
ETH Library

Abstraqt: Analysis of Quantum
Circuits via Abstract Stabilizer
Simulation

Journal Article

Author(s):
Bichsel, Benjamin; Paradis, Anouk; Baader, Maximilian ; Vechev, Martin

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000645636

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Quantum 7, https://doi.org/10.22331/q-2023-11-20-1185

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-9271-6422
https://doi.org/10.3929/ethz-b-000645636
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22331/q-2023-11-20-1185
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Abstraqt: Analysis of Quantum Circuits via Abstract
Stabilizer Simulation
Benjamin Bichsel, Anouk Paradis, Maximilian Baader, and Martin Vechev

ETH Zurich, Switzerland

Stabilizer simulation can efficiently simulate an important class of quantum cir-
cuits consisting exclusively of Clifford gates. However, all existing extensions of this
simulation to arbitrary quantum circuits including non-Clifford gates suffer from an
exponential runtime.

To address this challenge, we present a novel approach for efficient stabilizer simu-
lation on arbitrary quantum circuits, at the cost of lost precision. Our key idea is to
compress an exponential sum representation of the quantum state into a single abstract
summand covering (at least) all occurring summands. This allows us to introduce an
abstract stabilizer simulator that efficiently manipulates abstract summands by over-
approximating the effect of circuit operations including Clifford gates, non-Clifford
gates, and (internal) measurements.

We implemented our abstract simulator in a tool called Abstraqt and experi-
mentally demonstrate that Abstraqt can establish circuit properties intractable for
existing techniques.

1 Introduction
Stabilizer simulation [1] is a promising technique for efficient classical simulation of quantum cir-
cuits consisting exclusively of Clifford gates. Unfortunately, generalizing stabilizer simulation to
arbitrary circuits including non-Clifford gates requires exponential time [2, 3, 4, 5, 6, 7]. Specifi-
cally, the first such generalization by Aaronson and Gottesman [2, §VII-C] tracks the quantum state
ρ at any point in the quantum circuit as a sum whose number of summands m grows exponentially
with the number of non-Clifford gates:

ρ =
m∑

i=1
ciPi

n∏
j=1

I+(−1)bij Qj

2 . (1)

Here, while ci, Pi, bij , and Qj can be represented efficiently (see §2), the overall representation is
inefficient due to exponentially large m.

Abstraction. The key idea of Abstraqt is to avoid tracking the exact state ρ of a quantum
system and instead only track key aspects of ρ. To this end, we rely on the established framework
of abstract interpretation [8, 9], which is traditionally used to analyze classical programs [10, 11]
or neural networks [12] by describing sets of possible states without explicitly enumerating all of
them. Here, we use abstract interpretation to describe the set of quantum states that could occur
at a specific point during execution of a circuit, by over-approximating the summands that could
occur in any of those quantum states ρ.

Merging Summands. This allows us to curb the exponential blow-up of stabilizer simulation by
merging multiple summands in Eq. (1) into an abstract single summand which over-approximates
all summands, at the cost of lost precision. The key technical challenge addressed by our work is
designing a suitable abstract domain to describe sets of summands, accompanied by the correspond-
ing abstract transformers to over-approximate the actions performed by the original exponential
stabilizer simulation on individual summands.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

30
4.

00
92

1v
2

 [
qu

an
t-

ph
]

 1
4

N
ov

 2
02

3

https://quantum-journal.org/?s=Abstraqt:%20Analysis%20of%20Quantum%20Circuits%20via%20Abstract%20Stabilizer%20Simulation&reason=title-click
https://quantum-journal.org/?s=Abstraqt:%20Analysis%20of%20Quantum%20Circuits%20via%20Abstract%20Stabilizer%20Simulation&reason=title-click

As a result, our approach is both efficient and exact on Clifford circuits, as these circuits
never require merging summands. On non-Clifford circuits, merging summands trades precision
for efficiency. Moreover, our approach naturally allows us to merge the possible outcomes of a
measurement into a single abstract state, preventing an exponential path explosion when simulating
multiple internal measurements.

Main Contributions. Our main contributions are:

• An abstract domain (§4) to over-approximate a quantum state represented by Eq. (1).

• Abstract transformers (§5) to simulate quantum circuits, including gate applications and
measurements.

• An efficient implementation1 of our approach in a tool called Abstraqt (§6), together with
an evaluation showing that Abstraqt can establish circuit properties that are intractable
for existing tools (§7).

Results. Overall, we find that Abstraqt is useful in scenarios where a full simulation of a given
circuit is intractable, but establishing specific properties of the considered circuit is desirable.

For example, in our evaluation (§7), we demonstrate that Abstraqt can establish that a circuit
ultimately restores some qubits to state |0⟩. As precisely simulating the entire circuit is intractable,
Abstraqt is typically the only existing tool able to establish this fact on 12 benchmarked circuits.
In contrast, existing tools typically yield incorrect results, throw errors, run out of memory, time
out, or are too imprecise to establish the resulting state is |0⟩.

Outlook. Abstraqt trades precision for efficiency by abstracting the stabilizer simulation from
Eq. (1), therefore allowing to establish properties of quantum circuit outputs when full simulation is
intractable. Such results may be useful for tasks like (i) establishing that an internal circuit state
allows for specific optimizations, (ii) debugging quantum computers by establishing invariants
that can be checked at runtime, and more generally (iii) static analysis of quantum circuits, or
(iv) verification of the correctness of quantum circuits.

Further, as discussed in §7.4, Abstraqt abstracts the very first stabilizer simulation generalized
to non-Clifford gates by Aaronson and Gottesman [2, §VII-C]. We believe that our encouraging
results pave the way to introduce analogous abstraction to various follow-up works which improve
upon this simulation [4, 5, 6, 7]. As these more recent works scale better than [2, §VII-C], we expect
that a successful application of abstract interpretation to them will yield even more favorable trade-
offs between precision and efficiency.

2 Background
We first introduce the necessary mathematical concepts.

Basic Notation. We use Zn := Z/(nZ), define B := Z2, and write 2S for the power set of the
set S.

We represent a pure n-qubit quantum state ψ ∈ C2n

as a density matrix ρ ∈ C2n×2n

, defined as
ρ = ψψ†, where ψ† denotes the conjugate transpose of ψ. For a mixed state, i.e., a distribution over
pure states ψi with probability pi, the corresponding density matrix is ρ =

∑
i piψiψ

†
i . Because

both ψ and ρ store exponentially many values, they cannot be represented explicitly for large n. We
denote the embedding of a k-qubit gate U ∈ U(2k) as an n-qubit gate by U(i) := I2i ⊗U ⊗ I2n−i−k ,
where Il denotes the l × l identity matrix.

1Our implementation is available at https://github.com/eth-sri/abstraqt.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 2

https://github.com/eth-sri/abstraqt

Stabilizer Simulation. The key idea of stabilizer simulation [1, 2] is representing quantum
states ρ = ψψ† implicitly, by stabilizers Q which stabilize the state ψ, that is Qψ = ψ. As shown
in [2], appropriately selecting n stabilizers Qj then specifies a unique n-qubit state ρ =

∏n
j=1

I+Qj

2 .
In stabilizer simulation, all Qj are Pauli elements from Pn of the form iv · P (0) ⊗ · · · ⊗P (n−1),

where P (j) ∈ {X,Y, Z, I2} and v ∈ Z4. This directly implies that all stabilizers Qi for the same
state ψ commute, that is QiQj = QjQi, as elements from the Pauli group Pn either commute
or anti-commute. These elements can be represented efficiently in memory by storing v and
P (0), . . . , P (n−1). In App. B, we list states stabilized by Pauli matrices (Tab. 7) and the results of
multiplying Pauli matrices (Tab. 8). Further, in this work we use the functions bare b : Pn → Pn

and prefactor f : Pn → Z4 which extract the Pauli matrices without the prefactor and the prefactor,
respectively:

f(ivP (0) ⊗ · · · ⊗P (n−1)) = v, (2)
b(ivP (0) ⊗ · · · ⊗P (n−1)) = P (0) ⊗ · · · ⊗P (n−1). (3)

Applying gate U to state ρ can be reduced to conjugating the stabilizers Qj with U :

UρU† = U
(n∏

j=1

I+Qj

2

)
U† [13, Sec. 10.5]=

n∏
j=1

I+UQjU†

2 . (4)

While Eq. (4) holds for any gate U , stabilizer simulation can only exploit it if UQjU
† ∈ Pn.

Clifford gates such as S, H, CNOT , I, X, Y, and Z satisfy this for any Qj ∈ Pn.
To also support the application of non-Clifford gates such as T gates, we follow [2, §VII.C] and

represent ρ more generally as

ρ =
m∑

i=1
ciPi

n∏
j=1

I+(−1)bij Qj

2 ,

for ci ∈ C, Pi ∈ Pn, bij ∈ B, and Qj ∈ Pn. Here, applying U to ρ amounts to replacing Pi by
UPiU

† and Qj by UQjU
†, which we can exploit if both UPiU

† and UQjU
† lie in Pn.

Otherwise, we decompose2 U to the sum
∑K

p=1 dpRp, where dp ∈ C and Rp ∈ b(Pn) are bare
Pauli elements, which have a prefactor of i0 = 1. Then,

UρU† =
(K∑

p=1
dpRp

)(m∑
i=1

ciPi

n∏
j=1

I+(−1)bij Qj

2

)(K∑
q=1

dqRq

)†
(5)

[2, §VII.C]=
K∑

p=1

m∑
i=1

K∑
q=1

cpiqPpiq

n∏
j=1

I+(−1)bijq Qj

2 , (6)

for cpiq = dpcid
∗
q ∈ C, Ppiq = RpPiRq ∈ Pn, and bijq = bij +Qj ⋄Rq ∈ B. Here, d∗

q denotes the
complex conjugate of dq, + denotes addition modulo 2, and Qj ⋄Rq is the commutator defined as 0
if Qj and Rq commute and 1 otherwise. Note that · ⋄ · : Pn × Pn → B has the highest precedence.

Overall, the decomposition of a k-qubit non-Clifford gate results in at most K = 4k summands,
thus blowing up the number of summands in our representation by at most 4k · 4k = 16k. In
practice, the blow-up is typically smaller, e.g., decomposing a T gate only requires 2 summands,
while decomposing a CCNOT gate requires 8 summands.

Measurement. Measuring in bare Pauli basis P ∈ b(Pn) yields one of two possible quantum
states. They can be computed by applying the two projections P+ := I+P

2 and P− = I−P
2 ,

resulting in states ρ+ = P+ρP+ and ρ− = P−ρP−, respectively. For example, collapsing the ith
qubit to |0⟩ or |1⟩ corresponds to measuring in Pauli basis Z(i). The probability of outcome ρ+ is
tr (ρ+), and analogously for ρ−. Note that we avoid renormalization for simplicity. We discuss in
§5 how measurements are performed in stabilizer simulation [2, Sec. VII.C].

2This decomposition always exists and is unique, as bare Pauli elements span (more than) U(2n).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 3

Table 1: Transformers for the interval abstraction.

Function Abstract Transformer Efficient Closed form
+ [l1, u1] +♯ [l2, u2] = [l′, u′] l′ = l1 + l2 and u′ = u1 + u2
· [l1, u1] ·♯ [l2, u2] = [l′, u′] l′ = min(l1l2, l1u2, u1l2, u1u2), u′ defined analogously with max

exp exp♯([l, u]) = [l′, u′] l′ = exp(l) and u′ = exp(u)
cos cos♯([l, u]) = [l′, u′] exists, several case distinctions necessary
∪ [l1, u1] ⊔ [l2, u2] = [l′, u′] l′ = min(l1, l2) and u′ = max(u1, u2)

Abstract Interpretation. Abstract interpretation [8] is a framework for formalizing approxi-
mate but sound calculation. An abstraction consists of ordered sets (2X ,⊆) and (X ,≤), where X
and X are called concrete set and abstract set respectively together with a concretization function
γ : X → 2X which indicates which concrete elements x = γ(x) ⊆ X are represented by the abstract
element x. Additionally, ⊥ ∈ X refers to ∅ = γ(⊥) ⊆ X and ⊤ ∈ X refers to X = γ(⊤).

An abstract transformer f ♯ : X → X of a function f : X → X satisfies γ ◦ f ♯(x) ⊇ f ◦ γ(x) for
all x ∈ X , where f was lifted to operate on subsets of X . This ensures that f ♯ (over-)approximates
f , a property referred to as soundness of f ♯. Abstract transformers can analogously be defined for
functions f : Xn → X . Further, we introduce join ⊔ : X×X → X , satisfying γ(x)∪γ(y) ⊆ γ(x⊔y).
Throughout this work, we distinguish abstract objects x ∈ X and concrete objects x ∈ X by
stylizing them in bold or non-bold respectively.

As an example, a common abstraction is the interval abstraction with X = R. The abstract
set is the set of intervals

X = {(l, u) | l, u ∈ R ∪ {±∞}},

where x = (l, u) is a tuple. The concretization function γ : X → X maps these tuples to sets:

γ(x) = [l, u] = {y ∈ R | l ≤ y ≤ u}.

Further, ⊤ = (−∞,∞) and ⊥ = (l, u) for l > u. Common abstract transformers for the interval
abstraction are shown in Tab. 1.

The transformers in Tab. 1 are precise, meaning that for f : R → R, we have that f ♯((l, u)) =
(minl≤v≤u f(v),maxl≤v≤u f(v)) and analogously for f : Rn → R. An abstract transformer for a
composition of functions f ◦ g is the composition of the abstract transformers. Although this
is sound, it is not necessarily precise: let g : R → R2 with g(x) = (x

x) and f : R2 → R with
f(x, y) = x · y, then f ◦ g(x) = x2, but f ♯ ◦ g♯((−2, 2)) = (−4, 4) whereas a precise transformer
would map (−2, 2) to (0, 4).

Notational Convention. In slight abuse of notation, throughout this work we may write
the concretization of abstract elements instead of the abstract element itself. For example, for
(0, 1) ∈ RRRRRR, we write [0, 1] defined as {v ∈ R | 0 ≤ v ≤ 1} to indicate that it represents an interval.
Where clear from context, we omit ♯ and write f for f ♯. For example, we write [l1, u1] + [l2, u2] for
[l1, u1] +♯ [l2, u2].

3 Overview
In this section, we showcase Abstraqt by applying it to the example circuit in Fig. 1. Overall,
Abstraqt proceeds analogously to [2, §VII-C], but operates on abstract summands representing
many concrete summands.

Example Circuit. We first discuss the circuit in Fig. 1. Both qubits are initialized to |0⟩.
The circuit then applies a succession of gates. The abstract representation of the state after the
application of each gate is shown in the gray boxes below the circuit. On the final state, the circuit
collapses the upper qubit to |−⟩ by applying the projectionM− = I−X(0)

2 . Precise circuit simulation
shows that the probability of obtaining |−⟩ is 0, in this case. In the following, we demonstrate how
Abstraqt computes an over-approximation of this probability.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 4

e[0,0]+i[0,0]{I} I Z(0)

2

I Z(1)

2 e[0,0]+i[0,0]{I} I X(0)

2

I X(1)

2 4 ⋆ c{I, Z(0)} I X(0)

2

I X(1)

2 4 ⋆ c{I, Z(0)} I X(0)X(1)

2

I X(0)

2

0 with prob.

p ∈ [0, 0]

c1{I} I X(0)

2

I X(1)

2 + c2{Z(0)} I X(0)

2

I X(1)

2 + c3{Z(0)} I X(0)

2

I X(1)

2 + c4{I} I X(0)

2

I X(1)

2

|0⟩
|0⟩

H

H

T •
•

|−⟩

Figure 1: Overview of Abstraqt, where we define c and c1–c4 in §3.

Initial State. The density matrix for the initial state |0⟩ ⊗ |0⟩ can be represented as (see [2]):

ρA = 1I I+(−1)0Z(0)
2

I+(−1)0Z(1)
2 .

To translate this to an abstract density matrix, we simply replace some elements by abstract
representations. This gives the following initial abstract state:

ρA = e[0,0]+[0,0]i{I} I+(−1){0}Z(0)
2

I+(−1){0}Z(1)
2 . (7)

Here we abstract booleans as sets, for instance {0}. For conciseness, in Fig. 1 we write x y,
x y, and x y for x+ (−1){0}y, x+ (−1){1}y, and x+ (−1){0,1}y. Further, we represent abstract
complex numbers in polar form with logarithmic length, using real intervals: 1 is represented as
e[0,0]+[0,0]i, while we can over-approximate the set of complex numbers {1, i} as e[0,0]+[0,

π
2]i. Finally,

we abstract Pauli elements as sets, such as {I} in Fig. 1 and Eq. (7). In §4, we will clarify how
we store these sets efficiently, for example representing {I} as i{0} · {I} ⊗{I} and {i · I, i · Z(0)} as
i{1} · {I,Z} ⊗{I}.

We now explain how each operation in the circuit modifies this abstract state.

Clifford Gate Application. First, the circuit applies one Hadamard gate H to each qubit.
This corresponds to the unitary operator H(0)H(1), yielding updated abstract density matrix ρB =
(H(0)H(1))ρA(H(0)H(1))†. Just as for concrete density matrices (see §2), this amounts to replacing

{I} by (H(0)H(1)){I}(H(0)H(1))† = {I},

Z(0) by (H(0)H(1))Z(0)(H(0)H(1))† = X(0), and

Z(1) by (H(0)H(1))Z(1)(H(0)H(1))† = X(1).

We hence get ρB = e[0,0]+[0,0]i{I} I+(−1){0}X(0)
2

I+(−1){0}X(1)
2 .

Non Clifford Gate Application. Next, the circuit applies gate T on the upper qubit. To this
end, we again follow the simulation described in §2. We first decompose T into Pauli elements:
T(0) = d1I+d2Z(0), where d1 ≈ e−0.1+0.4i and d2 ≈ e−1.0−1.2i. Replacing T with its decomposition,
we can then write ρT = TρBT

†, using Eq. (6), as:

ρT =
(
d1I + d2Z(0)

) (
e[0,0]+[0,0]i{I} I+(−1){0}X(0)

2
I+(−1){0}X(1)

2

)
(
d1I + d2Z(0)

)†
.

Analogously to §2, we can rewrite this to:

c1{I} I+(−1){0}X(0)
2

I+(−1){0}X(1)
2

+c2{Z(0)}
I+(−1){1}X(0)

2
I+(−1){0}X(1)

2

+c3{Z(0)}
I+(−1){0}X(0)

2
I+(−1){0}X(1)

2

+c4{I} I+(−1){1}X(0)
2

I+(−1){0}X(1)
2 ,

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 5

where

c1 = d1e
[0,0]+[0,0]id∗

1 ≈ e[−0.2,−0.2]+[0,0]i,

c2 = d1e
[0,0]+[0,0]id∗

2 ≈ e[−1.1,−1.1]+[1.6,1.6]i,

c3 = d2e
[0,0]+[0,0]id∗

1 ≈ e[−1.1,−1.1]+[−1.6,−1.6]i,

c4 = d2e
[0,0]+[0,0]id∗

2 ≈ e[−2.0,−2.0]+[0,0]i.

Merging Summands. Unfortunately, simply applying T gates as shown above may thus increase
the number of summands in the abstract density matrix by a factor of 4. To counteract this,
our key idea is to merge summands, by allowing a single abstract summand to represent multiple
concrete ones, resulting in reduced computation overhead at the cost of lost precision. Our abstract
representation allows for a straightforward merge: we take the union of sets and join intervals.
Specifically, for complex numbers, we join the intervals in their representation, obtaining:

c := c1 ⊔ c2 ⊔ c3 ⊔ c4 = e[−2.0,−0.2]+[−1.6,1.6]i.

Finally, we introduce the symbol ⋆ to denote how many concrete summands an abstract summand
represents. Altogether, merging the summands in ρT yields:

ρC = 4 ⋆ e[−2.0,−0.2]+[−1.6,1.6]i{I, Z(0)}
I+(−1){0,1}X(0)

2
I+(−1){0}X(1)

2 .

Note that for an abstract element x, r ⋆ x is not equivalent to r · x. For example, 2 ⋆ {0, 1} =
{0, 1} + {0, 1} = {0, 1, 2}, while 2 · {0, 1} = {0, 2}. 3

Measurement. After the T gate, the circuit applies two additional CNOT gates, resulting in
the updated density matrix:

ρD = 4 ⋆ e[−2.0,−0.2]+[−1.6,1.6]i{I, Z(0)}
I+(−1){0,1}X(0)X(1)

2
I+(−1){0}X(0)

2 .

Finally, the circuit applies the projection M− = I−X(0)
2 . To update the density matrix accordingly,

we closely follow [2], which showed that measurement can be reduced to simple state updates
through a case distinction on M− and the state ρ. If (i) the measurement Pauli (here −X(0)) com-
mutes with the product Paulis (here (−1){0,1}X(0)X(1) and (−1){0}X(1)) and (ii) the measurement
Pauli cannot be written as a product of the product Paulis, the density matrix after measurement
is 0. We will explain in §5.2 how our abstract domain allows both of these checks to be performed
efficiently.

Here, both conditions are satisfied, and we hence get the final state ρM1 = 0. We can then com-
pute the probability of such an outcome by p = tr (ρM1) = 0. Thus, our abstract representation
was able to provide a fully precise result.

Imprecise Measurement. Suppose now that instead of the measurement in Fig. 1, we had
collapsed the lower qubit to |0⟩ by applying projection M0 = I+Z(1)

2 .
To derive the resulting state, we again follow [2] closely. We note that the measurement Pauli

+Z(1) (i) anticommutes with the first product Pauli (−1){0,1}X(0)X(1) and commutes with the
second one (−1){0}X(0) and (ii) commutes with the initial Paulis {I, Z(0)}. In this case, we get
that the density matrix is unchanged, thus ρM2 = ρD. To compute the trace of this matrix, we
follow the procedure outlined in §5.4. We omit intermediate steps here and get: 4

p = tr (ρM2) = 4 Re(c) ≈ [0, 1.7].

Thus, our abstraction here is highly imprecise and does not yield any information on the measure-
ment result (we already knew that the probability must lie in [0, 1]).

3We implicitly lift concrete elements to abstract elements: 2 · {0, 1} = {2} · {0, 1} = {0, 2}.
4We used the precise interval bounds for c here, not the rounded values provided earlier.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 6

Table 2: Example elements on abstract domains.

Dom. Example element Concretization

BBBBBB {0, 1} {0, 1}
ZZZZZZ4 {0, 3} {0, 3}
RRRRRR (0, 1) [0, 1] = {r | 0 ≤ r ≤ 1}
CCCCCC (0, 1, π, 2π) e[0,1]+[π,2π]i = {er+φi | 0 ≤ r ≤ 1, π ≤ φ ≤ 2π}

PPPPPP 2 ({0, 3}, {Z, Y}, {X}) i{0,3} · {Z, Y} ⊗ {X} =
{

ib · P (1) ⊗ P (2)

∣∣∣∣ b ∈ {0, 3},

P (1) ∈ {Z, Y}, P (2) ∈ {X}

}
Table 3: Summary of abstract transformers.

Transformers Domains Definition

b + c ∈ BBBBBB, b · c ∈ BBBBBB b, c ∈ BBBBBB Lifting to sets, Eq. (8)
b ⊔ c ∈ BBBBBB b, c ∈ BBBBBB b ∪ c
b + c ∈ ZZZZZZ4, b − c ∈ ZZZZZZ4, b · c ∈ ZZZZZZ4 b, c ∈ ZZZZZZ4 Lifting to sets
b ⊔ c ∈ ZZZZZZ4 b, c ∈ ZZZZZZ4 b ∪ c
b ∈ ZZZZZZ4 b ∈ BBBBBB Embedding
c · d ∈ CCCCCC c, d ∈ CCCCCC Eq. (9)
c ⊔ d ∈ CCCCCC c, d ∈ CCCCCC Eq. (10)
Re(c) ∈ RRRRRR c ∈ CCCCCCn Eq. (11)
ib ∈ CCCCCC b ∈ BBBBBB Eq. (12)
P Q ∈ PPPPPP n P, Q ∈ PPPPPP n Eq. (13)
f(P Q) ∈ ZZZZZZ4 P , Q ∈ PPPPPP n Eq. (14)
U(i)P U†

(i) ∈ PPPPPP n U ∈ U(2k), P ∈ PPPPPP n Eq. (15)
P ⋄ Q ∈ BBBBBB P , Q ∈ PPPPPP n Eq. (16)
P ⊔ Q ∈ PPPPPP n P, Q ∈ PPPPPP n Eq. (17)
(−1)b · P b ∈ BBBBBB, P ∈ PPPPPP n Eq. (18)

4 Abstract Domains
In the following, we formalize all abstract domains (Tab. 2) underlying our abstract representation
of density matrices ρ along with key abstract transformers operating on them (Tab. 3). We
note that all abstract transformers introduced here naturally also support (partially) concrete
arguments.

Example Elements. Tab. 2 provides an example element x of each abstract domain, along with
an example of its concretization γ(x), where γ : X → 2X . While Tab. 2 correctly distinguishes
abstract elements from their concretization, in the following, when describing operators we write
concretizations instead of abstract elements (as announced in §2).

Booleans and Z4. Abstract booleans b ∈ BBBBBB = 2B are subsets of B, as exemplified in Tab. 2.
The addition of two abstract booleans naturally lifts boolean addition to sets and is clearly sound:

b + c = {b+ c | b ∈ b, c ∈ c}. (8)

We define multiplication of abstract booleans analogously. Further, we define the join of two
abstract booleans as their set union.

Analogously to booleans, our abstract domain ZZZZZZ4 consists of subsets of Z4, where addition,
subtraction, multiplication, and joins works analogously to abstract booleans. Further, we can
straight-forwardly embed abstract booleans into ZZZZZZ4 by mapping 0 to 0 and 1 to 1.

Real Numbers. We abstract real numbers by intervals of the form [a, a] ⊆ R ∪ {±∞}, and
denote the set of such intervals by RRRRRR. Here, a and a indicate the lower and upper bounds of the
interval, respectively. Interval addition, interval multiplication, and the cosine and exponential
transformer on intervals are defined in their standard way, see §2.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 7

Complex Numbers. We parametrize complex numbers c ∈ C in polar coordinates (with mag-
nitude in log-space), as c = er+φi for r, φ ∈ R. For example, we parametrize 0 as e−∞+0i.

Based on this parametrization, we abstract complex numbers using two real intervals for r and
φ respectively, as exemplified in Tab. 2. Formally, we interpret c ∈ CCCCCC as the set of all possible
outcomes when instantiating both intervals:

γ(c) = e[r,r]+[φ,φ]i =
{
er+φi ∣∣ r ∈ [r, r], φ ∈ [φ,φ]

}
.

We can compute the multiplication and join of two abstract complex numbers c = e[r,r]+[φ,φ]i

and c′ = e[r′,r′]+[φ′,φ′]i as

c · c′ = e[r+r′,r+r′]+[φ+φ′,φ+φ′]i and (9)

c ⊔ c′ = e[min(r,r′),max(r,r′)]+[min(φ,φ′),max(φ,φ′)]i. (10)

Again, simple arithmetic shows that Eqs. (9)–(10) are sound. We note that to increase precision,
we could map complex numbers to a canonical representation before joining them, by exploiting
er+ϕi = er+(ϕ+2π)i to ensure that φ lies in [0, 2π].

We compute the real part of an abstract complex number c = e[r,r]+[φ,φ]i as

Re(c) = exp([r, r]) · cos
(
[φ,φ]

)
, (11)

where we rely on interval transformers to evaluate the right-hand side. The soundness of Eq. (11)
follows from the standard formula to extract the real part from a complex number in polar coor-
dinates. We will later use Eq. (11) to compute tr (ρ). To this end, we also need the transformer

ib =
⊔
b∈b

{ib} ∈ CCCCCC. (12)

Pauli Elements. Recall that a Pauli element P ∈ Pn has the form P = iv · P (0) ⊗ · · · ⊗P (n−1),
for v in Z4 and P (k) ∈ {I,X,Y,Z}. We therefore parametrize P as a prefactor v (in logi space)
and n bare Paulis P (k).

Accordingly, we parametrize abstract Pauli elements P ∈ PPPPPPn as iv ·P (0) ⊗ · · · ⊗ P (n−1), where
v ∈ ZZZZZZ4 is a set of possible prefactors and P (k) ⊆ {X,Y,Z, I2} are sets of possible Pauli matrices.
Formally, we interpret P as the set of all possible outcomes when instantiating all sets:

γ(P) =
{

iv ·
n−1
⊗

i=0
P (i)

∣∣∣∣ v ∈ v, P (i) ∈ P (i)
}
.

We define the product of two abstract Pauli elements as:

P Q = if(P Q) n−1
⊗

i=0
b
(

P (i)Q(i)
)
. (13)

To this end, we evaluate the prefactor induced by multiplying Paulis as

f(P Q) = f(P) + f(Q) +
n∑

i=1
f(P (i)Q(i)), (14)

where we can evaluate the summands in the right-hand side of Eq. (14) by precomputing them
for all possible sets of Pauli matrices P (i) and Q(i). Then, we compute the sum using Eq. (8).
Analogously, we can evaluate b

(
P (i)Q(i)

)
by precomputation. The soundness of Eq. (13) follows

from applying the multiplication component-wise, and then separating out prefactors from bare
Paulis.

We also define the conjugation of an abstract Pauli element P with k-qubit gate U padded to
n qubits as:

U(i)PU
†
(i) = U(i)

(
iv · P (0:i) ⊗ P (i:i+k) ⊗ P (i+k:n)

)
U†

(i)

= iv+f(UP (i:i+k)U†) · P (0:i) ⊗ b(UP (i:i+k)U†) ⊗ P (i+k:n), (15)

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 8

where P (i:j) denotes P (i) ⊗ · · · ⊗ P (j−1). Because k is typically small, and all possible gates U
are known in advance, we can efficiently precompute f(UP (i:i+k)U†) and b(UP (i:i+k)U†). We
note that this only works if the result of conjugation is indeed an (abstract) Pauli element—if not,
this operation throws an error5. The soundness from Eq. (15) follows from applying U to qubits i
through i+ k, and then separating out prefactors from bare Paulis.

We define the commutator P ⋄ Q of two abstract Pauli elements P and Q as(
iv ·

n−1
⊗

i=0
P (i)

)
⋄
(

iw ·
n−1
⊗

i=0
Q(i)

)
=

n∑
i=1

P (i) ⋄ Q(i). (16)

Here, we evaluate the sum using Eq. (8), and efficiently evaluate P (i) ⋄Q(i) ∈ BBBBBB by precomputing:

P (i) ⋄ Q(i) =
{
P (i) ⋄Q(i)

∣∣∣ P (i) ∈ P (i), Q(i) ∈ Q(i)
}
.

The soundness of Eq. (16) can be derived from the corresponding concrete equation, which can be
verified using standard linear algebra.

We define the join of abstract Pauli elements as(
iv

n−1
⊗

i=0
P (i)

)
⊔
(

iw
n−1
⊗

i=0
Q(i)

)
= iv⊔w

n−1
⊗

i=0

(
P (i) ∪ Q(i)

)
, (17)

where P (i) ∪ Q(i) ⊆ {I,X,Y,Z}. Clearly, this join is sound.
Finally, we define an abstract transformer for modifying the sign of an abstract Pauli element

P by:

(−1)b ·
(

iv ·
n−1
⊗

i=0
P (i)

)
= iv+2·b ·

n−1
⊗

i=0
P (i) (18)

The soundness of Eq. (18) follows directly from (−1)v = i2v.

Abstract Density Matrices. The concrete and abstract domains introduced previously allow
us to represent an abstract density matrix ρ ∈ DDDDDD as follows:

ρ = r ⋆ c · P ·
n∏

j=1

I+(−1)bj Qj

2 . (19)

Here, r ∈ N, c ∈ CCCCCC, P ∈ PPPPPPn, bj ∈ BBBBBB, and Qj ∈ Pn. Note that Qj are concrete Pauli elements, while
P is abstract. Further, both P and Qj can have a prefactor, i.e., are not necessarily bare Paulis.
Here, the integer counter r records how many concrete summands were abstracted. Specifically,
r ⋆ x is defined as

∑r
i=1 x. Overall, we interpret ρ as:

γ(ρ) =


r∑

i=1
ciPi

n∏
j=1

I+(−1)bij Qj

2

∣∣∣∣∣∣ ci ∈ γ(c), Pi ∈ γ(P), bij ∈ γ(bj)

 , (20)

relying on the previously discussed interpretations of C, Pn, and B.

5 Abstract Transformers
We now formalize the abstract transformers used by Abstraqt to simulate quantum circuits. The
soundness of all transformers is straightforward, except for the trace transformer (§5.4) which we
discuss in App. A.

5We can recover from this error by decomposing U as a sum of bare Pauli elements, as mentioned in §2, see also
Eqs. (21)–(22).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 9

Initialization. We start from initial state ⊗n
i=1 |0⟩, which corresponds to density matrix

ρ =
n∏

j=1

I+Z(j)
2 = 1 ⋆ e[0,0]+i[0,0] · i{0}{I}

n∏
j=1

I+(−1){0}Z(j)
2 ,

as established in [2, Sec. III]. We note that we can prepare other starting states by applying
appropriate gates to the starting state ⊗n

i=1 |0⟩.

5.1 Gate Application
Analogously to the concrete case discussed in §2, applying a unitary gate U to ρ yields:

UρU† = r ⋆ cP ′
n∏

j=1

I+(−1)bj Q′
j

2 , (21)

for P ′ = UPU† and Q′
j = UQjU

†.
If either UPU† ̸⊆ Pn or UQjU

† ̸⊆ Pn, Eq. (21) still holds, but we cannot represent the resulting
matrices efficiently. In this case, again analogously to §2, we instead decompose the offending gate
as U =

∑
p dpRp, with Rp ∈ Pn and obtain

UρU† =
∑
pq

r ⋆ cpqPpq

n∏
j=1

I+(−1)bjq Qj

2 , (22)

for cpq = dpcd∗
q , P ′

pq = RpPRq, and bjq = bj +Qj ⋄Rq.
Overall, we can evaluate Eqs. (21)–(22) by relying on the abstract transformers from §4.

Compression. To prevent an exponential blow-up of the number of summands and to adhere
to the abstract domain of ρ which does not include a sum, we compress all summands to a single
one. Two summands can be joined as follows:r1 ⋆ c1P 1

n∏
j=1

I+(−1)b1j Qj

2

 ⊔

r2 ⋆ c2P 2

n∏
j=1

I+(−1)b2j Qj

2


= r ⋆ cP

n∏
j=1

I+(−1)bj Qj

2 ,

where r = r1 + r2, c = c1 ⊔ c2, bj = b1j ⊔ b2j , and P = P 1 ⊔ P 2. The key observation here is that
the concrete Qj are independent of the summand, and thus need not be joined.

We note that we could also only merge some summands and leave the others precise—investigating
the effect of more flexible merging strategies could be interesting future research.

5.2 Measurement
We now describe how to perform Pauli measurements, by extending the (concrete) stabilizer sim-
ulation to abstract density matrices. The correctness of the concrete simulation was previously
established in [2, Sec. VII.C], while the correctness of the abstraction is immediate.

Simulating Measurement. Applying a Pauli measurement in basis R ∈ b(Pn) has a proba-
bilistic outcome and transforms ρ to ρ+ = I+R

2 ρ I+R
2 with probability tr(ρ+) or ρ− = I−R

2 ρ I−R
2

with probability tr(ρ−). We describe how to compute ρ+. Computing ρ− works analogously by
using −R instead of R.

In the following, we will consider a concrete state ρ as defined in §2 and an abstract state ρ as
defined in Eq. (19):

ρ =
m∑

i=1
ciPi

n∏
j=1

I+(−1)bij Qj

2 and ρ = r ⋆ cP

n∏
j=1

I+(−1)bj Qj

2 . (23)

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 10

Concrete simulation of measurement distinguishes two cases: either (i) R commutes with all
Qj or (ii) R anti-commutes with at least one Qj . Note that as the Qj are concrete in an abstract
state ρ, those two cases translate directly to the abstract setting. We now describe both cases for
concrete and abstract simulation.

Background: Concrete Case (i). In this case, we assume R commutes with all Qj . Focusing
on a single summand ρi of ρ, measurement maps it to (see [2]):

ρi,+ = ci
I+R

2 Pi
I+R

2

n∏
j=1

I+(−1)bij Qj

2 . (24)

Let us first introduce the notation {(−1)bijQj}⇝ R, denoting that R can be written as a prod-
uct of selected Pauli elements from {(−1)bijQj}. Symmetrically, we write {(−1)bijQj} ⇝̸ R if R

cannot be written as such a product. As shown in [2], if {(−1)bijQj}⇝ R then I+R
2
∏n

j=1
I+(−1)bij Qj

2

is equal to
∏n

j=1
I+(−1)bij Qj

2 and if {(−1)bijQj} ⇝̸ R then I+R
2
∏n

j=1
I+(−1)bij Qj

2 is null. Further,
using that R2 = I, we get from Eq. (24) that if Pi commutes with R, ρi,+ is equal to ρi, otherwise,
Pi anti-commutes with R and ρi,+ is null. Putting it all together, we finally get:

ρ+ =
m∑

i=1
ρi,+ =

m∑
i=1

ciPi

n∏
j=1

I+(−1)bij Qj

2 if {(−1)bijQj}⇝ R and R ⋄ Pi = 0,

0 if {(−1)bijQj} ⇝̸ R or R ⋄ Pi = 1.
(25)

Abstract Case (i). Let us first define ⇝u and ̸⇝u for a concrete R, concrete Qj and abstract
bj . We say {(−1)bjQj} ⇝u R if for all j, for all bj ∈ γ(bj), we have {(−1)bjQj} ⇝ R. Similarly,
we say {(−1)bjQj} ̸⇝u R if for all j, for all bj ∈ γ(bj), we have {(−1)bjQj} ̸⇝ R. Note that ⇝u

and ̸⇝u are under-approximations, and there can exist some R and {(−1)bjQj} such that neither
apply. Using those two abstract relations, we get the abstract transformer for ρ+:

r ⋆


cP

n∏
j=1

I+(−1)bj Qj

2 if {(−1)bjQj}⇝u R and R ⋄ P = {0},

0 if {(−1)bjQj} ⇝̸u R or R ⋄ P = {1},

(c ⊔ {0}) P
n∏

j=1

I+(−1)bj Qj

2 otherwise.

(26)

We can evaluate Eq. (26) by relying on the abstract transformers from Tab. 3 and by evaluat-
ing ⇝u as discussed shortly.

Background: Concrete Case (ii). We now suppose R anti-commutes with at least one Qj . In
this case, we can rewrite ρ such that R anti-commutes with Q1, and commutes with all other Qj .
Specifically, we can select any Qj∗ which anti-commutes with R, swap bij∗ and Qj∗ with bi1 and
Q1, and replace all other Qj anti-commuting with R by Q1Qj (and analogously bij by bij + bi1),
which leaves ρ invariant (see [2]). Assuming ρ is the result after this rewrite, we have:

ρ+ =
∑

i

1
2ciP

′
i
I+(−1)0R

2

n∏
j=2

I+(−1)bij Qj

2 , (27)

where P ′
i =

{
Pi if R ⋄ Pi = 0,
(−1)bi1PiQ1 if R ⋄ Pi = 1.

Overall, after rewriting ρ as above, Eq. (27) replaces ci by 1
2ci, Pi by P ′

i , bi1 by 0, and Q1 by R.

Abstract Case (ii). In the abstract case, we first apply the same rewrite as in the concrete case,
where we pick j∗ as the first j for which Qj anti-commutes with R. 6 Then, directly abstracting

6We could also consider other strategies than picking the first possible j, for example picking a j for which bj is
precise whenever possible, to increase precision.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 11

Eq. (27) yields:

ρ+ = r ⋆ 1
2 cP ′ I+(−1){0}R

2

n∏
j=2

I+(−1)bj Qj

2 , (28)

where P ′ =


P if R ⋄ P = {0},
(−1)b1PQ1 if R ⋄ P = {1},
P ⊔ (−1)b1PQ1 otherwise.

Here, we replace c by 1
2 c, P by P ′, b1 by {0}, and Q1 by R. When defining P ′, we follow the

two cases from Eq. (27) when our abstraction is precise enough to indicate which case we should
choose, or join the results of both cases otherwise. Again, we can evaluate Eq. (28) by relying on
the abstract transformers from Tab. 3.

Joining Both Measurement Results. For measurements occurring within a quantum circuit,
stabilizer simulation generally requires randomly selecting either ρ+ or ρ− with probability tr(ρ+)
and tr(ρ−), respectively, and then continues only with the selected state. In contrast, Abstraqt
can join both measurement outcomes into a single abstract state ρ+ ⊔ ρ−, as the Qj are the same
in both. This allows us to pursue both measurement outcomes simultaneously, as we demonstrate
in §7.

5.3 Efficiently computing ⇝
To simulate the result of a measurement, we introduced the new operator {(−1)bjQj} ⇝ R,
denoting that some Pauli R can be written as a product of {(−1)bjQj}. We now show how to
compute ⇝ efficiently.

Background: Concrete case. We first note that {(−1)bjQj} ⇝ R holds if and only if there
exist some x ∈ Bn such that:

R
!=

n∏
j=1

(
(−1)bjQj

)xj
. (29)

Further, this solution x would satisfy:

b(R) != b

 n∏
j=1

(
(−1)bjQj

)xj

 (30)

Eq. (30) has a solution if and only if R commutes with all the Qj , in which case this solution x is
unique (see [2]). Hence, to check if {(−1)bjQj}⇝ R, we can first verify whether R ⋄Qj = 0 for all
j, and if so, check if the unique x satisfying Eq. (30) also satisfies Eq. (29).

Background: Finding x for Eq. (30). To compute this solution x, the stabilizer simulation
relies critically on an isomorphism g between Pauli matrices {I,X,Y,Z} and B2.

Specifically, g maps I to (0
0), X to (1

0), Y to (1
1), and Z to (0

1). Further, g extends naturally
to bare Pauli elements R ∈ b(Pn) and tuples Q = (Q1, . . . , Qn) ∈ b(Pn)n by:

g(R) =

 g(R(0))
...

g(R(n−1))

 and g(Q) =

 g(Q
(0)
1) ··· g(Q(0)

n)
...

. . .
...

g(Q
(n−1)
1) ··· g(Q(n−1)

n)

,
where g(R) ∈ B2n×1 and g(Q) ∈ B2n×n. We can naturally extend g to Pn, by defining g(R) =
g(b(R)).

This isomorphism g is designed so that the product of bare Pauli elements ignoring prefactors
corresponds to a component-wise addition of encodings:

g(P1P2) = g(P1) + g(P2). (31)

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 12

Using Eq. (31), we can obtain solution candidates x for Eq. (30) by solving a system of linear
equations using Gaussian elimination modulo 2:

g (R) != g
(

n∏
j=1

Q
xj

j

)
=

n∑
j=1
g(Qj)xj = g(Q)x. (32)

Because in our case, g(Q) is over-determined and has full rank, Eq. (32) either has no solution, or
a unique solution x.

Background: Checking prefactors. Once we have found the unique x (if it exists) satisfying
Eq. (30) as described above, we need to check if it also satisfies Eq. (29). It is enough to check if
the prefactors match:

f (R) != f

∏
j

(−1)bjxjQ
xj

j

 ,

or equivalently:

f (R) − f

∏
j

Q
xj

j

− 2
∑

j

bjxj
!= 0,

where the subtraction and sum operations are over Z4.
Putting it all together, we can define F : Pn × Pn

n × Bn → Z4 ∪ {E} with

F(R,Q, b) =


E if ∃j, R ⋄Qj = 1,

f(R) − f

(
n∏

j=1
Q

xj

j

)
− 2

n∑
j=1

xjbj otherwise,
(33)

where x is the unique value such that g(R) = g(Q)x and E indicates there is no such x. We then
have that {(−1)bjQj} ⇝ R if and only if F(R,Q, b) = 0, or equivalently, {(−1)bjQj} ⇝̸ R if and
only if F(R,Q, b) ̸= 0.

F for abstract bj. For abstract values bj , we define F : Pn × Pn
n ×BBBBBBn → 2Z4∪{E} as follows:

F(R,Q, b) =


{E} if ∃j, R ⋄Qj = 1,

f(R) − f

(
n∏

j=1
Q

xj

j

)
− 2

n∑
j=1

xjbj otherwise.
(34)

Following the same reasoning as above, we have {(−1)bjQj} ⇝u R if and only if F(R,Q, b) =
{0} and {(−1)bjQj} ⇝̸u R if and only if F(R,Q, b) ∩ {0} = ∅.

F for abstract bj and R. To compute the trace of a state (see §5.4), we further extend Eq. (33)
to abstract bj and abstract R, and define F : PPPPPPn × Pn

n ×BBBBBBn → 2Z4∪{E} as:

F(R, Q, b) =



{E} if ∃j.R ⋄Qj = {1},

f(R) − f

(
n∏

j=1
Q

xj

j

)
− 2

n∑
j=1

xjbj if ∀j.R ⋄Qj = {0},

f(R) − f

(
n∏

j=1
Q

xj

j

)
− 2

n∑
j=1

xjbj ∪ {E} otherwise,

(35)

for g(R) = g(Q)x. (36)

Here, evaluating Eq. (35) requires evaluating Qb
j for an abstract boolean b, which we define natu-

rally as

Qb
j :=


{Qj} if b = {1},
{I} if b = {0},
{Qj , I} if b = {0, 1}.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 13

Further, Eq. (36) requires over-approximating all x which satisfy the linear equation g(R) = g(Q)x.
Here, we naturally extend g to abstract Paulis by joining their images. For instance, we have that
g({X,Y }) = {(1

0)} ⊔ {(1
1)} =

({1}
{0,1}

)
. We then view g(R) = g(Q)x as a system of linear equations

b = Ax, where the left-hand side consists of abstract booleans b ∈ BBBBBB2n. We then drop all equations
in this equation system where the left-hand side is {0, 1}, as they do not constrain the solution
space. This updated system is fully concrete, hence we can solve it using Gaussian elimination.
We get either no solution, or a solution space y +

∑p
k=1 λkuk, where y is a possible solution and

u1, ..., up is a possibly empty basis of the null solution space. In the case of no solution, x is not
needed in Eq. (35). Otherwise, we can compute xj as {yj +

∑m
k=1 λkuk,j | λk ∈ B}.

5.4 Trace
Recall that the probability of obtaining state ρ+ when measuring ρ is tr (ρ+). We now describe
how to compute this trace using F defined above.

Background: Concrete Trace. Following [2], we compute the trace of a density matrix ρ by:

tr (ρ) =
m∑

i=1
Re
(
ciiF(P,Q,bi)

)
, (37)

where we define iE := 0. Because the trace of a density matrix is always real, Re(·) is redundant,
but will be convenient to avoid complex traces in our abstraction.

Abstract Trace. For an abstract state ρ, we define:

tr (ρ) = r · Re
(

ciF(P ,Q,b)
)
, (38)

where we use F(·) as defined in Eq. (35).

6 Implementation
In the following, we discuss our implementation of the abstract transformers from §4 and §5 in
Abstraqt.

Language and Libraries. We implemented Abstraqt in Python 3.8, relying on Qiskit 0.40.0 [14]
for handling quantum circuits, and a combination of NumPy 1.20.0 [15] and Numba 0.54 [16] to
handle matrix operations.

Bit Encodings. An abstract density matrix ρ = r ⋆ c · P ·
∏n

j=1
I+(−1)bj Qj

2 is encoded as a
tuple (r, c,P , b1, ..., bn, Q1, . . . , Qn). To encode the concrete Pauli matrices Qj , we follow concrete
stabilizer simulation encodings such as [17] and encode Pauli matrices P using two bits g(P) (see
§5.3). To encode abstract elements of a finite set we use bit patterns. For example, we encode
b1 = {1, 0} ∈ BBBBBB as 112, where the least significant bit (i.e. the right-most bit) indicates that
0 ∈ b1. Analogously, we encode v = {3, 0} ∈ ZZZZZZ4 as 10012. Further, we encode {Z,Y} as 11002,
where the indicator bits correspond to Z, Y, X, and I, respectively, from left to right. Hence the
abstact Pauli P = ({0, 3}, {Z,Y}, {X}) would be represented as (10012, 11002, 00102).

Implementing Transformers. The abstract transformers on abstract density matrices can be
implemented using operations in BBBBBB,ZZZZZZ4, CCCCCC, and PPPPPP 1. As BBBBBB,ZZZZZZ4, and PPPPPP 1 are small finite domains,
we can implement operations in these domains using lookup tables, which avoids the need for bit
manipulation tricks. While such tricks are applicable in our context (e.g., [2] uses bit manipulations
to compute H(i)PH

†
(i) for P ∈ Pn), they are generally hard to come up with [18]. In contrast, the

efficiency of our lookup tables is comparable to that of bit manipulation tricks, without requiring
new insights for new operations.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 14

For example, to evaluate {} + {0} over BBBBBB using Eq. (8), we encode the first argument {} as 00
and the second argument {0} as 01. Looking up entry (00, 01) in a two-dimensional pre-computed
table then yields 00, the encoding of the correct result {}. We note that we cannot implement
this operation directly using a XOR instruction on encodings, as this would yield incorrect results:
00 XOR 01 = 01 ≃ {0}, which is incorrect.

Gaussian Elimination. To efficiently solve equations modulo two as discussed in §5, we imple-
mented a custom Gaussian elimination relying on bit-packing (i.e., storing 32 boolean values in
a single 32-bit integer). In the future, it would be interesting to explore if Gaussian elimination
could be avoided altogether, as suggested by previous works [2, 17].

Testing. To reduce the likelihood of implementation errors, we have complemented Abstraqt
with extensive automated tests. We test that abstract transformers f ♯ are sound with respect to
concrete functions f , that is to say that

∀x1 ∈ γ(x1) · · · ∀xk ∈ γ(xk).f(x1, . . . , xn) ∈ f ♯(x1, . . . ,xk).

We check this inclusion for multiple selected samples of xi and xi ∈ xi (typically corner cases).
This approach is highly effective at catching implementation errors, which we have found in

multiple existing tools as shown in §7.

7 Evaluation
We now present our evaluation of Abstraqt, demonstrating that it can establish circuit properties
no existing tool can establish.

7.1 Benchmarks
To evaluate Abstraqt, we generated 12 benchmark circuits, summarized and visualized in Tab. 4.

Benchmark Circuit Generation. Each circuit operates on 62 qubits, partitioned into 31 upper
qubits and 31 lower qubits. We picked the limit of 62 qubits because our baseline ESS (discussed
shortly) only supports up to 63 qubits; Abstraqt is not subject to such a limitation.

Each circuit operates on initial state |0⟩ and is constructed to ensure that all lower qubits are
eventually reverted to state |0⟩. We chose this invariant as it can be expressed for most of the
evaluated tools, as we will discuss in §7.2. Further, as some tools can only check this for one qubit
at a time, we only check if the very last qubit is reverted to |0⟩, instead of running 31 independent
checks (which would artificially slow down some baselines). Note that this check is of equivalent
difficulty for all lower qubits.

Benchmark Details. Tab. 4 details how each benchmark circuit was generated. Most of the
circuits are built from three concatenated subcircuits. First, c1 modifies the upper qubits, then c2
modifies the lower qubits (potentially using gates controlled by the upper qubits) and finally c3
reverts all lower qubits to |0⟩, but in a non-trivial way. Circuit CCX+H;Cliff slightly deviates from
this pattern, as it also modifies the upper qubits using gates controller by lower qubits. Further,
circuits Cliff+T;H;CZ+RX and Cliff+T;H;CZ+RX’ additionally apply two layers of H gates to the
lower qubits. Finally, circuit MeasureGHZ applies internal measurements, as discussed below.

The majority of circuits revert the lower qubits to |0⟩ by applying c3, the inverse of c2 but
optimized using PyZX [19]—this obfuscates the fact that c2 and c3 cancel out. Four circuits,
marked with a trailing prime (’), generate c3 by optimizing the un-inverted c2. They still reset
all lower qubits to |0⟩, but establishing this requires advanced reasoning. Specifically, RZ2+H;CX’
flips each lower qubit an even number of times. 7 Similarly, Cliff+T;CX+T’ and CCX+H;CX+T’
additionally modify the phase but still flip each lower qubit an even number of times. Finally,

7More precisely, when representing the quantum state as a sum over computational basis states, an even number
of flips are applied to each qubit of each summand.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 15

Table 4: Description of benchmark circuits, where upper = {1, . . . , 31} and lower = {32, . . . , 62}.

Circuit Generation Gates (approx.)
Cliff;Cliff c1 ∈

(
{o(q) | o ∈ {H, S}, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}

)104

c2 ∈
(

{o(q) | o ∈ {H, S}, q ∈ lower} ∪ {CX(q1, q2) | q1, q2 ∈ lower}
)104

return c1; c2; opt(c†
2)

26k × Clifford

Cliff+T;Cliff c1 ∈
(

{o(q) | o ∈ {H, S, T }, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}
)104

c2 ∈
(

{o(q) | o ∈ {H, S}, q ∈ lower} ∪ {CX(q1, q2) | q1, q2 ∈ lower}
)104

return c1; c2; opt(c†
2)

23k × Clifford,
2.5k × T

Cliff+T;CX+T c1 ∈
(

{o(q) | o ∈ {H, S, T }, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T (q) | q ∈ lower}
)104

return c1; c2; opt(c†
2)

18k × Clifford,
9k × T , 40 × T †

Cliff+T;CX+T’ c1 ∈
(

{o(q) | o ∈ {H, S, T }, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T (q) | q ∈ lower}
)104

return c1; c2; opt(c2)

18k × Clifford,
9k × T , 40 × T †

Cliff+T;H;CZ+RX c1 ∈
(

{o(q) | o ∈ {H, S, T }, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}
)104

ch = H(32); . . . ; H(62)

c2 ∈
(

{CZ(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {RX π
4

(q) | q ∈ lower}
)104

return c1; ch; c2; opt(c†
2); ch

18k × Clifford,
5k × RX π

4
,

3k × T , 1k × T †

Cliff+T;H;CZ+RX’ c1 ∈
(

{o(q) | o ∈ {H, S, T }, q ∈ upper} ∪ {CX(q1, q2) | q1, q2 ∈ upper}
)104

ch = H(32); . . . ; H(62)

c2 ∈
(

{CZ(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {RX π
4

(q) | q ∈ lower}
)104

return c1; ch; c2; opt(c2); ch

18k × Clifford,
5k × RX π

4
,

4k × T , 40 × T †

CCX+H;Cliff
c1 ∈

(
{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}

)104

c2 ∈
(

{o(q) | o ∈ {H, S}, q ∈ lower}∪

{CX(q1, q2) | q1 ∈ lower, q2 ∈ lower ∪ upper}
)104

return c1; c2; opt(c†
2)

22k × Clifford,
5k × CCX

CCX+H;CX+T c1 ∈
(

{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T (q) | q ∈ lower}
)104

return c1; c2; opt(c†
2)

16k × Clifford,
5k × CCX,
5k × T , 1k × T †

CCX+H;CX+T’ c1 ∈
(

{CCX(q1, q2, q3) | q1, q2, q3 ∈ upper} ∪ {H(q) | q ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower} ∪ {T (q) | q ∈ lower}
)104

return c1; c2; opt(c2)

16k × Clifford,
5k × CCX,
7k × T , 30 × T †

RZ2+H;CX c1 ∈
(

{o(q) | o ∈ {RZ2, H}, q ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower}
)104

return c1; c2; opt(c†
2)

16k × Clifford,
5k × RZ2

RZ2+H;CX’ c1 ∈
(

{o(q) | o ∈ {RZ2, H}, q ∈ upper}
)104

c2 ∈
(

{CX(q1, q2) | q1 ∈ upper, q2 ∈ lower}
)104

return c1; c2; opt(c2)

16k × Clifford,
5k × RZ2

MeasureGHZ c1 = CX(1, 2); . . . ; CX(1, 62)
c2 = H(1); c1; measure(1), c1
return c2; . . . ; c2 (100 times)

12k × Clifford,
100 × measure

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 16

Cliff+T;H;CZ+RX’ flips between states |+⟩ and |−⟩ an even number of times, where RXπ
4

only
modifies the phase.

The last benchmark MeasureGHZ first generates a GHZ state 1√
2 |0 · · · 0⟩ + 1√

2 |1 · · · 1⟩, and
collapses it to |0 · · · 0⟩ or |1 · · · 1⟩ by measuring the first qubit. Then, it resets all qubits to |0⟩
except for the first one. It then repeats this process, with the first qubit starting in either |0⟩ or |1⟩.
Thus, the state before measurement is either 1√

2 |0 · · · 0⟩ + 1√
2 |1 · · · 1⟩ or 1√

2 |0 · · · 0⟩ − 1√
2 |1 · · · 1⟩,

but every repetition still resets all lower qubits to |0⟩.

Discussion. Our benchmark covers a wide variety of gates, with all applying Clifford gates, seven
applying T gates, three applying CCX gates, two applying RXπ

4
gates (one qubit gate, rotation

around the X axis of π
4 radians), and two applying RZ2 gates (one qubit gate, rotation around

the Z axis of 2 radians).
All benchmarks are constructed to revert the lower qubits to |0⟩, but in a non-obvious way. As

fully precise simulation of most benchmarks is unrealistic, we expect that over-approximation is
typically necessary to establish this fact.

7.2 Baselines
We now discuss how we instantiated existing tools to establish that a circuit c evolves a qubit q to
state |0⟩. Overall, we considered two tools based on stabilizer simulation (ESS [5] and QuiZX [4]),
one tool based on the Feynman path integral (Feynman [20]), one tool based on abstract inter-
pretation (YP21 [21], in two different modes), and one tool based on state vectors (Statevector as
implemented by Qiskit [14]).

ESS. Qiskit [14] provides an extended stabilizer simulator implementing the ideas published in [5]
which (i) decomposes quantum circuits into Clifford circuits, (ii) simulates these circuits separately,
and (iii) performs measurements by an aggregation across these circuits. To check if a circuit c
consistently evolves a qubit q to |0⟩, we check if c extended by a measurement of q always yields
0. To run our simulation, we used default parameters.

QuiZX. QuiZX [4] improves upon [5] by alternating between decomposing circuits (splitting
non-Clifford gates into Clifford gates) and optimizing the decomposed circuits (which may further
reduce non-Clifford gates). We can use QuiZX to establish that a qubit is in state |0⟩ by "plugging"
output q as |1⟩ and establishing that the probability of this output is zero. 8

Feynman. Feynman [20] allows to verify quantum circuits based on the Feynman path integral.
Its implementation9 supports two main use cases, namely optimization and checking the equiva-
lence of two circuits. While these use cases cannot prove that a circuit resets a qubit to |0⟩, we
can use Feynman’s equivalence check to check whether the circuits in Tab. 4 are equivalent to a
simplified version which performs no operation at all on lower qubits. We check this equivalence
for all circuits, even for those where we know it does not hold (namely all whose name ends with
a prime), allowing us to confirm that Feynman cannot scale to any of our benchmarks (see §7.3).

We note that Feynman currently does not support internal measurements. 10

YP21. Like Abstraqt, YP21 [21] also uses abstract interpretation, but relies on projectors
instead of stabilizer simulation. Specifically, it encodes the abstract state of selected (small) subsets
of qubits as projectors {Pj}j∈J , which constrain the state of these qubits to the range of Pj .

To check if a qubit q is in state |0⟩, we check if the subspace resulting from intersecting the range
of all Pj is a subset of the range of I + Z(q)—an operation which is natively supported by YP21.

8The use of plugging is described on https://github.com/Quantomatic/quizx/issues/9.
9Tool available at https://github.com/meamy/feynman

10https://github.com/meamy/feynman/issues/8

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 17

https://github.com/Quantomatic/quizx/issues/9
https://github.com/meamy/feynman
https://github.com/meamy/feynman/issues/8

Table 5: Success rates when running simulators on benchmarks from Tab. 4.

Label Abstraqt QuiZX ESS Feynman YP21 (mode 1) YP21 (mode 2) Statevec.
Cliff;Cliff 100% 0% (E) 0% (I) 0% (T,M) 0% (T,P) 0% (I) 0% (M)
Cliff+T;Cliff 100% 70% (T) 0% (I) 0% (T,M) 0% (T,P) 0% (I) 0% (M)
Cliff+T;CX+T 100% 80% (M) 0% (M) 0% (T) 0% (T,E,P) 0% (I) 0% (M)
Cliff+T;CX+T’ 100% 0% (M) 0% (M) 0% (T) 0% (T,E,P) 0% (I) 0% (M)
Cliff+T;H+CZ+RX 100% 60% (M) 0% (M) 0% (T) 0% (T,P) 0% (I) 0% (M)
Cliff+T;H+CZ+RX’ 100% 0% (T,M) 0% (M) 0% (T) 0% (T,P) 0% (I) 0% (M)
CCX+H;Cliff 100% 0% (T) 0% (M) 0% (M) 0% (T) 0% (T) 0% (M)
CCX+H;CX+T 100% 50% (T) 0% (M) 0% (T) 0% (T) 0% (T) 0% (M)
CCX+H;CX+T’ 100% 0% (T,M) 0% (M) 0% (T) 0% (T) 0% (T) 0% (M)
RZ2+H;CX 100% 0% (E) 0% (T,M) 0% (U) 0% (U) 0% (U) 0% (M)
RZ2+H;CX’ 100% 0% (E) 0% (M) 0% (U) 0% (U) 0% (U) 0% (M)
MeasureGHZ 100% 0% (U) 0% (U) 0% (U) 0% (U) 0% (U) 0% (U)
Overall success 100% 22% 0% 0% 0% 0% 0%

T: timeout (6h), M: out of memory, U: unsupported operation in the circuit,
I: incorrect simulation results, P: too imprecise, E: internal error

When running YP21, we used the two execution modes suggested in its original evaluation [21].
The first mode tracks the state of all pairs of qubits, while the second considers subsets of 5 qubits
that satisfy a particular condition (for details, see [21, §9]). Because [21] does not discuss which
execution mode to pick for new circuits, we evaluated all circuits in both modes.

We note that because YP21 does not support CX(a, b) for a > b, we instead encoded such
gates as H(a);H(b);CX(b, a);H(b);H(a).

Statevector. Qiskit [14] further provides a simulator based on state vectors, which we also used
for completeness.

Abstraqt. In Abstraqt, we can establish that a qubit is in state |0⟩ by measuring the final
abstract state ρ in basis Z(i) and checking if the probability of obtaining |1⟩ is 0.

Experimental Setup. We executed all experiments on a machine with 110 GB RAM and 56
cores at 2.6 GHz, running Ubuntu 22.04. Because some tools consumed excessive amounts of
memory, we limited them to 12 GB of RAM. This was not necessary for Abstraqt, which never
required more than 600 MB of RAM. We limited each tool to a single thread.

7.3 Results
Tab. 5 summarizes the results when using all tools discussed in §7.2 to establish that the last qubit
in 10 randomly selected instantiations of each benchmark from Tab. 4 is in state |0⟩. Overall, it
demonstrates that while Abstraqt can establish this for all benchmarks within minutes, QuiZX
can only establish it for a few instances, and all other tools cannot establish it for any benchmark.
Further, we found that for some circuits the established simulation tool ESS yields incorrect results.
We now discuss the results of each tool in more details.

MeasureGHZ. Importantly, no baseline tool except Abstraqt can simultaneously simulate
both outcomes of a measurement, without incurring an exponential blow-up. Therefore, for
MeasureGHZ, we consider internal measurements as an unsupported operation in these tools. We
note that we could randomly select one measurement outcome and simulate the remainder of the
circuit for it, but then we can only establish that the final state is |0⟩ for a given sequence of
measurement outcomes. In contrast, a single run of Abstraqt can establish that the final state
is |0⟩ for all possible measurement outcomes (see also §5.2).

QuiZX. As QuiZX is the only baseline tool solving some of our benchmark instances, we provide
a detailed comparison to it in Tab. 6.

Overall, QuiZX cannot consistently handle any of the benchmarks from Tab. 4, Instead, it often
either times out or runs out of memory. Further, QuiZX consistently runs into an internal error

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 18

Table 6: Detailed comparison of outcomes from Abstraqt and QuiZX, including runtimes of successful runs.

Label Abstraqt QuiZX
Outcomes min [s] max [s] Outcomes min [s] max [s]

Cliff;Cliff 10 × ✓ 24 33 0 × ✓, 10 × E - -
Cliff+T;Cliff 10 × ✓ 32 47 7 × ✓, 3 × T 5.5 · 103 2.0 · 104

Cliff+T;CX+T 10 × ✓ 46 63 8 × ✓, 2 × M 2.0 · 103 9.4 · 103

Cliff+T;CX+T’ 10 × ✓ 47 65 0 × ✓,10 × T - -
Cliff+T;H+CZ+RX 10 × ✓ 58 69 6 × ✓, 4 × M 3.6 · 103 1.4 · 104

Cliff+T;H+CZ+RX’ 10 × ✓ 52 71 0 × ✓, 1 × T, 9 × M - -
CCX+H;Cliff 10 × ✓ 143 155 0 × ✓,10 × T - -
CCX+H;CX+T 10 × ✓ 155 173 5 × ✓, 5 × T 5.9 · 103 7.9 · 103

CCX+H;CX+T’ 10 × ✓ 155 173 0 × ✓, 1 × T, 9 × M - -
RZ2+H;CX 10 × ✓ 37 47 0 × ✓, 10 × E - -
RZ2+H;CX’ 10 × ✓ 37 46 0 × ✓, 10 × E - -
MeasureGHZ 10 × ✓ 23 32 0 × ✓, 10 × U - -

T: timeout (6h), M: out of memory, U: unsupported operation in the circuit, E: internal error

when simulating RZ2+H;CX and RZ2+H;CX’. Surprisingly, QuiZX also consistently fails to simulate
Cliff;Cliff, which we conjecture is due to a bug for circuits that do not contain non-Clifford
gates. After adding a single T gate, simulation is successful.

Importantly, even when QuiZX succeeds, it is significantly slower than Abstraqt, sometimes
by more than two orders of magnitude.

ESS. Surprisingly, ESS simulates circuits Cliff;Cliff and Cliff+T;Cliff incorrectly. Specif-
ically, it samples the impossible measurement of 1 around 50% of cases. Interestingly, smaller
circuits generated with the same process are handled correctly. It is reassuring to see that Ab-
straqt allows us to discover such instabilities in established tools.

It may be surprising that ESS returns an incorrect result for Cliff+T;Cliff instead of timing
out, although the circuit contains many T gates—this is because Qiskit can establish that the
Clifford+T part of the circuit is irrelevant when measuring the last qubit. For all remaining
circuits, ESS runs out of memory or times out, as it decomposes the circuit into exponentially
many Clifford circuits.

Feynman. Feynman consistently either times out, runs out of memory, or does not support a
relevant operation (namely measurement and RZ2).

YP21. YP21 typically either times out, throws an internal error, does not support a relevant
operation (e.g., measurements or RZ2), or returns incorrect results. The latter is because on some
circuits, mode 2 choses an empty set of projectors, which leads to trivially unsound results. When
YP21 does terminate, it is too imprecise to establish that the last qubit is in state |0⟩.

Statevector. Unsurprisingly, statevector simulation cannot handle the circuits in Tab. 5. This
is because it requires space exponential in the number of qubits, which precludes simulating any
of the benchmarks.

7.4 Limitations and Discussion
We note that our benchmarks are designed to showcase successful applications of Abstraqt where
it outperforms existing tools. Of course, Abstraqt is not precise on all circuits—e.g., Abstraqt
quickly loses precision on general Clifford+T circuits (analogously to the imprecise measurement
discussed in §3).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 19

Future Abstractions. We expect that for many real-world circuits, existing approaches work
better than the current implementation of Abstraqt. However, as Abstraqt only abstracts
the first stabilizer simulation generalized to non-Clifford gates [2, §VII-C], we believe it paves the
way to also abstract more recent stabilizer simulators. For example, ESS [5] operates on so-called
CH-forms which, like the generalized stabilizer simulation underlying Abstraqt, can be encoded
using bits and complex numbers. Hence, it seems plausible that our ideas could be adapted to
abstract ESS. QuiZX operates on ZX-diagrams consisting of graphs whose nodes are parametrized
by rotation angles α. Again, a promising direction for future research is introducing abstract ZX-
diagrams that support abstract rotation angles. This is particularly promising because both ESS
and QuiZX scale better in number of T gates than [2, §VII-C]: with 2n instead of 4n.

We note however that not all concrete simulation techniques are directly amenable to abstrac-
tion. For example, when naively abstracting the Clifford simulation by Aaronson and Gottesmann,
applying a measurement requires selecting an entry in an boolean matrix that definitively equals
one [2, Case I in §III]—it is unclear how to generalize this to abstract boolean matrices whose
entries may be {0, 1}.

Improving Abstraqt. Another promising route towards better abstractions in incrementally
improving Abstraqt itself. For example, it would be interesting to consider the effect of keeping
more than one abstract summand, abstracting Pi or bij using a custom relational domain (which
retains information about the relationship between different values) [22], or a more precise abstrac-
tion for complex numbers by taking into account that restricted gate sets such as Clifford+T only
induce matrices over finite sets of values.

Summary. Overall, we believe that all tools in Tab. 5 are valuable to analyze quantum circuits.
We are hoping that addressing some limitations of the considered baselines (e.g., fixing bugs in
QuiZX and ESS) and cross-pollinating ideas (e.g., extending QuiZX by abstract interpretation)
will allow the community to benefit from the fundamentally different mathematical foundations of
all tools.

8 Related Work
Here, we discuss works related to the goal and methods of Abstraqt.

Quantum Abstract Interpretation. Some existing works have investigated abstract interpre-
tation for simulating quantum circuits [21, 23, 24]. As [21] is not specialized for Clifford circuits,
it is very imprecise on the circuits investigated in §7: it cannot derive that the lower qubits are
|0⟩ for any of them. While [23, 24] are inspired by stabilizer simulation, they only focus on de-
termining if certain qubits are entangled or not, whereas Abstraqt can extract more precise
information about the state. Further, both tools are inherently imprecise on non-Clifford gates—
in contrast, a straight-forward extension of Abstraqt can treat some non-Clifford gates precisely
at the exponential cost of not merging summands.

Stabilizer Simulation. The Gottesman-Knill theorem [1] established that stabilizers can be
used to efficiently simulate Clifford circuits. Stim [17] is a recent implementation of such a simu-
lator, which only supports Clifford gates and Pauli measurements.

Stabilizer simulation was extended to allow for non-Clifford gates at an exponential cost, while
still allowing efficient simulation of Clifford gates [2, §VII-C]. Various works build upon this in-
sight, handling Clifford gates efficiently but suffering from an exponential blow-up on non-Clifford
gates [3, 4, 5, 6, 7]. In our evaluation, we demonstrate that Abstraqt extends the reach of
state-of-the-art stabilizer simulation by comparing to two tools from this category, ESS [5] (chosen
because it is implemented in the popular Qiskit library) and QuiZX [4] (chosen because it is a
recent tool reporting favorable runtimes).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 20

Verifying Quantum Programs. Another approach to establishing circuit properties is end-to-
end formal program verification, as developed in [25] for instance. However, this approach often
requires new insights for each program it is applied to. Even though recent works have greatly
improved verification automation, proving even the simplest programs still requires a significant
time investment [26], whereas our approach can analyze it without any human time investment.

The work [27] automatically generates rich invariants, but is exponential in the number of
qubits, limiting its use to small circuits. Finally, [20] can automatically verify the equivalence of
two given circuits, but times out on the benchmarks considered in §7.

9 Conclusion
In this work, we have demonstrated that combining abstract interpretation with stabilizer simula-
tion allows to establish circuit properties that are intractable otherwise.

Our key idea was to over-approximate the behavior of non-Clifford gates in the generalized
stabilizer simulation of Aaronson and Gottesman [2] by merging summands in the sum represen-
tation of the quantum states density matrix. Our carefully chosen abstract domain allows us to
define efficient abstract transformers that approximate each of the concrete stabilizer simulation
functions, including measurement.

References
[1] Daniel Gottesman. “The Heisenberg Representation of Quantum Computers”. Technical Re-

port arXiv:quant-ph/9807006. arXiv (1998).

[2] Scott Aaronson and Daniel Gottesman. “Improved Simulation of Stabilizer Circuits”. Physical
Review A 70, 052328 (2004).

[3] Robert Rand, Aarthi Sundaram, Kartik Singhal, and Brad Lackey. “Extend-
ing gottesman types beyond the clifford group”. In The Second International
Workshop on Programming Languages for Quantum Computing (PLanQC 2021).
(2021). url: https://pldi21.sigplan.org/details/planqc-2021-papers/9/
Extending-Gottesman-Types-Beyond-the-Clifford-Group.

[4] Aleks Kissinger and John van de Wetering. “Simulating quantum circuits with ZX-calculus
reduced stabiliser decompositions”. Quantum Science and Technology 7, 044001 (2022).

[5] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark
Howard. “Simulation of quantum circuits by low-rank stabilizer decompositions”. Quantum
3, 181 (2019).

[6] Hakop Pashayan, Oliver Reardon-Smith, Kamil Korzekwa, and Stephen D. Bartlett. “Fast
estimation of outcome probabilities for quantum circuits”. PRX Quantum 3, 020361 (2022).

[7] “Classical simulation of quantum circuits with partial and graphical stabiliser decompositions”.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).

[8] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Pages 238–252. POPL ’77New York, NY, USA (1977). ACM.

[9] Patrick Cousot and Radhia Cousot. “Abstract interpretation frameworks”. Journal of logic
and computation 2, 511–547 (1992).

[10] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. “A static analyzer for large safety-critical software”.
ACM SIGPLAN Notices 38, 196–207 (2003).

[11] Francesco Logozzo and Manuel Fähndrich. “Pentagons: A weakly relational abstract domain
for the efficient validation of array accesses”. Science of Computer Programming 75, 796–
807 (2010).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 21

https://dx.doi.org/10.48550/arXiv.quant-ph/9807006
https://dx.doi.org/10.48550/arXiv.quant-ph/9807006
https://dx.doi.org/10.1103/PhysRevA.70.052328
https://dx.doi.org/10.1103/PhysRevA.70.052328
https://pldi21.sigplan.org/details/planqc-2021-papers/9/Extending-Gottesman-Types-Beyond-the-Clifford-Group
https://pldi21.sigplan.org/details/planqc-2021-papers/9/Extending-Gottesman-Types-Beyond-the-Clifford-Group
https://dx.doi.org/10.1088/2058-9565/ac5d20
https://dx.doi.org/10.22331/q-2019-09-02-181
https://dx.doi.org/10.22331/q-2019-09-02-181
https://dx.doi.org/10.1103/PRXQuantum.3.020361
https://dx.doi.org/10.4230/LIPICS.TQC.2022.5
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1093/logcom/2.4.511
https://dx.doi.org/10.1093/logcom/2.4.511
https://dx.doi.org/10.1145/780822.781153
https://dx.doi.org/10.1016/j.scico.2009.04.004
https://dx.doi.org/10.1016/j.scico.2009.04.004

[12] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. “AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation”. In 2018 IEEE Symposium on Security and Privacy (SP). Pages
3–18. San Francisco, CA (2018). IEEE.

[13] Michael A. Nielsen and Isaac L. Chuang. “Quantum computation and quantum information:
10th anniversary edition”. Cambridge University Press. (2010).

[14] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-
Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian
Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, An-
drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La
Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Is-
mael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan
Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz
Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari,
Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Ma-
noel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan
Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini,
Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna
Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila,
Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute,
Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin,
Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso
Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A.
Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner,
Ismail Yunus Akhalwaya, and Christa Zoufal. “Qiskit: An open-source framework for quantum
computing” (2019).

[15] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. “Array programming with NumPy”. Nature 585, 357–362 (2020).

[16] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: a LLVM-based Python JIT
compiler”. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC. Pages 1–6. LLVM ’15New York, NY, USA (2015). Association for Computing
Machinery.

[17] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. Quantum 5, 497 (2021).

[18] Henry S. Warren. “Hacker’s delight”. Addison-Wesley Professional. (2012). 2nd edition.

[19] Aleks Kissinger and John van de Wetering. “PyZX: Large Scale Automated Diagrammatic
Reasoning”. In Bob Coecke and Matthew Leifer, editors, Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14
June 2019. Volume 318 of Electronic Proceedings in Theoretical Computer Science, pages
229–241. Open Publishing Association (2020).

[20] Matthew Amy. “Towards Large-scale Functional Verification of Universal Quantum Circuits”.
Electronic Proceedings in Theoretical Computer Science 287, 1–21 (2019).

[21] Nengkun Yu and Jens Palsberg. “Quantum abstract interpretation”. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation. Pages 542–558. PLDI 2021New York, NY, USA (2021). Association for Computing
Machinery.

[22] Antoine Miné. “Weakly Relational Numerical Abstract Domains”. PhD Thesis (2004).
url: https://www-apr.lip6.fr/~mine/these/these-color.pdf.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 22

https://dx.doi.org/10.1109/SP.2018.00058
https://dx.doi.org/10.1109/SP.2018.00058
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1038/s41586-020-2649-2
https://dx.doi.org/10.1145/2833157.2833162
https://dx.doi.org/10.22331/q-2021-07-06-497
https://dx.doi.org/10.5555/2462741
https://dx.doi.org/10.4204/EPTCS.318.14
https://dx.doi.org/10.4204/EPTCS.318.14
https://dx.doi.org/10.4204/EPTCS.287.1
https://dx.doi.org/10.1145/3453483.3454061
https://www-apr.lip6.fr/~mine/these/these-color.pdf

[23] Simon Perdrix. “Quantum Entanglement Analysis Based on Abstract Interpretation”. In
Proceedings of the 15th International Symposium on Static Analysis. Pages 270–282. SAS
’08Berlin, Heidelberg (2008). Springer-Verlag.

[24] Kentaro Honda. “Analysis of Quantum Entanglement in Quantum Programs using Stabilizer
Formalism”. Electronic Proceedings in Theoretical Computer Science195 (2015).

[25] Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. “Proving Quantum
Programs Correct”. Leibniz International Proceedings in Informatics (LIPIcs) 193, 21:1–
21:19 (2021).

[26] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Val-
iron. “An automated deductive verification framework for circuit-building quantum programs”.
In Programming Languages and Systems. Pages 148–177. Springer International Publish-
ing (2021).

[27] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. “Invariants of quantum programs: Char-
acterisations and generation”. SIGPLAN Not. 52, 818–832 (2017).

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 23

https://dx.doi.org/10.1007/978-3-540-69166-2_18
https://dx.doi.org/10.4204/EPTCS.195.19
https://dx.doi.org/10.4230/LIPIcs.ITP.2021.21
https://dx.doi.org/10.4230/LIPIcs.ITP.2021.21
https://dx.doi.org/10.1007/978-3-030-72019-3_6
https://dx.doi.org/10.1145/3093333.3009840

A Abstract Transformers Soundness
Here, we prove the soundness of the trace transformer Eq. (38):

Theorem A.1. Trace. For all ρ ∈ D we have

γ ◦ tr (ρ) ⊇ tr ◦γ(ρ).

Proof. The over-approximation F# follows closely the form of F, where the first term f(P) over-
approximates the prefactors of P and second term over-approximates the prefactors originating
from the solution space for y of b(P) = b(

∏n
j=1 Q

yj

j). Overall, we have:

tr ◦γ (ρ) = tr

({
r∑

i=1

ciPi

n∏
j=1

1
2

(
I + (−1)bij Qj

) ∣∣∣∣∣ ci ∈ c, Pi ∈ P , bij ∈ bj

})

=

{
tr

(
r∑

i=1

ciPi

n∏
j=1

1
2

(
I + (−1)bij Qj

)) ∣∣∣∣∣ ci ∈ c, Pi ∈ P , bij ∈ bj

}

=

{
r∑

i=1

Re
(
ciiF(P,Q,bij)) ∣∣∣∣∣ ci ∈ c, Pi ∈ P , bij ∈ bj

}
Concrete trace, §5.4

=
r∑

i=1

Re
(
{ci ∈ c} · iF({Pi∈P },Q,{bij ∈bj }))

⊆ γ

(
r∑

i=1

Re
(

c · iF
♯(P ,Q,bj)

))
Soundness of transf.

= γ
(

r · Re
(

c · iF
♯(P ,Q,bj)

))
Property of intervals

= γ ◦ tr (ρ) .

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 24

Table 7: States stabilized by Pauli matrices P and also −P , where X := (0 1
1 0), Y :=

(0 −i
i 0

)
, Z :=

(1 0
0 −1

)
,

and I2 := (1 0
0 1).

Stab. State vec. Dens. mat. Stab. State vec. Dens. mat.

X 1√
2 (1

1) =∧ |+⟩ 1
2

(1 1
1 1
)

−X 1√
2

(1
−1
)

=∧ |−⟩ 1
2

(1 −1
−1 1

)
Y 1√

2 (1
i) 1

2

(1 i
−i 1

)
−Y 1√

2

(1
−i
)

1
2

(1 −i
i 1

)
Z (1

0) =∧ |0⟩
(1 0

0 0
)

−Z
(0

1
)

=∧ |1⟩
(0 0

0 1
)

I2 (any vec.) - −I2 (no vec.) -

Table 8: Multiplication of Pauli matrices.

II = I IX = X IY = Y IZ = Z
XI = X XX = I XY = iZ XZ = −iY
YI = Y YX = −iZ YY = I YZ = iX
ZI = Z ZX = iY ZY = −iX ZZ = I

B Stabilizers and Pauli Matrices
Tab. 7 shows the states stabilized by each Pauli matrix, together with the density matrix of the
stabilized state. Further, Tab. 8 shows the multiplication table for the Pauli matrices.

Accepted in Quantum 2023-11-13, click title to verify. Published under CC-BY 4.0. 25

