can be seen in the 

figure, the simulation results well represent the historical observations. The comparisons 

are made for other relevant months and for the other latitudes and they also show good 

agreements. A comparison for different latitudes and different months is shown in the 

Appendix A 10.1. The variation increases at locations of higher latitudes. This can be 

explained by the fact that the difference in the state of typhoons is accumulated by the 

repetitive use of the different Markov models in the simulation. 

 

Figure 3.4: Cumulative distributions of the translation speed and direction of typhoons 

crossing the latitude of 30  between the longitudes [120, 160 ]  in September. 

Finally, the mean frequency of the landfalls of typhoons to the Japanese islands in each 

month is compared. As it can be seen in the figure, the simulation results well represent 

the historical observations for relevant months. Note that the numbers of landfalls of 

typhoons in the simulation results are significantly higher in March to May, October and 

November; however, these typhoons are weak and thus do not significantly contribute to 

portfolio losses. 

 

Figure 3.5: Mean frequency of the landfalls of typhoons in different months. 

 

For the purpose of verifying and validating the developed occurrence and transition 

models, the mean annual numbers of the typhoons simulated using these models that 
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intersect certain latitudes and make landfall to the Japanese islands are compared with 

those of the historical typhoons in two ways: Firstly, the occurrence and transition 

models are developed using historical data during the period from 1956 to 2006 and 

comparisons are made with the historical typhoons in the same period (the results are 

shown in Figure 3.6). Secondly, the occurrence and transition models are developed 

using the historical data of every-two years (odd years) during the period from 1956 and 

2006 and comparisons are made with historical data of the other every-two years (even 

years) during the same period (the results are shown in Figure 3.7). 

 

Figure 3.6 (left and centre) shows the comparisons of the statistics in the case of the 

month of September. In the figure, the mean annual numbers of the typhoons that 

intersect the latitudes of 30° and 35° within the range of the latitudes of 120° and 160° 

are compared as a function of the central pressure of the typhoons at the moment of the 

intersection. Figure 3.6 (right) shows the comparison of the mean annual numbers of the 

typhoons that make landfall to the Japanese islands in each month. These comparisons 

show good agreement, implying that the procedure for estimating the parameters of the 

occurrence and transition models is appropriate; i.e. the developed occurrence and 

transition models are verified. Figure 3.7 shows the comparisons of the same statistics 

as are shown in Figure 3.6, which, however, are obtained based on the occurrence and 

transition models developed using the “odd years” data and based on the historical 

“even years” data. These comparisons also show good agreement, implying that the 

overall approach described in the present chapter for the development of the occurrence 

and transition models is not sensitive to the data utilized; the developed models are 

validated in this sense. 

 

Figure 3.6: Verification of the procedure for the development of the occurrence and 

transition models. 



3. Verification and validation of the typhoon model 

-59- 

 

 

Figure 3.7: Validation of the approach employed for the development of the occurrence 

and transition models. 

3.2.1. Extrapolation of the transition model to the future 

 

In order to investigate if the developed typhoon model can be used to represent the 

characteristics of typhoons in the future, the occurrence and transition models are 

developed using the historical data of 1951 to 1978 and comparisons are made with 

historical data of the years 1979 to 2006 (the results are shown in Figure 3.8).  

 

Figure 3.8 shows the comparisons of the same statistics shown in Figure 3.6, which, 

however, are obtained based on the occurrence and transition models developed using 

the first half of the available years of the data (1951 to 1978). These comparisons show 

acceptable agreement, although Figure 3.8 shows that the simulation results based on 

the models developed on the years 1951 to 1978 underestimate the number of typhoons 

with low central pressure. This implies that further investigations have to be done to 

analyze if there is a trend in the historical data, which has to be considered or if the 

insufficient number of data to establish the models (only 50% of the available data is 

used) is the reason for this discrepancy, before the typhoon model is used to predict 

future scenarios. 

 

Figure 3.8: Extrapolation of the typhoon model to the future. 

 



3. Verification and validation of the typhoon model 

-60- 

 

3.2.2. Seasonal differences in the transition model 

To analyze the effect of the consideration of the seasonal difference, the occurrence and 

the transition model are developed considering and without considering the seasonal 

difference. The simulation results of the model considering the seasonal difference, the 

simulation results of the model without considering the seasonal difference and the 

historical data are compared in Figures 3.9 to 3.12. 

 

The probability distribution of the translation speed and direction of the typhoons at the 

moment when they cross certain latitudes is compared. Figure 3.9 shows the comparison 

for all months and at latitude equal to 25  and 30 . As can be seen in the Figure 3.9, 

the simulation results of both models do not have a bias and both well represent the 

historical observations over all months. 

 

The difference of the simulation results of the two models (one considering and one not 

considering the seasonal difference) can be seen in the comparison for the individual 

months. Figures 3.10 to 3.12 show that the simulation results of the model considering 

the seasonal difference reproduces the historical data better than the model which does 

not consider the seasonal difference. 

 

Figure 3.9: Comparison of the effect of considering the seasonal difference in the 

transition model for all months. 
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Figure 3.10: Comparison of the effect of considering the seasonal difference in the 

transition model for July. 

 

Figure 3.11: Comparison of the effect of considering the seasonal difference in the 

transition model for August. 
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Figure 3.12: Comparison of the effect of considering the seasonal difference in the 

transition model for September. 

 

3.3. Winds induced by typhoons 

The performances of the developed wind field model and surface friction model are 

assessed by comparing the time histories of the observed wind speeds (10-minute 

sustained wind speeds) and the wind directions with those which are computed using 

the developed wind field model and surface friction model together with the JMA best 

track data as the input to these models. Figure 3.13 (left and centre) shows the time 

histories of the wind speeds and directions at two meteorological stations during the 

typhoon event Bart and Yancy. The computed wind speeds show good agreement with 

the observed wind speeds especially at the maximum wind speeds during the event. 

Figure 3.13 (right) shows the comparison of the maximum wind speeds (observed wind 

speeds vs. computed wind speeds) at all the JMA stations for the same typhoon event. 

Figure 3.14 shows the same comparisons for the typhoons Mireille and Songda. 

 

Whereas the computed and observed wind speeds scatter, these are highly correlated 

and unbiased. One of the main reasons for the scattering of the computed and observed 

wind speeds can be possible failure to estimate “correct” roughness categories and 

corresponding roughness lengths of surrounding areas; different roughness 

categories/lengths result in large differences in the computation of the wind. 
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Figure 3.13: Time histories of the wind speeds, wind directions and the maximum wind 

speeds at two meteorological stations during several historical typhoon events. 
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3.14: Time histories of the wind speeds, wind directions and the maximum wind speeds 

at two meteorological stations during several historical typhoon events. 
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3.4. Wind hazard map 

For the overall verification of the hazard part of the developed typhoon model, a wind 

hazard map is established for the area in Japan using the hazard part of the typhoon 

model and is compared with the wind hazard map provided by the Architectural 

Institute of Japan, see (Architectural Institute of Japan, 2004)
 10

. The comparison is 

made for the wind speeds corresponding to 100-year and 500-year return periods 

(hereafter, referred to as 100-year wind speed and 500-year wind speed respectively). 

Table 3-1 shows the comparison at several locations in Japan, see also Figure 3.15. The 

100-year and 500-year wind speeds obtained using the developed hazard model are very 

close to those provided by the AIJ except for Okinawa
11

. However, it should be 

mentioned that there is a tendency that in the AIJ wind hazard map the differences of the 

wind speeds at coastal area and at neighboring inland area are more significant. The 

reason for this is not clear as the detailed procedure used by AIJ is not available. One 

possible reason may, however, be the different assumptions regarding the filling model. 

This should be investigated further. 

 

Table 3-1: Comparison of 100-year and 500-year wind speeds. 

 
(Unit: m/s) 

(*ETH refers to the hazard part of the developed typhoon model.) 

                                                 
10 The wind hazard map provided by the AIJ considers not only strong winds induced by typhoons but 

also due to other wind storm events, such as winter storms. However, it is reasonable to assume that the 
extreme events of strong winds, such as events corresponding to 100-year and 500-year return periods 
are caused by typhoons in most of the regions of Japan. Note also that whereas the development of the 
wind hazard map provided by the AIJ takes basis in the simulation using probabilistic models, the 
simulation is made not for the entire lifetime of typhoons; the typhoon events are simulated starting 
from the coast lines of the Japanese islands. 

11 In the wind hazard map provided by the AIJ, the maps for 100-year and 500-year wind speeds are not 
provided for Okinawa. Instead, these are provided in terms of table without differentiating the locations 
within Okinawa (Note that Okinawa consists of many islands which locate far away from each other). 
Thus, it is not possible to precisely compare between the wind speeds obtained using the Aon-ETH 
model and the wind speeds provided by the AIJ for Okinawa. 
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Figure 3.15: Locations at which 100-year and 500-year wind speeds are compared in 

Table 3-1. 
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4. Treatment of epistemic uncertainties in the typhoon model 

 

The consideration of the uncertainties involved in the modelling of the typhoons and in 

the portfolio risk analysis is a main focus of the developed Bayesian framework for 

probabilistic modelling of typhoon risks. The epistemic uncertainties in the developed 

typhoon model due to the modelling of the phenomena are quantified for each sub 

model. The statistical based occurrence model and the transition model directly 

consider the modelling uncertainties. The uncertainties associated with the 

deterministic wind field model and the surface friction model are considered indirectly 

in the vulnerability model (See Section 6.1.1). Apart from the statistical uncertainties 

involved in estimating the parameters of the sub models, epistemic uncertainties arise 

also from the selection of a model and due to the assumptions made in the typhoon 

model. For each sub model, several different model approaches are possible. Selecting 

one model approach, specifying the boundary conditions, choosing the appropriate data 

set and defining the assumptions in the model contributes to the epistemic 

uncertainties. 

 

This chapter addresses the issue of the integration of the epistemic uncertainty into 

typhoon risk assessment. First, an approach for identifying and quantifying epistemic 

uncertainty is presented, based on the methodology proposed by Nishijima et al. 

(2011). On this basis, and restricting the focus to the epistemic uncertainty associated 

with the typhoon transition model, the variability of the analysis results due to the 

epistemic uncertainty is quantified. For example, the variability is quantified in terms 

of the relevant statistics such as annual probability of failure of a structure and 

portfolio losses corresponding to certain return periods. 

 

In this study, the typhoon risk model developed in (Graf et al. (2009)) is employed as a 

basis, and the model is extended to encompass the epistemic uncertainty associated 

with the typhoon transition model. The approach presented here, however, is general, 

and can be applied to the other parts of the typhoon risk model as well as anonymous 

typhoon risk models. Also the epistemic uncertainties due to the assumptions made in 

the models should be investigated with the same procedure. 

 

4.1. Introduction 

Over the last years the standard methodology for the probabilistic modeling of typhoon 

events has been established. There, due to different assumptions in regard to the 

modeling of phenomena inherent in typhoon events and different sets of data employed 

in the development of the models, the hazard/risk analyses with different models 

usually result in different evaluations of the hazard/risk; however, this variability of the 
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analysis results is not fully appreciated in practical typhoon risk assessments, although 

it is well recognized. 

 

From a Bayesian statistical perspective, the variability of the models is understood as 

the consequence of the lack of knowledge and data, and is treated as epistemic 

uncertainty. Within the Bayesian statistical framework, the treatment of the epistemic 

uncertainty together with the aleatory uncertainty, which represents the randomness of 

phenomena in nature, has been discussed, and the rationale and mathematical 

formulation for the treatment of the epistemic uncertainty are presently readily 

available. 

 

The following section presents a framework how the epistemic uncertainties due to the 

model selection can be quantified and integrated in the risk assessment and the 

decision analysis (Graf and Nishijima, 2011). 

4.2. Background 

 

During the last few decades the probabilistic modeling of natural hazards and their 

risks generally has experienced significant improvement and many successes not only 

in methodology, but also in their applications. Important applications include 

risk/reliability-based structural design, determination of design loads in building 

design codes, insurance loss estimations of engineered facilities and portfolios, and 

risk mapping to facilitate efficient resource allocations for risk reduction measures. 

More recently, research has been directed also to apply these probabilistic models to 

facilitate real-time decision making such as evacuation of people and assets in the face 

of emerging natural hazards, see e.g. Nishijima et al. (2009) and Anders and Nishijima 

(2011). 

 

In parallel to this, a number of models for tropical cyclones have been developed, 

primarily in industrial domain, but also in public/academic domain (e.g. HAZUS 

(Department of Homeland Security, 2011) and FPHLM (Hamid et al., 2010)); see the 

IWTC-VII report (2010) for the overview of the state of the art for tropical cyclone 

risk modeling. It is fair to say that presently decision makers concerning the 

management of tropical cyclone risks are readily accessible to these models. 

 

Sharing the common methodologies and similar data sets in the modeling, however, 

models developed based on these often result in significantly different assessments of 

risks. These differences come from the use of different data sets, different modeling 

schemes, and different specifications of the modeling schemes. An example of the 

latter is the size of spatial/temporal discretization, in which the underlying random 

phenomena are considered to be homogenous. In spite of the presence of advanced 

statistical techniques, the identification of the best modeling scheme and the best 
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specification are difficult, hence, these are often highly subjective, presumably 

contributing to the large variability of the risk assessments. 

4.3. Status in practice and state-of-the-art 

This type of variability is generally understood as epistemic uncertainty, which arises 

from the lack of sufficient data and/or knowledge. Note that in contrast to the 

epistemic uncertainty, randomness in nature is called aleatory uncertainty. The general 

treatment of both types of uncertainty in risk assessment and formal decision analysis 

has been, since decades, an issue of attention in civil engineering and other fields. 

Presently, the general framework for the treatment of the uncertainties is readily 

available, see e.g. Paté-Cornell (1996). 

 

However, in practice the epistemic uncertainty is often ignored, mixed up with aleatory 

uncertainty otherwise treated in ad hoc manners, which can lead to erroneous 

assessment of risks. Such examples are investigated in detail in Nishijima et al. 

(2008b). Exceptions for these are found in the state-of-the-art projects for seismic 

hazard assessment for nuclear facilities at Yucca mountain in USA and in Switzerland 

(PEGASOS project). In these projects epistemic uncertainties are explicitly and 

consistently taken into account in the assessment of the seismic hazards. In regard to 

tropical cyclones, a unique study has been undertaken to quantify the variability of the 

risk assessment results using different models, taking basis in the areas of Florida and 

North Carolina in USA. (Watson and Johnson, 2004). 

 

4.4. Challenging issues 

The ultimate objective of probabilistic modeling and risk assessment is to facilitate 

decision makers to identify optimal decisions. Seen in this light, together with the 

current status described above, the following issues are addressed as future tasks in 

regard to the tropical cyclone risk management: 

 

 Separation of aleatory and epistemic uncertainties. 

 Quantification of epistemic uncertainty. 

 Implementation of these uncertainties in the formal framework for risk 

assessment and decision analysis. 

 

The explanation for the individual tasks is given in Section 4.5 with the introduction to 

the general framework for the uncertainty treatment. 

 

As a first step for challenging these tasks, the present chapter focuses on the 

assessment of the hazard variability that comes from the use of different assumptions 

in the models, different modeling schemes and data sets, and the specification of the 
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modeling schemes; which is addressed as a part of the second task “quantification of 

epistemic uncertainty”. 

 

The present chapter is structured as follows. In Section 4.5 the general framework for 

the uncertainty treatment in risk assessment and decision analysis is introduced, 

whereby accounting for the tasks mentioned above. In Section 4.6, the typhoon risk 

model developed the author is introduced. This model is used as the reference typhoon 

model in Chapter 4, based on which several variants of the modeling schemes and the 

specification of the schemes are developed and risk assessments are systematically 

performed (Sections 4.7 to 4.10). The results are shown in Section 4.11. Discussion 

and conclusion follow. 

4.5. General framework for uncertainty treatment 

The general framework for the uncertainty treatment in risk assessment and decision 

analysis is briefly presented, taking basis in the review by Nishijima et al. (2008b). 

A probabilistic modeling problem in risk assessment and decision analysis can in 

general be represented as a problem involving the expectation operation (in some cases 

a conditional expectation) over a function ( )g X  of aleatory random variables 

1 2( , ,..., )nX X XX  as: 

 [ ( )] ( ) |E g E E g   Θ X
X X Θ  (4.1) 

The random variables X  are characterized by the joint probability distribution 

function ( | )FX x θ  conditional on the epistemic random variables Θ

1 2( , ,..., )m   , which in turn are characterized by the probability distribution function 

( )FΘ θ . Thus, ( | )FX x θ  corresponds to the elicited probabilistic model and together 

with ( )FΘ θ  constitutes the probabilistic assessment model, see Figure 4.1. Here in the 

context of the present chapter, the aleatory random variables X  represent the 

randomness on tropical cyclones and their consequences, and the epistemic random 

variables Θ  represent possible modeling schemes and possible specification of the 

modeling schemes. Note that the expected value [ ( )]E g X  can correspond to e.g. the 

expected utility (loss) in case where ( )g X  is the utility (loss) function; probability of 

failure in case where ( )g X  is a an indicator function, which takes the value of one for 

the failure domain; otherwise zero. 

 

Equation (4.1) and Figure 4.1 show the roles of aleatory and epistemic uncertainties in 

probabilistic modeling; and importantly, the order of the integration of the function 

( )g X  over the possible realizations of the set of the variables ( , )X Θ . As shown in 

Nishijima et al. (2008b), a violence of this can lead to an erroneous assessment of the 

expected value of ( )g X ; e.g., probability of failure or risk. Here is the context where 

the first challenging issue is addressed. 
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Having separated aleatory and epistemic uncertainties, the epistemic uncertainty has to 

be quantified in terms of the probability distribution function ( )FΘ θ ; hence, the 

second challenging task. 

 

 

Figure 4.1: Probabilistic assessment subject to aleatory and epistemic uncertainties 

(after Nishijima et al. (2008b)). 

 

Finally, the decision analysis is formulated by taking into account the decision 

variables in the framework. Here, two types of decision variables are distinguished; i.e. 

action decisions a , and test decisions b , see Jensen and Nielsen (2007). Action 

decisions change the characteristic of the underlying random phenomena. For instance, 

retrofit of a structure can change the structural performance of the structure. Test 

decisions change the decision makers’ perception on the underlying the phenomena. 

For instance, consideration of detail information on land profile may reduce the 

uncertainty of the estimation of the wind speed induced by tropical cyclones. The 

objective function in the decision analysis is thus given as: 

 [ ( , , ) | , ] ( , , ) | , |E g E E g   Θ X
X a b a b X a b Θ a b  (4.2) 

where the function g  is now also a function of a  and b . The optimal decisions are 

identified based on the objective function. The formulation of such decision problems 

is the third challenging task.  

 

The proposed framework to integrate the epistemic uncertainties due to the different 

assumptions in the models, different model selection and the use of different data sets, 

in the decision analysis contains five steps as shown in Figure 4.2. First, all relevant 

alternative models have to be identified and implemented. Second, the variability of 

the hazard assessment due to the different alternative models can be investigated. 

Third, to combine the different alternative models a weight, which represents the 

degree of believe for each alternative model has to be selected. Fourth, the 

combination of the weighted alternative models can be used to quantify the 

uncertainties due to the model selection. Fifth, the uncertainties due to the model 
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selection have to be implemented into the framework for the risk assessment and  

decision analysis. In the following example step one and two are investigated and 

implemented into a example. 

 

Figure 4.2: Framework to integrate epistemic uncertainties due to model selection into 

the decision analysis. 

4.6. Reference Typhoon model 

 

The typhoon model introduced in Chapter 2 is utilized as the reference typhoon model 

(Graf et al., 2009). Having briefly repeated the structure of the typhoon model in 

Section 4.7, the transition model (introduced in Section 2.6 ), which is a part of the 

typhoon model, is recapped in Section 4.8, since the variability due to the different 

modeling schemes for the transition model and their specifications are focused and 

investigated in the following. 

4.7. Overview of the typhoon model 

The developed typhoon model consists of two parts; a hazard model and a 

vulnerability model. The hazard model describes the probabilistic nature of the entire 

life-time of typhoons and associated wind fields from their occurrence to dissipation. 

The hazard model is composed of four sub-models; i.e. occurrence model, transition 

model, wind field model and surface friction model. The vulnerability model 

represents the probability distribution of the loss of individual exposures as a function 

of the wind speed, see Figure 4.3. 
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Figure 4.3: Components of the developed typhoon model. 

4.8. Transition model 

The transition model describes the probabilistic characteristics of the movement of 

typhoons and the change of the intensity of typhoons. The state of a typhoon is 

described by the following variables: the translation speed and direction, central 

pressure and radius of maximum wind speed of the typhoon. Therein, the spatial and 

temporal non-homogeneities of the probabilistic characteristics of these variables are 

considered. Namely, the probabilistic model for the translation is developed for each 

month (from January to December) and each 5 -by-5  grid (see Figure 4.4); the 

probabilistic model for the central pressure is developed for each month and each of 

the 18 different zones (see Figure 4.5). 

 

Taking basis in the approach presented in Vickery et al. (2000) the changes of the state 

concerning the movement of typhoons are modeled by Markov chains (Brooks, 1998) 

as: 

1 2 3ln lni i i VV a a V a        (4.3) 

1 2 3 4 1i i i ib b V b b           (4.4) 

where iV  is the translation speed [km/hour] and i  is the translation direction [°] at 

time step i . The time interval between the subsequent time steps is 6 hours. ln iV  

and i  respectively represents the difference of the logarithms of the translation 

speeds and of the translation directions between the subsequent time steps. The 

coefficients  1 2 3, ,a a a  and  1 2 3 4, , ,b b b b  and the probability distributions of the 

random terms V  and   are estimated for each grid, each month and each of 

easterly and westerly headed typhoons using the JMA best track data. 

The variables concerning the intensity of typhoons are the central pressure and the 

radius of maximum wind speed. The change of the central pressure is modeled by: 
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, 1 1 2 , 3 , 1 4 , 2

5 6           
C

C i C i C i C i

i i P

P c c P c P c P

c T c T 

     

   
 (4.5) 

where ,C iP  is the central pressure [hPa] of a typhoon at time step i , iT  is the SST at 

the location where the typhoon is located at time step i  and iT  is the difference 

between the SSTs at the locations of the typhoon at time steps i  and 1i  . The 

coefficients  1 2 6, ,...,c c c  and the probability distribution of the random term 
CP  are 

estimated for each zone and each month using the JMA best track data in the period 

between 1951 and 2006 and the SST data in the period between 1971 and 2000.  

 

The model described above can be applied only when the typhoon is at sea; after the 

typhoon makes landfall, the filling model below is applied until the typhoon either 

dissipates or passes through the land. The filling model is represented (Vickery, 2005) 

as: 

  0 1 2 0exptP P d d P t        (4.6) 

where 0P  is the central pressure of the typhoon at the moment of the landfall, tP  

is the difference of the central pressure of the typhoon at time t  and the peripheral 

pressure (here, 1013 [hPa] is assumed), and t  is the time [hour] elapsed since the 

landfall. The coefficients 1 2( , )d d  are estimated using the JMA best track data. 

 

The radius of maximum wind speed is modeled as a random variable in the area around 

Japan, based on the historical data set. 

 

 

Figure 4.4: Spatial grids and temporal slices for the probabilistic model for translation. 
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Figure 4.5: Spatial zones and temporal slices for the probabilistic model for central 

pressure. 

4.9. Alternative models 

To investigate the variability due to the different modeling schemes and their 

specifications in the transition model, eight different alternative models are 

established. The parameters considered here are: discretization in time and space, the 

order of Markov chains for the transition, and different data sets. The alternative 

models are labeled from 1 to 8, and the reference model introduced in the previous 

section is labeled as 0, see Table 4-1. 

4.9.1.Discretization in space and time 

The alternative models 1 to 3 represent different discretization in which the 

probabilistic characteristics are assumed homogeneous. The grid sizes of the respective 

models are 2 -by-2 ,  4 -by-4 and 10 -by-10 . The alternative model 4 does not 

consider the seasonal difference of typhoon development in different months; i.e. the 

probabilistic characteristics of typhoons are identical in all the months.  

 

Here, a tradeoff between the justification of the homogeneity in discretized time and 

space and the number of samples available becomes a critical issue. In general, a finer 

discretization is more likely to capture inhomogeneous characteristics, if any; however, 

the lack of sufficient number of samples may lead to a failure to judge the significance 

of the differences in the characteristics and also lead to unreliable models due to the 

large statistical uncertainty; as a consequence, the choice of the grid sizes are often 

subjective. Note here that in principle such a statistical uncertainty could be taken into 

account in the framework introduced in Section 4.5, which however is usually not the 

case in practice. 
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4.9.2.Functional form of transition 

The alternative model 5 considers a different order of Markov model for the typhoon 

movement, which corresponds to the model proposed by Kerry Emanuel (2006b). This 

replaces the Equations (4.3) and (4.4) by the following two equations: 

1 2ln lni i VV a a V      (4.7) 

1 2 3 1i i ib b b          (4.8) 

4.9.3.Functional form of intensity 

The alternative model 6 replaces Equation (4.5) which concerns the change of the 

central pressure by: 

, 1 1 2 , 3 , 1 4 5 CC i C i C i i i PP c c P c P c T c T          (4.9) 

The alternative model 7, which is proposed by Jianming Yin (2009), considers the 

previous three time steps of the central pressure without considering the sea surface 

temperature (SST) as: 

, 1 1 2 , 3 , 1 4 , 2 CC i C i C i C i PP c c P c P c P         (4.10) 

4.9.4.Data sets 

The best track data set provided by the China Meteorological Administration 

(hereafter, CMA) in the period between 1949 and 2008 is used to establish alternative 

model 8, instead of the best track data set provided by the JMA. 

4.10. Overview of the alternative models 

Table 4-1 shows the list of the alternative models and the differences of the parameters 

relative to the reference model. Each alternative model is systematically developed; 

hence, no subjective “tuning-up”. 
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Table 4-1: Summary of the alternative models. The differences relative to the reference 

model 0 are highlighted.  

 

Model Equation used to 

estimate 

Grid size Data set Seasonal difference 

ln iV  i  , 1C iP   

0 (4.3) (4.4) (4.5) 5°x5° JMA yes 

1 (4.3) (4.4) (4.5) 2°x2° JMA yes 

2 (4.3) (4.4) (4.5) 4°x4° JMA yes 

3 (4.3) (4.4) (4.5) 10°x10° JMA yes 

4 (4.3) (4.4) (4.5) 5°x5° JMA no 

5 (4.7) (4.8) (4.5) 5°x5° JMA yes 

6 (4.3) (4.4) (4.9) 5°x5° JMA yes 

7 (4.3) (4.4) (4.10) 5°x5° JMA yes 

8 (4.3) (4.4) (4.5) 5°x5° CMA yes 

4.11. Variability of hazard assessment between alternative Models 

Using these alternative models for the transition, and the other parts of the typhoon 

model developed by the author, Monte Carlo simulations are performed to investigate 

the variability of the hazard assessment. 

4.11.1.Variation of the statistics on typhoon transition 

Expected values of the annual numbers of typhoons that intersect the line segments at 

latitudes 30° and 35° within the range of the longitudes of 120° and 160° (see Figure 

4.6) are first compared. 

 

 

Figure 4.6: Line segments at which the numbers of typhoons are counted. 
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Figure 4.7 shows the expected values of the annual numbers for the individual 

alternative models and the estimates using the best track data sets. It is seen that the 

expected values do not significantly differ for the different alternative models. The 

expected values obtained by the simulations tend to be slightly lower than the 

estimates from the best track data sets. A possible reason for this is that the criteria 

differ for terminating the simulation of a typhoon and for terminating the record of a 

typhoon in the data sets. 

  

 

Figure 4.7: Expected numbers of typhoons that intersect the line segments at different 

latitudes. 

 

Figure 4.8 and Figure 4.9 show the comparisons of the transition angle and speed as 

well as central pressure at the line segment at latitudes 30° and 35°. In Figure 4.10, the 

variability is illustrated for the individual parameters (i.e. discretization, order of 

Markov models, and data set). 

 

 

Figure 4.8: Cumulative distributions of the direction of movement (left), of the 

translation speed (centre) and of the central pressure of typhoons (right) crossing the 

latitude of 30° between the longitude [120,160°] in September for the different 

alternative models. 
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Figure 4.9: Cumulative distributions of the direction of movement (left), of the 

translation speed (centre) and of the central pressure (right) of typhoons crossing the 

latitude of 35° between the longitude [120,160°] in September for the different 

alternative models. 

 

 

Figure 4.10: Cumulative distributions of the direction of movement of typhoons 

crossing the latitude of 30° between the longitude [120,160°] in September for the 

alternative models with different discretization (left), different functional form (centre) 

and different data set (right). 

 

 

Figure 4.11: Maximum wind speeds as a function of return period for Ishigaki (left), 

Tokyo (centre) and Sapporo (right) for the different alternative models. 
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Figure 4.12: Maximum wind speeds as a function of return period for Tokyo for the 

alternative models with different discretization (left), different functional form (centre) 

and different data set (right). Variation of the maximum wind speed of the alternative 

models . 

The maximum 10-minute sustained wind speeds for each typhoon event, adjusted to 

the height of 10 meters from the surface and roughness category II specified by the 

Architectural Institute of Japan (see AIJ load recommendation (Architectural Institute 

of Japan, 2004)), are considered. The wind speeds are simulated at three locations in 

Japan (Ishigaki, Tokyo and Sapporo, see Figure 4.13). Based on the simulations, the 

maximum wind speeds are estimated as a function of return period. 

 

Figure 4.11 shows the maximum wind speeds at Tokyo, Sapporo and Ishigaki, which 

are obtained from the different alternative models. The maximum wind speeds 

obtained from the different alternative models differ by 2 to 3 [m/s] at the return period 

of 100 years. The variation increases at locations of higher latitudes. This can be 

explained by the fact that the difference in the state of typhoons is accumulated by the 

repetitive use of the different Markov models in the simulation. Figure 4.12 shows the 

variability associated with the individual variables at Tokyo. It is found that the major 

contribution to the variability is the discretization and data sets, while the contribution 

by the functional form is minor. 

 

 

Figure 4.13: Locations of the cities where the annual maximum 10-min sustained wind 

speed are compared.
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5.  Updating of the typhoon model 

Probabilistic models are typically implemented into risk management systems using 

whatever relevant information is available prior to the implementation. However, in the 

course of time more information becomes available and it is of significant practical 

importance to be able to update the probabilistic models based on the new information. 

 

A main feature of the proposed Bayesian framework for probabilistic modelling of 

typhoon risk is the updating of the models with all the data available after one or more 

typhoon events have occurred. This feature facilitates to update the typhoon model 

after a certain period of time, for example in the end of a year, when all the information 

is organized as data. So, over time, the model will better represent the phenomena.  

 

The following Sections 5.1 to 5.5 describe a theoretical approach as to how the new 

available information can be used in a most efficient way to update a hazard model. 

 

For updating the developed typhoon model a model builder software tool has been 

created, which is described in Section 5.6. This model builder automatically establishes 

a typhoon model using all the available information as input. 

 

5.1. Background  

 

The present chapter investigates a Bayesian approach for the updating of probabilistic 

models in the context of risk management of natural hazards. Bayesian probabilistic 

networks are proposed to form the basic tool for the probabilistic representation of 

knowledge and uncertainties. Updating of models is performed by instantiating the 

variables of the Bayesian probabilistic networks corresponding to observations from 

events of natural hazards. This approach, however, necessitates that large Bayesian 

probabilistic networks can be efficiently handled and for that purpose a compact object 

based representation of Bayesian probabilistic networks is suggested. The proposed 

methodology is applied to three illustrative examples considering updating of fragility 

model parameters. It is illustrated how commonly applied techniques for model 

updating in natural hazards risk assessments may lead to somewhat biased model 

parameter estimates. Furthermore, it is shown how available information on hazard 

intensities as well as on damages of structures can be utilized at the same time for the 

updating of the fragility model parameters in a consistent and efficient way. 
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5.2. Introduction 

 

Probabilistic models play a central role in assessing and managing risks due to natural 

hazards. Typically a risk model is comprised by several individual model constituents, 

each of which is developed to model the relationship between input and output 

variables. Whereas the probabilistic models aim at describing the probabilistic 

characteristics of the constituents that are relevant to risks, the models themselves are 

in general subject to significant uncertainties. The main reason for this is on the one 

hand due to the natural variability of the hazard phenomenon itself (aleatory 

uncertainty) and on the other hand that the models are established as simplifications of 

the true nature based on imperfect engineering knowledge and/or limited data 

(epistemic uncertainty). Corresponding to the extent of simplifications and the 

imperfect understanding of the physical phenomena as well as to the degree of the 

availability of data, the models involve modelling uncertainties and statistical 

uncertainties. These types of uncertainties must be appropriately accounted for in the 

assessment of risks (Faber, 2005).The process of managing risks may be considered as 

a repeated sequence of actions with the purpose of optimizing measures of risk 

reduction, collection of information and updating of models. This perspective 

effectively implies that any probabilistic model should have the potential to 

incorporate available information in an efficient and consistent way. Herein, the term 

efficiency refers to the use of information available in such a way that the uncertainties 

of the quantities of interest can be reduced the most. The term consistency refers to the 

requirement that the developed probabilistic models should reflect the available 

knowledge and data in an unbiased manner and reflect the prevailing uncertainties and 

dependencies. However, these requirements to probabilistic models are in fact often 

not fulfilled in practice; it is typical that information which might be obtained in regard 

to evolving hazard events is simply disregarded. Such information, however, if utilized 

for the purpose of updating, carry the potential of improving the accuracy of risk 

estimates. Furthermore, the data which can be collected after hazard events and 

provides a basis for improving the probabilistic models for representing both hazards 

and fragilities are sometimes utilized less than optimally and even incorrectly. 

 

5.3. Problem setting 

 

Probabilistic models used in risk management of natural hazards typically may be 

understood as individual constituents of the overall risk model. Constituents may e.g. 

be hazard models, fragility models and vulnerability models that represent the physical 

hazard phenomena, the resistance of structures exposed to hazards and the resulting 

losses in terms of e.g. financial costs, fatalities and environmental impacts. It is also 

possible that each constituent is composed of sub-models. These sub-models may be 

interconnected in such a way that the outputs from some models serve as the inputs to 
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other models. In standard practice the constituent models are often established 

individually by experts representing different fields of engineering, natural and social 

sciences, on the basis of physical understanding, data and experience. Whereas this 

process in general is not problematic when risk models are established the situation is 

often different when models are updated e.g. on the basis of data which may be 

collected after hazard events. 

 

In practical situations some of the variables in the probabilistic models are not 

observed directly or may not even be observable. In such cases the available 

information must first be transformed into the variables of interest before the updating 

can be performed. Consider as an example earthquake risk assessment. The peak 

ground accelerations (PGAs) at the locations where buildings are damaged are only 

seldom observed. In order to update the fragility models, however, the PGAs have to 

be estimated e.g. using seismic source data and the PGAs observed at seismological 

measurement stations together with the corresponding hazard models. The PGA 

geographical map obtained in this way is then applied to update fragility models with 

damage data from damaged structures, see e.g. (Basöz et al., 1999; O’Rourke et al., 

2000; Shinozuka et al., 2000; Chen, 2003). The problem herein is that the uncertainties 

involved in the process of PGA estimations due to model and statistical uncertainties 

are often disregarded; the PGAs on the map are treated as if they were observed data. 

Consequently, the uncertainties introduced in this process are transferred into the 

fragility models, which in turn may result in biased estimates of the fragility models. 

The exception for this can be found in the papers by Straub and Der Kiureghian (2007) 

and Rossetto (2003) who explicitly take into account the model uncertainty associated 

with the empirical attenuation formula in the context of fragility model updating; this 

approach is also followed in the present chapter. 

 

Typically applied approaches (in the forthcoming denoted “standard”) for updating of 

probabilistic models in risk assessments whereby the constituent models are updated 

separately may result in an inefficient use of available information and data. For 

example, the observation that a larger number of buildings in a given area are damaged 

in a typhoon event as compared to other areas could be an indication that the maximum 

wind speed in this area was higher than in other areas. Thus, information about the 

observed damages and/or losses can be a source to estimate the maximum wind speed 

during a given event and is indeed useful for the purpose of reducing the uncertainties 

associated with the modeling of the maximum wind speed. Also, as soon as a hazard 

event has occurred the aleatory uncertainty becomes epistemic, since this uncertainty is 

no longer subject to a natural randomness but due to lack of knowledge. Measurements 

e.g. at meteorological stations during the hazard event can be utilized to reduce the 

former aleatory part of the uncertainty (see example 4.3). This leads to a smaller 

overall uncertainty in the estimation of the hazard index compared to the uncertainty in 

the hazard model. 
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5.4. Proposed approach 

 

The diagram of risk management of natural hazards adopted in the proposed approach 

is shown in Figure 5.1. The diagram consists of two parts, i.e. “models of real world” 

and “real world.” In the illustrated diagram three constituent models are considered; 

hazard model, fragility model and vulnerability model. These models can be 

represented by observable and unobservable variables. Indicators should be understood 

as any observable variables related to considered hazard events. The data obtained in 

the “real world” can be implemented into the models through the indicators. 

 

 

 

Figure 5.1: Diagram of risk management of natural hazards. 

 

Here, a Bayesian approach is proposed for the general probabilistic modeling and for 

the purpose of updating. Bayesian probabilistic networks are utilized in the process of 

modeling, assessing and updating not only for matters of convenience but also for the 

purpose of communication; the graphical display of considered variables together with 

the causal relationships provide a strong means for bringing into the risk modeling the 

expertise of engineers and decision makers. All variables are represented in terms of 

nodes and dependencies through arrows; see Figure 5.2 (left). Figure 5.2 (left) shows 

how the constituent models may be represented using a Bayesian probabilistic network 

that corresponds to Figure 5.1. Without going into detail about the explanation of each 

node in the Bayesian probabilistic network (see detailed explanation in the following 

section), it should be mentioned that all three constituent models are interconnected 

through the input and output nodes. For instance, the hazard index iW  is the output 

from the hazard model and at the same time also the input to the fragility model, see 

Figure 5.2 (left). While each constituent model may be established separately using 
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historical data and engineering knowledge, it is important that all constituent models 

should be interconnected and thus represented by an integrated Bayesian probabilistic 

network. This enables to update the models in a consistent and efficient way using the 

data that become available during/after hazard events. Figure 5.2 (center) shows how 

the data obtained in the “real world” can be used to update the models. In this figure 

two variables, i.e. H  and 
1F  are instantiated by the data (highlighted by “e”), where 

H  represents the occurrence of a hazard event and 
1F  represents the state of a 

structure (failure or no failure, for instance). By instantiating these two variables it is 

possible to e.g. update the probability density function of the variable D  that 

represents the parameters of the fragility model or to calculate the conditional 

probability density function of 1W  etc. The advantage of the approach is that once all 

the constituent models have been established and been represented in an integrated 

Bayesian probabilistic network, it is straightforward to update the models using data 

that becomes available continuously during/after hazard events. For this purpose, a 

number of generic algorithms as well as software tools for Bayesian updating in the 

context of Bayesian probabilistic network representations are available e.g. (Lunn et 

al., 2000; Jensen, 2001; Gelman et al., 2004). 

 

Figure 5.2: An illustration of a Bayesian probabilistic network (left) with instantiated 

nodes (center) and an equivalent abbreviated representation of the network (right). 

 

An abbreviated object based representation may be useful to make the Bayesian 

probabilistic networks compact, see Figure 5.2 (right). Figure 5.2 (right) illustrates the 

abbreviated Bayesian probabilistic network which is equivalent to the networks in 

Figure 5.2 (left). In these Bayesian probabilistic networks the variables have identical 

marginal probability distributions and are conditionally independent given the common 

variables H  and D . This abbreviation is useful in cases with many identical objects, 

e.g. when considering large portfolios or complex systems composed of multiple 

standard industrial components. In such cases, hierarchical Bayesian representations 
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using object-oriented Bayesian probabilistic networks may also be useful, see e.g. 

(Kjaerulff, 1995; Gyftodimos and Flach, 2002) in general and (Nishijima and Faber, 

2007) in particular for applications in civil engineering. 

 

In the following section a Bayesian formulation is proposed and applied to three 

illustrative examples considering the updating of fragility models of structures subject 

to strong wind events caused by typhoons. Although the proposed approach can be 

utilized for the purpose of estimating e.g. portfolio losses due to emerging typhoon 

events using the information that becomes available from time to time (i.e. to calculate 

the conditional probability distribution of the portfolio losses given the present location 

and pressure of a given typhoon), this feature is not demonstrated in the following 

example, see e.g. (Faber, 2007) for further information. However, the proposed 

approach is readily applicable also for such situations. 

5.5. Examples 

 

In the following the proposed approach is illustrated through three examples. The 

focus of the examples is directed on the updating of a fragility model which represents 

the resistance of structures subject to strong winds induced by typhoons. The 

constituent models comprise a hazard model and a fragility model, see Figure 5.2; the 

vulnerability model in Figure 5.2 is not considered in the examples. The node H  

represents the occurrence of a typhoon event, which is a binary variable, i.e. 

occurrence or no occurrence. The node iW  represents the maximum wind speed at the 

i th
 location during a typhoon event, ( 1,2,...,i M ). The node ip  represents the 

probability of failure of the structure at the i th 
location given the maximum wind 

speed iW . The node   characterizes the fragility model, which commonly affects all 

nodes ip ; the structures considered in the examples are assumed to have identical 

probabilistic characteristics in regard to the resistance to strong wind. Finally, the node 

iF  represents the state of the structure at the i th 
location, i.e. failure or survival. The 

detailed probabilistic characteristics of these variables are given along with the 

examples. 

 

The software tool WinBUGS (Lunn et al., 2000) is used for the Bayesian probabilistic 

network representation and for the updating of the models. WinBUGS is used because 

it can consider both continuous and discrete random variables and WinBUGS allows 

for directly representing the constituent models in a Bayesian probabilistic network. 

Other common software tools for Bayesian probabilistic networks like Hugin Experts 

(Hugin, 2006) or Genie (Genie, 2011) cannot handle continuous random variables. 

WinBUGS utilizes the Markov Chain Monte Carlo (MCMC) algorithm for the 

updating. Unlike the analytical or numerical updating of the probability distributions, 

the MCMC algorithm simulates the joint realizations from joint conditional probability 

distributions or joint posterior probability distributions, see e.g. (Gelman et al., 2004; 
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Congdon, 2006; Gelman and Hill, 2007). The probabilistic characteristics of the 

probability distributions can be assessed from the realizations. 

5.5.1.Proposed approach vs. standard approach for updating fragility models 

with data 

This example investigates the extent to which the standard approach for updating of 

fragility models using data may result in a biased updating of the models. Furthermore, 

it is also shown that the proposed approach can update the probabilistic models 

appropriately. Here, the term standard approach refers to approaches characterized by 

the fact that the hazard index (maximum wind speed in this example) at the locations 

where the damage data are obtained are estimated from the hazard model before 

updating the fragility model and they are thus used for updating the fragility model 

disregarding the uncertainties involved in the estimation of these hazard indices. 

 

 

Figure 5.3: Considered Bayesian probabilistic network in Example 4.1 with 

instantiated nodes for the proposed approach (left) and for the standard and ideal 

approach (right). 

 

For this purpose, the Bayesian probabilistic network shown in Figure 5.3 is considered. 

It is assumed that the hazard model is not associated with any statistical uncertainties, 

thus, is not to be updated with data; deterministic values are assumed for ,w i
 
and w  

that characterize the probability distribution of the maximum wind speed iW . Given a 

typhoon event, iW  at the i th
 location ( 1,2,...,i M ) are assumed to be statistically 

independent and to follow the lognormal distribution i.e.: 

 

 , ,i w i wW LN     (5.1) 
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where the parameter ,w i  is the mean of the logarithm of the maximum wind speed. 

,w i  are defined by discrete values    , ln 10 1 mod25 1w i i      and the number 

of samples M  is a multiple of 25. 
w  is the standard deviation of the logarithm of 

the maximum wind speed, which is assumed to be identical for all locations equal to 

0.2. The distribution of 
iW  represents the aleatory uncertainty and depending on the 

load type an appropriate distribution function has to be selected. The fragility model is 

characterized by the probability of failure 
ip , which in turn is characterized by two 

parameters a  and b  as: 

 

ln i
i

w a
p

b

 
  

 
 (5.2) 

 

where ( )   is the standard Normal cumulative distribution function and iw  is the 

maximum wind speed. Herein, the parameters a  and b  are assumed random 

variables; the fragility model is subject to statistical and model uncertainties. The 

updating of the fragility model is undertaken by updating the probability density 

functions of the parameters a  and b . The probabilistic characteristics of the random 

variables are summarized in Table 1. 

 

Three different types of datasets for updating the fragility model are considered; the 

first dataset consists only of the damage states of the structures; the realizations 

i iF f , ( 1,2,...,i M ) are assumed known. The second dataset consists of the 

combinations of the states of structures and the maximum wind speeds at the location 

where the structures are located; i.e.    , ,i

i i iW F e f


 , ( 1,2,...,i M ) are known. 

Note that such a dataset corresponds to the situation where the maximum wind speed 

iS  is pretended to be obtained and are equal to the median of the maximum wind 

speeds that are derived from the hazard model. The last dataset consists of the 

combinations, i.e.    , ,i i i iW F w f , ( 1,2,...,i M ) are known. The last dataset differs 

from the second dataset in the sense that the wind speeds are really obtained at the 

locations where the structures are located (it is, however, unlikely in practice). The first 

dataset (denoted “proposed” hereafter) represents realistic practical situations where 

the wind speeds are not measured at the locations where damage data on structures are 

obtained. Thus, the uncertainties of the maximum wind speeds must be considered in 

the process of updating (Figure 5.3 left). The second dataset (denoted “standard”) 

represents the standard approach where it is assumed that the maximum wind speeds at 

the locations where the damage data are obtained are estimated from the hazard model 

and are represented by deterministic values (the median of the probability distribution 

function in this example) disregarding the uncertainties involved in the hazard model 

(Figure 5.3 right). The last dataset (denoted “ideal”) represents an ideal situation where 

the maximum wind speeds measured at the locations where the damage data are 

obtained (Figure 5.3 right). The updating of the fragility model with the “ideal” dataset 

serves as a benchmark with the expectation that the rate of convergence of the 
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parameters a  and b  is fastest in this case. These three different dataset are created 

by simulation according to the hazard model and the fragility models summarized in 

Table 5-1 and Figure 5.3. The true values of the parameters a  and b  are assumed to 

be equal to ln100 4.605  and 0.2 respectively; therefore, the parameters in the 

updated fragility models using the simulated datasets are expected to converge to these 

values as the sample size in the datasets increases. 

 

Table 5-1: Parameters of the prior distribution of a and b.  

 

Parameter Distribution Mean Standard deviation 

a  Normal 4.8 10 

b  Gamma 20 8.9 

 

Figure 5.4 and Figure 5.5 illustrate the rates of convergence for the parameters a  and 

b  respectively as function of the sample size for the three different datasets. The 

figures show the mean value of the posterior distribution of the parameters together 

with the 2.5% and 97.5% quantile values. The rate of convergence is fastest with the 

third dataset (ideal), whereas the rates of convergence with the other two datasets are 

almost identical. However, the updating with the second (standard) dataset fails to 

estimate the parameter b  unbiased. The reason for this is that the disregarded 

uncertainties associated with the estimated wind speeds are transferred into the fragilty 

model, see Figure 5.6 (center) where the gradient of the curves is controlled by the 

parameter b  and the smaller gradient corresponds to the larger model uncertainty. 

This is confirmed in Figure 5.6 (left) and (right) where 0.01w   and 0.5w   are 

assumed instead of 0.2w  . The larger the disregarded uncetainty of the estimated 

maximum wind speed, the larger the bias of the updated fragility model. 

5.5.2. Updating of fragility models with the presence of common uncertainties 

In the following the effect of the presence of common epistemic uncertainties in the 

hazard model on the updating of the fragility model is considered. The overall 

uncertainty is now composed of an aleatory part represented by the distribution of the 

wind speed iW  and of an epistemic part represented by 
j  introduced as a model 

uncertainty in the hazard model as: 

 
j j

i iV W   (5.3) 

where 
j  represents the model uncertainty for the j

th
 typhoon event, ( 1,2,...j  ) 

and follows a lognormal distribution with the mean of the logarithm being equal to 

0   and the standard deviation of the logarithm being equal to  . It is assumed 

that 
j are identically and independently distributed. Thus, the maximum wind speed 

j

iV  follows a lognormal distribution with the parameters , ,V i w i      and 
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2 2

,V i w     (Figure 5.7 left). In order to investigate the effect of the presence of the 

common model uncertainty, a parameter   is introduced as: 

2 2

w

p 





 



 (5.4) 

which controls the ratio of the model uncertainty over the overall uncertainty involved 

in the hazard model. The effect of the presence of the common model uncertainty is 

investigated by changing the value of the parameter   but maintaining: 
2 2 0.2w    . 

 

Figure 5.4: Rate of convergence of the parameter a as a function of the sample size 

used for the updating.  

 

Figure 5.5: Rate of convergence of the parameter b as a function of the sample size 

used for the updating. 
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Figure 5.6: Fragility curve estimated by the different approaches for different 
w . 

 

The datasets are created by simulation for different values of the parameter  . Other 

datasets are created with 0.5  , but with a different number of typhoon events from 

which damage data are obtained. Each dataset contains 1000 samples and are utilized 

to update the fragility model which is characterized by the two parameters a and b as 

described in Example 5.5.1. The probabilistic characteristics of the variables are the 

same as in the Example 5.5.1. Figure 5.8 (left) shows that the updating of the fragility 

model provides biased parameters when the all data are obtained from one typhoon 

event and when the model uncertainty dominates. On the other hand, as the common 

model uncertainty decreases relative to the overall uncertainty and/or the number of 

typhoon event from which the data are sampled increases, the updating of the fragility 

model tends to be less biased and the parameters converge to the true parameters, see 

Figure 5.8 (right). This numerical investigation indicates that fragility models 

estimated using the dataset that consists only of data from one hazard event may be 

highly biased when the model uncertainty is dominating Thus, a key to update fragility 

models in practical situations is to reduce the model uncertainty; the model uncertainty 

can be readily reduced by conditioning the random variable   that represents the 

model uncertainty using e.g. measured hazard indices at meteorological stations. An 

approach to conduct this is shown in the next example. 
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Figure 5.7: Bayesian probabilistic network including a model uncertainty   for the 

proposed approach used in Example 5.5.2 (left) and Bayesian probabilistic network 

used in Example 5.5.3 (right). 

  

Figure 5.8: Mean value of the posterior distribution of parameter a  after updating 

with datasets with different values of the parameter ρ (left) and with datasets with 

samples from different number of typhoon events (right). 
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5.5.3.Updating of fragility model using hazard intensities measured at 

meteorological stations 

Maximum wind speeds measured at meteorological stations during the j
th

 typhoon 

event can be used for conditioning the probability density function of the random 

variable j  as: 

1 2( | , ,..., )j j j j

M M M Nf v v v     (5.5) 

where 
j

kv , ( 1, 2,..., )k M M M N    , are the measured maximum wind speeds at 

the meteorological stations during the j
th

 typhoon event. Since the uncertainty 

becomes smaller by conditioning with these measurements, it is expected that the 

updating of the fragility models becomes more precise as is indicated in the previous 

example. Figure 5.7 (left) shows the corresponding Bayesian probabilistic network and 

Figure 5.7 (right) shows an equivalent Bayesian probabilistic network. The Bayesian 

probabilistic network shown in Figure 5.7 (right) is utilized for the convenience of 

updating. The equivalence of these Bayesian probabilistic networks is illustrated in the 

Appendix 10.3. The assumptions underlying the dataset simulations are the same as in 

Example 5.5.2, except that in the present example each dataset contains additional 

measured wind speeds 
j

kv , to condition the model uncertainty 
j , whereby the 

number of additional samples N is equal to the sample size M of the dataset which is 

used to update the fragility model.  

 

Figure 5.9 illustrates the rates of the convergence of the parameters a  and b  

respectively as a function of the sample size by conditioning the model uncertainty 
j  

with N additional measured wind speeds 
j

kv . As shown in Figure 5.9 it is possible to 

estimate the correct values of the parameters a  and b  even within one typhoon by 

using additional measured wind speeds 
j

kv  to reduce the model uncertainty 
j .  

 

 

Figure 5.9: Rate of convergence of the parameter a (left) and b (right) as a function of 

the sample size used for updating.  
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5.6. Model builder software tool 

To facilitate a user friendly way to update the typhoon model with new information, a 

model builder software tool has been developed. The model builder is written in 

matlab code and provides two parts one to update the occurrence model and the 

transition model and a second part to update the surface friction model. 

 

The first part uses the best track data and the SST as input maps and automatically 

estimates all the parameters which are used for the occurrence model and the transition 

model. The typhoon model is updated by these parameters, estimated using the new 

available information. 

 

The second part uses the land use data and the topographic maps of the Japanese 

Islands as input and estimates the roughness length and the topological factor using the 

new information. 

 

These two parts of the model builder enables the updating of the typhoon model in the 

required intervals as soon as new information is available. 

 

The model builder is also used to establish a typhoon model a) which is based on only 

a part of the available data for the validation of the typhoon model as described in 

Chapter 3, b) which is based on a different functional form or data sets to assess the 

difference between alternative models as described in Section 4.9 and c) which is 

based on a data set obtained from a climate model to assess the effect of global 

warming as described in Chapter 7. 
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6. Application: Portfolio risk analysis 

One of the main applications of the developed typhoon model is to estimate the 

statistics of insured portfolio losses in the insurance sector. This application shows how 

the Bayesian framework can be used to estimate portfolio losses due to typhoons with 

the consideration of the involved uncertainties. For estimating the statistics of insured 

portfolio losses, the hazard model described in Chapter 2 has to be extended with a 

vulnerability model, which describes the relation between the hazard index (namely the 

wind speed) and the losses. Section 6.1 describes the developed vulnerability model 

which is developed, Section 6.2 shows the verification of the vulnerability model and 

Section 6.3 explains how the vulnerability model is used to assess the portfolio risk. 

 

Aon Benfield Japan provided historical damage observation data which helped to 

establish a data-based vulnerability model to estimate portfolio loss distributions. In 

order to fulfill the requirements of the confidentiality agreement between Aon Benfield 

Japan and ETH Zurich, the damage data and all results which are obtained by using the 

damage data are made anonymous and censored in this thesis. 

 

To allow a user friendly risk assessment of a portfolio risk, a software tool with the 

name TRAST (Typhoon Risk Analysis Software Tool) is developed. TRAST provides a 

intuitive user interface to perform a risk analysis. It uses a database of a stochastic 

event set, which was created using the typhoon model described in Chapter 2 in 

combination with the vulnerability model. The functionality of TRAST is explained in 

Section 6.4. 

 

Due to the feature that the seasonal differences of the probabilistic characteristics of 

typhoon events are considered, it is possible to estimate portfolio losses in a certain 

period in a year. This is useful in practice when the assessments of portfolio losses are 

required for the remaining period of a year. 

 

6.1. Vulnerability model 

The vulnerability model describes the probabilistic characteristics of the ground-up 

loss
12

 ratio of exposures as a function of the hazard index for different exposure types. 

The hazard index employed in the present typhoon model is the maximum 10-minute 

sustained wind speed at the nominal height during each typhoon event. The ground-up 

                                                 
12 The insured losses of exposures are calculated based on the ground-losses and the policy conditions 

on the exposures. 
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loss ratio Q  is a random variable conditional on the hazard index w  and the type of 

exposure
13

 s , and is characterized by the probability density function ( | , ; )Q sf q w sθ ,  

where 
sθ  is the set of the parameters which characterize the probability density 

function. In this chapter, the 10-minute sustained wind speed is referred to as wind 

speed and the ground-up loss ratio is referred to as loss ratio unless stated otherwise. 

6.1.1. Treatment of uncertainties 

In order to take into account the uncertainties associated with the (deterministic) wind 

field model (Section 2.9) and surface friction model (Section 2.10) employed in the 

assessment of portfolio losses, whereby considering computational feasibility of the 

simulation of typhoon events, it is decided that these uncertainties are considered in the 

development of the vulnerability model indirectly; the uncertainties associated with the 

vulnerability model include not only the model uncertainties associated with the 

vulnerability itself but also the model uncertainties associated with the wind field 

model and the surface friction model. 

 

The approach undertaken here for developing the vulnerability model is to create the 

hazard part of the datasets, which are utilized for the development of the vulnerability 

model, by using the wind field model and the surface friction model together with the 

best track data. Treating the wind speeds obtained in this way as if they were observed 

wind speeds in the estimation of the parameters of the vulnerability model, the 

uncertainties associated with the wind field model and the surface friction model are 

implicitly transferred to the uncertainties associated with the parameters of the 

vulnerability model. Notice that by using the same wind field model and surface 

friction model and the vulnerability model thus established in the assessment of 

portfolio losses the uncertainties associated with the wind field model and the surface 

friction model are considered. In the following sections the procedure for developing 

the vulnerability model in accordance with this approach is explained. 

 

Note that in principle it is possible to separately consider the model uncertainties in the 

hazard model and the vulnerability model and to integrate consistently both 

uncertainties in the assessment of portfolio losses, see (Nishijima et al., 2009). 

However, this approach requires prohibitive computational efforts both in the 

estimation of the parameters of the hazard and vulnerability model and in the 

assessment of portfolio losses for such large portfolios as considered in this thesis. This 

is why the approach is not adopted in this thesis and the improvement of this is 

addressed as one of the tasks in future projects. 

                                                 
13 A combination of the types of structure and object (building or content) of an exposure represents 

the type of the exposure. 
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6.1.2. Exposure data and loss data available 

The exposure data and loss data provided by the clients of Aon Benfield Japan through 

Aon Benfield Japan are utilized to develop the vulnerability model for the clients. The 

data of each client is utilized only for the purpose of developing the vulnerability 

model for the client and the data of the client is not utilized for developing the models 

for the other clients. In the following, the procedure for developing the vulnerability 

model is explained. 

 

The loss data is provided for 20 relevant historical typhoon events occurred between 

1998 an 2006. In this data, detailed information is available on each individual 

exposure to which payments were made in these typhoon events. The types of 

information available on each exposure and utilized in the development of the 

vulnerability model are: 

 

 Amounts of the payments for damages of building and content 

 Cause of damages, i.e. "wind storm" or "flood"
14

 

 Insured values of building and content 

 The location in terms of 7-digit post code 

 Insurance policy 

 Type of structure 

 

Note that besides these types of information, other types of information are available in 

the data, such as occupancy type, construction year and number of stories of building; 

however these types of information are not utilized for the development of the 

vulnerability model; i.e. the developed vulnerability model is not differentiated by 

these indicators of the types of exposures. 

 

The detailed exposure data is provided as of 2005, 2006 and 2007. For other years, the 

summary of the exposures, i.e. the aggregated statistics on the exposures in each 

prefecture, is available. The detailed exposure data includes the following types of 

information for each individual exposure: 

 

 Insured values of building and content 

 The location in terms of 7-digit post code 

 Insurance policy 

 Type of structure 

  

                                                 
14 Specification of the cause of damages is made by a client of Aon Benfield Japan and it is possible 

that it does not correspond to the true cause of damages. 
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The vulnerability model is developed for each of following five types of structure: 

 

 Wood 

 RC 

 Steel 

 Block 

 Unknown
15

 

 

The geographical distributions of the exposures as of the years in which the 20 

historical typhoon events occurred except for the year of 2005 are estimated using the 

summary of the exposures as of those years; i.e. assuming that the proportions of the 

numbers of exposures of given types of structure in given areas are constant over 

years, the numbers of exposures for the types of structure in the areas as of those years 

can be estimated based on the geographical distribution of the exposure as of 2005 and 

the changes of the numbers of exposures. Note that as is explained in the next section 

the insured values of exposures in the exposure data are not required to develop the 

vulnerability model and thus need not to be estimated; i.e. the insured values of 

exposures in the loss data are sufficient to develop the model. 

 

In the development of the vulnerability model, the original loss data, the original 

exposure data as of 2005 and the estimated exposure data for other years are utilized.  

  

                                                 
15 The type of structure "Unknown" may be utilized when the type of the structure of an exposure does 

not correspond to any of the other four types of structure. In fact, the vulnerability model for 
"Unknown" is developed using all the loss and exposure data without differentiating the types of the 
structures of the exposures; thus, the vulnerability model for "Unknown" is considered to correspond 
to the "average" vulnerability model weighted by the ratios of the numbers of exposures of different 
types of structure, which compose the portfolio. Note also that the vulnerability model for the type of 
structure "Stone", which is one of the type of structure indicated in the loss data, is not developed 
since the number of data for "Stone" is not sufficiently large for the statistical analyses. Thus, in the 
assessment of portfolio losses the type of structure "Stone" should be replaced by one of the five types 
of structure. 
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6.1.3. The flow of the development of the vulnerability model 

The vulnerability model is developed in the following procedure, see also Figure 6.1. 

First, using the developed wind field model and surface friction model together with 

the best track data, the wind speeds are reproduced for each historical typhoon events 

for which the loss data is available. By doing so, it is possible to reproduce for all the 

historical typhoon events the wind speeds at the locations of all the exposures in the 

exposure and loss data. Then, two datasets are established. The first dataset (hereafter, 

loss dataset) contains for each exposure the following information: 

 

 Reproduced wind speed 

 Amounts of the payments for damages of building and content 

 Cause of damages, i.e. wind storm or flood 

 The location in terms of 7-digit post code 

 Insured values of building and content 

 Insurance policy 

 Type of structure 
 

Note that the cause of damages which is indicated in the loss data is changed from 

wind storm to flood if the reproduced wind speed is smaller than 11 [m/s]. In the 

development of the vulnerability model this is used as the indicator of the cause of 

damages. Note also that the information on the location and the insurance policy of 

each exposure is required to estimate the ground-up loss of the exposure. 

 

The second dataset (hereafter, exposure dataset) contains the following information: 

 

 Reproduced wind speed 

 Insured values of building and content 

 Type of structure 

 

The first dataset is utilized to estimate the conditional probability distribution of the 

loss ratio for each type of exposure and cause of damages (wind storm and flood), 

given the occurrence of loss, as a function of the wind speed. Both the first and second 

datasets are utilized to estimate the probability of occurrence of loss for each type of 

exposure and cause of damages as a function of the wind speed. 
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Figure 6.1: Flow of the development of the vulnerability model. 

6.1.4. Conditional probability distribution of loss ratio given occurrence of loss 

The conditional probability distribution | ,( | , ; , )Q loss s cf q w s cη  for the loss ratio Q  

given the occurrence of loss is modeled for each respective type of structure s  and 

cause of damages c  to follow the log-normal distribution as: 

2

,

| , 2

,,

(ln ( ))1
( | , ; , ) exp

22

s c

Q loss s c

s cs c

q w
f q w s c

q





 
  

 
η  (5.6) 

where , ( )s c w  is the mean of the logarithm of the loss ratio, which is the function of 

the wind speed, i.e.: 

 , 1, , 2, ,( ) lns c s c s cw a a w    (5.7) 
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and ,s c  is the standard deviation of the logarithm of the loss ratio. Thus, the 

parameters to be estimated are 
, 1, , 2, , ,( , , )T

s c s c s c s ca a η  for each type of exposure s  

and cause of damages c . Here, s  and c  respectively are the elements of the sets 

defined in the following: 

 ( , ) | ,struct obj struct struct obj objs S s s s S s S     (5.8) 

 Windstorm,  Floodc C   (5.9) 

where  

 Wood, RC, Steel, Block, UnknownstructS   (5.10) 

 Building, ContentobjS   (5.11) 

For the estimation of these parameters, first the loss ratios of the exposures for which 

payments were made are calculated using the information in the loss dataset. These are 

calculated as follows: the insured loss ratio of each exposure is calculated as the ratio 

of the payment over the insured value, and then by considering the policy condition for 

the insured loss ratio, the ground-up loss ratio is calculated. Then, employing the 

maximum likelihood method and using the dataset that consists of the combinations of 

the wind speed and the loss ratio of the exposures, the parameters ,s cη  are estimated. 

Note that the parameters ,s cη  are estimated for each type of exposure and cause of 

damages; thus, 5 2 2 20    sets of the parameters are estimated. In Figure 6.2, the 

combinations of the loss ratio and the wind speed in the dataset, and the mean value 

and quantile values of the loss ratio calculated from the model (Equations (5.6) and 

(5.7)) with the estimated parameters ,s cη  are shown in the case of the exposure type 

(Wood, Building) and for both causes of damages (wind storm and flood). Note that as 

shown in the figure the minimum wind speeds above which the model for the loss ratio 

is established are 3.3 [m/s] for flood and 11 [m/s] for wind storm. This is because the 

minimum value of the wind speed calculated by the wind field model is 3.3 [m/s] (see 

Equation (2.10)) and the cause of damage is assumed to be flood if the wind speed is 

smaller than 11 [m/s]. The y-axis is omitted in Figure 6.2 to fulfill the confidentiality 

agreement between Aon Benfield Japan and ETH Zurich. 
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Figure 6.2: Loss ratio as a function of wind speed given the occurrence of loss (type of 

structure: Wood, types of object: building). 

6.1.5. Probability of occurrence of loss 

The probability ,( | ; , )s cp w s cς  of the occurrence of loss is modeled based on the logit 

model as: 

1, , 2, ,, , , ( )

1
( | , ; , )

1 s c s cs c s c s c b b w
p w s c

e
 

 
 


ς  (5.12) 

Here ,s c  represents the model uncertainties explained in Section 6.1.1. The random 

variable ,s c  is assumed to follow the log-normal distribution as: 

,

2

,

2

,,

(ln )1
( ) exp

22s c

s c

s cs c

f
 


 

 
  

 
 (5.13) 

where ,s c  is the mean of the logarithm of ,s c  and the ,s c  is the standard 

deviation of the logarithm of ,s c . The parameters to be estimated are 

, 1, , 2, ,( , )T

s c s c s cb bς , ,s c  and ,s c . 

 

For the estimation of these parameters, the wind speeds in the loss and exposure 

datasets are discretized by the interval of 1 [m/s]; thus it is possible to identify for each 
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discretized wind speed the number of the exposures and the number of the exposures at 

which the loss occurs
16

. Then, employing the maximum likelihood method and using 

the dataset, which consists of the combinations of the wind speed, the number of the 

exposure and the number of the exposure at which the loss occurred, further setting 

, 1s c  , the parameters ,s cς  are first estimated for each type of exposure and cause of 

damages. Therein, by trial and error it is decided that the model represented by 

Equation (5.12) is developed. As explained above, it is assumed that no loss due to 

wind storm occur below a wind speed of 11 [m/s]. Therefore the model representing 

the probability of occurrence of loss is developed for the case where the cause of 

damages is wind storm for the range of the wind speed [11, ) . Losses below 11 [m/s] 

are assumed to be caused by flood. The historical damage data indicates that the 

damage data is composed by two different populations. This could may be explained 

by different failure mode of the buildings at a certain wind speed. Therefore were the 

parameters for the model estimated separately respectively for the ranges of the wind 

speed [11,26]  and (26, )  [m/s] in the case where the cause of damages is wind 

storm, and for the range of the wind speed (3, )  [m/s] in the case where the cause of 

damages is flood. Whereby the parameters, the splitting point of the model (here 26 

m/s) and the value below which no damage is assumed (here 11 m/s for the case of 

wind speed) were estimated using the maximum likelihood method.  

 

The parameters ,s cς  are thus estimated for each range of the wind speed. Thereafter, 

the parameters ,s c  and ,s c  of the probability distribution of the random variable 

,s c  are estimated using the dataset again and substituting the estimated parameters 

,s cς  into Equation (5.12). The parameters ,s c  and ,s c  are common for all ranges 

of the wind speed. 

 

The ratios of the occurrence of loss for the discretized wind speeds and the estimated 

probability of the occurrence of loss as a function of the wind speed in the case where 

the type of exposure is (building, wood) are shown in Figure 6.3. The y-axis is omitted 

in Figure 6.3 to fulfill the confidentiality agreement between Aon Benfield Japan and 

ETH Zurich. Note that the ratio shown in the figure is calculated as the ratio of the 

number of the exposures at which the loss occurred over the number of all the 

exposures for each wind speeds - implying that the weight of each point in the figure is 

not the same; however, in the estimations of the parameters the difference of the 

weights is taken into account. The estimated probabilities of the occurrence of loss are 

drawn by a solid line and dotted lines. The solid line corresponds to the mean of the 

probability and the dotted lines correspond to the probabilities with different values of 

                                                 
16 What is required for estimating the parameters without approximations is the indication on whether or 

not the loss occurred for each individual exposure in the exposure dataset. However, it is not possible 
to identify at which exposures in the exposure dataset the loss occurred by referencing the exposures 
listed in the loss dataset; however, it is possible to find these numbers (mentioned in the main 
sentence) by the discretization and these numbers are sufficient to estimate the parameters in an 
approximate way. Here, the approximation refers to the use of the discretized wind speeds. 
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the variable ,s c  (these values are the discretized values in such a way that each of the 

values has the equal mass probability of 10%.).  

 

The above described approach can lead to a discontinuity of the model at the splitting 

point of the model (at 26 [m/s]) as can be seen in the Figure 6.3 (left). This could may 

be explained by different failure mode of the buildings at a certain wind speed. Note 

that Aon Benfield Japan provided two different loss data sets, a older and a newer more 

detailed data set. The functional form of vulnerability model was developed based on 

the first (older) data set. Appling the described model approach lead to a continuous 

model over the whole range of wind speeds. After receiving the second (newer) data 

set, the vulnerability model was re-established using the new data, which is shown in 

Figure 6.3. It was decided not to change the model approach and to accept the 

discontinuity at 26 [m/s] in order to be able to compare the results of the analysis, 

based on the different data sets.     

 

 

Figure 6.3: Ratios of the occurrence of loss and the estimated probabilities of the 

occurrence of loss. 

6.1.6. Unconditional probability distribution of loss ratio 

The unconditional loss distribution of loss ratio for each type of exposure is obtained 

using the probabilistic models obtained in the last two sections as: 
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where " ^ " signifies the estimates of the parameters and , ,( , )T

s s wind storm s flood θ  and 

( )   is the delta function. 

 

For illustrative purposes, median-median ground-up loss ratios are shown in Figure 6.4 

for exposures whose type of object is "building" (for the five types of structures) as a 

function of the wind speed calculated using the developed vulnerability model. The 

curves ( )sy w  drawn in the figure correspond to the cases where the median values 

are taken for both the conditional loss ratios ( 1, , 2, ,
ˆ ˆ

s c s ca a w ) and the probability of the 

occurrence of loss ( , 1s c  ), i.e.: 

 
1, , 2, ,1, , 2, , ( )

1
ˆ ˆ( )

1 s c s cs s c s c b b w

c C

y w a a w
e
 



  


  (5.15) 

 

Figure 6.4: Median-median ground-up loss ratios for exposures whose type of object is 

"building". 

The y-axis is omitted in Figure 6.4 to fulfill the confidentiality agreement between Aon 

Benfield Japan and ETH Zurich. Notice that the unconditional probability distributions 

thus obtained cannot directly be applied for the cases where the franchises are smaller 

than those which have been employed for the exposures included in the historical loss 
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data. This is because: minor damages whose monetary losses do not reach the 

franchises are not recorded in the loss data. In order to apply the vulnerability model 

for such cases, it is required that engineering approaches for modelling such minor 

damages are employed and modified the developed (statistics-based) vulnerability 

model accordingly. 

6.1.7. Dependency of the random variables ,s c  

The parameters of the random variables ,s c  are estimated separately for the 

individual types of exposure and causes of damages; thus, no probabilistic structures of 

the dependency between the variables are considered. However, in the assessment of 

portfolio losses the assumptions are required on the dependency of the random 

variables ,s c  between different type of exposure as well as causes of damages. 
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It is assumed that for the dependency of the random variables ,s c : 

 

 Full correlation between different causes of damages (wind storm and flood) for 

each type of exposure. 

 

 Full correlation between different types of object (building and content) for each 

type of structure. 

 Independency between different types of structure. 

 

 Further investigation on the dependency is addressed as one of the future tasks. 

 

6.2. Insured losses caused by historical typhoons 

The insured losses are reproduced using the developed typhoon model for the relevant 

historical typhoon events for which the loss data is available. The insured losses are 

reproduced using the historical event set (see Section 6.3.2) with the estimated 

exposure data (see Section 6.1.2) for client of Aon Benfield Japan. Figure 6.5 show the 

comparisons of the insured losses available in the loss data and the mean reproduced 

insured losses for the relevant historical typhoons. The reproduced losses well 

represent the historical losses for strong as also for weak typhoon events. The y-axis is 

omitted in Figure 6.5 to fulfill the confidentiality agreement between Aon Benfield 

Japan and ETH Zurich. 

 

Figure 6.5: Comparison of historical losses and reproduced losses using the developed 

typhoon model.  
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6.3. Assessment of typhoon risks 

6.3.1. Mathematical formulation for assessment 

 Probability distribution of annual maximum losses 

Let X  denote a random variable representing the annual maximum insured loss 

(hereafter, loss refers to insured loss unless otherwise stated) of a given portfolio, and 

let ,i jX  denote random variables representing the loss of the portfolio due to the thj  

typhoon ( 0, 1, 2,...j  ) in month i , where 1,2,...,12i   correspond to January, 

February,…, December respectively. For convenience, it is assumed that the realization 

of ,0iX  is ,0 0ix  ; this corresponds to the case where no typhoon occurs in a certain 

month i . The annual maximum loss X  is represented using ,i jX  as: 

,
1,2,...12 0,...,
max max

i

i j
i j J

X X
 

  (5.16) 

where 
iJ  is the number of occurrences of typhoons in month i , which is a random 

variable. The conditional cumulative distribution function | ( | )XF xΘ θ  of the annual 

loss X  given Θ θ  is first to be assessed by: 

   | ( | ) | |XF x P X x E I X x       Θ θ Θ θ Θ θ  (5.17) 

where [ ]I   is an indicator function that returns one when the condition in the bracket 

is satisfied and zero otherwise and the vector Θ  consists of the model uncertainties 

for all types of exposure and causes of damages, i.e.: 

( , , , , )T

Wood RC Steel Block UnknownΘ Θ Θ Θ Θ Θ  (5.18) 

The expectation term of Equation (5.17) is reformulated as: 

   

 

,
1,2,...12 0,...,

, 1 2 12
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| max max

max max , ,...,

i

i

i j
i j J

i j
i j J

E I X x E I X x

E E I X x J J J

 

 

  
           

   
        

Θ θ Θ θ

Θ θ

 (5.19) 

The inner expectation is with respect to ,i jX  ( 1,2,...,12i   and 1,2,.., ij J ) 

conditional on the numbers 
iJ  of occurrences of typhoons. The outer expectation is 

with respect to the numbers 
iJ  of the occurrences of typhoons in each month. 
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Taking basis in the Monte Carlo simulation technique, the conditional expectation 

given Θ θ  can estimated by: 

| ,
1,2,...12 0,...,

1

1ˆ ( | ) max max ( )
m
i

M
m

X i j
i j j

m

F x I x x
M  



  
     

Θ
θ θ  (5.20) 

where , ( )m

i jx θ  is the realization of the portfolio loss for the simulated transition ,

m

i jz  

of the thj  typhoon in month i  in the 
thm  realization 1 2 12( , ,..., )m m m m Tj j jj of 

1 2 12( , ,..., )TJ J JJ  conditional on Θ θ . M  is the number of the simulations of 

one-year occurrences of typhoon events. The realizations of the occurrence and initial 

states of the typhoon are simulated by resampling from the historical data. The 

transitions ,

m

i jz  of the typhoons are simulated probabilistically using the transition 

model. In the simulation of the transitions of the typhoons the mean value of the SST 

at each location on the Northwest Pacific Ocean for each month estimated from the 

SST data is employed. For each transition ,

m

i jz , the maximum 10-minute sustained wind 

speeds ,

m

i jw  at the nominal height are calculated at all 1km-by-1km grids on the 

Japanese islands using the wind field model and the surface friction model; thus, each 

exposure of the portfolio is required to locate to one of the grids at which the wind 

speeds are calculated. The way for this is explained in Section 6.3.3. Finally, the 

portfolio loss , ( )m

i jx θ  is obtained using the vulnerability model conditional on Θ θ , 

which is explained in the subsequent section. 

 Insured loss of exposures for given typhoon events 

Let ( ; )polg q c  represent the relation between the ground-up loss ratio q  and the 

insured loss ratio for a given policy condition polc  of an exposure. Using the 

vulnerability model ( | , ; )Q sf q w sθ  and thus the relation ( ; )polg q c , the mean value 

( | ; )
insuredQ sw s θ of the insured loss ratio of the exposure can be calculated as: 

( | ; ) ( ; ) ( | , ; )
insuredQ s pol Q sw s g q c f q w s dq  θ θ  (5.21) 

Note that often the insured loss ratio is also a function of the insured value of the 

exposure as is shown in Figure 6.6 and the insured value is schematically included in 

the policy condition polc  in the formulation above. 

 

In the assessment of portfolio losses, it is assumed that the insured loss of the portfolio 

in each typhoon event converges to its mean value. Notice, however, the insured loss is 

still a random variable because the mean value is a function of the random variables 

Θ , which represent the model uncertainties. The expected value of the insured loss of 

an exposure is obtained by multiplying the insured value with the insured loss ratio.  
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Finally, the portfolio loss , ( )m

i jx θ  for a given typhoon event and for a given θ  is 

calculated as: 

exposure

, ,

1

( ) ( | ; )n
insured

N

m n m n n

i j Q i j insureds
n

x w s v


 θ θ  (5.22) 

where exposureN  is the number of exposures in the considered portfolio, n  is the index 

of each individual exposure in the portfolio, ,

n m

i jw  is the wind speed at the location of 

the thn  exposure (which corresponds to one of the elements of ,

m

i jw ), ns  is the type 

of the thn  exposure and 
n

insuredv  is the insured value of the thn  exposure. 

 

 

Figure 6.6: Example of the relation between ground-up loss ratio and insured loss ratio 

for a given wind speed. 

 Statistics of insured losses 

The statistics of insured losses that are assessed in the software tool developed during 

this thesis are summarized in Table 6-1
17

. In what follows, the procedure for assessing 

these statistics is explained. Note, however, that other statistics can be assessed using 

the developed typhoon model and formulation described in the previous two sections. 

 

                                                 
17 The capability of the assessment of these statistics in the software tool is requested by Aon Benfield 

Japan. 
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For given model uncertainties θ , a conditional cumulative distribution |
ˆ ( | )XF xΘ θ  of 

the annual maximum loss of a portfolio is assessed, see Equation (5.20). The 

unconditional cumulative distribution ( )XF x  is assessed as: 

|
ˆ ˆ( ) ( | ) ( )X XF x F x f d  Θ Θθ θ θ  (5.23) 

where ( )fΘ θ  is the joint probability density function of the random variables Θ . By 

discretizing the joint probability density function, a joint probability mass function 

( )pΘ θ  is obtained. Considering the assumptions on the dependency of the variables 

(see Section 6.1.7) and discretizing the continuous states of each variable into ten 

states with the equal probability, i.e. 10
-1

, the joint states of the variables Θ  are 

discretized into 
510  states with the equal probability, i.e. 

510
. Thus, Equation (5.23) 

can be approximated as: 

|
ˆ ˆ( ) ( | ) ( )X XF x F x p



 Θ Θ

θ

θ θ  (5.24) 

where   represents the set that is composed of all the discretized states of the 

variables Θ  and 
5( ) 10p Θ θ  for all θ . Based on Equation (5.24) it is possible 

to assess the losses for different return periods. 

 

The mean value ,

m

i j  of the loss for each typhoon event can be assessed as: 

, ,
ˆ ( ) ( )m m

i j i jx p


 Θ

θ

θ θ   (5.25) 

The standard deviation ,

m

i j  of the loss for each typhoon event can be assessed as: 

2

, , ,
ˆ ˆ( ( ) ) ( )m m m

i j i j i jx p 


  Θ

θ

θ θ  (5.26) 

The cumulative distribution function , , ( )m

X i jF x  of the loss for each typhoon event can 

be assessed as: 

, , ,
ˆ ( ) ( ) ( )m m

X i j i jF x I x x p


    Θ

θ

θ θ  (5.27) 

The quantile vales can be assessed based on Equation (5.27).  
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Whereas the statistics mentioned above concern the maximum of the losses in a given 

year, the annual average loss (AAL) concerns the sum of the losses in a given year. 

Thus, Equation (5.16) must be replaced by:  

12

,

1 0

iJ

i j

i j

X X
 

  (5.16)' 

Then, following the same procedure explained in the Section 6.3.1 Probability 

distribution of annual maximum losses, the expected value sum  of the sum of the 

losses in a given year (i.e. AAL) is assessed as: 

,

1

1
ˆ ( ) ( )

M
m

sum i j

m

x p
M 


 

  θ θ  (5.28) 

 

The distribution of the loss due to an emerging typhoon event is assessed as follows. 

First, using the transition model, the wind field model and the surface friction model 

together with the information available for the typhoon event as the initial condition, 

possible future typhoon tracks and corresponding wind fields are simulated. These are 

substituted as ,

m

i jz  and ,

m

i jw  respectively in the formulation in the Section 6.3.1 

Probability distribution of annual maximum losses. Here, the subscripts i  and j  do 

not make any sense thus can be abbreviated as 
m

z  and 
m

w . Then, the loss ( )mx θ  

for each possible track and corresponding wind field is calculated as a function of the 

variables θ  in the same manner as explained in the Section 6.3.1. Finally, the 

cumulative distribution function , ( )X condF x  of the loss due to the emerging typhoon 

event is assessed as: 

,

1

ˆ ( ) ( ) ( )
M

m

X cond

m

F x I x x p
 

   
θ

θ θ  (5.29) 

Table 6-1: Statistics assessed in the software tool TRAST. 

Statistics Utilized formula 

Losses for different return periods 

(5,10,25,70,100,250, 500 and 1000 years) 

Equation (5.24) 

Annual average loss Equation (5.28) 

Mean value of the loss for each typhoon event Equation (5.25)
*
 

Standard deviation of the loss for each typhoon event Equation (5.26)
*
 

5% and 95% quantiles of the loss for each typhoon event Equation (5.27)
*
 

Distribution of the loss due to an emerging typhoon event Equation (5.29) 

(* In the case of historical typhoon events, the subscripts i  and j  and the superscript m  do not 

make any sense; ,

m

i jz , ,

m

i jw  and , ( )m

i jx θ  should be interpreted as the transition, wind field and loss of 

the considered historical typhoon event respectively.) 
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 Combining two portfolio loss assessments 

In the case where the losses of two portfolios are already assessed individually and the 

results are stored, the statistics of the loss of the portfolio which consists of the two 

portfolios can be assessed without performing the calculation shown in the previous 

sections. This is possible if the insured losses , ( )m

i jx   are stored for each typhoon 

event ( ,i j  and m ) and each realization of the model uncertainty   for two 

portfolios A  and B , which are denoted as , ( )m

A i jx   and , ( )m

B i jx   respectively; i.e. 

the insured loss , ( )m

C i jx   of the combined portfolio C  for each typhoon event ( ,i j  

and m ) and each realization of the model uncertainty   is calculated as: 

, , ,( ) ( ) ( )m m m

C i j A i j B i jx x x     (5.30) 

The statistics of the insured loss of the portfolio C  can be obtained by replacing 

, ( )m

i jx   in Equation (5.20) with , ( )m

C i jx  . Note that the information required for 

combining two portfolio loss assessments in this way is only the summed insured 

losses of two portfolios, i.e. , ( )m

A i jx   and , ( )m

B i jx  ; the information of individual 

exposures is not required. 

 

This is useful in many situations including the following cases: 

 

 Loss of a portfolio which consists of a large number of exposures can be assessed 

by splitting the portfolio into two or more mutually exclusive portfolios, 

assessing the losses of these portfolios individually (possibly with some PCs in 

parallel) and combining these loss assessments. 

 Both loss of a portfolio and losses of parts of the portfolio (possibly separated 

according to the policy conditions) can be assessed efficiently by assessing the 

losses of parts of the portfolio and then combining these loss assessments to 

obtain the loss of the whole portfolio; i.e. additional calculation for obtaining the 

loss of the whole portfolio is not required. 

6.3.2. Typhoon event sets 

The assessment of portfolio losses by the Monte Carlo simulation technique requires a 

set of the realizations of typhoon events using the hazard model. Since the wind field 

model and the surface friction model utilized for the loss assessment are deterministic, 

the event set can be defined in terms of the transition ,

m

i jz  of typhoons or the wind 

field ,

m

i jw  induced by the typhoons ( 1,2...,12i  , 1,2,..., ij J  and 1,2,...,m M ). 

The developed software tool stores the typhoon event set in both terms. The transitions 

,

m

i jz  are utilized for visualizing the track of the typhoons. The wind fields ,

m

i jw  are 

utilized for assessing the portfolio losses as well as for visualizing the wind fields of 

the typhoons. In the present version of the software tool, the number M  of years in 

the simulation of typhoon events is 23,992 and this amounts to 172,957 relevant 

typhoon events. All these typhoon events are stored in the software tool and these are 
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utilized for the assessment of portfolio losses. This event set is called the stochastic 

event set. 

 

The other event set, called historical event set, is also included in the software tool. 

The historical typhoon events included in the historical event set are the typhoon 

events from 1977 to 2006 in which the typhoons approached the Japanese islands and 

the event of the typhoon Vera (1959). In these typhoon events, the track records in the 

best track data are utilized to represent the transitions of the typhoons. Based on these 

the wind fields are reproduced and stored in the event set. The number of the typhoon 

events stored in the historical typhoon event set is 123. 

6.3.3. Disaggregation of portfolios 

The disaggregation of portfolios is required in cases where the exposure data are 

provided only in an aggregated manner. Here, the aggregated exposure data refer to the 

data in which the information on individual exposure is merged together and only the 

summary of the parameters of the aggregated exposures is available. For instance, an 

aggregated exposure data may contain only the number, the sum of the insured 

building values, the sum of the insured content values of exposures for each type of 

structure and policy situated in each Sompocode
18

. Hereafter, these quantities are 

denoted the parameters of the exposure. 

 

The disaggregation of aggregated exposure data is made in two steps. The first step is 

to disaggregate the values of the parameters of aggregated exposures into those of 

individual exposures. The second step is to locate, applying a certain rule (explained 

later), each individual exposure to one of the 1km-by-1km grids at which wind speeds 

are calculated and stored in the event sets. 

 

The assumption made in the first step is that the values of the parameters of the 

individual exposures which constitute the aggregated exposures are identical. Hence, 

the values of the parameters of the individual exposures are obtained by dividing the 

values of the corresponding parameters of the aggregated exposures by the number of 

exposures included in the aggregated exposures. For instance, when the sum of the 

insured building values of the exposures in a Sompocode is 104,810,400 [yen] and the 

number of exposures in the Sompocode is 12, the insured building value of each 

(disaggregated) individual exposure is obtained as 104,810,400/12=8,734,200 [yen]. 

 

In the second step the disaggregated individual exposures are located at one of the 

grids using an indicator I  that is considered to be correlated to the geographical 

distribution of certain types of occupancy of exposures. For instance, "residential 

                                                 
18. Sompocode is the code utilized in the insurance industries in Japan for the identification of regions 

in which exposures are situated. The typical size of a region identified by a Sompocode is slightly 
larger than that of a ward. 
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house" is one of the possible types of occupancy and the geographical distribution of 

residential houses is considered to be correlated to the geographical distribution of the 

households. In this case, the indicator I  can be selected as the number of households. 

Note that the value of the indicator I  must be available at ChoOhaza
19

 level. Using 

the value of the indicator I  at each ChoOhaza, the individual exposures are located to 

specific ChoOhazas in proportion to the values of the indicator I  at the ChoOhazas. 

Then, the individual exposures located in each ChoOhaza are distributed 

geographically uniformly to the 1km-by-1km grids that belong to the ChoOhaza. This 

rule is applied when the exposure data are aggregated at the level of prefecture, ward 

and Sompocode. In the case where the exposure data includes the information of the 

7-digit post codes for identifying the locations of the exposures, the individual 

exposures are relocated to the grids closest to the locations of the exposures defined by 

the 7-digit post code. Therein, if the exposure data are aggregated, the first step 

explained above is applied in order to disaggregate the values of the parameters of the 

exposures. The diagram of the disaggregation is shown in Figure 6.7. 

 

In Figure 6.8 an example of the disaggregation is shown for the area of Tokyo for the 

type of occupancy "residential house". Note that the datasets required for the 

disaggregation are provided by Aon Benfield Japan. These include: 

 

 Geographical distribution of different type of the use of buildings, e.g.  

commercial office, residential house, factory etc. 

 GIS data which defines the 1km-by-1km grid system 

 Data that contains the correspondence between different hierarchical levels of 

locations, i.e., ChoOhaza, 7-digit post code, Sompocode, ward and prefecture 

 

Figure 6.7: Diagram on the disaggregation of aggregated exposure data. 

                                                 
19. ChoOhaza is a class of the geographical hierarchy commonly utilized in Japan, which corresponds to 

a community level. 
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Figure 6.8: Example of the disaggregation in the area of Tokyo. 

6.3.4. Program components 

The program developed in this thesis is composed of three parts: hazard event set 

builder, vulnerability model builder and the main program, see Figure 6.9. The hazard 

event set builder is required for creating the stochastic event set. The vulnerability 

model builder is required for developing and updating the vulnerability model. For the 

assessment of portfolio losses in practice, only the main program is required. The main 

program is called TRAST (Typhoon Risk Analysis Software Tool) and is provided as a 

stand-alone software tool with graphical user interface, the main functions of the 

software tool TRAST is explained in Section 6.4. 

 

The hazard event set builder and the vulnerability event set builder are basically 

written in MATLAB (Version: 2008b). However, for the calculations related to the 

Bayesian probabilistic networks and the Bayesian statistics, WinBUGS
20

 and Hugin
21

 

                                                 
20 See http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. 
21 See http://www.hugin.com. 
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are utilized. It is requested by Aon Benfield Japan that the graphical user interface of 

the main program should be written in Visual Basic, thus Visual Basic.NET 2005 is 

utilized as the platform of the program development. The codes of the calculation of 

portfolio losses are written in MATLAB 2008b and these codes are complied to 

dynamic link libraries (DLLs) using MATLAB compiler and included in the main 

program. 

 

Figure 6.9: Components of programs. 
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6.4. TRAST: Software tool for portfolio risk  

This section explains the functions of the developed software tool TRAST and shows 

the analysis results which can be produced by TRAST. Figure 6.10 shows the main 

screen of TRAST. To perform a analysis the user has to do the following four steps. 

First the portfolio which has to be analyzed has to be imported as exposure data, then 

the policy conditions have to be defined, then the portfolio has to be disaggregated as 

described in Section 6.3.3 and finally the conditions for the analysis have to be defined 

before the analysis can be performed.  

 

Figure 6.10: Graphical user interface (Main tab window). 

 

6.4.1. Defining the policy conditions 

The software tool TRAST supports two different formats for defining the policy 

conditions as described in the following. The definition of the policy conditions are 

parameterized so that TRAST also can be used for a sensitivity analysis for the 

parameters and to optimize the parameters describing the policy conditions. 
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Format “A” 

The format “A” can be utilized to describe the policy conditions characterized by the 

following functional form (see also Figure 6.11): 

 

 
 

1

1 1 2

2 2

0 min( , )

( ) min( , )

franchise insured

franchise insured insured

insured

x V V

f x k x V V x V

k x V x



 



 



  




 (5.31) 

where x  is the ground-up loss of an object, ( )f x  is the corresponding insurance 

payment, insuredV  is the insured value of the object, 
franchiseV  is the franchise value, 1  

and 2  respectively are the parameters that characterize the criteria under which the 

different payment rates 1k  and 2k  are applied for the insurance payment. 

 

Figure 6.11: Insurance payment of the policy conditions described by the policy data 

file in the format “A”. 

Format “B” 

The format “B” can be utilized to describe the policy conditions characterized by the 

following two functional forms (see also Figure 6.12): 

 

 
 

0 1 2

2 2

0

( )

franchise

franchise insured

insured

x V

f x k x V x V

k x V x





 



  




 (5.32) 

and 
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 
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
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
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 (5.33) 

where x  is the ground-up loss of an object, 0 ( )f x  and 1( )f x  are the insurance 

payments corresponding to two types of policies that are explained below, insuredV  is 

the insured value of the object and 
franchiseV  is the franchise value, which appears only 

in 0 ( )f x . 1  (only in 1( )f x ), 2 , 1k  and 2k  are the parameters that characterize 

the policies. 

 

 

Figure 6.12: Insurance payments of the two policy conditions described by the policy 

data file in the format “B”. 

 

6.4.2. Defining the analysis conditions 

The conditions for the risk analysis can be defined in the user interface of TRAST. The 

statistics of the annual insured loss, can be evaluated by selecting the "Stochastic event 

set" (in Figure 6.13), whereby also the number of years of the simulation for the 

analysis has to be specified. It is recommended to enter a number more than 10000 for 

the stable evaluation of the statistics. 
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To evaluate the statistics of the insured losses of a portfolio due to the historical 

typhoon events that are stored in the typhoon event sets
22

, the "Historical event set" ( 

in Figure 6.13) can be used. 

 

In the case when the statistics of the insured loss of a typhoon event that is not stored 

in the typhoon event set should be evaluated, a typhoon track data file can be imported 

in which the typhoon event is defined ( in Figure 6.13). 

 

The analysis will be performed as soon the button "Analyze" (in Figure 6.13)
23

 is 

clicked. 

 

 

Figure 6.13: Components concerning the analysis settings. 

 

6.4.3. Displaying analysis results 

 

The summary of the analysis results is displayed in the tab window "Main", if the 

analysis is performed with the stochastic event. The summary  

includes the following statistics (see Figure 6.14): 

 

 Exceedance probability (EP) curve of the insured loss () 

 Annual average loss (AAL) () 

 The expected loss for the return periods of 5, 10, 25, 50, 70, 100, 250, 500 and 

1000 years () 

 

                                                 
22 Typhoons that made landfalls to Japan between 1971 and 2004 and the typhoon Vera are included 

in the historical event set. 
23 The analysis time required for the analysis depends on the number of years of the simulation as 

wells as the size of the portfolio; for example, the analysis of the portfolio consisting 15 million 
objects with the 10000-year simulation on a computer with an Intel core2duo 2.4 GHz 
approximately takes 48 hours. 
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Figure 6.14: Summary of the analysis results for the case of the analysis with the 

stochastic event set. 

 

Detailed results 

The detailed results of the analysis are displayed in the tab window “Detailed result” 

(See Figure 6.15). The detailed results are available for all types of the analysis setting. 

In this tab window, the following types of analysis results are available: 

 

 Statistics of the insured loss of the individual typhoon events in the table 

“Stochastic event set”, if the analysis is performed with the stochastic event set, 

or with the options “conditional simulation” (the conditional simulation is 

explained in Section 8.1). 

 Statistics of the insured loss of the individual typhoon events in the table 

“Historical event set”, if the analysis is performed with the historical event set, 

or with the options “scenario-based simulation”. 

 Graphical representation of the typhoon track and maximum wind speeds of the 

individual typhoon events as well as graphical distribution of the exposures of 

the portfolio. 
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Figure 6.15: Losses of individual typhoon events and visualization of track and wind 

speeds of a selected event. 

 

The explanation of each part in this tab window is given in the following sections. 

 

 Analysis results in the table "Stochastic event set" 

This table contains the analysis results when the analysis is performed with the 

stochastic event set or with the options “scenario-based simulation”. Each row of the 

table contains the statistics of the insured loss due to each typhoon event: 

 

 TyNo: identification number of the typhoon event 

 Mean: mean value of the insured loss due to the typhoon event 

 Std: standard deviation of the insured loss due to the typhoon event 

 5%: 5%-quantile of the insured loss due to the typhoon event 

 95%: 95%-quantile of the insured loss due to the typhoon event 

 Annual rate: annual occurrence rate of the typhoon event 
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 Analysis results in the table "Historical event set" 

This table contains the analysis results when the analysis is performed with the 

historical event set. Each row of the table contains the statistics of insured loss due to 

each typhoon event in the historical event set: 

 

 TyNo: identification number of the typhoon event 

 Mean: mean value of the insured loss due to the typhoon event 

 Std: standard deviation of the insured loss due to the typhoon event 

 5%: 5%-quantile of the insured loss due to the typhoon event 

 95%: 95%-quantile of the insured loss due to the typhoon event 

 Typhoon name: name of the typhoon event 

 Visualizing the typhoon events 

The typhoon track of a typhoon event (in the stochastic and historical event sets) can 

be visualized. Note that the line color of the typhoon track corresponds to the value of 

the central pressure of the typhoon at each respective time. The maximum wind speeds 

at locations on the Japanese islands of a typhoon event can be visualized on the map 

The geographical distribution of the portfolio for which the insured loss is analyzed 

can be visualized. The color of the dots corresponds to the value of the sum of the 

insured values of the exposures in the locations. The typhoon track, maximum wind 

speeds and geographical distribution of the portfolio can be superposed. 

In the Appendix D 10.4 are several examples of the visualization of the typhoon track 

and the corresponding wind field shown. 

Generating a report 

The software tool TRAST includes a automatic report generator, which summarizes the 

analysis results. The report on the summary of the analysis can be saved in a selected 

format (Acrobat pdf, Microsoft Word and Excel) (see Figure 6.16).  
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Figure 6.16: Report generator. 

 

Managing analysis results 

The software tool TRAST allows also to manage the analysis (Figure 6.17). Two main 

functions are provided for the management of the analysis results: 

 

 Save, load and delete the analysis results 

 Combine the analysis results 

 

Combining the analysis results refers that the analysis results of two or more different 

individual portfolios are combined so that the statistics of the insured loss of the 

integrated portfolio that consists of the individual portfolios are evaluated. It is also 

possible to combine the results of the analyses that are performed on several PCs. 
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Figure 6.17: Interface for the management of the analysis results. 
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7. Application: Global warming risk assessment  

Another potential application of the developed model is the investigation of the effects 

of global climate change on the probabilistic characteristics of strong wind speed 

induced by typhoons. 

 

Emanuel (1987) compares the mechanism behind the intensity of a typhoon to a Carnot 

cycle. The intensity of a typhoon is dependent on the difference between the SST and 

the temperature in the troposphere. The typhoon absorbs energy from the warm SST 

and cools down in the higher atmosphere. The intensity of a typhoon gets higher if the 

temperature difference is higher. Depending on how climate change will influence this 

balance, the typhoon activity can increase or decrease. Observation of the historical 

data shows that typhoons occur only if the SST is higher than 26.5°C. It is a major 

debate in the research community whether global warming would increase the number 

of typhoons or not. Emanuel (2005) proposes that the number of strong typhoons will 

increase but not necessarily the total number but the number of typhoons. 

 

A preliminary study on this is undertaken in (Graf et al., 2008). This study describes a 

sensitivity analysis of the influence of the SST in the probabilistic typhoon model. 

Assuming that the developed probabilistic typhoon model can be used to predict the 

typhoon activity in a future climate scenario and that the climate change is only 

represented by the SST, this study investigates the impact of the change of the SST on 

the maximum wind speeds and wind loads and presents an approach on how the effect 

of the climate change can be investigated. In this study, assuming several scenarios for 

the future change of SST, it is found that the upper quantile values of the annual 

maximum wind speed distribution may significantly increase as a consequence of an 

increase in the SST; in turn, the probability of failure of structures due to wind loads 

may also significantly increase. This study is presented in Section 7.1. 

 

The second study, described in Section 7.2, presents a more realistic investigation of 

the effect of global warming by considering the increase in the SST and the 

temperature of the atmosphere for future climate scenarios by using the output of the 

mesoscale meteorological model JMA-NHM. In cooperation with Professor Takashi 

Maruyama from Kyoto university, the data obtained from the mesoscale 

meteorological model JMA-NHM is used to establish the typhoon model using the 

model builder described in Section 5.6. This in turn is used to estimate the change in 

the wind risk of residential buildings in Japan under a future climate (Nishijima et al., 

2011). This application shows how the Bayesian framework can be used to assess the 

effects of global warming by updating the typhoon model with new available data.  



7. Application: Global warming risk assessment 

 

-128- 

 

7.1. Adaption of typhoon risk modelling to climate changes 

Latest analyses of the effect of global warming indicate that increased sea surface 

temperatures (SST) will increase the frequency of tropical cyclones with extreme wind 

speeds; for a general overview see the Intergovernmental Panel on Climate Change 

report (Solomon et al., 2007) or the report of (World Meteorological Organization, 

2006). Knutson and Tuleya investigate the effect of global warming on tropical 

cyclone activity on the basis of a selection of different global climate models and 

tropical cyclone models, assuming different scenarios for CO2 emissions (Knutson and 

Tuleya, 2004; Knutson et al., 2010). The analyses suggest that over a time frame of 80 

years on average the minimum central pressure of tropical cyclones will decrease by 

about 14% from its present value and the maximum wind speed will increase by about 

6%. The results from such analyses surely depend on the utilized models concerning 

climatic changes, tropical cyclones as well as the considered scenarios concerning 

emission of greenhouse gases and are thus subject to significant uncertainties. 

However, it is fair to assume that future tropical cyclones will result in more frequent 

strong wind events (Emanuel, 1987; Emanuel, 2005). This in turn will increase wind 

loads on buildings and structures in general and induce an increase of damages to the 

built environment. 

 

7.1.1. Objectives of the study 

Whereas the effects of global warming are likely to induce an increase of damages to 

the built environment, the magnitude of such consequences and the effectiveness of 

implementing new policies on the design and maintenance of the built environment are 

not yet obvious. Motivated by this and focusing on structures as an example of the 

constituents of built environment the study addresses the following two questions; 1) 

to what degree will the reliability of structures be decreased due to the intensified 

tropical cyclone activity? and 2) to which extent should the policies regarding design 

and maintenance of structures be changed in order to maintain the present level of 

reliability? Answers to these questions are investigated in the present study for 

structures located in the region of the northwest Pacific. However, the approach 

adopted herein can be applied to other regions as long as appropriate data and models 

are available. 

 

7.1.2. Approach adopted in the study 

For the purpose to assess the reliability of structures subject to wind loads the study 

takes basis in a probability-based engineering approach, see e.g. (JCSS, 2001). The 

approach requires a probabilistic hazard model and a probabilistic fragility model; each 

respective model is utilized to calculate the probability distribution of wind loads and 

the probability distribution of the resistance of structures subject to wind loads. The 
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hazard model adopted in the present study is the probabilistic typhoon model 

developed during this thesis, see (Graf et al., 2008), which enables to incorporate the 

effect of different SSTs on the occurrence and development of typhoons. The fragility 

model postulated in the present study is based on the JCSS Probabilistic Model Code, 

see (JCSS, 2001) The roles of these models are shown in Figure 7.1 in the context of 

the assessment of structural reliability. The figure shows the analysis flow of the 

adopted approach to; a) assess the effect of global warming on the reliability of 

structures and b) identify the necessary change of design and assessment policies for 

structures, required to maintain the present level of structural reliability.  

 

 

 

Figure 7.1: Approach suggested to assess and mitigate the impact of extreme wind 

events caused by climatic change. 

7.1.3. Validation of the adopted hazard model for wind loads assessment 

The probabilistic typhoon model utilized in the assessment of structural reliability 

enables to evaluate wind loads at different locations in probabilistic terms; e.g. the 

probability distribution of annual maximum wind loads. However, since the 

probabilistic model is established on the basis of not only scientific knowledge but also 

statistical analyses using available historical data it is not sure to which extent the 

model may be extrapolated beyond the historically observed SSTs. Therefore, in order 

to assess the plausibility of the model and to apply this in further assessments 

simulation results from the probabilistic model must be validated with other analysis 

results. In the present study the simulation results are compared with the analysis 

results which do not depend on the historical data, e.g. (Knutson and Tuleya, 2004).  
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7.1.4. Assessment of the reliability of structures 

Applying the probabilistic typhoon model for each scenario of the SST increase, the 

probability distribution of annual maximum wind load S  for a structure is obtained. 

The distribution is represented by the probability density function  |S SSTf s e  

conditional on a given scenario 
SSTe . The probability distribution of the resistance R  

of a structure is modelled in accordance with the JCSS Probabilistic Model Code in 

terms of the conditional probability density function  |R Rf r  . 
R  represents the 

expected value of the resistance of the structure and is related to the policy regarding 

the design and maintenance of the structure. Thus the structural performance is a 

function of the policy. The annual probability of failure  ,F SSTP e d  and the so-called 

reliability index  ,SSTe d  for the structure are calculated as a function of the 

scenario and the policy as: 

 

{ 0}
( , ) ( | ) ( | )F SST R S SST R R

r s
P e f s e f r dsdr 

 
  ,     (6.1) 

 

 1( , ) ( , )SST R F SST Re P e    ,       (6.2) 

 

where  1   is the inverse of the standard normal cumulative distribution function. 

The reliability index is widely used in the structural engineering field and the 

appropriate levels of the reliability index are suggested in the JCSS Probabilistic 

Model Code as a function of the significance of the structure and the relative cost for 

installing safety measures. 

 

Finally, the decrease of the reliability of a structure is calculated from Equation (6.2). 

Furthermore, the policy in regard to the design and assessment of a structure which is 

necessary in order to maintain the present level of reliability is identified in terms of 

the expected value of the resistance 
*

R  for a given scenario 
*

SSTe  through the 

following equation: 

 
* * 0 0( , ) ( , )SST R SST Re e            (6.3) 

 

where 
0

SSTe  represents the scenario that the SST remains at the present level, and 
0

R  represents the expected value of the resistance corresponding to the present level 

of reliability. 

 

7.1.5. Example 

In the following, the proposed approach is illustrated in a example. This example 

investigates the effect of global warming represented by a increase in the sea surface 

temperature (SST) on the wind speeds induced by typhoons and the effect on the 

probability of failure of buildings. For this study it is assumed, that the frequency and 

the location of the occurrence of typhoons do not change due to global warming. 
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Several typhoon simulations are performed whereby in each simulation the available 

STT map of the year 2000, which is a input parameter to the transition model (see 

Section 2.6), is increased step wise. 

 

To assess the change of the probability of failure due to the increased wind speeds, a 

optimally designed building is assumed, which has a target annual probability of 

failure of 510  as proposed in the JCSS Probabilistic model code (JCSS, 2002). The 

resistance of the building is represented with a log normal distribution as  ,LN    

(Melchers, 2001). The parameter   is assumed to be 0.2 and the parameter   is 

optimized so that in combination with the wind load obtained from the typhoon 

simulations the building has a probability of failure of 510  (see Figure 7.2). The 

wind load is calculated by 2L kV , whereby V  is the annual maximum wind speed 

and k  is a factor which is assumed to be 1 for this example. 

 

  

Figure 7.2: Estimation of the target probability of failure. 

 

The optimally designed building in this example is located in Osaka and the typhoon 

model described in Chapter 2 is used in combination with the increased SST map to 

assess the wind speeds and the probability of failure for this building. A higher SST 

leads to a lower central pressure of the simulated typhoon, which in turn leads to a 

higher wind speed. The increase in the 98% quantile of the annual wind speed is shown 

in Figure 7.3 (left) and the resulting change of the probability of failure is shown in 

Figure 7.3 (right). According to this study an increase of the SST by 2° increases the 

probability of failure by factor of ten. 

 

2 0Fp P R kV    
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Figure 7.3: Change of the characteristic value (98%-quantile value) of annual 

maximum wind speed (left) and the change of the probability of failure (right). 

 

A change of the design policy may be required to maintain the target reliability as 

shown in Figure 7.4 (left). Figure 7.4 (right) shows how much the 5% quantile of the 

resistance of the building has to be increased to maintain the target probability of 

failure of 
510
.  

 

Figure 7.4: Adaption of structural design (left) and required change of the 

characteristic value (right). 

 

In (Burri et al., 2009) a study was conducted which uses the output of different climate 

projection models described in the IPCC Report of 2007 (Solomon et al., 2007) as SST 

maps and considers the whole Japanese Islands. 
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7.1.6. Summary 

The present study investigates the effect of global warming on structural reliability in 

the context of a possible increase of tropical cyclone activity. For this purpose a 

probability-based engineering approach is adopted. The approach employs the 

probabilistic typhoon model that is developed during this thesis. The probabilistic 

model for the resistance of structures is adapted from the JCSS Probabilistic Model 

Code. First the consistency of the probabilistic typhoon model is verified with the 

results of alternative models not relying on historical data. Thereafter the suggested 

model is applied for assessing the change of structural reliability considering the effect 

of the increased SST on tropical cyclone activity. Thereby it is also investigated to 

which extent the resistance of structures must be increased in order to maintain the 

present level of structural reliability. Although these investigations are made for 

structures in the northwest Pacific region the approach adopted in the present study can 

be applied to other regions to the extent that relevant models and data are available. 

 

7.2. A preliminary impact assessment of typhoon wind risk of 

residential buildings in Japan under future climate change 

This section investigates a quantitative impact assessment of the climate change on 

typhoon wind risk, focusing on residential buildings in Japan. The risk is assessed 

based on (1) the typhoon event set extracted from the simulation by the super-high 

resolution atmospheric general circulation model developed within the KAKUSHIN 

program; (2) the probabilistic typhoon modeling scheme developed during this thesis; 

(3) a damage ratio model empirically estimated on the basis of the damage report of 

typhoon Songda (2004) and the reproduced wind field by a mesoscale meteorological 

model; JMA-NHM. The main results are that in the future (2075-2099) at most 

locations of Japan: (1) extreme wind events (10-minutes sustained wind speed >30m/s) 

are more likely to occur; (2) the median of the annual maximum wind speed decreases; 

(3) the expected number of damaged residential buildings decreases, assuming that the 

profile of the building portfolio remains unchanged. Based on these results, the 

assumptions and inputs employed in the assessment are critically reviewed. Thereby, 

the needs of further research efforts toward more credible and comprehensive impact 

assessment are addressed. 

7.2.1. Introduction 

Global-scale meteorological monitoring networks have revealed that the global climate 

has changed significantly over the last decades. Large amount of scientific work has 

claimed that further change of the climate may occur in the future. In response to these, 

various political as well as non-political protocols on action plans for mitigating the 

climate change have been proposed at different levels of the society; only to find it 

difficult to reach the envisaged goals. Presently, there seems a general agreement that 
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actions have to be undertaken also on the adaptation of the society to the emerging 

global climate change. 

 

For the purpose to facilitate decisions on the adaptive actions, a large amount of effort 

have been and is being devoted worldwide to develop more credible models for the 

projection of the future climate change - numerical models of the climate as well as 

models for the growth of the human society. Correspondingly, quantitative assessment 

of the impact of the climate change on the human society has become possible for 

various types of risks; among others, the risks due to natural hazards affected by the 

climate change. 

 

This section investigates the probabilistic assessment of the impact of the climate 

change on infrastructure, using the super high-resolution general circulation model 

developed within the KAKUSHIN program. Focus is given on the typhoon wind risk 

of residential buildings in Japan. The objectives are: (1) to demonstrate that tools to 

assess the impact are readily available, if not yet these are perfect; thereby, (2) to 

address the issues and needs for further sophistication of the tools for the purpose to 

facilitate more credible and comprehensive assessment of the risks. 

7.2.2. Approach 

Procedure for the impact assessment 

The impact of the climate change in the future on the typhoon risk of residential 

buildings in Japan is assessed in the following procedure. First, typhoons simulated 

with the atmospheric general circulation model (AGCM) under current and future 

climates are extracted. Second, based on the extracted typhoons, probabilistic typhoon 

hazard models are developed for each of the climates. Third, using the developed 

probabilistic typhoon hazard models, stochastic typhoon events are simulated by 

Monte Carlo simulations. Finally, the risks are assessed for both climates, and the rate 

of the change of the risk is calculated. A simplistic measure of risk is assumed in the 

present study, which is defined as the damage ratio of the residential buildings. In the 

following, each of the step is explained. 

Typhoons extracted from AGCM simulation 

The present study utilizes the simulation results with the AGCM, which has been 

developed under the project "Projection of the change in future weather extremes using 

super-high-resolution atmospheric models" (Mizuta et al., 2011) within the framework 

of KAKUSHIN program. The resolution of the AGCM is 20-km mesh grid. The 

simulations are performed for three different periods; i.e. 1979-2003 (current), 

2015-2039 (near future), and 2075-2099 (future). For the simulations, the dataset 
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corresponding to the IPCC AR4 A1B scenario is employed as the boundary conditions 

to the AGCM. The abovementioned project consists of two phases, and 

correspondingly two sets of the simulation results are available, which are labeled as 

MRI-AGCM3.1S and MRI-AGCM3.2S respectively. In the present study, the latter set 

is utilized, and the impact assessment is undertaken for the future climate relative to 

the current climate. 

 

Typhoons are extracted from the simulation results, see (Murakami and Sugi, 2010). 

The extracted typhoons are represented in terms of the central pressure as well as the 

position of the typhoons at each time. Figure 7.5 illustrates the extracted typhoons. 

These are utilized as the basis for the development of the probabilistic models for the 

occurrence and the transition of typhoons. 

 

Figure 7.5: Extracted typhoons for the current climate (left) and the future climate 

(right). 

Probabilistic modeling of typhoon  

The present study takes basis in the probabilistic typhoon hazard modeling proposed 

by (Graf et al., 2009) and (Graf and Nishijima, 2011). The model consists of four 

component models; i.e. occurrence model, transition model, wind field model and 

surface friction model. The first two models are probabilistic models, whereas the last 

two are deterministic ones. In the present study, two versions of the occurrence and 

transition models are developed for the current and future climates using the 

corresponding AGCM simulation results; on the other hand, the models developed 

based on the methodology presented in (Graf et al., 2009) are employed without 

modifications for wind field and surface friction modeling. The outputs from the suit of 

the hazard models are the probabilistic characteristics of the maximum 10-minute 

sustained wind speeds at each location in Japan during individual typhoon events and 

their frequencies. 
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It should be emphasized here that the occurrence and transition models for the current 

climate are developed based on the typhoons subtracted from the AGCM simulation, 

instead of the actual historical typhoons archived in e.g. the JMA Best track data. 

Thereby, it is anticipated that the effects of the biases inherited in the AGCM on the 

assessments are alleviated. 

Modeling of performance of residential buildings 

The assessments of the typhoon wind risk require a model that represents the 

performance of structures as a function of wind speed. The typhoon Songda in 2004 is 

selected to develop such a model, since a report on the damage on the residential 

buildings as well as the observation of wind speed at NeWMeK stations are available. 

The observation of wind speed is utilized for the calibration of wind speed. 

The statistics are reported on damaged residential buildings at municipality level in 

Kyushu, Japan, caused by the typhoon Songda in 2004, see (Tomokiyo et al., 2009). 

The report on the damage differentiates the degree of damages, i.e. minor, moderate 

and major damages, and summarizes the number of damaged buildings for each class 

of damages at each municipality. These statistics are utilized, together with the Census 

data, as the basis for developing the model; hereafter, the model is called damage ratio 

model. Note that the damage ratio model developed here does not differentiate the 

degree of damages. The damage ratio model describes the ratio of the number of 

damaged buildings over the total number of households (which approximates the 

number of residential buildings) in a given area as a function of the maximum wind 

speed during a typhoon event.  

 

In order to develop the damage ratio model, the wind speeds at respective 

municipalities are required. The strong wind field of the typhoon Songda is reproduced 

numerically using the JMA-NHM (Japan Meteorological Agency Non-Hydrostatic 

Model) together with the JMA-RANAL data as the initial condition and the JMA-RSM 

data as the boundary condition, see (Maruyama et al., 2010). In Figure 7.6, the dots 

represent the pairs of the actual damage ratio and the maximum wind reproduced by 

the JMA-NHM at each location. The solid line represents the estimated damage ratio 

model. The damage ratio model is developed by a regression analysis, and is expressed 

as: 

9 4.0

, ,( ) 5.1 10d NHM MAX NHM MAXr y y     (6.4) 

where ,( )d NHM MAXr y  is the damage ratio as a function of ,NHM MAXy , the maximum wind 

speed at 10 [m] height from the surface reproduced by the JMA-NHM. It is assumed in 

the present study that the model developed in this way is representative for other 

typhoon events as well as other regions in Japan. 
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Figure 7.6: Relation between damage ratio and the maximum wind speed 
,NHM MAXy  

computed with the JMA-NHM at different locations and the estimated damage ratio 

model. 

Calibration of wind speeds 

The wind speed computed with the probabilistic hazard model corresponds to 

10-minute sustained wind speed, whereas the wind speed computed with the 

JMA-NHM is considered as wind speed spatially and temporally averaged; the extents 

of which, however, are not explicitly known. For this reason, a calibration of the wind 

speeds between the JMA-NHM computation and the NeWMeK observation is carried 

out by (Maruyama et al., 2010). The relation for the calibration is expressed as: 

,10min, ,0.83NewMeK MAX NHM MAXy y   (6.5) 

where 
,10min,NewMeK MAXy  is the maximum observed 10-minute sustained wind speed at a  

NeWMeK observation station. Note that the wind speed computed by the probabilistic 

models introduced in the previous section is calibrated to the maximum 10-minute 

sustained wind speed, using the observations at JMA meteorological stations. 

Assuming that the observational characteristics of the NewMeK and JMA stations are 

identical, the probabilistic hazard model and the damage ratio model can be then 

integrated. 

Measure of risk 

In this section, the measure of risk assumed in the present study is explained. Let B

jN  

and 
jN  respectively denote the number of buildings at location j  and the number of 

buildings that are damaged by typhoons in a given year. The number 
jN  is a random 

variable and can be written as: 
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,

1

jK

j j k

k

N N


   (6.6) 

where 
,j kN  is the number of damaged buildings in the event of the thk  typhoon in a 

year, and 
jK  is the number of typhoon events in the year relevant to the buildings at 

location j , which is also a random variable. The definition of the building risk 
jR  at 

location j  is given as the expected value of the number 
jN  relative to the total 

number B

jN  of the buildings: 

,

, ,

1 1

[ ] j jK K

j j j k

j j k j j kB B B
k kj j j

E N N N
R E E E R E K E R

N N N 

     
                 

        
   (6.7) 

where, 
, , / B

j k j k jR N N . Here, it is assumed that 
,j kR  are independently identically 

distributed. ,j kE R    is defined using the probability density function ( )
jYf y  of the 

maximum wind speed 
jY  at location j  in any given single typhoon event, and the 

building damage ratio ( )dr y  as a function of the wind speed y  as: 

, ( ) ( )
jj k d YE R r y f y dy      (6.8) 

Thus, given the building damage ratio ( )dr y , the building risk 
jR  at location j  is 

characterized by two wind hazard components: the mean frequency [ ]jE K  of typhoon 

events relevant to location j  in a given year, and the probability density function 

( )
jYf y  of the maximum wind speed in an event. 

7.2.3. Results 

Simulation of typhoon events and its verification 

Using the two sets of the probabilistic hazard models, two corresponding sets of the 

typhoon events are generated by Monte Carlo simulations, for the current climate and 

the future climate. Each set contains typhoon events corresponding to 25000 times of 

one-year simulation. For each typhoon event, the maximum 10-minute sustained wind 

speeds are computed at municipality level entirely covering Japan; i.e. at 2249 

locations. 

 

The verification of the generated typhoon events is undertaken by comparing a couple 

of statistics of the transition of the typhoons. In Figure 7.7, the cumulative annual 

average numbers of typhoons that travel through as a function of the central pressure at 

latitudes of 30N
o
 and 35N

o
 under the current and future climates are shown. It can be 

said that the overall performance of the probabilistic models is acceptable in the sense 

that these succeed in representing two general tendencies observed from the 
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simulations with the AGCM: (1) the overall number of typhoons travelling though 

these latitudes is decreasing; (2) the number of intensified typhoons is increasing. 

However, there is a discrepancy in the numbers of weaker typhoons for the latitude of 

35N
o
 under the future climate. The main reason for the discrepancy is considered due 

to the smaller numbers of typhoons in the simulation with the AGCM to develop the 

probabilistic model. 

 

Figure 7.7: Cumulative annual average numbers of typhoons in the AGCM simulation 

and the Monte Carlo simulation as a function of the central pressure at latitudes 30N
o 

(top) and 35N
 o 

(bottom) under the current climate (left) and the projected future 

climate (right). 
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Impact on annual maximum wind speed 

Having verified the performance of the probabilistic models relative to the simulations 

with the AGCM, the impact of the climate change on the annual maximum wind speed 

is investigated. In Figure 7.8, the changes of the distributions of the annual maximum 

wind speeds at two locations in Japan (Tokyo and Fukuoka) are shown. Note that these 

wind speeds are the ones at 10 m height from the surface computed considering actual 

roughness conditions; the roughness conditions are considered using land use data in 

terms of roughness length; see (Graf et al., 2009) for the way how the roughness length 

is empirically estimated using land use data. 

 

Figure 7.8: Exceedance probabilities of the annual maximum wind speeds under the 

current and the projected future climates at Tokyo (left) and Fukuoka (right). 

 

It is seen that the probabilities of the occurrence of higher annual maximum wind 

speeds (>30m/s) increase at all three locations, whereas the medians of the annual 

maximum wind speeds decrease. This is consistent with the two observations from the 

simulations with the AGCM mentioned in the previous section.  

 

Furthermore, the overall comparisons of the 98%-quantiles (corresponding to 50-year 

return period) and the medians of the annual maximum wind speeds at 2249 locations 

in Japan are made, see Figure 7.9, confirming that these observations are true for most 

of the locations in Japan.  
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Figure 7.9: Comparisons of 50-year return period wind speeds (left) and medians of the 

annual maximum wind speeds (right) at 2249 locations in Japan under the current and 

the projected future climates. 

Impact on wind risk of residential buildings 

The risks of residential buildings are computed at each location in Japan under the 

current and the future climates. The result is presented in Figure 7.10. As seen in the 

figure, the risks tend to decrease for most of the locations. The main reason for this is 

the decrease in the frequency of the relevant typhoon events in Japan and the degree of 

the intensification of typhoons is not enough to compensate this degrease. The simple 

average of the change rates of the risks is 0.87. The geographical distribution of the 

change is shown in Figure 7.11, which indicates the tendency that the risks increase in 

the northwestern part of Japan and decrease in the southern eastern part. This is due to 

the change of the characteristics of the track of typhoons. 

 

Figure 7.10: Change of the typhoon wind risks under the current and projected future 

climates.  
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Figure 7.11: Geographical distribution of the change of the residential building risks. 

7.2.4.Discussion 

General issues 

The numerical results obtained in the present study depend on several critical inputs 

and assumptions. Among others, the probabilistic characteristics of typhoon events are 

crucially dependent on the outcomes from the AGCM and the employed scenario as 

well as the damage ratio model. Furthermore, the numbers of typhoons in these 

outcomes may not be sufficient to develop credible probabilistic hazard models; the 

assumption that the structural performance of building is uniform over Japan may not 

be appropriate, since among others the building code differentiates the wind design 

loads for buildings in different regions of Japan. Improvements on these are addressed 

as future tasks. 

 

It should be remarked that the impact assessment of the risk is subject to the definition 

of risk. For instance, defining the measure of risk in monetary terms, instead of the 

damage ratio as assumed in the present study, might result in a different conclusion, 

since it is anticipated that the monetary loss may be highly nonlinear to the wind speed. 

However, in order to facilitate the quantitative assessment of this, a vulnerability 

model that describes the relation between wind speed and monetary loss needs to be 

developed. 

 

In the following sections, a few specific issues are discussed in order to identify clear 

direction of the research needs toward more credible and comprehensive assessment. 
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AGCM Performance in regard to the simulation of typhoons 

The performance of the AGCM in regard to the simulation of typhoons is investigated 

by comparing some statistics on the typhoons in the AGCM simulations and in the 

JMA Best track data in the same period; i.e. 1979-2003. The statistics employed for 

this purpose are the annual average numbers of typhoons that travel through the several 

latitudes with certain values of the central pressure or smaller. Figure 7.12 shows the 

comparison results for the latitudes of 20N
o
 and 35N

o
. At 20N

o
, the statistics are in 

good agreement with each other; at 35N
 o

, significant discrepancy is observed. It 

should be mentioned, however, that the impact assessment in the present study is 

performed based on the simulations with the AGCM for the current climate and also 

for the future climate; hence, the biases associated with the AGCM are expected to be 

alleviated to some extent. Clearly, further improvement of the AGCM in this regard is 

required. 

 

Figure 7.12: Cumulative annual average numbers of typhoons in the JMA Best track 

data in the period of 1979-2003 and the AGCM simulation for the current climate as a 

function of the central pressure at latitudes 20N
 o 

(left) and 35N
 o 

(right). 

 

It should also be emphasized here that the geographical differences in the change rate 

of the risk over Japan may be due to patterns in the AGCM simulation results that are 

not physically and/or statistically significant; further investigation is suggested to 

verify this observation. 

Modeling of wind vulnerability  

The damage ratio model developed and employed in the present study relies on a 

narrow range of damage observation temporally (only on one typhoon event) and 

spatially (only on Kyushu, part of Japan). Furthermore, it only describes the relation 

between wind speed and the ratio of damage or probability of damage occurrence; 

indifferent to the degree of damage or amount of monetary losses. Here, it is suggested 

that research effort is directed to develop a vulnerability model based on an 

engineering approach; i.e. modeling of the vulnerability accommodating physical 
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processes leading to relevant damages and their consequential losses. In the case of the 

assessment for Japan, an emphasis should be given on the vulnerability modeling for 

non-structural components of buildings such as cladding and glazing, since these are 

considered to be the major part of the damages and losses due to strong wind in Japan. 

7.2.5.Surface roughness and development of the society 

Finally, but not least, the development of the human society over time should have 

significant impact on the change of the typhoon wind risk. Firstly, it should affect the 

future development of the climate change through the general consumption behavior of 

the society; this concerns the scenarios in the IPCC report. Secondly, the development 

of the human society may change the pattern of the land use and building density, 

which can result in different surface roughness. In addition to these, for a 

comprehensive assessment of the impact, other changes of the societal structure such 

as population and geographical distribution thereof must be taken into account. 
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8. Application: Risk assessment of a approaching typhoon 

and real-time decision making 

This application shows how the Bayesian framework for probabilistic modelling of 

typhoon risks can be used for the risk assessment and for real time decision making in 

the case of an approaching typhoon by conditioning the typhoon model with new 

available information. 

 

If a typhoon has just emerged and is approaching the Japanese Islands, the typhoon 

model described in Chapter 2 can be used to simulate possible developments of this 

new typhoon by using the available data of the approaching typhoon as initial 

conditions for the typhoon model. To perform a predictive risk analysis for a 

approaching typhoon the described approach is implemented in the software tool 

TRAST (described in Section 6.4). Section 8.1 describes the functions of TRAST which 

can be used to estimate the portfolio risk for a approaching typhoon. 

 

Another application concerns real-time decision making e.g. in the context of 

evacuation of people and shut-down of operation of engineered facilities in the face of 

an approaching typhoon, see (Nishijima et al., 2009). A framework for real-time 

decision analysis and a example is provided in Sections 8.2 to 8.5. 

 

For this, the feature that the entire life of a typhoon can be modelled is useful for 

simulating possible tracks and changes of the intensity of the approaching typhoon. 

Furthermore, the consideration of the SST and the seasonal differences of probabilistic 

characteristics of typhoon events enables utilizing additional information such as the 

current SST around the location of the typhoon and current season; consequently, the 

uncertainties associated with the transition of the typhoon can be reduced and decisions 

may be made more precisely. 

 

8.1. TRAST: Risk assessment of a approaching typhoon  

The software tool TRAST (described in Section 6.4) gives the option to perform a risk 

analysis for the case that a new typhoon is occurred. There are two different cases if 

the complete typhoon track is available or if the typhoon is just approaching the 

Japanese Islands and only a partial typhoon track is available. The two cases are 

described in the following sections. 

8.1.1.Scenario-based simulation 

For the case that a risk analysis should be performed for a typhoon event which just 

has passed the Japanese Islands the software tool TRAST provides a option to make a 
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"scenario-based simulation". This option provides the possibility to import the typhoon 

track data of the new typhoon. Then the typhoon track is used in combination with the 

wind field model (Section 2.9), the surface friction model (Section 2.10) and the 

vulnerability model (Section 6.1) to perform a risk analysis using this new typhoon 

track data. 

  

8.1.2.Conditional simulation 

For the case that a typhoon has just occurred and is approaching the Japanese Islands, 

the software tool TRAST provides the option of making a "conditional simulation". The 

partial track data of the approaching typhoon can be imported in the interface of 

TRAST shown in Figure 8.1. The partial typhoon track data is used to set the initial 

condition of the typhoon model (Chapter 2) which is used to simulate a selected 

number of possible complete typhoons. These typhoons are used in combination with 

the vulnerability model (Section 6.1) to perform the risk analysis. 

 

 

Figure 8.1: Interface for the option “conditional simulations”. 

The summary of the analysis results includes the following statistics (see Figure 8.2): 

 

 Probability density function of the insured loss () 

 Expected value of the insured losses () 
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Figure 8.2: Summary of the analysis results for the case of the analysis with the option 

“conditional simulation”. 

8.2.  Real time decision making 

Building structures, infrastructure systems and industrial facilities (hereafter jointly 

referred to as engineered facilities) are often built and operated on locations where 

natural hazards may take place; implying significant risks. As part of the overall 

strategy of risk management for such engineered facilities the optional decision to shut 

down operation and to evacuate people and assets in the face of an emerging hazard 

event plays an important role. Important examples where such strategies are presently 

utilized include refineries and fixed offshore platforms subject to tropical storms, storm 

surges and tsunamis, but also urban habitats and public infrastructure subject to events 

such as storms, floods, landslides, avalanches and volcanic eruptions. 

 

The decision to evacuate a highly populated area or to shut down an industrial facility 

is in itself associated with significant risks and usually with high costs; evacuation 

operations even in well developed societies have been experienced to cause 

considerable numbers of fatalities. Moreover, despite that events like storms typically 

only last a few days it may take even in the order of months before engineered 

facilities like refineries which have been shut down can be brought back to full 

operation, resulting in production interruption and monetary losses as a consequence. 

Decisions on emergency evacuation, shut-down and general loss reduction activities in 

the face of emerging hazards are thus critical and it is of high importance from the 

perspective of both societal and private organizations to ensure that they are 

conforming to the preferences of stakeholders in regard to safeguarding life, 

environment and other assets. The relatively few but highly important decisions which 
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are to be taken by just a few persons within a small time frame subject to the uncertain 

and incomplete information prevailing such situations must thus be well prepared. 

 

The main challenge is to establish the theoretical and methodical basis for supporting 

such decisions and to derive criteria for commencement of actions in consistency with 

the best available knowledge on the hazards, potential consequences, the efficiency of 

available relevant options for risk reduction and the preferences of the stakeholders. 

8.3. Characterization of the problem 

The decision situations outlined above share important characteristics: (a) the hazard 

processes evolve relatively slow (e.g. storms and floods) and allow for reactive 

decision making; (b) various indicators can be observed prior to the impact of the 

hazard which contain information in regard to its severity (e.g. landslides, avalanches 

and volcanic eruptions); (c) decision makers have options for reducing risks which 

may be commenced at any time supported by the observed indicators. Here the typical 

problem arises that waiting will imply more information but might also reduce 

available time for evacuation and other loss reduction activities; (d) the decision 

making is subject to uncertainties, a part of which might be reduced at a cost; (e) on 

top of all, the decisions must be made fast, in near-real-time. 

 

The present section addresses the decision problem outlined in the foregoing first in 

general terms. A general formulation for the optimization of decisions concerning 

shut-down and evacuation is presented based on the Bayesian pre-posterior decision 

analysis, assuming that probabilistic models are available for the assessment of the 

temporal and spatial evolution of emerging natural hazard events. Therein, the 

requirements to the probabilistic models are identified. Then, an example is 

considered; a decision maker, who is responsible for the operation of an offshore 

platform, has to decide if the operation is continued or shut-down in the face of an 

evolving typhoon event. The procedure for solving the decision problem using the 

framework is accounted for especially focusing on computational feasibility. In doing 

so, general technical issues involved in the decision problem formulated in the present 

section are identified, which are addressed as future tasks. 

8.4. Decision framework 

 

The typical time frame for decision making considered in this section range from hours 

to days. Within this time frame decision makers may be able to obtain information at 

time intervals ranging from minutes to hours. For instance, for decision making in the 

face of an evolving typhoon the time frame is typically several days up to a few weeks. 

The time interval for acquiring information on the state of a typhoon is often in the 

range of one to six hours as typically being the standard of meteorological agencies. 
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In order to facilitate decision making in situations with such relatively small time 

frames, it is important that relevant information available in near-real-time can be 

directly implemented into probabilistic models for the updating of the variables 

influencing underlying decision problems. Furthermore, it is necessary to establish the 

algorithms for identifying the optimal decision rules which apply in dependency of any 

potentially available information. For these purposes, a decision framework is 

formulated employing conditional probability representations and the sequential 

decision theory (De Groot, 1970), which is considered as a variant of the pre-posterior 

analysis (Raiffa and Schlaifer, 1961). 

8.4.1.Conditional probability representations 

Denote by X  a random variable of significance for consequences in a decision 

problem, also referred to as the hazard index such as e.g. the maximum wind speed 

during a storm event, or the time remaining until the wind speed exceeds a critical 

threshold. Let 1 2( , ,..., )nY Y YY  be a set of random variables that characterize the 

phenomenon of interest and are required to calculate the probabilistic characteristics of 

X . Note that the subscript represents discrete times. However, the discrete times do 

not necessarily correspond to physical times; they may also represent the number of 

successive measurements undertaken for collecting information. n  is the number of 

the times when the decisions are made, and a terminal decision (the definition is 

provided later) must be made before or at the thn  time. Denote by E  1 2( , ,..., )nE E E  

a set of random variables that represents information available at respective times, 

which may be utilized to reduce the uncertainty associated with the components of Y  

and in turn the hazard index X . 

 

A simplistic but typical relationship between the variables is shown in Figure 8.3. In 

the figure, each node represents a variable, and each directed arrow represents the 

probabilistic characteristics between the variables connected by the arrow. For 

instance, the arrow directed from the node 1Y  to the node 1E  represents that the 

random variable 1E  is characterized by the conditional probability 1 1[ | ]P E Y . When 

more than two arrows are directed to a node, it signifies that the random variable 

represented by the node is characterized by the conditional probability on the variables 

represented by the nodes from which the arrows are directed. 

 

When all the conditional probabilities and the (unconditional) probabilities for the 

nodes to which no arrow is directed are given, conditional probabilities of any 

variables in the graph can be calculated. Especially, it is important in the decision 

framework considered here that the conditional probability of X  given information 

1 2, ,..., iE E E  ( 1,2,..,i n ) and the conditional probabilities of 1iE   given 

1 2, ,..., iE E E   ( 1,2,.., 1i n  ) can be easily calculated. 
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Figure 8.3: Probabilistic model representation. 

 

Such probabilistic models and the algorithms for calculating the conditional 

probabilities are assumed to be available for the decision problems considered. In fact, 

Bayesian Probabilistic Networks are suitable for such conditional probability 

representation; generic algorithms are available for calculating conditional 

probabilities, see e.g. (Jensen and Nielsen, 2007) . However, other conditional 

probability representation such as regression models may be suitable as are employed 

in Section 8.5.  

8.4.2.Decision optimization 

One of the characteristics of the decision problem considered in the present chapter is 

that the decision maker has an option to postpone the decision. The decision maker can 

use the time gained by postponing the decision for reducing the uncertainties 

concerning the decision problem. There two possible approaches to reduce the 

uncertainties are possible. One approach is associated with the reduction of the 

aleatory uncertainty involved in the decision problem; that is, as a function of time the 

temporal and spatial frame of the phenomenon underlying the decision problem change 

in such a way that the uncertainty of the variable of direct interest for the decision 

making (e.g. the hazard index X  in Figure 8.3) is reduced, see (Faber, 2005). Thus, 

by postponing the decision the probability that the decision maker makes a suboptimal 

decision can be reduced. Note, however, that the probability is also increased that loss 

reduction activities are undertaken too late (if they are necessary). The other approach 

to reduce the uncertainty is by means of reducing the epistemic uncertainty associated 

with the underlying phenomenon. This is possible by collecting more information 

through e.g. monitoring and in-situ surveys. In this way, too, the probability that the 

decision maker makes a suboptimal decision can be reduced. However, such measures 

for collecting more information are worth undertaking only if the costs for collecting 

more information are smaller than the expected value of the additional costs arising 

from the suboptimal decision, which otherwise could be avoided. Thus, it is essential 

in near-real-time decision making to identify the extent to which the decision maker 

shall reduce the uncertainty by investing the time (i.e. postponing the decision) and 

costs for collecting more information before making the decision. 
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For convenience, the following terminology is introduced: a “terminal” decision refers 

to the decision which must eventually be made in a given decision problem, and 

decision making terminates when a terminal decision is made; a decision to “postpone” 

refers to the decision that a terminal decision is not made and, meanwhile, the decision 

maker collects more information. The decision maker can choose to “postpone” as 

many times as she/he needs. 

 

In the following sections, the decision framework is presented. Two decision situations 

are differentiated; one-time decision making and sequential decision making. The 

former forms a building block for the latter, which is the main focus of the present 

chapter. Note that whereas in the formulation of the decision problem in the following 

the random variables are assumed to be continuous, a similar discussion holds for the 

case of discrete variables and the mixture of both. 

8.4.3.One-time decision making 

In one-time decision making, a decision maker needs to make a terminal decision out 

of a set of possible decision alternatives  1 2, ,..., mA a a a  without postponing the 

decision. The ingredients necessary for identifying an optimal decision are the 

conditional probability ( | )f x e  of the hazard index X  given the information e , 

and the utility function ( , )U x a  as a function of the outcome x  of X  and a A . 

The optimal decision *a  is determined as: 

* argmax [ ( , ) | ]i
i

a E U X a e  (7.1) 

namely, the optimal decision 
*a  is the decision that maximizes the expected utility 

given the information e . This is often called as posterior decision analysis. 

8.4.4.Sequential decision making 

In sequential decision making, another decision alternative 0a , i.e. postponing the 

terminal decision, is introduced which facilitates for collecting and assessing more 

information before the terminal decision is made. The additional ingredients necessary 

for identifying the optimal decision are the conditional probability 1 1( | ,..., )t tf e e e  of 

1te   given the information 1,..., te e , and the conditional expected utility 

1[ ( , ) | ,..., ]tE U X a e e  given information 1,..., te e  for 1 2, ,..., ma a a a . The subscript t  

is introduced to distinguish the information at different times (see Figure 8.3). 

Employing the concept of sequential decision theory, the optimal decision 
*

1( ,..., )ta e e  

given information 1,..., te e  at time t  is obtained as the one that maximizes the 

expected utility 1[ ( , ) | ,..., ]tE U X a e e : 
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*

1 1 1
0,1,...,

[ ( , ( ,..., )) | ,..., ] max [ ( , ) | ,..., ] for 1,2,.., 1t t i t
i m

E U X a e e e e E U X a e e t n


    (7.2) 

*

1 1 1
1,...,

[ ( , ( ,..., )) | ,..., ] max [ ( , ) | ,..., ] for t n i n
i m

E U X a e e e e E U X a e e t n


   (7.3) 

where 

*

0 1 1 1 1 1

1 1 1

[ ( , ) | ,..., ] [ ( , ( ,..., )) | ,..., ]

( | ,..., )  for 1,2,..., 1

t t t

t t t

E U X a e e E U X a e e e e

f e e e de t n

 

 



  

  (7.4) 

Equation (7.4) reflects that the expected utility at time t  given that the decision is 

postponed is equal to the expected value of the maximized expected utility at the next 

time; the optimal decision at time 1t   must be known prior to identifying the 

optimal decision at time t . Thus, solving the equation system defined by Equations 

(7.2)-(7.4) requires backward calculation in general. A simplistic numerical example 

for this and also another way for solving the equation system are provided in 

(Nishijima et al., 2008a). A practical way for solving the equation system will be 

explained along with the example in the next section. 

8.5. Example 

8.5.1.Problem setting 

A decision maker is requested to make the decision on whether or not the operation of 

an offshore platform should be shut down in the emergence of a typhoon event. The 

possible decision alternatives are the terminal decisions of shut-down ( 1a ), no 

shut-down ( 2a ) and postponing the terminal decision ( 0a ). When the decision maker 

chooses 0a , she/he can obtain further information on the typhoon such as the position, 

central pressure, translation speed and angle of the typhoon. The information is 

assumed to be provided by a meteorological agency every six hour, which incurs no 

cost. It is assumed that the completion for shutting down the operation takes twelve 

hours after making the terminal decision 1a . 

 

In what follows, the assumptions made and models employed are explained. 

8.5.2.Typhoon model 

For modelling the wind speed loaded on the platform due to the typhoon, the typhoon 

model is employed which is developed by the author, see (Graf et al., 2009) and 

(Nishijima and Faber, 2007) for the overview and relevant literature survey. The 

typhoon model is composed of five components; occurrence model, transition model, 
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wind field model, surface friction model and vulnerability model. For the example 

considered here, only the transition model, wind field model and surface friction model 

are of relevance. For simplicity, the filling model (a part of the transition model) that 

describes the change of the central pressure of typhoons after making landfall is not 

considered in the example. The models are described in Chapter 2. Thus, using the 

models describe, the wind speeds at the platform can be calculated given the transition 

states of the typhoon. 

8.5.3.Postulated consequence model 

The platform is assumed to be damaged only if the wind speed u  exceeds the 

threshold 
cu  ( 38[ / ])m s  while the platform is in operation (the expected damage 

cost, 10DC  ); the platform is assumed not to be damaged if the wind speed does not 

exceeds the threshold, or if the platform is successfully shut-down (i.e. not in operation 

when the wind speed exceeds the threshold). However, in the latter case the cost for 

production interruption must be considered (the expected production interruption cost, 

1PIC  ). Three cases are possible for which the expected damage costs DC  are 

incurred; the first is the case where the decision 2a  is made and the wind speed 

exceeds the threshold, the second is the case where the decision 1a  is made but the 

wind speed exceeds the threshold before the shut-down is completed and the last is the 

case where the decision 0a  is made and the wind speed exceeds the threshold before 

the next time when the decision is made. No consequence occurs if and only if the 

decision 2a  is made and the wind speed does not exceed the threshold. The expected 

costs PIC  for production interruption is incurred if and only if the decision 1a  is 

made and the shut-down is completed before the wind speed exceeds the threshold (if 

it does), or the wind speed does not exceed the threshold. 

 

Table 8-1: Conditions and associated losses postulated in the consequence model. 

Facility 
Wind speed 

38[ / ]cu u m s   38[ / ]cu u m s   

In operation 10DC   0  

Not in operation 1PIC   1PIC   

8.5.4.Other conditions 

For illustration purposes, it is assumed that the initial transition states of the typhoon 

are known and the radius of maximum wind speed MR  is known and is constant 

during the typhoon event. Table 8-2 summarizes the assumed initial conditions. The 

location of the platform is also shown. 
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Table 8-2: Assumed initial conditions. 

Central pressures at t  -1,0 and 1 930, 930 and 930 [hPa] 

Translation speeds at 1t   20[km/h] 

Translation angles at t  0 and 1 0[°] and 0[°] (Northwards) 

Position at 1t   (129°E, 28°N) 

Sea surface temperature at the location of 

the typhoon at 1t   

27.9 [°C] 

Radius of maximum wind speed, MR  100 [km] 

Location of the platform (130°E, 31°N) 

8.5.5.Algorithm 

In this decision problem, it is assumed that the decision is terminated within 36 hours. 

The time frame is discretized by the time interval of six hours; i.e., the time frame is 

discretized into six time steps where the information becomes available and the 

decisions are made. This assumption seems reasonable since the typhoon is very likely 

to pass though the area relevant for the facility at the 6th time step, see Figure 8.4. The 

figure shows two possible transition (indicated by dashed lines with circles) of the 

typhoon in order to facilitate an understanding of the decision situation considered in 

the example. For each discretized time, the space of the possible states of the typhoon 

is discretized into 33 =27 states (3 states for the central pressure, the translation speed 

and the angle respectively) in an adaptive manner; that is, the space of the states at the 

different times is discretized in such a way that the probability of all states is equal to 

1/27; since the conditional probability distributions of the states at the times differ 

depending on the previous states the discretized states at each time differ in the 

different branches in the event/decision tree show in Figure 8.5. 
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Figure 8.4: Illustration of the transition of the typhoon and the location of the platform. 

 

 

Figure 8.5: Event/decision tree of the decision problem considered in the example. 

 

The information tE  introduced in the formulation of the decision framework 

corresponds to the (discretized) states of the typhoon in this example. Note that the 

capital symbol tE  represents that tE  is a random variable and the symbol te  (used 

in the following) represents the realization of the random variable tE . The set of the 

information 1 6( ,..., )e e  can be used to identify a specific branch in the event/decision 

tree, and the information ( 1,..., te e ) up to the time t can be used to identify a set of 

branches which share the same branch up to the time t. Note in the event/decision tree 

all the branches are assumed to have the same length (i.e. n  time steps); however, the 

branches that have more than two terminal decisions are valid only up to the time step 
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when the first terminal decision is made. The remaining parts of the branches are 

referenced only to calculate the probabilities that the wind speed exceeds the threshold 

in the remaining time. Furthermore, the branches in which the wind speed exceeds the 

threshold are valid only up to the time when the wind speed exceeds the threshold, and 

thus the remaining part of the braches should be regarded as dummies. In solving the 

decision problem, these parts of the branches are never used. 

 

The procedure for identifying the optimal decisions for the given information at each 

time step is shown in the following. Consider the branches indentified by the set of the 

information 1 5( ,.., )e e , i.e. sharing the same branch up to the 5th time step and having 

different branches between the 5th and 6th time steps. Check if the parts of the 

branches between the 5th and 6th time steps are valid (whether or not the wind speed 

exceeds the threshold and the terminal decision is made at earlier time steps). For this 

it is necessary to calculate the wind speeds at the time steps t  1, 2,…, 5 for this 

branch, which are denoted by 1 1( )u e , 2 1 2( , )u e e , 3 1 2 3( , , )u e e e , 4 1 4( ,..., )u e e  and 

5 1 5( ,..., )u e e respectively. Also, calculate the wind speeds 6 1 6( ,..., )u e e  at the 6th time 

step for all possible 6e , and the probability that the wind speed exceeds the threshold 

at the 6th time step, which is denoted by 6 1 5( ,..., )p e e  – these are used later. Note that 

the wind speed associated with each time step is the maximum of the wind speeds 

calculated by 10-minute time interval between the subsequent time steps (for instance 

2 1( )u e  is the maximum wind speed between the first and the second time steps); thus, 

the situations where the maximum wind speed is realized between the time steps are 

considered. 

 

If the parts of the branches are valid, the optimal decisions at the 6th time step for the 

given set of the information 1 5( ,..., )e e  and all possible information 6e  are obtained 

in accordance with Equation (7.3). Here, the utility is understood as the negative of the 

cost, and instead of the maximization of the expected utility the minimization of the 

expected value of the costs is considered. Thus, the optimal decision 
*

1 5( ,..., )a e e at the 

5th time step for this branch and the minimized expected cost 
*

1 5[ ( , ( ,..., ))E U X a e e  

1 5| ,..., ]e e  is obtained in accordance with Equation (7.4). Note that in the case when 

the wind speed exceeds the threshold between the 4th and 5th time step, the decision 

alternatives at the 5th time step are indifferent, and all resulting in the damage of the 

facility, thus the expected costs are DC .  

 

Repeat this procedure for different information 5e , but for the same set of the 

information 1 4( ,..., )e e . In doing so, the wind speeds 1 1( )u e , 2 1 2( , )u e e , 3 1 2 3( , , )u e e e  

and 4 1 4( ,..., )u e e can be reused, but the wind speed 5 1 5( ,..., )u e e  must be recalculated. 

Also, calculate the probabilities that the wind speed exceeds the threshold at the 5th 

and 6th time steps, which are denoted by 5 1 4( ,..., )p e e  and 6 1 4( ,..., )p e e  respectively, 

whereby the probability 6 1 5( ,..., )p e e  for different 5e  can be used to calculate these 

probabilities. Once the probabilities 5 1 4( ,..., )p e e  and 6 1 4( ,..., )p e e  are calculated, the 

probabilities 6 1 5( ,..., )p e e  are not necessary for further calculation. Then, it is possible 
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to identify the optimal decision *

1 4( ,..., )a e e  at the 4th time step for this branch, and 

the minimized expected cost *

1 4[ ( , ( ,..., ))E U X a e e
1 4| ,..., ]e e ; the expected cost for the 

decision 
0a  is calculated using the minimized expected costs *

1 5[ ( , ( ,..., ))E U X a e e

1 5| ,..., ]e e  and the conditional probabilities 
5 4( | )f e e  for all possible information 

5e ; 

the expected costs for the decisions 
1a  and 

2a  are directly calculated using the 

probabilities 5 1 4( ,..., )p e e  and 6 1 4( ,..., )p e e . Once the minimized expected cost 
*

1 4[ ( , ( ,..., ))E U X a e e  
1 4| ,..., ]e e  at the 4th time step is obtained, the minimized 

expected costs *

1 5[ ( , ( ,..., ))E U X a e e  
1 5| ,..., ]e e at the 5th time step are not necessary 

for further calculation. 

 

Repeat this procedure for different information 
4e  but for the same information 

1 2 3( , , )e e e . Then, the optimal decision and the minimized expected cost at the 3rd time 

step are obtained. By repeating this procedure, the optimal decision 
*

1( )a e  is finally 

obtained. 

8.5.6.Results 

Following the algorithm described above the optimal decision at the initial time is 

identified. The identified optimal decision 
*

1( )a e  is to “postpone” ( 0a ), whereby the 

calculated expected costs for the decision alternatives 0a , 1a  and 2a  are 1.61, 1.68 

and 1.63 respectively. 

 

Assume that the decision maker chooses 0a  at the initial time and then the typhoon 

moves to the location (129°E, 28.5°N) with the central pressure of 925 [hPa] and the 

sea surface temperature of 28.0 [°C] in the next six hours. The optimal decision at this 

time can be identified by applying the algorithm once again but including the new 

information. Note that in the application of the algorithm at this time the initial time is 

reset to the current time (i.e. six hours later than the initial time set in the previous 

optimization) and the optimization is performed. The intermediate calculation results 

in the previous optimization cannot be reused because these results are not stored as 

explained in the previous section. Even though the results are stored these may not be 

useful directly useful since it is likely that the new information corresponds to none of 

the 27 discretized states. The optimal decision thus identified is to “shut-down” ( 1a ), 

whereby the calculated expected costs for the decision alternatives 0a , 1a  and 2a  

are 2.77, 1.88 and 3.02 respectively. In this way, with the decision framework 

presented in this chapter it is possible to identify the optimal decisions as a function of 

the information that becomes available in near-real-time. 

8.5.7.Discussions 

Whereas the decision framework presented in this chapter is general and in principle 

can be applied to a broader range of practical decision problems characterized as 

described in Section 8.3, there is a need to consider computational capability in 

practice; for instance, in solving the decision problem considered in the example, the 
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space of the possible states at each time step is discretized into 3 for each variable. 

Although this is a coarse discretization, a finer discretization would prohibitively 

increase the calculation time required for solving the problem. 

 

The calculation time necessary for identifying the optimal decisions is approximately 

proportional to nm , where m  is the number of possible states at each time step and 

n  is the number of discrete times at which decisions can be made. A practical solution 

for reducing the calculation time is to reduce the number of the times. However, this 

can easily lead to suboptimal solution especially for the type of the decision problems 

considered in the present chapter, i.e. decision problems where “postpone” is a 

decision alternative. This is because the decision could be forced to terminate at the 

earlier time step where the optimal decision might be to “postpone” if the number of 

considered times is smaller. 

 

The following approaches may be useful for the reduction of the calculation time, 

whereby avoiding the problem mentioned above. One approach is to start the decision 

analysis at the time when the terminal decisions are likely to be optimal decisions. That 

is, the times when to “postpone” is dominantly the optimal decision are eliminated 

from the time frame of the decision analysis. Another approach is to split the time 

frame of the decision analysis into different lengths. In this way, the duration of the 

decision time frame can be sufficiently long, but the number of the time steps can be 

reduced. However, in each respective approach the choices of the appropriate time 

frame and time intervals would require trial-and-errors. This issue is addressed as a 

future task. 

 

In the example the intermediate calculation results in the decision optimization for the 

given initial condition are not stored and the calculation for the decision optimization 

is performed when the new information becomes available. However, it is possible to 

store these intermediate results and to use them for identifying the optimal decisions at 

the subsequent times by interpolating the calculated expected costs for different 

decision alternatives and different potentially available information, even though the 

information factually available does not correspond to any discretized states. 

Furthermore, in principle it is possible to calculate the expected costs for all possible 

decision alternatives and all relevant conditions prior to the emergence of natural 

hazards, to store these and to use for identifying the optimal decision when the hazard 

events occurs; however, the amount of the data which have to be stored may be large. 

The calculation times needed to identify the optimal decisions in the example are up to 

several hours with a standard PC depending on the initial conditions. Thus, if the 

calculations for the decision optimizations are decided to make in near-real-time, these 

calculations must be made with several PCs in parallel assuming several initial 

conditions that are likely to occur at the next time when the decision is made. 
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9. Conclusions and outlook 

9.1. Summary 

In this thesis a Bayesian framework for the probabilistic modelling of typhoon risks is 

proposed. This includes: (1) A probabilistic typhoon model which satisfies the 

requirements of the proposed framework. (2) The means to consider the uncertainties 

in the modelling of the typhoons and in the typhoon risk analysis. (3) The means to 

update and condition the typhoon model by new available data and information.  

 

The developed Bayesian framework can incorporate all relevant information available. 

Using this information enables a more precise risk assessment in two different ways. 

(1) For a risk assessment of an approaching typhoon event actual information can be 

used to condition the model. This reduces the uncertainties for a specific risk analysis. 

(2) By using the information to update the parameters in the model, the overall 

modelling uncertainties can be reduced over time. 

 

The Bayesian framework does not only include the methodology to establish a typhoon 

model but also the mechanisms which enable the decision makers to take into account 

the available information during the process of decision making and thus facilitate the 

updating of the parameters in the model over time. Three main features are included in 

the framework: (1) estimation of annual average loss/probable maximum loss; (2) 

estimation of loss of any given portfolio when a typhoon event has initiated and is 

approaching the considered region; (3) updating of the models with all the data 

available after one or more typhoon events have occurred. 

 

The proposed Bayesian framework is applied to the region of Japan and a typhoon risk 

model is established with the focus on the following features which facilitates to 

incorporate the available information: (1) typhoon events are modelled for the entire 

life of typhoons, i.e. from occurrence to dissipation; (2) the effects of sea surface 

temperature (hereafter, SST) on the evolution of typhoon events are accounted for; (3) 

seasonal differences of the probabilistic characteristics of the transition of typhoons are 

accounted for. The hazard model is composed of sub-models, describing all phases of 

the typhoon hazard process starting with the occurrence of typhoons over the spatial 

and temporal development of typhoons including landfall and possible filling and 

ending with the probabilistic characterization of extreme wind speeds at any location in 

Japan. 

 

The application of the Bayesian framework for the probabilistic modelling of typhoon 

risk is illustrated in three examples: (1) Combining the hazard model with a 

vulnerability model (which represents the probability distribution of the loss of 
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individual exposures as a function of the wind speed) enables the risk assessment of 

insurance portfolios. The use of the framework for the estimation of insurance 

portfolio risk analysis shows how the uncertainties are considered for the risk 

estimation. (2) Considering the entire life of typhoons and the effects of the SST on the 

evolution of the typhoons enables the investigation of the effects of global warming on 

the probabilistic characteristics of strong wind speed induced by typhoons. The 

assessment of the effect of global warming shows how the framework can be updated 

with new available data. (3) The third application concerns real-time decision making 

e.g. in the context of evacuation of people and shut-down of operation of engineered 

facilities in the face of an approaching typhoon. For this, the feature that the entire life 

of a typhoon can be modelled is useful for simulating possible tracks and changes in 

the intensity of the approaching typhoon. Furthermore, the consideration of the SST 

and the seasonal differences of probabilistic characteristics of typhoon events enables 

utilizing additional information such as the current SST around the location of the 

typhoon and current season; consequently, the uncertainties associated with the 

transition of the typhoon can be reduced and decisions may be made more precisely. 

The application for real time decision making in the case of a approaching typhoon 

shows how the framework can be conditioned by new available information. 

9.2. Conclusions 

 

This thesis proposes a Bayesian framework for the probabilistic modelling of typhoon 

risks. The presented Bayesian framework is a first step towards a full probabilistic 

treatment of typhoon risk analysis. The Bayesian framework includes: (1) A 

probabilistic typhoon model which satisfies the requirements for the proposed 

framework. The probabilistic typhoon model is successfully developed and the 

verification shows a good agreement with the historical data. (2) The consideration of 

the uncertainties involved in the modelling of the typhoons and in the portfolio risk 

analysis and the statistical uncertainties due to parameter estimation. A framework to 

include the uncertainties due to the selection of the models and the assumptions made 

in the typhoon model, is presented. (3) The means to update and condition the typhoon 

model with new available data and information. 

 

The application of the Bayesian framework for the probabilistic modelling of typhoon 

risk is illustrated in three examples: (1) The use of the framework for the estimation of 

insurance portfolio risk analysis shows how the uncertainties are considered in the 

estimation of risks. (2) The assessment of the effects of global warming shows how the 

framework can be updated with new available data. (3) The application for real time 

decision making in the case of an approaching typhoon demonstrates how the 

framework can be conditioned by new available information.  
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In the sections below, the conclusions for the individual parts of the thesis are 

discussed. 

9.2.1.Typhoon model 

The proposed Bayesian framework for probabilistic modelling of typhoon risks 

includes a developed typhoon model for the region of the north west pacific. The 

approach employed for the development of the model, which takes basis in the 

state-of-the-art research works, is introduced. For the verification and validation of the 

employed approach and the developed model, the performance of the developed 

typhoon model is assessed in several ways by comparing the simulation results 

obtained using the developed model with historical observations. Finally, the 

advantages of the main features of the developed model in practical applications are 

emphasized and several applications of the developed mode are introduced. 

 

For the probabilistic typhoon model the following components are established:  

 

 A new occurrence model is developed, which represents the occurrence of a 

typhoon as a function of the location, the season (month) and the SST.  

 For the transition model the proposed approach from (Vickery et al., 2000) is 

followed, but the model is adapted for the region of the North West Pacific and 

modified so that the development of a typhoon is also a function of the season 

(month) and the SST. 

 The wind field model is established as proposed by (Georgiou et al., 1983). 

 The surface friction model is developed as proposed by (Meng et al., 1997). A 

new scheme for the estimation of the roughness length is developed which 

combines the two approaches described in the state of the art. 

 A model to estimate the portfolio losses is developed containing a new 

vulnerability model which considers the epistemic uncertainties. 

 

A hazard event set builder software tool is developed. This event set builder can be 

used to automatically create a stochastic event set using the described typhoon model.  

9.2.2.Treatment of epistemic uncertainties in the typhoon model 

The proposed Bayesian framework shows how the uncertainties in the modelling of 

typhoon risks are treated. The epistemic uncertainties in the developed typhoon model 

due to the modelling of the phenomena are quantified for each sub model. The 

occurrence model is based on a Bayesian network, which provides the empirical 

probability distribution of the frequency and the location of the occurs of typhoons. 

The transition model is based on a regression model and considers the modelling 

uncertainties in the error term of the regression. It would be possible to consider the 

uncertainties of the parameters of the regression model itself by assuming random 

variables for each parameter, but this has to be investigated further and would increase 

the computation time of the typhoon simulation since much more random variables has 
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to be simulated. The wind field model and the surface friction model are deterministic 

models and the uncertainties associated with the deterministic wind field model and 

the surface friction model are considered indirectly in the vulnerability model. Since 

the simulation of the wind field is the most computational intense part in the typhoon 

simulation, it was decided to use deterministic models, but it would be possible to 

replace the wind field model and the surface friction model with a probabilistic model 

by e.g. introducing one or more random variables into the model.   

 

The vulnerability model is established using the historical damage data provided by 

Aon Benfield Japan in combination with the corresponding wind speed, which in turn 

is estimated using historical typhoon tracks applying the wind field model and the 

surface friction model. The probability distribution of the loss estimation contains the 

uncertainties of the vulnerability model itself as also the uncertainties of the wind field 

model and the surface friction model.  

 

For considering the epistemic uncertainties due to the model selection and the 

assumptions in the typhoon model, a framework is presented. This framework shows 

how the uncertainties can be quantified and integrated in the risk assessment and the 

decision analysis processes. 

 

This framework addresses three challenging issues in tropical cyclone risk 

management from the perspective of the treatment of uncertainty. These are: 

 

 Separation of aleatory and epistemic uncertainties. 

 Quantification of epistemic uncertainty. 

 Implementation of these uncertainties in the formal framework for risk 

assessment and decision analysis. 

 

As a first step for addressing these issues, a quantification of the variability of hazard 

assessment results due to different alternative models is investigated. 

 

Taking basis in the developed typhoon model, eight different alternative models are 

systematically developed (i.e. no subjective “tuning-up”). The variability of the 

100-year return period wind speed at Tokyo is approximately 3 [m/s]. It is found that 

the major contribution to the variability comes from the discretization schemes and the 

data set utilized for modelling of the alternative models.  

 

Whereas a number of alternative models are investigated in Chapter 4.9, more models 

are proposed and feasible. For instance, Hall and Jewson (2007) propose a modeling 

scheme different from the scheme considered here; for transition modeling, they 

propose to consider all tropical cyclones with different weights as a function of 

distance, instead of discretization. Here, it should be mentioned that the consideration 

of more alternative models does not necessarily increase the variability, as long as the 

variability is quantified in a rational manner and not naively in terms of e.g. a 

difference between the upper bound and lower bound. For this purpose, however, the 

quantification of epistemic uncertainty is required. Without going into theoretical 
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detail, it is said that the quantification of such epistemic uncertainty can be 

investigated within the framework of model selection and/or model weight (see e.g. 

(Raftery et al., 1997; Hoeting et al., 1999; Eklund and Karlsson, 2004; Ando and Tsay, 

2009; Ando, 2010; Riggelsen et al., 2011)). However, as of yet, no general framework 

is developed, which is a challenging task not only in tropical cyclone risk management, 

but also in general. 

 

9.2.3. Updating the typhoon model 

The process of managing risks due to natural hazards may be considered as a repeated 

sequence of actions with the purpose of optimizing measures of risk reduction, 

collection of information and updating of models. From this perspective any risk 

management tool should have the potential to incorporate available data for the 

purpose of updating models in an efficient and consistent way. The present thesis 

proposes a Bayesian probabilistic modelling approach trough which random variables 

represented in a probabilistic network are updated or conditioned using information 

achieved from observations. The proposed approach is applied to three illustrative 

examples showing the advantages; the approach provides a relatively easy way to 

include new information into a probabilistic risk assessment. Finally, the possible 

situations where biases may occur in the process of updating probabilistic models are 

pointed out and possible solutions to circumvent the biases are presented. 

 

A main feature of the proposed Bayesian framework for probabilistic modelling of 

typhoon risk is the updating of the models with all the data available after one or more 

typhoon events have occurred. This feature facilitates to update the typhoon model 

after a certain period of time, for example at the end of a year, when all the information 

is organized as data. So, over time, the model can be seen to better represent the 

phenomena.  

 

For updating the developed typhoon model a model builder software tool has been 

created. This model builder automatically establishes a typhoon model using as input 

all the available information. The model builder is also used to establish a typhoon 

model which is based on a) only a part of the available data for the validation of the 

typhoon model, b) on a different functional form or data sets to assess the difference 

between alternative models and c) on a data set obtained from a climate model to 

assess the effect of global warming. 

 

9.2.4.Portfolio risk analysis 

The example of the application of the proposed Bayesian framework for the 

assessment of the risk of insurance portfolios shows how the uncertainties can be 

considered in the risk assessment. 
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A portfolio loss model is developed which considers the uncertainties and the 

correlation of the individual building losses. The proposed model frame work is able to 

consistently take into account dependencies in the components of the portfolio losses 

and thus more realistically models the risks as compared to previous models. 

 

A vulnerability model is established based on insurance data, which considers the 

model uncertainty. This vulnerability model represents the relation between the wind 

speed induced by a typhoon and the probability that a loss occurs and the amount of 

loss. For the verification of the developed vulnerability model, the performance of the 

developed model is assessed by comparing the simulation results obtained using the 

developed model with historical observations. The verification shows a good 

agreement for strong as well as for weak typhoons. 

 

Due to the feature that the seasonal differences of the probabilistic characteristics of 

typhoon events are considered, it is possible to estimate portfolio losses in a certain 

period in a year. This is useful in practice when the assessments of portfolio losses are 

required for the remaining period of a year.  

 

To allow a user friendly assessment of a portfolio risk, a software tool with the name 

TRAST is developed. TRAST provides a intuitive user interface to perform a risk 

analysis. It uses a database of a stochastic event set, which was created using the 

typhoon model in combination with the vulnerability model. 

 

9.2.5.Global warming 

The proposed Bayesian framework is used to investigate the effect of global warming 

on structural reliability in the context of a possible increase of tropical cyclone 

activity.  

 

For this purpose two studies have been conducted. In the first study a probability-based 

engineering approach is adopted. The approach employs the probabilistic typhoon 

model that is developed during this thesis. The probabilistic model for the resistance of 

structures is adapted from the JCSS Probabilistic Model Code. First the consistency of 

the probabilistic typhoon model is verified with the results of alternative models not 

relying on historical data. Thereafter the suggested model is applied for assessing the 

change of structural reliability considering the effect of the increased SST on tropical 

cyclone activity. Then it is also investigated to which extent the resistance of structures 

must be increased in order to maintain the present level of structural reliability. 

Although these investigations are made for structures in the northwest Pacific region 

the approach adopted in the present study can be applied to other regions provided that 

the relevant models and data are available. 

 

In the second study a quantitative impact assessment of the climate change on civil 

infrastructure is performed, taking the typhoon wind risk on residential buildings in 

Japan as the example. The main findings are that in the future (2075-2099) at most 
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locations of Japan: (1) extreme wind events (10-minutes sustained wind speed >30m/s) 

are more likely to occur; (2) the median of the annual maximum wind speed decreases; 

(3) the expected number of damaged residential buildings decreases, assuming that the 

profile of the building portfolio remains unchanged. Based on these findings, the 

assumptions and inputs in the assessment are critically reviewed, thereby, needs of 

further efforts toward more credible assessment of the impact are identified.  

 

9.2.6.Risk assessment of a approaching typhoon 

The application of the proposed Bayesian framework for the probabilistic modelling of 

typhoon risk for real-time decision making shows how the framework can be 

conditioned with new available information.  

 

A framework for near-real-time decision making is presented taking basis in a 

conditional probability representation and the sequential decision theory. The 

framework considers two situations one-time decision making and sequential decision 

making. The framework can be facilitated in the situations where decision makers have 

to make decisions in a near-real-time decisions problem using information that 

becomes available in near-real-time. The present thesis considers a class of decision 

problems where decision makers must make decision in near-real-time in response to 

the information which becomes available also in near-real-time. A typical example of 

this class of decision problems is the decision of the evacuation of people and assets 

and the shut-down of the operation of engineered facilities in the emergence of natural 

hazards. 

 

First, the class of decision problems considered is characterized. Next, the decision 

framework for the class of decision problems is formulated. The formulated decision 

framework takes basis in the sequential decision theory, which is a variant of the more 

general theory of the pre-posterior decision analysis. 

 

The use and advantages of the decision framework are illustrated with an example. The 

example considered is the decision situation where a decision maker must decide if the 

operation of an offshore platform is to be continued or shut-down in an emerging 

typhoon event. In this example, the typhoon model developed in this thesis is 

employed. 

 

Finally, the computational limitations and possible approaches to avoid the limitations 

are briefly discussed; (1) the time frame of the decision analysis is chosen in such a 

way that the situations where to “postpone” is dominantly the optimal decision are 

excluded and (2) the time frame of the decision analysis is discretized into different 

lengths so that the time period when the timing of the terminal decisions becomes 

more crucial is discretized more finely. 
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9.3. Scientific achievements 

 

The output of the present thesis provide aside a better phenomenological insight of 

typhoon events in probabilistic terms, a Bayesian framework within which all the 

information and data can be rationally taken into account in the process of loss 

estimation. The proposed Bayesian framework is a first step to a full probabilistic 

treatment of typhoon risks and shows how the involved uncertainties can be 

consistently considered and provides the mean to update and condition the typhoon 

model with new available data and information. Considering consistently the involved 

uncertainties allow a more realistic assessment of the typhoon risk. Updating the model 

with new available data facilitates that over time, the model can better represent the 

phenomena. Conditioning the model with new available information allows a more 

precise risk analysis for give situation e.g. for a new approaching typhoon. 

 

Compared to previous typhoon models the presented Bayesian framework for the 

probabilistic modelling of typhoon risks is developed with the scope of applying the 

model for a broader range of decision situations. Such decision situations include: 

real-time decision making for the evacuation of people and shut-down of engineered 

facilities in the face of emerging typhoon events; adaptation of building codes in 

regard to wind loads to the possible increase of wind hazards that might be caused by 

global climate change.  

 

The usefulness of the proposed Bayesian framework is demonstrated in three 

examples. The application to insurance portfolio risk analysis shows how the 

uncertainties and the correlation between the individual losses can be considered. The 

second application shows how the Bayesian framework can be used to assess the effect 

of a climate change by conditioning and updating the model with new available 

information and data. The third application demonstrates how the proposed Bayesian 

framework can be used for real-time decision making in the case of a approaching 

typhoon by conditioning the models with the new available information. 

 

The proposed framework is implemented in three software tools. A model builder 

software tool is developed, which enables to establish and update a typhoon model 

using all available information. A hazard event set creator software tool is developed, 

which establishes a data base of stochastic typhoon events using the typhoon model to 

simulate typhoon events and the software tool TRAST (Typhoon Risk Analysis 

Software Tool), which provides a user friendly graphical interface to perform a risk 

analysis for a insurance portfolio. The present tools have the following advanced 

features: The uncertainties are consistently quantified, the uncertainties can be reduced 

by conditioning the models by incorporating all available information, over time the 

phenomena is better represented by updating the models with new available data. The 

implemented software tools support decision makers in practical applications and 

enhance the decision making. 
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9.4. Outlook 

The research presented in this thesis contains several topics, which should be further 

investigated and which present several opportunities for follow-up research projects. 

These topics are summarized in this section. 

 

The typhoon model is developed for the region of the North West Pacific and verified 

for the Japanese Islands. The presented typhoon model can be easily adapted to other 

countries in this region. Apart from the verification of the model for the selected 

country, only the surface friction model has to be re-established using the land use data 

and the topological maps of the considered country. Having a detailed model for 

different countries in the region of the North West Pacific would enable to assess the 

correlation of the losses in different countries due to the same typhoons. The presented 

framework is generic in the sense that it is formulated in terms of observable indicators 

and can thus be easily be implemented for the characteristics of a different region e.g. 

the Atlantic basin. 

 

A framework for the treatment of the epistemic uncertainties due to model selection is 

proposed in this thesis. An example shows how the hazard variability due to different 

alternative models can be assessed. A remaining task is to find an appropriate 

formulation to define a weight, which represents the degree of belief, for each 

alternative model to be able to combine the different alternative models and to 

integrate the uncertainties due to the model selection into the risk assessment. 

 

The application of the Bayesian framework for risk assessment of a approaching 

typhoon showed that the problem has to be simplified to avoid the computational 

limitations. To overcome these computational limitations and to develop a framework 

how real time decisions based on the typhoon model can be made, Annett Anders and 

Kazuyoshi Nishijima are working on a research project at DTU with the title: Real 

Time Decision Support in the Face of Evolving Natural Hazards (Anders and 

Nishijima, 2011). 

 

Other hazard sources associated with typhoons such as floods and storm surges are 

presently not considered and the modelling of these hazard sources is addressed as a 

future task. The wind speed is used as a hazard indicator in the typhoon model, 

however several losses cannot be explained by the wind speed alone. Several losses 

occur due to floods caused by typhoons. As a first step to establish a flood model, a 

precipitation model is currently under development. This precipitation model simulates 

the number and the location of rain cells and the amount of precipitation during the 

lifetime of a typhoon. Rocco Custer and Kazuyoshi Nishijima are currently working on 

a research project at DTU to develop a hazard risk model framework with application 

to flood risk, based on the typhoon model and this precipitation model. 



10. Appendix 

-168- 

 

10. Appendix 

10.1. Appendix A - Verification of the transition model 

As described in Section 3.2, Figures 10.1 to 10.3 show for the month July, August and 

September the simulation results of the transitions of typhoons compared with the 

historical observations with respect to: The frequency of the typhoons with certain 

intensities which cross certain latitudes (20°, 25°, 30°, 35° and 40°), translation angle 

and translation speed of the typhoons at the moment when the typhoons cross these 

latitudes between the longitudes [120°, 160°]. 
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Figure 10.1: Cumulative distributions of the translation speed and direction and central 

pressure of typhoons in July. 
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Figure 10.2: Cumulative distributions of the translation speed and direction and central 

pressure of typhoons in August. 
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Figure 10.3: Cumulative distributions of the translation speed and direction and central 

pressure of typhoons in September.  
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10.2. Appendix B - Parameters for estimating the topography factor  

 

Table 10-1: Parameters determining Eg (escarpments) 

S   /S SX H  

-4 -2 -1 -0.5 0 0.5 1 2 4 8 

7.5° 1C  1.15 1.3 1.5 1.5 1.6 1.45 1.3 1.3 1.2 1.15 

2C  0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.5 0.4 

3C  -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 

15° 1C  0.4 1 1.2 1.55 2.1 1.65 1.5 1.3 1.2 1.15 

2C  0.9 0 0.65 0.85 1 0.8 0.7 0.55 0.45 0.35 

3C  -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 

30° 1C  0.7 -0.5 1.05 1.1 1.3 1.3 1.25 1.2 1.115 1.1 

2C  0.65 1.2 1.65 1.5 1.45 1.3 0.9 0.9 0.85 0.6 

3C  -2 -2 1 0.8 0.3 0.3 0.5 0.7 1.2 1.4 

45° 1C  0.8 0 -3.5 1.1 1.2 1.35 1.3 1.2 1.15 1.1 

2C  0.5 1 1.6 2 1.1 1.3 1.3 1.3 0.9 0.55 

3C  -2 -2 -2 0.8 0.3 0.2 0.75 1.05 1.4 2 

60° 1C  0.6 0.1 -1.8 -2.4 1.2 1.4 1.35 1.25 1.15 1.1 

2C  0.65 0.9 1.3 2.6 2 1.8 1.7 1.5 0.85 0.45 

3C  -2 -2 -2 -1 0.5 0.5 0.8 1.2 1.9 3.1 

 

Table 10-2: Parameters determining Eg (ridge-shaped topography) 

S   /S SX H  

-4 -2 -1 -0.5 0 0.5 1 2 4 8 

7.5° 1C  1.1 1.2 1.35 1.35 1.4 1.3 1.3 1.2 1.1 1 

2C  1 1 1 1 1.5 1.2 1.1 2 1.6 0 

3C  0 0 0 0 0.2 0.2 0.2 0.5 0.9 0 

15° 1C  1 1.05 1.2 1.25 1.3 1.4 1.3 1.25 0.35 0.65 

2C  0 0 1 1 1 1.5 1.5 2 3 2 

3C  0 0 0 0 0 0.5 0.6 1.1 0.2 0.3 

30° 1C  0.75 0.55 0.85 1 1.2 1.3 1.25 1.2 1.1 1.02 

2C  1.5 2 2 0 1 2 2 1.6 1.7 1.7 

3C  0 0 0 0 0 1.1 1.3 2.1 2.2 2.8 

45° 1C  0.75 0.55 0.2 0.75 1.15 1.2 1.15 1.12 1.11 1.02 

2C  1.5 2 2 3 1 2.5 2.5 2 1.6 1.3 

3C  0 0 0 0 0 1.2 1.9 2.2 2.5 3.2 

60° 1C  0.75 0.55 0.2 0.2 1.15 1.12 1.15 1.12 1.1 1.02 

2C  1.5 1.5 1.8 3 1 2.2 2.5 2 1.6 1.3 

3C  0 0 0 0 0 1.8 2 2.3 2.6 3.4 
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10.3. Appendix C - Equivalence of these Bayesian probabilistic 

networks in Section 5.5   

 

The equivalence between the Bayesian probabilistic networks in Figure 7 (left) and 

(right) can be shown in the following. Since a transformation converts the lognormal 

distribution into a normal distribution it is sufficient to show the equivalence 

considering normal distributed random variables. Assume two probabilistic 

representations: 

 

Representation 1 :
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Representation 2:  
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 (9.2) 

 

where ~ ( , )E EE N    represents that the random variable E  follows a normal 

distribution with the mean E  and the standard deviation E . ~ ( , )i X XX N    and 

~ ( , )i XY N X  , ( 1,2,.., )i n  should be interpreted in the same manner. It is assumed 

that the iY ’s in Equation (9.1) are independent and that the iX ’s in Equation (9.2) are 

independent respectively. To show the equivalence it is then sufficient to show that the 

joint probability density functions of E  and iY , ( 1,2,.., )i n  are identical. 

 

The joint probability density function in Representation 1 is calculated as: 
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where ( )f   and ( | )f    represent the unconditional and conditional joint probability 

density functions respectively for the variables indicated in the augments, ( )   is the 

Dirac delta function and ( ; , )Z Z    is the probability density function of the normal 

distributed random variable with mean Z  and standard deviation Z . The joint 

probability density function in Representation 2 is calculated as: 
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Therefore the two probabilistic representations are equivalent. 
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10.4. Appendix D - TRAST visualizations 

Figure 10.4 shows several examples of the visualization of the typhoon track and the 

corresponding wind field generated by the software tool TRAST. 

 

Figure 10.4: Visualization of historical typhoon tracks and wind fields. 



References 

-176- 

 

11. Nomenclature 

Typhoon model 

iV   is the typhoon translation speed [km/h] at time step.  

i   is the translation direction [ ] of the typhoon. 

,C iP   is the central pressure of the typhoon at time step i . 

iT   is the SST at the location where the considered typhoon is located at 

time step i . 

iT
 

is the pressure difference
 1i iT T  .

 
,a b  and c  are the coefficients of the regression models. 
,V   and Pc  are the residual terms of the regression models. 

0P   is the difference of the central pressure of a typhoon at the moment of 

the landfall and the peripheral pressure (here, 1013 [hPa] is assumed). 

tP   is the difference of the central pressure of the typhoon at time t  and the 

peripheral pressure (here, 1013 [hPa] is assumed). 

t   is the time [hour] elapsed since the landfall. 

d   are the coefficients of the filling model. 

MR   is radius of the maximum wind speed. 

r   is the distance from the center of the typhoon to the considered location. 

   is the angle relative to the translation direction of the typhoon. 
 

rP   is the pressure at the considered location r . 

( , )gu r    is the wind speed at gradient height at the location defined with r  and 

 . 
f   is the Coriolis parameter assumed as 41.46 10 sinf     [1/s], where 

  is the latitude of the representative location of the typhoon. 

   is the air density assumed as 1.275   [ 3kg/m ]. 

( )u z   is the one-hour sustained wind speed at the height of z .  

gz   is the gradient height. 

,10sU   is the 10-minute sustained wind speed at surface. 

gE
 

is the topological factor.  

Ro   is the modified Rossby number. 

 z   is the inflow angle at the height z . 

G   is the gust factor. 

gustu   is the gust wind speed. 

Sz   is the height of the measurement device [m]. 

t   is the duration of the record [sec.] 
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S   
is the inclination of the topographic feature.  

 sX m
 

is the distance of the topographic feature. 

 SH m
 

is the height of the topographic feature.  

 Z m   is the height above ground of the considered object.  

Treatment of epistemic uncertainties in the typhoon model 

   are the epistemic random variables.  

X   are the aleatory random variables. 

Updating of the typhoon model 

H   represents the occurrence of a hazard event.  

iF   represents the state of a structure (failure or no failure, for instance) at 

the i th
 location during a typhoon event. 

D   is the random variable that represents the parameters of the fragility 

model.  

iW   represents the maximum wind speed at the i th
 location during a 

typhoon event. 

ip   represents the probability of failure of the structure at the i th 
location. 

M   is the number of samples. 
j   represents the model uncertainty for the j

th
 typhoon event. 

j

kv ,  are the measured maximum wind speeds at the meteorological stations 

k  during the j
th

 typhoon event. 

Application: Portfolio risk analysis 

Q   is the ground-up loss ratio. 

w   is the hazard index (maximum wind speed). 

s   is the type of structure.  

c   is the cause of damages. 

polc
  

is the policy condition. 

n

insuredv   is the insured value of the 
thn  exposure. 

,s c   represents the model uncertainties explained.  

franchiseV   is the franchise value. 
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Application: Global warming risk assessment 

L   is the probability distribution of the annual maximum wind load. 

R   is the probability distribution of the resistance. 

V   is the probability distribution of the annual maximum wind speed. 

SSTe
  

represents a scenario of SST increase. 

Fp
  

is the probability of failure. 

,NHM MAXy
  

is the
 

maximum wind speed at 10 [m] height from the surface 

reproduced by the JMA-NHM. 

,( )d NHM MAXr y
 
is the damage ratio as a function of 

,NHM MAXy .
 

B

jN
 

is the number of buildings at location j .
 

jN   is the number of buildings that are damaged by typhoons in a given year 

at location j . 

jR
  

is the
 
building risk at location j .  

Application: Risk assessment of a approaching typhoon and real-time decision 

making 

X   represents the hazard index. 

iY   represents the variables characterizing the phenomena. 

iE   are the information. 

U   is the utility function. 

iA   are the alternative decision. 

DC   are the damage costs. 

PIC   are the interruption costs. 
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