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Superiorization of projection
algorithms for linearly
constrained inverse radiotherapy
treatment planning

Florian Barkmann 1,2,3*, Yair Censor4* and Niklas Wahl 2,3*

1Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich, Switzerland,
2Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ),
Heidelberg, Baden-Württemberg, Germany, 3Heidelberg Institute for Radiation Oncology (HIRO) and
National Center for Radiation Research in Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany,
4Department of Mathematics, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
Objective: We apply the superiorization methodology to the constrained
intensity-modulated radiation thera py (IMRT) treatment planning problem.
Superiorization combines a feasibility-seeking projection algorithm with
objective function reduction: The underlying projection algorithm is perturbed
with gradient descent steps to steer the algorithm towards a solution with a
lower objective function value compared to one obtained solely through
feasibility-seeking.

Approach: Within the open-source inverse planning toolkit matRad, we implement
a prototypical algorithmic framework for su periorization using th e well-established
Agmon, Motzkin, and Schoenberg (AMS) feasibility-seeking projection algorithm and
common nonlinear dose optimization objective functions. Based on this prototype,
we apply superiorization to intensity-modulated radiation therapy treatment
planning and compare it with (i) bare feasibi lity-seeking (i.e., without any objective
function) and (ii) nonlinear constrained optimization using � rst-order derivatives. For
these comparisons, we use the TG119 water phantom, the head-and-neck and the
prostate patient of the CORT dataset.

Main results: Bare feasibility-seeking with AMS con � rms previous studies,
showing it can � nd solutions that are nearly equivalent to those found by the
established piece-wise least-squares optimization approach. The superiorization
prototype solved the linearly constrained planning problem with similar
dosimetric performance to that of a general-purpose nonlinear constrained
optimizer while showing smooth convergence in both constraint proximity
and objective function reduction.

Signi� cance: Superiorization is a useful alternative to constrained optimization in
radiotherapy inverse treatment planning. Future extensions with other
approaches to feasibility-seeking, e.g., with dose-volume constraints and more
sophisticated perturbations, may unlock its full potential for high performant
inverse treatment planning.

KEYWORDS

radiation therapy treatment planning, inverse planning, constrained treatment plan
optimization, IMRT, superiorization method, feasibility-seeking algorithm
frontiersin.org01
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1 Censor (http://arxiv.org/abs/1506.04219 ) provides a continuously

updated bibliography of works using superiorization to present the state of

research (30).
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1 Introduction

Numerical optimization methods lie at the heart of state-of-t
art inverse treatment planning for intensity-modulated radiat
therapy (IMRT) (1). Usually, a clinical prescription of the treatme
goals forms the input to a nonlinear multi-criteria optimizati
(MCO) problem with or without additional constraints, dependi
on the desired patient dose distribution.

During the translation of the clinical goals into an MC
problem, one distinguishes between objectives, i.e., soft goa
compete with each other, and hard constraints designed to en
for example, maximal tolerance doses in an organ-at-risk (O
and minimal dosage of the target. This versatile approach en
the treatment planner to employ arbitrary combinations of suita
(convex) nonlinear objective functions along with any choice
constraints on the voxels’ doses.

This mathematical modeling allows numerical optimization of
� uence of beam elements (beamlets) using a pre-computed norm
dose mapping (2). The resulting constrained nonlinear optimizati
problem is frequently solved by applying an extended (quasi-)Ne
approach with sequential quadratic programming (SQP) an
interior-point methods (1–7). Until now, the capabilities of invers
planning have been substantially extended through multi-crit
Pareto optimization with subsequent exploration of the Pa
surface (8, 9) or stochastic/robust optimization (10).

Computational dif� culties may arise in the constrained nonline
optimization approach. First, optimal convergence for problem
typical size in radiotherapy is tied to the availability
computationally ef� cient second-order derivatives. While, f
example, van Haveren and Breedveld (11) showed that for many
typical functions ef� cient formulations can be found, current resea
persistently adds new quantities, optimization strategies, and
types of problem formulations to inverse planning for photons
particles (see, e.g.,12–18) to which such strategies might not b
directly applicable. Second, a common approach among succ
optimizers for nonlinear constrained optimization is to transform
constrained problem into an unconstrained problem using,
example, barrier functions (in the case of interior point metho
e.g.,3, 19) and the method of Lagrange multipliers in combinati
with slack variables (3, 19, 20). This creates a computational burd
when the number of constraints increases. Handling m
constraints as, for example, linear inequalities for many o
individual voxel dose bounds, can in� ate the computational effor
because each constraint requires a Lagrange multiplier an
additional slack variable. Possible“workarounds” include minimax-
optimization in combination with auxiliary variables or usage
continuous and differentiable maximum approximations like
LogSumExp and softmax functions (5).

Taking a step back, however, to the starting days of treatm
planning research, shows that one does not necessarily need to
mathematicaloptimization approach to solve the purely linear
constrained IMRT problem but could use feasibility-seekin
projection algorithms instead (21, 22).

In the context of IMRT, such bare feasibility-seeking transl
to seeking a feasible solution that will obey the prescribed lowe
upper dose bounds on doses in voxels, without aiming to optim
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any objective function. While, in general, a bare feasibility-see
task can be translated to a constrained optimization problem w
zero objective function, the literature demonstrates a wide spec
of many ef� cient feasibility-seeking algorithms not derived fro
translation of the bare feasibility-seeking task to a constra
optimization problem (see, e.g.,23). If no feasible solution i
found, these algorithms� nd a proximal solution, similar to th
piece-wise least-squares approach. Even though they have
further development over the last decades (24) and, more
recently, also extension to dose-volume constraints (25–27),
numerical optimizers have been the preferred choice in the� eld
due to their abilities to handle the nonlinear objective functio
e.g., (generalized) equivalent uniform dose (EUD), which are
desired when prescribing treatment goals.

The work presented here now combines nonlinear objec
functions as used in optimization with feasibility-seeking wit
linearly constraining dose bounds by applying the superioriza
method (SM). To do so, the SM uses asuperiorized version of th
basic algorithm, the latter being a user-chosen iterative feasibi
seeking algorithm, which is perturbed by interlacing reduction s
of the chosen (nonlinear) objective function. This practically st
the iterates of the feasibility-seeking algorithm to a feasible sol
point with a “superior”, i.e., smaller or equal objective functi
value, which is not necessarily a constrained minimization po

The superiorization method thus works with the constrai
data and the user’s choice of objective function, much ali
constrained optimization methods would. But it does not aim
an optimal point that minimizes the objective over all constra
like the latter do. In contrast, the SM aims at a point that will fu� ll
all constraints and have a reduced– not necessarily minimal–
objective function value. Not� nding the optimal solution, bu
instead aiming for a satisfactory or adequate result, is
reasonable decision strategy (“Satis� cing”, see28), particularly
considering the degeneracy of the IMRT optimization prob
(29). Hence, this aim suf� ces for the purpose of generati
acceptable treatment plans. Combined with the simplicity of
gradient descent steps (i.e., not relying on second-order deriva
superiorization can� nd a solution, in general, faster and with le
investment of computing resources, and fewer conditi
concerning design of the objective function.

Application of the SM to treatment planning is encouraged
the� exibility it has shown for applications in multiple� elds:1 It has
demonstrated its effectiveness for image reconstruction in si
energy computed tomography (CT) (31, 32), dual-energy CT (33)
and, more recently, in proton CT (34, 35), by reducing tota
variation (TV) during image reconstruction. The SM has a
been successfully applied to diverse other� elds of applications
such as tomographic imaging spectrometry (36) or signal
recovery (37).

This work is– to the best of our knowledge– the � rst in-depth
investigation of the SM as a potential alternative to constra
frontiersin.org
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minimization algorithms for inverse radiotherapy treatme
planning using common objective functions. To date, we co
only identify an initial study of the applicability of SM in IMR
utilizing TV as objective function (38), which does not represen
common choices in objective function design for treatm
planning. Another work considering the use of SM in IMRT us
superiorization to boost a speci� c lexicographic planning
approach (39).

Expanding on those preliminary works, we develop, tune,
evaluate a prototypical superiorization solver for radiother
treatment planning problems. To show how this SM solver is
to replace a constrained minimization approach, and to maxim
reproducibility and re-usability of our work, our superiorizati
approach is implemented into the validated open source radia
therapy treatment planning toolkit matRad (5) together with an
instructive set of scripts to execute and reproduce the results o
work (see section 2.5). Within matRad and its included phant
and patient cases, the SM is evaluated and tested on full-� edged
IMRT and intensity-modulated proton therapy (IMPT) treatme
planning problems. We compare to using non-linear constrai
optimization using only� rst-order derivatives like the SM, that is
quasi-Newton method construction a Hessian approximation.

This paper is structured as follows: In section 2, we describ
approaches and present the speci� c version of the SM that we us
along with the feasibility-seeking algorithm embedded in it. Sec
3 includes our computational results. Finally, in section 4,
discuss the potential of SM with possible future developm
and conclude our work in section 5.
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2 Materials and methods

This work compares three approaches to model the treatm
planning problem in IMRT: (i) anonlinear constrained
minimization approachof minimizing an objective function
subject to constraints with a quasi-Newton method relying
� rst-order derivatives, (ii) thefeasibility-seeking approa
searching for a feasible solution adhering to constraints with
considering any objective functions to minimize, and� nally, (iii)
thesuperiorization approach, which perturbs the feasibility-seekin
algorithm to reduce (not necessarily minimize) an objective
function by gradient descent steps. Before introducing th
approaches, we brie� y recap the discretization of the inver
treatment planning problem.
n
y,

g
,

is

day
2.1 Discretization of the inverse treatment
planning problem

Computerized inverse treatment planning usually relies o
spatial discretization of the particle� uence, the patient anatom
and, consequently, the radiation dose.

The patient is represented by a three-dimensional voxelized
(image) withn voxels numberedi = 1, 2,…,n. Based on this image
Q volumes of interest (VOIs)Sq, �q = 1, 2,…,Q are segmented. Th
allows us to represent the dose as a vectord = (di)

n
i=1, whosei-th
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component is the radiation dose deposited within thei-th voxel. For
each of the segmentationsSq, we can then easily identify its dosa
by � nding di for all i � Sq.

The radiation� uence is represented as a vector intensitiesx =
(xj)

m
j=1, whosej-th component is the intensity of thej-th beamlet.

The dose depositionaj
i for a unit intensity of beamletj to voxeli can

then be precomputed and stored in thedose in� uence matrix A=
(aj

i )
n,m
i=1,j=1, mappingx to d � via �d = Ax.
y
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2.2 The constrained minimization approach

In the optimization approach to IMRT treatment planning, t
clinically prescribed aims are represented by various (comm
differentiable) objective functions which map the vector of bea
intensities to the positive real numbers (2).

For our purposes, we limit ourselves to objective functionfp :
Rn � ½0,� ), � p = 1, 2,…,P, operating on the radiation dosed as
surrogates for clinical, dose-based goals.

A comprehensive, exemplary list of such common objec
functions can be found in Wieser et al. (5, Table 1) and, for the
reader’s convenience, also inSupplementary Data Sheetbelow. These
objective functions, which depend on the dose, are related to
intensitiesx � via �d = Ax, which is computed at each iterate/change
x during optimization.

Wishing to ful� ll or decide between multiple clinical goals,
resulting multi-objective optimization problem may be scalarized u
a weighted sum of several different individual objective functions fo
the various VOIsSq. This approach,� rst introduced for least-square
(as introduced by40), can today explore a plethora of object
functions (2, 5) while also satisfying hard constraints (3, 5):

x* = arg � min
x

o
P

p=1
wpfp(d(x))

such � that cL
t � ct (d(x)) � cU

t , t = 1, 2,…,T,

x � 0 �:

(1)

Here wp � 0, for all p = 1, 2,…,P, are user-speci� ed weights
re� ecting relative importance,fp are user-chosen individual objecti
functions, x is the beamlet radiation intensities vector (which
physically bound to the nonnegative real orthant), andct are user-
chosen individual constraints with lower and upper boundscL

t andcU
t ,

respectively. While the constraintsct can, in principle, be nonlinea
constraints, we focus here onlinear inequality constraintsrepresenting
upper and lower dose prescription bounds.

The inverse planning problemfrom eq. (1), solved with
numerical optimization techniques, is commonly used to
a

rid

TABLE 1 Dose inequalities/prescriptions and penalty weights used for
minimization and for AMS feasibility-seeking.

VOI wp tolerance/inequality constraint

Target 1000 59 Gy <d < 61 Gy

Core 100 d < 20 Gy

Body 30 d < 30 Gy
frontiersin.org
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across treatment modalities (among others2, 3, 5, 40, 41). SQP or
interior point methods with a (quasi-)Newton approach are of
used to solve the resulting constrained optimization problems (1–7,
42). In this work, we focus on a quasi-Newton approach using� rst-
order derivatives only, since the superiorization approach
described further below in section 2.4) has so far only b
investigated using gradient descent steps itself.
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2.3 The feasibility-seeking approach

Since the bare feasibility-seeking approach is the backbo
the SM, it will be outlined below using the notation from secti
2.1 and 2.2. Prior work has already suggested the feasibility-se
approach to address the treatment planning problem (see, e.g43,
and references therein).

To solve the treatment planning problem with feasibility-
seeking, dose prescriptions are modeled as a system of
inequalities: In general, the dose in every voxel is constra
with a lower and upper bound. Feasibility-seeking now see
solution, i.e., a beamlet intensity vector ful� lling these prescriptions

With d(x) = Ax, the beamlet radiation intensities vectorx now
has to be recovered from a system of linear inequalities of the

cL
i � o

m

j=1
aj

ixj � cU
i , � i = 1, 2,…,n : (2)

In principle, individual lower and upper boundscL
i andcU

i can
be chosen for each voxeli. Since prescriptions are usually group
per VOI Sq, the system can be rewritten as:

For�all �q = 1, 2,…,Q: � ‘ q � o
m

j=1
aj

ixj � uq� for� all� i � Sq, (3)

with ‘ q and uq representing the lower and upper dose bou
per VOI Sq, respectively. Since it does not make sense to pres
positive lower bounds to OARs, these are generally chosen
equal to zero.

Geometrically, depending on which structureSq a voxel i
belongs to, each physical dose constraint setCi in each voxeli =
1, 2,…,n, is ahyperslab(i.e., an intersection of two half-spaces)
the m-dimensional Euclidean vector spaceRm.

Aiming at satisfaction of all physical dose constraints along
the nonnegativity constraints is, thus, the following (which i
special case of theconvex feasibility problemsee, e.g.,23):

Find� an �x* � W : =

x � Rmjfor�all, �q = 1, 2,…,Q, �‘ q � o
m

j=1
aj

ixj � uq, �for�all�i � Sq, and �x � 0

( )

(4)

Such feasibility-seeking problems can typically be solved
variety of ef� cient projection methods, whose main advanta
which makes them successful in real-world applications
computational (see, e.g.,23, 44).

They commonly can handle very large-size problems
dimensions beyond which other, more sophisticated curre
Frontiers in Oncology 04
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available, methods start to stutter or cease to be ef� cient. This is
because the building blocks of a projection algorithm are
projections onto the given individual sets. These projections
actually easy to perform, particularly in linear cases such
hyperplanes, half-spaces, or hyperslabs.

For the purpose of this paper, we de� ne such an iterative feasibilit
seeking algorithm via an algorithmic operatorA : Rm � Rm ,

x0 � Rm, �xk+1 = A(xk), �k = 1, 2,…�, (5)

whose task is to (asymptotically)� nd a point inW.
The algorithmic structures of projection algorithms a

sequential, simultaneous, or in-between, such as in the b
iterative projection (BIP) methods (see, e.g.,45, 46, and reference
therein) or in the more recent string-averaging projection (S
methods (see, e.g.,47, and references therein). An advantage
projection methods is that they work with the initial, raw data a
do not require transformation of, or other operations on, the
describing the problem.

For our prototype used here in conjunction with the SM, we
on the well-established Agmon, Motzkin, and Schoenberg (A
relaxation method for linear inequalities (48, 49). Implemented
sequentially and modi� ed for handling the boundsx � 0, it is
outlined inAlgorithm 1. We denote‘ : = (‘ q)

Q
q=1 andu : = (uq)

Q
q=1.
1: function A AMS(x,A,u, ‘ , l ,n)
2: I = CS(n) *Select control sequence*

3: for all i � I do

4: if ai ,x > uq �then *uq for containing i-th voxel*

5: x � x � ln i
� ai ,x � � uq

� ai � 2
2

ai

6: else if � ai ,x � < ‘ qthen *‘ q for containing i-th voxel*

7: x � x � ln i
‘ q� � ai ,x �

� ai � 2
2

ai

8: else *Do nothing*

9: end if

10: end for

11: for j = 1, 2,…m�do *Ensure nonnegativity ofx*

12:
xj �

xj , for �xj � 0

0, for �xj < 0

(

13: end for

14: return x

15: end function
y a
e,
is

of
ly

Algorithm 1. The AMS Sequential Relaxation Method ’s algorithmic
operator AAMS.

During an iteration,Algorithm 1iterates over all rows of the do
matrix A and handles sequentially the right-hand side and the
hand side of individual constraints from eq. (3). Thecontrol sequenc
(CS) (50, De� nition 5.1.1) determines the order of iterating throu
the matrix rows/constraints. When a corresponding voxel d
inequality is violated, the algorithm performs geometrically
projection of the current pointx onto the violated half-space wit
a user-chosen relaxation parameter 0< l � 2. The original AMS
algorithm is modi� ed inAlgorithm 1to allow the relaxation for eac
frontiersin.org
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voxeli to be weighted withni and by performing projections onto th
nonnegative orthant ofRm (in steps 11–13) to return only
nonnegative intensitiesx. The vectorai = (aj

i)
m
j=1 is the i-th row of

the dose matrixA and is the normal vector to the half-spa
represented by that row and� ai � 2

2 is its square Euclidean norm.
In summary, the algorithmic operator inAlgorithm 1describes

a single complete sweep of projections sequentially over a
constraints (half-spaces) followed by a projection onto
nonnegative orthant thus ensuring the nonnegativity constra
Such sweeps will be executed iteratively.

The theory behind this algorithm guarantees that, un
reasonable conditions, if the feasibility-seeking sweeps
performed endlessly then any sequence of iteration vectorsf xkg�

k=0

converges to a point that satis� es all constraints.
Choosing to de� ne an algorithmic operatorA in Algorithm 1,

allows us to concisely display the superiorization appro
independent from the chosen projection algorithm below (
step 21 insideAlgorithm 2).
g
third

lity-
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2.4 The superiorization method
and algorithm

The SM is built upon application of a feasibility-seekin
approach (section 2.3) to the constraints in the second and
lines of eq. (1). But instead of handling the constrained
minimization problem of eq. (1) with a full-� edged algorithm for
constrained minimization, the SM interlaces into the feasibi
seeking iterative process (i.e.,“the basic algorithm”) steps that
reduce locally in each iteration the objective function value.

Accordingly, the SM does not aim at� nding a constrained
minimum of the combined objective functionf (x) = o P

p=1wpfp(x)
of eq. (1) over the constraints. It rather strives to� nd a feasible
point that satis� es the constraints and has a reduced– not
necessarily minimal– value off .

In the following, we give a brief and focused introduction to S
A more detailed explanation and review can be found in,
Censor et al. (51, Section II) and references therein (see also31, 35,
45, 52–55).

In general, the SM is intended forconstrained function
reduction problemsof the following form (55, Problem 1):

Problem 1. The constrained function reduction problem o
the SM

Let W be a given set (such as in eq.(4)) and let f:Rm � R be an
objective function (such as in eq.(1)). Let A from eq.(5) be an
algorithmic operator that de� nes an iterative basic algorithm f
feasibility-seeking of a point in W. Find a vectorx* � W whose
function value is smaller or equal (but not necessarily minimal)
that of a point in W that would have been reached by applyin
basic algorithm alone.

The SM approaches this question by investigating theperturbation
resilience(52, De� nitions 4 and 9) ofA, and then proactively usin
such perturbations, to locally reduce the valuesf of the iterates, in
order to steer the iterative sequence generated by algorithmA to a
solution with smaller or equal objective function value. The structur
Frontiers in Oncology 05
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of the superiorization algorithm implemented here is given
Algorithm 2 with explanations here and in section 2.4.1.

Except for the initialization in steps 1–3,Algorithm 2consists of
the perturbations phase (steps 5–19) and the feasibility-seekin
phase (steps 20–23).

In the perturbation phase, the objective functionf is reduced
using negative gradient descent steps. The step-sizeb of these
gradient updates is calculated bya s wherea is a� xed user-chose
constant, calledkernel, 0 < a < 1 so that the resulting step-sizes a
nonnegative and form a summable series. The powersis incremented
by one until the objective function value of the newly acquired p
is smaller or equal to the objective function value of the point w
which the current perturbations phase was started.

The parameterN determines how many perturbations a
executed before applying the next full sweep of the feasib
seeking phase. The basicAlgorithm 1 with algorithmic operator
AAMS, used throughout this work, is indeed perturbation resilient (56).

The superiorization approach has the advantage of letting
user choose any task-speci� c algorithmic operatorA that will be
computationally ef� cient, independently of the perturbation pha
as long as perturbation resilience is preserved.
1: k � 0
2: xk � x0

3: s� � 1
4: while stopping rule not met do

5: t � 0 * start of perturbation phase *

6: xk,t � xk

7: while t < N do * apply N function reductions *

8: loop� true
9: while loop do

10: s� s+ 1
11: b � a s *Step size adaptation*

12: z � xk,t � b � f (xk,t ) *Function reduction step*

13: if f (z) � f (xk,t ) then *Function reduction check*

14: t � t + 1
15: xk,t � z
16: � � � � � � � � �loop� false
17: end if

18: end while

19: end while

20: nk � hkn *start of feasibility-seeking phase*

21: xk+1 � A AMS(xk,t ,A,u, ‘ , l ,nk)
22: k � k + 1
23: end while

24: return xk
Algorithm 2. Superiorization of the feasibility-seeking basic algorithm
described by the operator A = AAMS.

For our IMRT treatment planning problem using voxel do
constraints as introduced in eqs. (2)– (4), A can be– besides the
chosen AMS algorithm– any of the wide variety of feasibility
seeking algorithms (see, e.g.,23, 44, 50, 57).
frontiersin.org
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2 For any real number r we use (r)+ := max {0, r}

3 https://github.com/e0404/matRad/t ree/research/superiorization.

Commit hash at the time of this work: ec04f5a5

4 https://github.com/e0404/paper-superiorization-imrt/. Commit hash at

the time of this work: a787e94.
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The principles of the SM have been presented and studie
previous publications (consult, e.g.31, 52, 54), but, to the best of ou
knowledge, this is the� rst work applying the SM to a treatme
planning problem with an objective function of the general fo
f (x) : = o P

p=1wpfp(x) from eq. (1).

2.4.1 Modi� cations of the prototypical
superiorization algorithm

To control the initial step-size, we warm start the algorit
with larger kernel powerss within the � rst iteration, which
substantially improves the algorithm’s runtime. For our purposes
we chose an initial increment ofs � s+ 25.

In the feasibility-seeking phase, instead of weighting
projections onto the half-spaces equally via the relaxa
parameters, each projection can also be given an individua
weight 0< ni < 1 representing the importance of thei-th
inequality constraint (i. e., voxel).

Further, as shown in step 20 ofAlgorithm 2, weights can be
reduced after each iteration to improve stability. Similar to how
step-sizes are reduced in the perturbation phase, we utilize an
kernel 0< h < 1 and use its powershk to reduce the weights in ste
20 by incrementingk after each feasibility-seeking sweep. The
weights are then calculated byhk · n, wheren are the initial weights

Finally, we integrate four different control sequences to itera
through the rows ofA. Apart from following the cyclic order accordin
to voxel indices, we experimented with a random order and
sequences choosing rows with increasing or decreasing weightsni .

2.4.2 Stopping criteria
The algorithm was terminated after a given maximal numbe

iterations was reached or after a certain time limit was exceede
when the stopping criterion formulated below was met. The de
number of maximum iterations was 500 and the default wall-c
duration was set to 50min.

The stopping criterion that we used consists of two parts, b
of which must be met for three consecutive iterations for
algorithm to stop. The� rst part of the stopping criterion is tha
the relative change of the objective functionf de� ned by

f (xk+1) � f (xk)j
max � 1,f (xk)

� �

�
�
�
�
�

�
�
�
�
�

(6)

becomes smaller than 10� 4.
For the second part of the stopping criterion, we de� ne the

square of the weightedL2-norm of the constraints violations by2

V xð Þ: =
1
n o

n

i=1

(‘ q � � ai ,x� )2
+ + (� ai,x� � uq)

2
+

� ai � 2
2

(7)

where ‘ q and uq depend on which structure thei-th voxel
belongs to. This second part of the stopping rule is met if the rel
change ofV de� ned by

V(xk+1) � V(xk)j
max � 1,V(xk)

� �

�
�
�
�
�

�
�
�
�
�

(8)

is smaller than 10� 3 :
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in All tolerances of the stopping criteria can be customized
also set to a negative number to turn off single stopping criter
early stopping altogether.
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2.5 Implementation

The superiorization prototype described above was implement
in the open-source crossplatform software“matRad” (5, 58, 59), which
is a multi-modality radiation dose calculation and treatment plannin
toolkit written in Matlab. The implementation is publicly available
the matRad GitHub repository on a research branch.3

The superiorization solver is implemented as the c
matRad_OptimizerSuperiorization.m within matRad's optimiza
framework. The class de� nes various user-con� gurable properties
such as the maximum number of iterations, maximum wall ti
different warm-start settings, two different feasibility-seek
algorithms, and various control sequences. Once the optimize
been initialized, the optimize method can be called to genera
solution to the plan. The optimize method requires the follow
inputs: a starting point, the objective function with its gradient,
linear constraints, and the dose projection matrix. The perturba
phase, as well as the two provided feasibility-seeking algorithms, ar
implemented as additional methods.Furthermore, within the class, a
additional method PlotFunction is available. This method facilitate
visualization of key metrics, such as the objective function value
maximum constraint violation, andthe proximity of the solution to
the set of feasible solutions. Multiple scripts to reproduce the resu
presented herein are provided in an additional GitHub repository4

The implementation in matRad facilitates comparison aga
plans generated on the same datasets with a nonlinear optimiz
matRad implements a number of common objective functions u
in treatment planning (compare toSupplementary Data Sheetand
Wieser et al. (5, Table 1)). While matRad provides interfaces to bo
the open-source Interior Point OPTimizer (IPOPT) (19) as well as
to Matlab’s built-in interior-point algorithm from fmincon, only the
� rst was used for our comparisons.

We chose to use matRad’s optimization implementation as
benchmark for mainly two reasons: First, matRad has been us
numerous research works demonstrating its ability to create acce
treatment plans. Second, as an open-source tool, matRad does
direct modi� cations of the algorithms and respective parameters a
stopping criteria, running them under truly similar conditions. This
means that the evaluation of the objective function and its grad
itself useexactlythe same code. Benchmarking against other clo
source treatment planning systems would be inconsequential due
hidden computational optimizations, simpli� cations, and unknown
mathematical formulations ofobjectives and constraints.
frontiersin.org
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As motivated in section 2.2, no second-order derivatives
used in the nonlinear optimization approach, but instead a limit
memory Hessian approximation using� rst-order derivatives wa
chosen. While second-order derivatives can be used within ma
it does not make use of fast exact Hessian computation strat
(11), reducing the value of a runtime comparison.

matRad performs all computations in a fully-discretized mo
with a voxel grid. The“dose matrix” A is stored as a compress
sparse column matrix computed for all analyses using matR’s
singular value decomposed pencil-beam algorithm (60) for photons
and a singleGaussian pencil-beam algorithm for protons,
validated against clinical implementations (5).
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3 Results

3.1 Proof-of-work: Phantom plan

To demonstrate the applicability of superiorization to the IM
treatment planning problem, we� rst evaluate a small example usi
the horseshoe phantom de� ned in the AAPM TG119 Report (61).
The phantom is part of the CORT dataset (62) and consequently
available with matRad.

We created an equidistantly spaced 5-� eld IMRT photon plan
with 5mm × 5mm beamlet doses (resulting in 1918 pencil-be
and a corresponding sparse dose in� uence matrix with 9.3× 107

non-zero entries in 3.5× 106 voxels).
With this setup, we generated treatment plans using th

different approaches: (i) constrained minimization with IPOP
(ii) the AMS algorithm for feasibility-seeking only, and (iii) the S
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with the AMS algorithm. Different combinations of nonline
objective functions and linear inequality constraints on dose w
evaluated and compared across these approaches.

For analysis, we use dose-volume histograms (DVHs) and
dose (difference) slices, as well as the evolution plots of the obj
function values and the constraint violations.

3.1.1 General usability of the AMS feasibility-
seeking projection algorithm

We � rst validate that our implemented projection algorith
AMS is capable of� nding comparable treatment plans to tho
found by established optimization algorithms when applied
straightforward piece-wise least-squares objective function fo
unconstrained minimization of residuals.

The setup prescribes 60 Gy to the C-shaped target. To ac
this prescription, we bound the dose in the target by (60 ± 1) Gy
the two OARs,“Core” and “Body”, upper bounds (a.k.a. toleran
doses) are prescribed, resulting in the parameters given inTable 1.

For nonlinear minimization with IPOPT, the tolerance do
serve as parameters for respective penalized piece-wise least-
objective functions while for AMS the tolerances directly trans
into linear inequalities and the weights proportionally increase
relaxation parameters.

Figure 1con� rms that feasibility-seeking with weighted AMS
able to� nd dose distributions of similar quality as conventio
nonlinear unconstrained minimization of a piece-wise leastsqu
objective function. While resulting in different intensit
modulation patterns, nearly congruent DVHs are observed.

A crude performance analysis though measures substan
longer runtimes for the AMS approach (about� ve times slowe
B

C D

A

FIGURE 1

Comparison of treatment plans obtained by nonlinear minimization with IPOPT (A) and by feasibility-seeking with AMS (B), using the tolerances from
Table 1. (C) shows the dose difference in the slice from (A, B, D) the corresponding DVH, in which the optimization result (solid) and feasibility-seeking
result (dashed) are nearly overlapping.
frontiersin.org



e
ug

y a
te
-

n
e
iv
si

s
it

PT

ere

ter
he
the

um

r
the

tion
and

Barkmann et al. 10.3389/fonc.2023.1238824
than unconstrained minimization). This difference is mainly driv
by the fact that AMS does sequential iteration by iterations thro
the matrix rows in each sweep.

This investigated scenario is, however, not intended to displa
performance advantages of the AMS algorithm, but only to valida
behavior and con� rm the long-known ability of such feasibility
seeking algorithms to yield acceptable treatment plans (21, 22).

3.1.2 Inverse planning with superiorization
Using the same phantom and irradiation geometry as in sectio

3.1.1, the feasibility problem used in 3.1.1 was modi� ed to enforce som
hard linear inequality constraints while minimizing an object
function. When the constraints are feasible, superiorization u
AMS as the basic algorithm will� nd a feasible point while
perturbing the iterates of the feasibility-seeking algorithm toward
smaller or equal (not necessarily minimal) function values w
objective function reduction steps.
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As reference, nonlinear constrained minimization with IPO
with a logistic maximum approximation for minimum/maximum
(compare (5), Table 1), was used. Three prescription scenarios w
investigated: (I) linear inequalities on the target (59�Gy < d < 61�Gy),
(II) additional linear inequalities on the“Core” structure (d < 30�Gy),
and (III) only linear inequalities on the“Core” (d < 30�Gy). The
parameters are detailed inTable 2.

Figure 2 compares dose distributions and DVHs af
superiorization and after constrained minimization. T
respective evolution of the objective function values and
constraint violations (calculated by the in� nity norm over all
inequality constraint functions, corresponding to the maxim
residual) is exemplarily shown inFigure 3for plan I.

Comparing plan quality, both plans adhere to the linea
inequality constraints when the problem is feasible (which is
case for plans I & III) as seen in the DVHs. In plan I, superioriza
appears to reach better OAR sparing with reduced mean
maximum dose, while in plan III constrained minimizatio
achieves better OAR sparing. For plan II, which poses
infeasible problem, both target coverage and mean OAR sp
are improved for superiorization, yet at higher OAR maximum d
than obtained through constrained minimization.

The evolution of the objective function and constraint violat
for plan I inFigure 3exhibits a“typical” behavior of superiorization
seeing a strong decrease in the objective function values with
� rst iterations, followed by a slower slight increase as
perturbations’ step-sizes diminish. Both approaches were stop
after the maximum number of iterations (1000) was reached.

Nearly similar constraint violation is achieved by both metho
while constrained minimizationresulted in higher objectiv

the
(

B C

D E F

G

A

H I

FIGURE 2

Comparison of treatment plans obtained by superiorization and by constrained minimization. The top row (A– C) shows axial dose distribution slices
after constrained minimization, and the middle row (D– F) shows axial dose distribution slices after superiorization. The corresponding DVHs are
shown in the bottom row (G– I), with dashed lines showing the superiorization result and solid lines showing the optimization result.
TABLE 2 Dose inequality constraints, objective functions, and penalty
weights used separately for constrained minimization and for
superiorization.

VOI wp c(d) f(d)

Target 1000 59 Gy <d < 61 Gy (I & II) fsqdev(d; 60 Gy)

Core 100 d < 30 Gy (II & III) fsqdev+(d; 20 Gy)

Body 30 – fsqdev+(d; 30 Gy)
The Roman numerals in parentheses for the inequality constraints describe their usag
plans, respectively. The functions in the right-hand column stem from Wieser et a5,
Table 1) and are identi� ed here inSupplementary Data Sheetbelow.
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function values than superiorization, which can be attributed to
difference in OAR sparing. For all investigated plans I–III,
superiorization showed a much“smoother” evolution of objective
function and constraint violation than observed in the constrai
minimization approach.
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3.2 Head-and-neck case

To prove the usability of superiorization in a conventio
planning setting, we applied the SM to a head-and-neck case
a wider range of available objective functions, i.e., includin
common DVH-based objectives.

Coverage of the planning target volumes (PTVs) was enforced usi
voxel inequality constraints. Again, the results of superiorization we
compared to those obtained by solving the constrained minimiza
problem. All objectives and constraints are given inTable 3.

Both solvers use the same stopping criteria for the maxim
constraint violation (smaller than 0.01 Gy is acceptable)
tion
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are,
her
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objective function change of value (smaller than 0.1% in t
consecutive iterations/sweeps).

Figure 4shows exemplary axial dose slices and the DVHs
the plans generated with constraint minimization and with the S
Quantitative runtime information and evolution of objecti
function and constraint violation are provided inFigure 5.

Both techniques were able to generate a plan that satis� es the
linear inequalities up to the allowed violation threshold. Conside
absolute runtime, the plan generated with the SM satis� ed the
stopping criteria after 400s, with constrained minimization fai
to converge until the maximum number of iterations was reach

SM spent most of the time in the� rst sweep/iteration, where
focuses on multiple objective function evaluations to genera
large initial decrease (as already observed above). It continu
decreases the objective function values together with decre
constraints violation, reaching acceptable constraints violatio
more slowly than the run with constrained minimization.

However, using the same stopping criteria, the SM reach
solution with a much lower objective function value (approxima
one-third of the value achieved by the constrained minimiza
plan). This is also visible in the dose slices and DVH, which s
more normal tissue/OAR sparing for the SM plan. All results
naturally, only valid for the experiments we performed. Furt
work, with varying algorithmic parameters, initialization poin
and stopping criteria, is necessary to make more general statem
s to
eate
g

for
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e of
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3.3 Prostate case

To demonstrate how the superiorization approach translate
a second patient, using a different irradiation modality, we cr
prostate IMPT plans with opposing� elds on a 5mm spot grid usin
both superiorization and constrained minimization.

Figure 6shows exemplary axial dose slices and the DVHs
the plans generated with constraint minimization and with the
for the objective and constraint functions stated inTable 4.

The superiorized plan matches the dosimetric performanc
the constrained minimization approach. Little increased dose in
rectum and bladder are traded against a slightly more homogen
target coverage and reduced dose in the femoral heads.
BA

FIGURE 3

Objective Function values (A) and maximum constraint violation (B) over time for plan I shown in Figure 2. Each cross indicates a full iteration.
TABLE 3 Dose inequality constraints, objective functions and penalty
weights used for optimization and for superiorization on the head-and-
neck case.

VOI wp c(d) f(d)

PTV70 1000 66.5 Gy <d < 77 Gy fsqdev(d; 70 Gy)

PTV63 1000 fsqdev(d; 63 Gy)

PTV63 1000 fminDVH(d; 60 Gy, 95%)

Spinal Cord PRV 100 d < 50 Gy fsqdev+(d; 15 Gy)

Parotid L & R 100 fsqdev+(d; 10 Gy)

Optic Nerve L & R 100 fmaxDVH(d; 50 Gy, 10%)

Larynx 300 fsqdev+(d; 15 Gy)

Chiasm 100 fmaxDVH(d; 50 Gy, 10%)

Cerebellum 100 fsqdev+(d; 15 Gy)

Brainstem PRV 100 d < 30 Gy fsqdev+(d; 15 Gy)

NT/Body 100 fmean(d)
The functions in the right-hand side column are identi� ed here inSupplementary Data Shee.
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