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Abstract

This article focuses on recent modeling studies of dopamine neuron activity and their influence on behavior. Activity of midbrain

dopamine neurons is phasically increased by stimuli that increase the animal’s reward expectation and is decreased below baseline levels

when the reward fails to occur. These characteristics resemble the reward prediction error signal of the temporal difference (TD) model,

which is a model of reinforcement learning. Computational modeling studies show that such a dopamine-like reward prediction error can

serve as a powerful teaching signal for learning with delayed reinforcement, in particular for learning of motor sequences.

Several lines of evidence suggest that dopamine is also involved in ‘cognitive’ processes that are not addressed by standard TD models. I

propose the hypothesis that dopamine neuron activity is crucial for planning processes, also referred to as ‘goal-directed behavior’, which

select actions by evaluating predictions about their motivational outcomes. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Temporal difference; Reinforcement; Neuromodulation; Sensorimotor; Prediction; Planning

1. Introduction

In a famous experiment Pavlov (1927) trained a dog with

the ringing of a bell (stimulus) that was followed by food

delivery (reinforcer). In the first trial, the animal salivated

when food was presented. After several trials, salivation

started when the bell was rung suggesting that the salivation

response elicited by the bell ring reflects anticipation of food

delivery. A large body of experimental evidence led to the

hypothesis that such Pavlovian learning is dependent upon

the degree of the unpredictability of the reinforcer (Rescorla

& Wagner, 1972; Dickinson, 1994). According to this

hypothesis, reinforcers become progressively less efficient

for behavioral adaptation as their predictability grows

during the course of learning. The difference between the

actual occurrence and the prediction of the reinforcer is

usually referred to as the ‘error’ in the reinforcer prediction.

This concept has been employed in the temporal difference

model (TD model) of Pavlovian learning (Sutton & Barto,

1990). The TD model uses a reinforcement prediction error

signal to learn a reinforcement prediction signal. The

reinforcement prediction error signal progressively

decreases when the reinforcement prediction signal

becomes similar to the desired reinforcement prediction

signal. Characteristics of the reinforcement prediction

signal are comparable to those of anticipatory responses

such as salivation in Pavlov’s experiment and may guide

approach behavior (Montague, Dayan, Person, & Sejnowski,

1995).

In Pavlov’s experiment, the salivation response of the

dog does not influence the food delivery. Consequently, the

TD model computes predictive signals but does not select

optimal actions. In contrast, instrumental learning para-

digms, such as learning to press a lever for food delivery,

demonstrate that animals are able to learn to perform actions

that optimize reinforcement. To model sensorimotor learn-

ing in such paradigms, a model component called the Actor

is taught by the reward prediction error signal of the TD

model. In such architectures, the TD model is also called the

Critic. This approach is consistent with animal learning

theory (Dickinson, 1994) and was successfully applied to

machine learning studies (Sutton & Barto, 1998).

The reinforcement prediction error signal of the TD

model remained a purely hypothetical signal until researchers

discovered that the activity of midbrain dopamine neurons

in substantia nigra and ventral tegmental area is strikingly

similar to the reward prediction error of the TD model

(Montague, Dayan, & Sejnowski, 1996; Schultz, 1998; Suri

& Schultz, 1999). Midbrain dopamine neurons project to

striatum and cortex and are characterized by rather uniform
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responses throughout the whole neuron population of

midbrain dopamine neurons. Comparison of the Actor–

Critic architecture to biological structures suggests that the

Critic may correspond to pathways from limbic cortex via

limbic striatum to dopamine neurons, whereas the Actor

may correspond to pathways from neocortex via sensori-

motor striatum to basal ganglia output nuclei.

The Actor–Critic model with the standard TD model as

the Critic mimics learning of sensorimotor associations or

habits. Since this standard Actor–Critic model is not able to

solve tasks that require planning, animal learning and

machine learning theorists extended the Critic to an internal

model approach (Balleine & Dickinson, 1998; Dickinson,

1994; Sutton & Barto, 1998). Several lines of evidence

suggest that dopamine neuron activity may be reproduced

more accurately by using such an extended TD model as the

Critic than by using the standard TD model (Suri, 2001).

This hypothesis is consistent with experimental evidence

suggesting that dopamine neuron activity may not only be

involved in sensorimotor learning but also in planning

(Lange et al., 1992).

2. Temporal difference (TD) model

The TD algorithm is popular in machine learning studies

and was proven to converge to the optimal solution (Dayan

& Sejnowski, 1994). Despite these successes, their develop-

ment was strongly influenced by studies of animal learning

(Sutton & Barto, 1990, 1998). Since animals often learn to

estimate the time of the reward occurrence in Pavlovian

learning paradigms, the TD model uses a time estimation

mechanism (Sutton & Barto, 1990). This time estimation

mechanism is implemented using a temporal stimulus

representation, which consists of a large number of signals

xmðtÞ for each stimulus. Each of these signals xmðtÞ has a

value of one for one time point and is zero for all other

times. Exactly one signal of the temporal stimulus

representation xmðtÞ peaks for each time step of the period

between the stimulus and the trial end (Fig. 1(A)). Similar

hypothetical temporal stimulus representations have also

been referred to as ‘complete serial compound stimulus’

(Sutton & Barto, 1990) or ‘spectral timing mechanism’

(Brown, Bullock, & Grossberg, 1999). A temporal stimulus

representation is necessary to reproduce the depression of

dopamine activity below baseline levels at the time when an

expected reward is omitted, since this reflects a timing

mechanism (Montague et al., 1996; Schultz, 1998). Its

physiological correlate may include metabotropic glutamate

receptor-mediated Ca2 þ spikes occurring with different

delays in striosomal cells of the striatum (Brown et al.,

1999). The shape of these signals is not important for the

algorithm, but the number of signals has to be sufficiently

large to cover the duration of the intratrial interval

(m ¼ 1; 2;…; 50 for 5 s interstimulus interval with time

steps of 100 ms). The reward prediction P(t ) is computed as

the weighted sum over the temporal stimulus representation

signals xmðtÞ with

PðtÞ ¼
X50

m¼1

VmðtÞxmðtÞ:

The algorithm is designed to learn a ‘desired’ prediction

signal that increases successively from one time step to the

next by a factor 1/g until the reward l(t ) occurs and

decreases to the baseline value of zero after the reward

Fig. 1. (A) Temporal stimulus representation. A stimulus uðtÞ is represented

as a signal that is one during presentation of this stimulus and zero

otherwise. The temporal stimulus representation of this stimulus u(t )

consists of a series of phasic signals x1ðtÞ; x2ðtÞ; x3ðtÞ;… that cover trial

duration (only three components are shown). Each component of this

temporal representation peaks with amplitude one and is zero otherwise.

(B) Scheme of TD model for one stimulus followed by a reward (scheme

adapted from Suri & Schultz, 2001). For the stimulus uðtÞ the temporal

stimulus representation x1ðtÞ; x2ðtÞ; x3ðtÞ;… is computed. Each component

xmðtÞ is multiplied with an adaptive weight VmðtÞ (filled dots). The reward

prediction PðtÞ is the sum of the weighted representation components of all

stimuli. The difference operator D takes TDs from this prediction signal

(discounted with factor g ). The reward prediction error r(t ) reports

deviations to the desired prediction signals. This error is minimized by

incrementally adapting the elements of the weights VmðtÞ proportionally to

the prediction error signal r(t ) and to the learning rate b. (C) Signals of the

TD model for a stimulus followed by a reward. Left Before learning, all

weights Vm initialized with the value zero. As the reward prediction signal

(line 3) is zero, the reward prediction error (line 4) is increased to the value

of one when the reward is presented. Right After learning (20 stimulus–

reward pairings). The reward prediction signal already increases when the

stimulus is presented (line 1) and then progressively increases until the

occurrence of the reward (line 2). The slope of the progressive increase is

determined by the discount factor g. Since its value is set to 0.99, the reward

prediction increases with a rate of 1% per 100 ms. The reward prediction

error is already phasically increased when the stimulus occurs and at

baseline levels when the reward is presented.
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presentation. The prediction error signal is computed with

rðtÞ ¼ lðtÞ þ gPðtÞ2 Pðt 2 1Þ

and is zero as long as the prediction signal is equal to the

desired prediction signal and nonzero otherwise. Since one

time step corresponds to 100 ms, t 2 1 is a short hand for

t 2 100 ms. The value of a discount factor g is set between

zero and one (Table 1).

The adaptive weights VmðtÞ are initialized with the value

zero and adapted according to the learning rule

VmðtÞ ¼ Vmðt 2 1Þ þ brðtÞxmðt 2 1Þ;

with a small learning rate constant b (Table 1). The TD

model can be represented with a neuron-like element

whose weights VmðtÞ correspond to synaptic conductances

(Fig. 1(B)).

When the stimulus is followed by the reward for the first

time, the reward prediction is zero and the reward prediction

error is phasically increased at the time of the reward (Fig.

1(C)). After repeated presentations of the stimulus followed

by the reward, the reward prediction increases before the

anticipated reward. Characteristics of this reward prediction

signal resemble those of reward anticipatory behaviors of

animals (Sutton & Barto, 1990). The rate of this gradual

increase is determined by the constant g, which is referred to

as the temporal discount factor. We use the value g ¼ 0:99

per 100 ms, which leads to an increase in the prediction

signal of 1% for each 100 ms. The reward prediction error

signal is at the time of the stimulus equal to the change in the

reward prediction. Since dopamine responses decrease

proportionally to the learned duration of the interval

between the stimulus and the reward, dopamine neuron

activity was used to estimate the value of the discount factor

(Suri & Schultz, 1999). At the time of the reward, the reward

prediction error is zero because the change in the prediction

signal cancels out the reward signal.

3. TD error resembles dopamine neuron activity

The prediction error signal of the TD model is strikingly

similar to activities of midbrain dopamine neurons

(Montague et al., 1996; Schultz, 1998; Suri & Schultz,

1999). The prediction error signal is phasically increased by

unpredicted reward and by the earliest reward-predicting

stimulus, and it is negative when a predicted reward is

omitted (Fig. 2, left). This signal closely resembles

dopamine responses (Fig. 2, right). The depression in

dopamine activity below baseline levels at the time of the

predicted but omitted reward reflects a central timing

mechanism because no stimulus is present at the time of the

omitted reward.

Table 1

List of symbols

Symbol Comments

Time t Discretized in 100 ms time steps

Reward prediction error r(t ) Resembles dopamine neuron activity

Reward l(t ) Signal is one when reward is present and zero when reward is absent

Temporal discount factor g ¼ 0.99/100 ms estimated for dopamine neuron activity

Prediction P(t ) Resembles anticipatory behavior and anticipatory neural activity in cortex and striatum

Adaptive weights Vm(t ) Long-term memory storage

Component xm(t ) Component of temporal stimulus representation

Learning rate b Small constant

Stimulus u(t ) Signal is one when stimulus is present and zero when stimulus is absent

Fig. 2. Prediction error signal of the TD model (left) similar to dopamine

neuron activity (right) (figure adapted from Suri & Schultz, 1998; discount

factor g ¼ 0:98). If a neutral stimulus A is paired with reward, prediction

error signal and dopamine activity respond to the reward (line 1) (activities

reconstructed from Ljungberg et al., 1992; Mirenowicz & Schultz, 1994).

After repeated pairings, the prediction error signal and dopamine activity

are already increased by stimulus A and on baseline levels at the time of the

reward (line 2). After training with an additional stimulus B, which

precedes stimulus A, prediction error signal and dopamine activity are

increased by stimulus B and neither affected by stimulus A nor by the

reward (line 3). If the stimulus A is conditioned to a reward but is

occasionally presented without reward, the prediction error signal and

dopamine activity are decreased below baseline levels at the predicted time

of reward (line 4). (Activities lines 2–4 reconstructed from Schultz,

Apicella, & Ljungberg, 1993).
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The reward prediction error signal of the TD model by

Suri & Schultz (1999) reproduces dopamine neuron activity

in the situations: (1) upon presentation of unpredicted

rewards, (2) before, during, and after learning that a

stimulus precedes a reward, (3) when two stimuli precede

a reward with fixed time intervals, (4) when the interval

between the two stimuli are varied, (5) in the case of

unexpectedly omitted reward, (6) delayed reward, (7)

reward earlier than expected (Hollerman & Schultz,

1998), (8) in the case of unexpectedly omitted reward-

predictive stimulus, (9) in the case of a novel, physically

salient stimulus that has never been associated with reward

(see allocation of attention, below), (10) and for the

blocking paradigm (Waelti, Dickinson, & Schultz., 2001).

To reach this close correspondence, three constants of the

TD model were tuned to characteristics of dopamine neuron

activity (learning rate, decay of eligibility trace, and

temporal discount factor), some weights were initialized

with positive values to achieve (9), and some ad hoc

changes of the TD algorithm were introduced to reproduce

(7) (see Discussion).

4. Actor–Critic architecture

To learn the actions that optimize the reward, the reward

prediction error signal of the TD model teaches sensori-

motor associations to the Actor (Fig. 3). A major com-

putational benefit of learning with the dopamine-like reward

prediction error signal as compared to learning with the

reward signal is that the reward prediction error signal

reports earlier about the task outcome than the reward

signal. Indeed, machine learning studies demonstrate that

TD algorithms serve as powerful approaches to solve

reinforcement learning problems with delayed reinforce-

ment (Barto, Sutton, & Anderson, 1983; Sutton & Barto,

1998; Tesauro, 1994). Examples for tasks with delayed

rewards are board games such as backgammon. In such

games the TD reward prediction signal codes for the chance

to win and serves as the value of the board situation. A

nonzero reward prediction error codes for surprising

changes in the value of the board situation. If a player

would learn only at the end of the game, corresponding to

reinforcement learning with unconditional reinforcement, it

would be unclear which sensorimotor associations between

board situation and action should be adapted. However, if

learning uses a TD prediction error signal, prediction errors

of the estimated outcome can be used for learning: learning

occurs during the game whenever the predicted outcome

changes. Indeed, TD learning studies demonstrate that this

strategy can be used to learn backgammon (Tesauro, 1994).

For such machine learning applications, an Actor network is

not necessary since the number of legal moves for each

board situation is small. Instead, the algorithm computes the

TD reward predictions for the board situations that would

occur after all legal half-moves and executes the half-move

that leads to the situation with the highest reward prediction.

However, for applications with a large numbers of actions

(or half-moves, respectively), it is advantageous to use an

Actor network that is taught by the prediction error signal of

the TD Critic (Barto et al., 1983). Simulations with the latter

variant show that dopamine-like prediction error signals can

serve as powerful teaching signals for acquiring behavioral

tasks (Friston, Tononi, Reeke, Sporns, & Edelman, 1994;

Montague et al., 1996; Nakahara, Doya, & Hikosaka, 2001;

Suri & Schultz, 1998).

5. Learning of sequences

Disorders of dopamine transmission typically impair

serially ordered movements in human patients (Phillips,

Bradshaw, Iansek, & Chiu, 1993). Since TD learning with

Actor–Critic architectures is particularly powerful for

learning action sequences (Sutton & Barto, 1998), this

finding is consistent with the hypothesis that dopamine

neuron activity serves as a predictive teaching signal in a

biological architecture resembling the Actor–Critic archi-

tecture. To demonstrate the capability of Actor–Critic

architectures to learn sequences with a dopamine-like

reinforcement signal, an Actor–Critic model is trained to

learn a sequence of seven actions. Since only one action out

of seven actions is correct, only one out of 77 ¼ 823; 543

sequences is rewarded. The Actor consists of seven neuron-

like elements. After each correct action, a stimulus is

presented and the Actor–Critic model has to select the

next correct action. The model is trained in seven phases,

with 100 trials each phase. Training starts with the

stimulus–action pair closest to the reward and then the

sequence length is increased in every training phase by one

Fig. 3. Model architecture consisting of the Actor (left) and the Critic

(right). The dopamine-like reward prediction error signal serves to modify

the synaptic weights of the Critic itself and the synaptic weights of the

Actor (heavy dots). Actor (left side). The Actor learns with the prediction

error signal to associate stimuli with actions. Every Actor neuron (large

circles) represents a specific action. Critic (right side). The dopamine-like

reward prediction error is computed by the TD model (shown in Fig. 1) and

serves as a teaching signal for the Actor.
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stimulus–action pair. Correct actions are followed by the

presentation of the sequence learned in the previous phase.

Incorrect actions terminate the trial.

Learning with the TD prediction error signal is compared

to learning with the reward signal (learning rate b ¼ 0 in

TD Critic). With the adaptive prediction error signal, the

sequence of seven actions is quickly learned (Fig. 4, top). In

contrast, with the reward signal serving as the reinforcement

signal only the first three actions of the sequence are learned

(Fig. 4, bottom), demonstrating the advantage of learning

with a dopamine-like reinforcement signal (Suri & Schultz,

1998).

If the reward signal serves as the reinforcement signal,

learning does not occur without reward, and therefore once

learned actions are repeated even if they are not rewarded

any longer. With such an unconditional reinforcement

signal, there is no mechanism for unlearning previously

learned actions when the reward is omitted. In contrast, if a

dopamine-like reward prediction error is used for learning,

the probability of actions that have once been rewarded but

are not rewarded any longer progressively decreases. This

extinction of a previously learned action happens due to the

depression of dopamine neuron activity at the time of the

omitted reward (Suri & Schultz, 1999). This suggests that

decreased adaptation of dopamine activity could lead to

perseveration. Indeed, perseveration is a cognitive symptom

of Parkinsonian patients (Lees & Smith, 1983). In addition,

the influence of the reward prediction error on the Actor is

investigated by setting this signal to a constant value below

zero. This leads to extinction of previously learned actions,

which resembles the extinction of previously learned lever-

pressing in animals after being systemically injected with

the dopamine receptor-blocking agent pimozide (Mason,

Beninger, Fibiger, & Phillips, 1980) and may mimic the

bradykinesia (slow movements) of Parkinsonian patients

(Phillips et al., 1993).

6. Biological correlates of the Actor–Critic model

Several characteristics of Actor–Critic architecture (see

Fig. 3) resemble those of anatomical circuits (Fig. 5). (1)

The neural activity of subgroups of neurons in the striatum

resemble the reward prediction signal of the TD model (see

Section 7). The reward prediction may be learned in the

limbic striatum, which receives projections from dopamine

neurons. (2) Convergence of information from extended

representations to compute the reward prediction error is

advantageous for the TD model. Convergence from

extended sensory representations to a smaller number of

actions is also typical for Actor networks (Barto et al.,

1983). Indeed, there is a strong convergence from striatum

to basal ganglia output nuclei. (3) The Critic component

emits the reward prediction error to all the Actor units and to

its own prediction unit, similar to the divergent projection

from midbrain dopamine neurons to a several hundredfold

higher number of striatal neurons (Schultz, 1998). (4)

Dopamine neuron activity seems to induce long-term

changes in corticostriatal transmission (Reynolds, Hyland,

& Wickens, 2001: Schultz, 1998). Dopamine neurotrans-

mission would be in the anatomical position to decisively

influence corticostriatal transmission, as the dendritic spines

of striatal medium spiny neurons are commonly contacted

by cortical and dopamine afferents (Smith & Bolam, 1990).

Such dopamine-dependent plasticity could provide a

Fig. 4. Learning curves for training a sequence of seven stimulus–action

associations (figure adapted from Suri & Schultz, 1998). Every 100 trials a

novel additional stimulus–action pair is added to the sequence. Mean

proportions of correct trials for learning 10 sequences are presented. (Top)

Training with the prediction error signal results in a minimum number of

incorrect trials. (Bottom) When trained with unconditional reinforcement

signal only three stimulus - action associations are learned.

Fig. 5. Anatomical circuits that link the striatum with midbrain dopamine

neurons (figure adapted from Smith & Bolam, 1990). The limbic striatum

(presumably striosomes) may gate the flow of information through the

sensorimotor striatum (presumably matrisomes) via midbrain dopamine

neurons. These circuits closely resemble the Actor–Critic architecture (Fig.

3). Stimuli may be represented in cortical areas, the Actor may correspond

to the sensorimotor striatum and motor output structures, and the Critic may

correspond to the limbic striatum and dopamine neurons. The prediction

signal of the TD model resembles the activity of a subset of neurons in the

limbic striatum and the prediction error signal resembles dopamine neuron

activity.
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biological basis for the postulated learning mechanisms in

the Actor–Critic architecture.

Dopamine neurons not only project to the striatum but

also to most cortical areas and may play in the cortex similar

roles as in the striatum. According to this view, dopamine-

dependent learning of sensorimotor associations as well as

dopamine-dependent learning of prediction activities may

also occur in the cortex.

7. Prediction activity in striatum and cortex

Anatomical considerations suggest that the reward

prediction signal of the TD model may correspond to

anticipatory firing rates of a subset of striatal and cortical

neurons. How can we distinguish neural activity that serves

as a reward prediction signal from other sustained activity?

A crucial feature of the reward prediction signal in the TD

model is that it is an anticipatory signal that may correspond

to anticipatory neural activity. Anticipatory neural activity

is related to an upcoming event that is prerepresented as a

result of a retrieval action of antedating events, in contrast to

activity reflecting memorized features of a previously

experienced event. Therefore, anticipatory activity precedes

a future event irrespective of the physical features of the

antedating events that make this future event predictable.

Tonic delay period activity of several hundred milliseconds

duration that anticipates stimuli, rewards or the animal’s

own actions was termed ‘anticipatory’, ‘preparatory’, or

‘predictive’ and has been reported in the striatum,

supplementary motor area, prefrontal cortex, orbitofrontal

cortex, premotor cortex, and primary motor cortex (Schultz,

2000; Suri & Schultz, 2001). The characteristics of reward-

anticipatory neural activity in frontal cortices resemble

those in the striatum (Hassani, Cromwell, & Schultz, 2001).

We compare reward prediction signals simulated with

the TD model with reward-specific anticipatory activity

recorded in orbitofrontal cortex (Fig. 6). Before recording

started, monkeys had been trained in a delayed response task

with instruction stimuli A and B followed by reward X and

instruction stimulus C followed by reward Y (Schultz,

Tremblay, & Hollerman, 2000; Tremblay & Schultz, 1999,

2000). The TD model is trained with the corresponding pairs

of events. In trials without occurrence of reward Y,

prediction of reward Y is not affected (Fig. 6(A), top, left

and middle). In trials with occurrence of reward Y, this

prediction signal is activated when stimulus C was

presented and then progressively increased until reward Y

(Fig. 6(A), top, right), because reward Y is completely

predicted by stimulus C. Prediction of reward Y is

comparable to reward-specific activity of a subset of

orbitofrontal neurons that appears to anticipate reward Y

but not reward X (Fig. 6(A), bottom).

The model is trained with the same pairs of events, but

the value of 0.95 per 100 ms was used for the temporal

discount factor g. Therefore, after learning prediction

signals increased more rapidly according to a rate of about

5% for each 100 ms (Fig. 6(B), top). Prediction of reward X

was only slightly increased at the onset of stimuli A and B

and then increased rapidly until reward X (top, left and

middle), because reward X was completely predicted by the

stimuli A and B. Prediction of reward X was not affected in

trials without reward X (top, right side). Prediction of

reward X was comparable to the activity of a subset of

orbitofrontal neurons with activity that appears to anticipate

reward X (Fig. 6(B), bottom).

Fig. 6. Comparable time courses of TD prediction signals and orbitofrontal activities after learning pairings between different stimuli and rewards (figure

adapted from Suri, 2001). Simulated stimuli are compared with the instruction stimuli in a delayed response task. (Histograms reconstructed from Schultz et al.,

2000; Tremblay & Schultz, 1999, 2000) (A) Prediction of reward Y. In trials without reward Y, all signals reflecting prediction of reward Y were zero (top, left

and middle). When stimulus C preceded reward Y, the signal reflecting prediction of reward Y was activated when stimulus C was presented and then

progressively increased until reward Y (top, right side; discount factor g ¼ 0:99). Prediction of reward Y was comparable to the activity of a subset of

orbitofrontal neurons that appear to anticipate reward Y but not reward X (bottom). (In the histogram at top, right, neural activity before the task was larger than

after the task, because the previous task predicted already reward Y.) (B) Prediction of reward X was learned with a discount factor g ¼ 0:95 per 100 ms. This

signal slightly increased when stimuli A or B were presented and then increased rapidly until reward X (top, left and middle). This signal was zero in trials

without reward X (top, right). The prediction of reward X was comparable to the activity of a subset of orbitofrontal neurons that appear to anticipate reward X

but not reward Y (bottom). 9% of orbitofrontal neurons seem to reflect reward anticipation, as they are active during delay periods before specific rewards as

shown in (A) and (B) (Schultz et al., 2000; Tremblay & Schultz, 1999, 2000).
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Note that the temporal discount factor g that correctly

reproduces dopamine neuron activity is usually 0.98–0.99,

corresponding to 1–2% increase in the prediction signal per

100 ms, and therefore 1–2% decrease of the dopamine

response amplitude for each 100 ms between stimulus and

reward (Suri & Schultz, 1999). For anticipatory neural

activity, the correct value of the temporal discount factor g

was between 0.99 (Fig. 6(A)) and 0.95 (Fig. 6(B)), as the

steepness of the progressive increase in the anticipatory

neural activity varied. I suggest that the values of the

temporal discount factors vary because predictions are

computed over varying time scales, which can be crucial for

some tasks (Precup & Sutton, 1998).

An alternative interpretation of neural activities as those

proposed here is that these activities may code for sustained

memory activity. However, this alternative explanation does

not explain why these activities progressively increase

before and decrease after the reward, as memory activity

would be expected to progressively decrease after the

stimulus presentation. Furthermore, this alternative expla-

nation does not explain the occurrence of sustained activity

following the stimuli A and B but not following C (Fig.

6(B)), although all three stimuli A, B, and C were physically

different stimuli.

For these reasons, it was suggested that the neural

activities shown in Fig. 6(A) and (B) anticipate specific

rewards as do the simulated prediction signals (Schultz et al.,

2000; Tremblay & Schultz, 1999, 2000). Although such

reward-specific prediction signals can be used to compute a

dopamine-like prediction error (Suri & Schultz, 2001), from

a computational viewpoint it seems unnecessary that they

are reward-specific. Why are anticipatory neural activities

in cortex and striatum specific for rewards and do they

influence dopamine neuron activity? In the remainder of this

article I describe more advanced TD algorithms that indeed

compute event-specific prediction signals and argue that

these computationally more advanced TD algorithms may

reproduce dopamine neuron activity more accurately than

the standard TD model.

8. Internal model approaches

The standard TD algorithm (Fig. 1) can be used to learn

to play board games by computing for each situation a

prediction of the chance to win. This win prediction is the

value of the board situation. The prediction error can be

used to teach the optimal moves to an Actor network (Fig.

3). However, this approach is limited to well-trained board

situations. To achieve world-class performance in board

games like backgammon (Tesauro, 1994), it is necessary

to calculate several half-moves ahead and to evaluate the

values of hypothetical future board situations to select

the best half-move. This can be achieved by extending the

standard TD algorithm (Section 2) to an internal model

approach. Such an internal model approach uses a

computational unit that is able to simulate future board

situations. This computational unit is also called internal

model, world model (Sutton & Barto, 1981), forward model

(Garcia, Prett, & Morari, 1989), or predictor and is defined

as an algorithm that is able to learn to emulate the real

experience. Pavlovian responses in animal experiments can

be used to determine whether an animal has access to an

internal model in a specific situation. An animal uses an

internal model if it forms novel associative chains in the

sensory preconditioning paradigm1 (Sutton & Barto, 1981).

Since the internal model can simulate experience, it can

replace the Actor’s real experience. Actor–Critic models

that use internal model approaches for the Critic simulate

future moves and use hypothetical future outcomes to select

the best move. To make predictions, internal models

typically simulate the evolution of the game within much

shorter time periods than the real evolution of the game.

Since they can simulate a sequence of future moves, internal

model approaches form novel associative chains and are

able to select the best move even in novel situations. This

capability is usually called planning in machine learning

studies (Sutton & Barto, 1998, see Dyna architecture) and

goal-directed behavior or goal-directed instrumental action

in animal learning studies (Balleine & Dickinson, 1998).

Planning capabilities were demonstrated in many animal

experiments (Balleine & Dickinson, 1998; Morris, Garrud,

Rawlins, & O’Keefe, 1982; Thistlethwaite, 1951).2

For most motor actions of animals, it is not known

whether they are achieved by planning or by sensorimotor

learning, as the results of necessary control experiments are

not known. When a monkey learns to press a lever it usually

does not simply learn a pattern of muscle activation, since

1 The sensory preconditioning paradigm is a simple experiment that

demonstrates latent learning and formation of novel associative chains

(Mackintosh 1974; Dickinson 1980). This paradigm is composed of three

phases: In the first phase, a neutral stimulus A precedes a neutral stimulus

B; in the second phase, stimulus B precedes a reinforcer; and in the third

phase, stimulus A is presented alone. Animals show an acquired behavioral

response to stimulus A in the third phase that resembles the response to the

reinforcer. The similarity between this conditioned response to stimulus A

and the unconditioned response to the reinforcer suggests that animals

anticipate the occurrence of the reinforcer. This conclusion implies that

animals internally form the novel associative chain “stimulus A is followed

by stimulus B and stimulus B is followed by the reinforcer”.
2 Planning was demonstrated for rats in T-maze experiments

(Thistlethwaite, 1951). This experiment consists of three phases: In the

exploration phase, the rat is repeatedly placed in the start box where it can

go left or right without seeing the two goal boxes at the end of the maze.

When the rat turns to the left it reaches the red goal box, and if it turns to the

right it reaches the green goal box. No rewards are presented in this

exploration phase. In the rewarded phase, the rat is fed in the green goal

box. In the test phase, the rat is returned to the start of the T-maze. In the

first trial of to the test phase, the majority of the rats turn right. Note that

neither the act of turning right nor the act of turning left is ever temporally

associated with reward. It was concluded that the rat forms a novel

associative chain between its own act, the color of the box, and the reward.

Moreover, the rat selects its act in relation to the outcome predicted by this

novel associative chain. Thus, the rat demonstrates in this first test phase

trial its capability for planning.
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even after changes in the monkey’s position its hand does

not miss the lever. This indicates that either (1) the monkey

learns a sensorimotor association between a representation

of the leaver and the press of its hand, or (2) the monkey

presses the lever because it associates the pressed lever with

reward delivery by using an internal model. Only sophis-

ticated experiments that change the motivational value

associated to the pressed lever without requiring the animal

to press the lever can distinguish between both possibilities

(Balleine & Dickinson, 1998; Suri, Bargas, & Arbib, 2001).

Does dopamine neuron activity reflect the processing of

the standard TD model or rather that of a TD model

extended to an internal model approach? To answer this

question, dopamine neuron activity would have to be

recorded in situations that test formation of novel associ-

ative chains, as does the sensory preconditioning paradigm,

to investigate if a change in the motivational value of the

outcome of a situation influences dopamine neuron activity.

Since I am not aware of such a study, I rely on indirect

evidence that supports that dopamine neuron activity may

reflect the processing of an internal model. First, as striatal

dopamine concentration is influenced by the formation of

novel associative chains in the sensory preconditioning

experiment (Young, Ahier, Upton, Joseph, & Gray, 1998),

dopamine concentration reflects the use of an internal

model, suggesting that dopamine neuron activity may be the

output of an internal model. Second, since Parkinsonian

patients seem to be impaired in planning tasks, dopamine

may be involved in planning (Lange et al., 1992; Wallesch

et al., 1990). Third, reward-specific and event-specific

anticipatory neural activities in cortex and striatum

represent the outcome of their actions already at the time

of the behavior towards the outcome, which is typical for

internal model approaches and not required for the standard

TD model (Hassani et al., 2001; Schultz, 2000). For these

reasons, I propose to model dopamine neuron activity and

anticipatory neural activity in striatum and cortex with an

internal model approach (Suri, 2001) and to use the

dopamine-like signal of this internal model to select the

correct actions in the Actor network (Suri et al., 2001). This

approach implies that the rapid actions of dopamine on

target neurons (Gonon, 1997), presumably in striatal

matrisomes, select correct actions in situations that require

planning (Suri et al., 2001). According to this model,

preparatory activity for reward-promising actions is

enhanced by increases in dopamine neuron activity.

Activation of dopamine neurons occurring slightly before

a saccadic eye movement to a visual stimulus, presumably

due to neural activity anticipating the retinal consequences

of the intended saccade (Duhamel, Colby, & Goldberg,

1992), may help to trigger intentional saccades. Using such

planning processes, dopamine may attribute salience to

reward-related stimuli and thereby trigger the animal’s

visual and internal attention to such targets (Redgrave,

Prescott, & Gurney, 1999; Salamone, Cousins, & Snyder,

1997).

The physiological correlate of the internal model that

seems to influence striatal dopamine concentration is not

completely known. Recently, it has been speculated that

certain cerebellar functions that can be mimicked with

internal model approaches influence dopamine neuron

activity (Doya, 1999). However, the term ‘internal model’

in the context of the cerebellum is defined differently than in

the current paper (Kawato & Gomi, 1992). Whereas

cerebellar pathways seem to compute an estimate of the

current sensory experience, the internal model described

here computes an estimate of future sensory experience by

emulating the animal’s environment. Since the internal

model approach described here is an extension of the

standard TD model, this internal model is likely to

correspond to similar anatomical circuits as the Critic

(Figs. 3 and 5). Cortical areas may be involved in learning

associations between contingent events and in the formation

of novel associative chains (Balleine & Dickinson, 1998).

Event-specific anticipatory activities in cortex and striatum

may correspond to prediction signals of the internal model.

It is unclear how these structures may represent sensory

events on a compressed time scale, which is a salient feature

of internal models, but representations of such time

compression occur in hippocampal place cells of mice

running in known environments (Skaggs, McNaughton,

Wilson, & Barnes, 1996). Within each theta cycle of about

100 ms duration, firing of place cell neurons reflects a

tenfold temporal compression of the sensory experience.

Therefore, if the spike timing is evaluated with respect to the

local theta cycle, the reconstructed apparent path oscillates

during each theta cycle with an amplitude of about 0.1 m

around the physical path (Tsodyks, Skaggs, Sejnowski, &

McNaughton, 1996). I speculate that in similar manner

anticipatory neural activities in cortex and striatum may

code for time compression mechanisms of internal models.

9. Conclusions

The finding that the TD model reproduces dopamine

neuron activity in a variety of task situations is a great

success for our understanding of brain functions in

computational terms. Dopamine neuron activity appears to

code a reward prediction error that is derived from reward

prediction activities in the striatum and cortex. The

comparison with Actor–Critic architectures suggest that

dopamine neuron activity serves as an internal reward

signal, or teaching signal, that helps to acquire motor habits

in tasks with delayed reinforcement. Such a signal is crucial

to learn movement sequences, since they are typically

rewarded at the end of the sequence. Although Actor–Critc

models that use the standard TD model as the Critic are

successful for sensorimotor learning of habits, several lines

of evidence suggest that the Critic should be extended to an

internal model approach to reproduce dopamine neuron

activity in tasks that require planning (Suri, 2001; Suri et al.,
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2001). Internal model approaches are computationally

powerful (Garcia et al., 1989; Tesauro, 1994), can be

effectively combined with TD algorithms (Sutton & Barto,

1998; see Dyna architecture), and their processing some-

what resembles aspects of ‘rehearsal’, ‘dreaming’, or

‘imagination’. The use of internal models by animals can

be tested with the sensory preconditioning paradigm,

whereas planning can be tested with the paradigm explained

in the section above. The use of single cell recordings for

both paradigms would reveal which neurons are involved in

these cognitive processes. I suggest the novel hypothesis

that the spike times of anticipatory neural activities in cortex

and striatum relative to local rhythms may underlie the

processing of internal models. This hypothesis can be tested

using methods described by Skaggs et al. (1996) in the

sensory preconditioning paradigm.

Since TD models only reproduce the phasic dopamine

activities that are accessible in neuron recording experi-

ments, it cannot be assumed that these models reproduce

slow changes in the base line firing rates of dopamine

neurons or in the dopamine concentrations in target areas.

Furthermore, striatal dopamine concentration does not seem

to be closely correlated with dopamine neuron activity as

dopamine concentration is often enhanced in response to

aversive stimuli (Horvitz, 2000; Young et al., 1998) whereas

dopamine neuron activity is usually depressed (Mirenowicz

& Schultz, 1994). Nevertheless, TD models may improve

our understanding of addiction. According to the proposed

Actor–Critic architecture, phasic increases in dopamine

neuron activity reinforce previous behaviors and increase

the probability that the reinforced behavior will be repeated

in the same situation. Electrical self-stimulation and

addictive drugs seem to elevate dopamine concentrations

at forebrain dopamine terminals (Robinson & Berridge,

1993; White & Milner, 1992; Wise, 1996) and indeed lead

to addictive behavior. In further agreement with the TD

model, stimuli predicting the administration of heroin,

cocaine (Kiyatkin, 1995), or food increase dopamine levels

(Bassareo & Chiara, 1997). Note that TD Actor–Critic

architectures do not imply that the subject experiences

subjectively pleasurable feelings when dopamine neuron

activity is increased but rather an urge to repeat previously

reinforced habits. It has been hypothesized that separate

systems are responsible for wanting (the urge to repeat

habits) as compared to liking (pleasurable feelings)

(Robinson & Berridge, 1993).

In addition to the responses to rewards and to reward

prediction stimuli described earlier, dopamine neurons

biphasically respond to physically salient stimuli that are

not necessarily associated to reward. These responses are

characterized as phasic increases of firing rates (about

100 ms duration) that are immediately followed by a

depression in firing below baseline levels (100–300 ms

duration) as if they coded for a brief reward expectation that

is frustrated after 100 ms (Ljungberg, Apicella, & Schultz,

1992). These responses are consistent with the TD model

because their occurrence and their habituation character-

istics are consistent with those modeled by the standard TD

model if certain adaptive weights are initialized with

positive values (Kakade & Dayan, 2000; Suri & Schultz,

1999, 2002 (current issue of Neural Networks)). Since

positive initial weights serve as a novelty bonus in TD

algorithms and are used to stimulate exploration (Sutton &

Barto, 1998), dopamine novelty responses may influence

saccadic eye movements and other orienting responses to

salient stimuli by rapid effects of dopamine neuron activity

on target neurons (Gonon, 1997; Suri et al., 2001). There

seems to be an interesting exception to the otherwise close

correspondence between the reward prediction error signal

of the standard TD model and the reported responses of

midbrain dopamine neurons. It was reported for one

dopamine neuron that its activity was not consistent with

that predicted by the TD model if the reward was delivered

earlier than usual (Hollerman & Schultz, 1998). The early

reward delivery may reset internal states, similar to attention

shifts that happen to us when a salient and surprising event

interrupts our concentration. Although the TD model was

adapted to correctly model this situation (Suri & Schultz,

1999), this extension requires some ad hoc assumptions that

are hard to justify from a mathematical viewpoint. A

mathematically convincing approach would probably

require computational methods that resemble the updating

of the states of the internal model by a Kalman filter

approach (Dayan & Kakade, 2000).

10. Uncited reference

Kakade and Dayan, 2001.
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