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Objective: We apply the superiorization methodology to the constrained
intensity-modulated radiation thera py (IMRT) treatment planning problem.
Superiorization combines a feasibility-seeking projection algorithm with
objective function reduction: The underlying projection algorithm is perturbed
with gradient descent steps to steer the algorithm towards a solution with a
lower objective function value compared to one obtained solely through
feasibility-seeking.

Approach: Within the open-source inverse planning toolkit matRad, we implement
a prototypical algorithmic framework for su periorization using th e well-established
Agmon, Motzkin, and Schoenberg (AMS) feasibility-seeking projection algorithm and
common nonlinear dose optimization objective functions. Based on this prototype,
we apply superiorization to intensity-modulated radiation therapy treatment
planning and compare it with (i) bare feasibi lity-seeking (i.e., without any objective
function) and (i) nonlinear constrained optimization using  rst-order derivatives. For
these comparisons, we use the TG119 water phantom, the head-and-neck and the
prostate patient of the CORT dataset.

Main results: Bare feasibility-seeking with AMS con rms previous studies,
showing it can nd solutions that are nearly equivalent to those found by the
established piece-wise least-squares optimization approach. The superiorization
prototype solved the linearly constrained planning problem with similar
dosimetric performance to that of a general-purpose nonlinear constrained
optimizer while showing smooth convergence in both constraint proximity
and objective function reduction.

Signi cance: Superiorization is a useful alternative to constrained optimization in
radiotherapy inverse treatment planning. Future extensions with other
approaches to feasibility-seeking, e.g., with dose-volume constraints and more
sophisticated perturbations, may unlock its full potential for high performant

inverse treatment planning.

KEYWORDS

radiation therapy treatment planning, inverse planning, constrained treatment plan
optimization, IMRT, superiorization method, feasibility-seeking algorithm
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1 Introduction any objective function. While, in general, a bare feasibility-seeking
task can be translated to a constrained optimization problem with a
Numerical optimization methods lie at the heart of state-of-thezero objective function, the literature demonstrates a wide spectrum
art inverse treatment planning for intensity-modulated radiatiorof many efcient feasibility-seeking algorithms not derived from
therapy (IMRT) (). Usually, a clinical prescription of the treatmenttranslation of the bare feasibility-seeking task to a constrained
goals forms the input to a nonlinear multi-criteria optimizationoptimization problem (see, e.@3). If no feasible solution is
(MCO) problem with or without additional constraints, dependingfound, these algorithmsnd a proximal solution, similar to the
on the desired patient dose distribution. piece-wise least-squares approach. Even though they have seen
During the translation of the clinical goals into an MCOfurther development over the last decadés)) (and, more
problem, one distinguishes between objectives, i.e., soft goals tieaently, also extension to dose-volume constraifts-A7),
compete with each other, and hard constraints designed to ensungmerical optimizers have been the preferred choice in #ie
for example, maximal tolerance doses in an organ-at-risk (OARIUe to their abilities to handle the nonlinear objective functions,
and minimal dosage of the target. This versatile approach enabteg., (generalized) equivalent uniform dose (EUD), which are often
the treatment planner to employ arbitrary combinations of suitabldesired when prescribing treatment goals.
(convex) nonlinear objective functions along with any choice of The work presented here now combines nonlinear objective
constraints on the voxéldoses. functions as used in optimization with feasibility-seeking within
This mathematical modeling allows numerical optimization of théinearly constraining dose bounds by applying the superiorization
uence of beam elements (beamlets) using a pre-computed normalizeethod (SM). To do so, the SM usesuperiorized version of the
dose mappingd). The resulting constrained nonlinear optimizationbasic algorithmthe latter being a user-chosen iterative feasibility-
problem is frequently solved by applying an extended (quasi-)Newtsgeking algorithm, which is perturbed by interlacing reduction steps
approach with sequential quadratic programming (SQP) and/@f the chosen (nonlinear) objective function. This practically steers
interior-point methods 1-7). Until now, the capabilities of inverse the iterates of the feasibility-seeking algorithm to a feasible solution
planning have been substantially extended through multi-criterigoint with a “superiof, i.e., smaller or equal objective function
Pareto optimization with subsequent exploration of the Paretgalue, which is not necessarily a constrained minimization point.
surface &, 9) or stochastic/robust optimizatiori(). The superiorization method thus works with the constraints
Computational difculties may arise in the constrained nonlineardata and the usé& choice of objective function, much alike
optimization approach. First, optimal convergence for problems ebnstrained optimization methods would. But it does not aim at
typical size in radiotherapy is tied to the availability ofan optimal point that minimizes the objective over all constraints
computationally efcient second-order derivatives. While, forlike the latter do. In contrast, the SM aims at a point that will ful
example, van Haveren and Breedveld) (showed that for many all constraints and have a reducednot necessarily minimat
typical functions efcient formulations can be found, current researctobjective function value. Notnding the optimal solution, but
persistently adds new quantities, optimization strategies, and néwstead aiming for a satisfamty or adequate result, is a
types of problem formulations to inverse planning for photons andeasonable decision strated\s4tis cing’, see28), particularly
particles (see, e.d.2-18 to which such strategies might not be considering the degeneracy of the IMRT optimization problem
directly applicable. Second, a common approach among succesglé). Hence, this aim su€es for the purpose of generating
optimizers for nonlinear constrained optimization is to transform thexcceptable treatment plans. Combined with the simplicity of the
constrained problem into an unconstrained problem using, fogradient descent steps (i.e., not relying on second-order derivatives),
example, barrier functions (in the case of interior point methodsuperiorization cannd a solution, in general, faster and with less
e.g.,3, 19 and the method of Lagrange multipliers in combinationinvestment of computing resources, and fewer conditions
with slack variables3(19, 20). This creates a computational burdenconcerning design of the objective function.
when the number of constraints increases. Handling many Application of the SM to treatment planning is encouraged by
constraints as, for example, linear inequalities for many or aihe exibility it has shown for applications in multiplelds? It has
individual voxel dose bounds, can ate the computational effort demonstrated its effectiveness for image reconstruction in single-
because each constraint requires a Lagrange multiplier and @mergy computed tomography (CT31( 32), dual-energy CTJ3)
additional slack variable. Possibieorkarounds include minimax- and, more recently, in proton CT3¢, 35, by reducing total
optimization in combination with auxiliary variables or usage ofariation (TV) during image reconstruction. The SM has also
continuous and differentiable maximum approximations like thdeen successfully applied to diverse othelds of applications,
LogSumExp and softmax functiorig.( such as tomographic imaging spectrometBg)( or signal
Taking a step back, however, to the starting days of treatmefgicovery §7).
planning research, shows that one does not necessarily need to use & his work is—to the best of our knowledgethe rst in-depth
mathematicaloptimization approach to solve the purely linearly investigation of the SM as a potential alternative to constrained
constrained IMRT problem butould use feasibility-seeking
projection algorithms instead@{, 22).
In the context of IMRT, such bare feasibility-seeking translates Censor (http://arxiv.org/abs/1506.04219 ) provides a continuously
to seeking a feasible solution that will obey the prescribed lower andiated bibliography of works using superiorization to present the state of
upper dose bounds on doses in voxels, without aiming to optimizesearch (30).
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minimization algorithms for inverse radiotherapy treatmentcomponentis the radiation dose deposited withinittievoxel. For
planning using common objective functions. To date, we couleach of the segmentatiofg we can then easily identify its dosage
only identify an initial study of the applicability of SM in IMRT by ndingd; foralli =~ §,.
utilizing TV as objective function3@), which does not represent The radiation uence is represented as a vector intensities
common choices in objective function design for treatmenfx)l;, whosej-th component is the intensity of thieth beamlet.
planning. Another work considering the use of SM in IMRT used he dose depositioai for a unit intensity of beamlgtto voxeli can
superiorization to boost a speci lexicographic planning then be precomputed and stored in tese inuence matrix A=
approach 89). (a,’:){‘z’TFl, mappingx to d via d = Ax.
Expanding on those preliminary works, we develop, tune, and
evaluate a prototypical superiorization solver for radiotherapy
treatment planning problems. To show how this SM solver is ab2.2 The constrained minimization approach
to replace a constrained minimization approach, and to maximize
reproducibility and re-usability of our work, our superiorization  In the optimization approach to IMRT treatment planning, the
approach is implemented into the validated open source radiatiatinically prescribed aims are represented by various (commonly
therapy treatment planning toolkit matRaé) (together with an differentiable) objective functions which map the vector of beamlet
instructive set of scripts to execute and reproduce the results of tii¢ensities to the positive real numbef3. (
work (see section 2.5). Within matRad and its included phantoms For our purposes, we limit ourselves to objective functfgns
and patient cases, the SM is evaluated and tested onefided R" 8, ), p=1,2,..,P, operating on the radiation doskas
IMRT and intensity-modulated proton therapy (IMPT) treatmentsurrogates for clinical, dose-based goals.
planning problems. We compare to using non-linear constrained A comprehensive, exemplary list of such common objective
optimization using only rst-order derivatives like the SM, that is, afunctions can be found in Wieser et ah, (Table ) and, for the
quasi-Newton method construction a Hessian approximation. readels convenience, also #upplementary Data Shdsglow. These
This paper is structured as follows: In section 2, we describe thjective functions, which depend on the dose, are related to the
approaches and present the speaiersion of the SM that we use intensitiesx via d = Ax, which is computed at each iterate/change of
along with the feasibility-seeking algorithm embedded in it. Sectionduring optimization.
3 includes our computational results. Finally, in section 4, we Wishing to ful Il or decide between multiple clinical goals, the
discuss the potential of SM with possible future developmentssulting multi-objective optimization problem may be scalarized using
and conclude our work in section 5. a weighted sum of several differendiindual objective functions for
the various VOIS], This approach, rst introduced for least-squares
(as introduced by40), can today explore a plethora of objective

2 Materials and methods functions @, 5) while also satisfying hard constraings %):

This work compares three approaches to model the treatment x*= arg mir*(; Wyfp(d(x))
planning problem in IMRT: (i) anonlinear constrained x  p=l 1
minimization approachof minimizing an objective function  gych that ¢ qdKx) t=1,2...,T, @

subject to constraints with a quasi-Newton method relying on
rst-order derivatives, (ii) thdeasibility-seeking approach
searching for a feasible solution adhering to constraints without Herew, O, for allp=1,2,.,,P, are user-spead weights
considering any objective functions to minimize, andhlly, (i)  re ecting relative importancé, are user-chosen individual objective
the superiorization approagcthich perturbs the feasibility-seeking functions, x is the beamlet radiation intensities vector (which is
algorithm to reduce (not necemsly minimize) an objective physically bound to the nonnegative real orthant), @n@re user-
function by gradient descent steps. Before introducing thesBosen individual constraints with lower and upper bougdandc’,
approaches, we brig recap the discretization of the inverserespectively. While the constrairgscan, in principle, be nonlinear
treatment planning problem. constraints, we focus here timear inequality constraintepresenting
upper and lower dose prescription bounds.
The inverse planning problerfrom eq. (1), solved with

2.1 Discretization of the inverse treatment numerical optimization techniques, is commonly used today
planning problem

x 0:

TABLE 1 Dose inequalities/prescriptions and penalty weights used for
Computerized inverse treatment planning usually relies on &nimization and for AMS feasibility-seeking.
spatial discretization of the particlaience, the patient anatomy,

and, consequently, the radiation dose. \Y/e] W, tolerance/inequality constraint
The patient is represented by a three-dimensional voxelized grid  Target 1000 59 Gy ¢ <61 Gy
(image) withn voxels numbered= 1, 2....,n. Based on this image, Core 100 d<20Gy
volumes of interest (VOIs},, q=1,2,...,Q are segmented. This
Q (VOIS g Q d Body 30 d <30 Gy

allows us to represent the dose as a vedter(d,)iL;, whosei-th
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across treatment modalities (among oth&rs, 5, 40, 41). SQP or available, methods start to stutter or cease to baegft. This is
interior point methods with a (quasi-)Newton approach are oftefbecause the building blocks of a projection algorithm are the
used to solve the resulting constrained optimization problérig ( projections onto the given individual sets. These projections are
42). In this work, we focus on a quasi-Newton approach usisty  actually easy to perform, partil@rly in linear cases such as
order derivatives only, since the superiorization approach (&yperplanes, half-spaces, or hyperslabs.

described further below in section 2.4) has so far only been Forthe purpose of this paper, we de such an iterative feasibility-

investigated using gradient descent steps itself. seeking algorithm via an algorithmic operafor R™ R™,
X R™ XT=AXY, k=1,2,.., (5)
2.3 The feasibility-seeking approach whose task is to (asymptoticallyyd a point inW.

The algorithmic structures of projection algorithms are
Since the bare feasibility-seeking approach is the backbonesefjuential, simultaneous, or in-between, such as in the block-
the SM, it will be outlined below using the notation from sectiongerative projection (BIP) methods (see, e1§,46, and references
2.1 and 2.2. Prior work has already suggested the feasibility-seeklrgyein) or in the more recent string-averaging projection (SAP)
approach to address the treatment planning problem (see48.g., methods (see, e.gl/, and references therein). An advantage of
and references therein). projection methods is that they work with the initial, raw data and
To solve the treatment planninproblem with feasibility- do not require transformation of, or other operations on, the sets
seeking, dose prescriptions are modeled as a system of lindescribing the problem.
inequalities: In general, the dose in every voxel is constrained For our prototype used here in conjunction with the SM, we rely
with a lower and upper bound. Feasibility-seeking now seeksoa the well-established Agmon, Motzkin, and Schoenberg (AMS)
solution, i.e., a beamlet intensity vector flihg these prescriptions. relaxation method for linear inequalitiegd 49). Implemented
With d(x) = Ax, the beamlet radiation intensities vecxonow  sequentially and moded for handling the bounds O, it is
has to be recovered from a system of linear inequalities of the foieatlined in Algorithm 1. We denoté : = (' q)$=1 andu: = (uq)(?:l.

m .
U oo .
d oax ¢, i=12.,n: 2)
=1 1: function AAMS(X,A,U,‘J ,n)
In principle, individual lower and upper boundsandd” can 2 1=cs(n *Select control sequence*
be chosen for each voxelSince prescriptions are usually grouped 3 foral 1 ldo
. P | . .
per VOI S, the system can be rewritten as: 4 it a,X>Ug the”ai o *Uq for containing i-th voxel*
5; x x In; =24
. 2
m . . i ¢ " PSS "
For all q= 1, 2,---,Q: ‘q 0 ab(j Uq for all i S“ (3) 6 else if a ’X( <ai xqthen q for containing i-th voxel
=1 7 X x Injtg—-a
2
. . 8 else *Do nothing*
with ', and u, representing the lower and upper dose bounds 9
. . . L 9: end if
per VOI §,, respectively. Since it does not make sense to prescribe
i, 10: end for
positive lower bounds to OARs, these are generally chosen to be .
equal to zero 11: for | = 1, 2,...m do *Ensure nonnegativity of*
q ) 12: X, for x 0

Geometrically, depending on which structuge a voxeli %

belongs to, each physical dose constrainiCseé each voxel = 0 for <0
1,2,..,n, is ahyperslal{i.e., an intersection of two half-spaces) in  13:  endfor
the m-dimensional Euclidean vector spdRg. 14 retun  x
Aiming at satisfaction of all physical dose constraints along with  15: end function
the nonnegativity constraints is, thus, the following (which is a
special case of treonvex feasibility problesee, e.g23):
Find an x* W:= Algorithm 1. The AMS Sequential Relaxation Method s algorithmic
( ) operator A*MS,
x RMforal,q=1,2...,Q ‘4 dej ug, foralli  §,andx 0 During an iterationAlgorithm 1literates over all rows of the dose
=1

matrix A and handles sequentially the right-hand side and the left-
) hand side of individual constraints from eq. (3). Teatrol sequence
Such feasibility-seeking problems can typically be solved by(@S) €0, De nition 5.1.1) determines the order of iterating through
variety of efcient projection methods, whose main advantagehe matrix rows/constraints. When a corresponding voxel dose
which makes them successful in real-world applications, isequality is violated, the algthm performs geometrically a
computational (see, e.g3, 44). projection of the current poink onto the violated half-space with
They commonly can handle very large-size problems @ user-chosen relaxation parametex D 2. The original AMS
dimensions beyond which other, more sophisticated currentigigorithm is modied inAlgorithm 1to allow the relaxation for each

Frontiers in Oncology 04 frontiersin.org



Barkmann et al. 10.3389/fonc.2023.1238824

voxeli to be weighted witln; and by performing projections onto the of the superiorization algorithm implemented here is given by
nonnegative orthant oR™ (in steps 1%13) to return only Algorithm 2 with explanations here and in section 2.4.1.
nonnegative intensities. The vectora = (a@)jngl is thei-th row of Except for the initialization in steps-3, Algorithm 2 consists of
the dose matrixA and is the normal vector to the half-spacethe perturbations phase (stepsl9) and the feasibility-seeking
represented by that row anda’ 3 is its square Euclidean norm.  phase (steps 2a3).
In summary, the algorithmic operator ilgorithm 1describes In the perturbation phase, the objective functiois reduced
a single complete sweep of profions sequentially over all using negative gradient descent steps. The stesiak these
constraints (half-spaces) followed by a projection onto thgradient updates is calculated &y wherea is a xed user-chosen
nonnegative orthant thus ensuring the nonnegativity constraintonstant, calleterne] 0< a < 1 so that the resulting step-sizes are
Such sweeps will be executed iteratively. nonnegative and form a summable series. The psiséncremented
The theory behind this algorithm guarantees that, undeby one until the objective function value of the newly acquired point
reasonable conditions, if the feasibility-seeking sweeps asesmaller or equal to the objective function value of the point with
performed endlessly then any sequence of iteration vefotbgs.,  which the current perturbations phase was started.
converges to a point that satés all constraints. The parameteN determines how many perturbations are
Choosing to dene an algorithmic operatoh in Algorithm 1,  executed before applying the next full sweep of the feasibility-
allows us to concisely display the superiorization approacteeking phase. The bagitgorithm 1 with algorithmic operator
independent from the chosen projection algorithm below (se&”MS used throughout this work, is indeed perturbation resiligf (
step 21 insidé\lgorithm 2). The superiorization approach has the advantage of letting the
user choose any task-spexialgorithmic operatoA that will be
computationally efcient, independently of the perturbation phase,
2.4 The superiorization method as long as perturbation resilience is preserved.
and algorithm

The SM is built upon applicatio of a feasibility-seeking
approach (section 2.3) to the constraints in the second and third 1: k 0

lines of eq. (1). But insteadf dhandling the constrained 2 x< X0
minimization problem of eq. (1) with a fulledged algorithm for s 1
constrained minimization, the SM interlaces into the feasibility- 4: while stopping rule notmet  do
seeking iterative process (i.&the basic algorithif) steps that 5.t 0 * start of perturbation phase *
reduce locally in each iteration the objective function value. 6 xkb XK
Accordingly, the SM does not aim anding a constrained 7: while t<Ndo *apply N function reductions *
minimum of the combined objective functidifx) = o glwpfp(x) 8: loop true
of eq. (1) over the constraints. It rather strives tal a feasible 9 while loop do
point that satises the constraints and has a reducedot 10: s s+l
necessarily minimat value off. 11: b a‘ *Step size adaptation*
In the following, we give a brief and focused introduction to SM.  12: z XU b (R *Function reduction step*
A more detailed explanation and review can be found in, e.g., 13 it £(z) (<) then *Function reduction check*
Censor et al.§1, Section 1) and references therein (see aisa5, 14: t t+1
45,52-55), 15: X<tz
In general, the SM is intended faronstrained function 16: loop false
reduction problemsf the following form £5, Problem 1): 17: end if
Problem 1. The constrained function reduction problem of 18: end while
the SM 19:  end while
Let W be a given set (such asin(é)).and letf:R™ R be an 200 ng h*n *start of feasibility-seeking phase*
objective function (such as in €f)). LetA from eq.(5) be an 210 XKL AAMSGKE A Ut T ny)
algorithmic operator that dees an iterative basic algorithm for  22. k k+1
feasibility-seeking of a point in W. Find a vectbr W whose 23: end while

function value is smaller or equal (but not necessarily minimal) than 24: return XX
that of a point in W that would have been reached by applying the
basic algorithm alone. Algorithm 2. Superiorization of the feasibility-seeking basic algorithm

The SM approaches this question by investigatingéfeirbation ~ described by the operator - A = AV,
resiliencé52, De nitions 4 and 9) ofA, and then proactively using ~ For our IMRT treatment planning problem using voxel dose
such perturbations, to locally reduce the values the iterates, in constraints as introduced in egs. (2J4), A can be- besides the
order to steer the iterative sequence generated by algofithma  chosen AMS algorithm- any of the wide variety of feasibility-
solution with smaller or equal objiae function value. The structure seeking algorithms (see, eag, 44, 50, 57).
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The principles of the SM have been presented and studied in All tolerances of the stopping criteria can be customized and
previous publications (consult, €34, 52, 54), but, to the best of our also set to a negative number to turn off single stopping criteria or
knowledge, this is therst work applying the SM to a treatment early stopping altogether.
planning problem with an objective function of the general form

1002 = 0 pWefp() from eq. (2). 2.5 Implementation
2.4.1 Modi cations of the prototypical The superiorization prototype seribed above was implemented
superiorization algorithm in the open-source crossplatform softwaratRad (5, 58 59), which

To control the initial step-size, we warm start the algorithms a multi-modality radiation dose lcalation and treatment planning
with larger kernel powers within the rst iteration, which toolkit written in Matlab. The implementation is publicly available on
substantially improves the algoritfsiruntime. For our purposes, the matRad GitHub repository on a research brahch.
we chose an initial increment sf s+ 25. The superiorization solver is implemented as the class

In the feasibility-seeking phase, instead of weighting athatRad_OptimizerSuperiorization.m within matRad's optimization
projections onto the half-spaces equally via the relaxatiofamework. The class dees various user-cogurable properties
parameters, each projectiorarc also be given an individual sych as the maximum number of iterations, maximum wall time,
weight 0<n; <1 representing the importance of theth  different warm-start settings, two different feasibility-seeking
inequality constraint (i. e., voxel). algorithms, and various control sequences. Once the optimizer has

Further, as shown in step 20 éfgorithm 2, weights can be peen initialized, the optimize method can be called to generate a
reduced after each iteration to improve stability. Similar to how theojution to the plan. The optimize method requires the following
step-sizes are reduced in the perturbation phase, we utilize anotfigjuts: a starting point, the objective function with its gradient, the
kernel 0< h < 1 and use its powets* to reduce the weights in step [inear constraints, and the dose projection matrix. The perturbation
20 by incrementing after each feasibility-seeking sweep. The nephase, as well as the two provided ifslitg-seeking algorithms, are
weights are then calculated i§/- n, wheren are the initial weights. implemented as additional methoirthermore, within the class, an

Finally, we integrate four differe control sequences to iterate additional method PlotFunction is available. This method facilitates the
through the rows oA. Apart from following the cyclic order according visualization of key metrics, such as the objective function value, the
to voxel indices, we experimented with a random order and withhaximum constraint violation, anthe proximity of the solution to
sequences choosing rows with increasing or decreasing weights  the set of feasible solutions. Mukipscripts to reproduce the results

presented herein are provided in an additional GitHub reposttory.
2.4.2 Stopping criteria The implementation in matRad facilitates comparison against

The algorithm was terminated after a given maximal number gilans generated on the same datasets with a nonlinear optimizer, as
iterations was reached or after a certain time limit was exceeded oatRad implements a number of common objective functions used
when the stopping criterion formulated below was met. The defadlt treatment planning (compare tupplementary Data Sheard
number of maximum iterations was 500 and the default wall-clocWieser et al.§, Table }). While matRad provides interfaces to both
duration was set to 50min. the open-source Interior Point OPTimizer (IPOPTQ) as well as

The stopping criterion that we used consists of two parts, botio Matlabis built-in interior-point algorithm from fmincon, only the
of which must be met for three consecutive iterations for therst was used for our comparisons.
algorithm to stop. The rst part of the stopping criterion is that We chose to use matRadoptimization implementation as a
the relative change of the objective functfode ned by benchmark for mainly two reasons: First, matRad has been used in

numerous research works demonstrating its ability to create acceptable

HESSIRICY) (6) Ureatment plans. Second, as an open-source tool, matRad does allow

max  1f(x¥) direct modi cations of the algorithms drrespective parameters and
stopping criteria, running them wter truly similar conditions. This
means that the evaluation of the objective function and its gradient
itself useexactlythe same code. Benchmarking against other closed-
source treatment planning syste would be inconsequential due to
a,x)2+(a,x up)? hidden computational ophizations, simplications, and unknown

1n (g
V&b =— 7 . . o .
& n 91 a 2 ™ mathematical formulations afbjectives and constraints.

becomes smaller than 10
For the second part of the stopping criterion, we e the
square of the weightdd,-norm of the constraints violations by

where 'y and ug depend on which structure theth voxel
belongs to. This second part of the stopping rule is met if the relative For any real number r we use (r). := max {0, r}

change oV de ned by
3 https://github.com/e0404/matRad/t reel/research/superiorization.

V(Xk+l) V(Xk)j Commit hash at the time of this work: ec04f5a5

_— 8)
K (
max l’V(X ) 4 https://github.com/e0404/paper-superiorization-imrt/. Commit hash at

is smaller than 16 . the time of this work: a787e94.
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As motivated in section 2.2, no second-order derivatives wendth the AMS algorithm. Different combinations of nonlinear
used in the nonlinear optimization approach, but instead a limitedsbjective functions and linear inequality constraints on dose were
memory Hessian approximation usingst-order derivatives was evaluated and compared across these approaches.
chosen. While second-order derivatives can be used within matRad, For analysis, we use dose-volume histograms (DVHSs) and axial
it does not make use of fast exact Hessian computation strategiese (difference) slices, as well as the evolution plots of the objective
(11), reducing the value of a runtime comparison. function values and the constraint violations.

matRad performs all computations in a fully-discretized model

with a voxel grid. Theédose matriX A is stored as a compressed3,1.1 General usability of the AMS feasibility-
sparse column matrix computed for all analyses using m&Rageeking projection algorithm

singular value decomposed pencil-beam algorithéhfor photons We rst validate that our implemented projection algorithm
and a singleGaussian pencil-beam algorithm for protons, bothms is capable ofnding comparable treatment plans to those
validated against clinical implementatiors. ( found by established optimization algorithms when applied to a

straightforward piece-wise least-squares objective function for the
unconstrained minimization of residuals.

3 Results The setup prescribes 60 Gy to the C-shaped target. To achieve
this prescription, we bound the dose in the target by (60 + 1) Gy. To
3.1 Proof-of-work: Phantom plan the two OARs*Core’ and “Body’, upper bounds (a.k.a. tolerance

doses) are prescribed, resulting in the parameters giveale 1

To demonstrate the applicability of superiorization to the IMRT  For nonlinear minimization with IPOPT, the tolerance doses
treatment planning problem, west evaluate a small example usingserve as parameters for respective penalized piece-wise least-squares
the horseshoe phantom deed in the AAPM TG119 Repor6().  objective functions while for AMS the tolerances directly translate
The phantom is part of the CORT datasé®?) and consequently into linear inequalities and the weights proportionally increase the
available with matRad. relaxation parameters.

We created an equidistantly spacededd IMRT photon plan Figure 1con rms that feasibility-seeking with weighted AMS is
with 5mm x 5mm beamlet doses (resulting in 1918 pencil-beamable to nd dose distributions of similar quality as conventional
and a corresponding sparse dosetience matrix with 9.3 10°  nonlinear unconstrained minimization of a piece-wise leastsquares
non-zero entries in 3.8 10° voxels). objective function. While resulting in different intensity-

With this setup, we generated treatment plans using thremodulation patterns, nearly congruent DVHs are observed.
different approaches: (i) constrained minimization with IPOPT, A crude performance analysis though measures substantially
(i) the AMS algorithm for feasibility-seeking only, and (iii) the SMlonger runtimes for the AMS approach (aboute times slower

FIGURE 1

Comparison of treatment plans obtained by nonlinear minimization with IPOPT  (A) and by feasibility-seeking with AMS (B), using the tolerances from
Table 1 (C) shows the dose difference in the slice from (A, B, D)the corresponding DVH, in which the optimization result (solid) and feasibility-seeking
result (dashed) are nearly overlapping.
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than unconstrained minimization). This difference is mainly driven  As reference, nonlinear constrained minimization with IPOPT
by the fact that AMS does sequential iteration by iterations throughith a logistic maximum approximation for minimum/maximum
the matrix rows in each sweep. (compare §), Table ), was used. Three prescription scenarios were
This investigated scenario is, however, not intended to display aimyestigated: (1) linear inequalities on the target@9< d < 61Gy),
performance advantages of the AMS algorithm, but only to validate {t$) additional linear inequalities on tH€ore' structure ¢ < 30 Gy),
behavior and corrm the long-known ability of such feasibility- and (Ill) only linear inequalities on théCoré (d < 30 Gy). The

seeking algorithms to yield acceptable treatment plah2p). parameters are detailed rable 2
Figure 2compares dose distributions and DVHs after
3.1.2 Inverse planning with superiorization superiorization and after constrained minimization. The

Using the same phantom and idiation geometry as in section respective evolution of the objective function values and the
3.1.1, the feasibility problem used in 3.1.1 was neaido enforce some Cconstraint violations (calculated by the ity norm over all
hard linear inequality constraints while minimizing an objectivdnequality constraint functions, corresponding to the maximum
function. When the constraints are feasible, superiorization usirigsidual) is exemplarily shown Figure 3for plan I.

AMS as the basic algorithm willnd a feasible point while ~ Comparing plan quality, bt plans adhere to the linear
perturbing the iterates of the fedlifip-seeking algorithm towards inequality constraints when the problem is feasible (which is the
smaller or equal (not necessarily minimal) function values witGase for plans | & Ill) as seen in the DVHSs. In plan |, superiorization
objective function reduction steps. appears to reach better OAR sparing with reduced mean and
maximum dose, while in plan Il constrained minimization
achieves better OAR sparing. For plan Il, which poses an

TABLE 2 Dose inequality constraints, objective functions, and penalty infeasible problem, both target coverage and mean OAR sparing

weights used separately for constrained minimization and for are improved for superiorization, yet at higher OAR maximum dose
Superiorization. than obtained through constrained minimization.
The evolution of the objective function and constraint violation
vol  w, c(d) (d) Vol > Opjective funetion @ e
for plan | in Figure 3exhibits d'typical’ behavior of superiorization,
Target 1000 59Gyd<61Gy(I&l) fsqaev(d; 60 Gy) seeing a strong decrease in the objective function values within the
Core 100 d <30 Gy (Il & Ill) foqaev+(d; 20 Gy) rst iterations, followed by a slower slight increase as the
perturbations step-sizes diminish. Both approaches were stopped
Body 30 - fsqdew—(d; 30 Gy)

after the maximum number of iterations (1000) was reached.

The Roman numerals in parentheses for the inequality constraints describe their usage in the P . . . . .
plans, respectively. The functions in the right-hand column stem from Wieser €t al. ( Nearly similar constraint violation is achieved by both methods,

Table ) and are identied here inSupplementary Data Shezglow. while constrained minimizatiorresulted in higher objective
A B C
D E F
G H |
FIGURE 2

Comparison of treatment plans obtained by superiorization and by constrained minimization. The top row (A-C) shows axial dose distribution slices
after constrained minimization, and the middle row (D-F) shows axial dose distribution slices after superiorization. The corresponding DVHs are
shown in the bottom row (G-1), with dashed lines showing the superiorization result and solid lines showing the optimization result.
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FIGURE 3
Objective Function values (A) and maximum constraint violation (B) over time for plan | shown in Figure 2. Each cross indicates a full iteration.

function values than superiorization, which can be attributed to thebjective function change of value (smaller than 0.1% in three
difference in OAR sparing. For all investigated plarHl|] consecutive iterations/sweeps).
superiorization showed a mué¢kmoothet evolution of objective Figure 4shows exemplary axial dose slices and the DVHs for
function and constraint violation than observed in the constrainethe plans generated with constraint minimization and with the SM.
minimization approach. Quantitative runtime information and evolution of objective
function and constraint violation are provided figure 5
Both techniques were able to generate a plan that eatihie
3.2 Head-and-neck case linear inequalities up to the allowed violation threshold. Considering
absolute runtime, the plan generated with the SM sadisthe
To prove the usability of superiorization in a conventionatopping criteria after 400s, with constrained minimization failing
planning setting, we applied the SM to a head-and-neck case wighconverge until the maximum number of iterations was reached.
a wider range of available objeetifunctions, i.e., including SM spent most of the time in thast sweep/iteration, where it
common DVH-based objectives. focuses on multiple objective function evaluations to generate a
Coverage of the planning targelwmes (PTVs) was enforced usinglarge initial decrease (as already observed above). It continuously
voxel inequality constraints. Agaithe results of superiorization were decreases the objective function values together with decreasing
compared to those obtained by solving the constrained minimizatiggonstraints violation, reachingceeptable constraints violation
problem. All objectives a@nhconstraints are given ifable 3 more slowly than the run with constrained minimization.
Both solvers use the same stopping criteria for the maximum However, using the same stopping criteria, the SM reached a
constraint violation (smaller than 0.01 Gy is acceptable) argplution with a much lower objective function value (approximately
one-third of the value achieved by the constrained minimization

TABLE 3 Dose inequality constraints, objective functions and penalty plan). This is also visible in the dose slices and DVH, which show
weights used for optimization and for superiorization on the head-and- more normal tissue/OAR sparing for the SM plan. All results are,
neck case.

naturally, only valid for the experiments we performed. Further
work, with varying algorithmic parameters, initialization points,

VOI Wy c(d) ()] . o
and stopping criteria, is necessary to make more general statements.
PTV70 1000  66.5Gy&<77 Gy  fsqueld; 70 Gy)
PTV63 1000 fsqaedd; 63 Gy)
PTV63 1000 fonow(d: 60 Gy, 950%) 3.3 Prostate case
Spinal Cord PRV, 100 d <50 Gy fsqaev{d; 15 Gy) .
To demonstrate how the superiorization approach translates to
Parotid L & R 100 fsqaevdd; 10 Gy) a second patient, using a different irradiation modality, we create
Optic Nerve L& R 100 fmaxovi(d; 50 Gy, 10%)  prostate IMPT plans with opposinglds on a 5mm spot grid using
Larynx 300 fraton(d: 15 Gy) both ;uperlorlzatlon and constral'ned mlnlm.lzatlon.
Figure 6shows exemplary axial dose slices and the DVHs for
Chiasm 100 fmaxovi(d; 50 Gy, 10%)

the plans generated with constraint minimization and with the SM
Cerebellum 100 fsqaevdd; 15 Gy) for the objective and constraint functions statedable 4

The superiorized plan matches the dosimetric performance of
the constrained minimization approach. Little increased dose in the
rectum and bladder are traded against a slightly more homogeneous
The functions in the right-hand side column are ideeti here irSupplementary Data Sheet - target coverage and reduced dose in the femoral heads.

Brainstem PRV 100 d <30 Gy fsqaev{d; 15 Gy)

NT/Body 100 fmear(d)
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