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a b s t r a c t 

Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with 

predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition 

central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid 

dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qual- 

itatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and 

a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corre- 

sponding feature maps, developed by the model with no temporal information provided, identified large-scale 

coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperpa- 

rameters including network architecture and convolutional kernel size was also explored. The coherent structures 

identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils 

over a wide range of Reynolds numbers. 
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. Introduction 

In recent years, with the development of high-performance com-

uting architectures and experimental measurement capabilities, fluid

esearchers are able to obtain high precision and high-resolution spa-

iotemporal data of large-scale fluid simulations and experiments. Too,

he advancement of sophisticated algorithms and the abundance of open

ource software enables researchers to apply machine learning (ML) to

ddress many challenges [1–3] . Turbulence modeling and, more gener-

lly, nonlinear fluid dynamics has been one proving ground for neural

etworks [4–8] . 

For nonlinear fluid flow regimes, incorporating domain knowl-

dge [9,10] into learning algorithms has been demonstrated to be feasi-

le. Data-driven turbulence modeling presents promising extensions to

ore conventional numerical system closure techniques and are there-

ore of significant value for engineering applications [4,11–13] . For ex-

mple, Tracey et al. [14] successfully reproduced the Spalart-Allmaras

odel by replacing the deliberately removed source term with machine-

earned functional forms. Duraisamy et al. also pursued efforts in data-

riven turbulence modeling [15] with encouraging results; they were
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ble to infer functional forms of modeling discrepancies by using in-

erse modeling, and then were able to reconstruct the patterns with

L for incorporation into turbulence model source terms. Wang et al.

mphasized the physical constraint of Reynolds stress and proposed

he concept of a physics-informed machine learning approach [16,17] .

hu et al. [18] completely replaced the Reynolds stress transport equa-

ions with neural networks and then constructed a mapping function be-

ween the turbulent eddy viscosity and the mean flow variables. In addi-

ion to data-driven turbulence modeling, characteristics of deep learning

DL) algorithms [19–21] like the convolutional neural network (CNN)

nd the long-short term memory network (LSTM) provide tools for re-

earchers to evaluate the temporal and spatial patterns in data. For ex-

mple, Ye et al. [22] applied CNN to predict the pressure coefficient

n a cylinder from velocity distributions in its wake flow. Kou et al.

xplored many potential applications of deep learning modeling for un-

teady aerodynamics and aeroelasticity [5] . Zhang et al. [23] trained

ultiple linked CNNs to learn the lift coefficients of an airfoil with a

ariety of shapes in multiple flow regimes. Guo et al. [24] proposed a

onvolutional encoder-decoder approach that can predict steady veloc-

ty and pressure fields. Mohan et al. [25] built a deep learning approach
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Table 1 

High-fidelity DNS snapshots provided to the neural networks, classified 

by Reynolds number as qualitatively different flow regimes. 

Reynolds Number Sampling region Flow regime 

100 8000–10000 Periodic flow 

600 8000–10000 Quasi-periodic flow 

1000 8000–10000 Quasi-periodic flow 

10,000 5000–10000 Chaotic flow 

100,000 5000–10000 Chaotic flow 

1,000,000 5000–10000 Chaotic flow 
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o reduced order modeling (ROM) for isotropic turbulent flows by re-

lacing Galerkin projection with LSTM neural networks. 

The success of the aforementioned works indicates the encourag-

ng prospects of ML in the fluid mechanics. Furthermore, it also ade-

uately demonstrates that ML can extract intrinsic flow features for use

n establishing a nonlinear mapping relationship with the desired out-

ut [22,26] . However, previous research efforts have focused primarily

n the accuracy of predictive variables, without studying closely the

nformation hidden inside the learning model itself. Additionally, the

ore dynamically motivated efforts have utilized flows with high levels

f symmetry, e.g. isotropic turbulence. In this paper, we employ con-

entional ML implementations to identify coherent structures in a flow

mportant to engineering applications: one over an airfoil at a high angle

f attack, where subsonic buffet is known to occur. The coherent struc-

ures associated with buffet, identified through feature maps associated

ith the convolutional kernels, align with and expand upon the previ-

us mathematical and physical insights for the problem despite being

dentified entirely by the ML algorithms. A side-effect of this coherent

tructure identification was a near-perfect flow identification capabil-

ty with only small training dataset, where the neural network learned

uickly how to recognize qualitatively different flow regimes from indi-

idual temporal snapshots. 

The remainder of this paper is organized as follows. In Section 2.1 ,

he problem of subsonic buffet and the computation of the flow data

rovided to the neural networks are discussed. In Sections 2.2 and 2.3 ,

eural network architectures including CNN and LSTM are summarized.

n Section 3 , comparative results and the discussion of CNN and LSTM

re included. Finally, we summarize our main result and future work in

ection 4 . 

. Problem formulation and methodology 

.1. Problem formulation 

.1.1. Subsonic buffet 

The buffet phenomenon in subsonic open flows, characterized by

arge-scale, time-periodic dynamic instabilities, has received increas-

ng attention in recent research [27,28] . These instabilities, often ob-

erved in high-incidence flows around stationary airfoils, exhibit vortex

hedding patterns similar to those found in bluff body flows [27–29] ,

hich plays a significant role in influencing airfoil performance. De-

pite its critical impact on aerodynamic performance, the dynamics of

ubsonic buffet flow are not fully understood, necessitating further ex-

loration and analysis. This phenomenon exhibits nonlinear behaviors,

hich makes the flow difficult to predict and intractable with analytical

ethods. Making these predictions early in the design process for air-

oils, wings, and full system is computational costly, even when relying

n a linearized stability analysis. Recent research provides the prevail-

ng theory of buffet as a global instability [30] . This global nature makes

rediction of buffet difficult without detailed flow simulations. Conse-

uently, while the dynamics of the flow are not yet fully understood,

he buffet dynamics are of large-enough scale to dramatically affect the

irfoil performance. It is these large-scale structures that are identified

hrough ML in this research. 

.1.2. Under-resolved direct numerical flow simulations 

The neural networks central to this research were presented with

napshots of fluid flows around an airfoil across a range of Reynolds

umbers. The subsonic flows exhibited characteristics of buffet, in which

he airfoils lift coefficient reached a limit cycle oscillation with a positive

ean value. The method of simulating such a flow is an active area of

esearch [31,32] . Unsteady reynolds-averaged navier-stokes (URANS)

imulations have been shown to present reduced frequencies compara-

le to those of experiments, but the amplitudes of the oscillations were

ore sensitive to the choice of closure model. The URANS simulations

lso failed to exhibit buffet at all at some lower Reynolds numbers which
2 
ere known from experiments to yield buffet. Recent efforts utilizing

nder-resolved direct numerical simulation (UDNS), also known as full

avier-Stokes (Full NS), have provided a numerically tractable method

f simulating such flows with large-scale behavior comparable to that of

xperiments. In particular, the reduced frequencies of the lift and drag

oefficients were computed to be within 7% of the experimental results

t the same high Reynolds numbers [32] . 

This method is known to be only conditionally stable in time. Too,

t is understood that this method does not guarantee, nor does it seek,

ccuracy in subgrid-scale dynamics; it instead relies on the implicit av-

raging from the mesh to estimate the small-scale effects. However, for

nsteady aerodynamic phenomena dominated by large-scale flow struc-

ures, e.g. subsonic buffet, UDNS presents a compromise between com-

utational cost and agreement with experiment. It was thus utilized in

his study to generate a snapshot database for use by the neural net-

orks, which themselves only studied large-scale flow structures. The

attern recognition of the neural network was not contingent upon fully

esolved small-scale flow features, and thus the purpose of this study

id not require resolution down to the Kolmogorov scale. Flows were

hus simulated in time about a symmetric NACA 0012 airfoil at several

eynolds numbers: 100, 600, 1000, 10 000, 100 000 and 1 000 000. All

ix simulations started with a control volume at rest and converged to a

tatistically steady state; a constant time step of 0.002 s was employed.

he incidence angle was held at 40 degrees and Mach number was

eld constant at approximately 0.05, strongly within the incompressible

imit. Simulations were performed with a truncated NASA grid [33] ,

ith 257 airfoil surface points. The grid extends 20 chord lengths in

ll directions, which was determined to be adequate to resolve far-field

ehavior [34] . View of the grid and specific settings used for the simula-

ion are shown in the supplementary material. The Navier-Stokes equa-

ions were solved directly in the ANSYS Fluent software package to gen-

rate all flow data used in this study. At a Reynolds number of 87 000,

t which the flow parameters matched those of Tang and Dowells ex-

erimental study [27] , the lift and drag coefficient reduced-frequencies

ere observed to be in good agreement between the DNS simulation and

xperimental results. By employing the heuristic flow characterization

eveloped by Wiebe and Virgin [35] and in agreement with existing lit-

rature [36] , each Reynolds number is associated with qualitatively dif-

erent flow regimes: periodic flow, quasi-periodic flow and chaotic flow,

s shown in Table 1 . Steady-state time histories and power spectra of

he lift coefficient ( 𝐶 𝐿 ) as computed at different Reynolds numbers are

hown in the supplementary material. All simulations were performed

ith a time step of 0.002 s. Consequently, the 2000 snapshots at Re =
00, for example, correspond to the flow as simulated between 16 and

0 dimensional seconds after the simulation was started from rest. Re-

ent work by one of the authors [31] determined that there was weak de-

endence on grid resolution for large ranges of Reynolds number when

eeking the lift and drag coefficient reduced frequencies. Consequently,

he reduced frequencies are assumed to be dominated by large-scale

eatures. This is consistent with the spectral separation between buffet

nd small-scale turbulent behavior – the former’s frequency scales with

he airfoil chord, while the latter has frequencies that scale with the

oundary-layer thickness. It is these local but large-scale flow features

hat this study has identified by using ML. 
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Fig. 1. DNS grid subsection (a) and the Cartesian grid 

(b) provided to the neural networks. 
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.1.3. Data preprocessing 

Because the lift coefficient is only determined by the airfoil surface

ressures and the near-wall flow dynamics are indicative of the qualita-

ive flow behavior, the flow region for ML consideration was confined

o the area shown in Fig. 1 a. It is clear that the DNS grid structure is

ot Cartesian. For easier application of a square Cartesian convolutional

ernel to the flow snapshots, the spatial grid was thus adjusted to also

e Cartesian. The subsequent 200-by-150 pixel Cartesian grid is shown

n Fig. 1 b. Flow values within the airfoil (the blue area in Fig. 1 b) area

ere set to zero. Splines defined by the NACA airfoil standard [37] were

sed to determine what points were within the airfoil area. 

.2. Convolutional neural networks 

For the classification of different flow regimes, a convolutional neu-

al network (CNN) was implemented. This CNN was designed to extract

eatures from temporal snapshots of the flow, enabling the identification

f large-scale coherent structures inherent to the buffet phenomenon.

he model construction and training are conducted using the PyTorch

ramework, and a detailed mathematical description of CNN is provided

n the supplementary material. 

In the context of this study, the CNN was structured to minimize

he cross-entropy loss function for a three-class classification problem,

epresented as 

 ( 𝜃) = − 

𝑁 ∑
𝑖 =1 

𝑀 ∑
𝑐=1 

𝑦 ic lg 
(
𝑝 ic ( 𝜃) 

)
, (1) 

here 𝐿 ( 𝜃) denotes the loss function over the parameters 𝜃, 𝑁 is the

umber of samples, 𝑀 is the number of classes ( 𝑀 = 3 for our case), 𝑦 𝑖𝑐 
s the binary indicator of whether class label, 𝑐 is the correct classifica-

ion for observation 𝑖 , and 𝑝 𝑖𝑐 ( 𝜃) is the predicted probability of observa-

ion 𝑖 being of class 𝑐, given the parameters 𝜃. The architecture of our

NN is illustrated in Fig. 2 . The main purpose of adding a convolutional

ayer to a ML model is thus to exploit the low-dimensional, high-level

epresentation of the input data. A fully connected layer can then be em-

loyed to build the mapping relationship between these high-level rep-

esentations and predictive variables. In this paper, we trained a CNN

o achieve a simple classification task for the fluid problem discussed in

ection 2.1 . The kernels and corresponding feature maps were then ex-

racted to study the flow features which the model identified. Methods

f regularization, dropout, exponential learning rate decay and moving

verage were used in order to avoid overfitting and improve the ro-

ustness of the model. Hyperparameters of the CNN, which came about

hrough sensitivity studies and review of similar ML models in the liter-

ture, are summarized in Table 2 . 

In order to fully understand the importance of these identified pat-

erns for classification, a technique called Gradient-weighted Class Ac-

ivation Mapping (Grad-CAM) [38] was applied to the trained model
3 
or obtaining the neuron importance weights 𝛼𝑐 𝑤 , which captures the

mportance of feature map 𝑤 for a target class 𝑐: 

𝑐 
𝑤 = 

global average pooling 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1 
𝑍 

∑
𝑖 

∑
𝑗 

𝜕𝑦 𝑐 

𝜕𝐹 𝑤 
ij 

⏟⏟⏟
gradient via backprop 

. (2) 

he number of target class 𝑐 in our model is three (periodic flow 𝑐: perio.,

uasi-periodic flow 𝑐: qua. and chaotic flow 𝑐: chao.). 
𝜕𝑦 𝑐 

𝜕𝐹 𝑤 
𝑖𝑗 

represents the

radient of the score for class 𝑐, 𝑦 𝑐 , with respect to a pixel 𝐹 𝑖𝑗 in feature

aps 𝑤 of a convolutional layer. 𝑍 represents the number of pixels in

he feature map. Of note is that only feature map with positive values

ill be emphasized, larger values in weights means higher importance

f these features in classification. 

Notably, the CNN was exclusively provided with normalized pressure

eld data, based on the observation that pressure information was more

nfluential in the training process and classification performance. This

ligns with the understanding that subsonic buffet is predominantly in-

uenced by surface pressure gradients. The networks’s discernment that

ressure fields alone sufficed to distinguish buffet types reinforces this

oint. 

.3. Convolutional long-short term memory implementation 

The LSTM network was first proposed by Sepp Hochreiter and Jurgen

chmidhuber [39] in 1997 as a variant of the recurrent neural network

RNN). A mathematical summary of the LSTM architecture is presented

n the supplementary material. It can not only process single data points

such as images), but also entire sequences (such as speech or video).

he LSTM architecture improved the capability of processing long data

equences by addressing stability bottlenecks like the vanishing gradient

hich frustrated early RNN implementations. In Section 2.2 , the input

ata sample for the CNN was a single temporal snapshot; only spatial

haracteristics were considered in the model. In this LSTM architecture,

n untrained CNN was still used to convert the 2D flow snapshots into

haracteristic 1D vectors, and then these vectors were fed into the LSTM

etwork chronologically. Employing a single CNN in this way differs

rom conventional LSTM architectures and allows kernels comparable

o those computed from the CNN. Because our quantifiable task is to

ifferentiate between three different flows, only the output of the last

ell is desired from the standpoint of training the model; the coherent

tructures identified along the way remain of fundamental interest. The

rchitecture of the implemented LSTM network is outlined in Fig. 3 .

yperparameters for the CNN had the same values as those in Table 2 ,

ith only kernels of size 3 by 3 being implemented for the results in this

odel. Other LSTM hyperparameters are outlined in Table 3 . 
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Fig. 2. Architecture of the conventional CNN employed for 

buffet flow classification. 

Table 2 

CNN hyperparameters. 

Hyperparameter Value Hyperparameter Value 

Architecture of CNN Optimization of CNN 

Size of square convolutional kernel 3/5/10/20 Optimizer Adam 

Number of convolutional kernel 10 Batch size 100 

Activation function Relu Training steps 10000 

Stride for convolution 1 Learning rate base 0.0005 

Stride for pooling 2 Learning rate decay 0.99 

Padding for convolution Yes Regularization 0.0001 

Padding for pooling Yes Moving average decay 0.99 

Number of units in fully connected layer 200 

Dropout ratio for fully connected layer 0.5 

Fig. 3. CNN-LSTM architecture overview. 
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. Results and discussion 

.1. Convolutional neural networks 

A selection of 600 out of the total 21000 snapshots (detailed in

able 4 ) were used to train 4 CNNs, each of which had different ker-

el sizes as outlined in Table 2 . The remaining dataset (20400 snap-

hots) was employed to test the trained models. The training dataset
4 
as constructed to ensure each qualitatively different flow state (see

able 1 ) was represented by the same number of snapshots. The train-

ng data set was very small and accounted for the different buffet states

ut not all of the simulated Reynolds numbers. However, the trained

odels performed with high accuracy (over 0.95) for the test dataset.

his was a remarkably small training dataset for the relatively high clas-

ification accuracy especially at the highest Reynolds number. Of note is

hat no training data was provided from the highest and most turbulent
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Fig. 4. Ten kernels of the trained CNN and the corresponding feature maps for the example snapshot. The normalized neuron importance weights denotes 

𝛼chao . 
𝑤 

/ [
𝛼chao . 
𝑤 

]
max , where the maximum value 

[
𝛼chao . 
𝑤 

]
max is 𝛼

chao . 
1 . 

Table 3 

LSTM hyperparameters. 

Hyperparameter Value 

Number of units in LSTM 200 

Length of sequence (snapshot) 20 

Batch size 1 

Dropout ratio for LSTM 0.75 

Table 4 

Selection of training dataset. 

Reynolds Number Sampling region Flow type 

100 8000–8200 Periodic flow 

600 8000–8200 Quasi-periodic flow 

10,000 8000–8200 Chaotic flow 
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e  
eynolds number, whose flow was quantitatively very different from the

ther chaotic Reynolds numbers simulated, yet the trained model still

ecognized those snapshots as chaotic. This result indicates that the CNN

dequately mapped the relationship between snapshots and qualitative

ow states. Whats more, though the chaotic flow is temporally very

omplex, its coherent structures (as identified by the CNN) are not tem-

orally sensitive. Such a conclusion is in agreement with the separabil-

ty assumptions employed in empirical modeling methods like Galerkin

OD-based reduced-order models [40] . The few snapshots at the high-

st Reynolds number which were not identified correctly were observed

o be qualitatively very similar to lower Reynolds number flows; Conse-

uently, the coherent structures were correctly identified but the occa-

ional appearance of simpler structures in the chaotic flow led to minor

eviations from perfect classification accuracy. Further discussion of co-

erent structures is conducted later in this section. 
5 
As was discussed in Section 2.2 , CNNs are known to be particularly

uccessful when the input data can be decomposed into some form of

ierarchical basis representation. Those low-dimensional characteristics

an be extracted by convolutional kernels and visualized by the feature

aps which connect the convolutional layers. Figure 4 provides an ex-

mple, where a snapshot of a chaotic flow is taken as the input for the

rained CNN (kernel size of 3 pixels square). The feature maps in this

lot were representative of all snapshots provided to the neural network.

he corresponding convolutional kernel is presented above each feature

ap. It is clear that each kernel identifies a certain pattern within the

ressure field. Feature maps 2 and 8 were the only ones to extract the

hape of the airfoil itself; these are thus denoted as edge kernels. The

th, 4th, 9th and 10th kernels accurately extract local, quasi-circular

ow- and high-pressure regions in the original snapshot, denotes as bub-

le kernels. Feature maps 3, 5 and 7 extracted the high pressure region

ear the airfoils leading edge, and are thus called high pressure ker-

els. These results are significant as they show that the neural network

utomatically identified three large-scale coherent structures without

uman intervention or knowledge of the flows kinematics. This is espe-

ially meaningful as only spatial characteristics were provided in each

napshot, without considering the temporal relationship between dif-

erent snapshots for one flow regime. The convolutional neural network

hus assembled itself as follows. Fundamental patterns were identified

t the lowest level which consistently identified the coherent structures

haracteristic of the qualitatively different flow regimes provided to the

odel. These coherent structures were then correlated to flow regime

lassifications in a fully connected high-level layer, to a high degree of

delity. 

In order to fully understand the importance of these identified pat-

erns for classification, Grad-CAM in the Eq. (2) is implemented. Here,

e calculated weights of ten feature maps for chaotic flow. The relative

eights (also included in Fig. 4 ) of the feature maps indicate that differ-

nt certain structures were valued more than others for the emergence
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Table 5 

Number of functional kernels for different trained CNNs. 

Kernel size Edge Kernel Bubble kernel High-pressure kernel Useless kernel 

3 × 3 2 4 4 0 

5 × 5 1 5 2 2 

10 × 10 0 1 2 7 

20 × 20 0 0 0 10 
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Fig. 5. Test accuracy of 6 different experiments (Reynolds numbers) for 4 CNNs 

with different kernel sizes. 
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f chaotic flow. The edge kernels were less valued for the occurrence

f buffet flow, which means that the model considered the airfoil shape

f little value for determining the type of flow regime. This aligns with

hin-airfoil aerodynamic theory, from which it can be concluded that

t this high incidence angle the airfoil profile minimally influences the

ualitative flow characteristics. The high-pressure kernels were also un-

alued for the right classification of buffet flow. All bubble kernels were

ore heavily weighted than were the other kernels. Consequently, the

resence of localized fluctuations in pressure was found to most signifi-

antly inform the models flow classification. If the bubbles were present

uch more than was the high-pressure region near the airfoils leading

dge, the flow was classified as chaotic. If the bubbles existed with com-

arable magnitude to the high-pressure region, the flow was quasiperi-

dic. If the bubbles were much less present than was the high-pressure

egion, then the flow was periodic. This nuanced classification algo-

ithm, developed entirely by the neural network, aligns with an under-

tanding of the airfoil flows kinematics. For example, Kurtulus [37] ob-

erved through a rigorous analysis of wake structures a similar pattern

n coherent structures. 

These results were obtained with kernels which were three pixels

quare; a brief study was conducted to understand the sensitivity of the

oherent structure identification to kernel size. The same procedure was

ollowed as outlined above, with only the kernel size changing. Table 5

etails the number of kernels in each dynamical category, as developed

bove. While the edge kernels do not appear when the kernels are larger

han 5 pixels square, more useless kernels, showing little coherence and

re thus denoted as useless kernels, appear as the kernel size increases.

he dynamically valuable kernels, viz. the bubble and the high-pressure

ernels, exhibited less sensitivity to kernel size but also became less com-

on as the kernel size increased significantly. Edge detection is known

o require smaller kernels, and the lack of dynamical significance of

he airfoil edge does not motivate the model to try to retain the airfoil

hape information. The pressure bubbles are themselves rarely larger

han 20 pixels in diameter with this interpolated resolution, so again it

akes sense that in a low convolutional layer the kernels would strug-

le to take a form which can consistently identify the bubbles. Conse-

uently, the loss of coherent structures with increased kernel size was

ot surprising. 

Although the coherent structures were not as clearly identified with

he larger kernels, the large-kernel models still performed well in their

lassification task as summarized in Fig. 5 . This can be understood by

he concept of receptive field in ML, which is the region of the input

pace that affects a particular unit of the network. In our model, we

nly have one convolutional layer, and the size of kernel is the value of

eceptive field. When increasing the value of receptive field, the infor-

ation that neurons can contact is much larger, which means that the

ernel can summarize more global information. Corresponding features

re much more abstract than those with little kernels, whose informa-

ion is organized locally and with more detail, and can therefore not be

s easily understood by the users. The definition of a useless kernel is

imply a kinematic one, corresponding to resulting feature maps which

annot be easily understood by a human as a known dynamically sig-

ificant pattern. However, these abstract features will be very useful for

 computer to distinguish the category, and that is the reason why the

ccuracy for them is still high. 
6 
.2. Convolutional long-short term memory 

In this section, we consider the model with the inclusion of the tem-

oral information. The number of snapshots in one data sequence was

et to 20, which means that 600 snapshots in the training dataset were

ivided into 30 data sequences. These 30 training sequences resulted

n a model which was then tested on 1050 test sequences comprising

he entire DNS data set outlined in Section 2.1 . The resulting classifica-

ion accuracy was nearly perfect: the machine classified falsely 1 out of

050 data sequences after 10000 training steps. Figure 6 shows kernels

nd their corresponding feature maps in the convolutional layer for the

rained CNN-LSTM. Grad-CAM is also used to calculate the importance

f this feature maps in determining different flow regimes. Compared

ith those in Fig. 4 , it is clear that the CNN also successfully identi-

ed three large-scale coherent structures. As was the case with the CNN

n Section 3.1 , the bubble kernels (kernel 4 and 7) will play a domi-

ant role in the task of classification as their neuron importance weights

re much larger than most of other kernels. Of note is that although

he kernel 2 also have the tendency to identify the bubbles, its impor-

ance in classification is negligible as the result of its less dynamical

nformation. 

The CNN-LSTM model thus identified coherent structures similar to

hose in the conventional CNN when provided with the same training

ata sets, and performed comparably for the nominal classification task

et forth. With the inclusion of temporal information, the CNN-LSTM

odel have nearly perfect accuracy for test dataset. The trade-off, nat-

rally, is that training a CNN-LSTM involves solving within a much

arger parameter space and therefore requires significantly more com-

utational resources to train. 
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Fig. 6. Ten kernels of the trained CNN-LSTM and the corresponding feature maps for an example snapshot. The number above every feature map is the normalized 

neuron importance weights. 
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. Conclusions and future works 

In this paper, a highly accurate convolutional neural network was

uccessfully trained to recognize different manifestations of subsonic

uffet over a high-incidence airfoil when provided with individual tem-

oral snapshots. By extracting convolutional kernels and the corre-

ponding feature maps from the trained model, the capability of identi-

ying large-scale coherent features was validated. Sensitivity of hyperpa-

ameters, including the size of the training dataset, convolutional kernel

ize and general network architecture, were explored. Four main con-

lusions are stated as follows. 

1. The trained CNN automatically identified three large-scale struc-

tures, including the airfoil edge, localized shedding pressure abnor-

malities (viz. bubbles) and the high-pressure region near the airfoils

leading edge. This was accomplished without human intervention or

knowledge of the flows kinematics. 

2. The presence of localized fluctuations in pressure (bubbles) was

found to inform most significantly the models flow classification.

These were both highly weighted characteristics in the CNN model

and CNN-LSTM model. 

3. Smaller convolutional kernels were necessary to identify coherent

structures as understandable by human users. Larger convolutional

kernels still resulted in highly accurate flow classifications, but were

less physically informative to the users due to the receptive field

concept. 

4. Consideration of temporal information in the CNN-LSTM improved

the classification accuracy. The multiscale nature of the chaotic flow

was identified as dynamically important by the model, again with no

provided kinematic information. 

In general, it is demonstrated in this work that the CNN has the po-

ential to extract large-scale coherent structures to achieve specific tasks

n complex fluid flows. By applying Grad-CAM technique to the trained

odel, we can know the relative importance of these identified struc-

ures in the task of concern, which can help us gain further insights

nto these confounding dynamics from the perspective of machine. This

annot be realized from existing modal decomposition techniques (e.g.
7 
OD, DMD). Moreover, this study, while centered on subsonic flows,

utlines a methodology that has potential applicability to transonic buf-

et scenarios (caused by one or more recompression shocks on the air-

oil) as well, paving the way for more efficient and early-stage design

valuations for airfoils, wings, and complete systems. In future work,

raph convolutional networks (GCNs) can be considered for providing

igh resolution for resolving small-scale flow phenomena. And we be-

ieve these feature-filter kernels can be preserved for transfer learning to

dvance our training process in other complex fluid flows. Keeping the

arameters in the convolutional layers unchanged while shifting param-

ters in the full-connected layers can be a promising path. Other flows

f engineering interest like jet flows and mixing layers will be studied

nd other parameters will be varied including the Mach number. 
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