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Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich,

Switzerland

(*Electronic mail: phil@igc.phys.chem.ethz.ch)

(Dated: 8 November 2023)

The Adaptive Solvent-Scaling (AdSoS) scheme [J. Chem. Phys. 155 (2021) 094107] is an

adaptive-resolution approach for performing simulations of a solute embedded in a fine-

grained (FG) solvent region surrounded by a coarse-grained (CG) solvent region, with a

continuous FG↔CG switching of the solvent resolution across a buffer layer. Instead of

relying on a distinct CG solvent model, AdSoS is based on CG models defined by a dimen-

sional scaling of the FG solvent by a factor s, accompanied by the s-dependent modulation

of its mass and interaction parameters. The latter changes are designed to achieve an iso-

morphism between the dynamics of the FG and CG models, and to preserve the dispersive

and dielectric solvation properties of the solvent with respect to a solute at FG resolution.

As a result, the AdSoS scheme minimizes the thermodynamic mismatch between the dif-

ferent regions of the adaptive-resolution system. The present article generalizes the scheme

initially introduced for a pure atomic liquid in slab geometry to more practically relevant

situations involving: (i) a molecular dipolar solvent (e.g. water); (ii) a radial geometry (i.e.

spherical rather than planar layers); and (iii) the inclusion of a solute (e.g. water molecule,

dipeptide, ion or ion pair).
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I. INTRODUCTION

Classical molecular dynamics (MD) simulations carried out at fully atomistic resolution are

computationally intensive, resulting in limitations in terms of accessible system sizes and time

scales. One approach to reduce the computational cost relies on the use of coarse-grained (CG)

models,1–13 where the resolution of the solute and/or solvent is reduced from individual atoms to

beads representative of small atom groups. An early example of this approach is the use of united-

atoms to represent the aliphatic CHn groups as a single interaction site.14 United-atoms are often

employed in models that are otherwise at fully atomistic resolution, and the word fine-grained

(FG) will be used here to denote models at (united-)atom resolution.

Numerous multi-scaling methods1,2,11,15–19 have also been developed to combine FG and CG

representations within the same calculation, with the goal of striking a favorable balance between

the higher accuracy of the FG resolution and the higher efficiency of the CG resolution. Among

these, mixed- or adaptive-resolution approaches are based on FG and CG regions coexisting spa-

tially in the same system. Considering a single solute in a given solvent (e.g. hydrated macro-

molecule or lipid bilayer), a particularly interesting combination of this type relies on embedding

the FG solute in a FG solvent region itself surrounded by a CG solvent region, the two regions

being separated by a buffer layer permitting FG↔CG mixing or interconversion.16,20–30 On the

one hand, this combination provides a much more accurate FG treatment of short-range solvation

compared to a direct solvation of the FG solute in the CG solvent20,24,25,31–41. On the other hand,

it is expected to retain most of the efficiency gain associated with a CG resolution of the solvent

considering that solvent-solvent interactions in the bulk are typically determinant in terms of com-

putational costs. Another key advantage of this setup is that it only requires the design of a CG

model for the solvent, which is generally much easier than the corresponding task for the solute.

In practice, the computational gain will depend on the number NG of FG molecules mapped to a

single CG solvent bead (level of graining), and on the number NS of interaction sites associated

with the CG bead. In the context of CG water models4,42–54, typical values of NG and NS are in

the ranges 1-10 and 1-3, respectively.

In the mixed-resolution variant, the FG and CG molecules are allowed to mix in the buffer

layer.20–22,24–26 The extent of mixing is typically controlled by means of attractive and/or repulsive

restraints relative to the solute. In the adaptive-resolution variant,27–30 the FG and CG particles

interconvert into each other as they cross the buffer layer. When NG is one, this can be achieved by
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morphing, i.e. interpolating between the interaction potentials or forces of the FG and CG models

using a coupling variable that varies continuously with the position across the buffer layer. When

NG > 1, the transformation maps unequal numbers of molecules, and may be combined with a

bundling scheme that associates clusters of nearby FG molecules to a single CG bead.23,30,55–58

The most popular adaptive-resolution schemes relying on morphing across a fixed buffer layer

are the Adaptive Resolution Simulation (AdResS) scheme59–65 and its Hamiltonian (H-AdResS)

variant19,23,27–30,55,66–69 (see also Refs. 16,70–77 for related approaches). Here, the buffer region

is defined by an internal (FG to buffer) and an external (buffer to CG) boundary, both of which

are fixed in space relative to the solute. Between the two boundaries, the resolution of a solvent

particle changes progressively according to a switching parameter λ that is a continuous function

of position, and evaluates to 1 (full FG) and to 0 (full CG) at the inner and outer boundaries,

respectively. The switching is applied to the forces in AdResS (thereby enforcing the validity of

Newton’s third law) or to the Hamiltonian in H-AdResS (thereby enforcing the conservation of the

total energy).

Note that the latest version of AdResS,78,79 which we will refer to here as TR-AdResS, differs

in two respects from the above description (see e.g. Fig. 1 in Ref. 78): (i) the CG molecules

are replaced by so-called tracer (TR) particles that are exempt of non-bonded interactions and

only subject to an effective pre-calibrated one-particle force that maintains a correct homogeneous

particle density in the TR-region; (ii) the progressive resolution change is replaced by an abrupt

transition from the AT level at the TR boundary, the buffer region now corresponding to normal AT

molecules with density anomalies corrected using a similar effective one-particle force. In recent

applications, the TR-AdResS scheme has also been used to handle non-equilibrium situations80 or

to bridge atomistic systems with continuum hydrodynamic reservoirs.81

Adaptive-resolution schemes relying on a buffer layer with FG↔CG solvent interconversion

(as well as the closely related mixed-resolution schemes) have three main shortcomings82: (i) for

a given choice of solvent, they rely on a unique graining level NG that must be selected prior

to the design of a CG model; (ii) this CG model must be parametrized, which is a non-trivial

task, or an existing model must be taken from the literature; and (iii) the imperfect compatibility

between the FG and CG models generally induces boundary artifacts. The latter artifacts64,65 can

be eliminated by application of different types of corrections, including a biasing of the chemical

potential61,67–69,76 or the application of a thermodynamic force along the density gradient.62,63,83

Note that AdResS can also be used in a grand-canonical fashion, where the CG model is replaced
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by non-interacting tracer particles.84,85

In a recent article,82 we introduced a simple and elegant approach to derive CG models of arbi-

trary graining levels directly based on a given FG solvent model. The mapping involves a scaling

of the spatial dimensions by a factor s, with the FG model corresponding to an s-value of one,

along with a corresponding s-dependent adjustment of the force-field parameters of the solvent

molecule. The latter changes are designed to achieve an isomorphism between the dynamics of

the FG and CG models, and to preserve the dispersive and dielectric solvation properties of the

solvent with respect to a solute at FG resolution. For a given value of s, the CG model thus rep-

resents a “blown up” version of the FG model with a graining level NG = s3. It involves the same

number NS of interaction sites in the same angular geometry, but different bond lengths as well as

different atomic masses and interaction parameters. Note that a “blown-up” water-like aspect has

also been selected empirically in a number of existing three-site CG water models47,52,53.

The solvent-scaling approach offers a number of advantages compared to traditional coarse-

graining: (i) the CG parameters are immediately related to those of the FG model (no need to

parametrize a distinct CG model); (ii) nearly ideal mixing is expected for CG variants with sim-

ilar s-values (ideal mixing holding in the limit of identical s-values); (iii) the solvent relaxation

timescales should be preserved (no dynamical acceleration typical for coarse-graining86–88); (iv)

the graining level NG can be chosen arbitrarily (and need not be an integer); and (v) in an adaptive-

resolution scheme, this level can be varied continuously as a function of the position (without

requiring a bundling mechanism), and the variation occurs at a constant number of particles per

molecule (no occurrence of fractional degrees of freedom89,90 in the buffer layer).

Based on these ideas, we proposed a scheme called Adaptive Solvent-Scaling (AdSoS), where

the parameter s governing the scaling of the solvent varies as a function of the position of the

molecule in space. Starting from an s-value of one in the FG region close to the solute, the value of

s is progressively increased across a SG region (buffer layer) to reach a value smax, which is then

kept constant in the long-range CG region. By construction, the AdSoS scheme minimizes the

thermodynamic mismatch between the different regions of the adaptive-resolution system, leading

to a nearly homogeneous scaled number density s3ρ for the solvent. Residual density artifacts

in and at the surface of the boundary layer can easily be eliminated by means of a grid-based

correction potential constructed in a preliminary pure-solvent simulation.

When comparing AdSoS to the TR-AdResS scheme,78,79 we note the three following points.

For large systems, the TR-representation in AdResS (which only involves one-particle forces) will
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be less expensive than the CG-representation in AdSoS (which still relies on pairwise forces).

However, AdSoS also presents two advantages. First, the progressive transition FG↔SG↔CG, as

determined by the continuous position-dependent scaling parameter s, is smooth, i.e. it involves

no non-conservative forces. This is not the case in TR-AdResS, where the sudden insertion of TR-

particles into the AT region may induce very large forces, which need to be capped (truncated).

Second, in TR-AdResS, the TR region does not interact at all with the AT region, i.e. it provides

no solvation contribution to a solute located in this region. This is not the case for AdSoS, where

the scaled solvent in the SG and CG regions provide (by construction of the scaling) appropriate

solvation contributions to such a solute (see Fig. 1 in Ref. 82). In other words, the CG-region

of AdSoS extends the solvation range, whereas the corresponding TR-region in AdResS only

functions as a (computationally less expensive) particle reservoir at the correct density for the

definition of an open system.

The original article82 provided the theory along with an initial application of AdSoS consider-

ing a pure monoatomic solvent (no solute) in a slab geometry. The goal of this article is to extend

the AdSoS scheme to more practically relevant situations, involving: (i) a molecular dipolar sol-

vent (e.g. water); (ii) a radial geometry (i.e. spherical rather planar layers); and (iii) the actual

inclusion of a solute (e.g. solute water molecule, dipeptide, ion, or ion pair).

II. THEORY

The solvent-scaling approach for the definition of CG solvent models with arbitrary graining

levels and the implementation of this approach into an adaptive-resolution scheme have been de-

scribed in details in Ref. 82. This information is only briefly summarized below, and the reader is

referred to the original publication for more details.

In the generalization from an atomic to a molecular solvent, the choice is made to apply a

common value of the scaling factor s (as determined by the position of a specified reference point

in the molecule) to all atoms within a given molecule. This choice is considered more appropriate

than the use of distinct scaling factors for the different atoms (determined by their own positions)

because it is consistent with a linear scaling of the interatomic distances (bonds) that preserves the

angular structure (bond angles, dihedral angles) as well as the electroneutrality (zero net charge) of

the solvent molecule upon scaling. For simplicity, it is also assumed that the selected FG solvent

model is entirely rigid (no intramolecular interactions), and that its specification is complemented
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by the selection of a reference atom (e.g. oxygen atom for a rigid water model).

A. AdSoS Scheme for a Solvent Molecule

In the solvent-scaling approach, the CG representation of a given FG solvent model is defined as

a “blown up” version of this FG model. The transformation is controlled by the scaling parameter

s, which defines the amount of (isotropic) stretching in the effective size of the molecule along

each Cartesian dimension. The value s = 1 corresponds to the original FG model, while values

s > 1 lead to a continuum of CG models with increasing graining levels NG = s3. In the context

of a molecular solvent, the number NS of interaction sites is preserved as well as their angular

geometry, while the effective size is increased via a scaling of the bond lengths and van der Waals

radii. The parameter scaling also affects the atomic masses and partial charges.

As detailed in Ref. 82, the scalings of the different physical quantities Q (force-field parameters,

configurational variables, thermodynamic observables) follow equations of the form

Q (s) = snQ Q ∗, (1)

where Q ∗ refers to the property of the unscaled model (corresponding to s = 1). The exponents nQ

associated with the most important physical quantities are summarized in Table I.
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TABLE I: Dependence of various physical quantities on the scaling factor upon solvent-scaling.

The exponent nQ controlling the scaling of a property Q based on the scaling factor s (Eq. 1)

is reported for the most important quantities. The force-field parameters considered are atomic

mass (m), reference bond lengths (collectively noted bo), reference bond angles or dihedral an-

gles (collectively noted θo), Lennard-Jones parameters (c6 and c12), atomic partial charge (q), and

reaction-field permittivity (εRF ). The Lennard-Jones parameters c6 and c12 correspond to single-

atom square-root dispersion and repulsion coefficients, respectively. Their products determine

the magnitude of the corresponding interactions for two given atoms (geometric-mean combina-

tion rule91,92). The configurational variables considered are time (t), coordinate (r), volume (V ),

velocity (v), momentum (p), and force (F). The thermodynamic observables considered are the

Hamiltonian (H ), kinetic energy (K ), potential energy (U), virial (W ), temperature (T ), pressure

(P), number density (ρ), isothermal compressibility (κ), and relative dielectric permittivity (ε).

nQ Parameter Configuration Observable

−3 ρ,P

−2 m

−1 F , p

0 θo, εRF t H ,U,K ,W ,T,ε

1/2 q

1 bo r, v

3 c6 V κ

6 c12

In the AdSoS scheme82, the scaling factor si assigned to an atom i is adapted on-the-fly based

on the position vector RRRI of the reference atom within molecule I which atom i belongs to, i.e.

si = s(RRRI) . (2)

In practice, the value of s is progressively increased from one (in the immediate vicinity of the

FG solute) to a maximal value smax (sufficiently far from the solute). The solute itself is entirely

described at the FG level (s = 1). Considering the scalings of Eq. (1) and Table I for the force-field

parameters, it follows that the bond lengths in the solvent molecule are amplified by sI with no

change in the angular geometry. Concerning the interaction parameters αi of solvent atom i (mass
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m, partial charge q, square-root dispersion coefficient c6 and square-root repulsion coefficient c12),

the scaling is given by

αi(si) = snα

i α
∗
i , (3)

with nm =−2, nq = 1/2, nc6 = 3, nc12 = 6, and where si refers to the sI value of the solvent molecule

to which atom i belongs. The same equation can also be used for the solute atoms, with the

convention that si = 1 (FG level) in this case.

For the configurational variables and the thermodynamic observables, the scalings of Eq. 1 only

hold exactly in the context of pure-solvent systems with a homogeneous s-value82. However, they

are still expected to hold approximately for a pure solvent in the AdSoS setup, provided that the

s-gradients within the system are sufficiently low. Note, in particular, that the energetic quantities

(including the temperature), the relaxation times, and the dielectric permittivity are all invariant

upon scaling.

The AdSoS Hamiltonian for a solute-solvent system of N atoms reads

H (rrr, ppp) = K (rrr, ppp)+Ucov(rrr)+Uele(rrr)+Uvdw(rrr) , (4)

where rrr and ppp are the 3N-dimensional atomic Cartesian position and momentum vectors, respec-

tively, K is the kinetic energy, and Ucov, Uele and Uvdw are the covalent, electrostatic, and van der

Waals potential energies, respectively. The kinetic energy, which depends here on position (via si)

as well as on momentum, is given by

K (rrr, ppp) =
N

∑
i

ppp2
i

2mi(si)
. (5)

In the context of a rigid solvent model (no intramolecular interactions), the covalent term Ucov

only involves the solute. Since the latter is represented at the FG level, this term is not affected

by the solvent-scaling scheme. The electrostatic term Uele corresponds to Coulomb93 interactions

with a reaction-field correction94,95, and is given by

Uele(rrr) =
1

4πεo

N

∑
i

N

∑
j>i

qi(si)q j(s j)

(
1
ri j

+
εRF −1

1+2εRF

r2
i j

R3
c
− 3εRF

1+2εRF

1
Rc

)
, (6)

where rrri j = rrri− rrr j is the (minimum-image) vector connecting atom j to atom i, εo is the permit-

tivity of vacuum, εRF is the reaction-field permittivity, and Rc is the cutoff distance. The van der

Waals term Uvdw corresponds to a Lennard-Jones function96 with a geometric-mean combination
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rule91,92, and is given by

Uvdw(rrr) =
N

∑
i

N

∑
j>i

(
c12,i(si)c12, j(s j)r−12

i j − c6,i(si)c6, j(s j)r−6
i j

)
. (7)

Eqs. (3)-(7), together with a specification for the function s in Eq. 2, provide the framework of the

AdSoS scheme.

The Hamiltonian of Eq. (4) depends on the atomic positions not only explicitly, but also im-

plicitly, via the position-dependence of si. The force on an atom i is thus given by

FFF i =−
∂ H
∂ rrri

=−
(

∂ H
∂ rrri

)
si

−
(

∂ H
∂ si

)
rrri

dsi

drrri
. (8)

The first term represents the physical force. For the pairwise terms Uele and Uvdw this force acts

along the vector connecting the two atoms involved. The second term represents a so-called drift

force.28,66,97,98 It is only relevant for solvent molecules in regions where s varies, and acts in the

direction of the s-gradient. Expressions for the forces associated with the terms of Eqs. (5)-(7) are

provided in Suppl. Mat. Section S1.1.

The inclusion of the drift force in the dynamics of AdSoS is essential to prevent the occurrence

of density artifacts. As discussed previously82, this force compensates on average for the thermo-

dynamic driving force associated with a heterogeneous pressure in the system, which results from

the fact that the pressure in a solvent region at scaling s is given by P(s) = s−3P∗. This pressure

heterogeneity is necessary because the pressure s−3P∗ is the one that leads to the correct solvent

number density ρ(s) = s−3ρ∗. Note that this compensation only holds in the limit of a sufficiently

large number of molecules and of sufficiently low s-gradients in the system.

Owing to the time-dependence of the masses (via the position-dependence of si), the leap-frog

integrator99 must be adapted to the AdSoS situation. The adjusted version can be derived directly

from the Hamiltonian equations,82,100 leading to

vvvi(t +∆t/2) =
(

si(t)
si(t−∆t)

)2

vvvi(t−∆t/2)+
FFF i(t)
mi(t)

∆t

rrri(t +∆t) = rrri(t)+ vvvi(t +∆t/2)∆t,

(9)

where vvvi is the velocity of atom i and ∆t the integration step. The adaptation of the SHAKE

algorithm101 for enforcing a rigid solvent geometry in the AdSoS scheme is outlined in Suppl.

Mat. Section S1.2.

In principle, the AdSoS scheme does not introduce any non-conservativeness per se, so that

it should by default sample a microcanonical (NVE) ensemble in the absence of a thermostat. In
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practice, however, the use of finite values for the integration timestep and for the non-bonded cutoff

will lead to energy drifts. These are removed by the thermostat in the canonical (NVT) ensemble,

and one could easily imagine a variant using an “ergostat” (i.e. a heat exchange designed to

maintain the total energy of the system) that would sample the microcanonical one.

B. System Geometries

As illustrated in Figure 1, two different system geometries are considered for the implementa-

tion of AdSoS, namely slab and radial (spherical) geometries. Both involve a computational box

simulated under periodic boundary conditions. For simplicity, the discussion is restricted here to

a rectangular box for the slab geometry and to a cubic box for the spherical geometry. The three

Cartesian directions α = x,y,z are associated with unit vectors eeeα and box-edge lengths Lα . In

slab geometry, the special direction is the z-direction. In spherical geometry, the edge length of

the cubic box is denoted L.

In both cases, the box is partitioned into three regions: (i) the FG region, which contains the

solute surrounded by unscaled solvent molecules; (ii) the SG region, where the scaling factor is

progressively increased from 1 to smax; and (iii) the CG region, where the solvent is homoge-

neously scaled at smax. The widths of these regions are denoted dFG, dSG, and dCG, respectively.

In the slab case, the system includes two SG regions of widths dSG, so that Lz = dFG+2dSG+dCG.

In the spherical case, dFG refers to the diameter of the FG region, and dCG represents twice the

distance between the start of the CG region and the closest box wall (or, equivalently, the minimum

width of the CG region via periodicity), so that, here as well, L = dFG + 2dSG + dCG. The equa-

tions below assume that the representative periodic copies of the solvent molecules are selected at

minimum-image positions relative to the center of the computational box.
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FIG. 1: Schematic representation of the box partitioning in AdSoS for the slab (left) and spherical

(right) geometries. The FG region is marked in red, the SG region(s) in dark blue, and the CG

region in light blue. The widths dFG, dCG and dSG of the different regions are also indicated. The

scaling factor s is modulated according to Eqs. (12) and (13).

In both geometries, an absolute position vector rrr within the box is converted to a unitless

relative position vector aaa that will serve to define the s-value and its gradient. In slab geometry,

the vector aaa is defined as

aaa(rrr) = L−1
z

(
rz−

Lz

2

)
eeez (slab) (10)

where eeez is a unit vector along the z-direction. The magnitude of aaa is zero in the (x,y,Lz/2) plane

and increases with the distance from this plane up to a maximum of 1/2. The direction of aaa is

along−eeez at the left and +eeez at the right of the plane. In spherical geometry, the vector aaa is defined

as

aaa(rrr) = L−1
∑

α=x,y,z

(
rα −

L
2

)
eeeα (spherical) , (11)

where eeez is a unit vector along direction α (where α = x, y or z). The magnitude of aaa is zero at

the box center (Lx/2,Ly/2,Lz/2) and increases with the distance from this point up to a maximum

of 31/2/2 at the cube corner. The direction of aaa is always radial from the box center and oriented

towards the outside.

In both geometries, the relative distance a is defined as the norm of aaa. The dependence of the

scaling factor on the position rrr within the box is then formulated in terms of this relative distance
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as

s(rrr) = w(a(rrr)) (12)

with

w(a) =


1 a≤ 1

2δFG

1+(smax−1)sin2
[

π(a− 1
2 δFG)

2δSG

]
1
2δFG < a < 1

2δFG +δSG

smax a≥ 1
2δFG +δSG.

(13)

where δX (with X = FG, CG or SG) is equal to dX/Lz in slab geometry or to dX/L in spherical

geometry. This functional form is selected to provide a smooth transition in the SG region (con-

tinuously differentiable at the boundaries). The gradient of the scaling function can be formulated

based on Eqs. 12 and 13 using the chain rule, namely

ds
drrr

=
dw
da

da
drrr

(14)

where the derivative of a is obtained from Eqs. (10) or (11).

C. Correction Potentials

The AdSoS setup is designed to keep the thermodynamic mismatches in the system to a min-

imum by imposing near-ideal mixing properties for molecules at comparable s-values, a smooth

continuous change of the s-value with position and an appropriate pressure heterogeneity enabled

by the drift force. However, variations of s may still cause artifacts, which are expected to become

increasingly pronounced for high s-gradients. Additional causes may include: (i) the implicit use

of an ad hoc geometric-mean rule to combine the si and s j factors within the pairwise interactions

(Eq. (6) and (7)); (ii) specific close-range packing and orientation alterations between the solvent

molecules in (or close to) regions presenting s-variations; and (iii) the use of cutoff truncation in

the calculation of the non-bonded interactions. In the context of an atomic solvent82, possible ar-

tifacts only concern the density, and affect nearly exclusively the SG region as well as the FG-SG

and SG-CG interfaces. In the context of a molecular solvent, one also has to consider the possi-

bility of artifacts in the orientation of the solvent molecules. If the solvent is polar (e.g. water),

this may result in an erroneous solvent polarization around the solute. In practice, both types of

artifacts are expected to remain limited in the case of sufficiently low s-gradients, and residual
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effects can be corrected by application of positional (for the density) and orientational (for the po-

larization) grid-based correction potentials. These potentials should be calibrated in the absence

of a solute, i.e. in the situation where solvent homogeneity and isotropy are expected, and then

assumed to be portable from system to system, i.e. applicable irrespective of the solute.

In practice, these correction potentials are constructed using the local-elevation umbrella-

sampling (LEUS) approach,102 where they are represented as a weighted sum of local basis

functions. A first local-elevation103 (LE) phase involves the non-equilibrium build-up of the cor-

rection potential. A second umbrella-sampling (US) phase104 involves the equilibrium sampling

of the system using a frozen correction potential. Note that these potentials are expected to be

specific to a given AdSoS setup, i.e. system geometry, choice of solvent, value of smax, sizes

of the box compartments, and choice of the s-function. Here, cubic B-splines are used as basis

functions,105,106 namely

G(x) =


x2(|x|−2)/2+2/3 0≤ |x| ≤ 1,

(2−|x|3)/6 1≤ |x| ≤ 2

0 otherwise .

(15)

The positional correction potential to eliminate density artifacts is constructed along the unitless

relative distance a for the corresponding system geometry (Eqs. (10) and (11)). The distance

coordinate is discretized using a one-dimensional grid of points k = 1...K. Each grid point is the

origin of a kernel function G (Eq. 15). The corresponding potential energy function Uρ is applied

to the reference point RRRI of each solvent molecule I and reads

Uρ(rrr) = bρ

NI

∑
I

K

∑
k

wρ,kG
(

a(RRRI)−ak

ωρ∆

)
, (16)

where NI is the number of solvent molecules, bρ is a force constant (determining the build-up

rate), ak and wρ,k are the position and weight associated with grid point k, ωρ is the kernel width

in grid units and ∆ is the grid spacing. The latter is given by ∆ = K−1amax, where amax is 1/2 in

slab geometry and 31/2/2 in spherical geometry. There are three main differences in the proce-

dure compared to the standard LEUS scheme102. First, the factor ωρ is introduced which, when

differing from 1, permits to make the correction potential smoother. Second, all solvent molecules

are coupled to the same (one-dimensional) correction potential. Third, a molecule I at grid point

k increments the corresponding weight wρ,k by v−1
k s3

I (instead of one), where vk is the volume of
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bin k

vk =
∫ LLL

0
[Θ(a(rrr)− k∆)−Θ(a(rrr)− (k+1)∆)]drrr, (17)

with Θ being the Heaviside step function. These volumetric factors are used for the normalization

of the density at a given grid point. In slab geometry, vk = 1/2 for k = 1 and k = K, or 1 otherwise.

In spherical geometry, vk = 4π/3
[
((k+1)∆)3− (k∆)3] if (k+ 1)∆ ≤ 1/2, or is evaluated as the

result from a cube-sphere intersection for (k+1)∆ > 1/2 (solved numerically). The algorithms for

constructing and applying the correction potential of Eq. (16) are outlined in Suppl. Mat. Section

1.3.

The orientational correction potential Uµ to eliminate polarization artifacts is applied to all

solvent atoms i = 1...N with a charge-weighting

Uµ(rrr) =
N

∑
i

qiΦµ,i(rrri), (18)

where Φµ,i represents an electric potential acting on atom i

Φµ,i(rrri) = bµ

K

∑
k

wµ,kG
(

a(rrri)−ak

ωµ∆

)
. (19)

In practice, the biasing potential Uµ is constructed as follows. First, the local electric field compo-

nent ek along aaa in each bin k is calculated according to

ek =
NI

∑
I

µr [Θ(a(rrr)− k∆)−Θ(a(rrr)− (k+1)∆)] , (20)

where µr is the projection of the molecular dipole µµµ I onto the vector aaa,

µr =
µµµ I ·aaa(RRRI)

µI ·a(RRRI)
. (21)

The weights wµ,k are then incremented by minus the integral of e(r) between 0 and k∆ (which

implies wµ,0 = 0). In practice, the integration is carried out by linearly interpolating e(r). The

algorithms for constructing and applying Uµ are outlined in Suppl. Mat. Section 1.3.

In contrast to the LEUS approach, which relies on a damping of the build-up rate after each

double-sweep of the entire range during the LE phase102 (similar to well-tempered metadynamics107),

the present scheme relies on a constant build-up rate in the LE phase (which leads to oscillations

in the weights). The biasing potential for the US phase is then defined by averaging the weights

over a certain period at the end of the LE phase.
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III. METHODS

A. Computational Details

The AdSoS scheme was implemented into the GROMOS simulation program.108 The solvent

considered is water with the parameters of the simple point charge (SPC) model.109 The molecule

is entirely rigid, and its reference point was chosen to be the oxygen atom. The parameters for the

different solutes considered were taken from the GROMOS 54A7 force field.110

The initial configurations for pure-liquid simulations were obtained by randomly placing M

water molecules in the computational box. The number of molecules M was determined according

to

M = ρ
∗
∫ Lx

0

∫ Ly

0

∫ Lz

0
s−3(x,y,z)dxdydz , (22)

where ρ∗ = 32.5 nm−3 is the bulk number density of liquid water at 298.15 K and 1 bar, and s the

scaling function defined by Eq. (12) (expressed here as a function of the position in the box).

Simulations in slab geometry were carried out for three possible choices of smax, namely 1.0,

1.5 and 2.0, corresponding to maximal graining levels NG of 1.0, 3.375 and 8.0, respectively. They

relied on a rectangular computational box with Lz = 10 nm containing M water molecules, with

the partitioning dFG = 2.0 nm, dSG = 2.0 nm, and dCG = 4.0 nm (Fig. 1, left). For smax = 1.0 (FG

reference system), the parameters were Lx = Ly = 2.5 nm and M = 2031. For smax = 1.5, they were

Lx = Ly = 4 nm and M = 2859. For smax = 2.0, they were Lx = Ly = 6 nm and M = 4890.

Simulations in spherical geometry were carried out for two possible choices of smax, namely

1.0 and 2.0, corresponding to maximal graining levels NG of 1.0 and 8.0, respectively. For the

reference simulations with smax = 1 (FG reference system), a small cubic box with edge length

L= 3 nm containing M = 877 water molecules (FG/S) as well as a large cubic box with edge length

L = 8 nm containing M = 16640 water molecules (FG) were considered. The AdSoS simulations

relied on a cubic box with edge length L = 8 nm containing M = 2732 water molecules, with the

partitioning dFG = 2.0 nm, dSG = 2.0 nm, and dCG = 2.0 (Fig. 1, right).

All simulations were carried out in the canonical (NVT) ensemble at 298.15 K using a weak-

coupling thermostat111 with a coupling time of 0.1 ps. The equations of motion were integrated

using the modified Leap-frog scheme of Eq. (9) with a time step of 2 fs. The full rigidity of

the water molecules was maintained using three distance constraints, enforced using the modified

SHAKE algorithm101 of Suppl. Mat. Sec. 1.2, applied with a relative geometric tolerance of

15

https://doi.org/10.26434/chemrxiv-2023-f1fqx ORCID: https://orcid.org/0000-0001-6518-681X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-f1fqx
https://orcid.org/0000-0001-6518-681X
https://creativecommons.org/licenses/by/4.0/


10−12 (chosen very small to avoid possible artifacts due to unequal noise levels at different scaling

values). The non-bonded interactions were evaluated using charge-group truncation at a single-

range cutoff distance Rc based on a pairlist updated every step. A reaction-field correction94,95

was applied with a permittivity εRF set to 61.

The simulations were performed considering different cutoff radii Rc. For the FG reference

systems (smax = 1, both slab and spherical geometries), Rc was set to 1.2 or 1.4 nm (in some

cases also 2.4 nm). In the scaled setup (smax = 1.5 and 2.0), the values considered are Rc =

1.8 nm for smax = 1.5, and Rc = 2.0, 2.4 or 2.8 nm for smax = 2.0. The use of larger cutoff

distances in the AdSoS setup (relative to the value of 1.4 nm typically employed in FG simulations

with GROMOS) is rendered necessary by the linear scaling of distances (Table I), which leads to

an effective interaction range reduced to Rc/smax in the CG region. Note that even if raising

Rc in proportion to smax offsets the computational gain of AdSoS on a per molecule basis, the

approach remains very advantageous because the number of solvent molecules is considerably

reduced compared to a FG system filling the same volume.

Prior to production, the pure-liquid systems were subject to energy minimization with harmonic

bonds (scaling of the force constant with s as kb(s) = s−2k∗b), followed by a minimization with rigid

bonds, and by 0.1 ns equilibration. Simulations without correction potentials were carried out for

10 ns, and the coordinates were written out every 100 steps. In spherical geometry, the oxygen

atom of one reference water molecule was restrained to the center of the box with a harmonic force

constant of 104 kJ mol−1 nm−2.

The correction potentials for the solvent density (Eq. (16)) and orientation (Eq. (18)) were

built up simultaneously over a LE phase of 20 ns. For the density bias, the force constant was set

to bρ = 10−2 kJ mol−1 and the kernel width ωρ in grid units to 1. The orientational bias relied

on bµ = 10−5 kJ mol−1 and ωµ = 2. In slab geometry, the number of grid points was set to K =

51 (∆ = 0.1 nm). In spherical geometry it was set to K = 73 (∆ = 0.096 nm). The build-up was

carried out separately for each distinct cutoff. In spherical geometry, it was carried out without the

aforementioned position restraint on the central water molecule. The correction potentials used in

the US phase were defined as averages over the last 15 ns of the LE phase, and the production runs

of the US phase were carried out for 10 ns.

Simulations of a capped alanine dipeptide in spherical geometry were set up by replacing eight

central water molecules in the pre-equilibrated cubic box. The Cα atom of the dipeptide was

harmonically restrained to the box center with a force constant of 105 kJ mol−1 nm−2. The system
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was equilibrated for 0.1 ns. Sampling was then carried out for 100 ns with configurations written

out every 500 steps. Simulations were carried out either without or with the correction potentials,

which were constructed for the pure-water system.

Simulations of an ion in spherical geometry were set up by replacing the central water molecule

in the pre-equilibrated cubic box with a Na+ or a Cl− ion. The ion was positionally constrained

to the box center. Some simulations of ions with the same Lennard-Jones parameters but higher

charge magnitudes (Na2+, Na3+, Cl2− and Cl3−) were carried out in a similar fashion. There also,

the applied correction potential was constructed for the pure-water system. Sampling was carried

out for 10 ns. Free-energy calculations also relied on 1 ns simulations performed with |q| = 0.05,

0.5 and 0.75 e ion charge (instead of the full charge).

To assess the distance distribution of aqueous ion pairs in the AdSoS setup, an additional ion

was inserted into the FG region of the single-ion systems. While the first ion was positionally

constrained to the box center, the second ion was subject to a half-harmonic flat-bottom distance

restraint to the box center with a force constant of 3 · 103 kJ mol−1 nm−2 and an offset distance

of 1 nm, in order to prevent it from leaving the FG region. Three combinations of ion pairs were

considered: (i) Na+ for both ions; (ii) Na− for both ions; and (iii) Na− as the center ion with Na+

as the restrained ion. Only the charges of the ions were modified, their Lennard-Jones parameters

were kept constant. The simulation settings were the same as for the single-ion simulations.

B. Analyses

Density profiles were calculated by time-averaging the scaled number density s3(z)ρ(z) in slab

geometry (over the range [0,Lz], i.e. with the FG region in the middle) and s3(r)ρ(r) in spherical

geometry (over the range [0,L/2], i.e. from the box center to the nearest box wall). Orientational

profiles were calculated in the form of a time and space averages of molecular dipole moments

µI(rrr) projected on aaa.

Solute-solvent interaction energies were extracted from the simulated trajectories using the

GROMOS++ program112 ene_ana. Rotational relaxation times were calculated with the GRO-

MOS++ program112 rot_rel, which calculates the first and second Legendre polynomials of the
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autocorrelation function of the OH bond

C1(t) = 〈rrrOH(τ) · rrrOH(τ + t)〉
τ
≈ exp(−t/τ

OH
1 ) (23)

C2(t) =
1
2
(3[C1(t)]2−1)≈ exp(−t/τ

OH
2 ) (24)

The first and second rotational relaxation times τOH
1 and τOH

2 were estimated by fitting the slopes

of the linearized forms of Eqs. (23) and (24), respectively.

Time series of the backbone φ and ψ dihedral angles in the alanine dipeptide were calculated

using the GROMOS++ program112 tser.

Single-ion solvation free energies ∆Gcorr were calculated according to

∆Gcorr = ∆Graw +∆Gextra. (25)

Here, ∆Graw is the free-energy difference obtained by integrating the electric potential Φ as a

function of the charge q, from zero to the full ion charge qion (-1 for Cl−, +1 for Na+), namely

∆Graw =
∫ qion

0
Φ(q)dq where Φ(q) = q−1Uele . (26)

The term ∆Gextra is the free-energy correction described in Ref. 113, which consists of four com-

ponents: (A) a correction term for the use of effective non-Coulombic electrostatic interactions

inside and outside the cutoff; (B) a correction term for finite-size effects due to periodic bound-

ary conditions; (C) a conversion factor from atom-based to molecule-based summation; and (D) a

standard-state correction. A corrected electrostatic ion-solvent interaction energy Ucorr
ele was calcu-

lated according to

Ucorr
ele =UCB

ele +UCE
ele , (27)

where UCB
ele is the Coulomb component of the ion-solvent interaction energy, and UCE

ele is the con-

tribution to the electrostatic energy from the dielectric continuum beyond the cutoff obtained from

the Born equation114

UCE
ele =− 1

4πε0

(
1− 1

εw

)
q2

Rc
, (28)

where εw = 78.4 is the static relative dielectric permittivity of water.

In the comparison of the polarization around multivalent ions with the Born model, the Born

polarization P(r) was calculated according to115

PBorn(r) =
qI

4πr2

(
1− 1

εSPC

)
, (29)
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where qI is the ion charge, and εSPC = 66.6 the relative permittivity of the SPC water model.109

Eq. (29) can be related to the radial distribution function g(r) and the orientational profile µr(r)

using

Psim(r) = ρ
∗
µ
∗g(r)µr(r) , (30)

where ρ∗ = 32.5 nm−3 is the bulk density and µ∗ = 0.047 e nm the dipole moment of SPC water

model.

IV. RESULTS AND DISCUSSION

A. Density and Orientational Profiles for Pure Water

The density profiles for pure water in slab geometry are shown in Fig. 2 for the FG reference

system (smax = 1) and the AdSoS setups (smax = 1.5 or 2). In the scaled systems without biasing

potential (Fig. 2a), two kinds of density artifacts can be observed. The first kind consists of

sinusoidal fluctuations in the SG region. These fluctuations do not decrease with increasing cutoff,

and they can also be observed in the much simpler case of liquid argon with minimum-image

cutoff.82 This effect most likely results from the non-vanishing s-gradient in the SG region.
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FIG. 2: Scaled density profiles s3ρ /ρ∗ of a water box in slab geometry using AdSoS without

(a) and with (b) an applied correction potential (longitudinal and orientational). The bulk number

density is ρ∗ = 32.5 nm−3. The black line corresponds to the FG reference system (smax = 1). The

green line shows the system with smax = 1.5. Blue lines represent systems with smax = 2 and three

different cutoff values (Rc = 2.0, 2.4, or 2.8 nm). The shaded blue vertical strips mark the two SG

regions surrounding the FG region.

The second kind of artifact is the density mismatch between the FG and CG regions. In contrast

to the fluctuations in the SG region, the effect is reduced upon increasing the cutoff. A possible

cause for this mismatch is that the effective cutoff s−1Rc is smaller for the CG than for the FG

particles. Consequently, the FG atoms are experiencing stronger attractive dispersive interactions,

leading to a higher density in the FG region. Note that these two artifacts remain limited in

magnitude, with density variations on the order of ± 5% across the computational box.

Fig. 2b shows that both kinds of density artifacts can be eliminated by applying longitudinal

and orientational biasing potentials. The corresponding time series of the weights wρ,k during

LE build-up and the final biasing potentials along a during US sampling are shown in the Suppl.

Mat Figures S1 and S2, respectively. The LEUS weights are well converged after about 10 ns.

The biasing potentials reflect the shape of the density profiles in Fig. 2a, and the peak-to-peak

difference in Uρ is about 1.5 - 2 kJ mol−1, depending on smax and Rc.

The orientational profiles of the water molecules for pure water in slab geometry are displayed

in Fig. 3.
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FIG. 3: Orientational profiles µr of a water box in slab geometry using AdSoS without (a) and with

(b) an applied (longitudinal and orientational) correction potential. The quantity µr is defined by

Eq. (21). The black line corresponds to the FG reference system (smax = 1). The green line shows

the system with smax = 1.5. Blue lines represent systems with smax = 2 and three different cutoff

values (Rc = 2.0, 2.4 or 2.8 nm). The shaded blue vertical strips mark the SG regions surrounding

the FG region.

In the absence of a biasing potential (Fig. 3a), the effect of the FG-SG and SG-CG interface

on the orientation of the water molecules has a longer range compared to its effect on the density,

with the polarization in the FG and CG regions being highly affected. The magnitude of polariza-

tion artifacts increases with smax (i.e. with the s-gradient in the SG region), and decreases upon

increasing the cutoff Rc. This effect is largely independent from the density artifacts. Applying

a correction potential for the density alone does not affect the polarization in a significant man-

ner (data not shown). Figure 3a also suggests a preferential orientation of the hydrogen atoms

towards the FG region in the center of the box. Fig. 3b shows that applying the longitudinal and

orientational correction potentials results in a flat orientational profile, which is comparable to the

FG reference. Time series of the weights wµ,k and biasing electric potentials Φµ are provided in

Suppl. Mat. Fig. S3 and S4, respectively.

The density and orientational profiles for water in spherical geometry are shown in Fig. 4. The

density profile along the distance to the box center d = aL is equivalent to a radial distribution

function (RDF) around the water molecule which is positionally restrained at d = 0.

21

https://doi.org/10.26434/chemrxiv-2023-f1fqx ORCID: https://orcid.org/0000-0001-6518-681X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-f1fqx
https://orcid.org/0000-0001-6518-681X
https://creativecommons.org/licenses/by/4.0/


0.90

0.95

1.00

1.05

1.10
(4

d2 )
1

s3
/

*
(a) (c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d / nm

0.10

0.05

0.00

0.05

0.10

r

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d / nm

(d)
smax: 1.0, Rc: 1.2
smax: 2.0, Rc: 2.0
smax: 2.0, Rc: 2.4
smax: 2.0, Rc: 2.8

FIG. 4: Scaled density and orientational profiles around the central water molecule in spherical

geometry along the distance to the box center d = aL. The top row shows the density distribution

using AdSoS without (a) and with (c) an applied (longitudinal and orientational) correction po-

tentials. The bottom row shows the projection of the dipole moment vector onto the scaling axis

µr (Eq. (21)) using AdSoS without (c) and (d) with an applied (longitudinal and orientational)

correction potentials. The central molecule is positionally restrained at d = 0 in the FG region.

The shaded blue vertical strip marks the SG region.

Figs. 4a and 4b show spurious fluctuations in the local density and polarization, similar to those

observed in slab geometry in the absence of a correction potential (Figs. 2a and 3a). Figs. 4c and

4d show that here also, the application of the correction procedure eliminates the artifacts. It also

improves the alignment of the RDF peaks. The weights wρ,k and wµ,k as well as Uρ and Φµ are

shown in Suppl. Mat. Figs. S5-S8.

B. Interaction Energy and Relaxation Time of Water

The electrostatic and van der Waals components of the interaction energy of the central FG

water molecule with its surroundings, as well as its first and second rotational relaxation times,

are reported in Table II for the different AdSoS setups in spherical geometry. The corresponding

autocorrelation functions of the OH bonds are shown in Suppl. Mat. Figs. S9-S10.
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smax Rc bias Uele Uvdw τOH
1 τOH

2

[nm] [kJ mol−1] [ps]

1.0 1.0 No -96.7(2) 14.19(7) 3.2 1.6

1.2 No -97.0(2) 14.11(6) 3.8 1.8

1.4 No -97.3(2) 14.12(6) 3.8 1.9

2.4 No -97.5(2) 14.04(7) 3.9 1.9

2.0 2.0 No -100.6(2) 14.90(8) 5.0 2.5

Yes -100.0(2) 14.67(6) 5.3 2.5

2.4 No -99.3(2) 14.62(8) 4.3 2.2

Yes -98.7(2) 14.39(6) 4.4 2.2

2.8 No -98.6(2) 14.38(7) 3.9 2.1

Yes -98.2(2) 14.19(7) 3.9 2.0

TABLE II: Electrostatic Uele and van der Waals Uvdw interaction energies of the central FG water

molecule with its surroundings, and its rotational relaxation times τOH
1 and τOH

2 . Rc is the cutoff

radius. Numbers in parentheses indicate the error estimate on the energy (last digit), which was

calculated using block-averaging.

The solute-solvent interaction energies are in good agreement with the FG reference. The resid-

ual differences are predominantly influenced by the choice of cutoff (rather than by the presence

or absence of the correction potentials). A significant cutoff dependence is also observed for the

rotational relaxation times. The values of τOH
1 and τOH

2 for the scaled systems converge to the

FG reference when the cutoff is sufficiently large. The experimental value for τOH
2 is 1.95 ps for

water,116 which is in good agreement with the large-cutoff limit of the FG reference.

C. Conformational Properties of Aqueous Alanine Dipeptide

The conformational properties of aqueous alanine dipeptide in the AdSoS scheme under spher-

ical geometry can be compared to the FG reference based on the Ramachandran map of the back-

bone φ and ψ torsional angles (Fig. 5a). The three simulation schemes are in excellent agreement,

which suggests that the conformational properties of the solute are adequately captured in the Ad-
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SoS setup. Note that transitions to the left-handed helix were never observed within the 100 ns

simulation times for all setups. A much longer simulation time might be necessary to cross this

barrier.117
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(b) Zwitterionic peptide

FIG. 5: Ramachandran maps of capped alanine dipeptides from 100 ns simulations in water, after

smoothing with a Gaussian kernel density estimator. The zwitterionic peptide has artificial charges

of ±1e on its terminal methyl groups. Projections of the histogram onto the individual angles are

shown in the margins. The CG system (orange) refers to smax = 2.0 and Rc = 2.4 nm. The CG+B

system (green) has the same parameters as the CG system with the additional correction potential.

The FG reference setup (blue) consisted of a small box of 3 nm edge length with Rc = 1.4 nm.

To investigate the effect of net charges and thus, longer-ranged solvation effects, an artificially

constructed alanine dipeptide with q = ±1 e at its terminal methyl groups was also considered.

The resulting Ramachandran map is are shown in Fig. 5b. Again, no significant differences to the

FG reference were observed. In both cases, the differences between AdSoS (large box volume)

and FG (much smaller box volume) are also very small, which suggests that long-range effects are

rather unimportant for these systems (even in the charged zwitterionic case).
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D. Single Ion Hydration

The radial distribution functions around the Na+ and Cl− ions in water, as well as the projected

dipole moment of the solvent µr (Eq. (21)), are shown in Fig. 6.
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FIG. 6: Density and orientation profiles of water molecules along the scaling axis d = aL, with

the Na+ (left) and Cl− ions (right) at the box center (d = 0.0). (Top): Scaled radial distribution

function of the given ion. (Bottom): Mean projection of the dipole moment vector onto the scaling

axis. The black line shows the corresponding distributions of the FG reference system with Rc

= 2.4 nm. The blue lines represent a setup with smax = 2.0 with (solid lines) or without (dashed

lines) the (longitudinal and orientational) correction potential. Different shades of blue correspond

to different cutoffs.

Similar to the RDF of a central water molecule (Figs. 4a and b), the density fluctuations around

the ions are short-ranged and largely limited to the FG region. However, the solvent polarization

induced by the ions decays over a much longer distance. When the correction potentials are

applied, a good agreement of µr with the FG reference can be reached. The small dents in µr

at Rc (2.0, 2.4, or 2.8 nm for the respective systems) are likely artifacts from the group-based

cutoff scheme. The same effect is observed for the FG scheme to a smaller extent. It has been

shown118–120 that the group-based cutoff scheme does not reproduce well the distance-dependent
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Kirkwood factors for solvents with a high permittivity. The scaling of the dipole moment vector

with s3/2, as well as the lower degree of statistical averaging in the SG and CG regions, might

further amplify the existing artifact.

The ion-solvent electrostatic interaction energies Uele and their Coulomb-corrected counterparts

Ucorr
ele according to Eq. (27) are shown in Fig. 7. The corresponding van der Waals energies are

shown in Suppl. Mat. Fig. S11.
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FIG. 7: Ion-solvent electrostatic interaction energies evaluated for Na+ and Cl− with different

scaling factors and biasing schemes: “FG” is the FG system in the large box (L = 8 nm) with

cutoff Rc = 1.2 or 1.4 nm, “FG/S” is the same FG system in the small box (L = 3 nm), “CG” is the

AdSoS system with smax = 2.0 and cutoffs Rc = 2.0, 2.4 or 2.8 nm without correction potentials,

“CG+B” is the same CG system with the correction potentials. (Top): Raw energies from the

Coulomb reaction-field scheme in Eq. (6). (Bottom): Corrected energies according to Eq. (27).

The horizontal blue lines correspond to the FG reference with Rc = 2.4 nm.

The uncorrected energies show a much stronger cutoff-dependence compared to those of a

water molecule (Table II), because the net charge on the ions induces a long-ranged polarization

of the solvent. The correction for the Coulomb interactions from Eq. (27) accounts for this effect

and leads to a much better agreement of the FG and CG+B schemes, with a maximum energy

difference of about 5 kJ mol−1. The FG/S scheme shows more significant deviations due to finite-
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size effects, which are not accounted for by Eq. (27).

An important observation concerning Fig. 7 is that the use of the correction potentials is crucial

for obtaining correct ion-solvent interaction energies, even though the density and orientational

artifacts in Fig. 6 have a similar magnitude as for a neutral system. The non-vanishing long-

range polarization of the solvent around an ion contributes significantly contribution to its potential

energy, and is more sensitive to small fluctuations in the RDF and dipole orientations around the

ion.

Fig. 8 shows the calculated charging free energies ∆G of Na+ and Cl−. The corresponding

numerical values are listed in Suppl. Mat. Table S1.
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FIG. 8: Solvation free energies evaluated for Na+ and Cl− with different scaling factors and

correction potentials: “FG” is the FG system in the large box (L = 8 nm) with cutoff Rc = 1.2 or

1.4 nm, “FG/S” is the same FG system in the small box (L = 3 nm), “CG” is the AdSoS system

with smax = 2.0 and cutoffs Rc = 2.0, 2.4, or 2.8 nm without correction potentials, “CG+B” is

the same CG system with the correction potentials. (Top): Raw solvation free energies from the

Coulomb reaction-field scheme in Eq. (26). (Bottom): Corrected free energies according to Eq.

(25).

The quantity ∆Graw was obtained from direct integration of the electric potential (see Suppl.

Mat. Figs. S12 and S13). As expected, the results are not consistent between setups with different
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box sizes and cutoffs. After applying the free-energy correction to ∆Graw, which accounts for both

non-Coulombic and finite-size effects, the agreement between the FG, FG/S and CG+B schemes

improves substantially. The maximum deviation between the CG+B and FG results is about 12

kJ mol−1. However, these results differ from the solvation free energies calculated under NPT

conditions with P = 1 bar, which lead to ∆Gcorr = -465.0 kJ/mol and -283.4 kJ/mol for Na+ and

Cl−, respectively.115 The reported NVT simulations exhibit a significant underpressure due to

electrostriction. The scaling of the compressibility with s3 might dampen this effect in the CG

region by allowing the solvent molecules to get closer to the ions, which may explain why, for

both ions, the solvation free energies calculated with the CG+B scheme are closer to the NPT

results than those for the FG and FG/S schemes. The experimentally determined hydration free

energies are -420.2 kJ mol−1 and -307.8 kJ mol−1 for Na+ and Cl−, respectively.121

E. Polarization of Water in Presence of Multivalent Ions

The projected dipole moment of the solvent µr around the Na2+, Na3+, Cl2−, and Cl3− ions is

shown in Fig. 9. For comparison, the µr calculated from the Born model is also displayed, starting

at d = 1 nm from the ion (where g(r) is close to 1) according to Eqs. (29) and (30). Similarly

to the case of the monovalent ions (Fig. 6), the density profiles of the AdSoS systems are found

to be in good agreement with the FG system (data not shown). It can be seen in Fig. 9 that the

short-range polarization of the FG and AdSoS systems match very well. However, in the SG and

CG regions, the AdSoS water is slightly overpolarized, and this trend becomes more pronounced

upon increasing the charge of the central ion. The scaling of the dipole moment with s3/2 may

explain an increased interaction of the scaled water with the ion. Nevertheless, the discrepancy

remains small (< 5%), as the polarization decays to a significant degree in the FG region. The FG

polarization, on the other hand, is in good agreement with the analytical Born polarization, and

the residual discrepancies are likely due to the use of a cutoff.
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FIG. 9: Mean projection of the dipole moment vector onto the scaling axis d = aL, with the Na+

(left) and Cl− ions (right) at the box center (d = 0.0). The net charge of the ions in the upper

row is ±2e (i.e. Na2+ and Cl2−), and ±3e in the bottom row (i.e. Na3+ and Cl3−). The black

line shows the corresponding distributions of the FG reference system with Rc = 2.4 nm. The

blue lines represent a setup with smax = 2.0 with the (longitudinal and orientational) correction

potential. Different shades of blue correspond to different cutoffs.

F. Ion Pairs in AdSoS Water

Fig. 10 shows the distributions of distances between two monovalent sodium ions in AdSoS

simulations (in presence of the correction potentials), expressed as a probability density. In this

setup, the first ion is constrained to the box center (d = 0), while the second ion is restrained

relative to the first ion using a flat-bottom half-harmonic distance restraint, starting at d = 1 nm.

The latter restraint is applied in order to prevent the mobile ion from leaving the FG region, as

AdSoS does not guarantee the conservation of correct charge-charge interactions between ions at

different scalings. The time series of the distances are provided in Suppl. Mat. Figs. S14-S16,

which show that the like-charged simulations are well converged, whereas much fewer transitions

are observed for the oppositely charged ion pair, suggesting a lower reliability of the derived

observables.
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FIG. 10: Histogram of the distances between pairs of Na ions in a box with a spherical AdSoS

gradient (top: Na−/Na−, center: Na−/Na+, bottom: Na+/Na+). The first ion is constrained to the

center of the box, while the second ion is subjected to a flat-bottom half-harmonic restraint to the

center ion starting at d = 1 nm (which coincides with the start of the SG region). The black line

shows the corresponding distributions of the FG reference system with Rc = 2.4 nm. The green

lines show two more FG setups with a smaller cutoff (1.2 and 1.4 nm, respectively). The blue lines

represent a setup with smax = 2.0 with the (longitudinal and orientational) correction potential.

Different shades of blue correspond to different cutoffs.

In case of a like-charged ion pair (Na+/Na+ and Na−/Na−, respectively), the ions aim at mini-

mizing the electrostatic repulsion, which is reflected by a maximum in the probability distributions

at 1 nm. For the oppositely charged Na−/Na+ ion pair, the maximum of the distribution is located

at about 0.3 nm. Comparing the AdSoS simulations with the FG reference, one observes signif-
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icant deviations in all cases, which are most pronounced for the positive ion pair. The cutoff is

likely to represent a key factor contributing to these deviations, as it affects not only the AdSoS

distributions (blue lines in Fig 10), but also causes discrepancies between FG simulations with

different cutoffs (green and black lines in Fig. 10). The presence of a second ion in the box breaks

the spherical symmetry, so that the forces exerted by the environment on each of the ions depend

on the direction of their connecting vector. In the case of the FG system, the assumption of a

homogeneous dielectric medium outside the cutoff (underlying the reaction-field method) is no

longer valid. Therefore, differences arise even for the FG systems with different cutoffs. A simi-

lar effect is also in principle possible for the long-range Lennard-Jones interactions. The AdSoS

approach also introduces another source of error, which is a dependence of the magnitude of the

interactions at (and beyond) the cutoff on the scaling. A finding which supports this hypothesis

is the decreasing deviation of the AdSoS distributions relative to the FG reference with increasing

cutoff in Fig. 10. Further investigations will be required to gain a better understanding of the influ-

ence of the cutoff in AdSoS, and the development of an adaptive cutoff scheme may be necessary

to improve the reliability of AdSoS in an asymmetric setup.

G. Computational Efficiency

The main motivation for the design of the AdSoS scheme is a performance improvement fol-

lowing from a large reduction in the number of solvent molecules in the system. This speed gain

is reflected by the simulation timings, which are shown in Fig. 11 as a function of the number P

of processors. Note that the FG, CG, and CG+B scheme share the same box size, but the AdSoS

systems differ from the FG system in the number of molecules.

The GROMOS MD engine makes use of specialized routines to accelerate simulations of aque-

ous systems with the SPC water model.108 The AdSoS scheme was implemented in a similar

fashion. The group-based cutoff truncation allows for the calculation of the non-bonded interac-

tions on the basis of entire molecules instead of atoms, and the SPC parameters were hardcoded.

Since the calculation of the correction potentials, which act on all particles, is computationally de-

manding, a parallelization of the LEUS routine using MPI was introduced, alongside the existing

distributed-memory routines for the non-bonded interactions and the SHAKE algorithm for the

solvent. To this purpose, a LEUS instance was initialized on each processor and assigned N/P

particles, which are coupled to this potential. The CG and CG+B schemes show a comparable
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performance for up to 16 processors (Fig. 11). Increasing the number of cores further, the tasks

become more and more fine-grained, and the timings become dominated by the communication

overhead. The pairwise interaction calculation benefits from additional resources up to 48 pro-

cessors until the performance saturates. The CG box exhibits a linear scaling with up to 8 cores,

which is an inherent limitation to the scaling of GROMOS for comparable numbers of atoms.
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FIG. 11: Comparison of timings for the FG (with Rc = 1.4 nm), CG and CG+B schemes (both

with Rc = 2.4 nm) as a function of the number P of processors. The values are extrapolated from

simulations with 104 steps to the unit of nanoseconds per day. The calculations were performed

on AMD EPYC 7742 CPUs (2.6 GHz) on the ETH HPC cluster Euler.

H. Future Developments

The solvent-scaling scheme is so far only developed for constant-volume (NVT) simulations.

Due to the presence of the gradient-dependent drift forces, the pressure is not a well-defined quan-

tity of the system. In our previous work,82 we showed that the drift forces uphold a pressure

gradient in the box according to P(s) = s−3P∗, which suggests that the average pressure of the

system is not meaningful. To be able to calculate accurate free-energy differences at constant

pressure, an extension of the method to NPT conditions is crucial. A possible avenue would be to

rely on a coupling involving solely the pressure of the FG region, which can be calculated using the

volume-averaging method.122 The implementation of this approach will also require an adaptation

of the biasing procedure to NPT simulations.

Another shortcoming of the current method is the size requirement on the boxes to provide
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a smooth transition from the FG to the CG model. With the correction potentials to cancel the

interface artifacts, smaller SG regions may be explored in the future, so as to further increase the

performance. For the AdResS scheme, it was shown that the hybrid region (equivalent to the SG

region in the AdSoS scheme) can be completely eliminated upon application of the thermodynamic

force to correct for density fluctuations.65 Note, however, that AdSoS handles the SG region more

efficiently than AdResS, as it does not require the evaluation of two separate Hamiltonians.

It should also be straightforward to extend the AdSoS setup in spherical geometry to an ellip-

soidal boundary within a rectangular box. An asymmetric box partitioning would be better suited

for non-spherical (e.g. elongated) solutes, in combination with roto-translational constraints to

prevent them from escaping or protruding outside the FG region. Finally, the possible use of an

adaptive cutoff (i.e. depending on si and s j) could be explored, e.g. by using alternative combina-

tion rules.

Finally, it may also be of interest to investigate the applicability of lattice-sum methods123

(Ewald124 or particle-mesh125–128) in AdSoS. These approaches would incorporate long-range

effects (in an artificially periodic rather than mean-field fashion119), while formally eliminating the

dependence of the results on a truncation cutoff, the selection of which is ambiguous. However,

the choice of a real-space cutoff and, for particle-mesh methods, of a reciprocal-space grid spacing

leading to fast convergence would remain problematic (different requirements for the FG and CG

regions).

V. CONCLUSIONS

The AdSoS method is a novel adaptive-resolution scheme, which distinguishes itself from pre-

vious approaches by relying on a continuum of CG models of increasing graining levels, that are

entirely defined by a scaling of the reference FG model. Thus, the increase in graining is not

obtained by grouping atoms or molecules into beads, but by scaling the atomic parameters of the

FG solvent molecules. This approach relies on the fact that in empirical term-based force fields,

the potential energy is a sum of terms (e.g. covalent, pairwise non-bonded) each characterized by

a well-defined dimensional scaling.

In this work, the applicability of this method was extended from atomic liquids (previous work)

to water, by introducing a molecule-based definition of the scaling, along with the implementation

of additional interactions relevant for rigid solvent molecules, such as reaction-field electrostatics
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and the handling of bond constraints. Furthermore, a spherical system geometry was defined in

addition to the slab geometry, which is more appropriate for solvated globular macromolecules.

To address artifacts in the density and molecular orientations induced by the scaling interface, a

procedure to construct correction potentials was developed based on the LEUS method. It was

shown that these interfacial artifacts generally do not exceed 5% in the uncorrected case, and that

that the correction procedure can be used to eliminate them (nearly) completely.

The scheme was further validated for systems with FG solutes in the AdSoS system. For neutral

solutes, the interaction energies and rotational relaxation times of water, as well as the backbone

φ ,ψ-distribution of alanine dipeptide, were found to be in good agreement with the FG reference

even in the absence of correction potentials. These analyses also suggest that the cutoff radius

needs to be scaled with smax, i.e. Rc = smaxR∗c , in order to mimic a FG system with a cutoff radius

of R∗c . Timings show that a tenfold increase in speed can be achieved in the linear-scaling regime

by using the AdSoS scheme to reduce the number of molecules.

In order to validate the scheme for charged solutes, solute-solvent interaction energies as well

as solvation free energies were calculated for the Na+ and Cl− ions in water. Unlike the proper-

ties of neutral solutes, the charge-solvent interaction energies have proven very sensitive to small

discrepancies in the local density or polarization. Therefore, the use of the correction scheme is

crucial in this case. Applying a Coulomb correction to the energies, the FG and CG+B energies are

found to be in good agreement, which suggests that the AdSoS scheme is able to reproduce solute-

solvent interaction energies even for charged species. Solvation free energies ∆Gcorr calculated

with the CG+B scheme were within 12 kJ mol−1 from the FG reference.

The AdSoS scheme can be easily extended to small rigid solvents other than water. For each

molecule, one has to choose a reference atom for the scaling, ideally a central atom. Further

generalization to larger and/or flexible solvent molecules may be possible using a group-based ap-

proach, whereby different atom-groups in the solvent molecule would be associated to their own

scaling factors. However, in this case, the linear scaling of the interatomic distances with preser-

vation of the angular structure would only be guaranteed within (and not between) the fragments,

and the selected groups should be kept neutral so as to prevent the creation of a solvent net charge

upon scaling. In the future, the solvent-scaling will also be used not only to accelerate solute-in-

solvent simulations for aqueous solutes, but also to accommodate different solvents and/or solvent

mixtures.
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SUPPLEMENTARY MATERIAL

Implementation details of the forces in AdSoS, the adapted SHAKE algorithm, as well as the

procedures for the construction and application of the correction potentials are outlined. Plots

complementing the findings in the Results section are also provided.
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