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Abstract. Many security protocols fundamentally depend on the al-
gebraic properties of cryptographic operators. It is however difficult to
handle these properties when formally analyzing protocols, since basic
problems like the equality of terms that represent cryptographic mes-
sages are undecidable, even for relatively simple algebraic theories. We
present a framework for security protocol analysis that can handle al-
gebraic properties of cryptographic operators in a uniform and modular
way. Our framework is based on two ideas: the use of modular rewriting
to formalize a generalized equational deduction problem for the Dolev-
Yao intruder, and the introduction of two parameters that control the
complexity of the equational unification problems that arise during pro-
tocol analysis by bounding the depth of message terms and the operations
that the intruder can perform when analyzing messages. We motivate the
different restrictions made in our model by highlighting different ways
in which undecidability arises when incorporating algebraic properties of
cryptographic operators into formal protocol analysis.

1 Introduction

Motivation. Many security protocols fundamentally depend on the algebraic
properties of cryptographic operators [16]. For example, protocols based on
the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE, and JFK
protocols, exploit the property of modular exponentiation that (gx)y mod p =
(gy)x mod p. Without this property, these protocols could not even be executed.

A number of approaches have been proposed for formally analyzing security
protocols in the presence of an active intruder. Independent of which formalism is
adopted, one of the core problems is the intruder deduction problem: given a state
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of the protocol execution, can the intruder derive a given message M? Derivation
here is relative to the terms the intruder currently knows, i.e. relative to the
closure under a set of deduction rules of his initial knowledge augmented with
the messages that he has observed. The intruder deduction problem provides the
basis for solving a number of practically relevant protocol analysis problems. We
can, for instance, use it to determine whether the intruder is able to construct a
message of the form that some honest agent is expecting to receive, or whether
he is able to obtain a message that is intended to be a secret, e.g. a key shared
by two honest agents.

In this paper, we focus on the intruder deduction problem in the presence
of algebraic equations that express properties of cryptographic operators. The
underlying intruder model we employ is that of Dolev and Yao [18], in which
the intruder observes all network traffic and can generate new messages, imper-
sonating other agents, but cannot break cryptography. Although the Dolev-Yao
intruder model is very commonly used, most analysis approaches based on this
model are also based on the free algebra assumption. Under this assumption,
two terms are equal if and only if they are syntactically equal. But, as we noted
above, this is inappropriate for protocols that rely on algebraic properties.

Relaxing the free algebra assumption is however nontrivial: even for rela-
tively simple sets of equations, the most basic problem, the unifiability prob-
lem (i.e. the equality of terms under substitutions for their variables), is only
semi-decidable [4, 6, 22]. Moreover, even for those theories where unification is
decidable, the intruder deduction problem may still be undecidable [1, 2].

Solutions for the intruder deduction problem have been given for individual
algebraic theories of cryptographic operators, such as those formalizing different
properties of modular exponentiation or bitwise exclusive or [11, 12, 26]. However,
even though these approaches are specialized to particular algebraic properties,
the algorithms and correctness proofs are quite complex and usually must be
revised or completely re-designed when new properties are added. More general
approaches have been recently proposed [13, 23, 25] and we compare our work
with them in the concluding section §5.

Contributions. Our principal contribution in this paper is a framework for proto-
col analysis that is general and can handle algebraic properties of cryptographic
operators in a uniform and modular way. In doing so, we pave the way for imple-
menting analysis tools that are not specialized to particular algebraic theories
and thereby allow users to declare new operators and properties as part of the
protocol specifications. Of course, given the undecidability of the relevant prob-
lems, this goal cannot be achieved in full, without any restrictions. We now
briefly describe the main ideas and restrictions of our proposed approach.

Our framework is based on two ideas. The first idea is to use modular rewrit-
ing to formalize a generalized equational deduction problem for the Dolev-Yao
intruder. In doing so, we exploit the fact that we can distinguish two kinds
of equational theories associated with security protocols: cancellation theories
(where equations express that certain operations cancel each other out, such as
encryption and decryption with the same symmetric key) and finite equivalence
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class theories (which are theories that induce finite equivalence classes for all
terms). We show how our use of modular rewriting leads to efficient solutions to
the intruder deduction problem.

The second idea is to introduce two “depth parameters” that bound the
depth of message terms and the operations that the intruder can use to analyze
messages (i.e. decompose messages based on his current knowledge, under perfect
cryptography). These bounds control the complexity of the equational unification
problems that arise, transforming undecidable problems into decidable ones.
Moreover, these bounds effectively serve as search parameters that can be used
to control the search over the space of messages.

Our framework is thus parameterized by algebraic theories of the two kinds
above and provides a general algorithm for the algebraic intruder deduction
problem when the depth of message terms and the analysis operations of the
intruder are bounded. Our framework allows us to identify several sub-problems
of the intruder deduction problem (e.g. the reduction of terms to their normal
forms) and provide general algorithms for them. Along the way, we also show
that the problems considered become undecidable when any of the restrictions
made in our framework are removed.

Two remarks are in order to help put into context our use of depth param-
eters. First, rather than considering specialized theories of algebraic properties
of cryptographic operators, the focus of our work is to provide a general and
flexible framework that supports a large class of such theories. However, in this
generality, many problems are undecidable unless we introduce some restric-
tions. Our work shows that bounding the term depth and the message analysis
by the intruder simplifies many of the problems that arise and turns undecidable
problems into decidable ones. Moreover, many protocol analysis methods require
bounds on messages in the first place, e.g. methods based on typed models.

Second, our algorithms are less efficient than those algorithms, when they
exist, that are specialized to particular algebraic theories, e.g. [11, 12, 26], which
usually work without bounds. Our framework is open to the integration of such
specialized algorithms, albeit under the restriction of bounded message depth.
In this way, we can benefit from research advances for specialized theories, while
being able to fall back on general algorithms when specialized ones are not
available.

Finally, we note that our framework is not biased towards a particular pro-
tocol analysis method. It can be used as a basis for handling algebraic equations
when employing different types of formalisms (such as strand spaces, process
calculi, or rewriting) or techniques (such as abstractions or the symbolic lazy
intruder technique employed in our protocol model-checker OFMC [8, 9]).

Organization. We proceed as follows. In §2 we provide background for our ap-
proach. In §3 we introduce a concrete equational theory as a running example
and give an overview of our framework, presenting the central definitions and
theorems. In §4 we focus on how the intruder can analyze messages. In §5 we
compare with related work and draw conclusions.
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2 Background

Messages and cryptography. As is standard, we represent protocol messages as
terms built over a finite signature Σ. We write Σn, for n ≥ 0, to denote function
symbols of arity n. Terms in Σ0 are constants (i.e. nullary function symbols) and
represent atomic messages like agent names or nonces. We define the depth of a
term t as the number of nodes in the longest path from the root to a leaf in its
tree representation, and the size of t as the number of nodes (both inner nodes
and leaves). We write T (Σ, V ) to denote the set of terms that can be generated
using symbols of Σ and variables from a set V , and we write T (Σ) for the set
of ground terms.

Algebraic properties of cryptographic operators. Most approaches to protocol
analysis follow the free algebra assumption, under which two ground terms are
equal iff they are syntactically equal. Many protocols, however, do actually de-
pend on algebraic properties of cryptographic operators, in the sense that the
properties are required for the agents to carry out the steps prescribed by their
protocol roles. Hence, unlike the practice of abstracting from the concrete be-
havior of cryptography, we cannot ignore the algebraic properties on which the
protocol to be analyzed is based. For example, as we noted above, protocols
based on the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE,
and JFK protocols (see the web-page of the IETF [20]), exploit the property of
modular exponentiation that (gx)y mod p = (gy)x mod p. As another example,
note that many protocols combine two secrets into one using associative and
commutative (AC) operators like bitwise exclusive or (xor) · ⊕ ·. Given such a
composed secret, every agent who knows one of the two secrets can also find out
the other one, but no other agent can. For instance, if an agent knows x⊕ y and
x, then he can exploit the properties of ⊕ to compute y as (x⊕ y)⊕ x.

Equational Theories. The formal analysis of protocols like those above requires
explicitly reasoning about the relevant properties of the cryptographic oper-
ators employed. We address in this paper those properties that are formal-
izable by finite sets of equations of the form t ≈ s, where t, s ∈ T (Σ, V ).
For example, the property required for the Diffie-Hellman key-exchange is that
exp(exp(g, x), y)mod p ≈ exp(exp(g, y), x)mod p.

We assume that notions like substitution, matching, unification, and unifia-
bility are defined as standard, e.g. as in [4, 6]. Term positions are represented as
sequences of natural numbers, which are partially ordered by the prefix order-
ing. We define the equational theory ≈E induced by a set E of equations to be
the least congruence on the term algebra that is closed under substitution and
contains E. We define the equivalence class [t]≈E

of a term t as {s | t ≈E s}.
Given a set E of equations, we interpret terms of T (Σ,V ) in the quotient alge-
bra of the term algebra with the congruence on terms, written T (Σ, V )/≈E

. In
this algebra, two terms are equal iff they are equivalent due to ≈E . The ground
word problem for a theory E is the problem of deciding s ≈E t for arbitrary
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s, t ∈ T (Σ). Note that, for brevity, we often refer to a set E of equations as a
“theory”, meaning the equational theory ≈E induced by E.

We say that a substitution σ is an instance of a substitution θ modulo E,
and write σ %E θ, iff there is a substitution λ such that xσ ≈E xθλ for all x ∈
domain(θ). Given a set S of substitutions, S0 is a complete set of substitutions
of S under E iff for all σ ∈ S there is a θ ∈ S0 with σ %E θ.

Definition 1. Let vars(t) denote the variables of a term t. A rewrite rule is an
equation l ≈ r, where l is not a variable and vars(l) ⊇ vars(r). In this case, we
may write l → r instead of l ≈ r. A term-rewriting system (TRS) is a set of
rewrite rules. A TRS C and an equational theory E induce a modular rewriting
relation on E-equivalence classes of terms as follows: [t]≈E

→C/E [s]≈E
iff there

are terms t′ and s′ such that t ≈E t′, t′ →C s′, and s′ ≈E s.
Let →+ and →∗ denote the transitive and the transitive-reflexive closure of

a binary relation →. Given →, we say that t is reducible (and we call t a redex)
iff t → s for some s. t1 and t2 are joinable, denoted by t1 ↓ t2, iff there is some
s such that t1 →∗ s and t2 →∗ s. t is a normal form iff it is not reducible, and s
is a normal form of t iff t →∗ s and s is a normal form. We denote the normal
form of t by t↓, when it is unique. We say that → is confluent iff t →∗ t1 and
t →∗ t2 implies that t1 ↓ t2. Finally, → is convergent iff it is confluent and
terminating.

Although →C/E is defined on equivalence classes of terms, for notational
simplicity we will also write t →C/E s, for terms s and t, rather than [t]≈E

→C/E

[s]≈E
. Employing the same convention, we will also write t↓C/E for [t]≈E

↓C/E .
Note that for a convergent relation →, every term has a unique normal form,
and hence t↓C/E is always defined.

The definition of modular rewriting works directly on E-equivalence classes,
rather than defining a special notion of convergence modulo E. However, while
theoretically appealing, this definition is algorithmically difficult to work with.
Therefore many approaches to modular rewriting employ a weaker but more
tractable variant →C,E of the relation →C/E , namely s →C,E t iff ∃(u → v) ∈
C. ∃σ. s ≈E uσ ∧ t = vσ. For →C,E , there is a completion method [7, 21], and it
is not necessary to explore the entire E-equivalence class of a term t in order to
determine if t is a redex. While we consider here the relation →C/E , we remark
that all constructions and algorithms in this paper can be adapted to →C,E as
well.

A standard result tells us that we can solve the ground word problem for
terms in the theory C ∪ E by normalizing the terms under C and checking the
results for equality modulo E. Formally, if →C/E is convergent and t1 and t2 are
ground terms, then t1 ≈C∪E t2 iff [t1]≈E

↓C/E = [t2]≈E
↓C/E .

The Dolev-Yao intruder. The standard Dolev-Yao model [18] formalizes the
abilities of an intruder who controls the communication network. The intruder
can analyze messages, decomposing them into submessages, and synthesize new
messages from their subparts. In our formalization of this, we assume we are
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given a set of function symbols O ⊂ Σ that describe the ways of constructing
messages (e.g. pairing or cryptographic operations like encryption or hashing).
We also call the set O the set of intruder-accessible operators. For readability, we
will however avoid displaying the set O as an explicit parameter of the intruder
deduction problem.

Definition 2. Given a finite set of ground terms IK (for “intruder knowledge”)
and an equational theory E, we define DYE(IK ) (for “Dolev-Yao”) as the least
set that is closed under the rules

t ∈ DYE(IK )
AX (t ∈ IK ) ,

t1 ∈ DYE(IK )
t2 ∈ DYE(IK )

EQ (t1 ≈E t2) ,

t1 ∈ DYE(IK ) · · · tn ∈ DYE(IK )
op(t1, . . . , tn) ∈ DYE(IK )

OP (op ∈ O) .

The (Dolev-Yao) intruder deduction problem with respect to the equational
theory E is the problem of deciding whether t ∈ DYE(IK ) for ground terms t
and finite sets of ground terms IK .

Note that in this formalization we do not have analysis rules for decomposing
terms. For example, the decryption rule for symmetric encryption

{|m|}k ∈ DYE(IK ) k ∈ DYE(IK )
m ∈ DYE(IK )

is subsumed by the equation {|{|m|}k|}k ≈ m: whenever the intruder has {|m|}k

and k, he can compose them to construct {|{|m|}k|}k, which is equal under ≈E

to m.
The intruder deduction problem is the core deduction problem in protocol

analysis. Consider a trace of messages exchanged between honest agents and
an intruder. For each message m that is sent by the intruder in this trace, the
intruder must be able to derive m, i.e. m ∈ DYE(IK ), where E is the equational
theory considered and IK is the intruder knowledge consisting of the initial
intruder knowledge and all messages the intruder has observed so far. Note
that in many state-of-the-art approaches to protocol analysis (see [14] for an
overview), the term m may contain variables and the resulting symbolic trace
represents the set of traces that are obtained by substituting for the variables
arbitrary terms from DYE(IK ). The use of symbolic terms avoids the näıve
enumeration of all terms that the intruder can generate from his knowledge.

3 A framework for algebraic properties

While equational reasoning is a general paradigm, our focus in this paper is on
its application to security protocol analysis. Let us begin with a concrete exam-
ple: an algebraic theory formalizing relevant properties used in many protocols,
including those based on the Diffie-Hellman key-exchange.
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Example 1. Let Σex = (Σ0
ex, Σ

1
ex, Σ

2
ex), where Σ0

ex is a countable set of constants;
Σ1

ex = {inv(·), ·−1}, where inv(t) and t−1 are the inverses of a message term t
for asymmetric encryption and exponentiation, respectively, and the symbols in
Σ2

ex = {{·}·, {|·|}·, 〈·,·〉, exp(·, ·), · ⊕ ·} denote asymmetric encryption {t2}t1 and
symmetric encryption {|t2|}t1 of a message t2 with a message t1, concatenation
〈t1,t2〉 of two messages t1 and t2, modular exponentiation exp(t1, t2) of a message
t1 with a message t2, and bitwise xor t1 ⊕ t2 of a message t1 with a message t2
(with identity element e). Our example theory Eex is induced by the following
equations over Σex (where the xi are variables from a set disjoint from Σex):

x1 ⊕ x2 ≈ x2 ⊕ x1 (1)
(x1 ⊕ x2)⊕ x3) ≈ x1 ⊕ (x2 ⊕ x3) (2)

exp(exp(x1, x2), x3) ≈ exp(exp(x1, x3), x2) (3)
exp(exp(x1, x2), x2

−1) ≈ x1 (4)
inv(inv(x1)) ≈ x1 (5)

(x1
−1)

−1 ≈ x1 (6)

{{x2}x1}inv(x1) ≈ x2 (7)
{{x2}inv(x1)}x1 ≈ x2 (8)

{|{|x2|}x1 |}x1 ≈ x2 (9)
x1 ⊕ x1 ≈ e (10)
x1 ⊕ e ≈ x1 (11)

We split Eex into two subtheories: Fex is induced by the equations (1)–(3), and
Cex is induced by the equations (4)–(11). ut

Note that, as is often done, we leave implicit the modulus of exponentiation in
Eex: instead of gx mod p (i.e. exp(g, x)mod p) we write simply gx (i.e. exp(g, x)),
assuming that exponentiation is always performed using the same (publicly
known) modulus. Note also that Eex does not contain redundant equations
(which are entailed by the given equations) such as e⊕ x1 ≈ x1.

There is a subtlety about modeling exponentiation that is worth remarking
on here. The modulus plays an important role in cryptographic algorithms like
RSA, which are based on modular exponentiation. In the RSA algorithm, given
a message x, the intruder in general should not be able to compute x−1 with
exp(exp(b, x), x−1) = b modulo m, unless he knows the prime factors of m.
Otherwise, if we gave the intruder the ability to compute x−1 without knowing
the prime factors, then he can derive the private key for each public key he
knows (which is clearly not what one wants to model). On the other hand, in
the Diffie-Hellman key-exchange, we should assume that the intruder is always
able to build x−1, since the modulus m is a publicly known prime number in
this case.

3.1 Two kinds of theories

Our framework is based on modular rewriting and exploits the fact that we can
distinguish two kinds of equational theories associated with security protocols:
cancellation theories and modulo theories. Cex is an example of a cancellation
theory, which is a theory whose equations express that certain operations (such
as encryption followed by decryption with the same key) cancel each other out.
Such equations can usually be described by a convergent TRS and we can thus
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apply these equations to rewrite all terms into normal form. The advantage of
separating out a convergent subtheory is that we can then neglect its equations
during subsequent equality reasoning when all terms are normalized.

Definition 3. A cancellation theory is a theory induced by cancellation rules
of the form op(t1, . . . , tn) ≈ s, with s a constant or a subterm of one of the ti.

Fex is an example of a modulo theory, which is a theory that comprises equa-
tions that cannot be oriented into terminating rewrite rules; the standard ex-
amples from rewriting are the equations for properties like associativity and/or
commutativity. It is common for these equations to form a “background theory”
used when applying other rewrite rules (such as the cancellation equations); that
is, one performs rewriting modulo the equations of a modulo theory.

Here we will not restrict ourselves to a particular modulo theory, like AC,
but rather work with a class of theories, namely finite equivalence class theories.

Definition 4. An equational theory E is a finite equivalence class (FEC) theory
if the equivalence class [t]≈E

= {t′ | t′ ≈E t} is finite for all terms t ∈ T (Σ, V ).

Note that for a cancellation theory, there are always terms with an infinite
equivalence class (e.g. the terms on the right-hand side of equations). Thus, FEC
and cancellation theories are disjoint theory classes.

In the following, we will use C and F to denote cancellation and FEC theories,
respectively. We can prove that:

Lemma 1. Fex is an FEC theory and Cex is a cancellation theory.

Proof. Every rule in Cex is a cancellation rule by definition. Fex is an FEC
theory since in a ground term, there are only finitely many ways to commute
and associate subterms composed with ⊕ or exp. 2

As is standard, the equational matching problem for a theory E is the ques-
tion of whether, given a ground term t and a term s with variables, there is a
substitution σ such that t ≈E sσ. From the definition of FEC theories, we have:

Theorem 1. The equational matching problem for an FEC theory F is decid-
able. In particular, there is a terminating algorithm that returns a complete set
of matches modulo F for a given instance of the problem.

Proof. It is quite straightforward to show that the following problem is decidable
for every FEC theory F : Given two terms t1 and t2, where t1 is a ground term,
is there a substitution σ such that t1 ≈F t2σ? This is the case if there is a term
t′1 ∈ [t1]≈F

such that t′1 = t2σ for some substitution σ. Since F is an FEC theory,
the equivalence class [t1]≈F

is finite by definition, and thus we have reduced the
problem to (finitely many instances of) standard syntactic matching. 2

A special case of equational matching is the ground word problem (when s is
also ground), and hence this problem is also decidable for FEC theories.

As we will see below, our framework relies on the decidability of matching
for FEC theories. In contrast, the unification problem (where both terms may
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contain variables) for FEC theories is undecidable. Consider the theory of dis-
tributivity and associativity D?+A+ = {x?(y+z) ≈ (x?y)+(x?z), x+(y+z) ≈
(x+y)+z}. Unifiability in this theory is undecidable as shown in [27]. As equiva-
lence classes in D?+A+ are finite, we thus have that unifiability modulo an FEC
theory is in general undecidable.

In §4 we will use the following important property of FEC theories, namely
that they cannot contain equations that introduce new variables:

Lemma 2. If l ≈ r is an equation of an FEC theory, then vars(l) = vars(r).

Hence, l ∈ V implies l = r, so that such trivial equations can be safely omitted.

Proof. Suppose, without loss of generality, that an FEC theory F contains an
equation (l ≈ r) with a variable v ∈ vars(l) \ vars(r), and let σ be a ground
substitution for r. Then the ground term rσ matches (by σ) the right-hand
side r, and thus is equal, under F , to lσ for any substitution of the remaining
variables. As there is at least one variable v, and we can instantiate it with
any term, the equivalence class of rσ is infinite and hence F cannot be an FEC
theory. 2

We conclude this subsection by observing the relevance of these two kinds of
theories to security protocol analysis. As we will see, cancellation rules are closely
related to the analysis (e.g. decryption) of terms by the intruder and honest
agents, and therefore have a distinguished role in deductions. We will namely
define a normal form of the intruder knowledge as a state where the applications
of cancellation rules do not give him any “new” terms (in a sense to be precisely
defined later).

3.2 Restriction to a bounded variable depth model

As unifiability modulo an FEC theory is undecidable, we must introduce a re-
striction under which unification becomes decidable. We achieve this by introduc-
ing bounds on messages. There are several ways to do this, e.g. by bounding the
number of operations that the intruder can perform to synthesize new messages
from his knowledge, or by limiting the depth of terms that may be substituted
for variables in the rules formalizing the steps of a protocol execution. We take
the second approach here and bound the depth of message terms. To this end,
we first define a subset of the variable symbols with an associated depth bound,
and we then define which substitutions are permissible for these variables.

Definition 5. We call a bounded variable a variable for which only terms with
bounded depth can be substituted. Let VB ⊆ V be the set of bounded variables
such that every variable v has an associated depth bound depth(v) ∈ N. We
extend the function depth(·) to arbitrary terms as follows:

depth(v) = ∞ for v ∈ V \ VB ,
depth(c) = 0 for c ∈ Σ0,

depth(op(t1, . . . , tn)) = 1 + maxn
i=1 depth(ti) for op ∈ Σn, with n > 0 .
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We say that a substitution σ respects the depth restrictions of the variables in a
term t, and write respect depth(σ, t), iff depth(vσ) ≤ depth(v) for all v ∈ vars(t).

We call the bounded variable depth model (BVDM) the restricted protocol anal-
ysis model in which only substitutions are allowed that respect the depth of
variables. For example, we may formulate the problem whether, given terms s
and t with vars(s) ∪ vars(t) ⊆ VB, it holds that

∃σ. respect depth(〈s,t〉, σ) ∧ sσ ≈E tσ .

The following lemma tells us that any computable function on ground terms can
be extended to a computable function on terms with bounded variables. This
will allow us, in the rest of this paper, to restrict ourselves to the ground case
while all results can be carried over to terms with bounded variables.

Lemma 3. Let f be a computable function that takes as input n terms that may
contain variables and m ground terms, and which returns a finite set of terms.
Then the following function f ′ is also computable. f ′ takes as input n terms that
may contain (arbitrary) variables and m terms that may contain only bounded
variables, and returns a finite set of terms and substitutions such that:

∀s1, . . . , sn ∈ T (Σ, V ). ∀t1, . . . , tm ∈ T (Σ,VB). ∀σ.

[ground(t1σ) ∧ . . . ∧ ground(tmσ) ∧ domain(σ) ⊆ VB∧
respect depth(〈s1, . . . , sn, t1, . . . , tm〉, σ)] =⇒

[(r, σ) ∈ f ′(s1, . . . , sn, t1, . . . , tm) ⇐⇒ rσ ∈ f(s1σ, . . . , snσ, t1σ, . . . , tmσ)] .

Proof. Observe that, since we have assumed a finite signature, there are only
finitely many ground terms of a given depth. Thus, the set of admissible substi-
tutions for a bounded term is finite. Now, it is possible to construct f ′ given f
as in the assumptions of this theorem:

– Given t1, . . . , tm with only bounded variables, compute the finite set Θ of
admissible substitutions for the ti.

– For every σ ∈ Θ, compute f(s1σ, . . . , snσ, t1σ, . . . , tmσ), which yields a finite
set R. For each r ∈ R, the result of f ′(s1, . . . , sn, t1, . . . , tm) contains the
tuple (r, σ). 2

Lemma 3 allows us, for instance, to easily lift the matching algorithm for
FEC theories F to a unification algorithm where one of the two input terms
contains only bounded variables.

Lemma 4. For an FEC theory F , the one-side-bounded unifiability problem is
decidable, i.e. it is decidable whether, given terms s and t with vars(t) ⊆ VB,
there is a substitution σ such that respect depth(〈s, t〉, σ) and sσ ≈F tσ. More-
over, there is a complete one-side-bounded F -unification algorithm, i.e. given
terms s and t with vars(t) ⊆ VB, the algorithm returns a set S of substitutions
such that for every substitution σ with sσ ≈F tσ and respect depth(〈s, t〉, σ),
there is a τ ∈ S with σ %F τ . ut
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Note that the depth of messages is often bounded in protocol analysis. For
instance, many model-checking approaches bound terms to obtain a finite-state
system, e.g. [3, 24]. Moreover, when other parameters of the model are un-
bounded, like the number of sessions, then restricting the message depth is essen-
tial for decidability [19]. Note also that [10] presents an approach that similarly
bounds the depth of message terms in order to tackle the problem of algebraic
properties in intruder deductions; the approach of [10] is however specialized to
a particular algebraic theory.

3.3 Matching and unification in FEC theories in the BVDM

We have shown that for every FEC theory F , we can decide the matching prob-
lem. By Lemma 3, when the variables are bounded on one side, we can reduce an
F -unification problem to a finite number of F -matching problems, which we can
solve by Theorem 1. The algorithms that we can obtain from the constructive
proof of Theorem 1 however have poor complexity. Moreover, there exist more
efficient, specialized algorithms for some of the theories that are relevant for the
analysis of security protocols, e.g. [11, 12, 26].

We give a solution to handle F -unification efficiently in the bounded case and
which allows for the straightforward integration of existing unification algorithms
for disjoint subtheories of F . Before we present the idea, however, we first want
to discuss why standard results for combining unification procedures for disjoint
theories such as [5] cannot be applied in our setting. In a nutshell, the idea
of [5], based on the classical Nelson-Oppen combination method, is to transform
a given unification problem into a pure one, i.e. where each equation to unify
contains only symbols from one of the disjoint subtheories. For instance, in our
example theory Eex, we may transform the given unification problem

exp(g, x1 ⊕ x2) ≈ exp(x3, x4)

into the problems

exp(g, x5) ≈ exp(x3, x4) and x5 ≈ x1 ⊕ x2 .

Then, each equation can be unified using the unification algorithm for the re-
spective subtheory. The problem in our setting is that, in general, we can only
support unification where the variables on one side of each equation are bounded.
Suppose that in this example the variables x1 and x2 are unbounded, while x3

and x4 are bounded. Then the newly introduced variable x5 cannot be bounded,
and thus we have a unification problem with unbounded variables. (Note that
a similar problem would occur if we considered only matching, e.g. if we had
ground terms instead of x3 and x4.) It is thus not possible to integrate such an
idea into our framework without full F -unification (which would lead to unde-
cidable problems).1

1 As we later want to reduce ground terms (or terms with bounded variables) according
to →C/F for a cancellation theory C and FEC theory F , we must at least be able to
decide F -matchability (or F -unifiability where variables on one side are bounded).
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The idea we present now is based on a subproblem of matching/unification
that gives us a different way to address the problem of integrating algorithms
for disjoint subtheories.

The subproblem that we consider is one that has previously been consid-
ered in unification algorithms for AC-theories: given a term t, an n-ary operator
symbol op, and fresh variables x1, . . . , xn, determine the unifiers σ such that
tσ ≈E op(x1, . . . , xn)σ. We call such a unifier a toplevel decomposition of t for
the operator op with respect to fresh variables x1, . . . , xn. In the following, we
will consider, for a given toplevel decomposition problem, a subset of the substi-
tutions that represent the possible decompositions and is complete (in the sense
defined in §2). We will write CSTD for the complete set of toplevel decomposi-
tions.

As a simple example, in the free term algebra every term has a singleton
CSTD, namely its syntactic decomposition. A more interesting example is the
term x⊕c (for a variable x and a constant c) in our theory Fex. It has the following
CSTD for the operator ⊕ and fresh variables x1 and x2: first, we have the
“syntactic” solution [x1 7→ x, x2 7→ c]; second, unless the variable x is bounded
to depth 0, we have the solution [x 7→ x3 ⊕ x4, x1 7→ x3, x2 7→ x4 ⊕ c] for fresh
variables x3 and x4; and finally, for each solution we also have its commutation
(swapping x1 and x2). All other toplevel decompositions are instances of one of
these solutions.

The CSTD gives us a notion of all the ways to decompose a term into an
operator and its arguments, modulo equivalent representations of the argument
terms. Observe that this is a subproblem of the intruder deduction problem,
as we must check how the intruder can compose a term from known subterms.
Moreover, CSTD is obviously a subproblem of the E-unification problem. We
will now show, conversely, that we can obtain a CSTD-based algorithm for the
F -unification problem for terms with bounded variables on one side. Note that
for every term with only bounded variables, there is a finite CSTD and it can
be computed by a terminating algorithm.

Consider an F -unification problem {s ≈F t}∪Eq where one side of each equa-
tion contains only bounded variables, say s for the first equation. We consider
the following two cases: First, if t is a variable. If t occurs in s, but t 6= s, then
the unification fails.2 Otherwise, we have the partial unifier [t 7→ s] and continue
with the problem Eq[t 7→ s]. The second case is t /∈ V, i.e. t = op(t1, . . . , tn).
In this case, we compute the CSTD of s for operator op and fresh variables
z1, . . . , zn. If the CSTD is {τ1, . . . , τm}, then we continue recursively with the
following problems (for 1 ≤ i ≤ m):

{z1τi ≈ t1τi, . . . , znτi ≈ tnτi} ∪ Eqτi .

Observe that in every recursion step, the zjτi (for 1 ≤ j ≤ n) are terms with
only bounded variables since the term s is bounded. The termination now follows

2 Assume there is a unifier σ, then sσ ≈F tσ where tσ is a proper subterm of sσ. Thus
the F -equivalence class of tσ is infinite, although F is FEC.
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from the assumption that all variables on one side are bounded (in our notation,
the variables on the left-hand sides of the equations).

Let us illustrate with an example that in the BVDM this algorithm for the
F -unification problem based on CSTDs is in fact an improvement over the näive
algorithm for F -unification based on exploring the F -equivalence class of one of
the terms. Consider the unification problem {s ≈ t} in Fex where t = t1⊕ . . .⊕tn
and s = s1⊕ . . .⊕sn. The näıve algorithm explores the entire equivalence class of
either s or t, say s, without loss of generality. The equivalence class of s contains,
for instance, all associations of permutations of the si. Then, the algorithm will
syntactically unify each s′ ∈ [s]Fex

with t. The algorithm based on CSTDs,
however, will explore only the ways to decompose one of the terms, say s, into
an operator and subterms. In this case, this can only be s′1⊕ s′2 where s′1 and s′2
are a partition of the si into two parts. This algorithm is still exponential, but
it saves us from also exploring the equivalence classes of the subterms s′1 and s′2.

With the notion of CSTD as a subproblem of unification in the BVDM, we
not only have a more efficient algorithm for the general case, but we also have
a basis for combining existing unification algorithms, e.g. combining a special-
ized algorithm for a particular subtheory (like exponentiation) with the general
algorithm sketched just above.

As is standard, let us say that two equational theories E1 and E2 are disjoint
if they are induced by equations over disjoint signatures Σ1 and Σ2.

We observe that for disjoint FEC theories we have the following property:

Lemma 5. Let F1 and F2 be two disjoint FEC theories over signatures Σ1 and
Σ2. If op(t1, . . . , tn) ≈F1∪F2 op′(s1, . . . , sm) then either op, op′ ∈ Σ1 or op, op′ ∈
Σ2.

Proof. Suppose that op ∈ Σ1 (the proof for the case op ∈ Σ2 is analogous). By
Lemma 2, both sides of equations in FEC theories must have an operator symbol
(not a variable symbol) as root. Therefore, any application of a rule of F1 and F2

is either to a subterm (thus leaving the top symbol op) or it can only be from F1

and therefore the new top symbol is again from Σ1. Therefore, after any number
of rule applications, the toplevel symbol is still from Σ1, thus op′ ∈ Σ1. ut

The key property of disjoint FEC theories F1 and F2 is the following:

Theorem 2. Let F1 and F2 be two disjoint FEC theories over signatures Σ1

and Σ2, and let op ∈ Σ1. Then

op(t1, . . . , tn) ≈F1∪F2 op′(s1, . . . , sm)

iff there are terms s′1, . . . , s
′
m such that

op(t1, . . . , tn) ≈F1 op′(s′1, . . . , s
′
m)

and si ≈F1∪F2 s′i for all i with 1 ≤ i ≤ m.
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Proof. The direction “left to right” of the “iff” is straightforward.
For the converse direction, let us define the notion of the Σ1-threshold of a

term t, thrΣ1(t), which is the set of positions in the term such that up to that
position only symbols of Σ1 (and variable symbols) occur:

thrΣ1(t) =


{ε} ∪

⋃n
i=1

⋃
p∈thrΣ1 (ti)

i · p if t = op(t1, . . . , tn) ∧ op ∈ Σ1 ,

∅ if t = op(t1, . . . , tn) ∧ op /∈ Σ1 ,

{ε} if t ∈ V .

Moreover let
belowΣ1(t) = {t|p | p ∈ pos(t) ∧ p /∈ thrΣ1(t)}

be the set of all subterms of t at positions below the Σ1-threshold.
Now let P = thrΣ1(op(t1, . . . , tn)) and let a proof for op(t1, . . . , tn) ≈F1∪F2

op′(s1, . . . , sn) be given by a sequence of terms u1, . . . , uk, where each term can
be obtained from the previous term by one application of a rule in F1 or in F2,
and u1 = op(t1, . . . , tn) and uk = op(s1, . . . , sn). Also, let pi (1 ≤ i < k) be
the position in the term ui at which the rule is applied to produce ui+1. We
note that we have here a universal word-problem, i.e. the terms may contain
variables, and we have to show their equivalence independent of the variables; in
particular, we cannot instantiate the variables during the proof of ≈F1∪F2 , since
the equivalence must hold under any instantiation.

The idea is now to split the proof into two parts: in the first part, rules are
applied only above the Σ1-threshold of the respective terms (and we will show
that these rules must be from F1), and in the second part, rules are applied only
below the threshold (but may be from both F1 and F2).

First, we show that for every prefix u1, . . . , ul, with l < k, of the proof
sequence such that pi ∈ thrΣ1(ui), with 1 ≤ i ≤ l, it holds that the applied rule
is from F1 and that belowΣ1(ui) = belowΣ1(ui+1). The latter equality means
that the set of subterms below the threshold does not change (although the
number of occurrences of identical subterms might change).

We show this by induction over l, i.e. assuming that the conditions hold
already for every prefix up to l − 1, and pl ∈ thrΣ1(ul).

By Lemma 2, the applied rule must have a top-level symbol from the re-
spective Σi. The case ul|pl

∈ V is excluded, as in this case the rule can only
be applied when instantiating a variable of ul (which is impossible as noted
above). Therefore ul|pl

is a term that is not a variable; the root symbol must
be from Σ1 as otherwise pl does not belong to the Σ1-threshold of ul. There-
fore the top-level symbol of the applied rule must be from Σ1, i.e. the step is
from theory F1. It remains to show that the new term ul+1 has the same set
belowΣ1(ul+1) as ul. Let lhs ≈ rhs ∈ F1 be the rule that transforms ul into
ul+1, i.e. there is a substitution σ such that lhsσ = ul|pl

and rhsσ = ul+1|pl

and ul[pl]rhsσ = ul+1. Suppose there is a w ∈ belowΣ1(ul) \ belowΣ1(ul+1) (the
the case w ∈ belowΣ1(ul+1) \ belowΣ1(ul) is analogous). Since the only change
is below position pl, it must hold that w ∈ belowΣ1(ul|pl

). Let p be the position
of w in ul|pl

. It holds that w is below the threshold, and that lhs cannot contain
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symbols from Σ2, and that lhsσ matches ul|pl
; therefore it follows that there is

a prefix p′ of p (not necessarily a proper one) such that lhs|p′ is a variable. By
Lemma 5, this variable also occurs in rhs, thus rhsσ has w as a subterm, which
contradicts that w does not occur in ul+1.

Up to here we have established that an initial part of the equivalence proof
that applies rules above the threshold can only apply F1 rules and does not
change the set of subterms below the threshold.

Next we show that if the equivalence proof contains an intermediate sequence
of rule applications below the threshold, we can permute the sequence so that
all rule applications below the threshold are performed at the end of the proof
(after all above-threshold applications). This can be illustrated as follows:

Part A︸ ︷︷ ︸
above

Part B︸ ︷︷ ︸
below

Part C︸ ︷︷ ︸
above

Part D︸ ︷︷ ︸
any

↓
Part A︸ ︷︷ ︸
above

Part C’︸ ︷︷ ︸
above

Part B’︸ ︷︷ ︸
below

Part D︸ ︷︷ ︸
any

Note that there might be changes in the part B in this transformation (thus
we wrote B’), as the number of occurrences of some identical subterms may
change and therefore the number of repetitions (at different positions) of certain
subparts of the equivalence proof may change. Moreover, the subterms of part
C may be different and thus we wrote C’.

Repeated application of this transformation results in a proof that contains
first a sequence of applications above the threshold (that can only contain F1

rule applications due to what we have shown so far) and a part that contains
only rules below the threshold.

First, we show that the steps of part C can precede the steps of part B. The
reason is that part B can change only subterms below the threshold: by induction
we can show that each rule of part C is still applicable since the changes are at
positions that match the variables of the rule. Since we have shown that the
above threshold application of rules doesn’t change the set of subterms below
the threshold, each subterm affected by part B still exists (though possibly a
different number of times) and thus the respective transformations can still be
done.

With this transformation, we can conclude the proof, as we have now a
sequence of steps from u1 to some term ull that contains only above-threshold
applications, and therefore only rule applications from only F1, i.e. we have
shown u1 ≈F1 ull and ull thus has the form op′(s′1, . . . , s

′
m) for some op′ ∈ Σ1

and suitable s′i. Moreover, we have a proof with only below threshold applications
of ull ≈F1∪F2 uk. Since all applications are below the threshold, they cannot be
toplevel applications (as op′ ∈ Σ1) and therefore we have proofs that s′i ≈F1∪F2 si

for any 1 ≤ i ≤ m. ut

This theorem is the key for integrating specialized matching or unification
algorithms into the general CSTD-based unification algorithm we have sketched
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above. Namely, according to this theorem, to compute CSTD of a term t for
decomposition with the operator op, we can use the unification algorithm for
the subtheory to which op belongs, for the following reason. In the case that
t = op′(. . .) for an operator op′ that belongs to a different subtheory, there cannot
be a unifier. In the case that op′ belongs to the same subtheory, Theorem 2 tells
us that we can decompose t modulo the subtheory of op and op′ and then to
F -unify the subterms.

3.4 Intruder deduction modulo F

So far we have considered the problem of unification and matching modulo an
FEC theory F . We now turn to the intruder deduction problem modulo F , i.e.
whether t ∈ DYF (IK ) holds for a ground term t and a set of ground terms IK .

Lemma 6. If F is an FEC theory, then the problem t ∈ DYF (IK ) is decidable
for a term t and a set of terms IK .

To prove this, we first show the following lemma which decouples consequences
of F (or of a subtheory of F ) from derivations of the intruder:

Lemma 7. For any theory E = E1 ∪ E2, application of equivalences due to E1

can be split from the rest of the derivation: t ∈ DYE(IK ) iff t ∈ [DYE1(IK )]≈E
.

Proof. In a DYE-proof, we can move all E1-equivalence steps down over all OP
steps:

t0 ≈E1 t1 t0
t1

E1

f(t1)
OP

→ f(t0) ≈E1 f(t1)
t0

f(t0)
OP

f(t1)
E1

This is because ≈E is a congruence relation. As a consequence, every proof can
be transformed into one where the OP rule is only applied to terms/subproofs
that are free from equivalences.

Proof of Lemma 6. By Lemma 7, t ∈ DYF (IK ) iff there exists t′ ≈F t, and
t′ ∈ DY∅(IK ). The latter problem (i.e. derivation in the free algebra) is easy for
ground terms: t′ ∈ DY∅(IK ) iff t′ ∈ IK or t′ = op(t1, . . . , tn) and ti ∈ DY∅(IK )
for all 1 ≤ i ≤ n. Since [t]≈F

is finite, there are finitely many terms t′ for which
this needs to be checked. ut

In the following, we will consider the generalization of the problem t ∈
DYF (IK ), where the term t may contain variables. This is an important question
even for a model with only ground terms, since we will later consider intruder
derivations modulo F ∪ C. In particular, given a set IK of ground terms, we
must decide whether there is some ground instance tσ of the left-hand-side t of
a cancellation rule of C such that tσ can be derived modulo F from IK (note
that t is here a term with unbounded variables).
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Lemma 8. There is an FEC theory F such that it is undecidable for a term t
and a set of ground terms IK , whether there exists a substitution σ such that tσ
is ground and tσ ∈ DYF (IK ).

Proof. We define an FEC theory FPCP and show that the PCP problem can be
reduced to derivability modulo FPCP of terms with variables; the undecidability
of this problem follows then from the undecidability of the PCP problem. In
FPCP occur the function symbols 〈 · , · 〉 (concatenation with associativity), 〈〈 · , · 〉〉
(concatenation without associativity), as well as res(·, ·, ·) and initres(·), which
will be used to keep track of partial solutions of the PCP problem:

〈A,〈B,C〉〉 ≈ 〈〈A,B〉,C〉
A.B ≈ B.A

A.(B.C) ≈ (A.B).C
〈〈Ident,res(X, Y, 〈〈Ident,〈〈Xi,Yi〉〉〉〉.S)〉〉 ≈ res(〈Xi,X〉, 〈Yi,Y 〉, 〈〈Ident,〈〈Xi,Yi〉〉〉〉.S)
〈〈Ident,initres(〈〈Ident,〈〈Xi,Yi〉〉〉〉.S)〉〉 ≈ res(Xi, Yi, 〈〈Ident,〈〈Xi,Yi〉〉〉〉.S)

For the encoding of identifiers without bounds, we additionally need the
constant 0 and the function symbol s (for successor). For simplicity, we will in
the following refer to identifiers as 1, . . . , n rather than their actually encoding as
terms, namely s(0), . . . , sn(0). Similarly, if the underlying alphabet of the PCP
is {c1, . . . , cn}, then the term encoding is also s(0), . . . , sn(0), i.e. we don’t use
disjoint subsets of T (Σ) for identifiers and characters of the PCP problem. We
define the intruder-accessible operators as O = {s(·), 〈 · , · 〉, 〈〈 · , · 〉〉}.

For a given instance P = {(x1, y1), . . . , (xn, yn)} of the PCP problem, we
define the function symbtabP as:

symbtabP = 〈〈1,〈〈 < x1 > , < y1 > 〉〉〉〉. . . . .〈〈n,〈〈 < xn > , < yn > 〉〉〉〉
< s > = 〈c1,〈 . . . ,cn〉〉 for a string s of characters c1, . . . , cn.

We first observe that symbtabP ≈Fpcp 〈〈i,〈〈x,y〉〉〉〉.s iff x = xi and y = yi, i.e. we
can use the symbol-table to check whether a certain pair of strings belongs to
the PCP problem, and which index it has.

Let now IKP = {initres(symbtabP ), 1, . . . ,m} for a given PCP P where
{1, . . . ,m} is the set of constants that identify each pair of strings of P .

An important property of our construction is the following:

res(X, Y, symbtabP ) ∈ DYFpcp(IKP )

holds for suitable terms X and Y iff there exist indices i1, . . . , ik, k > 0 such
that

X ≈Fpcp 〈xi1 ,〈 . . . ,xik
〉〉 and Y ≈Fpcp 〈yi1 ,〈 . . . ,yik

〉〉 .

In other words, the intruder can derive res(X, Y, symtabP ) iff X and Y are
the corresponding strings of a certain sequence of indices. It is immediate that
for any sequence i1, . . . , ik, k > 0, the intruder can obtain

res(〈xi1 ,〈 . . . ,xik
〉〉, 〈yi1 ,〈 . . . ,yik

〉〉, symtabP ) .
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To show the converse direction of the property, first observe that the intruder
does not initially know any term res(·, ·, ·) and this symbol is also not accessible
to him. Thus, the only way to generate a res term is via equivalence in F . The
statement can be proved as an invariant of the equations that contain the symbol
res.

Finally, let t = res(Z,Z, S), then with the property that we have just proved
we have that t ∈ DYFP CP

(IKP ) iff there is a sequence of indices i1, . . . , ik (for
some k > 0), such that both Z ≈Fpcp 〈xi1 ,〈 . . . ,xik

〉〉 and Z ≈Fpcp 〈yi1 ,〈 . . . ,yik
〉〉,

which is the case iff the PCP P has a solution. ut

Hence, to decide the intruder deduction problem for terms with variables,
we must make further restrictions. By Lemma 3, the problem is decidable if t
contains only bounded variables.

4 Cancellation equations

We now turn to the cancellation equations such as {|{|x2|}x1 |}x1 ≈ x2. Such an
equation cannot be formalized as part of an FEC theory like Fex since all equiva-
lence classes are infinite. As introduced in §2, we will now consider rewriting for
cancellation theories C modulo an FEC theory F . Note that every cancellation
theory is a rewrite theory as every cancellation equation l ≈ r has the property
that vars(l) ⊇ vars(r).

The principal property that we require is that the modular rewriting rela-
tion →C/F is convergent. The following subsection addresses the question of
convergence.

4.1 Checking Convergence

In this subsection, we will sketch ways to check that →C/F is indeed conver-
gent. This task is particularly difficult in our case, as the standard method to
show (local) confluence, the critical pairs method, cannot be applied for modular
rewriting.

Note that it is not part of our framework to check whether two given theories
F and C have the properties we require, i.e. whether F is an FEC theory, C
is a cancellation theory, and →C/F is convergent. When using our framework
on theories that do not satisfy these requirements, the properties established in
the lemmata and theorems of this paper do not necessarily hold anymore. In
particular, the unification algorithm for F ∪C may be non-terminating and miss
unifiers.

Termination. Given an FEC theory F and a cancellation theory C, then →C/F

is not necessarily terminating as the following example shows:

F = {1 ≈ s(0)} and C = {s(0) → 1} .

(We write the equation of C as a rule, because it is handled as a rewrite rule,
i.e. with a “direction”.)
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The general method to prove termination of a (modular) rewrite relation →
is to define a metric M on terms (or on E-equivalence classes of terms in the
case of rewriting modulo E) and prove that s → t implies M(s) > M(t). This
excludes infinite chains of rewrite steps

s1 → s2 → s3 → . . .

as the metric is always positive and strictly decreases in every step.
When considering an FEC theory F and a cancellation theory C, then usually

an appropriate metric for proving the termination of →C/F is based on the size
of terms (i.e. the number of nodes in their tree representation).3 The reason why
this metric is often appropriate in our framework is that typically F -equivalent
terms have the same size, and typically applying →C strictly reduces the size of
terms.

Consider the example theories Fex and Cex. It is straightforward that for
every ground instance of equations in Fex, the left-hand side and right-hand
side have the same size, and therefore, by induction, Fex-equivalent terms have
the same size. Similarly, for every ground substitution of the variables of the
equations in Cex, the left-hand side has a strictly larger size than the right-hand
side, thus →Cex strictly reduces the size of every term it is applied to.

Assume now that [t1]≈F
→C/F [t2]≈F

and F -equivalent terms have the same
size and →C reduces the size of terms. By definition, there exist terms t′1 ≈F t1
and t′2 ≈F t2 such that t′1 →C t′2. Then we have size(t1) = size(t′1) > size(t′2) =
size(t2), and therefore size([t1]≈F

) > size([t2]≈F
).

For our example theories, it thus follows that →Cex/Fex
is terminating.

Local Confluence. It is standard to first show a weaker property than confluence,
namely local confluence. Then, one can use the fact that for a terminating relation
→, local confluence implies confluence and thus convergence:

Definition 6. A relation → is called locally confluent if from t → t1 and t → t2
it follows that t1 ↓ t2.

Lemma 9 (Newman’s Lemma). A terminating relation is confluent if it is
locally confluent.

Proof. See, for instance, [4]. ut

For non-modular rewriting, the standard method to establish local confluence
is to check its critical pairs:

Definition 7. Let C be a rewrite theory. Let (l1 → r1), (l2 → r2) ∈ C be two
(not necessarily different) rewrite rules that are renamed so that their variables
are disjoint. Let p be a non-variable position in l1, and let θ be a substitution
with l1|pθ = l2θ. Then the pair of terms (r1θ, l1θ[r2θ]p) is called a critical pair
of C.
3 Recall that→C/F is defined on F -equivalence classes of ground terms; the size-metric

is hence defined on F -equivalence classes of ground terms to be the size of the largest
term in the class.

19



Lemma 10. If C is a rewrite theory such that all critical pairs (t1, t2) of C are
joinable, t1 ↓C t2, then →C is locally confluent.

Proof. See, for instance, [4]. ut

Observe that we can split our example theory Eex into disjoint theories as
follows:

Subtheory Equations Occurring symbols
Exor (1), (2), (10), (11) ⊕, e
Eexp (3), (4), (6) exp, ·−1

Ecrypt (5), (7), (8) {·}·, inv(·)
Escrypt (9) {| · |}·

Note that the theories Ecrypt and Escrypt consist of only cancellation equa-
tions, i.e. Ecrypt ∩Fex = ∅ and Escrypt ∩Fex = ∅. Thus, each of them alone forms
a non-modular rewriting theory, and we can prove the local confluence (and
therefore also the convergence) for both subtheories with the standard critical
pairs method:

Lemma 11. →Ecrypt
and →Escrypt

are convergent.

Proof. Build all (most general) critical pairs for these theories and check that
they are joinable; then Lemma 9 and termination of→Cex/Fex

(which is a superset
of →Ecrypt

and →Escrypt
) imply the convergence of these two relations. ut

We will now proceed to prove the convergence of the modular rewrite rela-
tions that the other subtheories induce. Then we can obtain the convergence of
→Cex/Fex

by showing that convergence of disjoint subtheories implies convergence
of their union.

Lemma 12. →Cxor/Fxor
and →Cexp/Fexp

are convergent.

Note that this lemma cannot be established by using the critical pairs method
as this method is built on the assumption that for every “conflict” between two
possible rule applications, it holds that one of the positions where the rules are
applied is a sub-position of the other. For modular rewriting this is not true.
Consider for example the term t = (a⊕ a)⊕ e. We can apply to t both the rules
(10) and (11), and the affected subterms partially overlap. Therefore the critical
pairs method may miss conflicts between rules in modular rewriting.

Proof. We first conjecture the unique normal form for both theories and then
show that every rule application gets the term closer to this conjectured normal
form.

First, we conjecture that →Cxor/Fxor
leads to the following normal form: let

t1⊕ . . .⊕ tn be a representation of the term to normalize such that the subterms
ti are already normalized and ti 6≈Fxor

s1 ⊕ s2 for any terms s1 and s2. Consider
the multiset of the ti where equality is modulo Fxor . The normal form is the term
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s1⊕ . . .⊕sn where the si are exactly those terms that occur in the multiset with
an odd number of occurrences, if there is at least one such si. Otherwise, the
normal form is simply e. Observe that every application of →Cxor/Fxor

reduces
the size of the term to which it is applied and brings the term closer to the
normal-form, as either two xor-ed occurrences of Fxor -equivalent subterms are
replaced by e, or an xor-ed e is removed.

The conjectured normal form for →Cexp/Fexp
is as follows. Let

exp(exp(. . . exp(s, t1), t2), . . . tn)

be a term with normalized subterms ti, and such that s 6≈Fexp
exp(s0, s1) for any

terms si. Consider the multiset M of the ti where equality is modulo Fexp . We
build a multiset M ′ as follows: for every term t that is contained n times in M
and such that t−1 is contained k times in M , let t be contained in M ′ n − k
times, if n ≥ k, and k − n times otherwise. If M ′ is empty, then the normal
form is simply s, otherwise it is exp(...exp(s, ...)...) with the exponents being the
elements of M ′.

Observe that every application of →Cexp/Fexp
reduces the size of the term to

which it is applied and brings the term closer to the normal form, as two inverse
exponents are removed in every step.

We thus have shown the confluence of these relations; termination follows
from the fact that the entire →Cex/Fex

is terminating. Thus, we have convergence
of these subtheories. ut

It now remains to show that the union of disjoint convergent theories (of the
form we consider) is also convergent.

Lemma 13. Let F be an FEC theory and let C be a cancellation theory. Let
E = F ∪ C, and let E1 and E2 be a partition of E into disjoint subtheories.
Let further Fi = F ∩ Ei and Ci = C ∩ Ei. Finally, let →C1/F1 and →C2/F2 be
convergent. Then also →C/F is convergent.

Proof. Suppose the opposite holds, i.e. that there are terms t1 and t2 such that
t1 ≈F t2, t1 →C t′1, and t2 →C t′2 where t′1 and t′2 are not joinable. Then there
are rules (l1 → r1) ∈ C1 and (l2 → r2) ∈ C2, positions p1 in t1 and p2 in t2, and
substitutions σ1 and σ2 such that t1|p1 ≈F l1σ and t2|p2 ≈F l2. We can exclude
the case that the two rules belong to the same subtheory Ci since otherwise the
→Ci/Fi

would not be convergent.
Now we show that we can find a term t ≈F t1 ≈F t2 such that both rules

(l1 → r1) and (l2 → r2) are applicable to t and the results of these applications
are joinable with t′1 and t′2, respectively. After proving this statement, we can
prove the lemma as follows: since C1 and C2 are disjoint, the positions of t at
which the two rules are applicable are either non-overlapping subterms of t (thus
both rules are independently applicable and there cannot be a conflict) or one
is a proper subterm of the other. In this case, there also cannot be a conflict
since performing the outer reduction first is equivalent to first applying the inner
reduction and then the outer one (as the respective subterm is removed by the
outer reduction).
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So it remains to show that there is a term t ≈F t1 ≈F t2 and terms t′′1 and
t′′2 such that t →C1 t′′1 , t →C2 t′′2 , t′1 ↓C/F t′′1 , and t′2 ↓C/F t′′2 .

For a term s and theory E, let subtermE(s) be the set of subterms s′ of any
term in [s]≈E

and such that the toplevel symbol of s′ is in ΣE . Let F1 and F2 be
disjoint FEC theories and let s1 and s2 be terms with s1 ≈F1 s2. Then it holds
that [subtermsF2(s1)]≈F1

= [subtermsF2(s2)]≈F1
. Thus, after transformation

with one subtheory F1, all subterms with a root symbol from the other subtheory
F2 are still present (modulo equivalence in F1).

So given t1 ≈F t2, one can obtain a term t ≈F t1 such that both rules
are applicable to t in other non-overlapping positions or subpositions. Also the
resulting terms must be joinable with t′1 and t′2, respectively, since otherwise we
can construct a counter-example for the convergence of →C1/F1 or →C2/F2 . ut

Putting lemmata 11-13 together, we can thus conclude:

Lemma 14. →Cex/Fex
is convergent.

4.2 Equality modulo F ∪ C

The following theorem tells us that the ground word problem modulo F ∪ C is
decidable in our framework. This is a direct consequence of our assumption that
→C/F is convergent and that we can decide matchability modulo an FEC theory
F as a consequence of Theorem 1.

Theorem 3. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Then the ground word problem for F ∪ C is decidable.

Proof. Recall that, since →C/F is convergent, t1 ≈F∪C t2 implies t1 ↓C/F =
t2↓C/F . The normal form of the terms can be computed for every term since C
is convergent modulo F and F is an FEC theory. ut

By Lemma 3, it follows that we can construct a unification algorithm modulo
F ∪ C for terms with bounded variables. In particular, this implies that the
unifiability problem modulo F ∪C for terms with bounded variables is decidable.

4.3 Cancellation as analysis

The results that we have presented so far allow us to decide, for ground terms
or terms with bounded variables, the equality of terms modulo an FEC theory
F and a cancellation theory C, as well as the intruder deduction problem in the
theory F . We now consider how to solve the intruder deduction problem in the
theory F ∪ C. In §4.4, we will see that this problem is in general undecidable,
so to obtain a decidable problem we must further restrict our model: we bound
the number of operations that the intruder can perform.

The idea that we put forth here to solve the intruder deduction problem with
respect to F ∪ C is to distinguish synthesis (or composition) and analysis (or
decomposition) of messages by the intruder. Observe that these two aspects of
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intruder deduction are not completely independent; for instance, if the intruder
knows the messages {|m|}〈k1,k2〉 and k1 and k2, then he can analyze the encrypted
message, but only after synthesizing the key 〈k1,k2〉. We now define a general
notion of analysis based on an arbitrary cancellation theory C.

Intuitively, we speak of synthesis when the intruder applies the OP rule to
compose terms, excluding the case when the resulting composed term is a redex
according to the cancellation theory C (as we can then reduce it to a simpler
term). We speak of analysis when the intruder applies the OP rule to obtain
a redex whose normal form cannot be composed from his current knowledge.
We can then formalize the notion of the intruder knowledge being completely
analyzed based on the notion of cancellation rules present in our framework: we
say that the intruder has analyzed his knowledge as far as possible if, by applying
the cancellation rules, the intruder can only derive messages (except redices in
C) that he can also derive without cancellation rules. Formally:

Definition 8. Let C be a cancellation theory convergent modulo an FEC theory
F . We say that a finite set of ground terms IK is analyzed with respect to C
modulo F if t↓C/F ⊆ DYF (IK ) for each t ∈ DYF (IK ).

As an example, consider again Fex and Cex. The set IK = {{|m|}k, k} is
not analyzed with respect to Cex modulo Fex as the intruder can generate t =
{|{|m|}k|}k ∈ DYFex

(IK ), and t↓Cex/Fex
= [m]≈Fex

, but m /∈ DYFex
(IK ). However,

IK ′ = IK ∪ {m} is analyzed since all messages that can be obtained only by
normalizing terms in DYFex(IK

′) are already contained in DYFex(IK
′).

We thus have a characterization of analyzed intruder knowledge as a set
that contains all messages that can be derived under DYF∪C(·) and but not
under DYF (·). The idea is that when the set of messages known by the intruder
is analyzed, then there is no need to consider the cancellation theory in the
derivations of the intruder. Hence we can decide the intruder deduction problem
DYF∪C(·) when the intruder knowledge is analyzed:

Theorem 4. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Further, let t be a ground term and IK be a finite set of
ground terms analyzed with respect to C modulo F . Then it is decidable whether
t ∈ DYF∪C(IK ).

Proof. Since IK is analyzed, this problem is equivalent to the problem t↓C/F⊆
DYF (IK ). Since we can effectively compute t↓C/F , by Lemma 6, this problem
is decidable. ut

By Lemma 3, it follows that the intruder deduction problem is decidable for
terms with bounded variables when the intruder knowledge is analyzed.

4.4 Undecidability of analysis

The previous method for solving the intruder deduction problem is restricted to
the case where the intruder knowledge is analyzed. The central question thus is
how to transform an arbitrary intruder knowledge into an analyzed one.
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Theorem 5. There is an FEC theory F and a cancellation theory C, where
→C/F is convergent, such that it is undecidable whether a finite set of ground
terms IK is analyzed with respect to C modulo F . Moreover, the intruder deduc-
tion problem t ∈ DYF∪C(IK ) is also undecidable.

Note that [1, 2] have shown that the intruder deduction problem in a theory
E can be undecidable even if unification in E is decidable. Our theorem is
incomparable to this result as it does not require E to be decidable.

Proof. We consider again the FEC theory FPCP defined in the proof of Lemma 8.
Let CPCP = {f(res(Z,Z, S)) → secret} for some new constant secret (that
the intruder does not know) and a new function symbol f that we need for
convergence. Note that we extend the set O of intruder-accessible operators by
the function f .

We first show convergence. Since f is a new function symbol, there cannot
be a conflict between two instances of the single rule of CPCP in a non-variable
position, and similarly there cannot be a conflict with FPCP in a non-variable
position. As obviously →CP CP /FP CP

terminates, we conclude that it is conver-
gent.

Now, by the proof of Lemma 8, we know the intruder can generate a ground
instance of the term res(Z,Z, S) from IKP if and only if the given PCP P
has a solution. Thus the intruder can derive the constant secret from IKP iff
the PCP P has a solution. Also, the intruder knowledge IKP is analyzed with
respect to CPCP modulo FPCP iff the intruder cannot derive secret . Thus, by
the undecidability of the PCP problem, also the problem whether the intruder
knowledge is analyzed with respect to CPCP modulo FPCP is undecidable. ut

We thus need to make further restrictions to obtain a general procedure for
analyzing the intruder knowledge. We proceed by limiting the operations that
the intruder can perform when analyzing a single message (i.e. the number of
steps before he obtains a new redex). We define a bounded derivation of the
intruder as follows:

Definition 9. Given a finite set IK of ground terms and an algebraic theory E,
we define the k-bounded intruder model as the least set DYk

E(IK ) that is closed
under the rules

t ∈ DYk
E(IK )

AXk (t ∈ IK , k ≥ 0) ,
t1 ∈ DYk

E(IK )

t2 ∈ DYk
E(IK )

EQk (t1 ≈E t2) ,

t1 ∈ DYk
E(IK ) · · · tn ∈ DYk

E(IK )

op(t1, . . . , tn) ∈ DYk+1
E (IK )

OPk (op ∈ Σn) .

Note that, under the EQk rule, the use of an equivalence from E does not count
as a step, i.e. it does not increase the counter k.

Definition 10. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Given a constant k ∈ N, we say that the intruder knowledge
IK , which is a finite set of ground terms, is k-analyzed (with respect to C modulo
F ) iff t↓C/F ⊆ DYk

F (IK ) for each t ∈ DYk
F (IK ).
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Theorem 6. Let F be an FEC theory and C a cancellation theory, let →C/F

be convergent, and let k ∈ N. Then it is decidable if a finite set of ground terms
IK is k-analyzed (with respect to C modulo F ).

Proof. The set IK ′ = DYk
F (IK ) is finite, since F is an FEC theory and all

compositions are bounded by k. We can then check if any message of t ∈ IK ′

has a normal form t↓C/F that is not contained in IK ′. ut

Note, however, that given a finite set of ground terms IK , there does not
always exist a finite superset IK ′ of ground terms that is (k-)analyzed. Con-
sider, for example, the theories F = {f(x) = g(h(x))} and C = {g(X) = X}.
Clearly, F is a FEC theory, C is a cancellation theory, and →C/F is conver-
gent. Furthermore, let O = {f} be the set of functions that the intruder can
access, and let IK be a finite set of ground terms that contains a constant c. We
then, for instance, have that h(c), h(h(c)), . . . ∈ DYF∪C(IK ). Thus, there is no
finite set IK ′ ⊇ IK such that IK ′ is analyzed. For the bounded case, observe
that g(t) ∈ DYk

F∪C(IK ∪ t) for any ground term t, k ≥ 1, and n ∈ N. Thus,
any k-analyzed superset of IK must also contain gn(c) for any n ∈ N, so it
must be infinite. Hence, to complete our framework, we must be able to check
bounded derivability without first computing an analyzed intruder knowledge.
The following theorem tells us that this is possible:

Theorem 7. Let F be an FEC theory and C a cancellation theory, let →C/F be
convergent, and let k ∈ N. Then it is decidable if a ground term t can be derived
from a finite set of ground terms IK , i.e. whether t ∈ DYk

F∪C(IK ).

Proof. Lemma 7 can be extended to bounded derivations, i.e. t ∈ DYk
E1∪E2

(IK )
iff t ∈ [DYk

E1
(IK )]≈E1∪E2

. This is because the transformation employed in the
proof of Lemma 7 does not change the number of applications of any derivation
rule.

With this extension of Lemma 7, we can reduce the question whether t ∈
DYk

F∪C(IK ) to t ∈ [DYk
F (IK )]≈F∪C

. Since DYk
F (IK ) is finite, we can effectively

check if t is F ∪ C-equivalent to a term in DYk
F (IK ). Therefore we can decide

whether t ∈ DYk
F∪C(IK ). ut

Together with the fact that, by Lemma 3, all problems over terms with bounded
variables can be reduced to problems over ground terms, we have now the basis
for protocol analysis modulo algebraic theories. Namely, we can check whether a
term with bounded variables — representing the set of messages that some agent
in its current state can receive as a valid protocol message — can be derived from
a ground intruder knowledge under the bounds that we have introduced.

5 Related work and concluding remarks

We have presented a framework for security protocol analysis that can handle
algebraic properties in a uniform and modular way. It is not specialized to any
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particular algebraic theory and thereby allows users to declare new operators
and properties as part of the protocol specification. Our framework is based
on the use of modular rewriting to formalize a generalized equational deduc-
tion problem for the Dolev-Yao intruder, and on bounding the depth of message
terms and the analysis operations of the intruder to control the complexity of the
equational unification problems that arise. These bounds allow us to give gen-
eral algorithms for the equational unification and intruder deduction problems.
Moreover, under these bounds, our framework is also open to the integration
of more efficient algorithms that are specialized to particular algebraic theories
(and which usually work without such bounds), e.g. [11, 12, 26].

The idea of providing a general approach for integrating equational properties
into security protocol analysis has recently attracted considerable attention. [17]
presents an approach based on standard rewriting that supports the specification
of properties like the cancellation theories of our framework. However it does
not allow for properties like AC, which are handled by our FEC theories. The
approach of [13] has aims similar to ours: to provide a general framework that
is open to the integration of existing algorithms. This approach, however, is
based on a different idea, namely ordered rewriting, and is therefore applicable
to classes of theories that are incomparable to the ones that are supported by
our framework. The approaches of [2, 15, 23, 25] are the most closely related to
ours as they also employ modular rewriting. They differ from our work in that
they are more restrictive in terms of the kinds of modulo theories that can be
considered; namely they consider a fixed modulo theory (or, similarly, assume
given a unification procedure for the modulo theory), or they require that the
unification problems are finitary. These restrictions, however, allow them to work
without the bounds required by our approach.

Our framework is not biased towards a particular analysis method, and thus
can be used as a basis for handling algebraic equations when employing different
types of formalisms or techniques for protocol analysis. As a concrete example, we
have begun integrating our framework into our protocol model-checker OFMC [8,
9]. In this integration, the message and analysis bounds become parameters of
the protocol analysis problem, along with other parameters like the number of
sessions. We can then use different search techniques (like iterative deepening)
to effectively search the resulting multi-dimensional search space.

The equational reasoning problems that we considered in this paper are in
general undecidable and hence one must introduce restrictions to regain decid-
ability. The restrictions that we have introduced are motivated by the practical
problems in security protocol analysis and we have begun investigating whether
and how they can be applied to other equational reasoning problems.
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12. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In
Proceedings of FST TCS’03, LNCS 2914, pages 124–135. Springer, 2003.

13. Y. Chevalier and M. Rusinowitch. Combining Intruder Theories. In Proceedings
of ICALP 2005, LNCS 3580, pages 639–651, 2005.

14. H. Comon and V. Shmatikov. Is It Possible to Decide Whether a Cryptographic
Protocol Is Secure Or Not? Journal of Telecommunications and Information Tech-
nology, 4:5–15, 2002.

15. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In Proceedings of RTA’05, LNCS 3467, pages 294–307.
Springer, 2005.

16. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 2005. To appear.

17. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of CCS’04, pages 278–287. ACM
Press, 2004.

18. D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory, 2(29), 1983.

19. N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability of Bounded
Security Protocols. In Proceedings of the FLOC’99 Workshop on Formal Methods
and Security Protocols (FMSP’99), 1999.

20. IETF: The Internet Engineering Task Force. http://www.ietf.org.
21. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of

equations. SIAM Journal of Computing, 15(4):1155–1194, 1986.

27



22. D. Kapur, P. Narendran, and L. Wang. An E-unification algorithm for analyzing
protocols that use modular exponentiation. In Proceedings of RTA 2003, LNCS
2706, pages 165–179. Springer, 2003.

23. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. In Proceedings of RTA’05, LNCS 3467, pages
308–322. Springer, 2005.

24. G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of
Computer Security, 6(1):53–84, 1998.

25. J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Journal of Higher-Order and
Symbolic Computation, to appear.

26. J. K. Millen and V. Shmatikov. Symbolic protocol analysis with products and
Diffie-Hellman exponentiation. In Proceedings of CSFW’03, pages 47–61. IEEE
Computer Society Press, 2003.
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