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Abstract

Power distribution grids host an increasing amount of distributed renewable generators, electric vehicles, and heat pumps

worldwide. Distribution grids, however, were not designed with the goal of incorporating large shares of these technologies.

These soaring challenges demand accurate and realistic grid models to assess the need for operation strategies and reinforcements

that ensure reliable and economic management. Nevertheless, real models are often unavailable due to privacy and security

concerns or a lack of digitized data from distribution system operators. To address this issue, we present a framework for

large-scale inference of geo-referenced low- and medium-voltage grid models using publicly accessible information on power

demand and transport infrastructure. First, we develop a clustering algorithm, which detects load areas served by distribution

grids. Then, we obtain the graphical grid layout, i.e., a graph with the street and pathway geometries and the load point

connections inside the load area. Next, we introduce a selection method for line types that assigns cost-effective conductors to

grid lines while ensuring operational constraints. We demonstrate the effectiveness of our approach by inferring all the low-

and medium-voltage infrastructure in Switzerland. Remarkably, the inferred grids present overall power requirements and line

lengths statistically aligned with reference grids.
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Large-Scale Inference of Geo-Referenced
Power Distribution Grids Using Open Data

Alfredo Oneto, Blazhe Gjorgiev, Filippo Tettamanti, Giovanni Sansavini

Abstract—Power distribution grids host an increasing amount
of distributed renewable generators, electric vehicles, and heat
pumps worldwide. Distribution grids, however, were not designed
with the goal of incorporating large shares of these technologies.
These soaring challenges demand accurate and realistic grid mod-
els to assess the need for operation strategies and reinforcements
that ensure reliable and economic management. Nevertheless, real
models are often unavailable due to privacy and security concerns
or a lack of digitized data from distribution system operators.
To address this issue, we present a framework for large-scale
inference of geo-referenced low- and medium-voltage grid models
using publicly accessible information on power demand and
transport infrastructure. First, we develop a clustering algorithm,
which detects load areas served by distribution grids. Then, we
obtain the graphical grid layout, i.e., a graph with the street and
pathway geometries and the load point connections inside the
load area. Next, we introduce a selection method for line types
that assigns cost-effective conductors to grid lines while ensuring
operational constraints. We demonstrate the effectiveness of
our approach by inferring all the low- and medium-voltage
infrastructure in Switzerland. Remarkably, the inferred grids
present overall power requirements and line lengths statistically
aligned with reference grids.

Index Terms—Geo-referenced grids, power distribution, clus-
tering methods, data models, load modeling.

I. INTRODUCTION

THE increasing utilization of distributed renewable gener-
ation, electric vehicles, and heat pumps poses substantial

challenges to power distribution grids (PDGs) [1], and their
adoption is expected to rise due to the climate strategies that
aim to reduce carbon emissions worldwide [2]. Therefore,
concerns such as voltage stability [3], reverse power flows [4],
and overloading of transformers [5] are becoming increasingly
pressing. Tackling these issues requires implementing and
evaluating PDG models for computational assessments [6].
However, publicly available information about PDGs is min-
imal because of privacy and security issues [7], added to the
lack of digitized grid data [8] of distribution system operators
(DSOs). Consequently, test grids have been published to tackle
the need for data [9], [10]. Still, PDGs are very diverse due
to geographical and power requirement conditions; thus, test
models can provide only limited insights.

Motivated by the inaccessibility of PDG data, several
works propose PDG-inference frameworks. However, many
contributions focus on low-voltage (LV) or medium-voltage
(MV) grids, restricting their application to sub-parts of power
distribution infrastructure. Additionally, many works do not
leverage geographic information systems (GIS), which is cru-
cial to perform zonal studies on PDGs [11], [12]. Even when

GIS tools are employed, many methods still require expert
tuning from DSOs and private sources [5], [13]. Additionally,
some of these frameworks can only be adopted for small-
scale areas, as they entail significant computation effort [14],
[15]. Others offer a light computational burden but generate
grids with insufficient detail about the electrical components
adequate to perform power flow analysis [6], [16]. In summary,
no existing work has covered the four characteristics necessary
for a precise large-scale inference of PDGs using open data,
namely, combining both LV and MV levels, geo-referencing
all PDG components, being computationally efficient, and
producing statistically accurate results.

In general, frameworks for inferring PDGs share three steps:
1) the identification of load areas, 2) the derivation of graphical
grid layouts, i.e., the graphs assigned to each load area with
the load point connections and the transport geometry1, and 3)
the selection of the conductors. Step 1) defines the geographic
clusters where electric power is consumed [4]; step 2) builds
geo-referenced graphs with location-specific constraints over
the load areas [1]; step 3) selects the conductors to obtain the
PDGs [17]. The scientific literature offers various techniques
for performing these steps.

To detect load areas, [1] adopts the k-means algo-
rithm [18] and [19] uses the DBSCAN algorithm [20]. [21]
employs Voronoi partitioning, updating iteratively the number
and the location of transformers, which are used as generating
points of the partitions. In [22], the authors use binary image
segmentation to detect contiguous demands and group them to
reach a total load around a target value. Still, these works do
not meet all three conditions that are imposed by technical and
economic constraints of PDG’s design: 1) the load areas must
have a total power demand not higher than the transformer’s
capacity, 2) the load density in a given load area must be
sufficient to avoid voltage drops higher than allowed, and 3)
the number of load areas should be minimized when assigning
each load to a load area while respecting 1) and 2).

The broad consensus on graphical grid layouts is that streets
and public ways should be used as possible power line routes
in general [14], [23]. Such information is readily available
from the worldwide database OpenStreetMap (OSM) [24],
which is accessible via computer tools [25], [26]. Leveraging
the transport information allows us to consider local geospatial
conditions and to avoid restricted-access areas [15]–[17].

The conversion of the graphical grid into a PDG must
comply with topological and operational standards. As both

1The transport considers drivable public and service streets, and pedestrian
and bike pathways.
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Fig. 1. Steps for inferring geo-referenced distribution grids.

LV and MV grids mainly operate with a radial topology [27],
most frameworks generate topologies for PDGs based on this
configuration. Moreover, they solve the conductor selection
problem for each line in these grids while ensuring feasible
operation conditions. For example, [17] builds tree topologies
and derives cost curves for each conductor section with the
technique introduced in [28]; [5], [29] use a branch-exchange
algorithm. In [22], the authors apply a steepest-descent-based
approach to generate radial MV grids while selecting line
conductor types. Furthermore, to solve the same problem,
[30], [31] adopt evolutionary algorithms, and [32] uses ge-
netic algorithms and minimum spanning trees. However, the
combinatorial nature of the line-type selection problem makes
it hard to solve, and existing methods require high processing
power.

Our large-scale inference of PGDs based on public data
closes the identified research gaps with two main contribu-
tions. First, we propose a clustering algorithm that can detect
load areas that meet the technical and economic requirements
of PDGs’ design. This allows us to treat the PDG inference in
parallel for each load area and reduce the need to recombine or
split the grids at a later step. Second, we formulate a line-type
selection algorithm that leverages the topological properties
of the grids to gain computation speed. We demonstrate
the computational tractability of our framework by inferring
both the MV and LV grid infrastructure of Switzerland. The
statistical features of the obtained PDGs are aligned with
those of real and synthetic reference grids, confirming the
framework’s accuracy.

The remainder of this article is organized as follows.
Section II introduces the framework for large-scale inference
of MV and LV grids. Section III details the Swiss case
study. Section IV presents the grid inference and benchmark
results. Section V discusses the strengths and limitations of
the proposed scheme. Finally, Section VI gives concluding
remarks.

II. INFERENCE OF GEO-REFERENCED DISTRIBUTION GRIDS

The framework for inferring geo-referenced PDGs is sum-
marized in Fig. 1. First, we identify load areas using the spatial
distribution of loads and the transformer types. We compute
them using a tailored clustering algorithm (Section II-A).
Second, for each load area, we determine a graphical layout
of the PDG using the transport infrastructure network (Sec-
tion II-B). Third, we develop a novel technique for efficient
line type selection that derives cost-effective configurations

and satisfies the operational constraints (Section II-C). The
framework blocks are further specialized for MV and LV grid
voltage levels (Section II-D).

A. Identification of load areas

An essential problem in PDG inference is the placement of
transformers that supply the spatially distributed loads within
load areas. The solution aims to minimize the installation
of transformers for the cost-effectiveness of DSOs invest-
ments [21]. To address this challenge, we develop a geographic
clustering approach to minimize the number of load areas or,
equivalently, maximize their load while adhering to technical
constraints. These constraints are: 1) not exceeding a threshold
of total power demand and 2) supplying proximate customers
via the same transformer without incurring inadmissible volt-
age drops.

Our method uses two control parameters for aggregating
neighboring load areas, namely, the load area’s maximum
power demand (τ ) and the distance limit (δ). We set τ based
on transformer power ratings and determine δ using standard
distances between adjacent transformers. In what follows, we
use ’load point’ to denote a single load and ’zone’ for the
region under analysis, which contains the load points and
areas. The procedure consists of three steps:

• Step 1: We initialize the load areas assignment using
weighted k-means on the load points within a zone.
To do this, we fix k as the upper approximation of the
zone’s total power load divided by τ , utilizing the power
demands of the load points as weights.

• Step 2: We use weighted k-means to partition load
areas whose total load exceeds τ until their demand is
no greater than τ .

• Step 3: We aggregate neighboring load areas where their
load centroids are at a distance no greater than δ, and the
sum of their loads is less than or equal to τ .

Figure 2 summarizes the tasks performed in Step 2. The
results of Step 1 provide the labels l, which indicate the load
area where each load point is included. The load areas’ indices
are contained in a set C, and the subset S ⊂ C has the ones
with a total load above τ . Then, for each s in S, we execute the
procedure on the right-hand side of the flowchart. The number
of splits b required for the s-th load area is ⌈

∑
i|l(i)=s di/τ⌉,

where di is the power demand of the i-th load point and l(i)
is its load area label. If b is smaller than the number of load
points in the s-th load area, we run weighted k-means with b
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Fig. 2. Diagram of the load areas splitting algorithm.

partitions. Conversely, if b exceeds the number of load points,
we create new load area indices and assign different labels
to each one of the load points. After finishing the loop over
S, the algorithm checks if there are load areas with power
demand above τ after the updates and re-runs the splitting if
it is required. Otherwise, we get the updated load area indices
C and labels l.

Return updated labels 𝒍 and load 

areas 𝐶

Get labels 𝒍 and candidate load areas

to aggregate 𝑀

Identify topological neighbors of 𝑚 

that are not in 𝐺

For 𝑚 in 𝑀

Load areas 𝐶
changed?

No

Delaunay triangulation of centroids 𝑀 

Exclude neighbors at a distance > 𝛿 

Knapsack aggregation of load areas

Yes

Load areas to be aggregated 𝐺 ← {}  

Add load areas to 𝐺 

Update the labels 𝒍 and load areas 𝐶

Fig. 3. Diagram of the load areas aggregation algorithm.

Fig. 3 shows the workflow of Step 3. The algorithm starts
by getting the labels l of the load point and the load areas
M ⊂ C with a total load below τ . The Delaunay triangulation
of the centroids of the loads belonging to each load area in
M identifies the neighboring load areas to be aggregated. The
set G stores the lists of aggregated load areas.

For each m in M , the algorithm identifies neighbors of
the load centroid of m that are not already in a list within
G and excludes those beyond a geographic distance greater
than δ. Load area aggregation is performed using a knapsack
model [33] to maximize the aggregated total load, ensuring it
remains below or equal to τ :

max
w

∑
n∈H

αnwn (1a)

s.t.
∑
n∈H

αnwn ≤ τ − αm (1b)

wn ∈ {0, 1} ∀n ∈ H, (1c)

where H contains the index of load areas neighbors to m; wn

is a binary variable, which takes the value of 1 if the n-th load
area is selected and 0, otherwise; and αm is the total load of

area m. The solution of (1a)-(1c) identifies the load areas to
be merged with the m-th load area, and these are included in
G. Once this identification is done for all m in M , the load
areas are aggregated as indicated in G.

Finally, the load point labels l and the load area indices C
are updated. If C has changed, the algorithm proceeds with
the update of the set of candidate load areas M and executes
the aggregation steps again. Otherwise, the algorithm returns
l and C.

At the end of the procedure, each load area’s substation is
located at the weighted medoid of the power demand [34] to
reduce voltage drops in the PDGs.

B. Graphical grid layout

The graphical grid layout contains the geospatial coordi-
nates of each grid component, i.e., lines, loads, and trans-
formers. We utilize Geographic Information System (GIS)
tools to generate this layout to determine the potential line
routes within the PDGs. We achieve this by leveraging publicly
available transport infrastructure data, constraining the grid
geometries.

The process entails several steps:
• Data retrieval: Data for the specific study zone

are queried from OpenStreetMap (OSM) [24] with
OSMnx [26], and structured in graphs, with edges repre-
senting transport paths and nodes denoting intersections
or endpoints.

• Convex envelopes: These envelopes provide an easy way
to obtain the smallest convex set that encloses all the
points for the load areas within the study zone. Therefore,
we can leverage them to retrieve the transport data within
them. As there might be relevant streets surrounding
the envelopes, we add a buffer distance to expand their
boundaries and include nearby transport paths.

• Transport graph filtering: We query the transport paths
within the respective envelope for each load area. This
entails creating a graph defined by edges with at least
one node inside the envelope.

• Load-to-Grid Connection: We determine the points where
loads connect to the graphical grids by projecting the
loads onto the nearest geographical point along the trans-
port paths. Consequently, the nodes within the graphi-
cal grid encompass not only street nodes but also the
projected load points, with the lines representing the
connections between these nodes.

Finally, since the results of the previous steps might contain
some unnecessary data, such as nodes with no demand that are
connected only through one transport path. To address this, we
conduct a data cleaning process for the graphical grid layout
that comprises the following steps:

• Leaf node removal: We delete leaf nodes2 with no de-
mand until no more such nodes remain.

• Redundant node elimination: We delete redundant nodes,
i.e., without demand and with multiple neighbors, all

2In an undirected graph like PDGs, a leaf node is a node with only one
edge connecting to the rest of the graph.
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of which also have no demand. We merge the edges
connecting these redundant nodes.

• Edge trimming: We delete edges that follow transport
paths that are significantly longer than the statistical
population of the rest of the edges. These might be either
unnecessary or replaced by straight lines built outside
transport paths, as observed in real distribution grids.

• Ensuring full connectivity: As the edge trimming might
have produced disconnected graphs, we will add straight
lines to connect them. The process begins by removing
graphs without loads. Then, we connect the graph with
the fewest nodes by drawing straight lines from each node
in this graph to its nearest node belonging to any of the
other graphs. We repeat this until the graphical grid is
fully connected.

C. From graphical grid layouts to power distribution grids

Initialize the set ℒ of 

candidates for trimming

Is the power 

flow feasible? 

Trim the longest line ℓ from ℒ

Yes

Is the grid 

radial? 

Return the grid(s)

NoIs the grid 

connected? 

Yes

Yes

Restore line ℓ and set ℒ ←
ℒ ∖ {𝑙}

No

No

For each 

grid

Get the graphical grid layout 

and assign a substation

Add a substation in the 

load area

Fig. 4. Steepest-descent-based algorithm for obtaining radial grids.

The standard topology for PDG operation is radial [27].
Consequently, the graphical grids must be adapted because
their initial layout is based on the meshed land transport
networks. To this aim, we employ an approach grounded
in steepest descent schemes for line trimming [22], [35], as
illustrated in Fig. 4. The method considers running AC power
flow calculations based on different line types, i.e., conductors
with different ampacity and impedance.

The method encompasses the following steps:
• Initial candidate set: All grid lines are initial candidates

for trimming, denoted as L.
• Line trimming: Following [22], the longest line l in L

is removed from the grid, and the grid is tested for
connectivity and radiality. If either condition is not met,
l is removed from L and is restored in the grid. This step
repeats until L is empty.

• Power flow feasibility: AC power flow feasibility is tested
for steady-state under-voltage and line congestion, con-
sidering the highest ampacity line type for all grid lines. If
the power flow is infeasible, one additional substation is
introduced, and the load area is split using load-weighted

k-means. Subsequently, the previously trimmed lines
are restored, and the trimming procedure is repeated.
The algorithm terminates when the power flow is feasible
and returns the feasible radial grid (or grids if substations
are added).

After the load area splitting, grids may contain leaf nodes
devoid of demand or substations. These nodes are subse-
quently removed.

Algorithm 1 Selection of line types
1: Input: 1) Set of lines E, 2) Set of nodes V , where s ∈ V

is the substation, and 3) The line types parameters, sorted
by ampacity in ascending order ξ1, . . . , ξN .

2: Get the set T ⊂ V of leaf nodes.
3: Initialize: 1) the evaluated lines K ← {}, 2) the expanded

lines J ← {}, and the counter i← 0.
4: repeat
5: i← i+ 1
6: Set the line type θe ← ξi for all line e in E
7: until power flow is feasible
8: for t in T do
9: R ← line path from s to t

10: K ← K ∪R
11: R ← R \ K
12: θe ← ξ1 for all line e in R
13: while power flow is not feasible and R ≠ ∅ do
14: r ← the first line of R.
15: if r not in J then
16: J ← J ∪ {r}
17: repeat
18: θr ← the following line type to θr

19: until power flow is feasible or θr is equal to ξi
20: end if
21: R ← R \ {r}
22: end while
23: end for
24: for t in T do
25: D ← line path from t to s
26: Initialize: λ ← ξ1, the highest rating observed in the

path.
27: while D ≠ ∅ do
28: d← the first line of D
29: if θd has higher rating than λ then
30: λ← θd

31: else if θd has lower rating than λ then
32: θd ← λ
33: end if
34: D ← D \ {d}
35: end while
36: end for
37: return θe for all e in E

Lastly, since DSOs aim to build PDGs that must meet their
customers’ power requirements while efficiently using their
resources, we must assign cost-efficient line types. Therefore,
we evaluate assignments under steady-state conditions with
peak power demand.
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To select the line types, we leverage the fact that line
ampacities in radial grids are non-increasing downstream from
substations. Therefore, we can sequentially test line types
in the paths3 from the grid’s substation to leaf nodes. This
property allows the development of a computationally efficient
algorithm for line-type selection in radial grids (see Algorithm
1). The inputs to the algorithm are the set of lines E and
their lengths, the set of nodes V and their power demand, and
the line parameter vectors ξ1, . . . , ξN , containing ampacity,
resistance, and reactance parameters and sorted by increasing
ampacity values.

After initialization (Lines 1-3), the algorithm identifies the
line type ξi with the minimum ampacity, that assigned to all
grid lines concurrently yields a feasible power flow (Lines 4-
7). Subsequently, for each line path from the substation to a
leaf node, the algorithm initially sets the line type ξ1 to all
its lines (Lines 8-12). The algorithm assesses line types with
increasing ampacity sequentially downstream the path until
the power flow becomes feasible (Line 13-22). This process
considers line types with an ampacity less than or equal to
that of ξi. This process is repeated for all paths connecting
the substation to the leaf nodes (Lines 8-23). Finally, we ensure
that the ampacity in the grid is non-decreasing upstream, i.e.,
if the ampacity decreases upstream at any line on a path, the
line type is updated to a larger ampacity (Lines 24-36).

D. Differences between low- and medium-voltage grids

MV load areas are more extensive than LV load areas,
necessitating more data processing concerning the land trans-
port infrastructure for defining MV grids. Consequently, to
alleviate the computational burden in the MV graphical grid
data cleaning process (Section II-B), we adopt a strategy to
reduce the edges set based on transport paths. Specifically,
we employ the Minimum Spanning Tree approach, which
selects the paths connecting all nodes with the minimum total
length [36].

Furthermore, the differences between MV and LV load
areas require diverse strategies for trimming long lines in the
graphical grid data cleaning process. Given the smaller size of
LV load areas, their transport paths are predominantly confined
to homogeneous settlement types, such as urban or rural areas.
Consequently, we assume that transport path lengths within a
specific LV load area originate from a relatively homogeneous
statistical population. Under this condition, we can identify
and eliminate outlier paths based on their lengths xi using
robust statistics techniques [37]. To achieve this, we utilize
z-scores in based on robust estimates of location υ and scale
η [38]:

υ = median
i=1,...,n

(xi) (2a)

η = 1.483 ·median
i=1,...,n

|xi − υ| (2b)

zi =
xi − υ

η
∀i. (2c)

3A line path from a node a to a node b is a list of lines [e1, e2, . . . , eN ]
such that e1 connects a, e2 is connected to e1, and so on until eN connects
b.

(2a)-(2b) are the robust estimates of location and scale4,
respectively, based on the length values xi, and (2c) are the z-
scores. Scores ranging from -2.5 to 2.5 are typically considered
inliers.

As MV load areas can encompass multiple settlement types,
the assumption of a homogeneous population of edge lengths
no longer holds. Consequently, we opt to trim transport paths
exceeding a realistic line length threshold based on statistical
information on line lengths. Furthermore, in MV load areas,
it is crucial to account for demand points physically separated
by water bodies. We tackle this challenge by integrating water
body data into our clustering methodology, thereby adapting
the algorithm in Section II-A. Specifically, in Step 2, we start
by splitting load areas internally separated by lakes, and in
Step 3, we do not aggregate clusters that are separated by
lakes.

III. CASE STUDY

We demonstrate the applicability of our framework by
generating MV and LV grids using public data for Switzerland,
a country with a land area of 41 290 km2 and a population
of 8 703 405 [39]. We estimate the spatial distribution of
power demand at the building level by rescaling the sectorial
(industrial, commercial, and residential) heating and cooling
demands, which are mapped with a resolution of 100×100
m [40]. Following [22], we assume similar electricity and
heat demand spatial patterns. The rescaling is based on the
peak electricity demand of the Swiss cantons [41] and the
consumption share of each sector [42]. The power demand is
allocated to buildings using Voronoi partitions. Each one of
the centroids of the 100×100 m demand map is a generating
point of the Voronoi partition. Then, for each Voronoi partition,
the demand of its generating point is spread among the
buildings contained in the partition proportionally to their
surface. Building shapes are derived from OSM [24].

Once we have assigned the loads to the buildings, we
segment MV and LV consumption. First, we use typical
simultaneity factors for the LV loads to get the observed peak
power demand by MV/LV transformers [43]. After this, we
assign loads bigger than 100 kVA to MV level and to LV
otherwise [44]. To delineate LV load areas, we differentiate
between urban, peri-urban, and rural zones, as defined by [45]
for each Swiss municipality. Given the similar conditions
between Switzerland and Germany [46], we adopt German
standards as input parameters for the grouping method outlined
in Section II-A. For the distance limit δ, we consider 400
meters in urban zones and 2000 meters in peri-urban and
rural zones, aligning with typical distances between transform-
ers [47]. For the power demand threshold τ , we set 630 kVA
for urban and peri-urban areas and 250 kVA for rural zones,
in accordance with standard values for these conditions [48].
Additionally, we assume a power factor of 0.97 for all LV
loads [14].

For the MV level, we include the MV/LV transformers
and the MV consumers, also using standard simultaneity

4The constant 1.483 is a correction factor that makes η, the median absolute
deviation from the median, an unbiased estimator at the normal distribution.
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factors [43]. We assume that loads greater than 4 MVA
correspond to high-voltage (HV) consumers, and thus, we
exclude them. Also, we keep out loads below 50 kVA, which
represent less than 0.8% of the MV loads after excluding HV
consumers. These loads are primarily in remote locations and
can be assumed to be supplied by stand-alone microgrids.
Furthermore, we consider only one distance parameter for
clustering MV load areas, set to 10 km, because MV sub-
stations show no regularity in the distances separating them.
In addition, we adopt one type of transformer, with a power
rating of 25 MVA, previously used for a Swiss case study [22],
which sets the power demand upper bound per load area. We
obtain the water bodies data from [49] and consider power
factors of 0.90 for all the MV loads [4].

To derive the graphical grids, we download all the land
transport pathways of Switzerland from OSM [24]. We filter
the paths for each segmented load area, as described in
Section II-B. The boundary buffers of the load areas’ convex
envelopes are set to 100 m for LV and 200 m for MV. Also,
for trimming LV graphical grids, we delete paths above 2.5
median absolute deviations [38] among the set longer than 20
m. In the MV graphical grids, we leave out streets longer than
1.5 km since more than 95% of reference MV lines are shorter
than that [50].

TABLE I
LV AND MV LINES SPECIFICATIONS.

ID Type Ampacity (A)
Low voltage

1 NAYY4x150SE 270
2 NAYY4x240SE 364

Medium voltage
3 48AL1/8ST1A 210
4 94AL1/15ST1A 350
5 122AL1/20ST1A 410
6 243AL1/39ST1A 645
7 NA2XS2Y1x70 220
8 NA2XS2Y1x185 362
9 NA2XS2Y1x240 421

TABLE II
LV AND MV TRANSFORMERS SPECIFICATIONS.

Type Voltages MVA
LV-Rural 20/0.4 kV 0.25

LV-Urban & LV-Peri-urban 20/0.4 kV 0.63
MV 110/20 kV 25

For the characterization of electrical components, we use
international standard types [51], considering the operation of
MV grids at 20 kV and LV at 0.4 kV. Table I shows the
line types5 and Table II shows the transformer types. We use
cables for LV grids, setting the line type 1 for rural and peri-
urban and type 2 for urban zones [48]. For MV, we consider
types 3, 4, 5, and 6 of overhead lines (OHL) and types 7,
8, and 9 of cables. When MV lines follow the land transport
infrastructure, we select cables and place OHL if the line is

5Note that NAYY4x240SE is not described in [51]. However, this is a
common cable [48], and we obtained its data from [34].

straight in the graphical grid. Furthermore, more than one line
can be placed in a given transport path, as in real PDGs.

The AC optimal power flows are computed using
PyPSA [52]. We impose Swiss requirements [53] as steady-
state voltage deviation constraints, i.e., 3% for LV grids and
2% for MV grids.

IV. RESULTS

Our approach generates a set of MV and LV PDGs designed
to meet the power demands of their customers under present
regulations. We analyze MV grids in Section IV-A and LV
grids in Section IV-B. These PDGs can be publicly accessed
in GitHub6.

A. Medium-voltage grids

Fig. 5. The setup of 792 geo-referenced MV grids in Switzerland.

We initiate the process by locating the MV loads in the
country to infer the MV grids. Our analysis reveals a total
of 675 MV load areas. Subsequently, after deriving the corre-
sponding graphical grid layouts, we characterize a total of 792
MV grids, as illustrated in Fig. 5. Remarkably, it is observed
that in approximately 84% of cases, a single substation suffices
to supply the MV load areas. Only 16% of the load areas
require the presence of two substations, and eight load area
requires three substations.

Figure 6 illustrates a single MV grid in the Canton of Vaud.
This grid has 60 loads with a peak power demand of 13.32
MW and an overall line length of 29.36 km, 76.14% of which
corresponds to cables. Remarkably, the derived lines follow
street layouts in the zones with a high density of roads and
pathways, and the derived OHLs are placed on the outskirts
of the settlement.

Figure 7 presents the distribution of the relevant features of
the inferred MV grids. A comparison is made with the typical
cable ratio of German grids as documented in [50], where
their average value is represented by a star marker in Fig. 7,
panel (c). Notably, we observe a close alignment between the
distributions of transformer capacity per supply point and the
cable length ratio. Furthermore, we compare the overall active

6https://www.github.com/aeonetos/Swiss-PDGs

https://www.github.com/aeonetos/Swiss-PDGs
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Fig. 6. Inferred MV grid located in the Canton of Vaud.

Fig. 7. Statistical description of the estimated MV grids. Pentagon and star
markers represent the average values sourced from [22] and [50], respectively.

power load and line length of the inferred grids against the
average values of the 776 synthetic Swiss MV grids obtained
in [22], depicted using pentagonal markers in Fig.7, panel
(a) and (b), and generated through an alternative approach
based on different data sources. [22] infers a close number of
grids with lower average power requirements than our inferred
grids, which were inferred under peak simultaneous power
requirements. Also, the smaller overall line lengths in [22] can
be attributed to the reduced power requirements. It is worth
noting that this discrepancy in overall line lengths is also
influenced by our consideration of geographical constraints
imposed by the layout of transportation infrastructure, which
is not included in prior work.

B. Low-voltage grids

Fig. 8. The setup of 34 920 geo-referenced LV grids in Switzerland.

Our methodology identifies 31 796 LV load areas and, from
this dataset, it infers 34 920 LV grids distributed across differ-
ent zones, namely, 12 765 in rural zones, 6099 in peri-urban
zones, and 16 056 in urban zones. The load clustering method
reveals that approximately 88.83% of these grids are supplied
by a single substation, while the remaining grids require two or
more substations to meet the power demand. Fig. 8 shows all
inferred geo-referenced LV grids in Switzerland. We observe
that the density of the grids is higher in densely populated
areas of the country, particularly the cities.

Fig. 9. Exemplary LV grids located in the Hüslibachstrasse surroundings,
municipality of Zurich.

Figure 9 shows two urban LV grids in Zurich. Specifically,
Grid 261-552 has 192 nodes, a peak power demand of 382
kW, and a total line length of 5.25 km; and Grid 261-553 has
149 nodes, a peak power demand of 357 kW, and a total line
length of 3.01 km. Both grids are equipped with transformers
rated at 630 kVA. The real distribution power system of the
area is analyzed in [54], [55], revealing a substantial relation
with the inferred data. In particular, the observed peak power
demand of the area is 0.85 MW, in contrast to the inferred
demand of 0.74 MW; the number of observed nodes is 254,
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while the inferred nodes are 341. Furthermore, the real system
is also equipped with two 630 kVA transformers.

Figure 10 shows the features of the LV grids for the three
types of zones. We observe that the transformer capacity and
the load density of the supplied area highly determine the
total load and the geographic extension of the grids. Because
of the lower transformer capacity, the overall active load of
rural grids is significantly lower when compared to urban and
peri-urban grids. Additionally, rural grids depend upon fewer
feeders, consistent with their power demand. Urban areas have
a higher power demand density than peri-urban areas. While
these grids’ overall active power load is similar, the total
line length in peri-urban areas is appreciably greater. The
distributions of the number of feeders of peri-urban and urban
grids are almost identical despite the noticeable difference in
their overall line length.

Fig. 10. Statistical description of the estimated LV grids. The markers show
the values corresponding to four grid archetypes provided by [48]: Rural 1
(circle), Rural 2 (diamond), Semi-urban 1 (triangle), and Urban (hexagon).

Currently, there is a notable absence of LV benchmark grids
specifically tailored for Switzerland. However, German LV
grids offer a valuable alternative for evaluating the Swiss LV
infrastructure, as highlighted in [46]. These German grids are
readily accessible through [48] and encompass diverse LV grid
archetypes, including rural, semi-urban, and urban categories,
as detailed in [56].

The statistical characteristics presented in Fig. 10 closely
align with the values of their respective representative grids,
indicated by the markers. Note that the German grids and the
inferred ones employ transformers with the same power rating
in all the comparisons, except for our peri-urban grids (630
kVA) with their rural grid 1 (400 kVA).

Given potential disparities in our LV grid categorization,
we conducted comparisons with the most analogous German
archetype for each inferred grid. Remarkably, all the data
points fall within the interquartile range, with one exception:
comparing our peri-urban grids with the semi-urban grid 1 in
terms of overall line length. This discrepancy may suggest that
our peri-urban grids encompass regions with a lower demand
density per surface area than the definition of semi-urban grid
1 used in the German dataset.

V. DISCUSSION

Section IV demonstrates that the proposed framework,
based on open data, produces accurate large-scale inference of
LV and MV grids. However, it is important to acknowledge
the limitations of our framework, which warrant further inves-
tigation. Firstly, we model balanced three-phase grids, while
real-world PDGs are often unbalanced [57], potentially leading
to voltage deviations [58]. Secondly, our modeling focuses
on steady-state power flows during peak demand without
accounting for transient effects on the PDGs. Additionally,
we simplify the topological representation of feeders by treat-
ing lines placed on the same geographical path as parallel.
Thirdly, while MV grids in practice are often meshed [4], our
work infers radial topologies, reflecting their more common
operational configuration. Fourthly, our framework does not
identify renewable distributed generation and energy storage
systems, which can significantly impact the temporal pro-
files of generation and demand in PDGs [59]. This should
be considered in the future when significant penetration of
distributed energy sources will be present in PDGs, and they
have been designed or expanded accordingly. Lastly, we do not
differentiate between various types of transport paths, allowing
the placement of underground cables in any path, including dirt
roads, which may not occur in real-world scenarios.

VI. CONCLUSIONS

In this study, we have developed a comprehensive frame-
work for the large-scale inference of PDGs using open data
sources. Our framework can infer LV and MV grids, providing
precise geo-referencing for all grid components. It is not only
computationally efficient but also yields statistically accurate
results. To achieve this, we have developed two novel algo-
rithms for the framework: a clustering method for detecting
load areas and a selection algorithm for determining line types.

The clustering algorithm is a significant innovation as it
allows for parallel processing during grid estimation, stream-
lining the identification of load areas that require a single
transformer in most cases. Moreover, the line type selection
algorithm significantly expedites the process of selecting cost-
effective line types while ensuring that power flows and
voltages remain within permissible limits.

To demonstrate the capabilities of our framework, we
applied it to infer the power distribution infrastructure of
Switzerland. Our results validate the framework’s accuracy, as
the inferred grids exhibit properties consistent with real-world
and synthetic MV and LV reference grids.

Our framework holds great value for future research. It
sets the stage for investigations, including but not limited
to the assessment of novel control strategies for distributed
energy sources, the analysis of distribution market designs, the
characterization of hazard risk exposure, and the determination
of PV hosting capacities. Furthermore, using inferred grids
with high-performance computing can facilitate national-level
energy system simulation and planning. These opportunities
can significantly influence and shape the future of power
distribution grids.
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[35] J. M. Nahman and D. M. Perić, “Radial distribution network plan-
ning under uncertainty by applying different reliability cost models,”
International Journal of Electrical Power & Energy Systems, vol. 117,
p. 105655, 2020.

[36] R. Graham and P. Hell, “On the history of the minimum spanning tree
problem,” Annals of the History of Computing, vol. 7, no. 1, pp. 43–57,
1985.

[37] M. Hubert, P. J. Rousseeuw, and S. Van Aelst, “High-breakdown robust
multivariate methods,” Statistical science, vol. 23, no. 1, pp. 92–119,
2008.

[38] P. J. Rousseeuw and M. Hubert, “Robust statistics for outlier detection,”
Wiley interdisciplinary reviews: Data mining and knowledge discovery,
vol. 1, no. 1, pp. 73–79, 2011.

[39] The World Bank, “Switzerland data,” 2020. Data retrieved from The
World Bank, https://data.worldbank.org/.

[40] Swiss Confederation, “Heat/cooling demand,” n.d. Accessed: 2022-10-
31.

[41] Swissgrid, “Aggregated energy data of the control block Switzerland,”
2022. Accessed: 2022-10-31.

[42] L. Eymann, J. Rohrer, and M. Stucki, “Energieverbrauch der schweizer
kantone : Endenergieverbrauch und mittelabfluss durch den energie-
import,” tech. rep., ZHAW Z”urcher Hochschule f”ur Angewandte
Wissenschaften, Winterthur, 2014.

https://www.sweet-edge.ch
https://github.com/johnyf/openstreetmap
https://github.com/johnyf/openstreetmap
https://data.worldbank.org/


PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON SMART GRID 10

[43] C. Mateo Domingo, T. Gomez San Roman, A. Sanchez-Miralles, J. P.
Peco Gonzalez, and A. Candela Martinez, “A reference network model
for large-scale distribution planning with automatic street map genera-
tion,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 190–197,
2011.

[44] H. L. Willis, Power distribution planning reference book. CRC press,
2004.

[45] Swiss Energy Research for the Energy Transition, “Sweet-edge,” 2021.
The project’s page can be accessed through https://www.sweet-edge.ch/
en/home.

[46] S. Kortmann, X. Han, M. Schwarz, and G. Hug, “From a distributing to
a generating network: Assessing pv hosting capacity under uncertainty
in distribution grids,” in PESS 2021; Power and Energy Student Summit,
pp. 1–6, VDE, 2021.

[47] Forschungsgemeinschaft für Elektrische Anlagen und Stromwirtschaft,
“Ein werkzeug zur optimierung der störungsbeseitigung für planung und
betrieb von mittelspannungsnetzen,” 2008.
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