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Blind signatures serve as a foundational tool for privacy-preserving appli-
cations and have recently seen renewed interest due to new applications in
blockchains and privacy-authentication tokens. With this, constructing practical
round-optimal (i.e., signing consists of the minimum two rounds) blind signatures
in the random oracle model (ROM) has been an active area of research, where
several impossibility results indicate that either the ROM or a trusted setup is
inherent.

In this work, we present two round-optimal blind signatures under standard
assumptions in the ROM with different approaches: one achieves the smallest sum
of the signature and communication sizes, while the other achieves the smallest
signature size. Both of our instantiations are based on standard assumptions over
asymmetric pairing groups, i.e., CDH, DDH, and/or SXDH. Our first construction
is a highly optimized variant of the generic blind signature construction by Fischlin
(CRYPTO’06) and has signature and communication sizes 447 B and 303 B,
respectively. We progressively weaken the building blocks required by Fischlin
and we result in the first blind signature where the sum of the signature and
communication sizes fit below 1 KB based on standard assumptions. Our second
construction is a semi-generic construction from a specific class of randomizable
signature schemes that admits an all-but-one reduction. The signature size is
only 96 B while the communication size is 2.2 KB. This matches the previously
known smallest signature size while improving the communication size by several
orders of magnitude. Finally, both of our constructions rely on a (non-black box)
fine-grained analysis of the forking lemma that may be of independent interest.

1 Introduction

1.1 Background

Blind signature is an interactive signing protocol between a signer and a user
with advanced privacy guarantees. At the end of the protocol, the user obtains a
signature for his choice of message while the signer remains blind to the message
she signed. To capture the standard notion of unforgeability, it is further required
that a user interacting with the signer at most ℓ-times is not be able to produce
valid signatures on more than ℓ distinct messages. The former and latter are
coined as the blindness and one-more unforgeability properties, respectively.
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Chaum introduced the notion of blind signatures [22] and showed its applica-
tion to e-cash [22, 24, 48]. Since then, it has been an important building block for
other applications such as anonymous credentials [16, 20], e-voting [23, 32], direct
anonymous attenstation [17], and in more recent years, it has seen a renewed
interest due to new applications in blockchains [57, 19] and privacy-preserving
authentication tokens [55, 37].

Round-Optimality. One of the main performance measures for blind signatures
is round-optimality, where the user and signer are required to only send one
message each to complete the signing protocol. While this is an ideal feature for
practical applications, unfortunately, there are a few impossibility results [45,
29, 49] on constructing round-optimal blind signatures in the plain model (i.e.,
without any trusted setup) from standard assumptions (e.g., non-interactive
assumptions and polynomial hardness). To circumvent this, cryptographers design
round-optimal blind signatures by making a minimal relaxation of relying on
the random oracle model (ROM) or the trusted setup model. Considering that
trusted setups are a large obstacle for real-world deployment, in this work we
focus on round-optimal blind signatures in the ROM under standard assumption4.
We refer the readers to the full version for an overview on round optimal blind
signatures under non-standard assumptions (e.g., interactive or super polynomial
hardness) or relying on stronger idealized models such as the generic group model.

Practical Round-Optimal Blind Signatures. Constructing a practical round-
optimal blind signature has been an active area of research. In a seminal work,
Fischlin [28] proposed the first generic round-optimal blind signature from stan-
dard building blocks. While the construction is simple, an efficient instantiation
remained elusive since it required a non-interactive zero-knowledge (NIZK) proof
for a relatively complex language.

Recently, in the lattice-setting, del Pino and Katsumata [25] showed a new
lattice-tailored technique to overcome the inefficiency of Fischlin’s generic con-
struction and proposed a round-optimal blind signature with signature and
communication sizes 100 KB and 850 KB.

A different approach that has recently accumulated attention is based on
the work by Pointcheval [50] that bootstraps a specific class of blind signature
schemes into a fully secure one (i.e., one-more unforgeable even if polynomially
many concurrent signing sessions are started). This approach has been improved
by Katz et al. [41] and Chairattana-Apirom et al. [21], and the very recent
work by Hanzlik et al. [36] optimized this approach leading to a round-optimal
blind signature based on the CDH assumption in the asymmetric pairing setting.
One of their parameter settings provides a short signature size of 5 KB with a
communication size 72 KB.

4 We note that all of our results favor well even when compared with schemes in the
trusted setup model.
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Finally, there are two constructions in the pairing setting with a trusted
setup which can be instantiated in the ROM under standard assumptions [10, 2]5.
Blazy et al. [10] exploited the randomizability of Waters signature [56] and
constructed a blinded version of Waters signature consisting of mere 2 group
elements, i.e. 96 B. While it achieves the shortest signature size in the literature,
since the user has to prove some relation to his message in a bit-by-bit manner,
the communication scales linearly in the message length. For example for 256
bit messages, it requires more than 220 KB in communication. Abe et al. [2] use
structure-preserving signatures (SPS) and Groth-Ostrovsky-Sahai (GOS) proofs
[35] to instantiate the Fischlin blind signature with signatures of size 5.8 KB
with around 1 KB of communication.

While round-optimal blind signatures in the ROM are coming close to the
practical parameter regime, the signature and communication sizes are still orders
of magnitude larger compared to those relying on non-standard assumptions or
strong idealized models such as blind RSA [22, 7] or blind BLS [11]. Thus, we
continue the above line of research to answer the following question:

How efficient can round-optimal blind signatures in the ROM be under
standard assumptions?

1.2 Contributions

We present two round-optimal blind signatures based on standard group-based
assumptions in the asymmetric pairing setting. The efficiency is summarized
in Table 1, along with the assumptions we rely on. The first construction has
signature and communication sizes 447 B and 303 B, respectively. It has the
smallest communication size among all prior schemes and is the first construction
where the sum of the signature and communication sizes fit below 1 KB. The
second construction has signature and communication sizes 96 B and 2.2 KB,
respectively. While it has a larger communication size compared to our first
construction, the signature only consists of 2 group elements, matching the
previously shortest by Blazy et al. [10] while simultaneously improving their
communication size by around two orders of magnitude. Both constructions have
efficient partially blind variants.

For our first construction, we revisit the generic blind signature construction
by Fischlin [27]. We progressively weaken the building blocks required by Fischlin
and show that the blind signature can be instantiated much more efficiently in
the ROM than previously thought by a careful choice of the building blocks.
At a high level, we show that the generic construction remains secure even
if we replace the public-key encryption scheme (PKE) and online-extractable
NIZK6 with respectively a commitment scheme and a rewinding-extractable NIZK

5 Both [10, 2] require a trusted setup for a common reference string crs consisting of
random group elements. We can remove the trusted setup by using a random oracle
to sample crs.

6 This is a type of NIZK where the extractor can extract a witness from the proofs
output by the adversary in an on-the-fly manner.



4 Shuichi Katsumata, Michael Reichle, and Yusuke Sakai

Table 1. Comparison of Round-Optimal Blind Signatures in the ROM

Reference Signature size Communication size Assumption

del Pino et al. [25] 100 KB 850 KB DSMR,MLWE,MSIS

Blazy et al. [10] 96 B 220 KB † SXDH,CDH
Abe et al. [2] 5.5 KB 1 KB SXDH

Hanzlik et al. [36]‡
5 KB 72 KB

CDH9 KB 36 KB

Ours: Section 3 447 B 303 B SXDH
Ours: Section 4 96 B 2.2 KB DDH,CDH

All group-based assumptions are in the asymmetric paring setting, and MLWE and MSIS denote the
module version of the standard LWE and SIS, respectively. DSMR denotes the decisional small matrix
ratio problem, which can be viewed as the module variant of the standard NTRU. (†): Communication
of [10] scales linearly with the message size, and is given here for 256 bit messages. (‡): [36] offers
tradeoffs between signature and communication sizes.

such as those offered by the standard Fiat-Shamir transform [26, 51, 8]. While
these modifications may seem insignificant on the surface, it accumulates in
a large saving in the concrete signature and communication sizes. Moreover,
our security proof requires overcoming new technical hurdles incurred by the
rewinding-extraction and relies on a fined-grained analysis of a variant of the
forking lemma.

For our second construction, we revisit the idea by Blazy et al. [10] relying
on randomizable signatures. However, our technique is not a simple application
of their idea as their construction relies on the specific structure of the Waters
signature in a non-black-box manner. Our new insight is that a specific class
of signature schemes with an all-but-one (ABO) reduction can be used in an
almost black-box manner to construct round-optimal blind signatures, where
ABO reductions are standard proof techniques to prove selective security of
public-key primitives (see references in [47] for examples). Interestingly, we can
cast the recent blind signature by del Pino and Katsumata [25] that stated to
use lattice-tailored techniques as one instantiation of our methodology.

In the instantiation of our second construction, we use the Boneh-Boyen
signature [12] that comes with an ABO reduction along with an online-extractable
NIZK obtained via the Fiat-Shamir transform applied to Bulletproofs [18] and a
Σ-protocol for some ElGamal related statements. To the best of our knowledge,
this is the first time an NIZK that internally uses Bulletproofs was proven to be
online-extractable in the ROM. Prior works either showed the non-interactive
version of Bulletproofs to achieve the weaker rewinding extractability [5, 4] or
the stronger online simulation extractability by further assuming the algebraic
group model [33]. We believe the analysis of our online extractability to be novel
and may be of independent interest.
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1.3 Technical Overview

We give an overview of our contributions.

Fischlin’s Round-Optimal Blind Signature. We review the generic construc-
tion by Fischlin [27] as it serves as a starting point for both of our constructions.
The construction relies on a PKE, a signature scheme, and an NIZK. The blind
signature’s verification and signing keys (bvk, bsk) are identical to those of the
underlying signature scheme (vk, sk). For simplicity, we assume a perfect correct
PKE with uniform random encryption keys ek and that ek is provided to all
the players as an output of the random oracle. The user first sends an encryp-
tion c ← PKE(ek,m; r) of the message m. The signer then returns a signature
σ ← Sign(sk, c) on the ciphertext c. The user then encrypts ĉ← PKE(ek, c∥r∥σ; r̂)
and generates an NIZK proof π of the following fact where (c, σ, r, r̂) is the witness:
ĉ encrypts (c, r, σ) under r̂; c encrypts the message m under r; and σ is a valid
signature on c. The user outputs the blind signature σBS = (ĉ, π).

It is not hard to see that the scheme is blind under the IND-CPA security of the
PKE and the zero-knowledge property of the NIZK. The one-more unforgeability
proof is also straight-forward: The reduction will use the adversary A against the
one-more unforgeability game to break the euf-cma of the signature scheme. The
reduction first programs the random oracle so that it knows the corresponding
decryption key dk of the PKE. When A submits c to the blind signing oracle,
the reduction relays this to its signing oracle and returns A the signature σ it
obtains. Moreover, it makes a list L of decrypted messages m← Dec(dk, c). When
A outputs the forgeries (σBS,i = (ĉi, πi),mi)i∈[ℓ+1], it searches a mi such that
mi ̸∈ L, which is guaranteed to exist since there are at most ℓ signing queries.
The reduction then decrypts (ci, ri, σi)← Dec(dk, ĉi). Since the PKE is perfectly
correct and due to the soundness of the NIZK, ci could not have been queried by
A as otherwise mi ∈ L, and hence, (ci, σi) breaks euf-cma security.
Source of Inefficiency. There are two sources of inefficiency when trying to
instantiate this generic construction. One is the use of a layered encryption: the
NIZK needs to prove that c is a valid encryption of m on top of proving ĉ is a
valid encryption of (c, r, σ). This contrived structure was required to bootstrap
a sound NIZK to be online-extractable.7 Specifically, the one-more unforgeabil-
ity proof relied on the reduction being able to extract the (partial) witness
(ci, ri, σi) in an on-the-fly manner from the outer encryption ĉi explicitly included
in the blind signature. The other inefficiency stems from the heavy reliance on
PKEs. As far as the correctness is concerned, the PKE seems replaceable by a
computationally binding commitment scheme. This would be ideal since commit-
ment schemes tend to be more size efficient than PKEs since decryptability is not
required. However, without a PKE, it is not clear how the above proof would work.

First Construction. We explain our first construction, an optimized variant of
Fischlin’s generic construction.
7 Constructing an online extractable NIZK by adding a PKE on top of a sound NIZK

is a standard method.
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Using Rewinding-Extractable NIZKs. The first step is to relax the online-
extractable NIZK with a (single-proof) rewinding-extractable NIZK. Such an NIZK
allows extracting a witness from a proof output by an adversary A by rewinding
A on a fixed random tape. NIZKs obtained by compiling a Σ-protocol using
the Fiat-Shamir transform is a representative example of an efficient rewinding-
extractable NIZK. The net effect of this modification is that we can remove the
layer of large encryption by ĉ, thus making the statement simpler and allowing
us to remove ĉ from σBS.

Let us check if this rewinding-extractable NIZK suffices in the above proof
of one-more unforgeability. At first glance, the proof does not seem to work due
to a subtle issue added by the rewinding extractor. Observe that the reduction
now needs to simulate A in the rewound execution as well. In particular, after
rewinding A, A may submit a new c′ to the blind signing oracle, which was not
queried in the initial execution. The reduction relays this c′ to its signing oracle
as in the first execution to simulate the signature σ′. As before, we can argue
that there exists a message mi in the forgeries output by A in the first execution
such that mi ̸∈ L, but we need to further argue that mi ̸∈ L′, where L′ is the list
of decrypted messages A submitted in the rewound execution. Namely, we need
to argue that mi /∈ L ∪ L′ for the reduction to break euf-cma security. However,
a naive counting argument as done before no longer works because |L ∪ L′| can
be large as 2ℓ, exceeding the number of forgeries output by A, i.e., ℓ+ 1.

We can overcome this issue by taking a closer look at the internal of a particular
class of rewinding-extractable NIZK. Specifically, throughout this paper, we focus
on NIZKs constructed by applying the Fiat-Shamir transform on a Σ-protocol
(or in more general a public-coin interactive protocol). A standard way to argue
rewinding-extractability of a Fiat-Shamir NIZK is by relying on the forking
lemma [51, 8], which states (informally) that if an event E happened in the first
run, then it will happen in the rewound round with non-negligible probability.
In the above context, we define E to be the event that the i-th message in A’s
forgeries satisfy mi ̸∈ L, where i is sampled uniformly random by the reduction
at the outset of the game. Here, note that E is well-defined since the reduction
can prepare the list L by decrypting A’s signing queries. The forking lemma then
guarantees that we also have mi ̸∈ L′ in the rewound execution.8 This slightly
more fine-grained analysis allows us to replace the online-extractable NIZK with
a rewinding-extractable NIZK.

Issue with Using Commitments. The next step is to relax the PKE by
a (computationally binding) commitment scheme. While the correctness and
blindness hold without any issue, the one-more unforgeability proof seems to
require a major reworking. The main reason is that without the reduction being
able to decrypt A’s signing queries c, we won’t be able to define the list L. In
particular, we can no longer define the event E, and hence, cannot invoke the
forking lemma. Thus, we are back to the situation where we cannot argue that

8 For the keen readers, we note that we are guaranteed to have the same i-th message
in both executions since these values are fixed at the forking point due to how the
Fiat-Shamir transform works.
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the extracted witness (ci, ri, σi) from A’s forgeries, is a valid forgery against
the euf-cma security game. Even worse, A could potentially be breaking the
computationally binding property of the commitment scheme by finding two
message-randomness pairs (mi, ri) and (m′i, r

′
i) such that they both commit to

ci but mi ̸= m′i. In such a case, extracting from a single proof does not seem
sufficient since a reduction would need at least two extracted witnesses to break
the binding of the commitment scheme.

To cope with the latter issue first, we extend the one-more unforgeability
proof to rely on a multi-proof rewinding-extractable NIZK. In general, multi-proof
rewinding-extractors run in exponential time in the number of proofs that it
needs to extract from [53, 9]. However, in our situation, with a careful argument,
we can prove that our extractor runs in strict polynomial time since A provides
all the proofs to the extractor only at the end of the game. This is in contrast to
the settings considered in [53, 9] where A can adaptively submit multiple proofs
to the extractor throughout the game.

We note that the assumption we require has not changed: a Σ-protocol for
the same relation as in the single-proof setting compiled into an NIZK via the
Fiat-Shamir transform. To prove multi-proof rewinding-extractability of this
Fiat-Shamir NIZK, we can no longer rely on the now standard general forking
lemma by Bellare and Neven [8] that divorces the probabilistic essence of the
forking lemma from any particular application context. A naive extension of the
general forking lemma to the multi-forking setting will incur an exponential loss
in the success probability. To provide a meaningful bound, we must take into
account the extra structure offered by the Fiat-Shamir transform, and thus our
analysis is akin to the more traditional forking lemma analysis by Pointcheval
and Stern [51] or by Micali and Reyzin [46]. To the best of our knowledge, we
provide the first formal analysis of the multi-proof rewinding-extractability of
an NIZK obtained by applying the Fiat-Shamir transform to a Σ-protocol. We
believe this analysis to be of independent interest.

Final Idea to Finish the Proof. Getting back to the proof of one-more
unforgeability, the reduction now executes the multi-proof rewinding-extractor
to extract all the witnesses (ci, ri, σi)i∈[ℓ+1] from the forgeries. Relying on the
binding of the commitment scheme, we are guaranteed that all the commitment
ci’s are distinct. Moreover, since A only makes ℓ blind signature queries in the
first execution, we further have that there exists at least one ci in the forgeries
which A did not submit in the first execution.

However, we are still stuck since it’s unclear how to argue that this particular
ci was never queried by A in any of the rewound executions. Our next idea is
to slightly strengthen the NIZK so that the proof π is statistically binding to a
portion of the witness that contains the commitments.9 We note that this is still
strictly weaker and more efficiently instantiable compared to an online-extractable
NIZK required by Fischlin’s construction since we do not require the full list of

9 At the Σ-protocol abstraction, we call this new property f -unique extraction. It
is a strictly weaker property than the unique response property considered in the
literature [27, 54].
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witnesses to be efficiently extractable from the proofs in an online manner. We
use this property to implicitly fix the commitments (ci)i∈[ℓ+1] included in the
forgeries after the end of the first execution of A. This will be the key property
to completing the proof.

The last idea is for the reduction to randomize what it queries to its signing
oracle. For this, we further assume the commitment scheme is randomizable,
where we emphasize that this is done for ease of explanation and we do not strictly
require such an assumption (see remark 1). When A submits a commitment c to
the blind signing oracle, the reduction randomizes c to c′ using some randomness
rand and instead sends c′ to its signing oracle. It returns the signature σ and
rand to A. A checks if c becomes randomized to c′ using rand and if σ is a valid
signature on c′. It then uses c′ instead of c to generate the blind signature as
before. The key observation is that the reduction is invoking its signing oracle
with randomness outside of A’s control. Since the commitments (ci)i∈[ℓ+1] were
implicitly fixed at the end of the first execution, any randomized c′ sampled in
the subsequent rewound execution is independent of these commitments. Hence,
the probability that the reduction queries ci to the signing oracle in any of the
rewound execution is negligible, thus constituting a valid forgery against the
euf-cma security game as desired.

Instantiation. We instantiate the framework in the asymmetric pairing setting,
i.e. we have groups G1,G2,GT of prime order p, some fixed generators g1 ∈
G1, g2 ∈ G2, and a pairing e : G1 × G2 7→ GT . For the commitment scheme,
we choose Pedersen commitments (CPed) of the form c = gm1 ppr, as CPed is
randomizable and consists of a single group element. Note that the public
parameter pp ∈ G1 is generated via a random oracle. We then need to choose
an appropriate signature scheme that allows signing CPed commitments. We
choose SPS as all components of the scheme are group elements, in particular, the
message space is Gℓ

1, where ℓ is the message length. The most efficient choice in
the standard model is [39] with signatures of size 335 Byte. Instead, we optimize
KPW signatures [43] to a signature size of 223 Byte (from originally 382 Byte).
Our optimized variant SKPW is no longer structure-preserving, as it consists of
one element τ in Zp, but suffices for our applications. We refer to the full version
for more details.

Note that SKPW would be an inefficient choice in the original Fischlin blind
signature [28], as it requires encrypting the signature τ over Zp to instantiate the
online-extractable NIZK. In the pairing setting, this incurs an overhead in proof
size linear in the security parameter λ 10. The benefit of using our framework
with the weaker rewinding-extractable NIZK is that we now only need to prove
knowledge of τ , and thus can get away without encrypting it. Such an NIZK
is possible with a single element in Zp based on a Schnorr-type Σ-protocol
(compiled with Fiat-Shamir). In the Σ-protocol, we further commit to group
elements (wi)i ∈ Gn

1 in the witness via ElGamal commitments (CEG) of the

10 For instance, with ElGamal, the message is encrypted in the exponent and decryption
would require a discrete logarithm computation. Thus, the message is typically
encrypted bit-wise which incurs an overhead of log2(p).
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form Ei = (wi · ppri , gri1 ), which the prover sends to the verifier in the first
flow. In particular, this ensures f -unique extraction, as Ei fixes the commitment
c ∈ {wi}i statistically. Naively, this approach requires 2n group elements, where n
is the number of group elements in the witness. Instead, we share the randomness
among all commitments under different public parameters ppi generated via a
random oracle. The commitments remain secure but require only n+ 1 group
elements. In particular, we set Ei = (wi · ppsi ) and fix s via S = gs1. Then, we
can open all commitments Ei in zero-knowledge with a single element in Zp,
as knowledge of s is sufficient to recover the witness wi from all Ei. Then, we
compile our Σ-protocol with Fiat-Shamir to obtain a rewinding-based NIZK. We
apply a well-known optimization to avoid sending some of the first flow α, and
include the hash value β ← H(x, α) in the proof explicitly. In total, compared to
sending the witness to the verifier in the clear, our NIZK only has an overhead
of 1 group element in G1 and 3 elements in Zp. The additional group element
is S. The three additional Zp elements are the hash value β, and values in the
third flow required for (i) showing knowledge of s and (ii) linearizing a quadratic
equation in the signature verification.

The instantiation of our framework achieves communication size of 303 Byte
and signature size of 447 Byte.

Second Construction. We explain our second construction relying on randomizable
signatures with an ABO reduction.

Getting Rid of NIZKs in the Signature. While the previous construction
provides a small sum of signature and communication sizes, one drawback is that
the blind signature has inherently a larger signature than those of the underlying
signature scheme. The source of this large blind signature stems from using an
NIZK to hide the underlying signature provided by the signer.

A natural approach used in the literature is to rely on techniques used to
construct randomizable signature schemes [10, 31, 30, 42]. Informally, a randomiz-
able signature scheme allows to publicly randomize the signature σ on a message
m to a fresh signature σ′. Many standard group-based signature schemes (in the
standard model and ROM) are known to satisfy this property, e.g., [12, 56]. A
failed attempt would be for the user to randomize the signature σ provided by
the signer and output the randomized σ′ as the blind signature. Clearly, this
is not secure since the user is not hiding the message m, that is, σ and σ′ are
linkable through m thus breaking blindness. An idea to fix this would be to
let the user send a commitment c = Com(m; r) to the signer and the signature
signs the “message” c. However, unless the commitment c can be randomized
consistently with σ, we would still need to rely on an NIZK to hide c. This calls
for a signature scheme that is somehow compatible with commitments.

Signatures with All-But-One Reductions. Our main insight is that a specific
class of signature schemes with an all-but-one (ABO) reduction is naturally
compatible with blind signatures. An ABO reduction is a standard proof technique
to prove selective security of public key primitives, e.g., [13, 52, 34, 3], where a
formal treatment can be found in [47]. In the context of signature schemes, this
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is a proof technique that allows the reduction to embed the challenge message
m∗ (i.e., the signature for which the adversary forges) into the verification key.
The reduction can simulate any signatures on m ̸= m∗, and when the adversary
outputs a forgery on m∗, then the reduction can break some hard problems.

Let us now specify the class of signature scheme. We assume an additive
homomorphic commitment scheme, that is, Com(m; r) +Com(m′; r′) = Com(m+
m′; r + r′). We then assume a signature scheme where the signing algorithm
Sig(sk,m) can be rewritten as Ŝig(sk,Com(m; 0) + u), where u is some fixed but
random commitment included in the verification key. Namely, Sig first commits to
the message m using no randomness, adds u to it, and proceeds with signing. Note
that if u = Com(−m′; r′) for some (m′, r′), then Com(m; 0)+u = Com(m−m′; r′).
While contrived at first glance, this property is naturally satisfied by many of the
signature schemes that admit an ABO reduction; the ABO reduction inherently
requires embedding the challenge message m∗ into the verification key in an
unnoticeable manner and further implicitly requires message m submitted to the
signing query to interact with the “committed” m∗. Specifically, the former hints
at a need for an (implicit) commitment scheme and the later hints at the need for
some operation between the commitments. Finally, to be used in the security proof,
we assume there is a simulated signing algorithm ŜimSig along with a trapdoor td
such that ŜimSig(td,Com(m−m′; r′),m−m′, r′) = Ŝig(sk,Com(m; 0)+u) if and
only if m ̸= m′, where recall u = Com(−m′; r′). Specifically, ŜimSig can produce
a valid signature if it knows the non-zero commitment message and randomness.

Let us explain the ABO reduction in slightly more detail. In the security proof,
the reduction guesses (or the adversary A submits) a challenge message m∗ that
A will forge on. It then sets up the verification key while replacing the random
commitment u to u = Com(−m∗; r∗) while also embedding a hard problem that
it needs to solve. Due to the hiding property of the commitment scheme, this
is unnoticeable from A. Then, instead of using the real signing algorithm Ŝig,
the reduction uses the simulated signing algorithm ŜimSig. As long as m ̸= m∗,
ŜimSig(td,Com(m −m∗; r∗),m −m∗, r∗) outputs a valid signature, and hence,
can be used to simulate the signing oracle. Finally, given a forgery on m∗, the
reduction is set up so that it can break a hard problem.

Turning it into a Blind Signature. To turn this into a blind signature, the
key observation is that Ŝig is agnostic to the committed message and random-
ness of Com(m; 0) + u — these are only used during the security proof when
running ŜimSig. Concretely, a user of a blind signature can generate a valid
commitment Com(m; r), send it to the signer, and the signer can simply return
σr ← Ŝig(sk,Com(m; r) + u). If the signature admits a way to map σr back to a
normal signature σ for m, then we can further rely on the randomizability of the
signature scheme to obtain a fresh signature σ′ on the message m.

The proof of one-more unforgeability of this abstract blind signature construc-
tion is almost identical to the original ABO reduction with one exception. For
the reduction to invoke the simulated ŜimSig, recall it needs to know the message
and randomness of the commitment Com(m; r) + u. Hence, we modify the user



Practical Round-Optimal Blind Signatures in the ROM 11

to add an online-extractable NIZK to prove the correctness of the commitment
Com(m; r) so that the reduction can extract (m, r). Here, we require online-
extractability rather than rewinding-extractability since otherwise, the reduction
will run exponentially in the number of singing queries [53, 9]. Also, this is why
the communication size becomes larger compared with our first construction.
Finally, when the adversary outputs a forgery including m∗, the reduction can
break a hard problem as before. Here, we note that we can simply hash the
messages m with a random oracle to obtain an adaptively secure scheme using
the ABO reduction.

Interestingly, while the recent lattice-based blind signature by del Pino and
Katsumata [25] stated to use lattice-tailored techniques to optimize Fischlin’s
generic construction, the construction and the proof of one-more unforgeability
follows our above template, where they use the Agrawal-Boneh-Boyen signature [3]
admitting an ABO reduction. The only difference is that since lattices do not
have nice randomizable signatures, they still had to rely on an NIZK for the final
signature. While we focused on ABO reductions where only one challenge message
m∗ can be embedded in the verification key, the same idea naturally extends to
all-but-many reductions. The blind signature by Blazy et al. [10] relying on the
Waters signature can be viewed as one such instantiation. Finally, while we believe
we can make the above approach formal using the ABO reduction terminology
defined in [47], we focus on one class of instantiation in the main body for better
readability. Nonetheless, we believe the above abstract construction will be useful
when constructing round-optimal blind signatures from other assumptions.
Instantiation. We instantiate the above framework with the Boneh-Boyen
signature scheme SBB [12, 14]. Recall that signatures of SBB on a message m ∈ Zp

are of the form σ = (sk · (um
1 · h1)

r, gr1), where u1, h1 ∈ G1 are part of the
verification key, sk is the secret key and r ← Zp is sampled at random. We
observe that SBB is compatible with the Pedersen commitment scheme CPed

with generators u1 and g1. Roughly, the user commits to the message m via
c = um

1 · gs111, where s ← Zp blinds the message, proves that she committed
to m honestly with a proof π generated via an appropriate online-extractable
NIZK Π, and sends (c, π) to the signer. The signer checks π and signs c via
(µ0, µ1) ← (sk · (c · h1)

r, gr1). Note that as c shares the structure um
1 with SBB

signatures on message m, the user can recompute a valid signature on m via
σ ← (µ0 · µ−s1 , µ1). Before presenting σ to a verifier, the user rerandomizes σ to
ensure blindness. We refer to section 4 for more details.

The main challenge is constructing an efficient online-extractable NIZK Π for
the relation Rbb = {(x,w) : c = um

1 · gs1}, where x = (c, u1, g1) and w = (m, s). As
we require online-extraction, a simple Σ-protocol showing c = um

1 ·gs1 compiled via
Fiat-Shamir is no longer sufficient as in our prior instantiation, as the extractor
needs to rewind the adversary in order to extract (m, s). For example, we could
instantiate Π with the (online-extractable) GOS proofs but such a proof has a
size of around 400 KB. Another well-known approach is to additionally encrypt

11 In the actual construction, we further hash m by a random oracle; this effectively
makes SBB adaptively secure.
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the witness (m, s) via a PKE and include the ciphertext into the relation; recall
this method was used when explaining the Fischlin blind signature. The extractor
can then use the secret key to decrypt the witnesses online. While a common
choice for the PKE would be ElGamal encryption, this is insufficient since the
extractor can only decrypt group elements gm1 and gs1 and not the witness in
Zp as required. To circumvent this, a common technique is to instead encrypt
the binary decompositions (mi, si)i∈[ℓ2] of m, s, respectively, with ElGamal,
where ℓ2 = log2(p). It then proves with a (non-online extractable) NIZK that
m =

∑ℓ2
i=1 mi2

i−1 and s =
∑ℓ2

i=1 si2
i−1 are valid openings of c, while also proving

that mi, si encrypted in the ElGamal ciphertexts are elements in {0, 1}, where
the latter can be done via the equivalent identity x · (1− x) = 0. The extractor
can now decrypt the ElGamal encryptions of mi to gmi

1 ∈ {g1, 1G1
} and efficiently

decide whether mi is 0 or 1. Similarly, it can recover the decomposition si.
Unfortunately, this approach requires at least 2ℓ2 ElGamal ciphertexts which
amount to 32 KB alone. In fact, the bit-by-bit encryption of the witness is also
the efficiency bottleneck of GOS proofs for Zp witnesses.

We refine the above approach in multiple ways to obtain concretely efficient
online-extractable NIZKs. Instead of using the binary decomposition, we observe
that the extractor can still recover x from gx1 if x ∈ [0, B − 1] is short, i.e., B =
poly(λ). Thus, we let the prover encrypt the B-ary decompositions (mi, si)i∈[ℓ] of
m and s, where ℓ = logB(p). For example, setting B = 232 allows the extractor
to recover mi via a brute-force calculation of the discrete logarithm, and the
number of encryptions is reduced by a factor of 32. Concretely, we modify the
prover to prove that an ElGamal ciphertext encrypts (mi, si)i∈[ℓ] such that (i)
each mi and si are in [0, B − 1], and (ii) m =

∑ℓ
i=1 miB

i−1, s =
∑ℓ

i=1 siB
i−1,

and c = um
1 · gs1.

To instantiate our approach, we glue two different (non-online extractable)
NIZKs Πrp and Πped together, each being suitable to show relations (i) and (ii),
respectively. For the range relation (i), we appeal to the batched variant of
Bulletproofs [4] and turn it non-interactive with Fiat-Shamir. For the linear
relation (ii), we use a standard NIZK with an appropriate Σ-protocol compiled
with Fiat-Shamir. We further apply three optimizations to make this composition
of NIZKs more efficient:

1. While Bulletproofs require committing to the decompositions (mi, si)i∈[ℓ] in
Pedersen commitments, we use the shared structure of ElGamal ciphertexts
and Pedersen commitments to avoid sending additional Pedersen commit-
ments. This also makes the relation simpler since we do not have to prove
consistency between the committed components in the ElGamal ciphertext
and Pedersen commitment.

2. We use a more efficient discrete logarithm algorithm during extraction with
runtime O(

√
B), which allows us to choose more efficient parameters for the

same level of security. This further reduces the number of encryptions by a
factor 2.
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3. We perform most of the proof in a more efficient elliptic curve Ĝ of same order
p without pairing structure. As both the NIZKs Πrp and Πped are not reliant
on pairings, this reduces the size and efficiency of the NIZK considerably.

Proof of Instantiation. Finally, we analyze the security of the optimized online-
extractable NIZK Π obtained by gluing Πrp and Πped together. Correctness and
zero-knowledge are straightforward. Also, online-extraction seems immediate on
first sight. The extractor decrypts the decomposition, reconstructs the witness
(m, s), and checks whether c = um

1 gs1. To show why it works, we rely on the
soundness of the range proof Πrp to guarantee that the committed values are
short. This allows the extractor to decrypt efficiently. Moreover, we rely on the
soundness of Πped to guarantee that the decrypted values form a proper B-ary
decompositions of an opening (m, s) of c. However, this high-level idea misses
many subtle issues.

First, Bulletproofs are not well-established in the non-interactive setting in
the ROM. While Attema et al. [5] show that special sound multi-round proof
systems are knowledge sound (or rewinding-extractable) when compiled via Fiat-
Shamir, Bulletproofs are only computationally special sound under the DLOG
assumption. An easy fix for this is to relax the relation of the extracted witness.
That is we use two different relations: one to be used by the prover and the
other to be used by the extractor. We define an extracted witness w to be in the
relaxed relation if either w is in the original relation or w is a DLOG solution
with respect to (part of) the statement. With this relaxation, the interactive
Bulletproofs becomes special sound for the relaxed relation since we can count
the extracted DLOG solution as a valid witness. Observing that the result of [5]
naturally translates to relaxed relations, we can conclude the non-interactive
Bulletproofs to be rewinding-extractable in the ROM.

The second subtlety is more technical. For the formal proof, when the adversary
submits a proof such that the online-extraction of Π fails, we must show that
the adversary is breaking either the soundness of the underlying NIZKs Πrp or
Πped. Recall that Πrp and Πped are glued together via the ElGamal ciphertext (cf.
item 1). Specifically, each witness w ∈ (mi, si)i∈[ℓ] are encrypted as c = (c0, c1) =
(gwppr, gr) with randomness r ← Zp, and Πrp uses the partial “Pedersen part”
c0, while Πped uses the entire “ElGamal part” c. Thus one possibility for the
online-extraction of Π failing is when the adversary breaks the tie between the
two NIZKs by breaking the binding property of the Pedersen commitment. That
is, if the adversary finds the DLOG between (g, pp), it can break the consistency
between the two NIZKs in such a way that online-extraction of Π fails.

Put differently, to show that no adversary can trigger a proof for which the
online-extraction of Π fails, we must show (at the minimum) that we can use
such an adversary to extract a DLOG solution between (g, pp). This in particular
implies that we have to simultaneously extract the witness w0 of Πrp containing
one opening of c0 and the witness w1 of Πped containing the other opening of c0 in
order to break DLOG with respect to (g, pp), or equivalently to break the binding
property of the Pedersen commitment. The issue with this is that we cannot
conclude that both extractions succeed at the same time even if Πrp and Πped
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individually satisfy the standard notion of rewinding-extractability. For instance,
using the standard notion of rewinding-extractability, we cannot exclude the
case where the adversary sets up the proofs π0, π1 of Πrp,Πped, respectively, in
such a way that if the extractor of Πrp succeeds, then the extractor of Πped fails.
We thus show in a careful non-black box analysis that the extraction of both
proofs succeeds at the same time with non-negligible probability. To the best of
our knowledge, this is the first time an NIZK that internally uses Bulletproofs is
proven to be online-extractable in the ROM. We believe that our new analysis is
of independent interest.

2 Preliminaries

Let λ ∈ N be the security parameter. We use standard notations for probability,
algortihms and distributions. Also, we use prime order groups G and pairing
groups (G1,G2,GT , e, g1, g2) of shared order p, with standard notation. We refer
to the full version for more details. We denote with [n] the set {1, . . . , n} for
n ∈ N. For any h⃗ = (h1, . . . , hq) and i ∈ [q], we denote h⃗<i as (h1, . . . , hi−1) and
h⃗≥i as (hi, . . . , hq), where h⃗<1 denotes an empty vector. Moreover, for any two
vectors h⃗, h⃗′ of arbitrary length, we use h⃗∥h⃗′ to denote the concatenation of the
two vectors. In particular, for any i ∈ [q] and h⃗ ∈ Hq, we have h⃗ = h⃗<i∥h⃗≥i.

Instantiation. For our instantiations, we assume that the modulus p is of size 256
bit, and an element of G1,G2,GT is of size 382, 763, 4572 bit, respectively. These
are common sizes of standard BLS curves [6] with security parameter λ = 128,
in particular BLS12-381 [15]. For groups that require no pairing operation, we
use a curve of order p and assume that elements are of size 256 bit. We generally
write Ĝ for such groups.

Assumptions. In this paper, we use the following hardness assumptions. Let
G be an arbitrary group with generator g and (G1,G2,GT , e, g1, g2)← PGen(1λ)
be a pairing description.

The discrete logarithm (DLOG) assumption in G states that it is hard to
compute the discrete logarithm x of some random h = gx ∈ G. The decisional
Diffie-Hellman (DDH) assumption states that it is hard to distinguish tuples
(ga, gb, gab) from tuples (ga, gb, gc) with random a, b, c ← Zp. The symmetric
external Diffie-Hellman (SXDH) assumption holds if the DDH assumption holds in
G1 and in G2. Finally, the (asymmetric) computational Diffie-Hellman assumption
states that given (ga1 , g

a
2 , g

b
1, g

b
2), it is hard to computes gab1 .

Explaining Group Elements as Random Strings. Our frameworks generally
require that public parameters pp (of commitment schemes) and common random
strings crs (of NIZKs) are random bit strings. For readability, we allow that pp
and crs contain random group elements g ← G for some group G. This is without
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loss of generality, as using explainable sampling, we can explain these elements
as random strings. We refer to the full version for more details.

2.1 Cryptographic Primitives

We briefly recall the primitives we use throughout the article, and refer to the
full version for formal definitions.

Commitment Schemes. A commitment scheme C is a PPT algorithm C =
C.Commit such that

– C.Commit(pp,m; r): given the public parameters pp ∈ {0, 1}ℓC , message m
and randomness r, computes a commitment c, and outputs the pair (c, r),

where pp ∈ {0, 1}ℓC are uniform public parameters, r is the randomness and
c is the commitment. We do not explicitly define the opening algorithm since
we can use the commitment randomness r as the decommitment (or opening)
information and check if c = Commit(pp,m; r) holds to verify that c is a valid
commitment to message m.

We require the standard notions of correctness, hiding and binding. A com-
mitment scheme is correct if honest commitments c← Commit(pp,m; r) always
verify, i.e., c = Commit(pp,m; r). It is hiding if it is hard to decide whether an
unopened commitment c commits to message m0 or m1, and it is binding if it is
hard to open commitments c to distinct messages.

We further say that c = Commit(pp,m; r) is rerandomizable, if it can be
rerandomized via c′ ← RerandCom(pp, c,∆r). We require that the new com-
mitment c′ has high min-entropy if ∆r is a fresh random value, i.e., given c it
is statistically difficult to predict c′. Also, we assume that we can recover an
opening of c′ via r′ ← RerandRand(pp, c,m, r,∆r) if an initial opening (m, r)
of c and the rerandomization randomness ∆r is known. That is, if compute
c′ = RerandCom(pp, c,∆r) and r′ ← RerandRand(pp, c,m, r,∆r), then it holds
that c′ = c′′, where (c′′, r′) = Com(pp,m; r′).

We note that any natural additive homomorphic commitment scheme satisfies
rerandomizability if we define RerandCom(pp, c,∆r) = c+Commit(pp, 0;∆r) = c′.
Observe that if c = Commit(pp,m; r), the rerandomziaed randomness is r′ =
r +∆r since c′ = Commit(pp,m; r′) by the homomorphic property. Moreover, c′
has high min-entropy since Commit(pp, 0) has high min-entropy for most natural
commitment schemes. Finally, we note that while a computational variant of
the high min-entropy property suffices for our generic construction, we use the
statistical variant for simplicity and because our instantiation satisfies it.

Signature Schemes. We consider deterministic signature schemes; a scheme
where the randomness of the signing algorithm is derived from the secret key
and message. We can derandomize any signature scheme by using a pseu-
dorandom function for generating the randomness used in the signing algo-
rithm (see for example [40]). A signature scheme is a tuple of PPT algorithms
S = (KeyGen,Sign,Verify) such that
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– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically

outputs a signature σ,
– Verify(vk,m, σ): given a verification key vk and a signature σ on message m,

deterministically outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We require the standard notion of correctness and
euf-cma security. A signature scheme is correct if honestly generated signatures
σ ← Sign(sk,m) verify correctly, i.e., Verify(vk,m, σ) = 1. It is euf-cma secure if
given some vk and access to a signature oracle Sign(sk, ·), it is hard to output a
valid signature σ for some message m that was never queried to Sign(sk, ·).

Blind Signature Scheme. We recall the definition of round-optimal blind
signatures, and refer to the full version for more formal definitions of (partially)
blind signatures. A blind signature scheme is a tuple of PPT algorithms PBS =
(KeyGen,User,Signer,Derive,Verify) such that

– KeyGen(1λ): generates the verification key bvk and signing key bsk,
– User(bvk,m): given verification key bvk, and message m ∈ BSmsg, outputs a

first message ρ1 and a state st,
– Signer(bsk, ρ1): given signing key bsk, and first message ρ1, outputs a second

message ρ2,
– Derive(st, ρ2): given state st, and second message ρ2, outputs a signature σ,
– Verify(bvk,m, σ): given verification key bvk, and signature σ on message

m ∈ BSmsg, outputs a bit b ∈ {0, 1}.

In the following, we assume the state is kept implicit in the following for better
readability. We consider the standard security notions for blind signatures [38].

A blind signature is correct, if for all messages m ∈ BSmsg, (bvk, bsk) ←
KeyGen(1λ), (ρ1, st) ← User(bvk,m), ρ2 ← Signer(bsk, ρ1), σ ← Derive(st, ρ2), it
holds that Verify(bvk,m, σ) = 1.

It is blind under malicious keys if a malicious signer cannot distinguish
whether it first signed m0 or m1, after engaging with a honest user in two signing
sessions and being presented the obtained signatures on messages m0,m1 in a
fixed order. Here, the honest user permutes the order of the signing sessions at
random, and the verification key bvk is adversarially chosen.

It is one-more unforgeable if a malicious user that engages in at most QS

signing sessions with the signer, can output at most QS valid distinct signature-
message pairs.

Σ-Protocols. Let R be an NP relation with statements x and witnesses w.
We denote by LR = {x | ∃w s.t. (x,w) ∈ R} the language induced by R. A
Σ-protocol for an NP relation R for language LR is a tuple of PPT algorithms
Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R,
outputs a first flow message (i.e., commitment) α and a state st, where we
assume st includes x,w,
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– Chall(): samples a challenge β ← CH (without taking any input),
– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow

message (i.e., response) γ,
– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge

β ∈ CH, and a response γ, outputs a bit b ∈ {0, 1}.

Here, CH denotes the challenge space. We call the tuple (α, β, γ) the transcript
and say that they are valid for x if Verify(x, α, β, γ) outputs 1. When the context
is clear, we simply say it is valid and omit x.

We recall the standard notions of correctness, high-min entropy, honest-
verifier zero-knowledge, and 2-special soundness. A Σ-protocol is correct, if for all
(x,w) ∈ R, if for any honestly generated transcripts (α, β, γ), the verifier accepts,
i.e., Verify(x, α, β, γ) = 1. It has high min-entropy if for all (x,w) ∈ R, it is
statistically hard to predict a honestly generated first flow α. It is honest-verifier
zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator Sim
such that the distributions of Sim(x, β) and the honestly generated transcript
with Init initialized with (x,w) are computationally indistinguishable for any
x ∈ LR, and β ∈ CH, where the honest execution is conditioned on β being used
as the challenge. Finally, it is 2-special sound, if there exists a deterministic PPT
extractor Ext such that given two valid transcripts {(α, βb, γb)}b∈[2] for statement
x with β1 ̸= β2, along with x, outputs a witness w such that (x,w) ∈ R.

Note that in the above, two valid transcripts for x, with the same first flow
message and different challenges, imply that statement x is in LR. That is, we do
not guarantee x to lie in LR when invoking Ext. While subtle, this allows us to
invoke Ext properly within the security proof even if the reduction cannot decide
if the statement x output by the adversary indeed lies in LR.

In the following, we propose a new notion of f -unique extraction. The notion
is similar to the unique response property [27, 54] which requires that given
an incomplete transcript (α, β), there is at most one response γ such that the
transcript τ = (α, β, γ) is valid. We relax this in two ways. First, we require
that given a transcript τ and another challenge β′, it is impossible to find two
different responses γ0, γ1, such w0 ̸= w1, where wb is the witness extracted from
τ and τb = (α, β′, γb). We further relax this by only requiring this property for a
portion of the witness, defined by a function f , i.e., we require f(w0) ̸= f(w1)
instead of w0 ̸= w1.

While it may seem like an unnatural property, this is satisfied by many
natural Σ-protocols. In particular, if the first flow α contains a perfectly bind-
ing commitment c = Commit(f(w); r) to f(w), and the extractor extracts the
appropriate r, then the Σ-protocol has f -unique extraction. We remark also
that a statistical variant of f -unique extraction is sufficient for our purpose. We
choose the definition below for simplicity and because our instantiation satisfies
it. See section 3 for more details and concrete example of f -unique extraction.

Definition 1 (f-Unique Extraction). For a (possibly non-efficient) function
f , a Σ-protocol Σ has f -unique extraction if for any statement x, any transcript
τ = (α, β, γ) and challenge β′ ̸= β, there is no γ0, γ1, such that for τb = (α, β′, γb),
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we have
f(Ext(x, τ, τ0)) ̸= f(Ext(x, τ, τ1)).

Non-Interactive Zero Knowledge. Given a witness w for statement x, a
non-interactive zero-knowledge (NIZK) proof system allows a prover to generate
a proof π that attests that she knows some w′ such that (w′, x) ∈ R. Proofs π
can be verified for statement x without revealing anything but that the state-
ment is true. Here, we quantify “knowledge of the witness” either via adaptive
knowledge soundness or online-extractability. The former informally states that
if an algorithm A can generate a valid proof-statement pair (x, π), then there
exists some extractor that when given black-box access to A, can extract some
witness w s.t. (x,w) ∈ R. The latter requires that the witness w can be extracted
from (x, π) “on-the-fly” without disrupting A. In this context, we require some
random oracle H on which proving and verification rely. Further, we assume that
the prover and verifier are supplied with a common random string crs. As we
later aim to avoid such a crs in our blind signature framework, the crs will be
the output of a random oracle.

More formally, an NIZK for a relation R is a tuple of oracle-calling PPT
algorithms (ProveH,VerifyH) such that:

– ProveH(crs, x, w): receives a common random string crs ∈ {0, 1}ℓ, a statement
x and a witness w, and outputs a proof π,

– VerifyH(crs, x, π): receives a statement x and a proof π, and outputs a bit
b ∈ {0, 1}.

Here, ℓ is the length of common random strings. An NIZK is correct if
for any crs ∈ {0, 1}ℓ, (x,w) ∈ R, and π ← ProveH(crs, x, w), it holds that
VerifyH(crs, x, π) = 1.

It is zero-knowledge if there exists a PPT simulator Sim = (SimH,Simπ)
that outputs simulated proofs π′ ← Simπ(crs, x) that are indistinguishable from
real proofs π ← ProveH(crs, x, w) that are generated with witness w such that
(x,w) ∈ R. Here, SimH simulates the random oracle H for simulated proofs.

We define adaptive knowledge soundness. We remark that the soundness
relation Rlax can be different from the (correctness) relation R. We are typically
interested in R ⊆ Rlax and call Rlax the relaxed relation.

An NIZK is adaptively knowledge sound for relation Rlax if there exists a
PPT algorithm Ext such that for any crs ∈ {0, 1}ℓ, given oracle access to any
PPT adversary A (with explicit random tape ρ) that makes QH = poly(λ)
random oracle queries, then for (x, π) ← AH(crs; ρ), the extractor finds some
w ← Ext(crs, x, π, ρ, h⃗) with (x,w) ∈ Rlax with probability at least µ(λ)−negl(λ)

poly(λ) .

Here, µ(λ) is the probability that A outputs valid pairs (x, π) and h⃗ are the
random oracle outputs in the run of A.

An NIZK is online-extractable if for all PPT adversaries A, there exists
a PPT simulator SimCRS that outputs a trapdoor td and simulated crs that
is indistinguishable from some random crs ← {0, 1}ℓ, and a PPT extractor
Ext, such that for any QH = poly(λ) and PPT adversary A that on input crs



Practical Round-Optimal Blind Signatures in the ROM 19

makes at most QH random oracle queries and outputs statement-proof pairs
{(xi, πi)}i∈[QS ] ← AH(crs), Ext outputs wi ← Ext(crs, td, xi, πi) such that for
all i it holds that (xi, wi) ∈ R, and all proofs verify, with probability at least
µ(λ)−negl(λ)

poly(λ) . Here, µ(λ) denotes the probability that the proofs output by A
verify correctly.

3 Optimizing the Fischlin Blind Signature

In this section, we provide an optimized generic construction of blind signatures
compared with the Fischlin blind signature [28]. In particular, we relax the
extractable (and perfect binding) commitment and multi-online extractable
NIZK used as the central building block for the Fischlin blind signature by a
computationally binding commitment and a standard rewinding-based NIZK built
from a Σ-protocol satisfying f -unique extraction. As we show in Section 3.3, this
relaxation allows us to minimize the sum of the communication and signature
size. We construct a natural partially blind variant in the full version.

3.1 Construction

Our generic construction is based on the building blocks (C,S,Σ) that satisfy
some specific requirements. If (C, S,Σ) satisfies these requirements, then we call
it BSRnd-suitable.

Definition 2 (BSRnd-Suitable (C,S,Σ)). The tuple of schemes (C,S,Σ) are
called BSRnd-suitable, if it holds that

– C is a correct and hiding rerandomizable commitment scheme with public
parameter, message, randomness, and commitment spaces {0, 1}ℓC , Cmsg, Crnd,
and Ccom, respectively, such that Cmsg is efficiently sampleable and 1/|Cmsg| =
negl(λ),

– S is a correct and euf-cma secure deterministic signature scheme with mes-
sage space Smsg that contains Ccom, i.e., Ccom ⊆ Smsg and we assume elements
in Smsg are efficiently checkable,

– Σ is a correct, HVZK, 2-special sound Σ-protocol with high min-entropy, and
challenge space CH with 1/|CH| = negl(λ) for the relation

Rrnd := {x =(pp, vk,m), w = (µ, c, r) |
C.Commit(pp,m; r) = (c, r) ∧ S.Verify(vk, µ, c) = 1}.

We also require Σ to be f -unique extraction where f(w) = c, i.e., f outputs c
and ignores (µ, r).

Let (C,S,Σ) be BSRnd-suitable. Let Hpar,HM,Hβ be a random oracles from
{0, 1}∗ into {0, 1}ℓC , Cmsg, CH, respectively.

Construction. We present our blind signature BSRnd. Below, we assume that the
verification key implicitly specifies the public parameter pp for C via pp = Hpar(0).
We assume pp is provided to all of the algorithms for readability.
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– BSRnd.KeyGen(1
λ): samples (vk, sk)← S.KeyGen(1λ) and outputs verification

key bvk = vk and signing key bsk = sk.
– BSRnd.User(bvk,m): sets m← HM(m) and outputs the commitment c ∈ Ccom

generated via (c, r)← C.Commit(pp,m) as the first message and stores the
randomness st = r ∈ Crnd.

– BSRnd.Signer(bsk, c): checks if c ∈ Ccom, samples a rerandomization random-
ness ∆r ← Crnd, rerandomizes the commitment c via c′ = C.RerandCom(pp, c,∆r),
signs µ← S.Sign(sk, c′), and finally outputs the second message ρ = (µ,∆r).

– BSRnd.Derive(st, ρ): parse st = r, ρ = (µ,∆r) and checks ∆r ∈ Crnd. It
then computes the randomized commitment c′′ = C.RerandCom(pp, c,∆r)
and randomized randomness r′ ← C.RerandRand(pp, c,m, r,∆r), and checks
S.Verify(vk, c′′, µ) = 1 and c′′ = C.Commit(pp,m; r′). Finally, it outputs
a signature σ = π, where (α, st′) ← Σ.Init(x,w), β ← Hβ(x, α), γ ←
Σ.Resp(x, st′, β), π = (α, β, γ) with x = (pp, vk,m), w = (µ, c′′, r′).

– BSRnd.Verify(bvk,m, σ): parses σ = π and π = (α, β, γ), sets m = HM(m) and
x = (pp, vk,m), and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and
otherwise outputs 0.

3.2 Correctness and Security

The correctness of BSRnd follows directly from the correctness of the underlying
schemes (C, S,Σ). Blindness follows mainly from the HVZK property of Σ and the
hiding property of C. The only thing to be aware of is that the user needs to check
the validity of the rerandomized commitment c′′ by computing a rerandomized
randomness using the randomness r used to compute the original commitment c.
In order to invoke the hiding property of C on c, we rely on the correctness of
the randomization property so that the reduction no longer needs to check the
validity of c′′.

The main technical challenge is the proof of one-more unforgeability. The
proof is given below, for an overview see Section 1. We refer to the full version
for proofs of correctness and blindness.

Theorem 1. The blind signature BSRnd is correct, blind under malicious keys
and one-more unforgeable if the schemes (C,S,Σ) are BSRnd-suitable.

Proof. Let A be a PPT adversary against one-more unforgeability. Denote by QS

the number of signing queries, by QM the number of HM queries, and by QH the
number of Hβ queries. Recall that we model Hpar,HM, and Hβ as random oracles,
where we assume without loss of generality that A never repeats queries. In the
end of the interaction with A, that is after QS signing queries, A outputs QS + 1
forgeries {(mi, σi)}i∈[QS+1]. We write σi = πi and denote by ci the QS first
message queries to BSRnd.Signer(bsk, ·) issued by A. Note that if A is successful,
then we have Σ.Verify(xi, αi, βi, γi) = 1 and βi = Hβ(xi, αi) for mi = HM(mi),
xi = (pp, vk,mi), and πi = (αi, βi, γi). We first slightly alter the real game and
remove subtle conditions to make the later proofs easier. We denote by AdvHi

A (λ)
the advantage of A in Hybrid i for i ∈ {0, 1}.
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– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except it aborts if there is a collision in HM

or Hβ , or there is some (xi, αi) for i ∈ [QS + 1] that was never queried to Hβ .
It suffices to upper bound the abort probability. A collision in HM (resp. Hβ)
happens with probability at most Q2

M/|Cmsg| (resp. Q2
H/|CH|) (which follows

for example from a union bound). Moreover, the probability that some fixed
βi of A’s output equals to Hβ(xi, αi) is exactly 1/|CH|, if (xi, αi) was never
queried to Hβ . Thus, it follows that AdvH0

A (λ) ≤ AdvH1

A (λ) +
Q2

M

|Cmsg| +
Q2

H+1
|CH| =

AdvH1

A (λ) + negl(λ).

Description of Wrapper Algorithm B. We now present a wrapper algorithm B
that simulates the interaction between the challenger G and A in Hybrid 1.
Looking ahead we apply a generalization of the standard forking lemma on B to
extract the witnesses from all the proof (i.e. forgery) output by A.

Notice that G is deterministic once the keys (vk, sk) of the (deterministic)
signature scheme S, the QS rerandomization randomness in Crnd, and the outputs
of the random oracles Hpar,HM,Hβ are determined. Since Hpar is only used to
generate the public parameter pp of the commitment scheme, we assume without
loss of generality that only pp is given to A rather than access to Hpar. We use
coin to denote all the QM outputs of HM and the random coins used by A. We
use h⃗ = (β̂i, ∆ri)i∈[QH+QS ] ∈ (CH×Crnd)QH+QS to explicitly denote the list that
will be used to simulate the outputs of Hβ and rerandomziation randomness
sampled by G. Here, we note that h⃗ is deliberately defined redundantly since G
only needs QH hash outputs and QS rerandomziation randomness, rather than
QH + QS of them each. We also use β̂ ∈ CH to denote the output of Hβ to
distinguish between the hash value β included in A’s forgeries. We then define B
as an algorithm that has oracle access to S.Sign(sk, ·) as follows:

BS.Sign(sk,·)(pp, vk, h⃗; coin) : On input pp, vk, and h⃗ ∈ (CH × Crnd)QH+QS , B
simulates the interaction between the challenger G and A in Hybrid 1. B
invokes A on the randomness included in coin and simulates G, where it runs
the same code as G except for the following differences:
– It uses the provided pp and vk rather than generating it on its own;
– All QM random oracle queries to HM are answered using the hash values

include in coin;
– On the i-th (i ∈ [QH ]) random oracle query to Hβ , it retrieves an unused
(β̂k, ∆rk) with the smallest index k ∈ [QH + QS ] and outputs β̂k and
discards ∆rk;

– On the i-th (i ∈ [QS ]) first message ci ∈ Ccom from A, it retrieves an
unused (β̂k, ∆rk) with the smallest index k ∈ [QH + QS ] and discards
β̂k. It then computes c′i = C.RerandCom(pp, ci, ∆rk), queries the signing
oracle on c′i, obtains µi ← S.Sign(sk, c′i), and returns the second message
ρi = (µi, ∆rk).

At the end of the game when A outputs the forgeries, B checks if the forgeries
are valid and the added condition in Hybrid 1. If the check does not pass,
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Algorithm 1 Description of the forking algorithm
F
S.Sign(sk,·)
B (pp, vk)

1: Pick coin for B at random.
2: h⃗← (CH × Crnd)QH+QS

3:
(
(Ii)i∈[QS+1], Λ

)
← BS.Sign(sk,·)(pp, vk, h⃗; coin)

4: if Λ = ⊥ then
5: return ⊥ ▷ Return fail.
6: D := () ▷ Prepare empty list.
7: for j ∈ [QS + 1] do
8: (c, flag) := (1,⊥)
9: while c ∈ [T ] ∧ ¬flag do

10: h⃗
(c)
j,≥Ij

← (CH × Crnd)QH+QS−Ij+1

11: h⃗
(c)
j := h⃗<Ij∥h⃗

(c)
j,≥Ij

12:
(
(I

(c)
j,i )i∈[QS+1], Λ

(c)
j

)
← BS.Sign(sk,·)(pp, vk, h⃗

(c)
j ; coin)

13: if I
(c)
j,j = Ij then

14: D = D ∪ (j, Ij , Λ
(c)
j )

15: flag = ⊤ ▷ Break from while loop.
16: c = c+ 1

17: if |D| < QS + 1 then ▷ Check if B succeeds in all QS + 1 run.
18: return ⊥ ▷ Return fail.
19: return (Λ,D)

then B outputs ((0)i∈[QS+1],⊥), i.e., QS +1 zeros followed by a ⊥. Otherwise,
B finds the indices Ii ∈ [QH + QS ] such that Hβ(xi, αi) = βi = β̂Ii for
i ∈ [QS + 1], which are guaranteed to exist uniquely due to the modification
we made in Hybrid 1. It then sets Λ = (xi, αi, βi, γi)i∈[QS+1] and outputs
((Ii)i∈[QS+1], Λ). It can be checked that B perfectly simulates the view of
the challenger G in Hybrid 1. Therefore, B outputs Λ ̸= ⊥ with probability
AdvH1

A (λ).

Description of Forking Algorithm FB. We now define a generalization of the stan-
dard forking algorithm F so that F keeps on rewinding B until some condition is
satisfied. Concretely, F takes as input (pp, vk), has oracle access to S.Sign(sk, ·),
and invokes B internally as depicted in algorithm 1, where the number of repetition
T is defined below.

We show that if A succeeds in breaking one-more unforgeability in Hybrid 1
with non-negligible probability, then we can set a specific number of repetition
T so that the forking algorithm FB terminates in polynomial time and succeeds
in outputting a non-⊥ with non-negligible probability. Formally, we have the
following lemma.

Lemma 1. Let ϵ = AdvH1

A (λ). Then, if we set T =
(

ϵ
(QH+QS)(QS+2)2

)−1
·

log(2QS + 2), FB outputs a non-⊥ with probability at least ϵ
2(QS+2)2 .
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In particular, if ϵ is non-negligible, then T = poly(λ). Moreover, the running
time of FB is at most (roughly) a factor T · (QS+1)+1 more of B (or equivalently
A), so FB runs in polynomial time.

Proof. Assume B outputs a valid Λ = (xi, αi, βi, γi)i∈[QS+1] in the first execution
and denote this event as E. For i ∈ [QS + 1], we denote the tuple (xi, αi, βi, γi)
as the i-th forgery. For any (i, k) ∈ [QS + 1] × [QH + QS ], we denote Ei,k as
the event that forgery is associated to the k-th hash query, i.e., the k-th entry
of h⃗ ∈ (CH × Crnd)QH+QS includes βi. Here, note that ∀i ∈ [QS + 1], we have∑

k∈[QH+QS ] Pr[Ei,k] = 1. We define the set Pi as

Pi =

{
k

∣∣∣∣ Pr[Ei,k | E] ≥
1

(QH +QS)(QS + 2)

}
,

where for any k ∈ Pi, we have Pr[Ei,k] ≥ ϵ
(QH+QS)(QS+2) . Let us define Egood

i =∨
k∈Pi

Ei,k. Then, we have Pr
[
Egood
i

∣∣∣ E] ≥ QS+1
QS+2 , since there are at most (QH +

QS) possible values of k’s not in Pi and they can only account to a probability
at most (QH +QS)× 1

(QH+QS)(QS+2) =
1

QS+2 .
Next, for any (i, k) ∈ [QS +1]×Pi, let us define Xi,k = Rcoin× (CH×Crnd)k−1

and Yi,k = (CH× Crnd)QH+QS−k+1, where Rcoin denotes the randomness space of
coin. Here, note that (xi, h⃗≥k) ∈ Xi,k × Yi,k can be parsed appropriately to be
(coin, h⃗), and defines all the inputs of B, where we assume a fixed (pp, vk). We
further define Ai,k ⊆ Xi,k × Yi,k to be the set of inputs that triggers event Ei,k.
Then using the splitting lemma with α = QS+1

QS+2 ·
ϵ

(QH+QS)(QS+2) , there exists a
set Bi,k ⊂ Xi,k × Yi,k such that

Bi,k =

{
(xi, h⃗≥k) ∈ Xi,k × Yi,k

∣∣∣∣∣ Pr
h⃗′≥k←Yi,k

[
(xi, h⃗′≥k) ∈ Ai,k

]
≥ ϵ

(QH +QS)(QS + 2)2

}
,

(1)

and

Pr
(xi,h⃗′≥k)←Xi,k×Yi,k

[
(xi, h⃗≥k) ∈ Bi,k

∣∣∣ (x, h⃗≥k) ∈ Ai,k

]
≥ QS + 1

QS + 2
. (2)

We are now ready to evaluate the success probability of the forking algorithm
FB. With probability ϵ, B outputs ((Ii)i∈[QS+1], Λ) in the first execution on input
(coin, h⃗) ∈ Rcoin × (CH × Crnd)QH+QS . Then the probability that event Egood

i

occurrs for all i ∈ [QS + 1] is at least

Pr
[
∀i ∈ [QS + 1], Egood

i

∣∣∣E] ≥ 1−
∑

i∈[QS+1]

Pr
[
¬Egood

i

∣∣∣E] ≥ 1

QS + 2
,

where the first inequality follows from the union bound and the second inequality
follows from Pr

[
Egood
i

∣∣∣ E] ≥ QS+1
QS+2 .
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Then, from eq. (2) and following the same union bound argument, FB samples
a good input such that (coin, h⃗) ∈ Bi,Ii for all i ∈ [QS + 1] conditioned on Egood

i

for all i ∈ [QS + 1] with probability at least 1
(QS+2) . Therefore, by eq. (1), if FB

resamples h⃗i,≥Ii ∈ Yi,Ii = (CH×Crnd)QH+QS−Ii+1 conditioned on the set Bi,Ii , B
succeeds on input (coin, h⃗i,<Ii∥h⃗i,≥Ii) with probability at least ϵ

(QH+QS)(QS+2)2 .

Conditioning on sampling an input (coin, h⃗) ∈ Bi,Ii for all i ∈ [QS+1] and noting
the independence of each rewinding, the probability that B succeeds in all j-th
rewinding for j ∈ [QS + 1] is at least(

1−
(
1− ϵ

(QH +QS)(QS + 2)2

)T
)QS+1

≥
(
1− 1

elog(2QS+2)

)QS+1

=

(
1− 1

2(QS + 1)

)QS+1

≥ 1

2
.

Collecting all the bounds, we conclude that FB succeeds with probability at least
ϵ

2(QS+2)2 as desired. Moreover, the running time of FB is roughly the same as
running B for at most T · (QS + 1) + 1 times, where the runtime of B is roughly
the same as the runtime of A.

Using FB to Break Binding of C or euf-cma of S. We are now ready to finish
the proof. Assume ϵ = AdvH1

A (λ) is non-negligible. We use FB to extract the
witnesses from the proofs output by A with non-negligible probability and show
that such witnesses can be used to break either the binding of C or the euf-cma
security of S. Thus establishing that ϵ = negl(λ) by contradiction.

We define adversary AC,S on both the binding property of C and the euf-cma
property of S as follows. Initially, AC,S obtains pp from the binding challenger.
Further, she receives vk and oracle access to a signing oracle S.Sign(sk, ·) from the
euf-cma challenger. Then, she runs the forking algorithm R← F

S.Sign(sk,·)
B (pp, vk).

She checks R ̸= ⊥, and parses R = (Λ,D), where Λ = (xi, αi, βi, γi)i∈[QS+1] and
D = (j, Ij , Λj)j∈[QS+1]. Due to lemma 1, FB runs in polynomial time and has
non-negligible success probability. Below, we describe the second part of AC,S

and analyze its success probability conditioned on FB succeeding. (If R = ⊥, then
AC,S outputs ⊥ and aborts.)

For j ∈ [QS + 1], we denote by (x′j , α
′
j , β
′
j , γ
′
j) the j-th element of the tuple

Λj . Moreover, note that the same coin and values (β̂1, ∆r1), . . . (β̂Ij−1, ∆rIj−1)
are used for the initial run of B and the run of B where B outputs Λj . Thus, we
have for all j ∈ [QS + 1] that (xi, αi) = (x′i, α

′
i). Moreover, we have β̂Ij ̸= β̂j,Ij ,

or equivalently βj ̸= β′j for all j ∈ [QS + 1] with probability at least 1− QS+1
|CH| =

1− negl(λ) since each hash outputs are sampled uniformly and independently at
random. This allows AC,S to invoke 2-special soundness of Σ with overwhelming
probability. For all i ∈ [QS + 1], she runs Ext on (xi, (αi, βi, γi), (αi, β

′
i, γ
′
i))

to extract a witness wi = (µi, ci, ri) such that C.Commit(pp,mi; ri) = ci ∧
S.Verify(vk, µi, ci) = 1, where xi = (pp, vk,mi).
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If there exists distinct i, j ∈ [QS + 1] with ci = cj , AC,S sends (mi,mj , ri, rj)
to the binding security game of C. Note that due to the check in Hybrid 1, the
(mi)i∈[QS+1] are pairwise distinct, in particular mi ≠ mj but C.Commit(pp,mi; ri) =
C.Commit(pp,mj ; rj). However, due to the binding property of C, this can happen
with only negligible probability. Thus, the extracted commitments (ci)i∈[QS+1]

must be distinct with overwhelming probability.
In such a case, there must be at least one i∗ ∈ [QS +1] such that c∗i was never

queried to the signing oracle S.Sign(sk, ·) in the first execution of B or equivalently
of A. This is because due to the one-more unforgeability game, A only queries
the signing oracle QS times. Thus, AC,S finds such i∗ with the smallest index
and outputs (µi∗ , c

∗
i ) as a forgery against the euf-cma security of S.

It remains to show that what AC,S output is a valid forgery, i.e., B never
queried c∗i to the signing oracle in any of the rewound executions. To argue this, we
first show that all the extracted commitments (ci)i∈[QS+1] are fixed after the first
execution ends due to f -unique extraction. For any (xi, τi := (αi, βi, γi)) ∈ Λ
defined in the first execution of B, conditioning on FB succeeding, another
valid transcript (xi, τ

′
i := (αi, β

′
i, γ
′
i)) ∈ Λi with βi ̸= β′i is guaranteed to exist

with overwhelming probability. Due to f -unique extraction, for any such valid
transcript the value f(Ext(xi, τi, τ

′
i)) = ci is identical, where recall f simply

outputs the commitment included in the witness. Put differently, conditioning
on FB succeeding, (xi, τi) uniquely defines ci with overwhelming probability. We
emphasize that ci does not need to be efficiently computable given only (xi, τi);
we only care if ci is determined by (xi, τi) in a statistical sense.

Now, assume B queried c∗i to the signing oracle in one of the rewound
executions. This means A outputs some c∗ to B (or equivalently the simulated
challenger G in Hybrid 1) and B computed c∗i = C.RerandCom(pp, c∗, ∆r∗), where
∆r∗ is a fresh randomness sampled by FB to be used in the rewound execution.
However, this cannot happen with all but negligible probability due to the
rerandomizability of C since we have established above that ∆r∗ is sampled
independently from c∗i . Since there are at most T · (QS + 1) rewound executions,
the probability that B queries c∗i to the signing oracle during in one of the
rewound execution is bounded by T · (QS + 1) · negl(λ) = negl(λ), where we use
T = poly(λ) due to lemma 1.

Thus, with overwhelming probability, what AC,S output is a valid forgery
against the euf-cma security of S. However, due to the hardness of euf-cma
security of S, this cannot happen with all but negligible probability. Combining
all the arguments, we conclude that ϵ = AdvH1

A (λ) is negligible. This completes
the proof.

Remark 1 (Removing the Rerandomizability Property). As briefly noted in
our technical overview, an alternative approach to using rerandomizable com-
mitment is to let the signer (i.e., BSRnd.Signer) sample a random string rand
and run µ ← S.Sign(sk, c∥rand) instead of µ ← S.Sign(sk, c′), where c′ =
C.RerandCom(pp, c,∆r) is the rerandomized commitment. The signer then sends
ρ = (µ, rand) as the second message instead of ρ = (µ,∆r). By observing that
rand has an identical effect as ∆r in the security proof, it can be checked that



26 Shuichi Katsumata, Michael Reichle, and Yusuke Sakai

the same proof can be used to show blindness and one-more unforgeability of
this modified protocol. While this approach works for any commitment scheme,
we chose not to since it requires a slightly larger NIZK proof due to the enlarged
signing space of the underlying signature scheme S.

3.3 Instantiation

We describe briefly how we instantiate the schemes (C,S,Σ) in the asymmetric
pairing setting. More details can be found in Section 1.3 and in the full version.
For C, we choose Pedersen commitments in G1 of the form c = gm1 ppr, which are
naturally rerandomizable and consist of a single element in G1.

For the signature scheme S, we use a variant of the Kiltz-Pan-Wee (KPW)
structure-preserving signature (SPS) scheme [43] in the asymmetric pairing
setting. The message space of KPW is Gℓ

1, where ℓ ∈ N is the message length.
Any SPS must contain at least three group elements, and at least one in each

G2 and in G1 [1]. But as the bit size of elements in G2 is larger than the bit size
of elements in G1 and Zp, removing elements in G2 in the signature is desirable.
For BSRnd, we do not require the full structure-preserving property of KPW, as
we can design efficient Σ-protocols for signature verification, even if the signature
contains elements in Zp.

Indeed, KPW signatures contain an element σ4 in G2. We observe that we
can safely replace σ4 with its discrete logarithm τ . Further, we can omit two
more elements in G1 for free, as they can be recomputed via τ and the remaining
signature elements.

Our optimized variant is given below.

– SKPW.KeyGen(1λ): samples a, b← Zp and sets A← (1, a)⊤ and B ← (1, b)⊤.
It samples K ← Z(ℓ+1)×2

p , K0, K1 ← Z2×2
p and sets C ← KA. It sets

(C0,C1) ← (K0A,K1A), (P0,P1) ← (B⊤K0,B
⊤K1), vk ← ([C0]2, [C1]2,

[C]2, [A]2), and sk← (K, [P0]1, [P1]1, [B]1). It outputs (vk, sk).
– SKPW.Sign(sk, [m]1): samples r, τ ← Zp and sets σ1 ← [(1,m⊤)K + r(P0 +

τP1)]1 ∈ G2
1, σ2 ← [rB⊤]1 ∈ G2

1, and σ3 ← τ ∈ Zp. It outputs (σ1, σ2, σ3).
– SKPW.Verify(vk, [m]1, (σ1, σ2, σ3)): checks e(σ1, [A]2) = e([(1,m⊤)]1, [C]2) ·

e(σ2, [C0]2 · τ [C1]2).

We show that SKPW is euf-cma under the SXDH assumption in the full
version. The proof relies on the computational core lemma of [44]. SKPW can be
made deterministic via a pseudorandom function.

For an efficient instantiation of the Σ-protocol Σ, we refer to the full version.
In the resulting blind signature BSRnd, the user sends 1 element in G1 and 1
element in Zp, the signer sends 4 elements in G1 and 1 element in Zp and
the final signature contains 6 elements in G1 and 5 elements in Zp. The total
communication is 303 Byte and signatures are of size 447 Byte for λ = 128.
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4 Blind Signatures based on Boneh-Boyen Signature

In this section, we provide a blind signature based on randomizable signatures.
Compared to the optimized generic construction of the Fischlin blind signature
in section 3, the resulting signature size is much smaller since it only consists of
one signature of the underlying randomizable signature scheme. The construction
also relies on an online-extractable NIZK which can be instantiated efficiently by
carefully combining Bulletproofs and another NIZK for an ElGamal commitment
(see the full version). In the full version we show how to adapt the scheme for a
partially blind variant, where we modify the Boneh-Boyen signature [12, 14] in
order to embed the common message into the verification key.

4.1 Construction

We focus on the asymmetric pairing setting. We note that there is also a natural
variant of this scheme in the symmetric setting and we omit details. First, we
recall the Boneh-Boyen signatures [12, 14] in the asymmetric setting. While this
is implicit in our proof, we note the following is known to be selectively secure in
the standard model under the CDH assumption:

– SBB.KeyGen(1
λ): samples α, β, γ ← Zp, and sets u1 = gα1 , u2 = gα2 , h1 =

gγ1 , h2 = gγ2 , v = e(g1, g2)
αβ , and outputs vk = (u1, u2, h1, h2, v) and sk = gαβ1 ,

– SBB.Sign(sk,m): samples r ∈ Zp and outputs (σ1, σ2) = (sk · (um
1 h1)

r, gr1) ∈
G2

1,
– SBB.Verify(vk,m, (σ1, σ2)): outputs 1 if e(σ1, g2) = v · e(σ2, u

m
2 h2), and other-

wise outputs 0.

Let Π be an online-extractable NIZK proof system, with random oracle Hzk :
{0, 1}∗ 7→ {0, 1}ℓzk and common reference string crs of length ℓcrs for the relation

Rbb := {x = (c, u1, g1), w = (m, s) | c = um
1 · gs1}.

Let HM,Hcrs be a random oracles mapping into Zp, {0, 1}ℓcrs respectively.

Construction. We present our blind signatures based on SBB, where we assume
that crs = Hcrs(0) is provided to all of the algorithms for readability.

– BSBB.KeyGen(1
λ): outputs (bvk, bsk)← SBB.KeyGen(1

λ), where bvk = (u1, u2,
h1, h2, v) with u1 = gα1 , u2 = gα2 , h1 = gγ1 , h2 = gγ2 , v = e(g1, g2)

αβ and
bsk = gαβ1 .

– BSBB.User(bvk,m): checks validity of the verification key bvk via e(u1, g2) =
e(g1, u2) and e(h1, g2) = e(g1, h2), sets m← HM(m) and computes a Pedersen
commitment c = um

1 gs1 ∈ G1 to m and a proof π ← Π.ProveHzk(crs, x, w),
where s← Zp, x = (c, u1, g1), and w = (m, s). It outputs the first message
ρ1 = (c, π) and stores the randomness st = s.

– BSBB.Signer(bsk, ρ1): parses ρ1 = (c, π), checks Π.VerifyHzk(crs, x, π) = 1 and
outputs the second message ρ2 = (ρ2,0, ρ2,1)← (sk · (c · h1)

r, gr1) ∈ G2
1, where

r ← Zp.
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– BSBB.Derive(st, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1), checks e(ρ2,0, g2) =

v · e(ρ2,1, um
2 gs2 ·h2), and outputs the signature σ = (ρ2,0/ρ

s
2,1 · (um

1 h1)
r′ , ρ2,1 ·

gr
′

1 ) ∈ G2
1 for r′ ← Zp.

– BSBB.Verify(bvk,m, σ): sets m← HM(m) and outputs b← SBB.Verify(bvk,m, σ).

4.2 Correctness and Security

We prove correctness, blindness and one-more unforgeability. Correctness follows
from a simple calculation. Blindness follows from the zero-knowledge property of
Π, and as c statistically hides the message and σ is re-randomized. The proof
follows a similar all-but-one reduction as the underlying Boneh-Boyen signature.
The only difference is that we modify the Boneh-Boeyn signature which is
selectively secure in the standard model, to be adaptively secure in the ROM,
and to use the (multi)-online extractor to extract randomness of c submitted by
the adversary. Concretely, the reduction first guesses a query m∗ = HM(m

∗) and
embeds a CDH challenge into vk such that it can sign all values in Zp \ {m∗}.
For each signing query, the reduction extracts the randomness of c from the
proof π, simulates the signing of m as in the original euf-cma proof of SBB,
and finally reapplies the randomness of c to the intermediate signature. If the
extracted message is m∗, the reduction aborts. Here, we crucially require that Π
is online-extractable. In the end, the reduction hopes to receive a valid signature
on m∗ with which it can solve CDH. More details can be found in section 1.3. A
formal security analysis is given in the full version.

Theorem 2. The blind signature SBB is correct, blind under malicious keys
under the zero-knowledge property of Π, and one-more unforgeable under the CDH
assumption and the online-extractability of Π.

4.3 Instantiation

We give a brief overview of our online-extractable NIZK Π. More details can also
be found in the full version. As our online-extraction techniques are not reliant
on pairings, we use an additional group Ĝ with generators ĝ1 and p̂p.

Tools. In the full version, we construct a secure Σ-protocol Σped for relation
Rped. In this overview, we compile it into a NIZK Πped via Fiat-Shamir. This is
kept implicit in the instantiation as we cannot rely on the security of Πped in a
black-box manner. The relation Rped is defined as

Rped = {(x,w) : c = um
1 gs1, Ei = ĝei p̂p

ri , Ri = ĝri ,∏
i∈[ℓ]

EBi−1

i = ĝm · p̂ptm ,
∏
i∈[ℓ]

EBi−1

i+ℓ = ĝs · p̂pts},

where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B) and w = (m, s, (ei, ri)i∈[2ℓ], tm, ts).
Note that the relation shows that m =

∑ℓ
i=1 eiB

i−1 and s =
∑ℓ

i=1 ei+ℓB
i−1



Practical Round-Optimal Blind Signatures in the ROM 29

under the DLOG assumption. Also, we use a NIZK Πrp with random oracle Hrp

for the relation

Rrp = {(x,w) : Ei = ĝei · p̂pri , ei ∈ [0, B − 1] for i ∈ [2ℓ]},

We obtain Πrp by applying the Fiat-Shamir transformation as described in [5] to
the multi-round interactive proof system Σ2ℓ

rp with crs = (ĝ, p̂p, (ĝi)i∈[ℓrp]) from
[4] (Appendix F.2), for appropriate ℓrp ∈ N. Denote with Rdlog = {(crs, w∗)} the
relation that contains all non-trivial DLOG relations w∗ for crs, i.e. computing
w∗ for random crs allows to solve the DLOG assumption. Using Theorem 4 of
[5], we show in the full version that Πrp is adaptively knowledge sound for the
relaxed relation Rlax := {(x,w) : (x,w) ∈ Rrp or (crs, w) ∈ Rdlog}.

Construction of Π. Equipped with the above tools, we instantiate the online-
extractable NIZK Π for relation Rbb with crs = (ĝ, p̂p, (ĝi)i∈[ℓrp]) and hash function
Hbb = (Hrp,Hβ), where Hrp (resp. Heg) is the hash function for Πrp (resp. Πped).
Let B = poly(λ).

To generate a poof π for statement x = (c, u1, g1), the prover decomposes
the witness (m, s) into m =

∑ℓ
i=1 miB

i−1, s =
∑ℓ

i=1 siB
i−1, commits to the

decompositions e = (m1, . . . ,mℓ, s1, . . . , sℓ) via ElGamal in Ri = ĝri , Ei =

ĝei p̂p
ri
i for i ∈ [2ℓ], where ri ← Zp, and sets tm ←

∑ℓ
i=1 riB

i−1 and ts ←∑ℓ
i=1 ri+ℓB

i−1, and finally outputs proofs π = (π0, π1, (Ei, Ri)i∈[2ℓ]), where
π0, π1 are proofs generated appropriately via Πrp,Πped, respectively.

To check validity of a proof π, the verifier checks both proofs π0 and π1 with
appropriate statements x0 and x1, respectively, and outputs 1 iff both are valid.

Security. In the full version, we formally show that Π is correct, zero-knowledge
under the DDH assumption and online-extractable under the DLOG assumption.
Correctness follows immediately from the correctness of Πrp and Πped. Also,
zero-knowledge is easy to show via the hiding property of ElGamal commitments,
the zero-knowledge property of Πrp and Πped.

The proof for multi-proof extractability is more intricate. Roughly, the ex-
tractor embeds a trapdoor td for the commitment scheme in the crs. Then, given
a statement-proof pair (x, π) with x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2ℓ]),
it decrypts the witnesses (ei)i from the ElGamal commitment (Ei, Ri)i and tries
to check if the extracted witness reconstructs to a witness in the relation Rbb. We
expect that this is possible, as the range proof guarantees that the committed
values are short and Σped proves the linear relations in the exponents.

For the sake of exposition, below we only consider extracting from a single
pair (x, π)← A(crs) generated by some adversary A. The argument generalizes
to QS pairs in a straightforward manner. Note that (x, π) defines statement-proof
pairs (x0, π1) for Πrp and (x1, π1) as in verification.

Denote with Fail the event that online-extraction of (x, π) fails, and assume
for the sake of contradiction that Fail occurs. We first try to extract a witness
w0 = (e′i, r

′
i)i from π0 via the knowledge extractor of Πrp, and a witness w1 =

(m, s, (ei, ri)i) from π1 from two related transcripts obtained via rewinding A.
Here, it is important that A is run with the same random tape coinA for both
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extractions to guarantee that the statements x0 and x1 share the commitments
(Ei)i. For now, let us assume that both extractions succeed, i.e. (x0, w0) ∈ Rrp

and (x1, w1) ∈ Rped. Assuming the soundness of Πrp, we have e′i ∈ [0, B − 1].
Moreover, assuming the soundness of Πped, the extracted (ei)i form the B-ary
decomposition of a valid opening of c. Then, under the assumption that extraction
fails, we must have e′i ̸= ei for some i. However, this breaks the binding property
of the Pedersen commitment implicitly defined by the ElGamal commitments.
In particular, we found a DLOG relation for the tuple (ĝ, p̂pi). Note that while
the extracted DLOG relation is a trapdoor information td the extractor uses to
extract the witnesses, this will not be an issue since we do not need td to analyze
the success probability of the adversary.

It remains to show that extraction of w0 and w1 succeeds. Recall that we
assumed that the extraction of w0 and w1 succeeds simultaneously, even if we
initially run A on a shared random coin. We first extract w0 with the extractor
of Πrp. We can argue with adaptive knowledge soundness of Πrp that with a
probability of ε = Pr[Fail]−negl(λ)

poly(λ) , we have have that (x0, w0) ∈ Rrp and Fail

occurs. At this point, the randomness coinA of the adversary A is conditioned on
successful extraction of w0. In particular, we cannot apply adaptive knowledge
soundness of Πped, as the extractor of Πped has only sufficient success probability
if coinA is chosen at random.

Instead, we define a specialized forking algorithm that first runs A on the
same randomness (and same initial random oracle choices), and then rewinds
A to obtain related transcripts. A careful non-black box analysis of the forking
algorithm, similar to [51], allows us to conclude that the algorithm succeeds in
finding two related transcripts in polynomial time with probability ε/8.

If Fail is non-negligible, then with a probability of ε/8, the above adversary
breaks the DLOG assumption. So indeed the event Fail occurs with at most
negligible probability, i.e. the extractor of Π succeeds on valid proof-statement
pairs with high probability.

Efficiency of BSBB. When BSBB is instantiated with Π for B = poly(λ), the user
sends 1 element in G1, 2⌈log2(2nℓ+ ℓ+ 4)⌉+ 4ℓ+ 1 in Ĝ, and 10 + 2ℓ elements
in Zp to the signer. The signer sends 2 elements in G1, and the final signature
contains 2 elements in G1.

We set B = 264 in order to have an extractor that performs roughly ℓ · 232
group operations, where ℓ = ⌈logB p⌉ = 4. The total communication is 2.2 KB
and signatures are of size 96 Byte for λ = 128.
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