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Abstract

This thesis investigates the comparative system-level performance of classic grid-forming

converter control strategies in different low-inertia power system models, i.e., the IEEE

9-bus test system and Hydro-Quebec transmission grid models. The extensive electro-

magnetic transients simulation-based case studies highlight the positive influence of the

grid-forming converters on frequency stability. Further, the behavioral differences of

several state-of-the-art grid-forming control techniques are uncovered. Moreover, the

interactions of grid-forming converters and synchronous machines in low-inertia power

systems are explored. Thus, it is observed that the choice of converter control design

i.e., a grid-forming or grid-following control concept plays a critical role in achieving

high levels of converter-based generation integration. Further, the post-contingency evo-

lution of frequency stability metrics and their effectiveness in low-inertia power systems

are discussed. Subsequently, on the basis of several observations made via simulation

case studies, a new grid-forming converter control strategy is designed, i.e., the hybrid

angle control. A detailed nonlinear stability analysis of the proposed grid-forming con-

trol concept is presented that establishes the almost global asymptotic stability of the

closed-loop converter dynamics. The almost global asymptotic stability of the grid-

connected converter is proved under parametric existence and stability conditions that

are solely met by an appropriate choice of control parameters. In addition, a comple-

mentary current-limiting controller is designed that is compatible with the hybrid angle

control and preserves the closed-loop stability. Next, from a control-theoretic viewpoint,

the application and scalability of the hybrid angle control for the interlinking convert-

ers in non-synchronous hybrid AC/DC power grids is investigated. It is observed that

not only the stability guarantees of the hybrid angle control are fully scalable in hybrid

AC/DC power grids, but also they do not require strong assumptions on the underlying

dc interconnections. Moreover, the system-level and device-level control concept per-

formances are respectively verified via electromagnetic transients simulation-based case

studies and controller-hardware-in-the-loop simulation approach. Additionally, guide-

lines on the stability analysis of a two-converter system under the hybrid angle control

and recommendations on designing several other multivariable grid-forming controls are

presented. Finally, this thesis is concluded by presenting the summary and outlook of

this doctoral research, and listing the remaining open problem in this research area.
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Zusammenfassung

Diese Arbeit untersucht die vergleichbare systemweite Leistung klassischer netzbildender

Umrichtersteuerungsstrategien in verschiedenen Stromnetzmodellen mit geringer Trägheit,

nämlich dem IEEE-9-Bus-Testsystem und den Übertragungsnetzmodellen von Hydro-

Quebec. Die umfangreichen Fallstudien basierend auf elektromagnetischen transienten

Simulationen verdeutlichen den positiven Einfluss der netzbildenden Umrichter auf die

Frequenzstabilität. Des Weiteren werden die Verhaltensunterschiede mehrerer hochmo-

derner netzbildender Steuerungstechniken aufgedeckt. Darüber hinaus werden die Wech-

selwirkungen zwischen netzbildenden Umrichtern und synchrongekoppelten Maschinen

in Stromnetzen mit geringer Trägheit untersucht. Es wird beobachtet, dass die Wahl des

Umrichtersteuerungsdesigns, also ein netzbildendes oder netzfolgendes Steuerungskon-

zept, eine entscheidende Rolle bei der Integration von Umrichter-basierter Stromerzeu-

gung spielt. Weiterhin werden die Auswirkungen der Frequenzstabilitätsmetriken nach

einer Netzstörung und deren Effektivität in Stromnetzen mit geringer Trägheit diskutiert.

Im Anschluss daran wird auf Grundlage mehrerer Beobachtungen durch Simulationen ei-

ne neue netzbildende Umrichtersteuerungsstrategie entwickelt, nämlich die hybride Win-

kelsteuerung. Es wird eine detaillierte nichtlineare Stabilitätsanalyse des vorgeschlage-

nen netzbildenden Steuerungskonzepts vorgestellt, die die nahezu globale asymptotische

Stabilität der geschlossenen Regelkreis-Dynamik des Umrichters nachweist. Die nahezu

globale asymptotische Stabilität des netzgekoppelten Umrichters wird unter parametri-

schen Existenz- und Stabilitätsbedingungen bewiesen, die allein durch eine geeignete

Wahl der Steuerungsparameter erfüllt werden. Darüber hinaus wird ein komplementärer

Strombegrenzungsregler entworfen, der mit der hybriden Winkelsteuerung kompatibel ist

und die Stabilität des geschlossenen Regelkreises bewahrt. Anschliessend wird aus Sicht

der Regelungstechnik die Anwendung und Skalierbarkeit der hybriden Winkelsteuerung

für die verbindenden Umrichter in nichtsynchrone Hybrid-AC/DC-Stromnetze unter-

sucht. Es wird beobachtet, dass die Stabilitätsgarantien der hybriden Winkelsteuerung

nicht nur in Hybrid-AC/DC-Stromnetzen vollständig skalierbar sind, sondern auch kei-

ne starken Annahmen über die zugrunde liegenden Gleichstromverbindungen erfordern.

Darüber hinaus werden die Leistungen des Steuerungskonzepts auf Systemebene und

Geräteebene jeweils durch elektromagnetische transiente Simulationen und einem simu-

lationsbasierten Ansatz für die Hardware-in-the-Loop-Steuerung verifiziert. Zusätzlich

werden Richtlinien zur Stabilitätsanalyse eines Zwei-Umrichter-Systems unter hybrider

Winkelsteuerung vorgestellt und Empfehlungen zur Gestaltung mehrerer anderer multi-

variabler netzbildender Steuerungen gegeben. Abschliessend wird eine Zusammenfassung
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und ein Ausblick auf die Doktorforschung einhergehend mit einer Auflistung der verblei-

benden offenen Probleme in diesem Forschungsbereich gegeben.
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4.2 The boundary of the Möbius strip represents the angle space of (4.7).

The arcs contained in the boundary segments colored in blue and red

respectively represent the angles in [−2π, 0] and [0, 2π]. . . . . . . . . . . 74

4.3 Illustration of the Lyapunov function (4.15) under the simplifying assump-
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CHAPTER 1
Introduction, structure, and contributions

This chapter presents the motivation behind this doctoral research, outlines the state-

of-the-art solutions, highlights the structure of this thesis, summarizes the technical

contributions, and lists the publications related to this project.

1.1 Background and motivation

The electric power system consisting of the energy generation, transmission, and distri-

bution sectors is the largest machine operated by humans. This complex system includes

a diverse combination of mechanical, electrical, electronic, digital, and communication

subsystems. The foundation of power system operation and control relies on the design

and properties of the legacy synchronous machines (SMs). So far, the well-established

SM technology accompanied by robust stabilizing control mechanisms has been ensur-

ing the power system stability. However, due to the global industrial electrification and

digitalization trends, emergence of e-mobility technologies, climate change and energy

security concerns, need for bulk power transmission, and emergence of various energy

storage technologies, the power system is undergoing paradigm-shifting transformations.
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Figure 1.1: An example of energy generation landscape in the past and future power system
scenarios.
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From the generation perspective, a conceptual power system transformation is illus-

trated in Figure 1.1. The past/present scenario is highlighted by the central presence

of relatively bulk SMs, and insignificant amount of energy storage renewable energy

source (RES) integration. However, the distributed energy generation, e.g., via photo-

voltaic (PV) and wind turbine generator (WTG) technologies is dominantly present in

the future power system scenario. Furthermore, the future scenario integrates signifi-

cant levels of energy storage (ES) due to the intermittency of the RESs and, thus, the

need for flexibility. Aside from the central-to-distributed and bulk-to-granular gener-

ation transformation, this transition is strongly highlighted by the replacement of the

SM technology, its rotational inertia (acting as a global energy buffer for the system),

and stabilizing control mechanisms. The combination of these transitional factors leads

to the emergence of a low-inertia power system that coincides with the future system

scenario. In a low-inertia power system that is characterized by the large levels of RES

integration, the majority of generation units are interfaced to the grid via power con-

verters. Thus, the power converters are the key technologies in the future power system

scenario. However, the energy generation and power system operation based on the SMs

and power converters exhibit pronounced differences that are summarized in Table 1.1.

The overview provided in Table 1.1 uncovers potential critical stability and control

challenges associated with the converter-dominated power systems. Therefore, the power

converter design and control play a critical role in addressing these challenges (akin to

the role of the SM in conventional power systems). More precisely, the converter control

design must support load-sharing, drooping, black-start, inertial response, and hierar-

chical frequency/voltage regulation functionality. However, these requirements originate

from the control framework constructed on the basis of SM design. In the converter-

dominated power systems the same set of control objectives may not be relevant. It is

Table 1.1: Key characteristics of SM-based and converter-based energy generation.

SM-based generation features Converter-based generation features

Bulk centralized units Modular generation units

Robust frequency and voltage control Fragile frequency and voltage control

Dispatchable generation Variable generation

Distinct slow and fast timescales Adjacent fast timescales

Large available rotating inertia Negligible inertia and inherent storage

Slow actuation and control Fast actuation and control

Unsustainable generation Sustainable generation
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noteworthy that while the power system transitions to a converter-dominated state, SMs

and converters must effectively interact to ensure system stability. In what follows, the

control aspect of the story is further investigated and the state-of-the-art power converter

control paradigms and design approaches are discussed.

The classic converter control design architecture, i.e., grid-following (GFL) synthesis

that is shown in Figure 1.2 relies on an explicit synchronization mechanism, e.g., phase-

locked loop (PLL). In a GFL control design, the frequency and phase angle of the point

of common coupling (PCC) voltage measurement is extracted by the PLL. Subsequently,

the rest of control architecture is constructed on the basis of the information provided

by the PLL. Typically, the high-level control loop accounts for the system-level specifi-

cations, e.g., active and reactive power set-point tracking, virtual inertia provision, or

other ancillary services. On the other hand, the low-level controls (that are typically

designed in a rotating rectangular coordinates), e.g., ac voltage and current tracking

controllers, and/or virtual impedance/admittance control loops ensure robust device-

level performance such that the high-level requirements are met. Next, the modulation

algorithm bridges the gap between the converter control and physical subsystems. It

is worth mentioning that in GFL architectures, the dc control design ensures stable dc

power exchange between the energy source and the converter. In the case of a local

energy source connection, e.g., PV or ES the objective of the dc control is the robust

regulation of the dc-link voltage. Further, if high voltage direct current (HVDC) link

connection is considered, the control objectives are either stabilizing the dc-link voltage

or regulating the dc power flow. Nonetheless, in GFL control architecture the dc control

design is often decoupled from the converter control design. Finally, a GFL converter
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Figure 1.2: An example of grid-following (GFL) converter control architecture.
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operating mode can be interpreted as a controllable ac current source that locks onto

the grid frequency and injects the desired active and reactive power flows.

The timescales of different frequency controls in a low-inertia power system incorpo-

rating SMs and GFL converters is illustrated in Figure 1.3. It is noteworthy that although

the converter-based generation achieves faster primary frequency control timescales in

contrast to the SM-based generation, the SM inertial response is still the fastest control

mechanism that is naturally and immediately activated after a contingency. The delay

associated with the PLL in a GFL control design hinders the realization of a true inertial

response behavior for the power converters. This drawback of the GFL devices can lead

to critical frequency stability challenges in systems where the rotating inertia is reduced

below a critical level.

The grid-forming (GFM) control design is envisioned to address the aforementioned

limitation of the GFL devices. Further, a GFM converter is expected to behave as a con-

trollable voltage source that creates an independent ac voltage and frequency reference,

thus, allowing an islanded and fully converter-based operation, as well as exhibiting a

grid-connected operation mode and interoperability with the SMs. A typical GFM con-

trol architecture is shown in Figure 1.4. The main difference with respect to (w.r.t) the

GFL architecture in Figure 1.2 is the elimination of PLL. The GFM control achieves

an implicit synchronization with respect to the power grid that is often implemented

through the high-level GFM layer in Figure 1.4. Further, some GFM controls can also

operate without the need for explicit low-level ac and dc controls.

To this date, the definition GFM control concept widely varies across different power

system sectors, converter-based technologies, and applications. Therefore, a clear and

universally accepted definition is not available. On the other hand, the system oper-

ators often expect a wide range of control and stability challenges associated with the

converter-dominated power systems to be addressed by GFM power converters. In the

author’s opinion the key desired characteristics of a GFM control design are: 1) enabling

0 30 sec 15 min 75 min

Primary control of the converter

Inertial response

Primary control

Secondary control

Tertiary control

Generator rescheduling

Figure 1.3: The timescales of different frequency controls provides by the SMs and converters.
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fast inertial response timescale for power converters, 2) set-point tracking behavior, 3)

islanded and grid-connected operation and seamless mode transition capabilities, and 4)

compatibility with diverse SM/converter-based generation mixtures.

1.2 State of the art

The GFM control design is currently subject to extensive research in academia, industry,

and by the system operators that has led to a plethora of control solutions and perfor-

mance requirements, e.g., see [1]–[33]. However, it is possible to consider a few potential

classifications. From the control design approach perspective, a possible classification is

presented in Figure 1.5 and described as it follows.

∗ Linear and nonlinear design [34]–[37]: this class includes controllers that replicate

the behavior of certain control mechanisms of the SM. The most celebrated solution

of this form is the active power – frequency droop control that mimics the behavior

of the turbine speed governor. This family of solutions serves as a powerful yet

simple and intuitive baseline control candidate.

∗ Machine emulation and matching [38]–[44]: the emulation-based techniques mimic

the physical dynamics and control of the SMs up to various degrees of accuracy. On

the other hand, the model-matching based techniques exploit the dynamic struc-

tural similarities of the SM and converter to design controllers, thus, establishing

strong duality between the sates and parameters of SM and GFM converter. The
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Figure 1.4: An example of GFM converter control architecture.
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key advantage of these solutions is the excellent backward compatibility with the

SMs.

∗ Oscillator-based [45]–[54]: this class of controllers exploits different nonlinear os-

cillator dynamics for a GFM control design. The oscillator-based methods (under

simplifying modeling assumptions) often provide strong global stability guarantees

while considering interconnected power converters.

∗ Multivariable control [3], [6], [8], [9], [13], [55]–[57]: this class of solutions blends

several dc and ac feedback signals into a unifying GFM control. These solutions do

not necessarily distinguish between the dc and ac controls, thus, taking into account

the natural physical coupling of the dc and ac converter dynamics. However, due to

the multivariable nature of these solutions providing an intuitive parameter tuning

guideline is not straightforward.

∗ Data-driven and optimization-based [58]–[60]: the data-driven and optimization-

based methods have been recently employed for a GFM control design. This class

of solutions either solely relies on the sampled input-output trajectories of the

converter system or requires partial model information to formulate the under-

lying optimization problem. These solutions often exhibit excellent performance,

however, the controller behavior and tuning procedure is not fully intuitive.

GFM converter control design

Linear and
nonlinear design

Machine
emulation

and matching
Oscillator-based Multivariable

control

Data-driven and
optimization-

based

Figure 1.5: A potential classification of GFM controls based on the design approaches.
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Figure 1.6: A potential classification of GFM controls based on the nature of feedback signals.
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Another possible classification based on the nature of the feedback signals exploited in

the GFM control design is presented in Figure 1.6 and described as follows.

∗ DC-based feedback design [40], [41], [43], [44]: this class of solutions exploits the

converter dc states measurements for a GFM control design. The findings presented

in Chapter 2 highlight the enhanced robustness of such control solutions.

∗ Hybrid feedback design [3], [6], [8], [55]–[57]: this family of solutions combines

the dc and ac converter states into a GFM frequency control design that exhibits

enhanced small-signal stability and robustness; see Chapters 2 and 6.

∗ AC-based feedback design [38], [39], [42], [45], [52]: finally, some GFM controls

only rely on the ac converter states and exhibit enhanced small-signal frequency

stability; see Chapter 2.

This thesis explores the performance of several control candidates (sampled from the

aforementioned classifications) and presents a new grid-forming control design. The

next section highlights the structure and summarizes the contributions of this work.

1.3 Structure and contributions

The overall thesis structure and connections between different chapters is shown in Figure

1.7. The remainder of this thesis is divided into three parts. To begin with, Part II

includes two chapters and presents findings on the frequency stability of low-inertia

power systems.

∗ Chapter 2 provides a high-fidelity implementation and comparative performance

study of the baseline GFM control strategies in a low-inertia power system model.

The employed benchmark is the IEEE 9-bus test system where the simulation

models are publicly available. This chapter uncovers the positive influence of the

GFM converters on the frequency stability of the low-inertia system, in contrast

to the conventional system scenario that is purely based on the SMs. Further,

an adverse interaction between the fast GFM converter and slow SM timescales

is uncovered that can potentially destabilize certain GFM strategies. Finally, this

chapter highlights the enhanced 1) small-signal frequency stability performance of

the GFM control strategies that rely on ac feedback signals, and 2) robustness of

the GFM control candidates that rely on dc feedback signals w.r.t certain nonlinear

phenomena, e.g., current saturation.

∗ Chapter 3 provides the results of electromagnetic transients (EMT) simulation case

studies on the Hydro-Quebec transmission grid model under different penetration

levels of converter-based generation. A key finding is the fact that under the GFL
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control strategies, it is not possible to operate the transmission grid purely based

on the converter-based devices. However, it is possible to achieve 100% converter-

based generation penetration under GFM control strategies. Further, it is observed

that on certain penetration levels, the low-inertia system exhibits instability. How-

ever, retuning the power system stabilizers (PSSs) for the remaining SMs in the

grid counteracts the instability and allows further integration of the converter-based

generation. Finally, new insights on the frequency stability metrics definitions and

their post-contingency evolution in such low-inertia power systems are provided.

The results of Part II serve as the preliminary design insights for Part III that includes

four chapters on the hybrid angle control (HAC) design, stability analysis, theoretic

extensions, applications, and verification.

∗ Chapter 4 presents the control design of a new GFM control strategy that is the

HAC. A detailed nonlinear stability analysis is presented that results in almost
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global asymptotic stability (AGAS) of the closed-loop converter dynamics while

considering either infinite bus (IB) or dynamic center-of-inertia (COI) grid model.

Furthermore, a new bivariate current-limiting control design is presented that is

compatible with HAC and preserves the closed-loop stability. Next, a robustness

analysis is presented that establishes an ultimate boundedness result under imper-

fect control implementation. Finally, the numerical verification of the theoretic

results are presented.

∗ Chapter 5 investigates the application of the HAC for the interlinking converters

(ILCs) in non-synchronous hybrid AC/DC power grids. A detailed dynamic model-

ing of the hybrid AC/DC power grids is presented that includes nonlinear converter

models and COI representation non-synchronous areas. Further, the presented sta-

bility analysis confirms the applicability of the HAC in such a system and shows

the scalability of the previously established stability results, i.e., AGAS. Last but

not least, the stabilization of the hybrid AC/DC grid via ILCs under HAC does

not require any assumption on the ac power flow or connectivity of the underlying

dc interconnections.

∗ Chapter 6 presents detailed guidelines on the implementation of the HAC on the

benchmark presented in Chapter 2 to facilitate HAC performance comparison w.r.t

the baseline GFM control candidates. The extended EMT simulation case studies

suggest that the HAC combines the complementary benefits of the baseline GFM

control solutions investigated in Chapter 2. Furthermore, theoretic insight on the

nonlinear stability analysis of a simplified two-converter system under the HAC is

presented.

∗ Chapter 7 provides the extended behavioral properties of the GFM HAC. Further,

it uncovers that the combination of a new dc voltage control with HAC allows to

omit the existence assumption in Chapter 4 while resulting in identical stability

guarantees. Moreover, this chapter discloses several control variants for the HAC

that can be subject to further research. Finally, several controller-hardware-in-

the-loop (C-HiL) test scenarios are presented that verify the device-level control

concept performance.

Finally, Part IV presents the conclusions and outlook of this thesis and describes several

practical and theoretic open problems.

1.4 Publications

This thesis includes the following papers that respectively appear in Chapters 2-7:
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[12] V. Häberle, A. Tayyebi, X. He, E. Prieto-Araujo, and F. Dörfler. “Grid-forming

and spatially distributed control design of dynamic virtual power plants”. In: IEEE

Transactions on Smart Grid (2022). submitted, https://arxiv.org/abs/2202.02057.

[13] M. Chen, D. Zhou, A. Tayyebi, E. Prieto-Araujo, F. Dörfler, and F. Blaabjerg.

“On power control of grid-forming converters: modeling, controllability, and full-

state feedback design”. In: IEEE Transactions on Sustainable Energy (2023), pp.

1–12.

Finally, the following thesis projects were supervised in the course of the doctoral re-

search:

[14] A. Gattiglio. “Multivariable arctan hybrid angle control and global stability of

grid-forming power converters”. 2021.

[15] A. Magdaleno. “System-level performance evaluation of the hybrid angle control

for grid-forming power converters”. 2021.

[16] C.-C. Jimenez. “Large-scale analysis of massive deployment of converter-based

generation equipped with grid-forming strategies”. 2020.

[17] A. Crivellaro. “Simulation-based study of novel control strategies for inverters in

low-inertia system: Grid-forming and followings”. 2019.

[18] D. Vettoretti. “Validation platform for grid-forming control strategies of power

inverters: From component to system-level validation”. 2019.

13



14



Part II

Frequency stability of the

low-inertia power systems

15





CHAPTER 2
Frequency stability of synchronous machines

and grid-forming power converters

Published in the IEEE Journal of Emerging and Selected Topics in Power Electronics

2020.

Authors – Ali Tayyebi, Dominic Groß, Adolfo Anta, Friederich Kupzog, and Florian

Dörfler.

Abstract – An inevitable consequence of the global power system transition towards

nearly 100% renewable-based generation is the loss of conventional bulk generation by

synchronous machines, their inertia, and accompanying frequency and voltage control

mechanisms. This gradual transformation of the power system to a low-inertia system

leads to critical challenges in maintaining system stability. Novel control techniques for

converters, so-called grid-forming strategies, are expected to address these challenges

and replicate functionalities that so far have been provided by synchronous machines.

This article presents a low-inertia case study that includes synchronous machines and

converters controlled under various grid-forming techniques. In this work 1) the positive

impact of the grid-forming converters on the frequency stability of synchronous machines

is highlighted, 2) a qualitative analysis which provides insights into the frequency sta-

bility of the system is presented, 3) we explore the behavior of the grid-forming controls

when imposing the converter dc and ac current limitations, 4) the importance of the

dc dynamics in grid-forming control design as well as the critical need for an effective

ac current limitation scheme are reported, and lastly 5) we analyze how and when the

interaction between the fast grid-forming converter and the slow synchronous machine

dynamics can contribute to the system instability.

2.1 Introduction

At the heart of the energy transition is the change in generation technology; from fossil

fuel based generation to converter interfaced renewable generation [33]. One of the major

consequences of this transition towards a nearly 100% renewable system is the gradual
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loss of synchronous machines (SMs), their inertia, and control mechanisms. This loss of

the rotational inertia changes the nature of the power system to a low-inertia network

resulting in critical stability challenges [33], [61], [62]. On the other hand, low-inertia

power systems are characterized by large-scale integration of generation interfaced by

power converters, allowing frequency and voltage regulation at much faster time-scales

compared to SMs [7], [33].

Indeed, power converters are already starting to provide new ancillary services, mod-

ifying their active and reactive power output based on local measurements of frequency

and voltage. However, because of the dependency on frequency measurements these grid-

following control techniques only replicate the instantaneous inertial response of SMs

after a contingency with a delay and result in degraded performance on the time scales

of interest [63]. To resolve this issue, grid-forming converters (GFCs) are envisioned

to be the cornerstone of future power systems. Based on the properties and functions

of SMs, it is expected that grid-forming converters must support load-sharing/drooping,

black-start, inertial response, and hierarchical frequency/voltage regulation. While these

services might not be necessary in a future converter-based grid, a long transition phase

is expected, where SMs and GFCs must be able to interact and ensure system stability.

Several grid-forming control strategies have been proposed in recent years [7]. Droop

control mimics the speed droop mechanism present in SMs and is a widely accepted base-

line solution [35]. As a natural further step, the emulation of SM dynamics and control

led to so-called virtual synchronous machine (VSM) strategies [38], [39], [64]. Recently,

matching control strategies that exploit structural similarities of converters and syn-

chronous machine and match their dynamic behavior have been proposed [40], [41], [43],

[65]. In contrast, virtual oscillator control (VOC) uses GFCs to mimic the synchroniz-

ing behavior of Liénard-type oscillators and can globally synchronize a converter-based

power system [46]. However, the nominal power injection of VOC cannot be specified.

This limitation is overcome by dispatchable virtual oscillator control (dVOC) [45], [47],

[48] that ensures synchronization to a pre-specified operating point that satisfies the ac

power flow equations.

In this article, the dynamics of the converter dc-link capacitor, the response time of

the dc power source, and its current limits is explicitly considered. We review four differ-

ent grid-forming control strategies and combine them with standard low-level cascaded

control design accounting for the ac voltage control and the ac current limitation and

control [66]. We explore the various performance aspects of GFC control techniques in an

electromagnetic transients (EMT) simulation of the IEEE 9-bus test system, namely: 1)

the impact of GFCs on the frequency performance metrics e.g., nadir and rate of change

of frequency (RoCoF) [67]–[70], 2) the response of GFCs under large load disturbances,

3) their behavior when imposing dc and ac current limitations, and 4) their response

to the loss of SM and performance in a pure converter-based system. Furthermore, we

provide an insightful qualitative analysis of the simulation results. The models used in
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this work are available online [71].

This study highlights the positive impact of GFCs on improving the standard power

system frequency stability metrics. Moreover, we observe that limiting the GFCs dc or ac

current accompanied by the interaction of fast converters and slow synchronous machine

dynamics can destabilize some grid-forming controls. This observation, highlights the

importance of the dc dynamics in grid-forming control design as well as the critical need

for an ac current limiting mechanism. Furthermore, we reveal a potentially destabilizing

interaction between the fast synchronization of GFCs and the slow response of SMs

(see [47], [72] for a similar observation on the interaction of GFCs and line dynamics).

Lastly, this study shows that an all-GFCs (i.e., no-inertia) system can exhibit more

resilience than a mixed SM-GFCs (i.e., low-inertia) system with respect to the large load

variations.

The remainder of this article is structured as follows: Section 2.2 reviews the mod-

eling approach. Section 2.3 presents the system dynamics and adopted grid-forming

control techniques. The simulation-based analysis of the study is discussed in Section

2.4. Section 2.5 presents a qualitative analysis of the observations made in case studies.

The concluding statements and agenda of future work are reported in Section 2.6. And

the choice of control parameters is described in Appendix 2.7.

2.2 Model description

Throughout this study, we use a test system comprised of power converters and syn-

chronous machines. This section describes the models of the individual devices and

components [71].

2.2.1 Converter model

To begin with, we consider the converter model illustrated in Figure 2.1 in αβ-coordinates

[40], [73]

Cdcv̇dc = idc−Gdcvdc − ix, (2.1a)

Li̇s,αβ = vs,αβ −Ris,αβ − vαβ, (2.1b)

Cv̇αβ = is,αβ − iαβ, (2.1c)

where Cdc denotes the dc-link capacitance, Gdc models dc losses, and, L, C, and R

respectively denote the filter inductance, capacitance, and resistance. Moreover, vdc
represents the dc voltage, idc is the current flowing out of the controllable dc current

source, mαβ denotes the modulation signal of the full-bridge averaged switching stage

model, ix := (1/2)m⊤
αβis,αβ denotes the net dc current delivered to the switching stage,
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Figure 2.1: Converter model in αβ-coordinates with detailed dc energy source model based
on (2.1)-(2.3).

and is,αβ and vs,αβ := (1/2)mαβvdc respectively are the ac switching node current and

voltage (i.e., before the output filter), iαβ and vαβ are the output current and voltage.

To obtain a realistic model of the dc energy source, we model its response time by a

first order system

τdci̇τ = i⋆dc − iτ , (2.2)

where i⋆dc is the dc current reference, τdc is the dc source time constant, and iτ denotes

the current provided by the dc source. Moreover, the dc source current limitation is

modeled by the saturation function

idc = sat
(
iτ , i

dc
max

)
=




iτ if |iτ | < |idcmax|,
sgn (iτ ) i

dc
max if |iτ | ≥ |idcmax|,

(2.3)

where idcmax is the maximum dc source current. Note that we implicitly assume that some

storage element is present so that the dc source can support bidirectional power flow. In

practice, the limit imposed by (2.3) corresponds to current limits of a dc-dc converter,

current limits of an energy storage system, or PV / wind power generation limits. The

impact of the dc source limitation (2.3) is investigated in Section 2.4. It is noteworthy

that the converter must also limit its ac current to protect its semiconductor switches

[74]. This ac current limitation is typically imposed via converter control design (see

Section 2.3 for details).

2.2.2 Synchronous machine model

In this work we adopt an 8th order (i.e., including six electrical and two mechanical

states), balanced, symmetrical, three-phase SM with a field winding and three damper
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windings on the rotor [61, Figure 3.1]

θ̇ = ω, (2.4a)

Jω̇ = Tm − Te − Tf, (2.4b)

ψ̇s,dq = vs,dq − rsis,dq − J2ψs,dq, (2.4c)

ψ̇f,d = vf,d − rf,dif,d, (2.4d)

ψ̇D = vD −RDiD, (2.4e)

where θ denotes the rotor angle, J is the inertia constant, ω is the rotor speed, Tm, Te and

Tfw denote the mechanical torque, electrical torque, and the friction windage torque (see

[61, Section 5.7]). Moreover, ψs,dq = [ψs,d ψs,q]
⊤, vs,dq = [vs,d vs,q]

⊤, and is,dq = [is,d is,q]
⊤

denote the stator winding flux, voltage, and current in dq-coordinates (with angle θ as in

(2.4a)), J2 = [ 0 −1
1 0 ] denotes the 90◦ rotation matrix, ψf,d, vf,d, and if,d denote the d-axis

field winding flux, voltage and current. Furthermore, rs and rf,d denote the stator and

field winding resistances, ψD = [ψ1d ψ1q ψ2q]
⊤,vD = [v1d v1q v2q]

⊤ and iD = [i1d i1q i2q]
⊤

are the linkage flux, voltage and current associated with three damper windings and

RD = diag
(
r1d, r1q, r2q

)
denotes the diagonal matrix of the damper winding resistances.

Note that the windage friction (i.e., modeling friction between the rotor and air) term

is commonly expressed as a speed dependent term e.g., Tf = Dfω [61, Section 5.7]

it is typically negligible for system-level studies and is included here for the sake of

completeness and to highlight structural similarities of the SM and two-level voltage

source converter with the control presented in Section 2.3.5. Furthermore, the damping

torque associated with the damper windings is included in the SM model (2.4) via the

damper winding dynamics (2.4e). For more details on the SM modeling and parameters

computation the reader is referred to [61, Section 3.3],[62, Chapter 4].

We augment the system (2.4) with a ST1A type excitation dynamics with built-

in automatic voltage regulator (AVR) [75, Figure 21]. To counteract the well-known

destabilizing effect of the AVR on the synchronizing torque, we equip the system with

a simplified power system stabilizer comprised of a two-stage lead-lag compensator [62,

Section 12.5]. Lastly, the governor and turbine dynamics are respectively modeled by

proportional speed droop control and first order turbine dynamics

p = p⋆ + dp (ω
⋆ − ω) , (2.5a)

τgṗτ = p− pτ , (2.5b)

where p⋆ denotes the power set-point, p is the governor output, dp denotes the governor

speed droop gain, and ω⋆ and ω denote nominal and measured frequency, respectively.

Furthermore, τg denotes the turbine time constant and pτ denotes the turbine output

power. We refer the reader to [72, Figure 2] for an illustration of the interplay between

the SM model, the excitation dynamics, the PSS and governor dynamics. Lastly, the
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Matlab/Simulink implementation of the SM model can be found in [71].

2.2.3 Network model

To study the transmission level dynamics of a low-inertia power system, we use Sim

Power Systems to perform an EMT simulation of the IEEE 9-bus test system shown in

Figure 2.2 [7], [76]. We model the lines via nominal π sections (i.e., with RLC dynamics),

model the transformers via three-phase linear transformer models, and consider constant

impedance loads (see Table 2.1 for the parameters). We emphasize that the line dynamics

cannot be neglected in the presence of grid-forming converters due to potential adverse

interactions between their fast response and the line dynamics [47], [72], [77].

1 4 9

5

6

3

8

7

2

SM GFC

GFC

Figure 2.2: IEEE 9-bus test system with a synchronous machine, two large-scale multi-
converter systems (i.e., aggregate GFCs), and constant impedance loads.

Remark 1 (Aggregate converter model). In this case study, each GFC in Figure 2.2 is an

aggregate model of 200 commercial converter modules (see Table 2.1 for the parameters).

Each module is rated at 500 kVA and the aggregate model is rated at 100 MVA, which is

equal to the SM rating. Each module is interfaced to a medium voltage line via a LV-MV

transformer (see Figure 2.3). We derive the parameters of the aggregate transformer

model by assuming a parallel connection of 100 commercial transformers rated at 1.6

MVA (see Table 2.1). A detailed presentation and derivation of the model aggregation

is out of the scope of this work, but we follow developments analogous to [78]–[80] in

deriving the equivalent aggregate converter parameters.
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Fig.2.1 =:

iαβ

vαβ

LV/MV

LV/MV

≡

niαβ LV/MV

vαβ

module 1

... ...

module n

Figure 2.3: Equivalent model of an individual converter module (left), large-scale multi-
converter system consisting of n identical modules (middle), and aggregate model (right).

2.3 Grid-forming control architectures

Grid-forming control strategies control (see Figure 2.4) a converter through the reference

current i⋆dc for the dc energy source (2.1a) and the modulation signal mαβ for the dc-ac

conversion stage (2.1) (see Figure 2.1). In the following, we briefly review the low-

level cascaded control design (i.e., ac voltage control, current limitation and control)

for two-level voltage source converters that tracks a voltage reference provided by a

reference model (i.e., grid-forming control). Moreover, we propose a controller for the

converter dc voltage which defines the reference dc current. Because their design is

independent of the choice of the reference model, we first discuss the cascaded voltage

/ current control and the dc-side control. Subsequently, we review four common grid-

forming control strategies. For each strategy, we describe the angle dynamics, frequency

dynamics and ac voltage magnitude regulation. Throughout this section we will employ

the three phase abc, αβ and dq-coordinates (see [73, Sections 4.5 and 4.6] for details on

the transformations). We remind the reader that the Simulink implementation of the

controls presented in the forthcoming subsections is available online [71].

2.3.1 Low-level cascaded control design

AC voltage control

We employ a standard converter control architecture that consists of a reference model

providing a reference voltage v̂dq with angle ∠v̂dq = θ and magnitude
∥∥v̂dq

∥∥. The

modulation signalmαβ is determined by cascaded proportional-integral (PI) controllers
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Figure 2.5: Block diagram of the low-level cascaded control design (2.6)-(2.8) in dq-
coordinates rotating with the angle θ provided by the reference model.

that are implemented in dq-coordinates (rotating with the reference angle θ) and

track the voltage reference v̂dq (see [66]). The voltage tracking error v̂dq −vdq is used to

compute the reference i⋆s,dq = [i⋆sd i
⋆
sq]

⊤ for the switching node current is,dq

ẋv,dq = v̂dq − vdq, (2.6a)

i⋆s,dq := idq + CωJ2vdq

feed-forward terms

+Kv,p

(
v̂dq − vdq

)
+Kv,ixv,dq

PI control

(2.6b)

here xv,dq = [xv,d xv,q]
⊤ denotes the integrator state, vdq = [vd vq]

⊤ denotes the output

voltage measurement, v̂dq = [v̂d 0]⊤ denotes the reference voltage, idq = [id iq]
⊤ denotes

the output current, I2 is the 2-D identity matrix, Kv,p = kv,pI2 and Kv,i = kv,iI2 denote

diagonal matrices of proportional and integral gains, respectively.

AC current limitation

We assume that the underlying current controller or low-level protections of the converter

limit the ac current. We model this in abstraction by scaling down the reference current

||i⋆s,dq|| if it exceeds the pre-defined converter current limit iacmax [81, Section III], i.e.,

ī⋆s,dq :=




i⋆s,dq if

∥∥is,dq
∥∥ ≤ iacmax,

γii
⋆
s,dq if

∥∥is,dq
∥∥ > iacmax,

(2.7)

where ī⋆s,dq denotes the limited reference current that preserves the direction of i⋆s,dq and

γi :=
(
iacmax/||i⋆s,dq||

)
. We emphasize that limiting the ac current can have a strong
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impact on the stability margins and dynamics of grid-forming power converters [82].

While numerous different strategies have been proposed to limit the ac current injection

of voltage source converters with grid-forming controls [74], [81], [83]–[87] the problem

of designing a robust ac current limitation strategy that effectively reacts to the load-

induced over-current and grid faults is an open research problem. Moreover, complex

current limitation strategies typically require careful tuning of the controllers. Therefore,

to provide a clear and concise investigation of the behavior of the existing grid-forming

control solutions, we use the simple ac current limiting strategy (2.7).

AC current control

In order to implement this scheme, a PI controller for the current is,dq = [is,d is,q]
⊤ is

used to track ī⋆s,dq

ẋi,dq = ī
⋆
s,dq − is,dq, (2.8a)

v⋆s,dq := vdq + Zis,dq
feed-forward terms

+Ki,p

(
i⋆s,dq − is,dq

)
+Ki,ixi, dq

PI control

, (2.8b)

where Z = LωJ2+RI2, v
⋆
s,dq = [v⋆s,d v

⋆
s,q]

⊤ is the reference for the switching node voltage

(i.e., before output filter in Figure 2.1), xi,dq = [xi,d xi,q]
⊤ denotes the integrator state,

and Ki,p = kp,iI2 and Ki,i = ki,iI2 denote the diagonal matrices of proportional and

integral gains, respectively. Note that the first two terms of the right hand side of (2.6b)

and (2.8b) are feed-forward terms. Finally, the modulation signal mαβ is given by

mαβ =
2v⋆s,αβ
v⋆dc

, (2.9)

where v⋆s,αβ is the αβ-coordinates image of v⋆s,dq defined in (2.8) and v⋆dc denotes the

nominal converter dc voltage.

2.3.2 DC voltage control

The dc current reference i⋆dc that is tracked by the controllable dc source (2.2) is given by

a proportional control for the dc voltage and feed-forward terms based on the nominal

ac active power injection p⋆ and the filter losses

i⋆dc = kdc (v
⋆
dc − vdc)

proportional control

+
p⋆

v⋆dc
+

(
Gdcvdc +

vdcix − p

v⋆dc

)

power injection and loss feed-forward

, (2.10)
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where vdcix is the dc power flowing into the switches, p is the ac power injected into

the grid, and the last term on the right hand side of (2.10) implements a feed-forward

power control that compensates the filter losses. The loss compensation is required to

ensure exact tracking of the power reference by matching control (see Section 2.3.5) and

also improves the dc voltage regulation for the other control strategies considered in this

study. Thus, to employ an identical dc voltage control, we apply (2.10) for all control

strategies discussed throughout this work.

2.3.3 Droop control

Droop control resembles the speed droop property (2.5a) of the SM governor [35] and

trades off deviations of the power injection (from its nominal value p⋆) and frequency

deviations (from ω⋆)

θ̇ = ω, (2.11a)

ω = ω⋆ + dω (p
⋆ − p) , (2.11b)

where dω denotes the droop gain. To replicate the service provided by the automatic

voltage regulator (AVR) of synchronous machines we use a PI controller acting on the

output voltage error

v̂d = kp

(
v⋆ −

∥∥vdq
∥∥
)
+ ki

∫ t

0

(
v⋆ −

∥∥vdq(τ)
∥∥
)
d τ. (2.12)

to obtain the direct axis reference v̂d for the underlying voltage loop (v⋆ and
∥∥vdq

∥∥ are

the reference and measured voltage magnitude). We remark that v̂q = 0 and the reactive

power injection varies such that exact voltage regulation is achieved.

+ dω +
1

s
+ kp +

ki

s
p⋆

−

p ω⋆

ω
θ v⋆

∥vdq∥

−
v̂d

Figure 2.6: Droop control frequency and ac voltage control block diagrams based on (2.11)
and (2.12).
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2.3.4 Virtual synchronous machine

Many variations of virtual synchronous machines (VSMs) have been proposed [38], [64].

In this work, we consider the frequency dynamics induced by the synchronverter [64]

θ̇ = ω, (2.13a)

Jrω̇ =
1

ω⋆
(p⋆ − p) +Dp (ω

⋆ − ω) , (2.13b)

where Dp (ω
⋆ − ω) is commonly referred to as (virtual) damping [64, Section II-B] and

is inspired by the speed droop response of a synchronous machine. Note that the speed

dependent term in (2.13b) has no exact analogue in a synchronous machine. The response

of SM damper windings and its turbine governor are on different time scales and the SM

damper windings do not act relative to the nominal frequency. In contrast, the speed

dependent term in (2.13b) provides both instantaneous damping and at steady-state

(i.e., the equivalent to SM turbine governor droop) relative to the nominal frequency.

Moreover, Jr is the virtual rotor’s inertia constant. Note that the dynamics (2.13) reduce

to droop control (2.11) when using Jr/Dp ≈ 0 as recommended in [64]. These angle

dynamics capture the main salient features of virtual synchronous machines, but do not

suffer from drawbacks of more complicated implementations (see [7] for a discussion).

The three-phase voltage induced by the VSM is given by

v̂abc = 2ωMfif

(
sin (θ) sin

(
θ − 2π

3

)
sin

(
θ − 4π

3

))⊤

, (2.14)

whereMf and if are respectively the virtual mutual inductance magnitude and excitation

current. Similar to (2.12), we utilize input if to achieve exact ac voltage regulation via

PI control and thereby replicate the function of the AVR of a synchronous machine

if =
kp
Mf

(
v⋆ −

∥∥vdq
∥∥
)
+

ki
Mf

∫ t

0

(
v⋆ −

∥∥vdq(τ)
∥∥
)
d τ. (2.15)

Transforming v̂abc to dq-coordinates with θ and ω as in (2.13), the voltage and current

loops and modulation signal generation remain the same as (2.6)–(2.9).

2.3.5 Matching control

Matching control is a grid-forming control strategy that exploits structural similarities

between power converters and SMs [40], [41], [43], [44], [65] and is based on the observa-

tion that the dc-link voltage - similar to the synchronous machine frequency - indicates

power imbalances. Hence, the dc voltage, up to a constant factor, is used to drive the

converter frequency. This control technique structurally matches the differential equa-
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Figure 2.7: Block diagram of a grid-forming VSM based (2.13)-(2.15).

tions of a converter to those of a SM. Furthermore, analogous to the machine input

torque, the dc current is used to control the ac power. The angle dynamics of matching

control are represented by

θ̇ = kθvdc, (2.16)

where kθ := ω⋆/v⋆dc. Finally, the ac voltage magnitude is controlled through the modu-

lation magnitude µ by a PI controller

µ = kp

(
v⋆ −

∥∥vdq
∥∥
)
+ ki

∫ t

0

(
v⋆ −

∥∥vdq(τ)
∥∥
)
d τ. (2.17)

The reference voltage for the voltage controller in αβ-coordinates is given by:

v̂αβ = µ[− sin θ cos θ]⊤. (2.18)

Transforming v̂αβ to dq-coordinates with θ and ω as in (2.16), the voltage and current

loops and modulation signal generation remain the same as (2.6)–(2.9).

To further explain the matching concept, we replace vdc in (2.1a) by ω/kθ from (2.16)

resulting in

θ̇ = ω, (2.19a)

Cdcω̇ = kθidc − kθix −Gdcω. (2.19b)

Recalling the SM’s angle and frequency dynamics (2.4a)-(2.4b) and replacing Tf by Dfω

results in

θ̇ = ω, (2.20a)

Jω̇ = Tm − Te −Dfω, (2.20b)
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Comparing (2.19) and (2.20) reveals the structural matching of GFC dynamics to that

of SM. Dividing (2.19b) by k2θ to obtain the same units as in (2.20b) and matching

variables results in Jr = Cdc/k
2
θ , Df = Gdc/k

2
θ , Tm = idc/kθ, and Te = ix/kθ. In other

words, using matching control the inertia constant of the GFC is linked to its internal

energy storage, the dc-side losses Gdcω are linked to the machine windage friction losses

Dfω, and the frequency droop response is provided through the proportional dc voltage

control kdc
(
v⋆dc − vdc

)
=
(
kdc/kθ

)
(ω⋆ − ω) (cf. (2.10)). The structural matching induced

by (2.16) also extends to the converter ac filter and generator stator dynamics (see [40],

[65] for a detailed derivation).

kθ
1

s

+ kp +
ki

s

vdc
ω

v⋆

∥vdq∥ −
equation (2.18)

θ

µ

v̂αβ

Figure 2.8: Matching control block diagram based on (2.16)-(2.18).

2.3.6 Dispatchable virtual oscillator control

Dispatchable virtual oscillator control (dVOC) [45], [47], [48] is a decentralized grid-

forming control strategy that guarantees almost global asymptotic stability for inter-

connected GFCs with respect to nominal voltage and power set-points [45], [47]. The

analytic stability conditions for dVOC explicitly quantify the achievable performance

and include the dynamics and transfer capacity of the transmission network [47].

The dynamics of dVOC in αβ-coordinates are represented by

˙̂vαβ = ω⋆J2v̂αβ + η
(
Kv̂αβ −R2(κ)iαβ + ϕ

(
v⋆, v̂αβ

))
, (2.21)

where ϕ
(
v⋆, v̂αβ

)
=
(
α/v⋆2

)(
v⋆2 −

∥∥∥v̂2αβ
∥∥∥
)
v̂αβ, v̂αβ = [v̂α v̂β]

⊤ is the reference volt-

age, iαβ = [iα iβ]
⊤ is current injection of the converter, the angle κ := tan−1

(
lω⋆/r

)

models the network inductance to resistance ratio, and η, α are positive control gains.

Furthermore we have

R2(κ) :=

(
cosκ− sinκ

sinκ cosκ

)
,K :=

1

v⋆2
R2(κ)

(
p⋆ q⋆

−q⋆ p⋆

)
,

where R2(κ) is the 2-D rotation by κ. As shown in [47] the dynamics (2.21) reduce to a

harmonic oscillator if phase synchronization is achieved (i.e., Kv̂αβ −R2(κ)iαβ = 0) and
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∥∥v̂αβ
∥∥ = v⋆ (i.e.,

(
v⋆2 −

∥∥v̂αβ
∥∥2
)
v̂αβ = 0). Rewriting (2.21) in polar coordinates for an

inductive network (i.e., κ = π/2) reveals the droop characteristics (see [45], [47], [48]) of

dVOC as

θ̇ = ω⋆ + η


 p⋆

v⋆2
− p∥∥v̂dq

∥∥2


 , (2.22a)

∥∥∥ ˙̂vdq
∥∥∥ = η


 q⋆

v⋆2
− q∥∥v̂dq

∥∥2


∥∥v̂dq

∥∥+ ηϕ
(
v⋆,
∥∥v̂dq

∥∥
)
, (2.22b)

where ϕ
(
v⋆,
∥∥v̂dq

∥∥
)
=
(
α/v⋆2

) (
v⋆2 −

∥∥v̂dq
∥∥2
)∥∥v̂dq

∥∥. In other words, for a high voltage

network and near the nominal steady state (i.e.,
∥∥v̂dq

∥∥ ≈ v⋆) the relationship between

frequency and active power resemble that of standard droop control given in (2.11) with

dω = η/v⋆2. Moreover, when choosing the control gain α to obtain post-fault voltages

consistent with the other control algorithms described above, the first term in (2.22b)

is negligible and (2.22b) reduces to the voltage regulator
∥∥∥ ˙̂vdq

∥∥∥ ≈ −2ηα
(∥∥v̂dq

∥∥− v⋆
)

near the nominal steady state.

1

v⋆2

/

+ η +
1

s

(·)2

p⋆

p

−

ω⋆

ω
θ

1

v⋆2

/

+ η + × 1

s
q⋆

q

− ∥ ˙̂vdq∥ ∥v̂dq∥

∥v̂dq∥2

(·)2 +
ηα

v⋆2

(·)2

v⋆

∥v̂dq∥2
−

∥v̂dq∥

Figure 2.9: Block diagram of dVOC in polar coordinates corresponding to (2.22). Note that
singularity at

∥∥v̂dq
∥∥ = 0 only appears in the dVOC implementation in polar coordinates but

not in the implementation in rectangular coordinates, i.e., (2.21).
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2.4 Network case study

In this section, we explore various performance aspects of the grid-forming control tech-

niques in the presence of synchronous machines. In the forthcoming discussion, we use

the test system shown in Figure 2.2. The parameters and control gains are given in

Table 2.1. The implementation in Simulink is available online [71].

In order to avoid the delay associated with the frequency measurement and signal

processing introduced by standard synchronous reference frame phase-locked loop (SRF-

PLL)[70], we use the mechanical frequency of the SM at node 1 in Figure 2.2 to evaluate

the post-disturbance system frequency (e.g., in Figures 2.11-2.12). For the grid-forming

converters we use the internal controller frequencies defined by (2.11), (2.13), (2.16) and

(2.22). We remark that, in a real-world system and in an EMT simulation (in contrast

to a phasor simulation), there is no well-defined frequency at the voltage nodes during

transients, whereas the internal frequencies of the grid-forming converters are always

well-defined [33, Section II-J],[88]. Lastly, we note that in all the forthcoming case

studies we assume that the system is in steady-state at t = 0.

2.4.1 Performance metrics

We adopt the standard power system frequency performance metrics i.e., maximum

frequency deviation ||∆ω||∞ (i.e., frequency nadir/zenith) and RoCoF |ω̇| (i.e., the slope
of line tangent to the post-event frequency trajectory) defined by

||∆ω||∞ := max
t≥t0

|ω⋆ − ω(t)|, (2.23a)

|ω̇| := |ω(t0 + T )− ω(t0)|
T

, (2.23b)

where t0 > 0 is the time when the disturbance is applied to the system, and T > 0 is

the RoCoF calculation window [33], [70]. See Figure 2.10 for visual representation of the

metrics described by (2.23). In this work, we use T = 250ms, which is in line with values

suggested for protection schemes (see [69, Table 1]). Dividing the metrics (2.23) by the

size of the magnitude of the disturbance results in a measure of the system disturbance

amplification.

2.4.2 Test network configuration and tuning criteria

In order to study the performance of the control approaches introduced in Section 2.3, we

apply the same strategy (with identical tuning) for both converters (i.e., at nodes 2 and

3 in Figure 2.2), resulting in four different SM-GFC paired models. As a benchmark, we

also consider an all-SMs system with three identical SMs (i.e., at nodes 1-3). Selecting fair
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ω(t0)

||∆ω||∞

|ω̇| := |ω(t0+T )−ω(t0)|
T

t0 t0 + T

ω(t0 + T )

ω(t)

≈

t

Figure 2.10: Post-event frequency nadir and RoCoF.

tuning criteria for the different control strategies is a challenging task. For this study, we

tune the control parameters such that all generation units exhibit identical proportional

load sharing behavior. Appendix 2.7 presents the tuning criteria and derivation of some

control parameters.

2.4.3 Impact of grid-forming control on frequency metrics

In this section, we test the system behavior for different load disturbances ∆pi. The

network base load pl is constant and uniformly distributed between nodes 5, 7 and 9 while

∆pi is only applied at node 7. For each disturbance input we calculate ||∆ωi||∞ and |ω̇i|
for the SM at node 1 and normalize these quantities by dividing by |∆pi|. Figures 2.11
and 2.12 illustrate the distribution of system disturbance input/output gains associated

with introduced frequency performance metrics. Note that the network base load pl is

2 pu and the elements of the load disturbance sequence ∆pi ∈ [0.2, 0.9], i = 1, . . . , 100

are uniformly increasing by 0.007 pu starting from p1 = 0.2 pu.

All the grid-forming controls presented in Section 2.3 are originally designed without

consideration of the converter dc and ac current limitation. Thus, to explore the intrinsic

behavior of the GFCs and their influence on frequency stability the network loading

scenarios described above are selected such that the GFCs dc and ac currents do not

exceed the limits imposed by (3) and (7). However, in practice, GFCs are subject to

strict dc and ac current limits and are combined with current limiting strategies in a

modular fashion. The impact of the dc and ac current limits on the performance of

GFCs is explored in Subsections 2.4.4 to 2.4.6.

Figures 2.11 and 2.12 suggest that, regardless of the choice of control strategy, the
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presence of grid-forming converters improves the metrics compared to the all-SM system.

This possibly observation can be explained by the fast response of converters compared to

the slow turbine dynamics, i.e., τg in (2.5) is larger than τdc in (2.2). Because of this, the

converters reach frequency synchronization at a faster time-scale and then synchronize

with the SM (see Figure 2.13). Overall, for any given disturbance input, the converters

are able to react faster than the SM and the remaining power imbalance affecting the

SM is smaller than in the all-SM system. This result highlights that the fast response of

GFCs should be exploited instead of designing the controls of a converter (fast physical

system) to emulate the slow response of synchronous machines [33]. We observe that

droop control and dVOC exhibit very similar performance confirming the droop-like

behavior of dVOC in predominantly inductive networks (see (2.22)). Moreover, the

difference between droop control and VSM arises from the inertial (derivative control)

term in (2.13) and the RoCoF is considerably higher when using matching control.

This can be explained by the fact that VSM, droop control, and dVOC ignore the dc

voltage and aggressively regulate the ac quantities to reach angle synchronization, thus

requiring higher transient peaks in dc current to stabilize the dc voltage (see Section

2.4.4). Although improving RoCoF, this approach can lead to instability if the converter

is working close to the rated power of the dc source (but far away from its ac current

limit), as shown in the next section. On the other hand, matching control regulates the

dc link voltage both through the dc source and by adjusting its ac signals.

We selected the RoCoF calculation window according to the guideline [69], which

accounts for noise and possible oscillations in the frequency signal. However, these

guidelines were derived for a power system fully operated based on SMs. Given that

grid-forming converters introduce faster dynamics, machines are expected to reach the

frequency nadir faster. Hence, a smaller RoCoF windows might need to be considered

in a low-inertia power system to properly assess system performance (the reader is re-

ferred to [2, Section III-C] for further insights on the choice of RoCoF window in a

low-inertia system). We note that the performance of the different grid-forming control

strategies shown in Figure 2.11 and 2.12 is sensitive to the tuning of control gains and

choice of RoCoF computation window. However, due to the comparably slow response of

conventional generation technology the performance improvements for the system with

grid-forming converters over the all-SM system persist for a wide range of parameters.

Moreover, using comparable tuning (see Section 2.4.2) the differences between the dif-

ferent grid-forming techniques observed in this section are expected to remain the same.

2.4.4 Response to a large load disturbance

In this subsection we analyze the response of the grid-forming converters to large distur-

bances when the dc source is working close to its maximum rated values. Specifically, we

focus on the implications of the dc current limit (3) to highlight the response of GFCs
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Figure 2.13: Frequency of the system with two VSMs after a 0.75 pu load increase. The
converters quickly synchronize with each other and then slowly synchronize with the machine.

when interfacing curtailed renewable generation with low headroom (i.e., PV / wind)

or a converter system with an undersized dc-dc converter stage. In such scenarios, the

dc current limit can be activated independently of the ac current limit. For clarity of

representation we first focus exclusively on the matching control as its angle dynamic

(2.16) explicitly considers the dc voltage. Droop control, which does not consider the dc

voltage, is solely presented to emphasize the need for an ac current limitation mechanism

to implicitly stabilize the dc voltage.

To begin with, we set the network base load pl and load change ∆p to 2.25 and

0.9 pu respectively (i.e., a total network load after the disturbance of 3.15 pu) which is

equally shared by the SM and the GFCs. We expect a post-disturbance converter power

injection of 1.05 pu and idc close to the dc current limit idcmax = ±1.2 pu. Figure 2.14

shows the dc voltage and delayed dc current before saturation for the converter at node 2.

For sufficiently large disturbance magnitude, i⋆dc and consequently iτ exceed the current

limit, i.e., the dc current idc = idcmax is saturated. Figures 2.14 and 2.15 highlight that

Figure 2.14: DC current demand of the converter at node 2 (top) and its dc voltage (bottom)
after a 0.9 pu load disturbance.

36



Figure 2.15: DC current demand and saturated dc current (top), frequency of the converter
(using matching control) at node 2 and SM after a 0.9 pu load disturbance (bottom).

Figure 2.16: DC voltage of the converter at node 2 after a 0.9 pu load disturbance when both
dc and ac limitation schemes (2.3) and (2.7) are active and τg = 5s.

the matching control succeeds to stabilize the dc voltage despite the saturation of the dc

source. The nature of matching control - which accounts for the dc-side dynamics while

regulating the ac dynamics i.e., (2.16) - results in increased robustness with respect to

large disturbances. From a circuit-theoretic point of view this is possible only if the sum

of the ac power injection and filter losses equals the approximately constant dc power

inflow vdci
dc
max. The converter can inject constant ac power into the network only if its

angle difference with respect to the remaining devices in the network is constant. In the

presence of the slow SM angle and frequency dynamics this implies that the GFCs need

to synchronize their frequencies to the SM so that the relative angle θGFC − θSM = θmax

is constant (see the frequency of GFC 1 following the dc source saturation at t = 0.5s

in Figure 2.15). Note that the behavior for the matching controlled GFCs is similar to

that of the SM (see Section 2.3.5 and [40], [43], [65]), i.e., it achieves synchronization

both under controlled or constant mechanical input power (i.e., dc current injection).
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Figure 2.17: DC voltage (top) and dc current demand (bottom) of the converter at node 2
after a 0.9 pu load disturbance when all the limitation schemes i.e., (2.3), (2.7) and (2.24) are
active and τg = 5s.

Figure 2.14 shows that for the GFCs controlled by droop control the dc-link capacitors

discharge to provide iτ − idcmax (i.e., the portion of current demand which is not provided

due to the saturation (2.3)). Because the angle and frequency dynamics (i.e., (2.11),

(2.13), and (2.22a)) of droop control, VSM, and dVOC purely rely on ac measurements

they are agnostic to the dc dynamics and source saturation. Consequently, a prolonged

duration of dc source saturation results in a collapse of the dc voltage. A potential

remedy is to incorporate an ac current limitation scheme to prevent the GFC from

depleting the dc-link capacitor. This observation motivates the discussion in the next

subsection with restricted focus on droop control, VSM, and dVOC techniques.

2.4.5 Incorporating the ac current limitation

In this subsection, we investigate if the ac current limitation (2.7) presented in Section

2.3.1 can mitigate the instabilities of the GFCs controlled by droop control, VSM and

dVOC under dc source saturation. To this end, we consider the same base load and

disturbance as in the previous test case, i.e., pl = 2.25 and ∆p = 0.9 pu. For this

scenario, the GFCs dc transient current demand iτ and the switching node current

magnitude
∥∥is,dq

∥∥ exceeds the limits (i.e., idcmax = iacmax = 1.2 pu) imposed by (2.3) and

(2.7).

We observe that using the ac current limiter does not stabilize the dc voltage of the

GFCs controlled by droop control, VSM, and dVOC. Figure 2.16 illustrates the behavior
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of the GFC at node 2. Specifically, the current limitation imposed by (2.7) results in

integrator windup, a loss of ac voltage control and, ultimately, instability of the grid-

forming control [82] and dc voltage. We remark that GFCs exhibit the same instability

behavior when the ac current limit is smaller than that of the dc-side i.e., iacmax < idcmax.

To mitigate this load-induced instability, we explore a current limitation scheme that

modifies the active power set-point when
∥∥is,dq

∥∥ exceeds a certain threshold value, i.e.,

∆p⋆ :=




0 if

∥∥is,dq
∥∥ ≤ iacth,

γp

(∥∥is,dq
∥∥− iacth

)
if
∥∥is,dq

∥∥ > iacth,
(2.24)

and ∆p⋆ is added to p⋆ in (2.10), (2.11), (2.13b) and (2.21), γp denotes a proportional

control gain, and iacth < iacmax is the activation threshold. Note that the control law

(2.24) implicitly manipulates the grid-forming dynamics through their set-points such

that the ac current magnitude stays within the admissible limits for large increases in

load. We emphasize that this strategy aims at mitigating instabilities induced by large

load increases and that the resulting GFC response to grid faults needs to be carefully

studied.

For a 0.9 pu load increase, the current limitation strategy (2.24) is able to stabilize the

system with iacth = 0.9 pu and γp = 2.3
(
pb/i

ac
b

)
where pb and i

ac
b denote the converter base

power and current, respectively. Figure 2.17 depicts the response of the same GFC as in

Figure 2.16. Note that (2.24) effectively stabilizes the dc voltage for droop control, VSM,

and dVOC. Moreover, in contrast to Figure 2.14, after the post-disturbance transient

the dc source is no longer in saturation. Broadly speaking, this strategy succeeds to

stabilize the system by steering the GFC power injection away from the critical limits.

However, this also influences the post-disturbance operating point of the GFCs due to

the threshold value being below the rated value.

Finally, we observe that the different time-scales in a low-inertia system contribute

to the instabilities observed in the previous section. In particular, if the SM’s turbine

responds faster, GFCs with the standard limitation strategy (2.7) preserve stability -

without the need to implement (2.24) - despite the fact that transient dc and ac currents

exceed the limits. Figure 2.18 shows the GFCs responses when the SM turbine delay τg
is 1s (cf. Figure 2.16 where τg = 5s). It can be seen that the slow SM turbine dynamics

again contribute to the system instability when dc and ac currents are saturated. We

conclude that the presence of different time-scales in a low-inertia system - often neglected

in the literature [74], [81]–[87] - must be considered in designing a robust ac current

limitation mechanism for the GFCs.

Remark 2 (DC and AC measurements). We observe that using ac measurements to

drive the angle dynamics - e.g., VSMs use active power measurements in (2.13) - im-

proves the frequency performance of GFCs (see Figures 2.11 and 2.12). On the other
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Figure 2.18: DC voltage (top) and dc current demand (bottom) of the converter at node 2
after a 0.9 pu load disturbance when both dc and ac limitation schemes (2.3) and (2.7) are
active and τg = 1s.

hand, using dc voltage measurements - e.g., matching control (2.16) - results in robust-

ness with respect to dc current limits. Further research is required to combine these

complementary benefits by using both dc and ac measurements in grid-forming control.

2.4.6 Interaction of GFC and SM dynamics

The forthcoming discussion highlights that the interplay between the fast GFC and slow

SM dynamics influences the system stability. The following case studies are tightly

related to the scenarios in previous subsections.

Loss of synchronous machine

We study the response of GFCs when disconnecting the SM at node 1, that is, the system

turns into an all-GFCs network. The implications of such a contingency are threefold.

First, the power injected by the machine, which partially supplies the base load, is

no longer available. Second, the stabilizing dynamics associated with the machine’s

governor, AVR, and PSS are removed from the system. Third, the slow dynamics of the

SM no longer interact with the fast dynamics of the GFCs.

For this test, we set the base load to 2.1 pu, and the SM and GFCs set-points are set

to 0.6 and 0.75 pu respectively. Note that when the SM at node 1 is disconnected, the

converters increase their power output according to the power sharing behavior inherent

to all four grid-forming controls (see Appendix 2.7). The resulting increase in the con-
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verter power injection to roughly 1.05 pu is similar to the load disturbance scenario used

to illustrate the instability behavior of droop control in Figure 2.14. Figure 2.19 shows

Figure 2.19: DC current demand (top) and dc voltage (bottom) of the converter at node 2
after loss of the SM at node 1.

iτ and vdc for the converter at node 2. Although the disturbance magnitude affecting the

converters is similar to the one in studied in Subsection 2.4.4, all GFCs remain stable

after the loss of the SM without the need to incorporate (2.24). In particular, due to

the absence of the slow turbine dynamics and fast synchronization of the converters iτ
exceeds the limit idcmax for around 50ms while it remains above the limit for a prolonged

period of time in Figure 2.14.

This highlights the problematic interaction between the fast response of the GFCs

and the slow response of the SM. While the synchronous machine perfectly meets classic

power system control objectives on slower time scales, the dominant feature of GFCs is

their fast response. However, the fast response of GFCs can also result in unforeseen

interactions with other parts of the system such as the slow SM response (shown here),

line dynamics (see [47], [77]), and line limits [89].

Low-inertia vs. no-inertia systems

Considering the same load disturbance scenario as in Subsection 2.4.4, we observe the

same instability of droop control when the test system contains one GFC and two SMs,

i.e., the instability cannot be prevented by adding more inertia to the system.

Figure 2.20 shows the dc current demand iτ (i.e., before saturation) and dc voltage

in an all-GFCs (i.e., no-inertia) system for a load increase of ∆p = 0.9 pu. In this case,

the GFCs quickly synchronize to the post-event steady state, which does not exceed the
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maximum dc current, saturate the dc source for only approximately 200ms, and remain

stable. In contrast, in the system with two GFCs and one SM, the SM does not reach its

increased post-event steady-state power injection for several seconds. During this time

the response of droop control results in a power injection that exceeds the limits of the

dc source and collapses the dc voltage. In other words, the slow response of the SM due

to the large turbine time constant prolongs the duration of dc source saturation for the

GFCs which results in depleting the dc-link if the converter ac current is not limited.

We conclude this subsection by remarking that in the mixed SM-GFCs system in the

Figure 2.20: DC current demand (top) and dc voltage (bottom) after a 0.9 pu load disturbance
in an all-GFC system.

Subsections 2.4.4 and 2.4.5, it is vital to account for dc side limits (either through ac

current limits or dc voltage measurements) to stabilize the GFCs in presence of SMs.

However, in an all-GFC system - either by default or due to the loss of SM - the dc

side is only limited briefly and the system remains stable. This observation highlights

that the interaction of the fast GFC dynamics and slow SM dynamics can potentially

contribute to system instability.

2.5 Qualitative analysis

In this section, we provide a qualitative but insightful analysis that explains the re-

sults observed in Section 2.4.3 and Section 2.4.4. To this end, we develop simplified

models that capture the small-signal frequency dynamics of synchronous machines and

grid-forming converters. Applying arguments from singular perturbation theory [41],

[90] results in a model that highlights the main salient features of the interaction of

synchronous machines and grid-forming converters.
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2.5.1 Frequency dynamics incorporating GFCs

To obtain a simplified model of the frequency dynamics of the GFCs, we assume that the

cascaded ac voltage and ac current control (see (2.6) and (2.8)) achieve perfect tracking

(i.e., v dq = v̂ dq). Assuming that the system operates near the nominal steady-state

(i.e.,
∥∥v dq

∥∥ ≈ v⋆, ω ≈ ω⋆) and p⋆ = 0, q⋆ = 0, we rewrite the remaining dynamics in

terms of the voltage angle and power injection at every bus. This results in a simplified

model of the angle θ and the frequency ω of a GFC or SM relative to a frame rotating

at the nominal frequency ω⋆.

Droop control and dVOC

For a converter controlled by droop control or dVOC, we obtain

θ̇ = −dωp, (2.25)

where p is the power flowing out of the converter and dω is the droop control gain and

given by dω = η/v⋆2 for dVOC.

Synchronous machine, VSM, and matching control

For a synchronous machine, a VSM, and a converter controlled by matching control we

obtain

θ̇ = ω, (2.26a)

2Hω̇ = −Dω + sat (pτ , pmax)− p, (2.26b)

τ ṗτ = −pτ − dpω. (2.26c)

For a SM the parameters directly correspond to the parameters of the machine model

presented in Section 2.2.2, i.e., H, dp, and τ = τg, are the machine inertia constant,

governor gain, and turbine response time, and the model does not capture SM losses

(i.e., D = 0) or damper winding torques. Throughout this work we have not considered

a limit on the turbine power output (i.e., pmax = ∞) because a synchronous machine,

in contrast to a GFC, typically has sufficient reserves to respond to the load changes

and faults considered in this work. For the VSM presented in Section 2.3.4, we obtain

τ = 0, pτ = 0, H = 1/2Jω⋆, and D = Dpω
⋆, i.e., the VSM does not emulate a

turbine and implements no saturation of the damping term in its frequency dynamics

(2.13b). Finally, for matching control we obtain τ = τdc, pmax = v⋆dci
dc
max, H = 1/2Cdc/k

2
θ ,

dp = kdc/kθ (see Section 2.3.5) and D = 0, i.e., by linking frequency and dc voltage,

matching control clarifies that the dc source plays the role of the turbine in a machine

and the proportional dc voltage control plays the role of a governor.
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2.5.2 Reduced-order model

For brevity of the presentation we will now restrict our attention to the case of one

SM and one GFC. The equivalent inertia constants and turbine time constants for the

different grid-forming converter control strategies are either zero or negligible compared

to typical inertia constants and turbine time constants for machines (see Table 2.1). We

therefore assume that the states of the synchronous machine are slow variables, while

the states of the GFC are fast and apply ideas from singular perturbation theory [41],

[90].

Using the dc power flow approximation and pd,GFC and pd,SM to denote a disturbance

input, we obtain pGFC = b (θGFC − θSM)+pd,GFC and pSM = b (θSM − θGFC)+pd,SM, where

b is the line susceptance. Neglecting the frequency dynamics and dc source dynamics,

i.e., letting τ → 0 and H → 0, the dynamics of the relative angle δ = θSM − θGFC are

given by δ̇ = ωSM −
(
DGFC + dp,GFC

) (
bδ − pd,GFC

)
if |dp,GFC| < |pmax|, δ̇ = ωSM −

DGFC

(
bδ − pd,GFC ± pmax

)
if the dc source is saturated, and DGFC denotes the damping

provided by the GFC. For typical droop gains and network parameters, the relative

angle dynamics are fast compared to the machine dynamics. Letting δ̇→ 0, we obtain

the reduced-order model

2Hω̇SM=−sat (DGFCωSM, pmax)+pτ,SM+pd, (2.27a)

τ ṗτ,SM=−pτ,SM − dpωSM. (2.27b)

where pd = pd,GFC + pd,SM, H, dp, and τ are the inertia constant, governor gain, and

turbine time constant of the synchronous machine, DGFC is the damping provided by

the GFC, i.e., DGFC = 1/dω (droop, dVOC, VSM) or DGFC = dp (matching). Moreover,

droop control, dVOC, and the VSM implement no saturation of their power injection in

their respective angle / frequency dynamics (i.e., (2.11b), (2.22a), and (2.13b)) resulting

in pmax = ∞. In contrast, for matching control the saturation of the dc source results in

pmax = v⋆dci
dc
max.

We note that for the case of under damped dynamics (2.27) and without saturation,

a closed-form expression for the the step response and frequency nadir (2.27) can be

found in [67, Section V-A]. However, even for the seemingly simple model (2.27) the

dependence of the nadir on the parameters is very involved and does not provide much

insight. By neglecting the damping term in (2.27a) and the feedback term −pτ,SM in

(2.27b) an insightful expression for the nadir is obtained in [91]. However, the key

feature of the GFCs is that they contribute damping, which is not captured by analysis

in [91]. Nonetheless, the model (2.27) provides several insights that we discuss in the

next section.
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2.5.3 Impact of grid-forming control on frequency stability

A system with three synchronous machines as in Section 2.4 can be modeled by (2.27)

with H = 3HSM, dp = 3dp,SM, τ = τSM and DGFC = 0. This corresponds to the well

known center of inertia frequency model with first-order turbine dynamics (see [62],

[67]). In contrast, if two SMs are replaced by GFCs with equal droop setting we obtain

H = HSM, dp = dp,SM, τ = τSM and DGFC = 2dp,SM.

This highlights that, on the time-scales of the SM, the GFCs provide fast acting

frequency control. After an increase in load the machine inertia serves as buffer until

the relatively slow turbine provides additional power to the machine. In contrast, the

converters respond nearly instantaneously to any imbalance and therefore the need for

inertia is decreased. Intuitively, this increase in fast primary frequency control should

result in lower nadir values. Similarly, the additional damping provided by the converter

in (2.27) can be interpreted as a filter acting on the power imbalance, i.e., the GFCs are

providing DGFCωSM or pmax and the power imbalance affecting the machine is reduced,

therefore resulting in smaller average RoCoF.

To validate the model (2.27) and our interpretation, we compute the frequency nadir

and averaged RoCoF (see (2.23)) for the machine parameters and disturbance used in

in Section 2.4, and H = ν3HSM, dp = ν3dp,SM, τ = τSM and DGFC = (1 − ν)dp,SM and

D = 0, where ν ∈ [1/3, 1] is a scalar parameter that interpolates the parameters between

the two cases (all SM, one SM and two GFCs). The average RoCoF and frequency nadir

according to (2.27) are shown in Figure 2.21. The case with pmax = 1.2 corresponds to

matching control, the one with pmax = ∞ to droop control, dVOC, and VSMs. It can

be seen that the GFCs result in an improvement compared to the all SM scenario, that

the implicit saturation of the power injection by matching control results in a smaller

improvement compared to droop control, dVOC and VSMs, and that the reduction in

the average RoCoF and frequency nadir is line with the corresponding results in Figure

2.11 and Figure 2.12.

2.5.4 Instability in the presence of large load disturbance

The instabilities of droop control, dVOC, and the VSM observed in Section 2.4.4 can

qualitatively be investigated using a simplified model of the dc-side. To compute the

power vdcix flowing out of the dc-link capacitor, we assume that the controlled converter

output filter dynamics are fast and can be neglected (i.e., i̇s,αβ = 0, v̇αβ = 0) and that

the ac output filter losses are negligible. This results in vdcix = v
⊤
s,αβis,αβ = v⊤αβiαβ = p.

Moreover, we neglect the dc source dynamics to obtain the simplified dc voltage dynamics

Cdcv̇dc = −Gdcvdc + sat
(
kdc (v

⋆
dc − vdc) , i

dc
max

)
− p

vdc
, (2.28)
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Figure 2.21: Change in averaged RoCoF and frequency nadir when transitioning from a
system with 3 SMs to a system with one SM and two GFCs.

i.e., the active power p flowing into the grid is drawn from the dc-link capacitor that is

stabilized by a proportional control (see (2.10)) if the dc current iτ is not saturated. For

a large enough constant perturbation p > 0 the dc current in (2.28) becomes saturated

and controllability of the voltage vdc is lost and the dc voltage becomes unstable.

In other words, if the dc source is saturated the power p has to be controlled to

stabilize the dc voltage. Matching control achieves this through the angle dynamics

θ̇ = kθvdc which converge to a constant angle difference (i.e., ωSM = ωGFC) and power

injection when the dc source is saturated and the SM has enough reserves to maintain

ωSM ≈ ω⋆ with the GFC providing its maximum output power. Moreover, for matching

control it can be verified that (ωGFC − ω⋆) /ω⋆ =
(
vdc − v⋆dc

)
/v⋆dc. Therefore, the dc

voltage deviation is proportional to the frequency deviation and the GFC with matching

control remains stable for the scenario shown in Section 2.4.4.

2.6 Summary and further work

In this paper we provided an extensive review of different grid-forming control tech-

niques. Subsequently, we used the IEEE 9-bus test system incorporating high-fidelity

GFC and SM models to investigate the performance of different control techniques and

their interaction with SM.

Our case studies revealed that 1) the presence of the GFCs improves the frequency

stability metrics compared to the baseline all-SMs system, 2) under a sufficiently large

load disturbance, it is vital to implement an ac current limiting scheme to stabilize the
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grid-forming techniques which only rely on the ac measurements, 3) matching control

exhibits robustness to the dc source saturation since its angle dynamics takes into account

the dc quantities, 4) we explored the stabilizing influence of the ac current limitation, and

5) we investigated the behavior of GFCs in response to the loss of SM and in all-GFCs

system highlighting a potentially destabilizing interaction between the GFCs and SMs

dynamics. Moreover, we provided a qualitative analysis of GFCs impact on the frequency

stability. Topics for the future works include 1) further exploration of the impacts of

dc and ac current limitations on the GFCs behavior and providing a formal stability

analysis, 2) proposing a complete ac current limitation strategy which is robust to load-

induced over-current as well as grid faults, 3) the seamless transition between grid-

forming and grid-following operation, and 4) blending of the different control strategies

into a controller that achieves their complementary benefits.

2.7 Appendix A: tuning criteria

The load-sharing capability of the control techniques presented in Section 2.3 is investi-

gated in [7], [38], [45]. Considering a heterogeneous network consisting of several GFCs

(with different control) and SMs, we tune the control parameters such that all the units

exhibit identical proportional load-sharing in steady-state. For the SM and droop con-

trolled GFC, (2.5a) and (2.11b) can be rearranged to

ω⋆ − ω =
1

dp
(p− p⋆) , (2.29a)

ω⋆ − ω = dω (p− p⋆) . (2.29b)

For VSM, assuming steady-state frequency and setting θ̈ = ω̇ = 0 in (2.13b) results in

ω⋆ − ω =
1

Dpω⋆
(p− p⋆) . (2.30)

For matching control, we assume that in steady-state idc ≈ i⋆dc and vdc/v
⋆
dc ≈ 1. Setting

ω̇ = 0 in (2.19b) and replacing idc by the expression from (2.10) yields

ω⋆ − ω =
kθ

kdcvdc
(p− p⋆) . (2.31)

Lastly for dVOC, assuming
∥∥v̂ dq

∥∥ ≈ v⋆ in steady-state, the angle dynamics (2.22a)

becomes

ω⋆ − ω =
η

v⋆2
(p− p⋆) . (2.32)

Hence, for any given droop gain dp, if dω, Dp, kdc and η are selected such that the slopes

of (2.29)-(2.32) are equal, all the GFC control techniques and SM perform equal-load
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Table 2.1: Case study model and control parameters [71].

IEEE 9-bus test system base values

Sb 100 MVA vb 230 kV ωb 2π50 rad/s

MV/HV transformer

Sr 210 MVA v1 13.8 kV v2 230 kV

R1 = R2 0.0027 pu L1 = L2 0.08 pu Rm = Lm 500 pu

Single LV/MV transformer module in Figure 2.3

Sr 1.6 MVA v1 1 kV v2 13.8 kV

R1 = R2 0.0073 pu L1 = L2 0.018 pu Rm, Lm 347, 156 pu

Synchronous machine

Sr 100 MVA vr 13.8 kV Df 0

H 3.7 s dp 1 % τg 5 s

Single converter module in Figure 2.3

Sr 500 kVA Gdc, Cdc 0.83, 0.008 Ω−1,F v⋆dc, v
⋆
ll-rms 2.44, 1 kV

R 0.001 Ω L 200 µH C 300 µF

n 100 τdc 50 ms idcmax 1.2 pu

AC current, ac voltage, and dc voltage control

kv,p, kv,i 0.52, 232.2 ki,p, ki,i 0.73, 0.0059 kdc 1.6× 103

Droop control

dω 2π0.05 rad/s ω⋆ 2π50 kp, ki 0.001, 0.5

Virtual synchronous machine

Dp 105 J 2× 103 kp, ki 0.001, 0.0021

Matching control

kθ 0.12 kdc 1.6× 103 kp, ki 0.001, 0.5

Dispatchable virtual oscillator control

η 0.021 α 6.66× 104 κ π/2
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sharing. Moreover, by selecting kdc based on this criteria, the dc voltage control gain in

(2.10) is automatically set which is identical for all GFC implementation [71].

Regarding the ac voltage regulation, the control gains in (2.12), (2.15), (2.17), and

(2.22b) are selected to regulate the ac voltage at approximately equal time-scales. We

refer to [92] for details on tuning the cascaded inner loops presented in Subsection 2.3.1.

It is noteworthy that the time-scale of the reference model (i.e., grid-forming dynamics)

must be slower than ac voltage control shown in Figure 2.4 to ensure optimal perfor-

mance. Similarly, the ac current control must be faster than the outer voltage controller.

Lastly, the choice of virtual inertia constant in (2.13b) can largely influence VSM’s dy-

namic behavior. We adopted the recommendation J/Dp = 0.02 proposed in [64]. The

parameters used in the implementation [71] are reported in Table 2.1.
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Abstract – As renewable sources increasingly replace existing conventional generation,

the dynamics of the grid drastically changes, posing new challenges for transmission

system operations, but also arising new opportunities as converter-based generation is

highly controllable in faster timescales. This paper investigates grid stability under

the massive integration of grid-forming converters. We utilize detailed converter and

synchronous machine models and describe frequency behavior under different penetration

levels. First, we show that the transition from 0% to 100% can be achieved from a

frequency stability point of view. This is achieved by retuning power system stabilizers

at high penetration values. Second, we explore the evolution of the nadir and RoCoF for

each generator as a function of the amount of inverter-based generation in the grid. This

work sheds some light on two major challenges in low and no-inertia systems: defining

novel performance metrics that better characterize grid behavior, and adapting present

paradigms in PSS design.

3.1 Introduction

The demand for the reduction of the carbon footprint has led to an increasing integration

of renewable sources. The replacement of conventional power plants, interfacing the grid

via synchronous machines (SMs), with wind and solar generation results in significant
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changes in power system dynamics. Specifically, as these new converter-based sources

replace SMs, the amount of rotational inertia in power systems decreases, accompanied

with the loss of stabilizing control mechanisms that are present in SMs.

As a result of this transition, low-inertia power systems encounter critical stability

challenges [33]; EirGrid and SONI, for instance, limited the instantaneous penetration

of variable renewable energy sources to 55% [27] and recently increased the limit to

67% and set a goal of 75% of fuel-free generation [93]. As of now, certain grids need

to preserve a minimum amount of inertia, which implies higher cost and hinders the

penetration of renewable generation. New converter control strategies can potentially

address these low-inertia system stability issues. These approaches can be split in two

categories [33], [70]: grid-following control, where the converter follows the measured

frequency and voltage magnitude in the grid (via a synchronizing mechanism such as

phase locked loop), and grid-forming control, where the converter defines the voltage

magnitude and frequency. Given the fact that the first strategy relies on the existence

of a well-defined voltage waveform, it cannot fully replace the functionality of the SMs.

In this work, we focus on grid-forming converters (GFCs) and their critical role in the

transition towards a 100% converter-based grid.

Different GFC control strategies have been proposed, such as droop control [35], vir-

tual synchronous machine [64], dispatchable virtual oscillator control [45] and matching

control [65], among others. To the best of our knowledge, various aspects of the integra-

tion of GFCs (e.g., the consequent gradual inertia reduction) in a realistic transmission

grid model and in an electromagnetic transient (EMT) simulation environment have

not been thoroughly explored. In [94] and [72], different grid-forming and grid-following

techniques have been tested in simple network models. However, these studies rely on

the IEEE 9-bus system that lacks sufficient granularity and complexity to fully analyze

the transition scenario to GFCs.

The objective of this work is to explore the limits of GFC integration at the trans-

mission level, using an EMT simulation of a realistic grid model that fully reflects the

existing dynamics. Previous studies suggest that systems exhibit instability [72], [93],

[95] when the penetration of non-synchronous generation increases to roughly 70%. The

study in [95] only considers grid-following converters, and the work in [72] shows that in-

stability can be caused by adverse interactions of GFCs with the power system stabilizer

(PSS) and automatic voltage regulator (AVR). Our work suggests that, given the right

control strategies for converter-based generation, a minimum amount of inertia might

not be required for grid operation, from a frequency stability perspective. Nonetheless,

some controllers can no longer be agnostic to the amount of converter-based generation,

as the grid dynamics varies drastically depending on the generation mix. Moreover, we

question the suitability of standard frequency metrics, such as nadir and rate-of-change-

of-frequency (RoCoF), for converter-dominated grids. This paper does not analyze other

critical aspects in low-inertia systems such as voltage control, responsiveness to faults,

52



north-west region north-east region

Montreal region

Boston region

2GW
HVDC

5.5GW
SM-GFC 1

2.2GW
SM-GFC 2

0.2GW
SM-GFC 3

2.7GW
SM-GFC 4

5.5GW
SM-GFC 6

5GW
SM-GFC 7

5GW
SM-GFC 5

155
279

236

271

218

104

118

195 117 247 60

169

379252

219260

450

180

409

Figure 3.1: Quebec grid model consisting of 7 generation nodes (line length in km).

etc.

The main contributions of this paper are: first, to show that, from a frequency

stability perspective and for a particular grid, it is possible to transition from 0 to 100%

converter-based generation. Second, we remark the need for PSS retuning based on the

continuously changing amount of non-synchronous penetration. Third, we explore how

the nadir and RoCoF, measured over different time windows, evolve as a function of

the penetration of converter-based generation. These results expose new challenges that

have been so far overlooked in the mainstream literature and calls for further research

to address many open points, such as: are nadir and RoCoF still good descriptors of

grid stability? How relevant are fast transients in frequency? Can decentralized PSS

structures provide adequate damping under different converter-dominated scenarios?
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3.2 Model description

We start with the description of the grid, SMs, and GFCs models.

3.2.1 Transmission grid model

In this work we adopt the transmission grid model from [96], representing a simplified

model of the Quebec region, with a total generation capacity of 26.2 GVA consisting of

seven SMs. This grid is characterized by three distinct regions which are interconnected

via long transmission lines. Most of the generation can be found in the North and most

of the load in the southern part. Even though the generation is mainly characterized

by hydro-power plants, it has been selected for this study as the relevant information

and the EMT simulation model are publicly available, as provided by Hydro-Quebec.

Moreover, it has the right degree of complexity, i.e., being complex enough to explore

the interactions of GFCs and SMs at different levels of inertia, and simple enough to

understand the system behavior. Specifically, inside the model there are 7 SMs of dif-

ferent sizes, ranging from 5.5 GW to 200 MW. Each SM is represented by a set of 8th

order, 3-phase dynamical model coupled with a hydraulic turbine, governor, an AVR,

and multi-band PSS (type 4B). Note that only primary frequency control is implemented

in the SM model, and the droop constant of each SM is set to 5%. As explained later

in the Section 3.2.3, we extend the model with an HVDC link of 2 GW (existing in the

original Hydro-Quebec grid but not in [96]), modeling a contingency that is independent

of the penetration level of GFCs. For simplicity, we only consider constant impedance

loads in our model. A simplified version of the grid model is depicted in Figure 3.1.

3.2.2 Grid-forming converter model

The converter-based generation is implemented by means of two-level voltage source

converters, stacked in parallel to form large-scale generation units [94, Remark 1]. The

converter dc energy source is a controllable current source, connected in parallel with a

resistance (which models the dc losses) and the dc-link capacitance. The switching stage

is modelled using a full-bridge 3-phase average model, ac output filter (see Figure 3.2),

and coupled to the medium voltage via a LV/MV transformer. Each converter is con-

trolled as a grid-forming unit defining the angle, frequency and voltage. For simplicity,

in this work we focus on grid-forming droop control (see [35], [94, Section III-C]). It is

noteworthy that - under a realistic tuning and for a wide range of contingencies - other

techniques such as virtual synchronous machine (VSM) [64], matching controlled GFCs

[65] and dispatchable virtual oscillator control (dVOC) [45] exhibit similar behavior to

that of the converters controlled by droop control[94, Section IV]. The control block di-

agrams of the droop strategy appear in Figure 3.3. For the sake of compactness we refer
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Figure 3.3: Droop control block diagram [94, Section III-C].

the reader to [94, Section III] and [71] for further details on the converter control design.

The droop gain is selected in order to provide the same load sharing capabilities as of the

SMs in the system (see [94, Appendix A] for details). Lastly, a proportional controller

regulates the dc-link voltage via dc source current actuation [94, Section III-B].

3.2.3 Modeling the SM-GFC generation transition

Given that the original model is an aggregated model, the generation transition in this

study is carried out in a uniform, gradual way. Each SM is replaced by a collocated com-

bination of SM and GFC, where the ratings of each generation unit is defined according

to the penetration level1. Formally speaking, the ratio of converter-based generation

η ∈ [0, 1] is defined as:

η =

∑7
i=1 SGFCi∑7

i=1

(
SGFCi

+ SSMi

) . (3.1)

where SSMi
denotes the rating of the i -th SM in the combined model and SGFCi

denotes

the rating for the i -th converter. The individual ratings of the combined SM-GFC model

1For a more granular grid model where each individual generator is included, it might be more
realistic to represent this transition in a more discrete manner, where each SM is fully replaced by
converter-based generation, one at a time.
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replacing the original SM are then adjusted as a function of η:

SGFCi
= ηS0

SMi
, (3.2a)

SSMi
= (1− η)S0

SMi
, (3.2b)

with S0
SM being the rating of a given SM in the original model (with no GFCs, i.e.,

η = 0). For η = 0 (resp. η = 1), the GFCs (resp. the SMs) are disconnected from the

model. The inertia time constant H and the turbine time constant τ are kept constant

regardless of the rating, as for a hydro-power plant it is more a function of the type

of governor and turbine rather than the size[62, Section 9.1]. Moreover, the original

model delivered by Hydro-Quebec specifies identical parameter values for all the plants

regardless of the size.

3.3 Results

We start by defining the contingencies that will be considered. It is expected that, as SMs

are being replaced by GFCs, the size of the worst contingency (typically the rated power

of the largest SM in the grid) will become smaller, as generation becomes less coarse

and more distributed. In our particular case study, this implies the worst contingency

is the loss of the largest SM for low penetration levels (SM 1 or 6), and the HVDC

link trip for high penetration levels. Nonetheless, for a fair comparison across different

integration levels, we always consider the same contingency value for all values of η.

Therefore, the worst contingency is chosen to be the simultaneous loss of the combined

generation unit SM-GFC 1 (namely, the loss of 5.5 GW generation). For completeness,

the disconnection of the HVDC link in the model will be considered as well in Sections

3.3.3 and 3.3.5.

3.3.1 PSS retuning for high penetration levels

It has been conjectured that the generation transition from a SM-dominated grid to a

GFC-dominated one is challenging [72], [97], [98]. Indeed, we have observed in our initial

results that, starting at 80% GFC penetration, stability is lost. However, we found that

re-tuning of the PSSs renders the system stable, at least from a frequency perspective.

For η ≤ 0.7, the system is stable under the original PSS structure (multiband PSS4B)

and parameters, where all PSS blocks have the same parameters for all units. Roughly

speaking, this type of PSS structure defines 3 different frequency bands and their cor-

responding lead-lag compensators. For the original PSS, these 3 frequency bands are

set around 0.2Hz, 0.9Hz, and 12Hz, aimed at global, inter-area and local modes, respec-

tively. For 0.8 ≤ η ≤ 0.9, the PSSs have been modified as follows: the second frequency

range has been shifted to 1.2Hz, and the high frequency branch has been completely
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removed, to avoid having the corresponding lead-lag compensator acting on the existing

GFC fast dynamics. Likewise, the gains of each branch have been reduced by a factor

of 5. Based on this successful retuning, it can then be conjectured that, under the mas-

sive presence of GFCs, two aspects need to be considered: the PSS action might need

to be reduced accordingly (but not fully removed); the PSS effect on high frequencies,

where the response of GFCs is significant, can destabilize the system. Further analysis

is needed to derive a more formal conclusion. We emphasize that there should be other

re-tuning strategies that successfully stabilize the system, including the more natural

choice of different PSS parameters for each SM.

Previous works [72], [95] already pointed at AVR and PSS regulators as the possible

cause for instability at high values of η. Note that the modified PSS tuning does not

stabilize the system for η ≤ 0.7. Finding a unique set of PSS parameters stabilizing the

system for all penetration levels is a challenging task. Indeed, it is unclear whether such

settings exist, as the system dynamics and oscillation modes drastically vary depending

on the amount of GFCs present in the grid. In practice, it is undesirable to continu-

ously retune the existing PSS controllers in a grid depending on the penetration level.

Moreover, the real-time ratio of converter-based generation (and its location) is not ac-

curately known at the plant level, unless the transmission system operators disclose this

information. Therefore, either novel robust, adaptive or more centralized PSS structures

would be required to guarantee stability independently of the amount of converter-based

generation present in the grid.

3.3.2 Frequency performance under the worst contingency

Figure 3.4 illustrates the frequency time series of the SM 2 (the closest unit to the event)

for the loss of the largest unit i.e., the SM-GFC 1 (see Figure 3.1). The increasing

integration of GFCs significantly improves the frequency nadir, but it degrades the Ro-

CoF, when computed over a short time window (more on this topic in the next section).

Moreover, the time at which nadir occurs also is shortened. Although converters do

not possess any significant inertia, their fast response curbs the impact of generator trip

on the grid frequency. The behavior for 80% and 90% is qualitatively different from

the rest, due to the PSS retuning. The case of a pure converter-based grid is covered

later in Section 3.3.5. Note that a similar behavior has been observed under the other

aforementioned grid-forming techniques.

Remark 3. By enforcing a slow frequency response for the GFCs - mimicking the slow

turbine dynamics - GFCs can be made fully compatible with the time-scales of the SMs

and their corresponding PSSs (i.e., reducing the time-scale separation of different gener-

ation units [72, Figure 4]). However, fully mimicking the response of a SM would require

to slow down the GFC frequency response artificially as well as significantly oversizing

the GFCs. A much more viable solution is to adapt the PSS parameters according to
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Figure 3.4: Frequency evolution of the SM 2 following the loss of SM-GFC 1. When the GFC
integration level is set to 80% and 90%, the PSS controllers for the remaining SMs have been
identically retuned.

the penetration level.

The time series in Figure 3.4 correspond to the mechanical frequencies of the SM 2.

For low values of η, these signals are expected to be representative of the bus frequencies

across the grid. However, for a GFC-dominated grid, the GFC internal frequencies -

being well-defined also in transients - might be more descriptive of the frequencies

across the grid. Figure 3.5 illustrates the post-contingency frequency time series of SMs

and GFCs, for the integration levels η = 0.1 and η = 0.9. As expected, the SM-GFCs 2-4

in the Northwest region (see Figure 3.1), which are closer to the event, exhibit the largest

RoCoF values. Interestingly, at low penetration levels large oscillations appear at the

GFCs before they synchronize with the SMs. At high integration levels we observe larger

oscillations at the SMs. Further analyses are needed to conclude which set of signals is

more relevant to describe the frequency behavior for different integration levels. In any

case - regardless of the integration level - the SMs mechanical frequencies are still needed

to evaluate potential RoCoF-related issues associated with conventional generation.

3.3.3 Evolution of the frequency metrics

While appropriate retuning of the PSS stabilizes the system, the results presented in

the previous section suggest that the system dynamics drastically change depending

on the GFCs integration level. To analyze and characterize this effect, we resort to
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Figure 3.5: The SM and GFC frequencies for two extreme integration levels, across the grid,
following the loss of SM-GFC 1. Regardless of the integration level and the source of frequency
signal (i.e., SM or GFC), units in the Northwest region - where contingency occurs - exhibit
the largest oscillation.

the standard frequency stability metrics e.g., frequency nadir or maximum frequency

deviation ||∆ω||∞ and RoCoF(T) |ω̇|, formally defined for the generation unit i as:

||∆ωηi ||∞ := max
t≥t0

|ωηi (t0)− ωηi (t)|, (3.3a)

|ω̇ηi | :=
|ωηi (t0 + T )− ωηi (t0)|

T
, (3.3b)

where t0 is the time when the event occurs, ωηi the mechanical frequency at unit i under

penetration ratio η, and T is the RoCoF calculation window. For ease of exposition,

we consider in this subsection the HVDC link trip (see Figure 3.1), and evaluate these

metrics based on the SMs frequencies across the grid. Figure 3.6 depicts the frequency

metrics evolution for SM 1, 5 and 6 (representatives of each area in the grid) following

the loss of 2 GW generation caused by the HVDC link trip, for different values of η. We

consider two RoCoF computation windows, namely T1 = 0.1s and T2 = 0.5s (i.e., com-

puting RoCoF using different time windows), denoted as RoCoF(0.1) and RoCoF(0.5).
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for different integration levels for all the SMs across the grid. The event corresponds to the
loss of 2 GW generation due to the disconnection of the HVDC link in Figure 3.1. All data
points are normalized against the corresponding metric values of the baseline all-SMs system.

Furthermore, the nadir and RoCoF values corresponding to a particular choice of (η, T1,2)

are normalized with respect to the metrics of the all-SMs system with the same RoCoF

windows (i.e., η = 0 and T1,2). This removes the effect that RoCoF decreases when

computed over a longer horizon. From Figure 3.6, the following conclusions can be

drawn:

∗ For the units SM 1 and 6 (the units far from the event), RoCoF(0.1) deteriorates

as η increases, but RoCoF(0.5) improves with respect to the all-SM system.

∗ For the SM 5 - adjacent to the event - the RoCoF is less sensitive with respect to

the integration level, since the collocated GFC reacts fast enough and comparable

to the SM in the short term.

∗ In terms of absolute RoCoF values, i.e., not normalized against the all-SMs system’s

RoCoF, SM 5 is the one experiencing the largest RoCoF(0.1) values, as expected

(not shown here for space reasons).

∗ Similar observations were obtained in the previous subsection for the loss of SM-

GFC 1, where the SMs in the same region (SM 2,3 and 4) exhibit the largest

RoCoF(0.1) values (see Figure 3.5).
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In other words, as inertia homogeneously decreases across the network, frequency decays

faster right after a contingency, leading to larger RoCoF(0.1) values. The GFCs respond

slower than the instantaneous inertial response from SMs, but fast enough to arrest the

frequency decay rate before T = 0.5s, leading to smaller RoCoF(0.5) values.

Remark 4. A similar analysis can be carried out using the GFC frequencies. There is

no clear pattern on the evolution of the RoCoF(0.1) for low values of η, since there are

large oscillations within this time scale. In this case, the RoCoF(0.1) metric is no longer

insightful, and low values might hide large swings. It has been observed that RoCoF(0.5)

clearly decreases as η increases.

3.3.4 Discussion on the frequency metrics

The presented results emphasize the relevance of the choice of the RoCoF window T ,

typically chosen to properly reflect frequency evolution, filter out noise and ignore fast

transients, according to the characteristics of a grid [99]. The presence of GFCs leads to

new, fast dynamics and therefore the value of T has to be reconsidered for the low-inertia

systems. A natural reaction is to reduce the current choices for T (typically between

500ms and 1s) to accommodate for the fast response of GFCs, but, as explained before,

it can lead to misleading conclusions. On the other hand, large values of T might be

ineffective for protection devices, as dynamics are much faster under high values of η.

High RoCoF values represent a challenge for existing settings of RoCoF relays, some

load-shedding schemes, and conventional generation, that in general are not able to

withstand sudden changes in speed and might disconnect to avoid damage. Nonetheless,

fast transients vanishing in less than 200ms are not expected to be meaningful for the

SM or RoCoF relays. Nonetheless, their influence on the grid-following converters can

be significant, depending on the PLL implementations.

Notice as well how nadir is no longer uniform for all SMs under high penetration

levels (e.g., see the time series corresponding to η = 0.9 in Figure 3.5), caused by fast

oscillations appearing adjacent to the event location and prior to the GFCs synchroniza-

tion. For such a system, it might be needed to redefine the nadir metric to filter out

these oscillations to obtain a meaningful metric which effectively reflects the severity of

the grid contingency. Whether these fast dynamics need to be fully captured, ignored or

just partially encapsulated in the metrics requires further in-depth investigations. This

would depend on the effect of those fast dynamics across different components in the

grid (grid-following devices, conventional generation, industrial loads, etc.).

3.3.5 All-GFC grid

We also explore a possible 100% GFC scenario, without the presence of any SM. The

controllers are tuned as in the previous section, that is, no modification has been carried
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out to stabilize the system. We compare in this case the trip of the HVDC link and the

disconnection of generator 1. As shown in Figure 3.7, after a very quick transient all

converters synchronize under both contingencies, reaching a steady state before 300ms.

Once again, similar results have been observed under other grid-forming techniques, and

combinations thereof.

Nadir is largely reduced in comparison to the all-SM grid, as the GFCs are orders

of magnitude faster than the hydropower plants. For the case of the disconnection of

generation unit 1, all generators in that area (2, 3 and 4) experience the largest values

of short time-window RoCoF. On the other hand, for the other generators the response

is nearly overdamped, and the nadir is equal to the steady state frequency deviation.

This implies that the nadir, as defined in (3.2), is much larger for those units close to the

event. Unlike in SM-dominated grids, in all-GFC grids nadir can be reached before the

generation units synchronize. Therefore, values are not uniform across all units in the

grid, and depend largely on the location of the event. Similar conclusions can be reached

for the disconnection of the HVDC link, as the RoCoF and nadir values for generator 5

are much larger than for the rest of the generators.

These results question again the adequacy of the metrics in (3.2) for converter-

dominated grids. On one hand, large values of T can render RoCoF useless as a metric,

since the system might have reached a steady state2, and hence RoCoF would just be

proportional to the droop coefficient of the grid. On the other hand, small values of

T that capture the first swing (around 50ms for both events) are very impractical and

sensitive to noise. Overall, it is unclear whether a metric is required to characterize these

fast dynamics, whose effect in the grid might be questionable.

3.4 Conclusions and outlook

While GFCs have already been used at a microgrid scale, there exist serious doubts

on the stability of large systems as GFCs replace SMs, especially at high penetration

levels. This paper has explored the massive deployment of grid-forming converters and

its effects on frequency behavior. The presented results suggest that, under proper

controller tuning, it is possible to guarantee frequency stability. Nonetheless, the grid

dynamics change drastically, reaching steady state in the sub-second time range, orders

of magnitude faster than the original pure-SM system. This has clear implications in

terms of nadir and RoCoF, which might imply rethinking tuning of protection devices

and load shedding schemes. There is also a need for PSS structures that can deal with

a time-varying amount of inverter-based generation. To the best of our knowledge, no

guidelines can be found for PSS tuning under high penetration scenarios.

Although in this work we have only covered the penetration of converters controlled

2Assuming no secondary control or similar frequency-recovery scheme is implemented.
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Figure 3.7: Frequency time series for all units in an all-GFC grid.

as grid-forming units, it is expected that a large number of devices will be operated as

grid-following units. Large values of short time-window RoCoF might not be meaningful

for frequency ride-through schemes in conventional generators or for RoCoF relays. How-

ever, grid following devices will try to synchronize to those fast transients, potentially

creating large power transients.
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Grid-forming hybrid angle control

65





CHAPTER 4
Grid-forming hybrid angle control and

almost global stability of the DC-AC power

converter

Published in the IEEE Transactions on Automatic Control 2022.

Authors – Ali Tayyebi, Adolfo Anta, and Florian Dörfler.

Abstract – This paper introduces a new grid-forming control for a grid-connected dc-

ac power converter, termed HAC that combines the dc-based matching control with

a novel nonlinear angle feedback reminiscent of (though not identical to) classic droop

control. The synthesis of HAC is inspired by the complementary benefits of the dc-based

matching and ac-based grid-forming controls as well as ideas from direct angle control and

nonlinear damping assignment. The proposed HAC is applied to a nonlinear converter

model that is connected to an infinite bus or a center-of-inertia dynamic grid models. We

provide parametric sufficient existence, uniqueness, stability, and boundedness conditions

that are met by appropriate choice of control parameters. Next, we take into account

the safety constraints of power converter, and synthesize a new current-limiting control

that is compatible with HAC. Last, we present details on the practical implementation of

HAC that are followed by a robustness analysis (which showcases a theory-practice gap),

uncover the intrinsic droop behavior of the HAC, derive a feedforward-like ac voltage

and power control, and illustrate the behavior of the closed-loop system with simulation

case studies.

4.1 Introduction

The generation technology in power system has been drastically changing in recent

years. The increasing replacement of bulk synchronous machines (SMs) with converter-

interfaced generation is transforming the power system to a so-called low-inertia system.

The stability aftermath of this transition is highlighted by significant inertia reduction,

volatile generation, and the potential adverse interactions due to the presence of adjacent
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timescales [1], [2], [33], [70], [100]–[102], among others. The grid-forming control concept

is envisioned to address the aforementioned stability challenges, whereby the converter

features frequency and voltage control, black-start, and load-sharing capabilities.

Several grid-forming control techniques have been recently proposed. Droop control

mimics the speed droop of synchronous generators (SG), controls the converter mod-

ulation angle proportional to the active power imbalance, and is widely recognized as

the baseline solution [34], [35]. As a natural extension of droop control, the emulation

of SG dynamics and control led to virtual synchronous machine (VSM) strategies [38],

[64], [103], [104]. The recently proposed matching control exploits structural similarities

of the converter and SG; and matches their dynamics by controlling the modulation

angle according to the dc voltage [40], [41], [43], [44], [65]. Furthermore, virtual os-

cillator control (VOC) mimics the dynamical behavior of Liénard-type oscillators and

globally synchronizes a converter-based network [46], [49]. Recently, dispatchable vir-

tual oscillator control (dVOC) is proposed that ensures almost global synchronization

of a homogeneous network of oscillator-controlled converters to pre-specified set-points

consistent with the power flow equations [45], [47], [50].

Inspired by recent studies [1], [55], [105] two distinct controller classes are identified:

1) ac-based techniques (e.g., droop control, VSM, VOC, and dVOC) that shape the

converter frequency based on the ac quantities e.g., ac voltage and current, or power

flows, and 2) dc-based controls (e.g., matching control) that synthesize the converter

frequency based on the dc quantities e.g., dc voltage. The ac-based strategies improve the

system-level small-signal frequency stability e.g., see [1, Subsection IV-C]. In contrast,

the dc-based controls exhibit superior robustness [1, Subsection IV-D][105][55].

We leverage the aforementioned benefits and design a hybrid angle control (HAC)

which combines a matching control variant and a nonlinear angle feedback (reminiscent

of, though not identical to, droop control and dVOC) and is inspired by ideas from direct

angle control [40] and sign-indefinite nonlinear damping assignment [106], [107]. Our

proposed controller almost globally stabilizes the closed-loop converter dynamics when

interfaced to either an IB or a dynamic COI grid model through a transmission line. We

provide parametric conditions for the existence, uniqueness, and almost global stability

of closed-loop equilibria. Last, we take into account the converter safety constraints,

design a new current-limiting control, and investigate its stability in combination with

HAC1. Note that similar to other techniques (e.g., [2], [9], [35], [40], [45], [64], [65], [70])

HAC is a candidate for applications on different voltage levels in either grid-connected

or islanded configuration.

1A preliminary version of part of the results presented in this paper can be found in [8]. This paper
improves the results in [8] by including 1) more realistic converter and grid models, 2) several theo-
retical extensions and practical remarks, 3) unified stability and instability conditions, 4) a compatible
current-limiting control design, 5) detailed discussions on the HAC implementation, control robustness,
complementary feedforward schemes, power-frequency droop behavior, and last 6) various numerical
case studies to validate the performance and explore the control tuning trade-offs.
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We consider a high-fidelity converter model including an explicit representation of

energy source dynamics, dc-link, LC output filter, transmission line, COI grid dynamics,

and the converter set-points. Further, the presented stability condition does not demand

strong physical damping and is met by appropriate choice of control parameters.

Moreover, our choice of the angle dependent terms in the LaSalle/Lyapunov func-

tion and in the HAC formulation overcomes the analysis obstacles arising from lack of

damping in angle state. Finally, we conclude this paper with some extensions, namely:

a practical implementation and droop behavior of the HAC is described, a feedforward

ac voltage and power control is discussed, and the control performance are explored with

publicly available case studies [71]. In addition, as an interesting technical contribution

in its own right, this paper introduces an offbeat manifold space —the boundary of a

Möbius strip— for studying the evolution of angle trajectories. A theoretical limitation

of all (continuous control) systems with angles evolving on the circle is that they can

at best achieve AGAS due to the topological obstruction of the circle [108], which is a

recurring theme in many of the aforementioned papers, e.g., see [109]. Here we establish

AGAS of the angles on the boundary of a Möbius strip which results in global asymptotic

stability of the desired equilibrium when projected on the circle.

The remainder of this paper is structured as follows. Section 4.2 describes the model

of a converter connected to an IB and introduces the HAC. Section 4.3 presents the

closed-loop analysis and the main result of this work. Section 4.4 discusses two theo-

retical extensions: dynamic COI grid model consideration and the design of a current-

limiting control for grid-forming converters. Section 4.5 presents details on practical

HAC implementations, robustness analysis of HAC, a complementary feedforward con-

trol, and HAC droop behavior. Next, we verify the performance of our controller via

numerical examples in Section 4.6. Last, a summary and outlook on future work are

given in Section 4.7.

4.2 Model description

4.2.1 Preliminaries and notation

In this paper, R denotes the set of real numbers, R>0 denotes the set of strictly positive

real numbers and R[a,b] := {x ∈ R : a ≤ x ≤ b}. The unit circle i.e., one-dimensional

torus is denoted by S1. For the column vectors x ∈ Rn and y ∈ Rm, (x, y) :=
[
x⊤, y⊤

]⊤
∈

Rn+m denotes the stacked vector, and I is the two-dimensional identity matrix. The

vector and matrix of zeros are respectively denoted by 0n and 0n×m. The block diagonal

matrix is denoted by blkdiag(A1, . . . ,An). Furthermore, ∥·∥ denotes the Euclidean norm

operator. next, given φ ∈ S1 we define ψ(φ) :=
(
cos(φ), sin(φ)

)
. Last, for x ∈ R2, ∠x

denotes the absolute angle associated with the vector x in the polar coordinates; see
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Appendix 4.9 for details.

In this work, similar to [1], [64], [65], [100] among others, we consider symmetric

three-phase electric circuitry assuming identical electrical parameters for all three phases

and that all three-phase quantities z abc := (za, zb, zc) ∈ R3 are balanced i.e., za + zb +

zc = 0. Under the latter assumption, a three-phase quantity zabc is transformed to the

stationary αβ-frame via magnitude preserving Clarke transformation i.e., zαβ = Czabc
(see Appendix 4.9.1 for details). Moreover, the image of zαβ in direct-quadrature (dq)

coordinates that rotate with constant frequency ωf ∈ R>0 and the angle θf = ωft+θf(0) ∈
S1 is given by z = R(θf)zαβ with

R(θf) :=

(
cos θf − sin θf
sin θf cos θf

)
.

4.2.2 Modeling the connection of converter and stiff grid

The IB three-phase voltage is defined by

vb,abc := vr

(
sin (θb) , sin

(
θb −

2π

3

)
, sin

(
θb +

2π

3

))
,

where vr ∈ R>0 is the nominal ac voltage magnitude, and

θb := ω0t+ θb(0) ∈ S1 (4.1)

is the IB absolute angle with the nominal frequency ω0 ∈ R>0.

We consider an average model of a three-phase two-level dc-ac converter [73, Chapter

5] and model the dc energy source by a first-order system that provides the input for a

controlled dc current source. This is a reasonable coarse-grained model of the dc energy

source e.g., see [1, Section II.A][110, Section 6.4]. The ac filter is modeled by an LC

element. Moreover, the converter is interfaced to the IB with an inductive line (that can

also be seen as a low-voltage to medium voltage transformer model); Figure 4.1 presents

a schematic of the overall model.

The model of the converter-IB system in αβ-frame is described by (see [65, Section

II][73, Chapter 5] for details)

τdci̇dc = idc,r − idc, (4.2a)

cdcv̇dc = idc − gdcvdc −mαβ(µr, θc)
⊤iαβ, (4.2b)

ℓi̇αβ = vdcmαβ(µr, θc)− riαβ − vαβ, (4.2c)

cv̇αβ = iαβ − gvαβ − ig,αβ, (4.2d)

ℓgi̇g,αβ = vαβ − rgig,αβ − vb,αβ, (4.2e)
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where τdc is the source time constant, idc ∈ R is the dc source current, cdc, vdc ∈ R, and
gdc respectively denote the dc-link capacitance, voltage, and the dc conductance (that

models the dc-side losses).

Furthermore, iαβ, vαβ, and ig,αβ all take values in R2 and denote the current flowing

through the filter inductance ℓ, the voltage across the filter capacitance c, and the current

through the line inductance ℓg. Lastly, r, g, and rg model switching and conduction

losses associated with the elements ℓ, c, and ℓg, respectively. We do not explicitly model

a local impedance load attached to the converter since it can be absorbed into the filter

admittance. Due to the three-phase symmetry all parameters take positive and scalar

values.

The modulation vector is defined asmαβ(µr, θc) := µrψ(θc) ∈ R[−1/2,1/2] with reference

magnitude µr ∈ R[0,1/2] and angle θc ∈ S1 where θc denotes the converter absolute phase

angle. In what follows, we will use the shorthand m for mαβ(θc, µr). The reference dc

current in (4.2a) is defined as

idc,r := ir − κ(vdc − vdc,r), (4.3)

where ir ∈ R denotes the open-loop dc current reference, κ ∈ R>0 is the dc voltage

control gain, and vdc,r is the reference dc voltage. If the dc source is connected to a dc-dc

converter (e.g., as in PV systems), idc,r in (4.3) represents the reference current for the

dc-dc converter. Note that the forthcoming analysis also applies to the case with energy

source being modeled as a stiff voltage source i.e., τdc → 0 and κ→ ∞.

4.2.3 Hybrid angle control and closed-loop dynamics

We synthesize a new grid-forming strategy —hybrid angle control (HAC)— by combining

the dc-based matching control (see e.g., [41, Equation 25]) and a nonlinear angle feedback

reminiscent of —though not identical to— droop control and dVOC (see e.g., [34], [50]

and Remark 7 for details). Defining the converter relative angle w.r.t the IB as

θ := θc − θb, (4.4)

the HAC takes the form

θ̇c = ωc := ω0 + η(vdc − vdc,r)− γ sin

(
θ − θr
2

)
, (4.5)

where η ∈ R≥0, γ ∈ R>0 are the control parameters and θr denotes the control reference

for the relative angle in (4.4) (see Proposition 7 for how to choose θr based on given

voltage and power set-points). Since the angle term in the right-hand side (RHS) of

(4.5) is 4π-periodic, the state θc evolves on the set M := [−2π, 2π] with −2π and 2π
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glued together (i.e., −2π ≡ 2π). The terminology is due to M being the boundary of the

Möbius strip; see Remark 5 and Figure 4.2. This geometric curiosity leads to profound

insights later on.

We transform the ac quantities in (4.2c)-(4.2e) to the dq-frame aligned with the IB

angle θb. Next, state vector is defined as

x := (θ, idc, vdc, i, v, ig) ∈ X := M× R8 (4.6)

and the overall closed-loop dynamics (4.2)-(4.5) is described by

θ̇ = ωc − ω0 = η(vdc − vdc,r)− γ sin

(
θ − θr
2

)
, (4.7a)

τdci̇dc = ir − κ(vdc − vdc,r)− idc, (4.7b)

cdcv̇dc = idc − gdcvdc −m⊤i, (4.7c)

ℓi̇ = vdcm− Zi− v, (4.7d)

cv̇ = i− Yv − ig, (4.7e)

ℓgi̇g = v − Zgig − vb. (4.7f)

Here m = µrψ(θ), Z := rI− ℓω0J denotes the filter impedance matrix with J :=
(

0 1
−1 0

)
,

Y := gI− cω0J is the shunt admittance matrix, Zg := rgI− ℓgω0J is the grid impedance

matrix, and vb := (vr, 0).

For notational convenience we respectively define the net dc current and power trans-

ferred to the converter ac-side as inet := m⊤i and pnet := vdcinet. The ac active and

reactive power injections at the switching node, the filter capacitance, and IB nodes in

Figure 4.1 are respectively defined by ps := i⊤vs with vs := vdcm, qs := i⊤Jvs, pf := i⊤v,

qf := i⊤Jv and pg := i⊤g vb, qg := i⊤g Jvb [73, Section 4.6]. Last, note that the RHS of (4.7)

is continuously differentiable in X and the main nonlinearity aside (4.7a) is represented

by the modulated terms in (4.7c) and (4.7d) with their power-preserving structure (as-

suming lossless dc-ac conversion) i.e., pnet = ps [40]. We close this section with remarks

on M and the HAC.

Remark 5 (Möbius strip). The angle term in (4.5) is 4π-periodic and thus multi-valued

on S1. Hence, we study the evolution of angle trajectories in M. One representation of M
is the compact boundary of Möbius strip parametrized in R3 by σ(w,φ) with coordinates

σ1(w,φ) :=

(
ρ− w cos

φ

2

)
cosφ,

σ2(w,φ) :=

(
ρ− w cos

φ

2

)
sinφ,

σ3(w,φ) := w sin
φ

2
,
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where ρ ∈ R>0 is the middle circle radius, w denotes the half-width with |w| ≤ 1/2, and

φ ∈ S1. Figure 4.2 illustrates a parametrization of σ(w,φ) such that |∂σ(w,φ)| = 4π

where ∂σ(w,φ) denotes the boundary of Möbius strip.

σ(w,ϕ)

Figure 4.2: The boundary of the Möbius strip represents the angle space of (4.7). The arcs
contained in the boundary segments colored in blue and red respectively represent the angles
in [−2π, 0] and [0, 2π].

Remark 6 (Design rationale and control synthesis). The design rationale for HAC is

to blend the dc and ac information in the converter frequency definition. Thus, HAC

is expected to inherit the enhanced performance and robustness of the ac and dc-based

controls (see Section 4.1 and Subsection 4.6.3 for a numerical confirmation of these

hypotheses). Furthermore, the benefits of hybrid control structures are also reported in

[55]. On the other hand, HAC is inspired by a direct angle control approach [40]. The

angle feedback in (4.5) is an odd function and injects angle damping i.e., it provides

dissipation for the angle in (4.7a) unlike the other controls, where the angle variable acts

as a mere integrator e.g., [65].

Remark 7 (Hybrid angle control variants). With particular parameter choices in (4.5),

HAC recovers several existing controls. For instance, η = 0 in (4.5) leads to a pure angle

feedback control i.e., ωc = ω0 − γ sin
(
(θ − θr)/2

)
reminiscent of the droop control [1,

Section III-C][34]. Indeed, droop control is described by ωc := ω0 + dp−ω (pr − p), with

the droop gain dp−ω ∈ R>0 (see Proposition 6 for a definition), power reference pr, and

p := i⊤g v being the measured power that (with the assumptions in [34]) is proportional

to sin(θ). Likewise, HAC relates to dVOC dynamics (in polar coordinates) that locally

resembles droop control [48], [50]. Furthermore, the HAC’s dc term with η = ω0/vdc,r
recovers the standard matching control [65] combined with the angle term i.e., ωc =

ηvdc − γ sin
(
(θ − θr)/2

)
. Last, if η ̸= ω0/vdc,r the dc term in (4.5) is identical to the

matching variant in [41].
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4.3 Closed-loop analysis

In this section, we analyze the closed-loop system (4.7) and provide sufficient parametric

conditions for the existence, uniqueness, and global stability of the closed-loop equilibria.

4.3.1 Existence of equilibria

Provided that the dc voltage meets its reference in steady state, we will establish that

the closed-loop system (4.7) admits a unique equilibrium set containing two disjoint

equilibria

Ω⋆ :=
{
x⋆s := (θ⋆1, y

⋆) , x⋆u := (θ⋆2, y
⋆)
}
, (4.9)

where θ⋆1 := θr, θ
⋆
2 := θr + 2π, and y⋆ :=

(
i⋆dc, v

⋆
dc, i

⋆, v⋆, i⋆g

)
is the unique equilibrium of

the states evolving in R8.

Theorem 1 (Existence of equilibria). The closed-loop system (4.7) admits two equilibria

if there exist a consistent reference ir = i⋆dc in (4.7b) such that v⋆dc = vdc,r. These disjoint

equilibria only differ by their equilibrium angles being equal to θr or θr + 2π, i.e., they

are of the form (4.9).

Proof. We begin by setting the RHS of (4.7) to zero

η(v⋆dc − vdc,r)− γ sin

(
θ⋆ − θr

2

)
= 0, (4.10a)

ir − κ(v⋆dc − vdc,r)− i⋆dc = 0, (4.10b)

i⋆dc − gdcv
⋆
dc −m(θ⋆)⊤i⋆ = 0, (4.10c)

v⋆dcm(θ⋆)− Zi⋆ − v⋆ = 02, (4.10d)

i⋆ − Yv⋆ − i⋆g = 02, (4.10e)

v⋆ − Zgi
⋆
g − vb = 02. (4.10f)

If the condition of the theorem is met and thus v⋆dc = vdc,r, (4.10b) implies that i⋆dc = ir
and (4.10a) reduces to γ sin

(
(θ⋆ − θr)/2

)
= 0. Hence the angle equilibria are

θ⋆1 = θr and θ⋆2 = θr + 2π. (4.11)

It remains to show (4.10d)-(4.10f) admits a unique solution. Rearrange (4.10d)-(4.10f)

to A(i⋆, v⋆, i⋆g) = b with

A :=




−Z −I 02×2

I −Y −I

02×2 I −Zg
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and b :=
(
−v⋆dcm(θ⋆), 02, vb

)
. It can be easily computed that symmetric part of A, that

is,
(
1/2
) (

A+A⊤) ≺ 0. Hence, A−1 exists and (i⋆, v⋆, i⋆g) := A−1b is unique. ■

Remark 8 (Equilibria and the existence condition). Theorem 1 identifies two equilibria

in (4.9) conditioned on a consistent reference ir that ensures v
⋆
dc = vdc,r. This condition

is possibly enforced through appropriate feedforward or a proportional-integral control,

and it can be entirely omitted if η = 0 in (4.5). In Subsection 4.3.2, we will prove that

the system (4.7) is AGAS w.r.t x⋆s under a mild parametric condition. Thus, if x⋆s exists

then no other relevant (i.e., stable) equilibria co-exist. Last, next to x⋆s being AGAS on

M× R8, we will establish instability of x⋆u. In fact, when viewing the angle state not as

element of M but more conventionally evolving on S1 (i.e., picture projecting Figure 4.2

downwards to a circle), then the two equilibria {x⋆s , x⋆u} represent an identical point on

S1. Thus, by working on M rather than S1 we by-passed the topological obstruction to

continuous stabilization on S1 [108].

4.3.2 Stability analysis

In the sequel, we establish the AGAS of the system (4.7) w.r.t the equilibrium x⋆s char-

acterized in Theorem 1. This finding relies on the basis of intermediate results, namely,

1) global convergence of the trajectories to Ω⋆ in (4.9), 2) local asymptotic stability of

x⋆s , and 3) instability of x⋆u. We begin by restating the definition of AGAS [45, Definition

5].

Definition 1 (AGAS). An equilibrium of a dynamical system is almost globally asymp-

totically stable if it is asymptotically stable and for all initial conditions, except those

contained in a Lebesgue zero-measure set, the trajectories converge to that equilibrium.

Theorem 2 below demonstrates the global attractivity of the equilibria (4.9) under a

parametric condition that can be satisfied by an appropriate choice of the control gains

η and γ in (4.5).

Theorem 2 (Global attractivity). Consider the closed-loop system (4.7) and the equi-

libria Ω⋆ characterized in Theorem 1. If the system parameters satisfy

η

gdc
+
η
(
µr∥i⋆∥

)2

gdc
+
η(µrv

⋆
dc)

2

r
< γ, (4.12)

then all trajectories of (4.7) globally converge to Ω⋆.

Proof. Define the error coordinates x̃ =
(
θ̃, ĩdc, ṽdc, ĩ, ṽ, ĩg

)
w.r.t x⋆s – with the equilib-

rium angle θ⋆1 – in (4.9) as

x̃ := (θ − θ⋆1, idc − i⋆dc, vdc − v⋆dc, i− i⋆, v − v⋆, ig − i⋆g). (4.13)
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The error dynamics associated with (4.7) are described by

˙̃θ = ηṽdc − γ sin
θ̃

2
, (4.14a)

τdc
˙̃idc = −κṽdc − ĩdc, (4.14b)

cdc ˙̃vdc = ĩdc − gdcṽdc − µre
⊤
ψ i

⋆ −m(µr, θ)
⊤ĩ, (4.14c)

ℓ˙̃i = m(µr, θ)ṽdc + µreψv
⋆
dc − Zĩ− ṽ, (4.14d)

c ˙̃v = ĩ− Yṽ − ĩg, (4.14e)

ℓg
˙̃i = ṽ − Zgĩg, (4.14f)

where eψ := ψ(θ) − ψ(θ⋆1). Let ỹ := (̃idc, ṽdc, ĩ, ṽ, ĩg) and consider the composite para-

metric LaSalle/Lyapunov function

V(x̃) := H(ỹ) + λS(θ̃) = 1

2

(
ỹ⊤Pỹ

)
+ 2λ

(
1− cos

θ̃

2

)
(4.15)

where P := blkdiag
(
τdc/κ, cdc, ℓI, cI, ℓgI

)
, λ ∈ R>0, and V(x̃) > 0 for all x̃ ̸= 09; see

Figure 4.3 for an illustration of V(x̃).
Evaluating V̇(x̃) along trajectories of (4.14) yields

V̇(x̃) =− gdcṽ
2
dc −

1

κ
ĩ2dc − r∥̃i∥2 − g∥ṽ∥2 − rg∥̃ig∥2 + ληṽdc sin

θ̃

2
− λγ sin2 θ̃

2

− µrṽdce
⊤
ψ i

⋆ + µrv
⋆
dcĩ

⊤eψ, (4.16)

where we exploited the skew symmetry of J in Z, Y, and Zg i.e., ĩ
⊤(ℓω0J)̃i = ṽ⊤(cω0J)ṽ =

ĩ⊤g (ℓgω0J)̃ig = 0. We apply the identity (4.71) to the eψ-dependent terms in (4.16):

−µrṽdce
⊤
ψ i

⋆ ≤
(
ϵ1µr∥i⋆∥

)2
ṽdc

2 +
1

4ϵ21
∥eψ∥2, (4.17a)

µrv
⋆
dcĩ

⊤eψ ≤ ϵ22∥̃i∥2 +
(µrv

⋆
dc)

2

4ϵ22
∥eψ∥2, (4.17b)

with ϵ1, ϵ2 ∈ R>0. Next, by applying identities (4.72) and (4.75), ∥eψ∥2 is expressed in

terms of sin
(
θ̃/2
)
:

∥eψ∥2 = (cos θ − cos θ⋆1)
2 + (sin θ − sin θ⋆1)

2 = +2 (1− cos θ cos θ⋆1 − sin θ sin θ⋆1)

= 2
(
1− cos(θ − θ⋆1)

)
= 2

(
1− cos θ̃

)
= 4 sin2 θ̃

2
.
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Replace ∥eψ∥2 by 4 sin2
(
θ̃/2
)
in (4.17), then V̇(x̃) in (4.16) is upper-bounded by

V̇(x̃) ≤ληṽdc sin
θ̃

2
−
(
λγ − 1

ϵ21
− (µrv

⋆
dc)

2

ϵ22

)
sin2 θ̃

2
−
(
gdc −

(
ϵ1µr∥i⋆∥

)2)
ṽ2dc

−
(
r − ϵ22

)
∥̃i∥2 − 1

κ
ĩ2dc − g∥ṽ∥2 − rg∥̃ig∥2 = −ζ̃⊤Qζ̃ , (4.18)

where ζ̃ :=

(
sin
(
θ̃/2
)
, ỹ

)
and Q :=

(
Q11 03×6

06×3 Q22

)
with

Q11 :=




γλ− 1

ϵ21
− (µrv

⋆
dc)

2

ϵ22
0 −ηλ

2

0
1

κ
0

−ηλ
2

0 gdc −
(
ϵ1µr∥i⋆∥

)2




(4.19)

and Q22 := blkdiag
((
r − ϵ22

)
I, gI, rgI

)
. By standard Schur complement analysis, Q ≻ 0

iff

ϵ21 <
gdc

(µr∥i⋆∥)2
:= α and ϵ22 < r, (4.20a)

(
λη

2
√
gdc

)2

<

(
γλ− 1

ϵ21
− (µrv

⋆
dc)

2

ϵ22

)(
1− ϵ21

α

)
. (4.20b)

These bounds can be optimized over the parameters ϵ1, ϵ2, and λ to obtain the least

conservative or most compact condition.

To continue assume for now that η > 0. The simple and favorable choice ϵ1 =
√
α/2,

ϵ2 =
√
r/2, and λ = 2/η yields that conditions (4.20) are satisfied and Q ≻ 0 iff the

bound (4.12) is met. Accordingly, V̇(x̃) < 0 for all ζ̃ ̸= 09. For η = 0, the off-diagonal

elements of Q11 in (4.19) vanish. With the same choice of ϵ1 =
√
α/2 and ϵ2 =

√
r/2,

condition (4.20b) reduces to

2
(
µr∥i⋆∥

)2

λgdc
+

2(µrv
⋆
dc)

2

λr
< γ . (4.21)

For any γ > 0, (4.21) is met by a sufficiently large λ > 0, which is consistent with

condition (4.12) for η = 0.

Recall the boundedness of θ̃ in M and radial unboundedness of H(ỹ). Since V̇(x̃) ≤ 0,

for any x̃(0) ∈ X, the set LV(x̃(0)) = {x̃ ∈ X : V(x̃) ≤ V
(
x̃(0)

)
} is compact and forward

invariant. Thus, by LaSalle’s invariance [111, Theorem 4.4], all trajectories of (4.14)

converge to the largest invariant set in Ω = {x̃ ∈ X : V̇(x̃) = 0}.
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ỹ
θ̃

V(
x̃
)

Figure 4.3: Illustration of the Lyapunov function (4.15) under the simplifying assumption
that ỹ, θ̃ ∈ R, P = 1, and λ = 1.

Since Q ≻ 0, V̇(x̃) = 0 iff ζ̃ = 09 which holds iff sin
(
θ̃/2
)
= 0 and ỹ = 08 that means

either θ̃ = 0 or θ̃ = 2π in Ω proving that Ω = Ω⋆. ■

Proposition 1 below reveals the local asymptotic stability of the equilibrium x⋆s in

(4.9) under the condition (4.12).

Proposition 1 (Local asymptotic stability). Consider (4.7) and assume that (4.12)

holds. Then the equilibrium x⋆s in (4.9) is locally asymptotically stable.

The proof is provided in Appendix 4.8. Proposition 2 reveals instability of x⋆u in (4.9)

and characterizes its region of attraction as a Lebesgue zero-measure set.

Proposition 2 (Unstable equilibrium point). Consider (4.7) and assume that (4.12)

holds. The x⋆u in (4.9) is unstable with a zero-Lebesgue-measure region of attraction.

The proof is provided in Appendix 4.8. On the basis of the intermediate results, the

next theorem presents our main result.

Theorem 3 (Main result: AGAS). Consider the closed-loop system (4.7). If condition

(4.12) is satisfied, x⋆s in (4.9) is almost globally asymptotically stable.

Remark 9 (Feasibility and interpretations). First, condition (4.12) is met for suffi-

ciently large γ > 0 and it is possible to arbitrarily scale the left-hand side (LHS) terms

via η ≥ 0. Condition (4.12) implies that for small gdc and r, a large ratio γ/η is required.

Also, for high ∥i⋆∥, v⋆dc, and µr, the ratio γ/η must be increased. Finally, for pure angle

feedback, i.e., η = 0 and γ > 0 in (4.5), condition (4.12) is always met regardless of the
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system equilibria and parameters. Second, condition (4.12) does not demand a minimum

physical damping and is met by a large enough ratio of gains γ/η. An interpretation is

that with large enough virtual angle damping, the inherent converter passivity stabilizes

the dc and ac quantities [65]. Third, condition (4.12) does not depend on the dc source

time constant τdc and control gain κ. Thus, (4.12) also unveils the robustness of HAC

w.r.t delays in source actuation that suggests the compatibility of HAC with different en-

ergy sources on distinct timescales. Furthermore, κ can still be freely chosen to optimize

the dc voltage performance. Last, although HAC dominantly relies on ac dynamics (by

recommendation for large γ/η), stabilization does not require the conventional timescale

separation of angle, dc, and ac dynamics [112], [113]. Last, the Propositions 1 and 2

highlight that (4.12) is sufficient simultaneously for the local stability of x⋆s and the in-

stability of x⋆u. Hence, (4.12) is a unified condition whereas the conditions in [8] impose

different bounds on γ in (4.5).

4.4 Dynamic grid and current-limiting control

In this section, we construct two practically relevant theoretic extensions on the basis

of the analysis presented in the Section 4.3. First, we consider the connection of the

converter to a dynamic grid represented by a COI model and investigate the closed-loop

stability. Thus, extending the results of Theorem 2 to a more realistic class of power grid

models; see Theorem 4. Second, we tackle an open problem that is associated with grid-

forming power converters i.e., we account for the converter current constraint and design

a new current-limiting control that is compatible with HAC. Proving the overall stability

while augmenting the closed-loop dynamics with the current-limiting mechanism relies

on the analysis presented in the Section 4.3; see Propositions 3 and 4.

4.4.1 Modeling the connection of converter and dynamic grid

Under the slow coherency assumptions [114, Chapter 2][115], an interconnected network

of SGs can be represented with an equivalent COI model that relies on the aggregation of

swing dynamics [61, Section 6.10][116, Section 3.2]. The angle and frequency dynamics

of the COI grid model are described by

θ̇g = ω, (4.22a)

Jω̇ = Tm −Dω − Te, (4.22b)

where J ∈ R>0 is the moment of inertia and it is defined (in terms of the base power

Sr,g and the inertia constant H) by J := 2HSr,g/ω
2
0 [117, Equation 5.10]. Moreover,

Tm ∈ R denotes the mechanical torque, D ∈ R>0 denotes the aggregated damping and

droop coefficient that models the aggregated governor action, and Te ∈ R is the electrical
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torque. Considering the structural similarity of (4.22) and the full SM dynamics [109],

we define the dynamic grid voltage as

vg,abc := bω

(
sin θg, sin

(
θg −

2π

3

)
, sin

(
θg +

2π

3

))
, (4.23)

where b ∈ R>0 is constant [109, Equation 9]. Thus, Te in (4.22b) in terms of grid voltage

and current is [109, Equation 10]

Te =
i⊤g,abcvg,abc

ω
. (4.24)

Note that if J → ∞ and b is chosen such that ∥vg∥ → vr as ω → ω0, (4.22)-(4.24)

recovers the IB grid model with constant frequency and voltage magnitude (see Section

4.2.2).

Consider a converter controlled by HAC and connected to the COI grid model via an

inductive line; see Figure 4.1. Combining (4.2), (4.3), (4.5), and (4.22)-(4.24) the overall

closed-loop dynamics in a dq-frame aligned with θg is

θ̇ = ω0 + η(vdc − vdc,r)− γ sin

(
θ − θr

2

)
− ω, (4.25a)

τdci̇dc = ir − κ(vdc − vdc,r)− idc, (4.25b)

cdcv̇dc = idc − gdcvdc −m⊤i, (4.25c)

ℓi̇ = vdcm− Z(ω)i− v, (4.25d)

cv̇ = i− Y(ω)v − ig, (4.25e)

ℓgi̇g = v − Zg(ω)ig − bωe1, (4.25f)

Jω̇ = Tm −Dω + be⊤1 ig. (4.25g)

Here θ := θc − θg denotes the relative converter-COI angle, θr is the reference for θ,

and e1 := (1, 0). Note the impedance and admittance matrices in (4.25d)-(4.25f) are

ω-dependent (cf. constant matrices in (4.7d)-(4.7f)).

4.4.2 Equilibria characterization and closed-loop stability

To begin with, define the augmented closed-loop state vector

x := (θ, idc, vdc, ω, i, v, ig) ∈ X := M× R9. (4.26)

Assume that the reference dc current and mechanical torque in (4.25b) and (4.25g) are set

such that the equilibrium dc voltage and frequency coincide with vdc,r and ω0. Following

the same procedure as in the proof Theorem 1, dynamical system (4.25) admits two
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equilibria with the same structure as Ω⋆ in (4.9) i.e.,

Ω⋆ :=
{
x⋆s := (θ⋆1, y

⋆), x⋆u := (θ⋆2, y
⋆)
}
, (4.27)

with θ⋆1 := θr, θ
⋆
2 := θr + 2π, and y⋆ := (i⋆dc, v

⋆
dc, ω

⋆, i⋆, v⋆, i⋆g) denoting the unique equi-

librium associated with states evolving in R9. Theorem 4 delivers the same result as

Theorem 2 i.e., global stability of Ω⋆ under the flow defined by (4.25).

Theorem 4 (Global stability with dynamic grid model). Consider the closed-loop system

(4.25) and the equilibria Ω⋆ defined in (4.27). If the system and control parameters satisfy

D > Dmin :=

(
ℓ∥i⋆∥

)2

r
+

(
c∥v⋆∥

)2

g
+

(
ℓg∥i⋆g∥

)2

rg
, (4.28a)

γ >
η

gdc
+
η
(
µr∥i⋆∥

)2

gdc
+
η(µrv

⋆
dc)

2

r
+

1

2(D −Dmin)
, (4.28b)

then all trajectories of (4.25) globally converge to Ω⋆.

The proof is provided in Appendix 4.8.

Remark 10 (Extended stability conditions). Condition (4.28a) is met if the COI model

is sufficiently damped (see [106], [109], [118] for discussions on the critical damping

requirement) and with large enough γ condition (4.28b) is satisfied (see Remark 9). The

conditions in (4.28) almost decouple into the condition (4.12) (cf. (4.28b)) and the

damping requirement (4.28a). The latter can be perceived as characterization of the grid

types to which the converter can be interfaced. For D ≫ Dmin conditions (4.28) reduce

to (4.12). An interpretation of the trade-off between γ and D is that with large D the

timescale of COI model approaches that of the converter. Thus, synchronization demands

less virtual angle damping due to more coherent converter-COI frequency dynamics.

Akin to the relation between Theorem 2 and 4, following analogous arguments, one

can extend Propositions 1, 2, and Theorem 3 to (4.25) under (4.28). For brevity of

presentation, we omit the straightforward albeit lengthy calculations.

4.4.3 Compatible current-limiting control synthesis

In practice, power converters have tight state constraints for safety: in particular, their

filter current magnitude needs to be constrained to a prescribed limit for protecting the

semiconductor switches. There are ad hoc current-limiting techniques (without theoret-

ical certificates e.g., see [86]) for grid-following converters (see [33] for a definition). The

design of current limitation strategies for grid-forming (i.e., voltage source) converters
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is an active research topic [1], [70], [81], [87]. To this date, a universally satisfactory

solution that safeguards the converter against various contingencies (e.g., load-induced

over-current and balanced / unbalanced faults) is not known. In what follows, we propose

a new current-limiting control and highlight its compatibility with the HAC.

To begin with, by viewing the current dynamics in isolation, we derive the magni-

tude dynamics associated with (4.7d) by means of polar coordinates transformation (see

Appendix 4.9.2 for details). First, expand the current dynamics in (4.7d) i.e.,

ℓi̇d = µrvdc cos(θ)− rid + ℓω0iq − vd, (4.29a)

ℓi̇q = µrvdc sin(θ)− riq − ℓω0id − vq. (4.29b)

Consider that ∥i∥ =
√
i2d + i2q and thus

d

dt
∥i∥2 = 2∥i∥ d

dt
∥i∥ =

d

dt

(
i2d + i2q

)
= 2

(
idi̇d + iqi̇q

)
. (4.30)

Replace id and iq with ∥i∥ cos(θi) and ∥i∥ sin(θi) where θi := tan−1(iq/id) and multiply

(4.30) with ℓ/2∥i∥:
ℓ
d

dt
∥i∥ = ℓ cos(θi)i̇d + ℓ sin(θi)i̇q. (4.31)

Substitute vd and vq in (4.29) with ∥v∥ cos(θv) and ∥v∥ sin(θv) where θv := tan−1(vq/vd).

Replacing ℓi̇d and ℓi̇q in (4.31) with the RHS of (4.29) and exploiting (4.75) results in

ℓ
d

dt
∥i∥ = µrvdc cos(θ − θi)− r∥i∥ − ∥v∥ cos(θv − θi) . (4.32)

So far µr in (4.32) was assumed to be a positive constant; see the definition of mαβ(µr, θc)

in (4.2). We now re-parametrize the to-be-controlled modulation magnitude as

µ :=
(
1−∆µ

)
µr, (4.33)

where ∆µ : X → R(0,1) is a locally Lipschitz function. Observe that ∆µ ∈ R(0,1) is

required since µ in (4.33) has to be positive. Replacing µr in (4.32) with (4.33) results

in

ℓ
d

dt
∥i∥ = A

(
1−D −∆µ

)
− r∥i∥, (4.34)

where

A := µrvdc cos(θ − θi) and D :=
∥v∥ cos(θv − θi)

µrvdc cos(θ − θi)
. (4.35)

Note that D takes value in R(0,1) under normal operation. Furthermore, since the com-

putation of D in (4.35) is computationally cumbersome, thus, a mere knowledge of its

lower bound might be the only available information on D. Therefore, we assume that

D admits a constant lower bound Dmin such that 0 < Dmin ≤ D < 1. In practice, Dmin
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is chosen by estimating D for the worst-case scenario (i.e., the contingency that results

in the most severe over-current behavior).

In the sequel, we treat D in (4.34) (and accordingly Dmin) as a fictitious disturbance

that captures the influence of other states in the current magnitude dynamics (4.34).

Consider a threshold current ith ∈ R>0 that ∥i∥ should not exceed. We aim to design a ∆µ

such that 1) the RHS of (4.34) is strictly negative for all ∥i∥ > ith and 2) ideally (i.e., not

necessarily) ∆µ = 0 for ∥i∥ ≤ ith. The design of ∆µ in Proposition 3 is inspired by ideas

from feedback linearization [111, Chapter 13] and disturbance decoupling techniques.

Proposition 3 (Current-limiting control). Consider the current magnitude dynamics

(4.34) and assume that |θ − θi| < π/2 and D ∈ R[Dmin,1). Define

∆µ :=
(1−Dmin) e

β(∥i∥−ith)

1 + (1−Dmin)
(
eβ(∥i∥−ith) − 1

) , (4.36)

with β ∈ R>0, then ∥i∥ is strictly decreasing in the state space characterized by ∥i∥ > ith.

The proof is provided in Appendix 4.8. It remains to be shown that tampering

with the current magnitude in (4.34) does not jeopardize the overall system stability.

Proposition 4 gives an affirmative answer: under (4.12) and with current-limiting control

(4.33) the desired closed-loop equilibrium of (4.7) remains locally asymptotically stable.

Proposition 4 (HAC and current-limiting control). Consider the closed-loop system

(4.7) where µr is replaced by the bounded µ in (4.33). Assume that the modified dynamics

admits equilibria of the form (4.9) and condition (4.12) holds. Then the equilibrium x⋆s
is locally asymptotically stable.

Proof. By replicating the proof of Theorem 1 it follows that

V̇(x̃) ≤−
(
λγ − 1

ϵ21
− (µv⋆dc)

2

ϵ22

)
sin2 θ̃

2
− 1

κ
ĩ2dc −

(
gdc −

(
ϵ1µ∥i⋆∥

)2)
ṽ2dc −

(
r − ϵ22

)
∥̃i∥2

− g∥ṽ∥2 − rg∥̃ig∥2 + ληṽdc sin
θ̃

2
. (4.37)

Since µ < µr, the RHS of (4.37) is smaller than the bound in (4.18), therefore V̇(x̃) ≤
−ζ̃⊤Qζ̃ as in (4.18). Note that V(09) = 0, V(x̃) > 0 for all x̃ ̸= 09. By the proof of

Theorem 2 if (4.12) holds, V̇(x̃) < 0 for all x̃ ̸= 09 in a sufficiently small neighborhood

of the origin. The local asymptotic stability of x⋆s immediately follows from Lyapunov’s

direct method [111, Theorem 3.1] as in the proof of Proposition 1. ■

The assumptions in Proposition 3 (i.e., bounded angle and disturbance) are standard

in small-signal stability and protection design. To further elaborate on the assumption
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Figure 4.4: Illustration of normalized µ in (4.33) and ∆µ in (4.36). For clarity of presentation,
here β = 2 and D ∈ R(0.1,0.9). For small D (i.e., a severe event) ∆µ results in the modulation
magnitude decay at a lower current compared to a scenario with large D.

D ∈ R[Dmin,1), for now assume that µ = µr, then multiplying the nominator and de-

nominator (4.35) with ∥i∥ results in D = pf/ps (see Figure 4.1). Thus, D < 1 means

pf < ps that highlights the power injection into the grid (while considering the filter

loss). Last but not least, the case D < 0 (while assuming normal operation i.e., µ = µr)

means different power flow directions for pf and ps which is an extremely unlikely case.

Moreover, the upper-bound on the disturbance feasible set i.e., D ∈ R[Dmin,1) can actually

be relaxed i.e., D ∈ R[Dmin,+∞). To make this idea clear for now assume that µ = µr,

then multiplying the nominator and denominator (4.35) with ∥i∥ gives D = pf/ps (see

Figure 4.1). Thus, D > 1 equals pf > ps corresponding to the less critical scenario in

which converter absorbs power from grid, e.g., after loss of load. Observe that in the

relaxed case −∞ < 1−D ≤ 1−Dmin. Subsequently, based on the proof of Proposition

3, ∆µ > 1−Dmin for all ∥i∥ > ith. Thus, under (4.33) it is guaranteed that the RHS of

(4.34) is strictly negative for D ∈ R[Dmin,+∞) and ∥i∥ > ith.

Remark 11 (Comments on the current-limiting control). The function ∆µ in (4.36)

should be perceived as a barrier-type function (observe the influence of ∆µ on µ in Figure

4.4) that smoothly reduces µ in (4.33) and thus the voltage magnitude ∥vs∥ (see Figure

4.1) when ∥i∥ > ith; see Subsection 4.6.2 for a numerical verification. Next, parameter

β controls the curvature and the exponential decay rate of µ in ∥i∥. Note that ∆µ → 0 as

β → +∞ for ∥i∥ < ith and for any D, however large β results in an aggressive controller

resembling a sign function. Last, the result of the Proposition 3 can be improved when

augmenting D with the dissipation term r∥i∥ in (4.34). Although, in practice r∥i∥ is
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negligible compared to the denominator of (4.35) (because of insignificant resistance).

Remark 12 (Comments on the existence of equilibria). In order to verify the assumption

of Proposition 3 i.e., the existence of equilibria, let us firstly highlight a side information

about x⋆s in (4.9). Practically speaking, if x⋆s exists it is reasonably expected to be strictly

contained within the state constraints. Next, one can always select β in (4.36) to be suf-

ficiently large such that ∆µ ≈ 0 in Lith :=
{
x ∈ X : ∥i∥ ≪ ith

}
(due to the exponential

decay of ∆µ). Therefore, µ in (4.33) is approximately equal to µr in Lith. Subsequently,

this means in Lith the vector b that includes m(θ⋆) = µψ(θ⋆) and denotes the RHS of

linear system of equations associated with (4.10d)-(4.10f) remains identical in the proof

of the Theorem 1. Hence, the existence and uniqueness of the closed-loop equilibria of the

form (4.9) that is contained in Lith is established with a similar interlacing argument.

This coincides with our a priori knowledge of x⋆s . Next, if the assumptions of the Propo-

sition 3 hold, it yields that Uith :=
{
x ∈ X : ∥i∥ > ith

}
contains no disjoint or continuum

of equilibrium points (by the strict monotonicity of ∥i∥ in Uith). The reader is referred

to Subsection 4.6.2 for a case study confirming that during an event (e.g., an active fault

condition), the control (4.33) steers the equilibrium into the set X−{Lith ∪Uith}. Last,
a complete characterization of the equilibria will be addressed in our future work.

Finally, it is worth mentioning that the current-limiting control (4.33) is agnostic

to the HAC. Hence, it is expected that (4.33) is practically compatible with different

grid-forming controls in [1] (although possibly without any stability guarantees). The

performance of control (4.33) for a three-phase-to-ground fault scenario is verified in the

Subsection 4.6.2.

4.5 Implementation, robustness, practical aspects

In this section, we discuss the implementation of HAC that is followed by a formal

robustness analysis, and highlight several practical aspects of the HAC. The forthcoming

arguments showcase the gap between the theoretic proposals/analysis in Sections 4.2-4.4

and simulation test cases in Section 4.6.

4.5.1 The exact hybrid angle control implementation

The HAC in (4.5) relies on the relative angle measurement (4.4) that is not available

in practice. Hence, we seek an alternative implementation based on the dc and ac

measurements. The dc term in (4.5) is constructed by measuring the dc voltage; see

Figure 4.1. Assume that the IB voltage is measured and transformed to αβ-frame (see

Appendix 4.9.2 for details). Then, an implicit IB angle measurement is obtained by

ψ(θb) = vb,αβ/∥vb,αβ∥. Further, ψ(θc) is internally available from the modulation signal
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m(µr, θc). Thus, by the means of (4.74) and (4.75), the relative angle measurement ψ(θ)

is derived

ψ(θ) =
(
ψ(θc)

⊤ψ(θb), ψ(θc)
⊤Jψ(θb)

)
. (4.38)

Given ψ(θr) (see Proposition 7) and ψ(θ) in (4.38) that respectively encapsulate the

relative angle reference and measurement, Proposition 5 explains derivation of the ac

term in (4.5).

Proposition 5 (Angle feedback implementation). Given ψ(θr) and ψ(θ) derived in

(4.38), if |θ − θr| < π then

sin

(
θ − θr
2

)
=

ψ(θr)
⊤Jψ(θ)√

2
(
1 + ψ(θr)⊤ψ(θ)

) . (4.39)

Proof. Consider ψ(θr)
⊤Jψ(θ) and apply (4.74):

ψ(θr)
⊤Jψ(θ) = sin θ cos θr − sin θr cos θ = sin θ̃ = 2 sin

θ̃

2
cos

θ̃

2
,

where θ̃ := θ − θr. Next, consider ψ(θr)
⊤ψ(θ) and apply (4.75):

ψ(θr)
⊤ψ(θ) = cos θ cos θr + sin θ sin θr = cos θ̃.

Subsequently, applying identity (4.73) results in

√
2
(
1 + ψ(θr)⊤ψ(θ)

)
=

√
2
(
1 + cos θ̃

)
= 2

∣∣∣∣∣cos
θ̃

2

∣∣∣∣∣ .

Hence, the RHS of (4.39) is equal to

cos
θ̃

2
sin

θ̃

2∣∣∣∣∣cos
θ̃

2

∣∣∣∣∣

= sgn

(
cos

θ̃

2

)
sin

θ̃

2
. (4.40)

Thus, if |θ̃| < π then sgn

(
cos
(
θ̃/2
))

= 1 and (4.39) holds. ■

The stability analysis under the assumption of Proposition 5 is analogous to the proof

of Proposition 1. In this case, the sublevel set of the Lyapunov function must be chosen

such that angle is constrained according to the bound in Proposition 5.
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4.5.2 The alternative hybrid angle control implementation

The derivation in (4.38) and implementation (4.39) rely on the IB voltage measurement;

see Figure 4.1. However, this information is typically not available. In what follows, we

introduce an alternative implementation approach and show how certain properties still

hold under such implementations.

Consider a pronounced timescale separation between the slow converter and fast line

dynamics (see [45], [47] for details) that are written in a dq-frame that is aligned with the

arbitrary angle θf and frequency ω0. Therefore, the line model takes a quasi-steady-state

algebraic from, i.e.,

ℓgi̇g = v − Zgig − vb ≈ 0. (4.41)

Hence, an IB voltage approximation is given by vb ≈ v̂b := v − Zgig based on (4.41).

We remark that the line parameter Zg might be subject to uncertainty, thus, one can

employ an estimation technique, e.g., see [119]. Note that the timescale separation can

be enforced by an appropriate choice of control parameters to slow down the converter

dynamics w.r.t the line dynamics [113]. On the other hand, if Zg is negligible, then

v̂b ≈ v which is a weak albeit practically available approximation for vb; see Figure 4.1.

For the sake of consistency with the discussions in Subsection 4.5.1, we transform v̂b to

the αβ-frame i.e., v̂b,αβ = R−1(θf)v̂b.

Note that either due to the potential violation of the timescale separation assumption,

parameter uncertainty, estimation error, or measurement noise v̂b,αβ takes the form

v̂b,αβ = (vr + ev)ψ(θb + eθ), (4.42)

where ev and eθ denote the time-varying magnitude and phase angle errors. Deriving an

approximation of ψ(θ) in (4.38) only requires ψ (θb + eθ) which is obtained by normalizing

v̂b,αβ. The next subsection presents a formal robustness analysis.

4.5.3 Perturbed system dynamics and robustness analysis

Replacing ψ(θ) in (4.38) with ψ (θb + eθ) obtained from (4.42), applying Proposition 5,

and substituting the resulting angle feedback in (4.7a) leads to the perturbed relative

angle dynamics

θ̇ = η(vdc − vdc,r)− γ sin

(
θ − θr − eθ

2

)
. (4.43)

Hence, the perturbed system is described by (4.43) and (4.7b)-(4.7f).

Theorem 5 (Boundedness of the perturbed dynamics). Consider the perturbed system

consisting of (4.43) and (4.7b)-(4.7f). Assume that the time-varying disturbance eθ is
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bounded by a constant angle ēθ, i.e., 0 ≤ |eθ| ≤ ēθ < π such that

sin
ēθ
2
<

8σmin(Q)

γmax

{
σmax(P),

2

η

} , (4.44)

where σmin(Q) and σmax(P) denote the smallest and largest eigenvalue of Q in (4.18) and

P in (4.15), respectively. Subsequently, if the following modified stability condition

γ cos
ēθ
2
>

η

gdc
+
η
(
µr∥i⋆∥

)2

gdc
+
η(µrv

⋆
dc)

2

r
(4.45)

holds, then the solutions of perturbed system that are initially sufficiently close2 to x⋆s in

(4.9), are ultimately bounded.

Proof. Considering (4.43), the error dynamics are described by

˙̃θ = ηṽdc − γ sin

(
θ̃ − eθ

2

)
, (4.46)

and (4.14b)-(4.14f). Next, employing the identity (4.74) yields an expansion of the angle

term in the RHS of (4.46), i.e.,

sin

(
θ̃ − eθ

2

)
= sin

θ̃

2
cos

eθ
2
− cos

θ̃

2
sin

eθ
2
. (4.47)

Substituting (4.47) in (4.46), adopting the Lyapunov function (4.15), and evaluating

V̇(x̃) along the solutions of the perturbed dynamics (4.46) and (4.14b)-(4.14f) leads to

V̇(x̃) =

Ḣ(ỹ) + ληṽdc sin
θ̃

2
− λγ

(
sin2 θ̃

2
cos

eθ
2
− sin

θ̃

2
cos

θ̃

2
sin

eθ
2

)
.

Considering the assumption 0 ≤ |eθ| ≤ ēθ < π, double-angle identity, and exploiting

| sin θ̃| ≤ 1 imply that V̇(x̃) ≤

Ḣ(ỹ) + ληṽdc sin
θ̃

2
− λγ sin2 θ̃

2
cos

ēθ
2
+
λγ

2
sin

ēθ
2
. (4.48)

As in the proof of Theorem 2, if (4.45) holds, then for λ = 2/η,

Ḣ(ỹ) + ληṽdc sin
θ̃

2
− λγ sin2 θ̃

2
cos

ēθ
2

≤ −ζ̃⊤Qζ̃ ≤ −σmin∥ζ̃∥2.

2A quantitative bound on the initial conditions is contained in the proof.
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Therefore, the bound on V̇(x̃) in (4.48) can be written as

V̇(x̃) ≤ −σmin(Q)∥ζ̃∥2 + γ

η
sin

ēθ
2
. (4.49)

Hence, if ∥ζ̃∥ ≥ ϵ1 :=
√
γ sin

(
ēθ/2

)
/
(
ησmin(Q)

)
then V̇(x̃) ≤ 0. Next, since

∣∣ sin
(
θ̃/2
) ∣∣ ≤

∣∣θ̃
∣∣, then ∥ζ̃∥ ≥ ϵ1 implies that ∥x̃∥ ≥ ϵ1. To sum up, if ∥ζ̃∥ ≥ ϵ1 then ∥x̃∥ ≥ ϵ1 and

V̇(x̃) ≤ 0.

To conclude the boundedness of ∥x̃∥, one must ensure that the set defined by ∥x̃∥ < ϵ1
lies within a sublevel set of V(x̃). Such a sublevel set is then forward invariant since V(x̃)
is non-increasing along its boundary, and thus the dynamics are ultimately bounded.

Note that the angle term in (4.15) is upper-bonded i.e., S(θ̃) ≤ θ̃2/4. Thus,

V(x̃) ≤ σmax(P)∥ỹ∥2 +
(

1

2η

)
θ̃2 ≤ α∥x̃∥2 =: W(x̃), (4.50)

where α := max
{
σmax(P), 1/ (2η)

}
. Define the sublevel sets Lk,W(x̃) := {x̃ : W(x̃) ≤ k}

and Lk,V(x̃) := {x̃ : V(x̃) ≤ k} where k > 0 is constant. Thus, (4.50) implies that

Lk,W(x̃) ⊂ Lk,V(x̃) for all k. Consider k ≤ λmax
(
S(θ̃)

)
= 8/η such that Lk,V(x̃) is a

union of compact sets due to the radial unboundedness of H(ỹ) and the periodicity of

S(θ̃). In this case, Lk,W(x̃) is characterized by ∥x̃∥ ≤ ϵ2 :=
√

8/(ηα) and is contained

in Lk,V(x̃). Finally, if ϵ1 < ϵ2 —that is satisfied under (4.44)— the set characterized

by ∥ζ̃∥ < ϵ1 is strictly contained in Lk,V(x̃). Thus, the solutions of (4.7) originating in

Lk,V(x̃) (i.e., that are initially sufficiently close to x⋆s ) are bounded and remain in Lk,V(x̃)

for all time. ■

Remark 13 (Comments on the robustness analysis). Theorem 5 establishes the bounded-

ness of the perturbed dynamics (4.43) and (4.7b)-(4.7f) w.r.t bounded disturbances. The

condition (4.45) reflects the effect of the disturbance, i.e., if ēθ → π and cos(ēθ/2) → 0,

then γ must be increased to ensure the boundedness. Next, if eθ in (4.42) is constant,

with a similar analysis as in Theorem 1, one can prove that the equilibria in (4.9) are

unique and uniformly shifted by eθ. Thus, based on Theorem 3, it is possible to establish

the AGAS of the shifted equilibrium point. Further, considering erroneous frequency or

angle references i.e., when the IB frequency is not equal to ω0 in (4.5) or θr ̸= θ⋆s , an

analogous analysis as in Theorem 5 delivers the boundedness result. Last, Theorem 5

strongly relies on Theorem 2. Hence, based on the global attractivity result in Theorem

4, one can derive the boundedness result for the perturbed converter-COI dynamics.
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4.5.4 HAC behavior and tuning recommendations

Grid-forming behavior

If the vdc is sufficiently regulated to vdc,r by the control (4.3). Then, HAC (4.5) mod-

ifies the modulation angle θc such that θ = ∠vs − ∠vb (see Figure 4.1) settles at the

reference θr. For instance, droop control (see Remark 7) achieves an implicit relative

angle synchronization through active power control (i.e., p → pr implies θ → θr). Un-

like PLL-based grid-following controls [33], HAC and droop control realize relative angle

control without introducing auxiliary dynamics. Thus, they achieve a favorable control

objective with minimal design complexity.

Tuning recommendations

HAC offers two degrees of freedom for optimal frequency tuning. The gain γ in (4.5)

strongly influences the frequency timescale, thus, the impact of γ is similar to that of

dp−ω on droop control (see Remark 7). In contrast, η determines the extent of frequency

dependency on the dc voltage. Further, for large enough η, HAC preserves the robustness

of matching controls; see Subsection 4.6.3. Last, high γ/η ratios imply fast convergence,

but as in the standard control approaches, we suggest avoiding aggressive tuning.

4.5.5 Intrinsic active power-frequency droop behavior

Consider the converter-COI system (4.25) that allows frequency droop which is hindered

when considering the IB grid model. Recall that the existence of equilibria Ω⋆ in (4.27)

is guaranteed if v⋆dc = vdc,r and ω
⋆ = ω0. These assumptions can be met by appropriate

choice of ir and Tm in (4.25b) and (4.25g). For the sake of argument, assume that ir
and Tm are not consistent with the assumptions or the system is subject to disturbances,

then the dc voltage and frequency converge to different equilibria vdc,x and ωx. Hence,

by (4.25a) the relative angle settles at a different equilibrium θx ̸= θr. The drift from

desired references is also reflected in other ac quantities.

In proposition 6, we presents a derivation of the droop slope that relates the active

power and frequency at an arbitrary equilibrium. More precisely, for an operating fre-

quency ωx ∈ R>0, the power-frequency linear sensitivity factor (i.e., droop) is defined by

dp−ω := ∂pnet,x/∂ωx; see Figure 4.1 and the Subsection 4.2.3 for the definition of pnet,x.

Proposition 6 (Power–frequency droop slope). Consider system (4.25), the power-

frequency droop slope at an equilibrium with frequency ωx and dc voltage vdc,x equals

dp−ω = −
(
2Gdc

η2

)
ωx +

(
ηi0 + 2Gdcβθx

η2

)
, (4.51)
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where Gdc := κ + gdc, i0 := ir + κvdc,r, βθx := ω0 − ηvdc,r − γ sin
(
(θx − θr)/2

)
, and θx is

equilibrium relative angle.

The proof is given in Appendix 4.8.

4.5.6 Feedforward power and voltage set-points inclusion

As well as ψ(θr) in Proposition 5, the reference modulation magnitude µr (see Figure 4.1)

is not explicitly available in practice. Rather power references pg,r and qg,r (associated

with pg and qg in Figure 4.1) are specified. In what follows, we describe consistent

definitions for ψ(θr) and µr that rely on the steady-state dc voltage, ac voltage magnitude,

and power flows (see (4.64) and [45, Definition 2] for a definition).

Proposition 7 (Consistent definition of ψ(θr) and µr). Given the voltages v⋆dc, ∥v⋆∥,
and the references pg,r and qg,r consistent with the equilibrium values i.e., pg,r = p⋆g and

qg,r = q⋆g, the consistent references are defined by

ψ(θr) := R(δ)⊤


ŝ⋆⊤g

(
+1 0

0 −1

)
ŝ⋆f , ŝ

⋆⊤
g

(
0 +1

+1 0

)
ŝ⋆f


 , (4.52)

µr :=

√(
p⋆2f + q⋆2f

) (
r2 + (ℓω0)2

)

v⋆dc∥v⋆∥
, (4.53)

with δ := tan−1(ℓgω0/rg) + tan−1(ℓω0/r), s
⋆
g := (p⋆g, q

⋆
g) and ŝ⋆g := s⋆g/∥s⋆g∥, s⋆f := (p⋆f , q

⋆
f )

and ŝ⋆f := s⋆f /∥s⋆f ∥.

The proof is given in Appendix 4.8. Observe that the consistent reference specifica-

tions (4.52)-(4.53) can conceptually also be used as feedforward ac voltage and power

control. Figure 4.5 represents the overall block diagram of the feedback controls (4.3),

(4.5), and the feedforward controls (4.52) and (4.53).

4.6 Numerical examples

We firstly consider the system (4.25) with parameters adopted from [1]; also see Table

4.1. We explore the impact of HAC tuning on frequency behavior and verify the per-

formance of current-limiting control (4.33). Next, we present a system-level case study

that highlights the merits of HAC compared to its precursors i.e., droop and matching

controls. For simplicity of exposition the converter model includes an average dc-ac

conversion stage. However, similar behavior is observed when considering a switching

converter model. For the latter, low-pass filtering the measurements is recommended for

safeguarding the control against high-frequency harmonics [51]. The case study models
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Table 4.1: The parameters of converter-COI system (4.25).

Converter model parameters and nominal values

Sr,c = 0.5 [MVA] vr = 816.4 [V] ω0 = 2π50 [rad/s]

cdc = 8 [mF] ℓ = ℓg = 0.2 [mH] c = 0.3 [mF]

r = rg = 1 [mΩ] gdc = g = 1 [mΩ−1] τdc = 50 [ms]

Center of inertia model parameters

Sr,g = 5 [MVA] H = 5 [s] D = 100

Control parameters and reference values

θr = 0 idc,r = 0 vdc,r = 3vr

η = 0.01 γ = 10000 κ = 2

µr = 2vr/vdc,r b = vr/ω0 Tm = Dω0

in MATLAB/Simulink environment are available [71]. We remark that the phase por-

trait of (4.7) that verifies the results of Theorem 2 is presented in the preliminary version

of this work [8].

4.6.1 The influence of HAC Tuning on frequency performance

Consider the converter-COI system (4.25) with η = ω0/vdc,r = 0.128 which renders the

dc term in HAC identical to that of the standard matching control (see Remark 7 and

[65]). Initially, it is assumed that γ = 0. We select κ = 5 in (4.25b) and D = 300

(4.25g) such that the converter and COI grid model exhibit equal post-contingency load-

sharing. In this example, the contingency is an active power load disturbance that is sized

to 0.5Sr,c (where Sr,c denotes the converter power rating) and is modeled by connecting

a constant conductance gload in parallel connection with the filter capacitance c in Figure

4.1. Figure 4.6 illustrates the post-contingency evolution of COI frequency for different

γ values. Figure 4.6 suggests that HAC by the means of its angle feedback in (4.5)

improves the frequency response of the standard matching control [65] that is identical

to (4.5) with η = ω0/vdc,r and γ = 0. This improvement is more tangible in the rate

of change of frequency (RoCoF) performance metric ˆ̇ω [70, Section III-A][1, Figure 10]

corresponding to the COI frequency ω i.e.,

∣∣ ˆ̇ω
∣∣ :=

∣∣ω(t0 +∆t)− ω(t0)
∣∣

∆t
, (4.54)
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Figure 4.6: Post-event frequency of the system (4.25) under different HAC tuning (top),
corresponding normalized RoCoF values (bottom).

where t0 denotes the time when the disturbance is applied and ∆t denotes the approx-

imation time horizon. Figure 4.6 shows that the RoCoF (with ∆t = 100 [ms]) clearly

decreases as γ increases. In other word, the angle feedback of the HAC (4.5) serves as a

remedy for the suboptimal matching control RoCoF performance (see [1, Figure 11] for

a comparison). The pure matching control senses the load disturbance (and accordingly

modifies the angle dynamics) once its aftermath is propagated to the dc voltage dynam-

ics via the filter current in (4.25b). However, HAC with its multi-variable dc-ac nature

reacts to the disturbance on a slightly faster timescale that, in our opinion, explains its

enhanced frequency response.

4.6.2 Current-limiting control performance

Consider the system in the previous example combined with the current-limiting control

(4.33) with ∆µ as in Proposition 3 where β = 0.25, ith = 1.25 per-unit (pu), and

Dmin = 0.01 (see Remark 11). We consider a low-impedance three-phase-to-ground

fault (see [62, Section 3.7] on fault modeling) at the filter capacitance node in Figure

4.1 driving ∥v∥ → 0+ thus D → 0+ and ∆µ → 1−. Figure 4.7 shows that the current-
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Figure 4.7: Current-limiting control performance w.r.t a three-phase-to-ground fault; out-
put/fault node voltage (top), modulation magnitude (middle), and filter current (bottom).

limiting control (4.33) limits the post-fault current magnitude ∥i∥ to ith. This is obtained
by an immediate reduction of µ and subsequently ∥vs∥ = µ|vdc| (note that vdc is stiffly

regulated to vdc,r by (4.3)). In addition, although ∆µ in (4.36) is strongly nonlinear in

∥i∥, it is an algebraic controller and modifies the modulation magnitude on the same

timescale as that of the filter current. As a result, we do not see a sudden spike in the

current waveforms shown in Figure 4.7 (as in e.g., [70, Figure 6]). Last, same limiting

performance is observed when considering a load-induced over-current scenario.
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Figure 4.8: IEEE 9-bus test system including SM and power converters.

4.6.3 Comparative system-level performance evaluation

We consider the IEEE 9-bus system model that includes a mixture of the SM and power

converters as in the Figure 4.8. The reader is referred to [1, Section II] for the bench-

mark description and [71] for the case study models. to begin with, we consider three

different network configurations; one SM and two converters (as in Figure 4.8) in which

the converters are identical and controlled by either droop control [1, Subsection III-C],

matching control [1, Subsection III-E], or HAC. In all configurations, the governor and

converter controls are tuned such that the generation units exhibit equal load-sharing

(i.e., the droop gains are identical); see [1, Appendix]. The SM and converters equally

supply the total network load of 2.25 pu (i.e., 75 megawatts (MW) by each unit) that is

distributed across the system (resting at an stable equilibrium at t = 0 [s]). We resort

to the SM mechanical and internal converter frequencies to avoid using an explicit mea-

surement device (that introduces excess delays and might partially distort the intrinsic

frequency dynamics); see [1, Section IV] for further details. The dc energy source mod-

els are constrained via a saturation function that represents the current limits of such

systems (see [1, Subsection II-A][105]). Last, we remark that the HAC implementation

in the IEEE 9-bus system only relies on its dc and output ac voltage.

Transient frequency performance

Figure 4.9 illustrates the SM frequency following an identical 0.75 pu load-disturbance

(defined such that the converters do not exceed their current limits) in the aforementioned

network configurations. Figure 4.9 suggests that when the converters are controlled by an

ac-based technique e.g., droop control or HAC, the SM experiences significantly smaller

RoCoF values. In contrast, when the converters are controlled by the dc-based matching

control, the SM’s RoCoF performance is relatively weak. This finding verifies our first
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Figure 4.9: Post-disturbance SM frequency evolution in IEEE 9-bus test system with power
converters under different control strategies.

hypothesis (see Remark 7) i.e., HAC enhances the frequency stability (similar to other

ac-based techniques); see [1, Subsection IV-C] for a similar observation.

Response to a large load disturbance

In this scenario, the load-disturbance is increased to 0.9 pu such that the converters’

post-disturbance transient currents exceed their protection limits i.e., demanding ex-

cessive current from the dc sources (see [1, Subsection IV-D] for further details). Fig-

ure 4.10 illustrates the post-disturbance SM and converters’ frequencies. Observe that

the pure ac-based droop controlled converters exhibits instability and loss of synchro-

nism that subsequently destabilize the SM. This behavior has also been reported in [1],

[105]. In contrast, the pure dc-based matching control and HAC exhibit robustness

and remain stable under active dc current constraints. This is underpinned by an im-

plicit mode-switching behavior from grid-forming to grid-following; see the frequency

re-synchronization at t ≈ 1 and t ≈ 1.5 [s] respectively for matching controlled and

HACed converters. This is primarily due to the inclusion of a dc term in the converter

frequency. Thus, verifying our second hypothesis (see Remark 7) i.e., HAC inherits the

robustness of matching control. Note that the robustness of matching control in presence

of the state constraints is formally investigated in [105] and further explored in [55]. Last

but not least, compared to the matching control, the converters’ frequency oscillations

are significantly reduced under HAC resulting in better frequency nadir performance

(see [1, Figure 10]). We close by referring the reader to [5] for an extensive numerical

exploration of the HAC system-level performance and [4] for a theoretic investigation of

the HAC applicability and scalability in hybrid ac/dc power grids.
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4.7 Summary and outlook

In this paper, we introduced a new grid-forming control termed hybrid angle control

(HAC). We established the existence, uniqueness, and almost global stability of the

closed-loop equilibria under mild parametric conditions. We extended the stability guar-

antees of HAC by considering grid dynamics and synthesized a new current-limiting

control to account for the converter’s safety constraints. Moreover, practical imple-

Figure 4.10: SM and converters’ frequency evolution (for three different SM-converter pairs)
following a large load disturbance that stresses the converters beyond their current limits.
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mentations of HAC and their robustness analysis, the intrinsic power-frequency droop

behavior, and a complementary feedforward ac voltage and power control were discussed.

Last, the performance of controls (4.5) and (4.36) was investigated with numerical ex-

amples. Avenues for future work include: 1) stability analysis of the HAC constructed

based on the output voltage, 2) stability and performance analysis in interconnected

multi-converter systems, 3) the inclusion of robust high-level power controls, 4) the

performance of current-limiting control w.r.t asymmetric faults and further practical

explorations, and 5) concept validation on hardware setups.

4.8 Appendix A: proof of the technical results

Proof of Proposition 1. Consider the error dynamics (4.14) and the Lyapunov function

(4.15) that satisfies V(09) = 0 and V(x̃) > 0 for all x̃ ̸= 09. Furthermore, if (4.12) holds,

V̇(x̃) < 0 for all x̃ ̸= 09 in a sufficiently small neighborhood of the origin. Consider a

c-sublevel set of V(x̃) i.e., Lc :=
{
x̃ ∈ X : V(x̃) ≤ c, c ∈ R>0

}
, which is forward invariant

under the flow (4.7) since V̇(x̃) ≤ 0. Take c to be sufficiently small such that the origin

is the only equilibrium in Lc (recall that the equilibria in (4.9) are disjoint). Thus, by

Lyapunov’s direct method [111, Theorem 3.1] the origin is a locally asymptotically stable

for (4.14). ■

Proof of Proposition 2. Consider the shorthand ẋ = f(x) for (4.7) and let Jf(x) be the

Jacobian of f(x), then det
(
Jf(x)

)
= det

(
H(x)

)
/τdccdc(ℓcℓg)

2 where

H(x) =

(
H11 H12

H21 H22

)
:=




−γ
2
cos

(
θ − θr
2

)
0 η 0⊤2 0⊤2 0⊤2

0 −1 −κ 0⊤2 0⊤2 0⊤2

−∂m(θ)

∂θ

⊤

i 1 −gdc −m(θ)⊤ 0⊤2 0⊤2

vdc
∂m(θ)

∂θ

⊤

02 m(θ) −Z −I 02×2

02 02 02 I −Y −I

02 02 02 02×2 I −Zg




.

Evaluating H11 at x⋆u in (4.9) results in H11 =
(
γ/2 0
0 −1

)
which is invertible for γ > 0.

Thus, the overall determinant is

det(H(x⋆u)) = det(H11) det(H22 − H21H
−1
11 H12). (4.55)
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Define

K := H22 − H21H
−1
11 H12 =




−Gdc +

(
2η

γ

)
∂m(θ)

∂θ

∣∣∣
⊤

θ=θr
i⋆ −m(θr)

⊤ 0⊤2 0⊤2

m(θr)−
(
2ηv⋆dc
γ

)
∂m(θ)

∂θ

∣∣∣
θ=θr

−Z −I 02×2

02 I −Y −I

02 02×2 I −Zg




where Gdc := gdc + κ and consider the symmetric part of K i.e., KS := (1/2)(K + K⊤).

Next, we show that KS ≺ 0 under (4.12). Schur complements analysis yields that KS ≺ 0

iff

2ηµrγ
∂ψ(θ)

∂θ

∣∣∣
⊤

θ=θr
i⋆

Gdc

+
(ηµrv

⋆
dc)

2

rGdc

< γ2 . (4.56)

We apply the identity (4.71) to the first term on the RHS of (4.56)

2µr
∂ψ(θ)

∂θ

∣∣∣
⊤

θ=θr
i⋆ ≤

∣∣∣∣
∣∣∣∣
∂ψ(θ)

∂θ

∣∣∣
θ=θr

∣∣∣∣
∣∣∣∣
2

+ (µr∥i⋆∥)2 = 1 + (µr∥i⋆∥)2. (4.57)

Subsequently, taking into account the bound in (4.57), if

ηγ

Gdc

+
ηγ(µr∥i⋆∥)2

Gdc

+
(ηµrv

⋆
dc)

2

rGdc

< γ2 , (4.58)

then (4.56) is satisfied. Next, dividing (4.58) by γ results in

η

β̄gdc
+
η(µr∥i⋆∥)2
β̄gdc

+
η(µrv

⋆
dc)

2

ᾱr
< γ (4.59)

where ᾱ := γGdc/η and β̄ := Gdc/gdc. Since β̄ > 1 by definition (recall that Gdc =

κ+ gdc), if ᾱ > 1 then the LHS of (4.59) is strictly smaller that the LHS of (4.12). That

means if ᾱ > 1 then (4.12) implies (4.59). To show that ᾱ > 1 that equals γ > η/β̄gdc
consider that if (4.12) holds then γ > η/gdc > η/β̄gdc hence ᾱ > 1.

To sum up, under (4.12), KS ≺ 0. Thus, K has all eigenvalues in the open left half-

plane. Since dim(K) = 7, then det(K) < 0 and by (4.55) det(H(x⋆u)) = −γ det(K)/2 > 0

which means det(Jf(x
⋆
u)) > 0. Since dim(Jf(x)) = 9, then Jf(x

⋆
u) has at least one positive

real eigenvalue. Instability of x⋆u follows from Lyapunov’s indirect method [111, Theorem

4.7] and its global inset has zero Lebesgue measure invoking [120, Proposition 11]. ■

Proof of Theorem 4. Define the error coordinates as x̃ := x − x⋆s . The error dynamics
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associated with (4.25) are described by

˙̃θ = ηṽdc − γ sin
θ̃

2
− ω̃,

τdc
˙̃idc = −κṽdc − ĩdc,

cdc ˙̃vdc = ĩdc − gdcṽdc − µre
⊤
ψ i

⋆ −m(µr, θ)
⊤ĩ

ℓ˙̃i = ṽdcm (µr, θ) + µrv
⋆
dceψ − rĩ− ℓωJ̃i− ℓω̃Ji⋆ − ṽ,

c ˙̃v = ĩ− gṽ − cωJṽ − cω̃Jv⋆ − ĩg,

ℓg
˙̃ig = ṽ − rgĩg − ℓgωJ̃ig − ℓgω̃Ji

⋆
g − be1ω̃,

J ˙̃ω = −Dω̃ + be⊤1 ĩg.

where eψ := ψ(θ)−ψ(θ⋆1). Define ỹ := (̃idc, ṽdc, ω̃, ĩ, ṽ, ĩg) ∈ R9, and consider the following

Lyapunov function

V(x̃) := 1

2

(
ỹ⊤Pỹ

)
+ 2λ

(
1− cos

θ̃

2

)

where P := blkdiag(τdc/κ, cdc, J, ℓI, cI, ℓgI) and λ ∈ R>0. Evaluating V̇(x̃) along the error

trajectories yields

V̇(x̃) =− 1

κ
ĩ2dc − gdcṽ

2
dc −Dω̃2 − r∥̃i∥2 − g∥ṽ∥2 − rg∥̃ig∥2 − λγ sin2 θ̃

2
+ λ (ηṽdc − ω̃) sin

θ̃

2

− ĩ⊤(ℓJi⋆)ω̃ − ṽ⊤(cJv⋆)ω̃ − ĩ⊤g (ℓgJi
⋆
g)ω̃ − µre

⊤
ψ i

⋆ṽdc + µrv
⋆
dcĩ

⊤eψ. (4.61)

From the proof of Theorem 2 recall that ∥eψ∥2 = 4 sin2
(
θ̃/2
)
and apply (4.71) to the

cross-terms in (4.61) that depend on v⋆dc, i
⋆, v⋆, and i⋆g. Then V̇(x̃) is upper-bounded by

V̇(x̃) ≤− 1

κ
ĩ2dc −

(
gdc −

(
ϵ1µr∥i⋆∥

)2)
ṽ2dc − (D − α)ω̃2

−
(
r − ϵ22 − ϵ23

)
∥̃i∥2 −

(
g − ϵ24

)
∥ṽ∥2 −

(
rg − ϵ25

)
∥̃ig∥2

−
(
γλ− 1

ϵ21
− (µrv

⋆
dc)

2

ϵ22

)
sin2 θ̃

2
− λω̃ sin

θ̃

2
+ ληṽdc sin

θ̃

2
(4.62)

where ϵj ∈ R>0 for j = 1, ..., 5 and

α :=

(
ℓ∥i⋆∥
2ϵ3

)2

+

(
c∥v⋆∥
2ϵ4

)2

+

(
ℓg∥i⋆g∥
2ϵ5

)2

.

Defining ζ :=

(
sin
(
θ̃/2
)
, ỹ

)
the bound in (4.62) takes the quadratic form i.e., V̇(x̃) ≤
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−ζ⊤Q ζ, where Q = blkdiag
(
Q

11
,Q

22

)
with

Q
11

:=




γλ− 1

ϵ21
− (µrv

⋆
dc)

2

ϵ22
0 −ηλ

2

λ

2

0
1

κ
0 0

−ηλ
2

0 gdc −
(
ϵ1µr∥i⋆∥

)2
0

λ

2
0 0 D − α




,

and Q
22

:= blkdiag
(
(r − ϵ22 − ϵ23)I, (g − ϵ24)I, (rg − ϵ25)I

)
. Choosing the free parameters as

λ = 2/η, ϵ1 =
√
gdc/

(√
2µr∥i⋆∥

)
, ϵ2 =

√
r/2, ϵ3 =

√
r/2, ϵ4 =

√
g/2 and ϵ5 =

√
rg/2

renders Q
22

≻ 0. Under this favorable choice of parameters, Q
11

≻ 0 if and only if (4.28)

is satisfied. Thus, Q ≻ 0 and V̇(x̃) < 0 for all ζ ̸= 010. Following the LaSalle’s invariance

argument in the proof of Theorem 2, it is straightforward to show that the trajectories of

(4.60) globally converge to the largest invariant set contained in Ω :=
{
x̃ ∈ X : V̇(x̃) = 0

}

and Ω = Ω⋆. ■

Proof of Proposition 3. Let C := 1−Dmin where 0 < C < 1, and observe that

lim
∥i∥→i+th

∆µ = C and lim
∥i∥→+∞

∆µ = 1 .

Moreover, ∆µ is strictly increasing i.e.,

∂∆µ

∂∥i∥ =
βC(1− C)eβ(∥i∥−ith)

(
1 + C

(
eβ(∥i∥−ith) − 1

))2 > 0 , (4.63)

Since ∆µ is strictly monotone and continuous with finite limits, it is bounded by its left

and right limits i.e., ∆µ ∈ (C, 1) for all ∥i∥ > ith. In addition, since Dmin ≤ D and due

to the monotonicity of ∆µ, we establish that 1−D ≤ C < ∆µ for all ∥i∥ > ith (i.e., ∆µ

dominates 1−D).

Furthermore, the assumptions on θ − θi and positiveness of vdc yields that A > 0

in (4.34). Hence, with ∆µ as in (4.36), the RHS of (4.34) is strictly negative for ∥i∥ >
ith. Nagumo’s theorem [121, Theorem 3.1] yields that ∥i(t)∥ (with slight abuse of the

notation) is strictly decreasing whenever ∥i(t)∥ > ith. ■

Proof of Proposition 7. The power injection to the IB at equilibrium [45, Definition 2]
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can be expressed as

p⋆g = −
∥v⋆∥vr

(
rg cos

(
δ⋆bv
)
+ ℓgω0 sin

(
δ⋆bv
))

r2g +
(
ℓgω0

)2 , (4.64a)

q⋆g = −
∥v⋆∥vr

(
ℓgω0 cos

(
δ⋆bv
)
− rg sin

(
δ⋆bv
))

r2g +
(
ℓgω0

)2 , (4.64b)

where δ⋆bv := θ⋆b − θ⋆v and θ⋆v = tan−1(v⋆q/v
⋆
d). Taking into account the line loss and the

power associated with the shunt element, we can compute p⋆f and q⋆f (see Figure 4.1) by

p⋆f = p⋆g +


 rg

r2g +
(
ℓgω0

)2 + g


 ∥v⋆∥2,

q⋆f = q⋆g +


 ℓgω0

r2g +
(
ℓgω0

)2 − cω0


 ∥v⋆∥2.

Note that p⋆f and q⋆f are also expressed by

p⋆f = −∥v⋆s ∥∥v⋆∥
(
r cos (δvc) + ℓω0 sin (δvc)

)

r2 + (ℓω0)
2 , (4.65a)

q⋆f = −∥v⋆s ∥∥v⋆∥
(
ℓω0 cos (δvc)− r sin (δvc)

)

r2 + (ℓω0)
2 , (4.65b)

where δvc := θ⋆v− θ⋆c and ∥v⋆s ∥ := µ⋆v⋆dc denotes the equilibrium voltage magnitude before

the filter inductor.

Consider the shorthand det(Zg) = r2g+(ℓgω0)
2, and let us define ϑg := tan−1(ℓgω0/rg),

sin(ϑg) := ℓgω0/
√

det(Zg), and cos(ϑg) := rg/
√

det(Zg). Then, (4.64) is equivalent to

s⋆g = −∥s⋆g∥R(ϑg)ψ(θ
⋆
v − θ⋆b) = −∥s⋆g∥ψ(θ⋆v + ϑg − θ⋆b),

where ∥s⋆g∥ = vr∥v⋆∥/
√

det(Zg) and subsequently, ŝ⋆g = −ψ(θ⋆v + ϑg − θ⋆b). Similarly,

define ϑf := tan−1(ℓω0/r), then (4.65) is equivalent to

s⋆f = −∥s⋆f ∥R(ϑ)ψ(θ⋆c − θ⋆v) = −∥s⋆f ∥ψ(θ⋆c + ϑ− θ⋆v),

where ∥s⋆f ∥ = ∥v⋆s ∥∥v⋆∥/
√

det(Z). Thus, ŝ⋆f = −ψ(θ⋆c + ϑ− θ⋆v). By the means of (4.74)

and (4.75)


ŝ⋆⊤g

(
+1 0

0 −1

)
ŝ⋆f , ŝ

⋆⊤
g

(
0 +1

+1 0

)
ŝ⋆f


 = ψ(θ⋆c − θ⋆b + δ)
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and subsequently, R(δ)⊤ψ(θ⋆c − θ⋆b + δ) = ψ(θ⋆).

Thus, ψ(θr) that is uniquely defined by (4.52) coincides with the solution of power

flow equations, i.e., ψ(θr) = ψ(θ⋆). To prove the second statement (4.53), µ⋆ is derived

from the expression of ∥s⋆f ∥ i.e., µ⋆ = ∥s⋆f ∥
√

det(Z)/v⋆dc∥v⋆∥, which shows µr defined by

(4.53) is consistent with µ⋆. ■

Proof of Proposition 6. Note that by the relative angle dynamics (4.25a) at equilibrium

ωc,x = ωx. Multiply (4.25c) at equilibrium by vdc,x

idc,xvdc,x − gdcv
2
dc,x − pnet,x = 0,

and replace vdc,x with the expression from (4.5), that is, vdc,x = (ωx−βθx)/η which results

in

pnet,x =
idc,x(ωx − βθx)

η
− gdc(ωx − βθx)

2

η2
. (4.66)

Replacing idc,x from (4.7b) at equilibrium results in

pnet,x =
i0(ωx − βθx)

η
− (κ+ gdc)(ωx − βθx)

2

η2
. (4.67)

Hence, (4.51) directly follows by linearizing (4.67) w.r.t ωx. ■

4.9 Appendix B: transformations and identities

4.9.1 αβ-coordinates

For a three-phase quantity zabc := (za, zb, zc) ∈ R3 that is balanced i.e., za + zb + zc = 0

the magnitude preserving Clarke transformation is defined by

zαβ = (zα, zβ) := Czabc =
2

3



1 −1

2
−1

2

0

√
3

2
−
√
3

2


 zabc . (4.68)

4.9.2 Polar coordinates

The transformation from Cartesian to polar coordinates i.e., P : R2\{0} → R>0 × S1 is

(
∥z∥, θz

)
= P(z) :=

(√
z21 + z22 , tan

−1 z2
z1

)
. (4.69)
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Moreover, the inverse transformation is given by

(z1, z2) = P−1
(
∥z∥, θz

)
:= ∥z∥ψ(θz). (4.70)

Note that the polar coordinates are well-defined for the entire Cartesian space except

the origin since P(0) is not unique.

Lemma 1 (Algebraic and trigonometric identities). For a, b ∈ R2, ϵ ∈ R>0 and φ, ϕ ∈ S1

the followings hold

±a⊤b ≤ ϵ2∥a∥2 + 1

4ϵ2
∥b∥2, (4.71)

sin2 φ

2
=

1− cosφ

2
, (4.72)

cos2
φ

2
=

1 + cosφ

2
, (4.73)

sin(φ± ϕ) = sinφ cosϕ± cosφ sinϕ, (4.74)

cos(φ± ϕ) = cosφ cosϕ∓ sinφ sinϕ. (4.75)
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CHAPTER 5
Hybrid angle control and almost global

stability of non-synchronous hybrid AC/DC

power grids

Presented at the IEEE Conference on Decision and Control (CDC) 2022.

Authors – Ali Tayyebi and Florian Dörfler.

Abstract – This paper explores the stability of non-synchronous hybrid ac/dc power

grids under the hybrid angle control strategy. We formulate detailed dynamical models

for the ac grids and transmission lines, interlinking converters, and dc generations and

interconnections. Next, we establish the existence and uniqueness of the closed-loop

equilibria and demonstrate global attractivity of the equilibria, local asymptotic stabil-

ity of the desired equilibrium point, and instability and zero-Lebesgue-measure region of

attraction for other equilibria. The theoretic results are derived under mild, paramet-

ric, and unified stability/instability conditions. Further, we conclude the almost global

asymptotic stability of the hybrid ac/dc power grids under the hybrid angle control.

Last, we present a numerical verification of the theoretical results.

5.1 Introduction

The global paradigm shift toward harvesting energy from renewable sources has recently

led to the emergence of hybrid ac/dc power grids. Such systems are typically comprised

of several non-synchronous ac power grids that interact with each other through dc/ac

ILCs that are interconnected by a dc transmission network [56], [122]–[124].For instance,

Figure 5.1 illustrates an abstraction of the meshed hybrid ac/dc grids that have been

recently evolving in Europe.

The complex nonlinear dynamics of the hybrid ac/dc power grids with multiple

timescales and interactions between the dc network, renewable generations, and ac grids

renders the control of interlinking converters a daunting task. It has been recently re-

ported that the grid-forming converter control techniques [1] are viable candidates for
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Figure 5.1: The overview of the high voltage dc (HVDC) links and North Sea wind power
hub (NSWPH) concept that connect the regional groups (RGs) in the Northern Europe and
Baltic regions [124].

controlling the ILCs in hybrid ac/dc power grids [125]. In particular, [125] suggests

that the matching control [65], [126] exhibits superior dynamic performance in hybrid

ac/dc grids compared to classic control schemes for the interlinking converters, e.g.,

dual-droop control among others [125]. Inspired by this intriguing observation, this

work explores the stability certificates of the HAC [3] for multiple ILCs. We provide de-

tailed linear/nonlinear dynamical models for the ac grids and transmission lines, ILCs,

dc generations and interconnections. Next, we prove the existence and uniqueness of

equilibria for the closed-loop dynamics under a verifiable assumption. Further, we prove

the AGAS of hybrid ac/dc power grids with ILCs under the HAC. Last, we present a

numerical verification of the presented results.

5.2 Hybrid AC/DC grid model description

In this section, we describe a dynamical model of the hybrid ac/dc grids. We consider

n ∈ Z>0 ac grids, n ILCs, and define Nac ≜ {1, . . . , n} that collects the labels of the ac

systems. Further, it is envisioned that the ILCs are interconnected via m ∈ Z>0 dc lines;

see Figure 5.2 for the overall configuration.
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AC grids

We model the ac grids by aggregated dynamic COI models [3], [127], i.e.,

θ̇g = ωg, (5.1a)

ω̇g = J−1
(
Tm −Dfωg −Dd(ωg − ωr)− Te

)
, (5.1b)

Ṫm = τ−1
g

(
Tr − κg(ωg − ωr)− Tm

)
, (5.1c)

where θg ≜
(
θg,1, . . . , θg,n

)
∈ Sn denotes the stacked vector of the absolute phase an-

gles of the ac grids, ωg ≜ (ωg,1, . . . , ωg,n) ∈ Rn denotes the vector of angular frequen-

cies, J ≜ diag
(
{Jj}nj=1

)
∈ Rn×n

>0 denotes the diagonal matrix of the moment of iner-

tia constants, Tm ≜ (Tm,1, . . . , Tm,n) ∈ Rn denotes the vector of mechanical torques,

Df ≜ diag
(
{Df,j}nj=1

)
∈ Rn×n

>0 denotes the diagonal matrix of the aggregated damp-

ing constants associated with the friction torques that are proportional to the absolute

frequencies, Dd ≜ diag
(
{Dd,j}nj=1

)
∈ Rn×n

>0 denotes the diagonal matrix of the aggre-

gated damping constants associated with the damper windings that are proportional to

the frequency deviations, and Te ≜ (Te,1, . . . , Te,n) ∈ Rn denotes the vector of electrical

torques.

Further, τg ≜ diag
(
{τg,j}nj=1

)
∈ Rn×n

>0 captures the aggregated turbine time con-

stants, Tr ≜ (Tr,1, . . . , Tr,n) ∈ Rn collects the reference mechanical torque inputs for the

turbines, κg ≜ diag
(
{κg,j}nj=1

)
is the diagonal matrix of governor proportional control

gains, and finally ωr ≜ (ωr,1, . . . , ωr,n) ∈ Rn
>0 denotes the nominal frequencies of the ac

grids (that are not necessarily identical). The damping terms in (5.1b) can be seen as a

representation of the primary and fast frequency controls that are respectively associated

with the underlying synchronous machines and power converters in the aggregated COI

model.

In Subsection 5.3.2, the connection of (5.1) to the other system dynamics is char-

acterized. We emphasize that, in the sequel, all three-phase quantities are transformed

to dq-coordinates aligned with θg in (5.1a), hence, the ac impedance and admittance

matrices are dynamic and depend on ωg.

AC transmission lines

The lines that couple the ac grid models (5.1) to the ILCs’ (see Figure 5.2) are modeled

by [3]

i̇g = L−1
g

(
v − (Rg − Lgωg ⊗ J2)ig − vg

)
, (5.2)

where ig ≜ (ig,1, . . . , ig,n) ∈ R2n denotes line currents in the respective dq-frames that

are aligned with the COI angles θg and Lg ≜ diag
(
{Lg,j ⊗ I2}nj=1

)
∈ R2n×2n denotes
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the augmented inductance matrix associated with transmission lines, and ⊗, I2, and J2
denotes the Kronecker product, 2-D identity matrix and rotation by π/2, respectively.

Further, v ≜ (v1, . . . , vn) ∈ R2n denotes the ac output voltages of the ILCs, Rg ≜

diag
(
{Rg,j ⊗ I2}nj=1

)
∈ R2n×2n is the augmented diagonal resistance matrix of the line

impedance, and Lg ≜ diag
(
{Lg,j}nj=1

)
∈ Rn×n is the n-D diagonal reduction of Lg. Last,

vg ≜ (vg,1, . . . , vg,n) ∈ R2n denotes the dynamic grid voltages.

Interlinking converters

The ILCs dynamics in dq-frames aligned with the COI angles in (5.1a) are given by [1],

[125]

θ̇c = ωc, (5.3a)

i̇dc,g = τ−1
dc

(
idc,r − κdc(vdc − vdc,r)− idc,g

)
, (5.3b)

v̇dc = C−1
dc

(
Bidc,n + idc,g −Gdcvdc −m(δ)⊤i

)
, (5.3c)

i̇ = L−1
(
m(δ)vdc − (R− Lωg ⊗ J2)i− v

)
, (5.3d)

v̇ = C−1
(
i− (G− Cωg ⊗ J2)v − ig

)
, (5.3e)

where θc ≜ (θc,1, . . . , θc,n) ∈ Sn denotes the ILCs modulation angles evolving on the

n-D torus and ωc ≜ (ωc,1, . . . , ωc,n) ∈ Rn denotes the converter frequency. The time

constants associated with the first-order dc generation models are denoted by τdc ≜

diag
(
{τdc,j}nj=1

)
∈ Rn×n and idc,g ≜ (idc,g,1, . . . , idc,g,n) ∈ Rn denotes the currents flow-

ing out of the dc current sources that are collocated with the ILCs dc-sides, idc,r ≜
(idc,r,1, . . . , idc,r,n) ∈ Rn denotes the reference currents for the dc sources, and κdc ≜

diag
(
{κdc,j}nj=1

)
∈ Rn×n denotes the matrix of proportional dc voltage control gains.

The dc-link capacitances are denoted by the diagonal matrix Cdc ≜ diag
(
{Cdc,j}nj=1

)
∈

Rn×n, the signed incidence matrix associated with the directed graph of the dc intercon-

nections is denoted by B ∈ Rn×m, idc,n ≜ (idc,n,1, . . . , idc,n,m) ∈ Rm collects the dc edge

currents, and Gdc ≜ diag
(
{Gdc,j}nj=1

)
∈ Rn×n denotes the nodal dc conductances that

models the ILCs dc-losses and/or the resistive dc loads. The ILCs modulation signals

are captured by m(δ) ≜ (m1(δ1), . . . ,mn(δn)) ∈ R2n×n with mj(δj) = µjr(δj) ⊗ ej ∈
R2n where ej denotes the j-th orthonormal basis of Rn, r(δj) ≜ (cos(δj), sin(δj)), and

µj ∈ R[0,1/2] denotes the j-th modulation signal magnitude. Last, i ≜ (i1, . . . , in) ∈ R2n

is the vector of the currents flowing through the ILCs output filters. Furthermore,

L ≜ diag
(
{Lj ⊗ I2}nj=1

)
∈ R2n×2n denotes the augmented diagonal matrix of ILCs filter

inductances, R ≜ diag
(
{Rj ⊗ I2}nj=1

)
∈ R2n×2n denotes the resistance matrix associ-

ated with the filter impedance, and L ≜ diag
(
{Lj}nj=1

)
∈ Rn×n is the reduced version
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of L, C ≜ diag
(
{Cj ⊗ I2}nj=1

)
∈ R2n×2n denotes the augmented diagonal matrix of

filter capacitance, G ≜ diag
(
{Gj ⊗ I2}nj=1

)
∈ R2n×2n is the filter conductance, and

C ≜ diag
(
{Cj}nj=1

)
∈ Rn×n is the reduced version of C.

DC interconnections

We model the dc lines with RL dynamics that [128], i.e.,

i̇dc,n = L−1
dc

(
−B⊤vdc −Rdcidc,n

)
, (5.4)

where Ldc ≜ diag
(
{Ldc,j}mj=1

)
∈ Rm×m and Rdc ≜ diag

(
{Rdc,j}mj=1

)
∈ Rm×m respec-

tively denote the diagonal inductance and resistance matrices associated with the dc

lines. Note that we do not make any assumption on the sparsity of the underlying

graph1 associated with the dc interconnections.

5.3 Hybrid angle control and stability analysis

In this section, we equip the ILCs with the HAC, formulate the closed-loop dynamics,

and present our stability analysis.

5.3.1 Hybrid angle control for interlinking converters

We define the frequency of the ILCs in (5.3a) according to the multi-variable grid-forming

HAC [3], i.e.,

ωc ≜ ωr + η(vdc − vdc,r)− γsin

(
δ − δr
2

)
, (5.5)

where η ≜ diag
(
{ηj}nj=1

)
∈ Rn×n and γ ≜ diag

(
{γj}nj=1

)
∈ Rn×n respectively denote

the diagonal matrix of the dc and ac gains associated with HAC. Further, for any z ∈ Rn,

sin(z) ≜ (sin(z1), . . . , sin(zn)). Last, δ ≜ θc − θg denotes the vector of relative ILC-COI

angles and δr ≜ (δr,1, . . . , δr,n) ∈ Sn collects the reference relative angles. We consider

that all angular quantities evolve on the boundary of a Möbius strip, i.e., M ≜]−2π, 2π[

where −2π ≡ 2π [3], hence, δ ∈ Mn; see Figure 5.3 for a geometrical representation of

M2.

The HAC (5.5) resembles the hybrid control laws, e.g., see [9], [56]. Unlike the classic

techniques, e.g., [34], [125], [128], the hybrid strategies unify the dc and ac feedback in

1If the dc interconnections includes disconnected subgraphs, the stability result in Section 5.3 holds
for the individual hybrid ac/dc subsystems.
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Figure 5.3: The figure-8 immersion of the Klein bottle [129]. The Klein bottle can be
decomposed into two Möbius strips (e.g., the ones above and below the colored path) with
identical compact boundaries representing M [3]. The merged boundaries of the underlying
Möbius strips (e.g., the colored closed curve) represents the angle manifold M2 =]−2π, 2π[×]−
2π, 2π[ where −2π ≡ 2π.

a single controller. In particular, HAC encodes trade-off between the dc voltages (that

relate to the dc energies) and the ac angles (that relate to the ac power flows) deviations.

5.3.2 Closed-loop analysis

In order to combine the models introduced in Section 5.2, we first define the aggregated

electrical torque and the voltage associated with (5.1). Similar to the modeling approach

in [3], [109] we define the j-th stiff COI voltage (that resembles the synchronous generator

electromagnetic force) as

vg,abc,j ≜ bjωg,j

(
sin θg,j, sin

(
θg,j −

2π

3

)
, sin

(
θg,j −

4π

3

))
, (5.6)

where vg,abc,j is the three-phase representation of vg,j in (5.2) and bj ∈ R>0 is a constant.

Note that we can alternatively simplify the frequency-dependent magnitude in (5.6) to a

constant reference vr,j. The implicit assumption in (5.6) is that bj ≜ vr,j/ω
⋆
g,j realizes the

desired magnitude at the equilibrium frequency ω⋆g,j for the j-th ac grid. Subsequently,

the j-th electrical torque in (5.1b) is defined by [3], [109]

Te,j ≜ ω−1
g,j v

⊤
g,abc,jig,abc,j, (5.7)
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where ig,abc,j is the three-phase representation of ig,j in (5.2). Finally, combining (5.1)-

(5.7) yields the overall dynamics, i.e.,

ẋ = K−1f(x), (5.8)

where

x ≜
(
δ, idc,n, idc,g, vdc, i, v, ig, ωg, Tm

)
,

K ≜ diag
(
In, Ldc, τdc, Cdc, L, C, Lg, J, τg

)
,

and

f(x) ≜




ωr + η(vdc − vdc,r)− γsin

(
δ − δr
2

)
− ωg

−B⊤vdc −Rdcidc,n

idc,r − κdc(vdc − vdc,r)− idc,g

Bidc,n + idc,g −Gdcvdc −m(δ)⊤i

m(δ)vdc − (R− Lωg ⊗ J2)i− v

i− (G− Cωg ⊗ J2)v − ig

v − (Rg − Lgωg ⊗ J2)ig − ψωg

Tm −Dfωg −Dd(ωg − ωr) + ψ⊤ig

Tr − κg(ωg − ωr)− Tm




,

in which the three-phase quantities in (5.6) and (5.7) are transformed to the dq-frames

aligned with θg,j and written in terms of ψ ≜ (ψ1, . . . , ψn) ∈ R2n×n with ψj ≜ bjr(0)⊗ej ∈
R2n (here r(0) is used since the dq-frame is aligned with the COI angle). We partition the

state vector as x ≜ (δ, y) ∈ X ≜ Mn × R10n+m where y ≜ (idc,n, idc,g, vdc, i, v, ig, ωg, Tm)

and remark that f(x) is smooth in X. Last, we define D ≜ Df +Dd.

Assumption 1 (Frequency and dc voltage regulation). Assume that the equilibrium

frequency ω⋆g and dc voltage v⋆dc of (5.8) coincide with respective references ωr and vdc,r.

Assumption 1 implies requirements for frequency and dc voltage balancing across the

ac/dc grids. This is met by an appropriate choice of reference-parameter pairs (Tr, κg)

and (idc,r, κdc) in (5.1c) and (5.3b), respectively [3]. Note that considering secondary

integral-type controllers in (5.1c) and (5.3b) also ensures that Assumption 1 holds, but,

the integral control hinders the frequency and dc voltage droop mechanisms that are

crucial for load-sharing [125]. Thus, the blend of consistent references and adequately

tuned proportional controllers is recommended for verification of Assumption 1. Last,

Assumption 1 is conceptually similar to a widely recognized assumption in control of

power systems that requires the given set-points to be consistent with (feasible) solutions

of power flows equations, e.g., see [45] among others.
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Theorem 6 (Existence and uniqueness). Under Assumption 1, the closed-loop dynamics

(5.8) admits a unique equilibrium set that is described by

Ω⋆ ≜
{
(δ⋆, y⋆)

∣∣δ⋆j ∈ {δr,j, δr,j + 2π},∀j ∈ Nac

}
, (5.9)

where y⋆ is unique w.r.t (δr, vdc,r, ωg,r) and Ω⋆ only contains disjoint points that only

differ in their angles.

The proof is provided in the Appendix 5.6. Among all the points in Ω⋆, x⋆s ≜ (δr, y
⋆)

has a different stability nature (more on this later). Last, we define Ω⋆
u ≜ Ω⋆ \ x⋆s .

Theorem 7 (Decentralized certificates for global attractivity). The equilibria of system

(5.8) as in (5.9) are globally attractive if the following decentralized conditions hold for

all j ∈ Nac:

Dj > Dmin,j and γj > γmin,j, (5.10)

where the critical COI damping, i.e., Dmin,j is defined by

(
Lj∥i⋆j∥

)2

Rj

+

(
Cj∥v⋆j∥

)2

Gj

+

(
Lg,j∥i⋆g,j∥

)2

Rg,j

,

and the critical ILC angle damping, i.e., γmin,j is defined by

ηj

(
1 +

(
µj∥i⋆j∥

)2)

Gdc,j

+
ηj

(
µj∥v⋆dc,j∥

)2

Rj

+
1

2
(
Dj −Dmin,j

) .

The proof is provided in the Appendix 5.6. Next, we employ the function in (5.14),

and leverage the Lyapunov’s direct method to establish the local asymptotic stability of

x⋆s ∈ Ω⋆.

Corollary 1 (Local asymptotic stability of x⋆s ). Consider the closed-loop system (5.8)

and the equilibrium point x⋆s = (θr, y
⋆), then x⋆s is locally asymptotically stable if the

stability conditions (5.10) are satisfied for all j ∈ Nac.

The proof is provided in the Appendix 5.6.

Corollary 2 (Instability and region of attraction of Ω⋆
u). Consider the closed-loop system

(5.8), if the conditions (5.10) are satisfied for all j ∈ Nac then all equilibria in Ω⋆
u are

unstable with zero-Lebesgue-measure region of attractions.

Proof is skipped due to the lack of space but it follows from a standard albeit lengthy

Schur complement analysis as in [3]. More precisely, the Jacobian of (5.8) admits at

least one eigenvalue with positive real part when evaluated over Ω⋆
u. Subsequently, by
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invoking the results of [45], [109], [120] one can show that the union of the regions of

attraction of the equilibria in Ω⋆
u is a zero-Lebesgue-measure set. Intuitively speaking,

Ω⋆
u contains the saddle points of the LaSalle function (5.14) since H(x̂) is globally convex

and S(δ̂) attains its local maxima on Ω⋆
u; see [3]. Theorem 8 below combines the results

of Theorem 7, Corollaries 1, and 2.

Theorem 8 (Main result: AGAS). The closed-loop system (5.8) is almost globally

asymptotically stable with respect to the equilibrium x⋆s if the unified stability/instability

conditions (5.10) are satisfied for all j ∈ Nac.

Remark 14 (Features, conditions, and implementations). First, HAC (5.5) provides

two degrees of freedom for an optimal frequency tuning. Further, HAC integrates the

complementary benefits of purely ac or dc-based grid-forming frequency control laws, i.e.,

the enhanced performance and robustness; see [1], [5] for a comparison. In addition, the

AGAS result is obtained without requiring an assumption on the connectivity/sparsity of

the dc interconnections. Second, conditions (5.10) are fully decentralized (i.e., they do

not require non-local parameters) and confirm that the stability certificate of HAC for a

single converter system is fully scalable; see [3]. Third, the damping requirement for the

ILCs i.e., γj > γmin,j does not require large physical damping but is met by an appropriate

choice of the control parameters γj and ηj. Next, the COIs damping requirements i.e.,

Dj > Dmin,j is a reoccurring theme in related works; see [3] for details. Forth, conditions

in (5.10) does not rely on the control of the dc energy sources. Thus, such generation

units can be distributed within the dc network. Finally, the reader is referred to [3] for

discussions on the implementation of the HAC (5.5). Note that under the dc power flow

assumption and when reducing the ILCs’ filters to resistive-inductive elements, HAC is

approximated by ωc ≈ ωr + η(vdc − vdc,r)− γsin
(
(p− pr)/2

)
, where p and pr respectively

denote the active power flows between the ILCs and COIs and the associated references.

5.4 Numerical verification

In this section, the qualitative behavior of the closed-loop dynamics (5.8) is presented.

We consider two ILCs that interconnect two ac grids via a dc transmission line, i.e.,

we set n = 2 and m = 1 in (5.8); see Figure 5.2 for an illustration. The model and

control parameters of the first subsystem are: ωr,1 ≈ 314 [rad/s] (i.e., 50 Hz), η1 = 0.01,

vdc,r,1 = 3.168 × 103 [V], γ1 = 106, δr,1 = −0.1 [rad], Ldc,1 = L1 = Lg,1 = 0.001 [H],

Rdc,1 = R1 = Rg,1 = 0.001 [Ω], τdc,1 = 0.05 [s], idc,r,1 = 0, κdc,1 = 103, Cdc,1 = 0.005 [F],

Gdc,1 = G1 = 0.001 [Ω−1], µ1 = 0.25, C1 = 0.002 [F], b1 = 2.59, vr,1 = 816.4 [V], J1 = 500

[s], Df,1 = 0, Dd,1 = 5 × 103, κg,1 = 5 × 103, and τg,1 = 5 [s]. The parameters of the

second subsystem are identical to those of the first subsystem except ωr,2 ≈ 377 [rad/s]

(i.e., 60 Hz), vdc,r,2 = 2.59×103 [V], δr,2 = 0.1 [rad], µ2 = 0.31, and b2 = 2.16. Figure 5.4

illustrates the convergence of state pairs (δ1 − δr,1, δ2 − δr,2) and (ωg,1 − ωr,1, ωg,2 − ωr,2)
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starting from random initial conditions in X. Since δr,1 = −0.1, the first ILC absorbs

power from the first ac grid. In contrast, the second ILC injects power into the second

ac grid, since δr,2 = 0.1. The power transfer over the dc interconnection is realized

by v⋆dc,1 → vdc,r,1 > v⋆dc,2 → vdc,r,2; presentation is skipped due to lack of space. It

is noteworthy, that even if the dc voltage references are not selected appropriately the

drooping mechanism of the HAC [3] shifts the equilibrium dc voltages such that the

power transfer is realized. Further, this behavior is achieved while coupling ac grids

with significantly different angular frequencies. Figure 5.4 also qualitatively highlights

the region of attraction of the stable equilibrium point characterized by δ̂1 = δ̂2 = 0 and

instability of other angle equilibria in M2. We close by remarking that the presented

results are preliminary and numerical verification of HAC performance in hybrid AC/DC

grids requires further in-depth investigations.

5.5 Outlook

In this work, we presented a dynamical modeling of hybrid ac/dc grids and derived

fully decentralized conditions for the existence, uniqueness, and global stability of the

closed-loop equilibria. Our future work includes: 1) the stability analysis of the hybrid

AC/DC grids under HAC while incorporating nonlinear constant power sources/loads, 2)

revisiting and extending the analysis by considering the port-Hamiltonian representation,

3) deriving stability certificates for the systems that incorporate high-fidelity dc energy

source models, e.g., wind generators, 4) stability analysis when decomposing the ac grid

models into distributed generators, and 5) an extensive numerical verification of the

control performance.

5.6 Appendix A: proof of the technical results

Proof of Theorem 6. Setting the RHS of (5.8) of to zero, by Assumption (1), angle dy-

namics (5.8) at the equilibrium, i.e.,

ωr + η(v⋆dc − vdc,r)− γsin

(
δ⋆ − δr

2

)
− ω⋆g = 0, (5.11)

reduces to sin
(
(δ⋆ − δr)/2

)
= 0. This implies that the elements of the angle equilibrium

δ⋆, i.e., δ⋆j ∈ {δr,j, δr,j + 2π} for all j ∈ Nac. Further, Assumption 1 implies the existence

of dc voltage and frequency equilibria, thus, their respective dynamics in (5.8) vanish at

the equilibrium. Hence, i⋆dc,n = −R−1B⊤vdc,r, i
⋆
dc,g = idc,r, and T

⋆
r = Tr that follow from

the dc edge, dc generation, and torque dynamics in (5.8) at the equilibrium, respectively.

117



F
ig
u
re

5
.4
:
T
h
e
p
h
a
se

p
ortrait

of
relative

an
gle

errors
(δ̂

1 ,δ̂
2 )

(left)
an

d
an

gu
lar

freq
u
en

cy
errors

(ω̂
g
,1 ,ω̂

g
,2 )

(righ
t).

118



Next, the ILCs’ filter and transmission dynamics can be written as Fy⋆ = h where

F ≜




−
(
R− Lωg ⊗ J2

)
−I2n 0

I2n −
(
G− Cωg ⊗ J2

)
−I2n

0 I2n −
(
Rg − Lgωg ⊗ J2

)


 ,

y⋆ ≜
(
i⋆, v⋆, i⋆g

)
, and h ≜

(
−m(δ⋆)v⋆dc, 0, ψω

⋆
g

)
. Note that as in [3], the symmetric part

of F , i.e., (1/2)
(
F + F⊤) ≺ 0 that means F is invertible and y⋆ is unique. Thus, the

y⋆ in (5.9) is uniquely given by y⋆ = (i⋆dc,n, i
⋆
dc,g, v

⋆
dc, i

⋆, v⋆, i⋆g, ω
⋆
g, T

⋆
m) that completes the

proof. ■

Proof of Theorem 7. Define the error coordinates x̂ ∈ X w.r.t x⋆s = (δr, y
⋆) (as defined

in Subsection (5.3.2)), i.e.,

x̂ ≜
(
δ̂, ŷ
)
≜ (5.12)

(
δ − δr, idc,n − i⋆dc,n, idc,g − i⋆dc,g, vdc − v⋆dc, i− i⋆, v − v⋆, ig − i⋆g, ωg − ω⋆g, Tm − T ⋆m

)
.

Subsequently, the translation of the closed-loop dynamics (5.8) to the coordinates (5.12)

results in the error dynamics, i.e.,

˙̂x = K−1f̂(x̂), (5.13)

where

f̂(x̂) ≜ f(x̂+ x⋆s ) =




ηv̂dc − γsin
δ̂

2
− ω̂g

−B⊤v̂dc −Rdcîdc,n

−κdcv̂dc − îdc,g

Bîdc,n + îdc,g −Gdcv̂dc − m̂(δ)⊤i⋆ −m(δ)⊤î

m(δ)v̂dc + m̂(δ)v⋆dc −Rî− Lωg ⊗ J2î− Lω̂g ⊗ J2i
⋆ − v̂

î−Gv̂ − Cωg ⊗ J2v̂ − Cω̂g ⊗ J2v
⋆ − îg

v̂ −Rgîg − Lgωg ⊗ J2îg − Lgω̂g ⊗ J2i
⋆
g − ψω̂g

T̂m −Dω̂g + ψ⊤îg

−κgω̂g − T̂m




,

where we exploited the fact that f(x⋆s ) = 0 and m̂(δ) ≜ m(δ)−m(δ⋆) denotes the vector
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of the trigonometric modulation errors. Consider the LaSalle function candidate:

V(x̂) ≜ S(δ̂) +H(ŷ) = 2
∑

j∈Nac

λj

(
1− cos

δ̂j
2

)
+

1

2

(
ŷ⊤P ŷ

)
, (5.14)

where for all j ∈ Nac, λj ∈ R>0 is a free parameter and

P =: diag
(
Ldc, τdcκ

−1
dc , C, L, Lg, J, τgκ

−1
g

)
≻ 0

with the well-defined model and control parameters. Note that V(x̂) > 0 for all x̂ ̸= 0

(modulo 4π). For notational convenience we collect all λj in λ ≜ diag
(
{λj}nj=1

)
. We

evaluate the time derivative of V(x̂) along the solutions of (5.13), that is,

V̇(x̂) =
(
sin

δ̂

2

)⊤(
ληv̂dc − λγsin

δ̂

2
− λω̂g

)
− î⊤dc,nRdcîdc,n − î⊤dc,gκ

−1
dc îdc,g − v̂⊤dcGdcv̂dc

− î⊤Rî− v̂⊤Gv̂ − î⊤g Rgîg − ω̂⊤
g Dω̂g − T̂⊤

mκ
−1
g T̂m − v̂⊤dcm̂(δ)⊤i⋆ + î⊤m̂(δ)v⋆dc

− î⊤Lω̂g ⊗ J2i
⋆ − v̂⊤Cω̂g ⊗ J2v

⋆ − î⊤g Lgω̂g ⊗ J2i
⋆
g (5.15)

where due to the quadratic structure of H(ŷ) and choice of P in (5.14), skew-symmetric

coupling terms and skew symmetry of J2 in (5.13) (see the underlined terms), certain

terms in V̇(x̂) =
(
∂V(x̂)/∂x̂

)⊤ ˙̂x either cancel out each other or vanish (see [3] for detailed

computations). Next, we derive decoupled bounds on the m̂(δ)-cross-terms in (5.15), e.g.,

consider that

−v̂⊤dcm̂(δ)⊤i⋆ = −
∑

j∈Nac

v̂dc,jµj

(
r
(
δj
)
− r

(
δ⋆j

))⊤

i⋆j , (5.16)

with r
(
δj
)
− r
(
δ⋆j
)
=
(
cos(δj)− cos(δr,j), sin(δj)− sin(δr,j)

)
.

Rearranging the summand in the RHS of (5.16) and applying the bounding scheme

(5.26) results in

(
r (δ)− r (δ⋆)

)⊤ (
v̂dc,jµji

⋆
j

)
≤ ϵ21,j

(
v̂dc,jµj∥i⋆j∥

)2
+

(
1

4ϵ21,j

)∣∣∣
∣∣∣r
(
δj
)
− r
(
δ⋆j
)∣∣∣
∣∣∣
2

.

Applying the trigonometric angle difference and half-angle identities (5.27) and (5.28)

yields that ∣∣∣
∣∣∣r
(
δj
)
− r
(
δ⋆j
)∣∣∣
∣∣∣
2

= 2
(
1− cos δ̂j

)
= 4 sin

δ̂j
2
,

and subsequently,

(5.16) ≤
∑

j∈Nac

(
ϵ1,jµj∥i⋆j∥

)2
v̂2dc,j +

∑

j∈Nac

1

ϵ1,j2
sin2 δ̂j

2
, (5.17)
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where ϵ1,j ∈ Rn
>0 for all j ∈ Nac is a constant. The bound in (5.17) takes the alternative

form

−v̂⊤dcm̂(δ)⊤i⋆ ≤ v̂⊤dcφ1v̂dc +

(
sin

δ̂

2

)⊤

φ2sin
δ̂

2
, (5.18)

φ1 ≜ diag

({(
ϵ1,jµj∥i⋆j∥

)2}n

j=1

)
, and φ2 ≜ diag



{

1

ϵ21,j

}n

j=1


.

By following similar procedure, the other m̂(δ)-cross-term in (5.15) is bounded as

î⊤m̂(δ)v⋆dc ≤
∑

j∈Nac

ϵ22,j ∥̂ij∥2 +
∑

j∈Nac

(
µjv

⋆
dc,j

ϵ2,j

)2

sin2 δ̂j
2
,

where ϵ2,j ∈ Rn
>0 for all j ∈ Nac is a constant and the bound takes the alternative form

î⊤m̂(δ)v⋆dc ≤ î⊤φî+

(
sin

δ̂

2

)⊤

φ4sin
δ̂

2
, (5.19)

φ3 ≜ diag

({
ϵ22,j ⊗ I2

}n
j=1

)
, and φ4 ≜ diag








(
µjv

⋆
dc,j

ϵ2,j

)2




n

j=1


 .

Next, we derive the upper-bounds on the cross-terms in (5.15) that depend on ω̂g and

either î, v̂, or îg. These terms arise due to the time-varying angular frequency of the

dq-coordinates in (5.8), i.e., ωg. To this end, we employ the identity (5.26) that results

in

−î⊤Lω̂g ⊗ J2i
⋆ ≤

∑

j∈Nac

ϵ23,j ∥̂ij∥2 +
∑

j∈Nac

(
Lj∥i⋆j∥
2ϵ3,j

)2

ω̂2
g,j,

−v̂⊤Cω̂g ⊗ J2v
⋆ ≤

∑

j∈Nac

ϵ24,j∥v̂j∥2 +
∑

j∈Nac

(
Cj∥v⋆j∥
2ϵ4,j

)2

ω̂2
g,j,

−î⊤g Lgω̂g ⊗ J2i
⋆
g ≤

∑

j∈Nac

ϵ25,j ∥̂ig,j∥2 +
∑

j∈Nac

(
Lg,j∥i⋆g,j∥

2ϵ5,j

)2

ω̂2
g,j,

where ϵ3,j, ϵ4,j, and ϵ5,j ∈ Rn
>0 for all j ∈ Nac are constant and the bounds take the form

−î⊤Lω̂g ⊗ J2i
⋆ ≤ î⊤φ5î+ ω̂⊤

g φ6ω̂g, (5.20)
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φ5 ≜ diag

({
ϵ23,j ⊗ I2

}n
j=1

)
, and φ6 ≜ diag








(
Lj∥i⋆j∥
2ϵ3,j

)2




n

j=1


 ,

−v̂⊤Cω̂g ⊗ J2v
⋆ ≤ v̂⊤φ7v̂ + ω̂⊤

g φ8ω̂g, (5.21)

φ7 ≜ diag

({
ϵ24,j ⊗ I2

}n
j=1

)
, and φ8 ≜ diag








(
Cj∥v⋆j∥
2ϵ4,j

)2




n

j=1


 ,

−î⊤g Lgω̂g ⊗ J2i
⋆
g ≤ î⊤g φ9îg + ω̂⊤

g φ10ω̂g, (5.22)

φ9 ≜ diag

({
ϵ25,j ⊗ I2

}n
j=1

)
, and φ10 ≜ diag








(
Lg,j∥i⋆g,j∥

2ϵ5,j

)2




n

j=1


 .

Taking into account (5.18)-(5.22), we evaluate an upper-bound on V̇(x̂) in (5.15), i.e.,

V̇(x̂) ≤
(
sin

δ̂

2

)⊤(
ληv̂dc − (λγ − φ2 − φ4) sin

δ̂

2
− λω̂g

)

− î⊤dc,nRdcîdc,n − î⊤dc,gκ
−1
dc îdc,g − v̂⊤dc (Gdc − φ1) v̂dc

− î⊤ (R− φ3 − φ5) î− v̂⊤ (G− φ7) v̂ − î⊤g
(
Rg − φ9

)
îg

− ω̂⊤
g (D − φ6 − φ8 − φ10) ω̂g − T̂⊤

mκ
−1
g T̂m. (5.23)

Consider the alternative coordinates partitioning x̂ ≜ (x̂1, x̂2) that, compared to x̂ in

(5.12), replaces δ̂ with its nonlinear counterpart sin
(
δ̂/2
)
and reshuffles the elements

of x̂ as

x̂1 ≜

(
sin

δ̂1
2
, v̂dc,1, ω̂1, . . . , sin

δ̂n
2
, v̂dc,n, ω̂n

)
,

x̂2 ≜
(
îdc,n, îdc,g, î, v̂, îg, T̂m

)
.

Hence, the RHS of (5.23) takes a quadratic form in x̂, i.e.,

V̇(x̂) ≤ −x̂⊤Qx̂ = −
(
x̂⊤1 Q11x̂1 + x̂⊤2 Q22x̂2

)
(5.24)
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where Q11 ≜ diag
({
Q11,j

}n
j=1

)
with

Q11,j ≜




λjγj −
1

ϵ21,j
−
(
µjv

⋆
dc,j

ϵ2,j

)2

−λjηj
2

λj
2

−λjηj
2

Gdc,j −
(
ϵ1,jµj∥i⋆j∥

)2
0

λj
2

0 Q1133,j




, (5.25)

where

Q1133,j = Dj −
(
Lj∥i⋆j∥
2ϵ3,j

)2

−
(
Cj∥v⋆j∥
2ϵ4,j

)2

−
(
Lg,j∥i⋆g,j∥

2ϵ5,j

)2

,

and

Q22 ≜ diag
(
Rdc, κ

−1
dc , R− φ3 − φ5, G− φ7, Rg − φ9, κ

−1
g

)
.

Now, let us assign the free parameters as λj = 2/ηj, ϵ1,j =
√
Gdc,j/

(√
2µj∥i⋆j∥

)
, ϵ2,j =√

Rj/2, ϵ3,j =
√
Rj/2, ϵ4,j =

√
Gj/2, and ϵ5,j =

√
Rg,j/2 for all j ∈ Nac. This set

of parameters directly implies the positive definiteness of Q22. Next, standard Schur

complement analysis yields that Q11 is positive definite if and only if (5.10) is satisfied.

Since V̇(x̂) ≤ 0 for any x̂(0) ∈ X, then the c-sublevel sets of V(x̂), i.e., Lc ≜
{
x̂ ∈

X : V(x̂) ≤ c
}

with c ≜ V
(
x̂(0)

)
, is a forward invariant and compact due to the

boundedness of δ̂ in Mn (that is the union of n compact Möbius strip boundaries) and

the radial unboundedness of H(ŷ). Hence, by invoking the LaSalle’s invariance principle,

the solutions of (5.13) globally converge to the largest invariant set M ⊂ Ω ≜
{
x̂ ∈ X :

V̇(x̂) = 0
}
. Under the conditions (5.10), Q ≻ 0 in (5.24). Thus, V̇(x̂) = 0 iff x̂ = 0.

Finally, x̂ = 0 characterizes a set that is identical to Ω⋆ in (5.9), i.e., Ω = Ω⋆. ■

Proof of Corollary 1. Consider the coordinates (5.12) (that are written w.r.t x⋆s ) and

dynamics (5.13). Note that V(x̂) vanishes at the origin and V(x̂) > 0 otherwise in X. By
Theorem 8, if (5.10) is satisfied, V̇(x̂) < 0 in a sufficiently small open neighborhood of x⋆s
(that excludes any other equilibria in Ω⋆). The existence of such an open neighborhood is

guaranteed since all equilibria in Ω⋆ are disjoint. Consider a sufficiently small c-sublevel

set of V(x̂) i.e., Lc ≜
{
x̂ ∈ X : V(x̂) ≤ c, c ∈ R>0

}
such that it excludes all the equilibria

in Ω⋆ except x⋆s . Note that for sufficiently small c, V̇(x̂) ≤ 0 for all x̂ in Lc. Thus, Lc is

positively invariant w.r.t (5.13). Last, applying the Lyapunov’s direct method concludes

the asymptotic stability of x⋆s ∈ Ω⋆. ■
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5.7 Appendix B: mathematical identities

Lemma 2 (Algebraic and trigonometric identities). For u,w ∈ R2, ϵ ∈ R>0 and ϑ, ϱ ∈ S1

the followings hold

±u⊤w ≤ ϵ2∥u∥2 +
(

1

4ϵ2

)
∥w∥2, (5.26)

cos(ϑ± ϱ) = cosϑ cos ϱ∓ sinϑ sin ϱ, (5.27)

sin2 ϑ

2
=

1− cosϑ

2
. (5.28)
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CHAPTER 6
System-level performance and robustness of

the grid-forming hybrid angle control

Presented at the Power System Computation Conference (PSCC) 2022 and published in

the Elsevier Electric Power System Research Journal.

Authors – Ali Tayyebi, Alan Magdaleno, Denis Vettoretti, Meng Chen, Eduardo Prieto-

Araujo, Adolfo Anta, and Florian Dörfler.

Abstract – This paper investigates the implementation and application of the multi-

variable grid-forming HAC for high-power converters in transmission grids. We ex-

plore the system-level performance and robustness of HAC concept in contrast to other

grid-forming schemes i.e., power-frequency droop and matching controls. Our findings

suggests that, similar to the ac-based droop control, HAC enhances the small-signal

frequency stability in low-inertia power grids, and akin to the dc-based matching con-

trol, HAC exhibits robustness when accounting for the practical limits of the converter

systems. Thus, HAC combines the aforementioned complementary advantageous. Fur-

thermore, we show how retuning certain control parameters of the grid-forming controls

improves the frequency performance. Last, as separate contributions, we introduce an

alternative control augmentation that enhances the robustness and provides theoretical

guidelines on extending the stability certificates of HAC to multi-converter systems.

6.1 Introduction

The ambitious targets that are set to globally reduce the carbon footprint require revolu-

tionizing the foundations of legacy power systems. In other words, the SM-based energy

generation from fossil fuels must be replaced with green and sustainable energy sources.

The majority of clean energy sources interface the power grids via dc-ac power convert-

ers. Although, in contrast to the bulk SMs, power converters are fast, modular, and

highly controllable, they are subject to volatile energy resources and lack the necessary

robustness and maturity to ensure adequate and reliable power delivery. It is envisioned

that the advanced control architectures for power converters can possibly address the
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aforementioned concerns [25]–[27], [33].

The so-called grid-following converter controls that exploit an explicit synchronizing

mechanism are widely utilized [7], [130], [131]. However, the grid-following converters

exhibit robustness and stability issues in the converter-dominated grids that are high-

lighted by a significant reduction of rotational inertia i.e., low-inertia grids; see [2], [100],

[132] among others. Subsequently, the concept of grid-forming converter (GFC) is in-

troduced that provides fast and robust frequency and voltage regulation to address the

stability challenges associated with the low-inertia systems [1], [24].

Several grid-forming control techniques have been proposed in recent years. Restrict-

ing the focus to converter frequency definition under these controls, one can highlight fun-

damental differences. The vast majority of grid-forming techniques e.g., droop control,

virtual synchronous machine (VSM), and oscillator-based schemes shape the converter

frequency based on the ac quantities such as current, voltage, and power flows e.g., [34]–

[36], [38], [45], [46], [49], [52], [64], [104], [133], [134]. Recently, a class of controllers have

been proposed that define the converter frequency in proportion to a linear/nonlinear

dc voltage feedback [40], [41], [43], [44], [65], [125], [126]. Most recently, the emerging

multi-variable control trend is to combine dc and ac information in designing the GFC

frequency [3], [4], [8]–[10], [55], [57].

In this work, we focus on the grid-forming hybrid angle control (HAC) that blends

linear dc and nonlinear ac feedback for defining converter frequency [3], [4], [8]. We

provide:

∗ detailed guidelines for a system-level implementation of the HAC [3], [4], [8] accom-

panied by several practical remarks on the properties and behavior of the HAC,

∗ HAC performance evaluation in contrast to other grid-forming controls via various

simulation case studies involving single/two-area power grid models,

∗ insights concerning the influence of appropriately tuned local converter control

parameters on the global system frequency performance and findings on the PSS-

free operation of the converter-dominated grids,

∗ a high-level stability analysis that presents guidelines on extending the stability

certificates of HAC (as in [3], [4], [8]) to an interconnected system of converters,

∗ and finally, a complementary dynamic inverse droop control augmentation for en-

hancing the HAC robustness.

The remainder of this paper is structured as follows: Section 6.2 presents our modeling

approach for low-inertia power grids, Section 6.3 describes three different grid-forming

controls and highlights their dominant features. Furthermore, it provides practical details

on the implementation of HAC. Section 6.4 presents several comparative case studies.
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Last, the Appendix introduces a variant of HAC with enhanced robustness and includes

a high-level stability investigation for multi-converter systems under HAC.

6.2 Modeling description

In this paper, we consider a transmission power grid that is fed by a mixture of SM and

converter-based generation units. For the sake of completeness, we briefly review the SM,

network, and converter modeling; the reader is referred to [1] for further elaborations.

6.2.1 Synchronous machine

In this work, we consider a detailed nonlinear SM model that incorporates second-order

mechanical dynamics (associated with angle and frequency) and sixth-order electrical

dynamics (associated with the stator, damper, and field winding fluxes). Furthermore,

the SM is combined with a first-order dynamic turbine model. The reader is referred to [1,

Section II-B][62] for a detailed description of the SM modeling. It is noteworthy that we

include the standard SM control mechanisms such as automatic voltage regulator (AVR),

PSS, and turbine governor control; see [1] for details. Furthermore, the governor gain

in [1, Equation 5] is exploited to realize coordinated load-sharing with other generation

units across the system; see [1, Appendix] for a tuning criteria recommendation.

6.2.2 Power network

The generation units are considered to interface the transmission lines via identical

medium-to-high voltage (MV/HV) transformers. We consider dynamic transmission

lines represented with standard π-section models [1], [62]. Furthermore, the network

loads are modeled by constant impedances. We emphasize that the load models are

voltage-dependent and restrict our focus to the active power loads that primarily influ-

ence the frequency dynamics in transmission grids. Note that due to the fast timescales

of the GFCs and potential adverse interactions with line dynamics, the quasi-steady-

state algebraic network model assumption is not valid [45, Subsection III-A], hence it is

necessary to consider dynamic line models for low-inertia power systems [47], [100].

6.2.3 High-power DC-AC converter

The power converter model in this work includes an explicit first-order representation of

the dc energy source dynamics, dc-link capacitance, power-preserving (i.e., lossless) aver-

age model of the two-level dc-ac conversion stage, and the LC output filter. Furthermore,

we consider the current limits of the dc energy source that in practice corresponds to the
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current limits of the PV, battery, or wind generator systems. It is worth mentioning that

in this work the dc source model represents an aggregation of several energy sources that

supply a modular high-power converter; see Section 6.4 for further details. Figure 6.1

present the schematic of the converter model; see [1, Subsection II-A] for further details

and the differential equations corresponding to the Figure 6.1.

The converter model illustrated in Figure 6.1 provides three control degrees of free-

dom, namely: 1) the dc source current reference idc,r, 2) the modulation signal magnitude

i.e., µ = ∥mαβ(µ, θc)∥, and the modulation signal angle i.e., θc = ∠mαβ(µ, θc). In Sec-

tion 6.3, we elaborate on the definition of these control inputs under three different

grid-forming control strategies.

6.3 Grid-forming frequency controls

The vast literature on grid-forming control schemes can be distinctly assigned into three

categories:

∗ ac-based control techniques that define the converter frequency based on ac mea-

surements e.g., see [34]–[36], [38], [45], [46], [49], [64], [104], [133], [134],

∗ dc-based model-matching inspired techniques that relate the converter frequency

to the dc measurements e.g., see [40], [41], [43], [44], [65], [125], [126], and

∗ multi-variable hybrid control structures that exploit both dc and ac measurements

for a grid-forming frequency synthesis e.g., see [3], [8], [9], [55], [57].

In what follows, we review a candidate from each control category and highlight their

dominant features.

6.3.1 AC-based power-frequency droop control

The baseline power-frequency droop control that is inspired by the frequency droop

behavior of the SM, serves as a powerful yet simple control solution for grid-forming

converter applications [34]–[36], [134]. The power-frequency droop control in its simplest

form is described by

θ̇c = ωc := ω0 + dp−ω(pr − p), (6.1)

where θc denotes the phase angle of the converter modulation signal mαβ(µ, θc) in Figure

6.1, ωc denotes the converter angular frequency, ω0 denotes the nominal system fre-

quency, dp−ω is the power-frequency droop gain, pr is the control reference for the active

power flowing out of the converter’s ac-side terminal that is defined by p := v⊤αβiαβ.

The ac-based nature of the droop control can be observed in (6.1) that highlights the
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frequency dependency on the ac active power feedback. It is worth mentioning that

low-pass filtering the active power feedback in (6.1) is a common practice to safeguard

the converter control against measurement imperfections and high-frequency harmonics

[51, Section I]. Section 6.4 presents a case study that unveils the strong influence of such

low-pass filtering in reshaping the system-level post-contingency frequency evolution.

Remark 15 (Enhanced small-signal frequency stability). Recent explorations [1], [2], [7]

uncover that the ac-based grid-forming control strategies e.g., droop control, VSM, and

dispatchable virtual oscillator control (dVOC) clearly improve the small-signal frequency

stability (in terms of the RoCoF and nadir performance metrics) of the low-inertia system

compared to the all-SMs conventional system. This is primarily underpinned by the fast

response timescale of the GFCs that enables fast frequency regulation. Furthermore, it

has been observed that the ac-based grid-forming schemes exhibit slightly better frequency

response compared to the dc-based counterparts e.g., the matching control (presented in

the next Subsection); see [1, Subsection IV-C] for details. This behavior is due to the

fact that following a network contingency/disturbance, the ac feedback (e.g., p in (6.1))

quickly reflects the grid conditions in the converter frequency definition and enables fast

frequency regulation.

6.3.2 DC-based model-matching control

Inspired by the structural similarities of the SM and converter dynamical models, a

family of model-matching control techniques have been proposed [40], [41], [43], [44],

[65], [125], [126]. These control structures establish strong duality between the converter

and SM dynamical structure; see [40] for a detailed derivation. Matching control in its

original form is described by [65]

θ̇c = ωc := ηvdc, (6.2)

where η := ω0/vdc,r in which vdc,r denotes the reference for the dc voltage vdc. Note that

(6.2) highlights the dc-based nature of the matching strategy. Similar to droop control,

it might be necessary to low-pass filter the dc feedback in (6.2) to safeguard the angle

dynamics against potential dc-link voltage ripples.

Remark 16 (Enhanced robustness). Recall that the SMs can be operated with either

flexible or constant mechanical input torque, and regardless of this degree of freedom,

the SMs achieve robust synchronization with the power grid (thanks to their inherent

self-synchronizing feature [40], [43], [65], [109]). Under the strong converter-SM duality

induced by matching control, the converter can be operated with either constant or flexible

input dc current that is injected by the dc energy source in Figure 6.1. This property of
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the matching control comes strongly into the picture when considering the safety current

constraints of the dc energy source; see the saturation function in Figure 6.1. Recent

works [1], [55], [105] formally and numerically demonstrate that the matching controls

(unlike the ac-based schemes) preserve the closed-loop stability under active dc current

constraint. This behavior can be perceived as a built-in mode-switching feature that si-

multaneously changes the converter operation mode from voltage (i.e., grid-forming) to

current (i.e., grid-following) source when the dc constraint is activated; e.g., see [1, Fig-

ure 15]. To our knowledge this is the most dominant feature of the dc-based controls i.e.,

superior robustness.

6.3.3 Hybrid angle control

The hybrid ac/dc grid-forming control architecture appears as a natural extension and

the promising solution for combining the aforementioned complementary benefits of the

ac/dc-based control schemes [3], [8], [55], [57]; see Remarks 15 and 16. In what follows,

we restrict our focus to the recently proposed HAC that blends linear dc voltage and

nonlinear ac angle error terms for defining the converter frequency [3], [8]. The grid-

forming HAC is described by

θ̇c = ωc := ω0 + γdc
(
vdc − vdc,r

)

dc model-matching

− γac sin

(
δ − δr
2

)

ac angle synchronization

, (6.3)

where γdc and γac respectively denote the dc and ac control gains, and δ := ∠vs,αβ −
∠vαβ = θc − θv denotes the phase angle difference (i.e., the relative angle) of the voltage

before the filter and the output voltage in Figure 6.1, and δr denotes the control refer-

ence for δ. Note that the dc term in (6.3) is identical to the matching control variant

proposed in [41] and the nonlinear ac term in (6.3) resembles the Kuramoto-like angle

synchronizing term associated with the classic droop control (6.1) under certain assump-

tions [3, Remark 3][34]. The practical implementation of (6.3) will be explored in the

next section. The reader is referred to [3], [8] for details on the design and properties of

the HAC. However, the following presents a brief summary:

∗ HAC (6.3) incorporates an inherent dc-ac power-balancing behavior i.e., assuming

ωc → ω0 then γdc
(
vdc − vdc,r

)
− γac sin

(
δ − δr/2

)
→ 0. For instance, this means

that if vdc > vdc,r then δ > δr that allows for increased power injection into the

ac-side and subsequently stabilizes the dc voltage.

∗ The dc gain γdc predominantly reinforces the frequency dependency on the dc

dynamics. It is expected that a nonzero dc gain enables HAC to exhibit the
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robustness of dc-based controls (see Remark 16 for details and Section 6.4 for a

numerical justification of this hypothesis.)

∗ The ac gain γac strongly influences the timescale associated with the ac-side power

flows. Therefore, it resembles the influence of the droop gain on the performance

of the droop control.

6.3.4 DC and AC voltage control schemes

The grid-forming droop, matching and hybrid angle controls (6.1)-(6.3) define the phase

angle that enters the converter modulation signal mαβ(µ, θc) in Figure 6.1. It remains

to close the loop by assigning the remaining control inputs i.e., the dc energy source

reference current idc,r and modulation signal magnitude µ. For the sake of fairness in the

forthcoming comparative investigation, we consider identical complementary dc and ac

voltage controls (that respectively define idc,r and µ) for the aforementioned grid-forming

strategies.

Concerning the dc voltage control, we adopt the scheme that is proposed in [1] (see

[40] for a similar approach) i.e.,

idc,r := κdc
(
vdc,r − vdc

)

proportional control

+
pr
vdc,r

+

(
Gdcvdc +

vdcix − p

vdc,r

)

power injection and loss feedforward

(6.4)

where kdc denotes the proportional dc voltage control gain and ix := m⊤
αβiαβ denotes the

net dc current injection to the ac-side; see Figure 6.1. Note that the power injection and

loss compensation terms1 in (6.4) are not necessary but improve the dynamic response

and power set-point tracking [1], [40].

Next, inspired by the AVR mechanism of the SMs, we augment the grid-forming

strategies with a proportional-integral (PI) ac voltage magnitude control [1], [135] that

is (with slight abuse of the notation) given by

µ := κp
(
vr − ∥vαβ(t)∥

)
+ κi

∫ t

0

(
vr − ∥vαβ(s)∥

)
ds, (6.5)

where κp and κi respectively denote the proportional and integral ac voltage control

gains, and vr denotes the reference ac voltage amplitude. We remark that the robust ac

voltage regulation under (6.5) is favorable for a GFC (particularly in islanded/microgrid

applications). However, one can alternatively consider a classic reactive power-voltage

1The compensation scheme in (6.4) is conventionally known as feedforward control, however due
to the presence of the state-dependent quantities (such as vdc, ix, and p) it technically represents an
algebraic state feedback.

132



droop control as in [100]. Subsequently, the converter modulation signal in Figure 6.1

is defined based the angle in (6.1)-(6.3) and the magnitude prescribed by (6.5). Last,

in case studies presented in the Section 6.4 we identically tune the dc and ac voltage

controls (6.4) and (6.5) for all grid-forming strategies.

6.3.5 Hybrid angle control implementation

In this subsection, we elaborate on the implementation of the grid-forming HAC. Before

embarking upon these discussions, we remark that the implementation of droop control

(6.1), matching control (6.2), and voltage controls (6.4) and (6.5) is previously addressed;

the reader is referred to [1], [35], [40], [41], [71] for details.

Concerning the implementation of HAC (6.3), previous works [3], [8] establish the

theoretical foundations. However, the implementation presented in [3], [8] is not straight-

forward, thus in what follows, we make the reported ideas clear.

To begin with, the dc component of the HAC (6.3) is easily constructed based on the

dc voltage measurement in Figure 6.1; see the the dc feedback control in Figure 6.2.

Prior to describing the implementation of the angle synchronizing term in (6.3), note

that δ = θc−θv, thus one has to implicitly/explicitly derive the angle information from the

output ac voltage measurement. Assume that the ac voltage control (6.5) is sufficiently

fast such that ∥vαβ∥ ≈ vr (i.e., ∥vabc∥ ≈ vr that follows from the magnitude-preserving

Clarke transformation [3], [73]).

As it is illustrated in Figure 6.2, v̄abc := vabc/vr denotes the normalized three-phase ac

output voltage (note that v̄abc represents a unity phasor in polar coordinates that rotates

with angle θv). Next, we transform this quantity to a dq-coordinates that is aligned

with the converter modulation angle θc. Thus, the image of v̄abc in the dq-rectangular

coordinates (i.e., the unit vector rotating with the angle θv−θc= −δ) implicitly contains

the relative angle information i.e.,

(
v̄d, v̄q

)
=
(
cos(θv − θc), sin(θv − θc)

)
= (cos δ,− sin δ) .

Similar to low-pass filtering the active power feedback for the droop control (6.1), we

apply a first-order low-pass filter to (cos δ,− sin δ) where ωf denotes the cutoff frequency.

Subsequently, the filter output represents an approximation of the (cos δ,− sin δ) that is(
c̃os δ,−s̃in δ

)
2.

On the other hand, we process a given relative angle reference δr that is consistent

with desired power flows by the trigonometric functions that results in (cos δr,− sin δr)

(see [3] which shows how δr relates to the power and voltage set-points). Finally, by

exploiting the angle difference trigonometric identities and the half-angle sine formula

2Note that the LPF can by alternatively applied to vabc in Figure 6.2.
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[3, Lemma 1 and Proposition 5] an approximation of the angle term in (6.3) is obtained

− sin

(
δ − δr
2

)
≈ sin δrc̃os δ − s̃in δ cos δr√

2
(
1 + c̃os δ cos δr + s̃in δ sin δr

) . (6.6)

Respective multiplication of (6.6) and the dc voltage error with the gains γac and γdc
provides the necessary ingredients for implementing HAC (6.3).

The reader is referred to [3, Section V] for further discussions.

6.4 Numerical case studies

In this section, we employ the standard IEEE 9-bus test system as described in [1],

[71], [100]; see Figure 6.3 and Table 6.1 for the model and control parameters. This

system represents a transmission grid in which the SMs are rated at 100 [MVA]. Thus,

in order to study the system-level influence of the GFCs, it is ideally desired to consider

a roughly similar rating for the GFCs as that of the SMs. Therefore, we employ the

dynamic aggregation technique proposed in [136] that provides appropriate scaling laws

for deriving the aggregated parameters of a high-power converter system based on the

parameters of a smaller module.

To this end, we consider a GFC module rated at 500 [kVA] that corresponds to a

commercially available system; see [1, Table 1] for the parameters. Next, we envision

a parallel connection of 200 × 500 [kVA] units that is represented with a 100 [MVA]

aggregated model with the same structure as in Figure 6.1. The reader is referred to

[1, Figure 2 and Remark 1][2], [136] for further details and similar model aggregation

approaches. In what follows, the system-level performance of the grid-forming hybrid

angle control is explored in various case studies. Note that the employed simulation

model in the MATLAB/Simulink environment is publicly available [71].

6.4.1 Purely converter-based system

In this scenario, we remove the SMs from the grid model shown in Figure 6.3 and consider

three identical GFCs at nodes 1-3. We implement the HAC strategy (as in Figure 6.2)

for all the GFCs and identically tune the controllers (resulting in equal load-sharing).

Figure 6.4 illustrates the frequency and active power evolution at the generation nodes

following a 0.75 [pu] load-disturbance at node 7. Note that we do not implement an

explicit frequency measurement mechanism and rather observe the internal frequency of

the GFCs i.e., (6.3).

Figure 6.4 firstly verifies the grid-forming nature of HAC technique i.e., the au-
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Table 6.1: Case study model and control parameters [71].

IEEE 9-bus test system base values

Sb 100 MVA vb 230 kV ωb 50 Hz

Synchronous machine

Sr 100 MVA vr 13.8 kV D 0

H 3.7 s dp 1% τg 5 s

Single converter module

Sr 500 kVA Gdc, Cdc 0.83, 0.008 Ω−1,F vdc,r, vll-rms,r 2.44, 1 kV

R 0.001 Ω L 200 µH C 300 µF

n 200 τdc 50 ms idcmax 1.2 pu

DC and AC voltage controls

kdc 1.6× 103 kp 0.001 ki 0.5

Droop control, matching control, and HAC

ω0 ωb dp−ω 1% η ω0/vdc,r

γdc 0.01η γac 205 δr 0.0238

tonomous operation of converters without relying on a reference frequency provided by

an external source (as in the case of grid-following devices). Second, note that all GFCs

reach the post-contingency equilibrium in approximately 200 [ms]. This fast response

timescale is crucial for a satisfactory grid-forming performance [33]. Observe that the

units that are electrically closer to the disturbance location i.e., GFCs at node 2 and 3 re-

act on a slightly faster timescale. Last, Figure 6.4 confirms the equal load-sharing of the

GFCs. See [1], [2] for similar observations concerning the behavior of other grid-forming

schemes in an all-GFCs network.

6.4.2 The influence on the frequency performance metrics

In what follows, we explore the influence of grid-forming architectures (presented in

Section 6.3) on the frequency stability of low-inertia configuration associated with the

grid model shown in Figure 6.3 i.e., with SM at node 1 and GFCs at nodes 2 and 3.

More precisely, we 1) implement identical droop controllers for both GFCs, 2) imple-

ment matching control for the GFCs, and finally 3) consider HAC for the converters.

Subsequently, for all the 1SM-2GFCs pairs under different controls, we apply five load-
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Figure 6.3: IEEE 9-bus test system including SMs and GFCs; depending on the choice of the
generation technology at nodes 1, 2, and 3 this network model represents: 1) a conventional
system (i.e., all-SMs), 2) a SM-dominated system (2SMs-1GFC), 3) a low-inertia system (i.e.,
1SM-2GFCs), and 4) a purely converter-based system (i.e., all-GFCs).

Figure 6.4: Frequency response of the all-GFCs IEEE 9-bus system configuration under HAC
strategy following a load disturbance (top), the active power time-evolution associated with
the GFCs at node 1, 2, and 3 (bottom).

disturbances at note 7 i.e., ∆pℓ,k = 15k [MVA] where k = 1, . . . , 5. Next, we observe

the frequency dynamics via the angular frequency of the SM at node 1; see [1], [2] for

similar approaches. We evaluate the standard frequency performance metrics, namely:
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Figure 6.5: RoCoF evolution of the SM at node 1 in 1SM-2GFCs system configuration under
different controls and with respect to variations in network load disturbance (top), maximum
frequency deviation (bottom).

Figure 6.6: The post-event frequency time-evolution of the SM at node 1 in 2SMs-1GFC
system configuration under different controls for the GFC.

1) maximum frequency deviation, and 2) RoCoF that are (with slight abuse of notation)

defined by [1], [70]

∥∆ωSM∥∞ := max
(
ω0 − ωSM(t)

)
, (6.7a)

∣∣ ˆ̇ωSM

∣∣ :=
∣∣∣∣
ωSM(t0 +∆t)− ωSM(t0)

∆t

∣∣∣∣, (6.7b)
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Figure 6.7: Frequency evolution of SM at node 1 when the GFCs are controlled by HAC
strategy with 5 different LPF cutoff frequency and without a LPF.

Figure 6.8: The PSS-free response of the SM at node 1 when the GFCs are controlled by
either HAC or droop control while considering two different LPF cutoff frequencies.

where ωSM and ∆t respectively denote the SM frequency and the RoCoF approximation

time horizon. We consider ∆t = 150 [ms] that allows to observe the influence of fast

GFCs dynamics on the system frequency; the reader is referred to [2] for a detailed

discussion on the choice of RoCoF window.

Figure 6.5 highlights the evolution of metrics (6.7) in 1SM-2GFCs system, under

different grid-forming controls, and w.r.t the disturbance variation. Concerning the Ro-

CoF, the techniques incorporating an ac feedback i.e., droop control (6.1) and HAC (6.3)

result in better performance compared to the purely dc-based matching control. This

is underpinned by their fast disturbance sensing and frequency modification feature. In

contrast, matching control (6.2) only reacts when the network disturbance is propagated

to the converter dc dynamics.

Figure 6.5 confirms that HAC inherits the advantage of the other ac-based controls

e.g., droop control; see Remark 15 and [1] for further details. On the other hand,

maximum frequency deviation performance is almost identical when employing different

controls. The reader is referred to [1] for a detailed discussion on this aspect. Although

Figure 6.5 uncovers a performance variation that depends on the grid-forming controls in

139



1SM-2GFCs setup, all controls outperform the all-SMs configuration by a clear margin;

e.g., see [1, Figures 11 and 12]. The positive influence of the grid-forming controls on

frequency stability is also reported in [2], [100].

6.4.3 Synchronous machine dominated system

In this test case, we consider a SM-dominated generation profile by including identical

SMs at nodes 1 and 3, and a GFC at node 2 in Figure 6.3 leading to a 2SMs-1GFC

system. We consider the same load-disturbance as in Subsection 6.4.1 and enforce equal

load-sharing for all units. Figure 6.6 shows the frequency of the SM at node 1 when the

GFC is under different controls. The network base load and disturbance are chosen such

that the desired post-disturbance GFC’s active power does not result in exceeding the

converter dc source current limit; see Figure 6.1. However, due to the presence of slowly

reacting SMs (because of large turbine time constants), the GFC dominantly supports

the load during the transient that results in violating the dc limit. As it is also reported

in [1], [55], [105], under active dc current constraint, droop control exhibits instability by

depleting the dc-link energy. This aggressive behavior is because droop control (6.1) is

agnostic to the dc dynamics. Subsequently, the converter instability propagates through

the network and destabilizes the SMs. This adverse interaction can be counteracted by

augmenting droop control with an ac current limiting mechanism e.g., threshold virtual

impedance [70]. However, in our experience the limiting performance is fragile and

depends on various factors e.g., the disturbance size and location.

In contrast, as it can be observed in Figure 6.6, the controls that exploit dc feedback

in their angle dynamics e.g., matching control and HAC exhibit robustness with respect

to the dc current constraint. This behavior is numerically and formally explored in [1],

[55], [105]. In a nutshell, it is underpinned by an inherent mode-switching behavior

that transforms the grid-forming control to a following one and allows injecting constant

current while the dc source is saturated. The reader is referred to [1] for a detailed dis-

cussion. Interestingly, HAC results in better frequency deviation performance compared

to matching control. This is because HAC provides global stability certificates [3], [8]

and includes a hybrid ac/dc structure that strikes a balance between robustness and

performance.

Remark 17 (Adverse timescales interaction). In case studies presented in [1], [55],

[105], the instability of the purely ac-based grid-forming techniques strongly depends

on the disturbance magnitude. However, Figure 6.6 provides an alternative insight.

More precisely, the base load and disturbance scenario specification does not derive the

converter beyond its limit in all-GFCs or 1SM-2GFCs systems. However, in an SM-

dominated system the adverse interplay of the fast GFC and slow SMs results in excessive

transient current injection by the converter. Hence, aside the disturbance characteristics,

the penetration level of the converter-based generation is an influencing factor for this
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instability mechanism.

6.4.4 The influence of GFC parameters on frequency behavior

Several works e.g., [38], [51], [137] highlight the necessity and benefits of low-pass filtering

the ac measurements that are exploited in synthesizing converter control. In the follow-

ing, we show how an appropriate tuning of the converters’ low-pass filters improves the

frequency stability and can be perceived as a decentralized frequency shaping strategy.

To begin with, we consider the 1SM-2GFCs configuration as in Subsection 6.4.2.

Next, we equip the GFCs at nodes 2 and 3 with HAC and consider different cutoff

frequencies for the underlying low-pass filters; see Figure 6.2. Figure 6.7 illustrates the

frequency response of the SM with respect to the converters’ cutoff frequency variation.

Note that this observation suggests that an appropriate tuning of the LPFs can globally

reshape the frequency response across the system. This is due to the fact that the

LPFs with an appropriate tuning provide a certain amount of virtual inertia and thus

enhance the SM frequency response. The reader is referred to [38] for detailed discussion.

We remark that the positive influence of ωf-variation on frequency stability must be

compared against the enhancement that is achieved via changing the converters’ controls.

In particular, the maximum frequency deviation metric is significantly reduced in Figure

6.7 as ωf is reduced, in contrast, for a fixed ωf the improvement due to changing grid-

forming strategies is minimal; see Figure 6.5. Last, our numerical investigations confirm

an almost identical behavior as when the GFCs are controlled by droop control.

6.4.5 The PSS-free behavior of the low-inertia system

It has been recently uncovered that the PSSs of the SMs in a low-inertia system might

adversely interact with certain timescales of the converter systems [100]. Moreover,

it is highlighted that an adaptive PSS might be a crucial element in ensuring system

stability in transitioning to 100% converter-based generation [2], [138], [139]. However,

the online/offline modification of the well-established PSS control architectures might

be an expensive, challenging, and practically infeasible task. In this subsection, we

investigate if the LPF retuning strategy can possibly allow for a PSS-free operation of

the SMs in a low-inertia network configuration.

To this end, we consider the 1SM-2GFCs configuration and remove the PSS from the

SM model at node 1. Similar to previous cases, we separately consider droop control

and HAC for the GFCs. Next, we consider two different cutoff frequencies for the

underlying LPFs. Figure 6.8 depicts the frequency response of the SM. It can be seen that

under ωf = 5 [Hz], HAC results in slightly less oscillations compared to droop control.

However, when selecting ωf = 0.2 [Hz], the SM frequency nadir (that might potentially

trip the low-frequency protection mechanisms) is almost removed. Although, under ωf =
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0.2 [Hz] the low-frequency oscillation are still present but the appropriate LPF tuning

reshapes the envelope on the frequency response and constrains the frequency oscillations

within the stability margin. Last, the enhanced response is achieved regardless of the

control strategies of the GFCs. We remark that this insight is a result of a preliminary

exploration and requires an in-depth analysis.

6.4.6 Performance in a non-uniform synthetic two-area system

We close our numerical investigations by exploring the performance of GFCs under the

HAC w.r.t a grid split scenario in a synthetic two-area low-inertia system; see Figure

6.9. To this end, consider two structurally identical 9-bus systems as in Figure 6.3 with

SM at node 1 and GFCs at nodes 2 and 3. Assume that the node 9 in the first area,

i.e., n91 is connected to the node 7 in the second area, i.e., n72 through a transmission

line that is five times longer than the longest local line, i.e., the line between nodes 5

and 6 in either areas; see Figure 6.9 and [140]. Further, the time constant of the SM’s

turbine in the second area is twice the SM’s turbine time constant in the first area, i.e.,

τg,12 = 2τg,11 = 10 [s]. Note that we also remove the PSS of the SM in the second area.

Further, we consider non-uniform dc source timescales for the GFCs in the second area,

i.e., τdc,22 = τdc,21 = 50 [ms] while τdc,23 = 20τdc,31 = 1 [s]. Moreover, we consider a

total two-area loading of ptotal = 4.5 [pu] with unequal distribution between the areas,

i.e., parea,1 = 0.4ptotal and parea,2 = 0.6ptotal. Note that parea,1 is equally divided between

the loads at nodes n51, n71, and n91. However, parea,2 is non-uniformly distributed within

the area, i.e., p72 = 3p52 and p92 = 2p52. Last, all converters are under the HAC, the

controllers are tuned such that all generation units exhibit identical load-sharing, and

we do not consider a load disturbance scenario.

With the aforementioned characterization, during the normal operation the first area

exports 0.45 [pu] active power to the second area. Figure 6.10 illustrates the evolution of

the system frequencies after tripping the interconnecting n91−n72 line. As it is expected,

the first area experiences over-frequency due to the excess generation. On the other hand,

the second area exhibits under-frequency due to the excess loading. It is noteworthy that

the HACed GFCs in the second area re-synchronize in presence of such severe event (that

not only creates a disturbance but also decouples the system dynamics), low-frequency

oscillations due to the lack of SM’s PSS, non-uniform generation timescales and load

distribution. Last, we remark that this grid split scenario results in the instability of the

second area if the GFCs are under droop control.
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Figure 6.10: Frequencies of the two-area system following a grid split scenario.

6.5 Conclusions and outlook

In this paper, the system-level performance and robustness of grid-forming HAC is ex-

plored. We verified that the multi-variable dc-ac HAC inherits the enhanced perfor-

mance and robustness of ac-based and dc-based controls, respectively. Furthermore, we

highlighted how retuning the low-pass filters for grid-forming controls can significantly

enhance the frequency performance across the system. Last, an alternative augmented

controller is introduced and a simplified stability analysis for a two-converter system is

presented. Our future work includes: 1) implementation of HAC for power converters in

more complex power grid models, 2) power hardware validation of HAC concept, and 3)

detailed stability analysis multi-converter system under HAC.

6.6 Appendix A: dynamic inverse droop control aug-

mentation

The HAC implementation described in the Section 6.3, explicitly relies on the foreknowl-

edge of the relative angle reference δr. The reader is referred to [3, Proposition 6] on

deriving δr based on the power and voltage set-points. However, this technique relies

on the system parameters and might exhibit robustness issues. In what follows, we in-

troduce a complementary high-level feedback control mechanism that achieves the same

objective with enhanced robustness.

To begin with we introduce an integral control that defines δr in relation to the active

power mismatch i.e.,

δr =

∫ t

0

κpδ(pr − p), (6.8)

where κpδ denotes the integrator gain. It is worth mentioning that augmenting the HAC

with (6.8) transforms the grid-forming HAC to a phase locked loop (PLL)-free grid-
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following controller that achieves robust active power reference tracking. This is due to

the fact that the integrator (6.8) disables the natural p− ω droop behavior of the HAC

[3, Proposition 7].

Although robust reference tracking and disturbance rejection might be desirable for

certain applications, drooping behavior that enables load-sharing between generation

units in transmission grids is vital. Thus, we combine (6.8) with an inverse ω − p droop

control (reminiscent of the speed droop control of the SM e.g., see [1, Equation 5]) that

is

pr := p⋆ + dω−p(ωc − ω0), (6.9)

where p⋆ denotes the power reference at nominal frequency, dω−p is the inverse droop

gain, and ωc is the internal feedback given by HAC (6.3). We emphasize that the com-

bination of (6.3) with the dynamic inverse droop control (6.8) and (6.9) is a heuristic

approach, and requires a separate detailed stability analysis as in [3]. However, our

numerical investigations confirm that the cascade control structure achieves the afore-

mentioned control specification. Furthermore, as in standard cascaded control systems

(e.g., [113]) the controls (6.3), (6.8), and (6.9) must be tuned in harmony while respect-

ing the required timescales separation between the nested loops. Last, we remark that

since the main focus of this work is to explore the behavior of the standard HAC (6.3),

the presented case studies in the Section 6.4 only incorporates (6.3).

6.7 Appendix B: stability analysis of the intercon-

nected converters

The stability analysis of the HAC in [3], [8] is centered around a model configuration that

includes a single converter connected to an infinite bus or a dynamic center of inertia

(CoI) grid model. The converter-CoI model abstractly represents the mixed converter-

SM configurations of the IEEE 9-bus system shown in Figure 6.3. However, the stability

and synchronization analysis of a multi-converter setup requires a separate investigation

and is presented as it follows.

To begin with, we consider a simplified two-converter model as in Figure 6.11; see

[126] for a similar model configuration. Without loss of generality we assume the line

current is flowing out of the converter 1 and into the converter 2. It is noteworthy that

the configuration in Figure 6.11 represents two converters with RL output filters that

are connected through a RL line section. Thus, the filter elements and the line section

are merged into a single RL element.

We equip both converters with HAC (6.3) and thus the overall dynamical model is
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given by

θ̇1 = ω0 + γdc,1(vdc,1 − vdc,r1)− γac,1 sin

(
δ − δr

2

)
, (6.10a)

v̇dc,1 =
idc,1 −Gdc,1vdc,1 −m(µ1, θ1)

⊤iℓ
Cdc,1

, (6.10b)

θ̇2 = ω0 + γdc,2(vdc,2 − vdc,r2) + γac,2 sin

(
δ − δr

2

)
, (6.10c)

v̇dc,2 =
idc,2 −Gdc,2vdc,2 +m(µ2, θ2)

⊤iℓ
Cdc,2

, (6.10d)

where δ := θ1 − θ2. In addition, the dc source current and the modulation signal control

input pairs are defined as

idc,1 := −κdc,1
(
vdc,1 − vdc,r1

)
, (6.11a)

m(µ1, θ1) := µ1 (cos θ1, sin θ1)
⊤ , (6.11b)

idc,2 := −κdc,2
(
vdc,2 − vdc,r2

)
, (6.11c)

m(µ2, θ2) := µ2 (cos θ2, sin θ2)
⊤ . (6.11d)

Furthermore, for simplicity of exposition we assume quasi-steady-state line dynamics,

thus the current in stationary αβ-coordinates is given by

iℓ :=

(
vdc,1m(µ1, θ1)− vdc,2m(µ2, θ2)

)

R
. (6.12)

We subsequently 1) combine the absolute angle dynamics (6.10a) and (6.10c) into relative

angle dynamics, 2) replace iℓ in (6.10b) and (6.10d) with the expression in (6.12), and

3) incorporate the controls (6.11) that results in the overall closed-loop dynamics:

v̇dc,1 =−

(
κdc,1

(
vdc,1 − vdc,r1

)
+
(
Gdc,1 +R−1µ2

1

)
vdc,1 − R−1µ1µ2 cos(δ)vdc,2

)

Cdc,1

(6.13a)

v̇dc,2 =−

(
κdc,2

(
vdc,2 − vdc,r2

)
+
(
Gdc,2 +R−1µ2

2

)
vdc,2 − R−1µ1µ2 cos(δ)vdc,1

)

Cdc,2

(6.13b)

δ̇ =+ γdc,1(vdc,1 − vdc,r1)− γdc,2(vdc,2 − vdc,r2)− (γac,1 + γac,2) sin

(
δ − δr

2

)
. (6.13c)

Assume that there exists an equilibrium and it coincides with the desired control refer-

ences (similar to [3, Theorem 1]) i.e.,

(
δ⋆, v⋆dc,1, v

⋆
dc,2

)
:=
(
δr, vdc,r1, vdc,r1

)
. (6.14)
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Next, we associate an energy function with the closed-loop dynamics (6.13), that is given

by

V :=
1

2

(
Cdc,1

(
vdc,1 − vdc,r1

)2
+ Cdc,2

(
vdc,2 − vdc,r2

)2)
+ 2

(
1− cos

(
δ − δr
2

))
. (6.15)

Following the analysis recipe as in [3, Theorem 2], it is possible to show that there

exists positive lower bounds γac,min and κdc,min such that if γac,1 + γac,2 > γac,min and

κdc,1, κdc,2 > κdc,min then the energy function V → 0 for (almost) all the solutions of

(6.13). Note that when V → 0 it yields that
(
δ, vdc,1, vdc,2

)
→
(
δr, vdc,r1, vdc,r1

)
. This

result verifies the asymptotic convergence of converter dynamics to the desired dc voltage

and relative angle references.
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CHAPTER 7
Grid-forming hybrid angle control: behavior,

stability, variants, and verification

Under review in the IEEE Transactions on Smart Grid 2023.

Authors – Ali Tayyebi, Denis Vettoretti, Adolfo Anta, and Florian Dörfler.

Abstract – This work explores the stability, behavior, variants, and a controller-

hardware-in-the-loop (C-HiL) verification of the recently proposed grid-forming (GFM)

hybrid angle control (HAC). We revisit the foundation of GFM HAC, and highlight its

behavioral properties in relation to the conventional SM. Next, we introduce the required

complementary controls to be combined with the HAC to realize a GFM behavior. The

characterization of the analytical operating point and nonlinear energy-based stability

analysis of a grid-connected converter under the HAC is presented. Further, we consider

various output filter configurations and derive an approximation for the original control

proposal. Moreover, we provide details on the integration of GFM HAC into a complex

converter control architecture and introduce several variants of the standard HAC. Fi-

nally, the performance of GFM HAC is verified by several test scenarios in a C-HiL setup

to test its behavior against real-world effect such as noise and delays.

7.1 Introduction

The global shift toward the massive integration of energy generation from renewable

source accompanied by the supply chain concerns associated with conventional energy

generation has raised significant interest in converter-based systems. Thus, power con-

verters are perceived as the vital corner stones of the modern power system and are

expected to replace the well-established SM technology. However, a robust and reliable

control of power converters in a converter-dominated power system is to some extent

an open question. The emerging grid-forming (GFM) control synthesis in contrast to

the classic grid-following (GFL) converter control concept is envisioned to address the

stability challenges in a converter-dominated power grid [1], [2], [32], [33], [100], [141],

[142]. On the other hand, it is worth mentioning that the power system operators are
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actively designing test procedures and grid code requirements for the GFM converters,

as well, e.g., [28], [29].

The broadly recognized droop control serves as a powerful baseline GFM control

candidate that mimics the behavior of a SM governor for the power converters [35], [36],

[50]. As the natural extension of the droop control, the virtual synchronous machine

concept is proposed that emulates the SM dynamics (up to different degrees of accuracy)

[64], [143]. On the other hand, the matching-type GFM controllers are proposed that

synthesize the converter control based on the structural dynamic similarities with the

SM [40], [43]. Along a different design direction, the nonlinear oscillators dynamics are

recently exploited for a GFM control design [48], [52], [53]. Finally, the combination of

aforementioned techniques has resulted in several hybrid control architectures [3], [9],

[55], [56].

The GFM HAC relies on a combination of the dc matching control and ac synchro-

nization term that resembles the droop control and/or Kuramoto oscillator dynamics

[34]. The theoretic control design and system-level simulation-based performance inves-

tigation of the HAC are previously explored [3]–[5], [8]. Previous works highlight 1) the

strong stability properties of the HAC under mild parametric conditions, 2) system-level

frequency stability enhancement, 3) stabilizing behavior in complex hybrid ac/dc power

grids, and finally, 4) robustness w.r.t the nonlinear phenomena such as current limitation

and grid split.

In this paper, we highlight further details on the behavioral properties of the GFM

HAC, provide a closed-form characterization of the converter operating point, formulate

an intuitive energy-based stability analysis, provide an approximate form of the HAC,

and disclose several variants of the standard HAC. Last but not least, the performance

of GFM HAC is verified by several test scenarios in a C-HiL setup that utilizes an

OPAL-RT simulator and external control cards.

The remainder of this paper is structured as it follows. Section 7.2 describes the

dynamic modeling of a grid-connected converter, introduces the HAC, and discusses its

behavioral properties. Section 7.3 presents the closed-loop analysis. Section 7.4 provides

details on the weak grid connection, HAC approximation, and its variants. Section 7.5

provides C-HiL performance verification, and Section 7.6 concludes the paper.

7.2 Converter connected to a stiff grid

In this section, we present the dynamic modeling of a grid-connected converter, revisit

the GFM HAC strategy, and discuss its behavioral properties.
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idc is

Gdc Cdc

+

−
vdc −+ vs,abc

iabc R L

−+vg,abc

Figure 7.1: The circuit diagram associated with the open-loop dynamics of the grid-connected
converter model as in (7.1).

7.2.1 Physical converter system dynamics

Let us consider a two-level dc-ac power converter model that is interfaced to a stiff

grid (i.e., with constant frequency and voltage magnitude) through a resistive-inductive

element [40]; see Figure 7.1. The open-loop dc voltage and ac current dynamics of such

system are described by

Cdc
dvdc
dt

= idc −Gdcvdc − is, (7.1a)

L
diabc
dt

= vs,abc −Riabc − vg,abc, (7.1b)

where Cdc denotes the dc-link capacitance, vdc denotes the dc-link voltage, idc denotes the

current flowing out of the dc energy source, Gdc denotes the dc conductance that models

the dc-side losses, and is denotes the dc-side switched current. Further, L denotes the ac-

side inductance that models the converter output filter, iabc denotes the converter output

current flowing into the grid, vs,abc denotes the ac-side switched voltage, R denotes the

equivalent series resistance of the filter inductance, and finally vg,abc denotes the balanced

voltage of the stiff ac grid at nominal frequency ω0 and magnitude v0.

7.2.2 Energy source model and control

The dc current source in Figure 7.1 that models the primary dc energy source e.g., a

battery, can be controlled in several ways. One can close the loop by considering a

proportional controller to increase the dc voltage damping [1]. Further, it is possible to

also include integral and derivative terms to enhance the dc voltage reference tracking

and dynamic performance. Thus, the idc in (7.1a) takes generic form

idc = −κp
(
vdc − vdc,r

)
− κi

∫ t

0

(
vdc − vdc,r

)
dτ − κd

dvdc
dt

, (7.2)

where κp, κi, and κd denote the parameters of the proportional-integral-derivative con-

trol. Note that one can implement the derivative term in (7.2) by measuring the dc-link
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capacitance current (since they are equivalent up to a constant factor). Previous work

investigated the contribution of control (7.2) to the frequency damping and inertial re-

sponse under the GFM matching control [40], [65]. Finally, if the energy source is not

controllable, e.g., battery-integrated system without a dc-dc converter stage, one can fix

idc to a constant reference.

7.2.3 Power-preserving averaged DC-AC converter model

The dc-ac converter (7.1) is represented by the switched current and voltage pair
(
is, vs,abc

)
.

Let us introduce the balanced three-phase converter modulation signal

mabc = µ

(
cos θ, cos

(
θ +

2π

3

)
, cos

(
θ − 2π

3

))⊤

, (7.3)

where µ and θ respectively denote the modulation signal magnitude and phase angle.

Next, the lossless power-preserving averaged model of the two-level converter is given by

[73]

is = m⊤
abciabc, (7.4a)

vs,abc = vdcmabc. (7.4b)

In the sequel, we show how µ and θ are selected. Aside from the nonlinear power-

preserving model (7.4), other approaches can be considered.

∗ One can assume decoupled dc and ac dynamics that is usually verified by consid-

ering a sufficiently fast dc voltage control [35], [64], [143]. In this viewpoint, the

converter is seen as an ideal controllable voltage source.

∗ Another trend is to model the internal dynamics of the dc-ac converters by os-

cillator dynamics. This approach is often adopted when studying the stability

of interconnected converter-based systems; see [52] for a review and [48], [50] for

experimental investigations.

∗ Recent works highlight the application of hybrid systems theory in modeling the

converter dynamics. These works consider a blend of discontinuous and continuous

signals in converter dynamical description, therefore, do not distinguish between

the switching and continuous averaged converter models; e.g., see [144], [145].

7.2.4 Grid-forming hybrid angle control strategy

In this subsection, we briefly revisit the design of grid-forming HAC [3]–[5], [8]. Let us

begin by defining the converter relative angle w.r.t the grid model in Figure 7.1. The
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modulation angle θ in (7.3) enters vs,abc in (7.4) that subsequently appears in (7.1b) (as

the voltage behind output filter). Let us define ω as the converter angular frequency

that is given by the time-derivative of θ. Similarly, let θg and ωg respectively denote the

phase angle and the angular frequency grid voltage vg,abc in (7.1b) and Figure 7.1. Note

that ωg = ω0, since we consider a stiff grid. Thus, the converter-grid relative angle and

its derivative are given by

δ = θ − θg, (7.5a)

dδ

dt
=

dθ

dt
− dθg

dt
= ω − ωg = ω − ω0. (7.5b)

The GFM HAC that defines the converter frequency (hence the modulation angle) takes

the form

ω = ω0 + κdc
(
vdc − vdc,r

)

dc matching term

− κac sin

(
δ − δr
2

)

ac synchronization term

, (7.6)

where vdc,r and δr respectively denote the dc voltage and relative angle references. It is

worth mentioning that the dc part of (7.6) is similar to the matching control [40], [41],

[43]. On the other hand, the ac part of the HAC realizes the frequency synchronization

via nonlinear angle damping assignment. The prior works [1], [3], [5] provide detailed

discussions on the properties of GFM controls that depend on the ac and/or dc quanti-

ties. Nonetheless, in a nutshell, incorporating the dc feedback in the frequency dynamics

tends to enhance the robustness and including the ac feedback enhances the dynamic

performance; see [5], [55], [105], [146] for theoretic and numerical investigations. The

HAC (7.6), while defining the converter frequency, behaves as a synchronization mech-

anism. To further elaborate, if the converter dc voltage is sufficiently regulated, i.e.,

vdc ≈ vdc,r, then the converter-grid relative angle dynamics (7.5b) reduces to

dδ

dt
≈ −κac sin

(
δ − δr
2

)
. (7.7)

This means if δ > δr ⇒ dδ/dt < 0 ⇒ δ ↓ and similarly, if δ < δr ⇒ dδ/dt > 0 ⇒ δ ↑.
The HAC potentially replaces the synchronization mechanism (e.g., phase-locked loop,

virtual synchronous machine, active power control sub-systems) in converter control

architectures; see Figure 7.5. For instance, HAC is a synchronizing control candidate for

∗ high voltage direct current (HVDC) converters in embedded, inter-connector, multi-

terminal, and offshore wind farm integration setups,

∗ flexible ac transmission system (FACTS) devices,

∗ low-voltage photovoltaic (PV) and battery systems,

∗ and, utility-scale battery energy storage system (BESS).
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7.2.5 DC voltage and AC power flow regulation

The HAC regulates the dc voltage and ac power flow through frequency synchronization.

To further elaborate, let us consider two separate cases.

Pure DC feedback control

Assume κdc ̸= 0 and κac = 0 that reduces (7.6) to

∆ω = ω − ω0 = κdc
(
vdc − vdc,r

)
= κdc∆vdc. (7.8)

This controller combination is the reduction of HAC to the matching control [40]. It is

established that under the matching control, i.e., when the converter frequency is defined

proportional to the dc voltage, the converter dynamics are structurally similar to that

of the SM. Therefore, the converter exhibits self-synchronizing behavior of the SM [43]

which means

ω → ω0 ⇒ ∆ω → 0 ⇒ ∆vdc → 0 ⇒ vdc → vdc,r.

Thus, the frequency synchronization implies dc voltage regulation, that is achieved by

modifying the ac power. This control mode is particularly interesting in weak dc-link

applications.

Pure AC feedback control

Consider the gain combination κdc = 0 and κac ̸= 0. Let us approximate the ac term in

(7.6) with the ac power flow deviation, i.e., assume that ∆δ = δ − δr is proportional to

∆p = p− pr up to a constant factor κδ−p. Then, (7.6) reduces to

∆ω ≈ −κac sin
(
κδ−p∆p

2

)
≈ −

(
κacκδ−p

2

)
∆p, (7.9)

assuming that ∆p is sufficiently small. This variant represents the power-frequency droop

control embedded in HAC, thus,

ω → ω0 ⇒ ∆ω → 0 ⇒ ∆p→ 0 ⇒ p→ pr.

In this case, frequency synchronization implies ac power flow regulation, that is achieved

by the power injection/absorption of the dc-link. This control mode is particularly inter-

esting in stiff dc-link applications. Finally, the hybrid configuration under appropriate

tuning provides seamless transition between the aforementioned modes [3], [56].
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7.2.6 Behavioral interpretations and connections to the SM

It is possible to interpret the structure of HAC in relation to SM control and behavior.

Firstly, the influence of a governor on the SM behavior is perceived as modifying the

turbine output mechanical power pm according to the mechanical frequency ωm deviation

from its reference ωm,r. In other words,

pm = pm,r − κω−p
(
ωm − ωm,r

)
, (7.10)

where pm,r and κω−p respectively denote the turbine reference power and governor control

gain. Observe that if ωm ↑↓ ⇒ pm ↓↑ to accordingly modify the energy input into the

SM such that the frequency is stabilized. One can alternatively rewrite (7.10) as the

so-called droop control, i.e.,

ωm = ωm,r −
1

κω−p

(
pm − pm,r

)
. (7.11)

Now, under the small power-angle assumption, i.e., ∆δ ∝ ∆p one can interpret the

ac part of the HAC (7.6) as droop control (7.9) which takes the same form as (7.11).

Therefore, the ac term in (7.6) mimics the stabilizing influence of the turbine governor.

Next, let us revisit the modeling of SM inertial response [116]. We assume the that

the mechanical power pm is flowing into the SM and electrical power pe is flowing out of

its ac terminal. These two quantities are linked through the time-derivative of kinetic

energy Ek stored in the SM rotor, i.e.,

dEk

dt
= pm − pe where Ek =

1

2
Jω2 (7.12)

and J denotes the rotor moment of inertia. A salient feature of the SM is that if there is

an imbalance between its mechanical and electrical powers, e.g., due to load variation,

the rotating mass acts as an energy buffer and provides/absorbs the excess power to

restore the power balance. The resulting influence is the SM frequency variation, i.e.,

if
dEk

dt
= Jω

dω

dt
> 0 (or < 0) ⇒ ω ↑ (↓). (7.13)

The dc-ac power converters, by design, incorporate a similar mechanism. To further

elaborate, let pdc denote the power that is flown into the converter dc-link and pac is the

power that is flown out of the converter ac terminal. These quantities are linked together

through the potential energy Ep that is stored in the converter dc-link, i.e.,

dEp

dt
= pdc − pac where Ep =

1

2
Cdcv

2
dc. (7.14)

Similarly, the power imbalance between the converter dc and ac ports is compensated

155



by the dc-link energy variation, i.e.,

if
dEp

dt
= Cdcvdc

dvdc
dt

> 0 (or < 0) ⇒ vdc ↑ (↓). (7.15)

From this perspective, the dc term in HAC (7.6) that relates the converter frequency to

the dc voltage (i.e., ω ∝ vdc), resembles the inertial response of the SM and links the

converter frequency to the available physical stored energy in the dc-link capacitance.

7.2.7 AC voltage control

The GFM HAC is primarily designed as an active power-frequency controller [3]. Thus,

one has to consider complementary ac voltage control. Similar to other grid-forming

controls [1], there are different control candidates.

∗ One can implement a proportional-integral (PI) (or simply a proportional) ac volt-

age control that processes the PCC voltage error and provides a reference magni-

tude for converter modulation in (7.3) [5].

∗ Another alternative is to define the modulation signal magnitude based on a reac-

tive power and voltage droop control [100], [142]. In this approach, the converter

modulation magnitude is modified if the reactive power deviates form its reference.

Thus, the modulation magnitude modification indirectly controls the PCC voltage.

∗ The most straightforward, although less robust, approach is to define the reference

magnitude for the converter modulation signal according to the desired references

for the dc and ac voltages [3].

7.2.8 Control implementation and filtering requirement

The previous work [5], establish that HAC (7.6) can be exactly constructed based on

the dc voltage measurement, internal converter modulation angle, and the grid voltage

measurement in Figure 7.1. To recapitulate, one should firstly expand the ac term in

(7.6), i.e.,

sin

(
δ − δr
2

)
= sin

δ

2
cos

δr
2
− cos

δ

2
sin

δr
2
. (7.16)

Then, the terms depending on δr can be computed according to the prescribed power and

voltage set-points [3]. Next, the terms depending on δ = θ− θg are constructed based on

the sines and cosines of θ and θg that can be respectively obtained from the converter

modulation signal mabc and the grid voltage vg,abc. Note that it is standard practice

to low-pass filter the dc voltage feedback in (7.6) and the grid voltage measurement to

remove the potential dc ripple and ac noise, respectively.
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7.3 Closed-loop stability analysis

In what follows, we select a combination of the controls described in the previous section,

construct the closed-loop dynamics, and investigate the overall system stability.

7.3.1 Closed-loop system formulation

Let us begin by transforming the three-phase dynamics (7.1) to the stationary αβ-

coordinates by using the standard Clarke transformation [73] that results in

Cdc
dvdc
dt

= idc −Gdcvdc − is, (7.17a)

L
diαβ
dt

= vs,αβ −Riαβ − vg,αβ. (7.17b)

Next, we select the PI dc voltage control1 (for an enhanced dynamic performance and

robustness) from (7.2), i.e.,

dζ

dt
= vdc − vdc,r,

idc = −κp
(
vdc − vdc,r

)
− κiζ,

where ζ denotes the integrator state, the HAC (7.6), and the feedforward ac voltage

control, i.e.,

µ =
vr
vdc,r

. (7.19)

Therefore, all three control inputs, i.e., the dc energy source current, modulation mag-

nitude, and angle are well-defined (the latter is obtained by integrating the converter

frequency defined by (7.6)). Next, we consider rotating dq-coordinates [73] that are

aligned with the grid angle θg, thus, rotating with the grid frequency ωg. The closed-

loop dynamics in rotating dq-coordinates is represented by

dδ

dt
= κdc

(
vdc − vdc,r

)
− κac sin

(
δ − δr
2

)
, (7.20a)

dζ

dt
= vdc − vdc,r, (7.20b)

Cdc
dvdc
dt

= −κp
(
vdc − vdc,r

)
− κiζ −Gdcvdc − µ

(
id cos δ + iq sin δ

)
, (7.20c)

1The previous works on HAC [3]–[5], [8] do not include the integral term in their dc voltage controls,
therefore, the forthcoming closed-loop system analysis (although conceptually similar) differs from the
prior investigations. In particular, the PI dc voltage control consideration omits the previously required
assumption to prove the existence and derive a closed-form expression of the closed-loop stationary
operating points.
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L
did
dt

= µvdc cos δ −Rid − Lω0iq − vg,d, (7.20d)

L
diq
dt

= µvdc sin δ −Riq + Lω0id. (7.20e)

We remark that vg,d = v0 (i.e., the nominal voltage magnitude of the stiff grid) and

vg,q = 0 since the d-axis is aligned with θg. Moreover, it is important to emphasize that

the closed-loop system is nonlinear due to HAC in (7.20a) and modulated trigonometric

terms in (7.20c) and (7.20d).

7.3.2 Analytical derivation of equilibria

In order to evaluate the stationary operating points (denoted by star superscript) of the

closed-loop system, we begin by setting the RHS of the (7.20) to zero, i.e.,

κdc
(
v⋆dc − vdc,r

)
− κac sin

(
δ⋆ − δr

2

)
= 0, (7.21a)

v⋆dc − vdc,r = 0, (7.21b)

−κp
(
v⋆dc − vdc,r

)
− κiζ

⋆ −Gdcv
⋆
dc − µ

(
i⋆d cos δ

⋆ + i⋆q sin δ
⋆
)
= 0, (7.21c)

µv⋆dc cos δ
⋆ −Ri⋆d − Lω0i

⋆
q − vg,d = 0, (7.21d)

µv⋆dc sin δ
⋆ −Ri⋆q + Lω0i

⋆
d = 0. (7.21e)

Hence, one can solve (7.21a) and (7.21b) to evaluate δ⋆ and v⋆dc. Next, it is possible to

solve (7.21d) and (7.21e) that result in the closed-form expressions for i⋆d and i⋆q that

are the functions of δ⋆ and v⋆dc. Finally, one can solve (7.21c) to find ζ⋆. Thus, (letting

k ∈ {1, 2}) the steady-state system of equations (7.21) yields the following operating

points,

δ⋆ = δr + 2πk, (7.22a)

v⋆dc = vdc,r, (7.22b)

ζ⋆ =
−Gdcv

⋆
dc − µ

(
i⋆d cos δ

⋆ − i⋆q sin δ
⋆
)

κi
, (7.22c)

i⋆d =
µv⋆dc (R cos δ⋆ − Lω0 sin δ

⋆)−Rvg,d

R2 + (Lω0)
2 , (7.22d)

i⋆q =
µv⋆dc (Lω0 cos δ

⋆ +R sin δ⋆)− Lω0vg,d

R2 + (Lω0)
2 . (7.22e)

We remark that due to the periodicity of (7.22c)-(7.22e) w.r.t δ, the steady-state quan-

tities ζ⋆, i⋆d, and i
⋆
q are identical for either δr or δr + 2π [3]. In the next subsection, we

investigate the stability of the operating point in (7.22) that is characterized by δ⋆ = δr,
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i.e.,

x⋆ =
(
δr, ζ

⋆, v⋆dc, i
⋆
d, i

⋆
q

)
. (7.23)

In the sequel, we restrict our focus to a local state space region around the stationary

point (7.23) that excludes the other angle equilibrium in (7.22a). The reader is referred

to [3] for a global (i.e., large-signal) stability analysis2.

7.3.3 Nonlinear energy-based stability analysis

The system (7.20) is characterized by the nonlinearities due to the HAC in (7.20a), and

the modulated current and voltage terms in (7.20c)-(7.20e). One potential approach to

analyze the stability of the operating point (7.23), is to linearize the (7.20) and investigate

the eigenvalues of resulting linear system. However, due to the particular structure of

the Jacobian associated with (7.20), it is not straightforward to derive the analytical

closed-form expressions for the eigenvalues evaluated at (7.23).

A more comprehensive nonlinear analysis approach is to associate a so-called energy

function with the closed-loop dynamics (7.20) and study the behavior of this function

w.r.t the evolution of states in (7.20). The energy function behavior (under certain

conditions) reveals the stability properties of the system. More precisely, let us define

an energy function

V (x̂) = c1

(
1− cos

δ̂

2

)
+ c2ζ̂

2 + c3v̂
2
dc + c4î

2
d + c5î

2
q, (7.24)

where x̂ = x− x⋆, δ̂ = δ − δ⋆, ζ̂ = ζ − ζ⋆, v̂dc = vdc − v⋆dc, îd = id − i⋆d, and îq = iq − i⋆q
and all the coefficients in (7.24) are positive constants. Let us consider the derivative of

(7.24) w.r.t time, i.e.,

dV (x̂)

dt
=

(
c1
2
sin

δ̂

2

)
dδ̂

dt
+ 2

((
c2ζ̂
) dζ̂

dt
+ (c3v̂dc)

dv̂dc
dt

+
(
c4îd

) dîd
dt

+
(
c5îq

) dîq
dt

)
,

=

(
c1
2
sin

δ − δ⋆

2

)
dδ

dt
+ 2

(
c2 (ζ − ζ⋆)

dζ

dt
+ c3 (vdc − v⋆dc)

dvdc
dt

)

+ 2

(
c4 (id − i⋆d)

did
dt

+ c5

(
iq − i⋆q

) diq
dt

)
(7.25)

as in (7.25). The state-dependent function (7.24) can be perceived as a measure of the

distance (i.e., error) between the states in (7.20) and the equilibrium point (7.23).

Given that V (0) = 0 and V (x̂) > 0 for x ̸= x⋆, we can conclude that V (x̂) → 0

2We remark that the forthcoming analysis can be extended to to provide large-signal, i.e., global
stability guarantees, as well. However, in this paper, for the sake of brevity, a local analysis is provided.
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(thus, x̂ → 0 and x → x⋆) if dV (x̂)/dt < 0 for all x ̸= x⋆ (i.e., if V (x̂) is strictly

decreasing). Hence, the convergence of V (x̂) to zero implies the stability of (7.20). In

order to demonstrate the stability of system (7.20), we seek for a parametric condition

that results in dV (x̂)/dt < 0 for all x ̸= x⋆. Following the procedure in [3, Theorem 2],

we set the coefficients in (7.24) as

c1 =
4

κdc
, c2 =

κi
2
, c3 =

Cdc

2
, and c4 = c5 =

L

2
.

Subsequently, lengthy albeit straightforward computation as in [3, Theorem 2][14] shows

that if

ρ =
κac
κdc

> ρcritical, (7.26)

where

ρcritical =
1

Gdc + κp
+
µ2
(
i⋆2d + i⋆2q

)

Gdc + κp
+
µ2v⋆2dc
R

,

then dV (x̂)/dt < 0. We remark that the condition (7.26) is met by choosing a sufficiently

large ac synchronization gain in (7.6). Note that the implication of the stability condition

(7.26) is the fact that the closed-loop stability is guaranteed solely by an appropriate

choice of the HAC ac and dc gains. Further, ρcritical can be reduced by increasing the

proportional gain of the dc voltage control, thus, allowing for a less aggressive tuning of

the HAC; see [3] for details on the stability condition (7.26). Last, Figure 7.2 provides a

conceptual example for the presented energy-based stability analysis where a simplified

form of (7.24) is employed. Figure 7.2 shows that how different initial states converge

to the desired equilibrium point if the energy decay, i.e., dV (x̂)/dt < 0 is guaranteed.

7.4 Converter connected to a weak grid

In this section, we consider more complex model configurations in contrast to the model

presented in Figure 7.1. Further, an approximate variant of HAC is presented. Next,

we show how HAC can be combined with classic cascaded current and voltage controls.

Finally, we present several HAC variants.

7.4.1 Grid impedance consideration

A weak grid connection is considered by including an equivalent grid impedance that is

represented by a resistive-inductive element as shown in Figure 7.3. The different ratios

of Lg and Rg represent connection to the low, medium, and high voltage grids [142].

Since the serial connected filter and grid equivalent impedances can be merged together,

the closed-loop dynamics associated with the model in Figure 7.3 takes the same form
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Figure 7.2: Conceptual illustration of the energy-based stability analysis; here it is assumed
that the energy function is only function of the relative angle and dc voltage, i.e., V

(
δ̂, v̂dc

)
=

2
(
1− cos δ̂/2

)
+ (1/2)v̂2dc.

as in (7.20). The main implication of a weak grid connection is the fact that vg,abc (in

Figure 7.1) is not available for the control implementation; see subsection 7.2.8 and [3].

Next, we show how leveraging certain assumptions allows to counteract this limitation

by deriving an approximation for the HAC based on the ac active power flow.

7.4.2 Power-based control approximation

Consider the model in Figure 7.3 and let us merge the filter and grid equivalent impedance

into a unified resistive-inductive element that reduces the ac sub-circuit to a classic cou-

pled voltage sources configuration as in [142, Figure 7]. Subsequently, under dominantly

inductive grid and small power angle assumptions [36], [142], the relative angle between

idc is

Gdc Cdc

+

−
vdc −+ vs,abc

iabc R L Rg Lg

−+vg,abc

PCC

Figure 7.3: The circuit diagram of the converter model connected to a weak grid model in
abc-coordinates system.
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idc is

Gdc Cdc

+

−
vdc −+ vs,abc

iabc R L Rg Lg
ig,abc

−+vg,abcG C

+

−
v

PCC

Figure 7.4: The circuit diagram of the converter model with LC output filter connected to a
weak grid model in abc-coordinates system; this model also represents the case of a LCL filter
consideration in which the grid-side filter inductance is merged with the grid impedance.

vs,abc and vg,abc is linearly approximated by the active power flows, i.e.,

δ ≈ sin(δ) ≈
( (

L+ Lg

)
ω0

|vs,abc||vg,abc|

)
p, (7.27)

where p denotes the power injected by the converter. Further, assuming regulated ac

voltages, i.e., constant |vs,abc| and |vg,abc|, (7.27) is simplified to

δ ≈ αp where α =

(
L+ Lg

)
ω0

|vs,abc||vg,abc|
is constant. (7.28)

A similar approximation as in (7.28) relates δr to the power reference pr. Thus, the HAC

in (7.6) is approximated by

ω ≈ ω0 + κdc
(
vdc − vdc,r

)
− κ̄ac (p− pr) , (7.29)

where κ̄ac = ακac/2. The approximate HAC (7.29), can be re-written in a trade-off form

as

∆ω ≈ κdc∆vdc − κ̄ac∆p, (7.30)

where the converter frequency deviation from the nominal frequency is proportional to

the dc voltage and ac power deviations from their respective references. We remark that if

the assumptions behind (7.29) hold, the local (i.e., small-signal) stability properties of the

original and approximate HAC forms are identical. Finally, note that the approximate

HAC (7.30) coincides with the dual-port GFM control [56].

7.4.3 LC filter consideration and cascaded controllers

It is possible to consider LC output filter element which results in the model configuration

in Figure 7.4. In this case, one can combine (7.29) with standard PI-based cascaded

voltage and current controls [1], [100], [113]. Such control architecture is shown in

Figure 7.5 and is briefly described as it follows.
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∗ The phase angle defined by HAC and a prescribed reference ac voltage magnitude

are combined to define the reference PCC voltage in dq-coordinates, i.e., vdq,r. Note

that the converter frequency and angle defined by integrating (7.29) serves as the

reference angle for subsequent controllers implemented in dq0-coordinates.

∗ The PI-based ac voltage control (with feedforward terms) [1] processes the reference

given by the GFM layer and PCC voltage feedback to define the reference filter

current, i.e., idq,r.

∗ The PI-based ac current control (with feedforward terms) processes the reference

given by the voltage control layer and filter current feedback to define the converter

voltage to appear behind the LC filter, i.e., vs,dq,r.

∗ The reference voltage given by the current control is processed by the modulation

algorithm that defines mabc.

We refer the reader to [1], [100], [113] for further details on the structure and tuning of

such cascaded control architectures.

7.4.4 Control variants and extensions

On the basis of the GFM HAC, one can construct a few control variants. Let us introduce

three different variants.

Fully multivariable variant

The key idea behind the HAC is to include a dc feedback controller into the converter

angle dynamics. Along the same direction, one can include an ac feedback controller

into the converter dc dynamics. In a generic form, the closed-loop dynamics under such

fully multivariable control design takes the form

dxdc
dt

= fdc(xdc, xac) + κdcg11(xdc) + κac→dcg12(xac),

dxac
dt

= fac(xdc, xac) + κdc→acg21(xdc) + κacg22(xac),

where xdc denotes the dc states, fdc(xdc, xac) describes the physical dc subsystem, κdc
is the dc control gain, g11(xdc) is the linear/nonlinear dc controller for the dc states,

κac→dc is the gain of ac→dc linear/nonlinear coupling control g12(xac). Similarly, the

states, physical ac subsystem, coupling controller gain and function, the ac control gain

and function of the ac subsystem are respectively denoted by xac, fac(xdc, xac), κdc→ac,

g21(xdc), κac, and g22(xac). Such augmentation of the standard GFM HAC is explored

in [14].
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Inverse tangent variant

One can replace the ac synchronization term in (7.6) by an inverse tangent function, i.e.,

tan−1(δ − δr). Furthermore, one can consider the combination of controls in [36] with

[40] to arrive at the hybrid form:

ω = ω0 + κdc
(
vdc − vdc,r

)
− κac,1 tan

−1
(
κac,2(p− pr)

)
.

Note that it is possible to derive strong large-signal (i.e., global) stability guarantees

for this control variant as in [3], [14]. Further, [36] highlights the improved dynamic

performance of the arctan droop control in contrast to the standard droop control. Thus,

one can expect similar improvements for the hybrid arctan variant versus the standard

HAC.

Energy-like variant

Finally, one can replace the linear dc term in (7.6) with a nonlinear quadratic term, i.e.,(
vdc − vdc,r

)2
that is related to the dc energy and its reference. This control variant is

particularly interesting for the modular multilevel converter (MMC) applications.

We remark that our preliminary investigations, e.g., [14], suggest that the aforemen-

tioned variants exhibit improved performance and/or lead to more relaxed conditions

over the standard HAC, however, a deeper investigation is required.

7.5 Experimental verification

In this section, we describe the employed C-HiL verification approach, and present our

test results.

7.5.1 Controller-hardware-in-the-loop verification approach

To verify the proposed GFM HAC strategy under real-world effects such as discretization,

delays, measurement noise, etc., we go beyond offline simulations as in [3]–[5], [8] and

implement our control algorithm in a control card, in order to run C-HiL simulations. The

C-HiL approach represents a good candidate in terms of balancing testing complexity,

costs, and fidelity. This setup enables a high degree of automation, thereby facilitating

a high coverage of cases and grid conditions, especially those hard to implement in a

laboratory setup or in the field. The utilized hardware benchmark is depicted in

Figure 7.6, consisting of an Opal-RT OP5700 as real-time simulator, a host PC, and

several Texas Instrument (LaunchPad F28379D) control cards in charge of executing the

controller. The control cards receive the dc voltage and ac voltage and current as analog
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Control cards

Host PC

Opal-RT

Figure 7.6: C-HiL testbed that includes three external control cards connected to Opal-RT
OP5700. The host PC is used to automatically run C-HiL simulations and collect the results.

AO
D

I
A

I
D

O

TC
P/

IP
UA

RT

TC
P/

IP
UA

RT C1 C2

Host PC Control Card 1
Control Card 2

RT simulator

IPC

O
rc

he
str

at
or

C-card
programmer

Data
recorder

RT
simulator

API Grid model

HIL framework

Tests
config.

Models
config.

Figure 7.7: C-HiL testbed architecture. The C-HiL framework (on the left side) is developed
in Python and its main functionality is to coordinate the RT-simulator and control cards. The
control cards (on the right side) are connected to the RT-simulator via physical cables.

signals from Opal-RT, and generate the PWM signals to be sent back to the real-time

simulator as digital signals. Switching frequency for the inverter is set to 5kHz, which

is the same rate as for the execution of the controller in the control card. The grid-

connected converter model and the dc source controller are executed in Opal-RT, using

Time-Stamped Bridges to model the inverter IGBTs [147].

The testbed architecture is represented in Figure 7.7. The host PC communicates

with the control cards via UART, and with Opal-RT via TCP/IP, thanks to the RT-

LAB API. Given that the control cards possess two cores, data recording occurs in an

online manner, bypassing memory limitations in the control card. Our setup allows us

to measure relevant internal signals from the controllers such as frequency and filtered

ac power. By means of configuration files, the tests of interest, set-points, and models to
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be used are defined. The tests are completely automatized, including the flashing of the

control cards, building the grid models for the Opal-RT, synchronization of the cards

and the real-time simulator, and finally the retrieval of all data of interest.

7.5.2 C-HiL verification test scenarios

In what follows, we provide the results of four verification test cases that are performed

on the testbed shown in Figure 7.6. Let us begin by highlighting the combination of

employed controllers. We consider the PI-based dc and ac voltage control as described

in Section 7.2, and the approximate power-based implementation of the HAC presented

in Section 7.4. The baseline grid-connected converter model that is implemented in

Opal-RT corresponds to the circuit configuration illustrated in Figure 7.4. Finally, the

baseline model and control parameters are presented in Table 7.1. Note that the test-

specific model and parameters modifications are described case-by-case.

Accuracy verification and islanded GFM operation

In this test scenario, the grid model is removed from the configuration in Figure 7.4.

Instead a resistive load is connected at the PCC which at rated ac voltage consumes

0.5 p.u. active power. Figure 7.8 illustrates the behavior of the islanded converter under

the HAC in offline and C-HiL simulations. Note that a 0.5 p.u. load increase is applied

at t = 0.1 s. The results of offline and C-HiL simulations are sufficiently close, thus,

verifying the accuracy of C-HiL testbed. Furthermore, the dynamic behavior shown in

Figure 7.8 verifies the performances of the HAC control in islanded configuration. Note

that, the ac gain (i.e., the droop gain) is selected such that it results in 5% frequency

deviation for 1 p.u. active power disturbance. Observe that the 0.5 p.u. results in 2.5%

frequency drop in Figure 7.8, thus, verifying the drooping behavior of the approximate

HAC (7.29). Finally, the dc voltage is recovered to the reference value due to the integral

term.

Grid-connected GFM operation

In this scenario, model configuration is identical to the one showed in Figure 7.4 and HAC

behavior is investigated w.r.t a set-point change event in grid-connected mode. Figure

7.9 shows that GFM HAC not only preserves synchronization with the grid under a

relatively large active power set-point change, i.e., 0.5 p.u. increase, but also achieves

zero post-event stead-state error and stabilizes the converter frequency at the desired

reference. We remark that the difference in transient behaviors in Figures 7.8 and 7.9

originates from the natural damping influence of the resistive load in the previous test

scenario. Finally, retuning the GFM control parameters and the cut-off frequency of the

low-pass filter applied to ac power measurement allows to realize a first-order behavior
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Table 7.1: Grid-connected converter model and control parameters.

Symbol Description Value

pb base power 500 kVA

fb base frequency 60 Hz

ω0 reference angular frequency 2πfb

v0 reference grid voltage magnitude 326.59 V

vdc,r reference dc-link voltage 3v0

Gdc dc-side conductance 0.01 mΩ−1

Cdc dc-link capacitance 0.01 F

fsw switching frequency 5 kHz

L ac filter inductance 0.12 mH

C ac filter capacitance 0.13 mF

Lg grid equivalent inductance 0.56 mH

Rg grid equivalent resistance 0.064 Ω

κp dc voltage control proportional gain 10

κi dc voltage control integral gain 500

κp,ac PCC voltage control proportional gain 0.1

κi,ac PCC voltage control integral gain 20

κdc HAC dc gain 0.18

κ̄ac HAC ac gain 18.84
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following the set-point change event. However, for the sake of consistency the parameters

are kept identical.

Grid frequency variation

In this scenario, the grid frequency is increased step-wise by 5%. Figure 7.10 highlights

the behavior of grid-connected converter under the HAC. Note that the GFM HAC

preserves system stability w.r.t a relatively severe contingency. This is underpinned by

the large-signal (i.e., global) stability of the HAC established in [3]. Further, due to the

particular choice of the droop gain, the converter active power injection drops by 1 p.u.

and reverses the power flow to provide frequency support.

Two-converter load-sharing operation

Finally, we consider a two-converter test scenarios. In this case, the converter models

correspond to the model shown in Figure 7.4. However, the grid model is removed and

the converters are connected through two RL line models and a resistive load is connected

in the middle. Note that the droop gains for the power converters are slightly different,

i.e., 0.98κ̄ac and 1.02κ̄ac. Figure 7.11 illustrates the behavior of the system when a load

increase event is applied. Observe that the post-disturbance frequency synchronization

is achieved while the converters exhibits slightly different load-sharing according to the

prescribed droop gains.

7.6 Conclusion

In this work, we discussed the behavioral properties of the GFM HAC, described required

complementary controls, provided a closed-loop analysis involving analytical operating

point evaluation and energy-based nonlinear stability analysis, derived an approximation

of the HAC, and introduced several extensions of the standard HAC. Last but not least,

the control performance was verified by several C-HiL test scenarios. Our agenda of

future work includes the stability analysis and performance verification of the HAC

variants, and power hardware validation of the control concept.
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Figure 7.8: The time-evolution of normalized frequency (top), active power (middle), and dc
voltage (bottom) of an islanded GFM converter under HAC w.r.t a load disturbance scenario
in offline and C-HiL simulations.
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Figure 7.9: The time-evolution of normalized frequency (top), active power (middle), and
dc voltage (bottom) of a grid-connected GFM converter under HAC w.r.t a power set-point
change scenario in C-HiL simulations.
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Figure 7.10: The time-evolution of normalized frequency (top), active power (middle), and
dc voltage (bottom) of a grid-connected GFM converter under HAC w.r.t a grid frequency
variation scenario in C-HiL simulations.
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Figure 7.11: The time-evolution of normalized frequency (top), active power (middle), and
dc voltage (bottom) of two coupled GFM converters under HAC (with slightly different droop
gains) w.r.t a load disturbance scenario in C-HiL simulations.
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Part IV

Conclusion
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CHAPTER 8
Summary, outlook, and open problems

This chapter concludes this thesis, highlights the future research directions on the basis

of the presented results, and describes a few open problems in this research area.

8.1 Summary and outlook

The first part of this thesis, presented the results of extensive EMT simulation-based

case studies on different state-of-the-art GFM controls in low-inertia power grid models

that are summarized as follows.

∗ The GFM control solutions can be classified into distinct classes, namely: dc-based,

ac-based, and hybrid controls. The first two classes respectively result in enhanced

small-signal frequency stability and robustness w.r.t to nonlinear phenomena, e.g.,

current limitation. Furthermore, the adverse interaction between the SMs and

GFM converter timescales can potentially lead to unstable system-level behaviors.

∗ The choice of converter control strategies, i.e., grid-following (GFL) or GFM con-

trols plays a critical role in maximizing the penetration level of the converter-based

generation. Further, certain control parameters of the SMs in a low-inertia system

must be tuned according to the penetration level of the converter-based genera-

tion. Last, the classic frequency stability metrics must be reconsidered (or possibly

redefined) to capture the system-level influence of the converter-based generation,

especially for high penetration levels.

The second part of this thesis presented the control design, stability analysis, ap-

plications, and verification of a new GFM control design, i.e., the hybrid angle control

(HAC) that are summarized as it follows:

∗ The HAC is designed to integrate the complementary benefits of the dc and ac-

based GFL controls. This control proposal results in the existence and almost
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global asymptotic stability (AGAS) of the closed-loop equilibrium point of the de-

tailed nonlinear grid-connected converter models under mild parametric stability

conditions. Furthermore, a compatible current-limiting control is designed that

does not jeopardize the closed-loop stability when combined with the HAC. Fi-

nally, a robustness analysis establishes the ultimate boundedness of the closed-loop

trajectories in presence of implementation inaccuracies.

∗ Although the HAC was originally designed for the two-level power converter appli-

cations, it can be applied to interlinking converter (ILC) in hybrid non-synchronous

AC/DC power grids. In fact, the stability guarantees of the HAC are fully scalable

for the hybrid AC/DC power grids application. Further, the extended AGAS result

does not require strong assumptions on the underlying dc interconnections or the

ac power flows.

∗ Extended EMT simulation case studies verifies the hypothesis behind the HAC

design, i.e., HAC combines the complementary benefits of the dc and ac-based

GFM controls. Further, it is possible to extend the nonlinear stability analysis to

an interconnected system of converter under the HAC.

∗ Finally, it is possible to re-design the converter dc voltage control and omit the

equilibria existence assumption under the HAC. Further, it is possible to derive an

approximate power-based variant of HAC. Next, on the basis of HAC design one can

consider several other hybrid control variants. Last, the performance of the control

proposal was verified via controller-hardware-in-the-loop (C-HiL) simulation test

scenarios.

The practical and theoretical outlooks of this doctoral research is described as follows.

∗ A direction to extend the validation of HAC performance is to implement the

control strategy on a power hardware. Further, one can also extend the presented

controller-hardware-in-the-loop (C-HiL) verification approach by considering more

complex network models.

∗ A detailed theoretic stability analysis of an interconnected system of converters

under the GFM is another direction for future research.

∗ One can also follow the presented guidelines on designing a fully multivariable

variant of the HAC. Subsequently, the optimization-based tuning methods can be

employed for an optimal control parameter tuning.

∗ Further detailed theoretic and practical investigation of the proposed current-

limiting control and its combination with other GFM strategies is another promis-

ing direction.
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∗ The combination of HAC with the converter models that are derived based on the

hybrid system theory (and include both continuous and discontinuous states) is

another interesting direction.

∗ Finally, a detailed simulation-based investigation of control performance in the

hybrid AC/DC power grids is another direction to be explored.

8.2 Open problems

This thesis is closed by listing a few open problems that are directly/indirectly related

to this thesis and research area.

∗ The performance requirements for the power converters are often diverse and com-

plex. Thus, requiring various complementary control loops to be combined with

the classic GFL or GFM controls. A holistic converter control design that consid-

ers all performance specifications defined by the system operator is still an open

problem. Further, the stability analysis of such a comprehensive control solution

is to be explored, as well.

∗ A plug-and-play converter control design that is fully agnostic to the power grid

behavior and dynamics is also an open problem. This is specially interesting in

converter-dominated power grids in which the system modes vary on fast timescales.

Further, such plug-and-play control is particularly relevant in multi-vendor power

system operation and strongly time-varying RESs integration scenarios.

∗ A detailed nonlinear stability analysis of a multi-converter power system while

incorporating high-fidelity nonlinear converter models accounting for the dc, mod-

ulation, and ac dynamics and dynamic line models is a standing open problem.

Similarly, the stability analysis of a multi-machine power system while considering

detailed nonlinear SMs models is open.

∗ The design of a robust current-limiting strategy for power converters that is suitable

for all potential over-current scenarios is open, as well.

∗ Finally, the oscillator-based GFM control solutions result in elegant stability results

and provide strong global stability certificates. However, the converter modulation

and dc dynamics are often neglected in such control design. Thus, an oscillator-

based GFM control design that takes into account a detailed nonlinear description

of converter dynamics is yet to be explored.
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