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Gut microbiomes of agropastoral 
children from the Adadle region 
of Ethiopia reflect their unique 
dietary habits
Simon Yersin 1, Julian R. Garneau 1, Pierre H. H. Schneeberger 2,3, Kadra Ali Osman 4, 
Colin Ivano Cercamondi 5, Abdifatah Muktar Muhummed 3,4,6, Rea Tschopp 3,6,7, 
Jakob Zinsstag 3,6 & Pascale Vonaesch 1*

The composition and function of the intestinal microbiota are major determinants of human health 
and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we 
currently have only little data on microbiomes of non-westernized communities. We assess the stool 
microbiota composition in 59 children aged 2–5 years from the Adadle district of Ethiopia, Somali 
Regional State. Here, milk and starch-rich food are predominant components of the local diet, where 
the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function 
and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic 
sequencing and compared to 1471 publicly available datasets from children living in traditional, 
transitional, and industrial communities with different subsistence strategies. Samples from the 
Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives 
in the feces of children living in industrialized and non-industrialized communities, respectively. 
In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and 
Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, d-galactose 
and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the 
fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal 
bacterial composition of human populations living different lifestyles.

Abbreviations
CAR​	� Central African Republic
VANISH	� Volatile and/or associated negatively with industrialized societies of humans
BloSSUM	� Bloom or selected in societies of urbanization/modernization
Primer set 1	� 16S rRNA gene primer v4.SA501-v4.SA508 and v4.SA701-v4.SA712 targeting the V4 region
Primer set 2	� 16S rRNA gene primer 515F and 806R targeting the V4 region
ASVs	� Amplicon sequence variants
PD	� Faith’s phylogenetic diversity
PCoA	� Principal coordinates analysis
WUF	� Weighted UniFrac
mOTUs	� Metagenomic-based operational taxonomic units
AMR	� Antimicrobial resistance

The human gastro-intestinal tract microbiota plays a crucial role in immunity, brain development, metabolism 
and general health of human beings1–4. For the last two decades, the composition and function of the microbiome 
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has been an area of intense and dynamic research facilitated by the advancement in sequencing methods and 
data analysis tools5. However, despite large-scale efforts in the characterization of the intestinal microbiota, 
many unknowns remain in our understanding of the colonization of our intestinal tract by microorganisms, 
their functionalities and their associations with non-communicable diseases4,6,7.

Factors, such as birth-mode, breast-feeding, diet, antibiotic treatment, diseases, and proximity with animals, 
have been shown to strongly influence the intestinal microbiota and vary widely among populations8–11. Such 
factors have led to significant variations in the composition of what is considered a “healthy microbiome”. The 
definition of a eubiotic community is crucial to develop microbiota-targeted interventions. Nevertheless, socie-
ties that live traditional lifestyles and communities currently undergoing a transition towards industrialization 
and urbanization remain understudied in comparison to populations from industrialized northern-American 
and European countries12,13. It is therefore crucial to better characterize the composition and function of the 
microbiome in diverse communities across the globe.

In recent years, studies on the intestinal microbiota of hunter-gatherer communities such as the Hadza from 
Tanzania or the Matses from Peru and Brazil, as well as other traditional populations such as agriculturalists from 
Malawi or Venezuela, showed an enrichment in members of the Prevotellaceae, Spirochaetaceae and Succinivi-
brionacea14–17. In contrast, the intestinal microbiota in subjects from industrialized societies has been associated 
with increased relative abundance of Bacteroidaceae and Akkermensiaceae18–20. The terms VANISH (volatile and/
or associated negatively with industrialized societies of humans) and BloSSUM (bloom or selected in societies of 
urbanization/modernization) have been proposed to describe these taxa shared between populations with similar 
lifestyles18. While VANISH taxa are associated with a characteristic high-fiber diet of traditional communities, 
BloSSUM taxa correlate with the higher consumption of animal fat and protein in industrialized societies18,21,22.

Although mostly reported in adults, lifestyle has an equally important role in shaping the fecal microbiota 
composition in children23,24. During the first two years of life, the maturation of the intestinal microbiota is 
strongly influenced by factors including birth mode, breastfeeding, and diet8,25. Children’s gut microbiota con-
tinues to develop during childhood to stabilize towards an adult-like phylogenetic distribution later in life26. 
Growing evidences suggest that compositional alterations during this dynamic maturation and developmental 
period might have long-lasting effects on the health of an individual8.

In light of the important contribution of lifestyle and diet on the intestinal microbial community, the intestinal 
microbiota composition and microbial functional potential need to be studied and characterized in populations 
from across the globe with differing subsistence strategies, lifestyles and dietary preferences. Here, we assessed 
the intestinal microbiota in agropastoral children from the Adadle woreda (district) in the Somali regional state 
of Ethiopia. We used both16S rRNA gene amplicon as well as whole-genome shotgun metagenomic sequencing 
to compare these children to other children living in geographically distant sites and living different lifestyles. 
Due to their unique way of life and their specific diet, we hypothesized that these agropastoral children harbor 
a distinct microbiome profile compared to children living any other traditional lifestyle.

This study is part of the Jigjiga University One Health initiative (JOHI), aiming at the improvement of health 
and livelihoods of mobile pastoralists and their animals in the Somali Region of Ethiopia. It primarily aimed at 
assessing the nutritional status and health care of children27,28. In parallel, the status of antimicrobial resistance 
and the health status of animals are assessed, aiming towards an integrated surveillance-response system for 
human and animal health29.

Results
Description of study population
The Ethiopian population studied were agropastoralists from the Adadle woreda (district) in the Shabelle zone 
of the Somali Regional State. This region is mostly inhabited by pastoral and agropastoral communities that 
rely mainly on animals for food and livelihood (Fig. 1). This study included feces from children aged 2–5 years, 
living in traditional agropastoral communities in the Adadle woreda. Samples were collected in the context of 
a previous cross-sectional study on parasitic infection and micronutrient status conducted in this region in the 
dry season between July and September 201627. Overall, 54 children were included in the final analysis using the 
first primer set (V4 region 501-508/701-712), 13 in the study using the second primer set (V4 region 515/806) 
and 15 children using shotgun metagenomic sequencing. Of the 54 children (primer set 1), 41% (22/54) were 
girls and 59% (32/54) were boys. Children were between 2 and 5 years old with the median age being 4 years 
of age (Table 1). In the 24-h dietary recall (Table 1), the main staple food consumed by the children included 
whole wheat (20% of the children) or wheat flour (15%), maize (29%), rice (19%), sorghum (4%) and potato 
(2%). Only few children were reported as having consumed tomato (15%) and onions (13%) but none had other 
vegetables, fruits, meat or fish. Additionally, 44 out of 54 children (82%) consumed animal milk (from camels, 
goats, sheep or cows) or tea with milk in the 24 h before sampling27. The metadata for primer set 1, 2 and shotgun 
metagenomic sequencing groups are shown in Table 1.

Composition of the fecal microbiota of children from the Adadle region, Ethiopia
Using primer set 1, we generated a total of 3,832,363 reads and an average of 70,970 ± 34,438 reads per subject. 
Negative control samples had an average of 173 ± 40 reads, ruling out any potential contamination. Out of the 
1490 identified ASVs, 1294 were assigned to Bacteria or Archaea and were retained to explore the composition 
of the fecal microbiota of these children (Supplementary data 3, 4). In the 54 stool samples, 125 bacterial fami-
lies from 21 different phyla were detected (Supplementary data 6), without applying any prevalence filter. After 
filtering at 10% prevalence, 12 phyla and 69 bacterial families with low prevalence were removed in the dataset. 
Filtering did not influence any conclusions from downstream analysis (Supplementary Fig. S1).
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The samples were low in relative abundance of the phylum Bacteroidota (formerly known as Bacteroidetes, 
relative abundance: 3.5 ± 6.3%, prevalence: 54/54), including mostly the Prevotellaceae family (relative abun-
dance: 3.1%, prevalence: 52/54) (Fig. 2). There was a high percentage of Actinomycetota (formerly known as 
Actinobacteria, relative abundance: 16.8 ± 15.6%, prevalence: 54/54), especially of Bifidobacteriaceae (relative 
abundance: 10.8%, prevalence: 54/54) (Fig. 2). The samples were high in both prevalence and relative abundance 

Figure 1.   Sampling location and habitats of the studied agropastoral population. (A) Map of Ethiopia with the 
Somali Regional State highlighted in orange and Adadle woreda pinpointed. Upper right: map of the African 
continent with Ethiopia highlighted in blue. The maps were generated with GADM data (gadm.org, v4.0.4) and 
the magrit application (magrit.cnrs.fr, v0.8.14). (B) Habitats of the population. Top picture, Adadle woreda, 
Ethiopia. Bottom picture, camel market in Ethiopia (Photos courtesy of Pascale Vonaesch).

Table 1.   Description of the study population.

Dataset Primer set 1 Primer set 2 Shotgun metagenomic

N 54 13 15

Sequencing method 16S rRNA gene amplicon 16S rRNA gene amplicon Shotgun metagenomic

Sex

 Female 41% (22/54) 31% (4/13) 47% (7/15)

 Male 59% (32/54) 69% (9/13) 53% (8/15)

Age

 Median 4 years old 4 years old 4 years old

 2–3 years 15% (8/54) 0% (0/13) 0% (0/15)

 3–4 years 31% (17/54) 31% (4/13) 33% (5/15)

 4–5 years 54% (29/54) 69% (9/13) 67% (10/15)

Food consumption

 Whole wheat 20% (11/54) 23% (3/13) 13% (2/15%)

 Wheat flour 15% (8/54) 8% (1/13) 0% (0/15)

 Maize 28% (15/54) 15% (2/13) 40% (6/15)

 Rice 19% (10/54) 8% (1/13) 0% (0/15)

 Sorghum 4% (2/54) 0% (0/13) 0% (0/15)

 Potato 2% (1/54) 8% (1/13) 0% (0/15)

 Tomato 15% (8/54) 8% (1/13) 27% (4/15)

 Onions 13% (7/54) 8% (1/13) 7% (1/15)

 Animal milk 82% (44/54) 77% (10/13) 100% (15/15)
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of Erysipelatoclostridiaceae (relative abundance: 11.3%, prevalence: 54/54), Streptococcaceae (relative abundance: 
12.3%, prevalence: 54/54), Erysipelotrichaceae (relative abundance: 4.3%, prevalence: 52/54) and Lactobacillaceae 
(relative abundance: 3.3%, prevalence: 54/54). Most strikingly, the level of Akkermansiaceae (relative abundance: 
4.9%, prevalence: 44/54) were high in several samples (Fig. 2, Supplementary data 6).

Using primer set 2, with the 13 samples that passed quality control, we generated 98,908 reads with an aver-
age of 7608 ± 2421 reads per samples and 1,197 identified ASVs assigned to Bacteria (Supplementary data 3, 5). 
Negative control samples for primer set 2 failed the DADA2 pipeline due to low read count, ruling out potential 
contamination. When assessing for the composition of the microbiota in the reduced dataset shared between 
both primer set, we noted that the composition of the samples was largely similar in terms of the main taxa 
recovered as well as their relative abundance (Fig. 2B, Supplementary Fig. S2, Supplementary data 6). A notable 
exception was the Akkermansiaceae bacterial family, whose prevalence was significantly lower (p value = 0.041) 
in the 515F/806R samples (2/13) compared to the primer set 2 dataset (11/13) (Fig. 2B, Supplementary data 6). 
Overall, these observations showed a commonly shared microbiome in the agropastoral children dominated by 
Bacillota (formerly known as Firmicutes) and Actinomycetota and low relative abundance of different members 
of Bacteroidota.

Figure 2.   Composition of the fecal microbiota of children living in the Adadle region. Primer set 1 is targeting 
the V4 region 501–508/701–712, N = 54. Primer set 2 is targeting the V4 region 515/806, N = 13. (A) Relative 
abundance of the most abundant phyla for samples from the Adadle woreda. Less abundant phyla are grouped 
in the Others category. Samples in common in both datasets are highlighted in bold in the primer set 1 plot. (B) 
Box plot of the relative abundance of the most abundant bacterial families for samples from the Adadle woreda. 
The less abundant families are grouped in the Others category. Primer sets’ relative abundance and prevalence 
are compared using Wilcoxon rank test at a significance threshold of 0.05 with Bonferroni correction for 
multiple comparisons.
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Fecal samples from agropastoral children from the Adadle region are distinct compared to 
children from other geographic locations
To test whether the intestinal microbiota of the children from the Adadle woreda is different from other tra-
ditional communities, we compared the microbiota composition between these children and data from previ-
ously published studies around the globe (Table 2). We first explored the species diversity within communities 
using Faith’s phylogenetic diversity (PD) and found that agropastoral children from the Adadle woreda have a 
similar species diversity than children from Madagascar and Central African Republic (CAR) (Fig. 3A). Using 
the primer set 2, we found that samples from the Adadle woreda have significantly lower phylogenetic diversity 
than children from other countries, except for children coming from the transitional population of Lima, Peru 
(Fig. 3A). Moreover, we found the same PD results on both primer set when applying a 0.25% filter on the taxa 
abundance (Supplementary Fig. S3A, C) as well as when rarefying multiple times and calculating the mean PD 
(Supplementary Fig. S3E–F). Overall, these results suggest that children from the Adadle woreda have a lower 
species diversity than children coming from traditional and industrial communities yet remains comparable to 
children from transitional populations from Africa and Peru. 

Next, we applied Principal Coordinate Analysis (PCoA) of WeightedUniFrac (WUF) distance at the spe-
cies level to assess for overall taxonomic composition of the samples. The ordination on the first, second and 
third components showed that samples from the Adadle woreda formed a clearly separated cluster compared 
to samples from Madagascar and CAR in the primer set 1 dataset (PERMANOVA p value < 0.005) (Axes 1 & 2: 
Fig. 3B, Axes 1 & 3, Axes 2 & 3: Supplementary Fig. S4). The ordination of the primer set 2 dataset showed that 
samples from the Adadle woreda clustered away from samples coming from industrial and traditional popula-
tions (PERMANOVA p value < 0.005). Further, even though samples from the Adadle woreda clustered more 
closely to samples from transitional communities, their microbiota composition was still significantly different 
(PERMANOVA p value < 0.005) (Fig. 3B). The same trend was confirmed using the Bray–Curtis, Jaccard and 
Generalized UniFrac distance metrics (Supplementary Figs. S4, S5). Moreover, we observed the same clustering 
of samples when applying a 0.25% abundance filter instead of removing singletons and using the Generalized 
UniFrac distance (Supplementary Figs. S3B, D).

Last, we used the Euclidean distance and the Ward’s linkage method for hierarchical clustering. We identified 
two clusters (P9+ and P9−), with the relative abundance of Prevotella_9_copri (Primer set 1 p value = 3.38e−68, 
Primer set 2 p value = 2.07e−56) and Unassigned_Prevotella_9 (Primer set 1 p value = 8.46e−60, Primer set 2 p 
value = 1.84e−65) being the most significantly different between the two clusters (Wilcoxon rank test with Bonfer-
roni correction for multiple comparisons) and the main driver separating the two clusters. In primer set 1 dataset, 
50 out of the 54 samples and, in primer set 2 dataset, 11 out of 13 samples from the Adadle woreda clustered 
in P9-. Samples from Madagascar (328/431) and CAR (194/274) mostly clustered in P9+ (Fig. 3C). While the 
samples’ cluster repartition between Madagascar and CAR was not significantly different (χ2 test p value > 0.05), 
the repartition of samples from the Adadle woreda significantly differs from the two African countries (χ2 test 
p value < 0.05) (Fig. 3C). Additionally, samples from industrial (422/484) and transitional (86/88) communities 
clustered mostly in P9− similar to samples from the Adadle woreda (χ2 test p value > 0.05) (Fig. 3C). Finally, 68 
out of the 107 samples from traditional population clustered in P9+ with a repartition significantly different from 
samples from the Adadle woreda (χ2 test p value < 0.05). More specifically, most samples from Cameroon, China, 
Peru, and Tanzania clustered in P9+ and most samples from Malawi and Venezuela clustered in P9− (Fig. 3C). 
Thus, in conclusion, samples from the Adadle woreda cluster more closely to samples from transitional com-
munities than with samples from populations adopting a traditional lifestyle.

Analysis of enriched and depleted species in different communities
We further compared the relative abundance of specific bacterial families to assess for the compositional differ-
ences between samples from communities adopting different lifestyles. Samples from industrialized countries had 
high relative abundance of Akkermansiaceae and Bacteroidaceae (BloSSUM taxa) (Fig. 3D) whereas samples from 
traditional populations were high in the relative abundance of Prevotellaceae and Succinivibrionaceae (VANISH 
taxa) (Fig. 3D). Children from the Adadle region were found to have a significantly lower relative abundance of 
both BloSSUM and VANISH taxa compared to children from industrialized countries and traditional communi-
ties, respectively (Fig. 3D, p value < 0.05). Additionally, we observed a significantly higher relative abundance of 
Erysipelatoclostridiaceae and Streptococcaceae in samples from the Adadle woreda compared to any of the other 
samples included in the analysis (Fig. 3D, p value < 0.05). In the primer set 1 dataset, samples coming from the 
Adadle woreda had a higher abundance of Bifidobacteriaceae and Lactobacillaceae compared to samples coming 
from CAR and Madagascar (Fig. 3D, p value < 0.05). Using SIAMCAT​30 and LefSe31 analysis, we confirmed the 
association between the higher abundance of the bacterial families and lifestyle (Supplementary Fig. S6).

Altogether the 16S rRNA gene amplicon sequencing data indicate that children living in the Adadle woreda 
have a distinct fecal microbiota composition compared with children of the same age living in different regions 
of the world. Children from the Adadle region are closer to children coming from transitional communities with 
lower alpha diversity and lower relative abundance of Prevotellaceae than children adopting a similar traditional 
lifestyle or children from industrialized countries.

Shotgun metagenomic sequencing confirms distinct fecal microbiota composition
To confirm the amplicon sequencing taxonomic composition trends and account for any primer bias, we used 
mOTUs232 and MetaPhlan333 taxonomic profilers on the 15 samples sent for shotgun metagenomic sequenc-
ing. A total of 2,698,693,772 reads passed fastp34 filtering, with an average of 179,912,918 ± 72,371,443 reads per 
samples. Using mOTUs2, for the Adadle woreda dataset, 787 metagenomic-based operational taxonomic units 
(mOTUs) were assigned to the kingdom of Bacteria and accounted for 95.6% of the mapped reads while 4.3% of 
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Figure 3.   Children’s fecal microbiota composition from the Adadle woreda compared with children living on other subsistence 
strategies. Primer set 1 is targeting the V4 region 501–508/701–712, N = 759. Primer set 2 is targeting the V4 region 515/806, N = 692. 
(A) Alpha diversity measure as Faith’s phylogenetic diversity at species level. Pairwise comparisons done using Wilcoxon rank test with 
Bonferroni correction for multiple comparisons (*p < 0.05; **p < 0.01; ***p < 0.001). (B) First and second coordinates of dimension 
reduction for WeightedUniFrac distance with the values indicating the amount of total variability explained by the coordinates. All 
pairwise comparisons were significant using PERMANOVA at a significance threshold of 0.05 using Benjamini–Hochberg correction 
for multiple comparisons. (C) Heatmap of the most abundant genera with significantly different relative abundance between the two 
clusters (P9+ and P9−). Relative abundance difference significance tested with Wilcoxon rank test at a significance threshold of 0.05 
with Bonferroni correction for multiple comparisons and samples distribution tested using χ2-test at significance threshold of 0.05. 
(D) Boxplot of the log10 of the relative abundance of enriched or depleted taxa in the different communities. BloSSUM: Bloom or 
selected in societies of urbanization/modernization. VANISH: Volatile and/or associated negatively with industrialized societies of 
humans. Relative abundance test using Wilcoxon rank test at a significance threshold of 0.05 with Bonferroni correction for multiple 
comparisons (*p < 0.05; **p < 0.01; ***p < 0.001).
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the reads were unmapped to any species and less than 1% of the reads were assigned to unknown cellular organ-
isms. The 787 mOTUs belonged to 387 known and 56 unknown bacterial species divided in 14 phyla, 82 families 
and 165 genera (Supplementary data 3). Using MetaPhlAn3 for profiling the microbial community, 349 species 
were assigned to Bacteria, divided in 8 phyla, 62 families and 129 genera (Supplementary data 3). We observed 
no major differences between MetaPhlAn3 and mOTUs2 profiles at different taxonomic levels (Supplementary 
Fig. S7A, B). Further, we observed the same trends in the taxonomic composition at the family level of the 6 
samples sequenced using both primer sets and by shotgun metagenomic sequencing (Supplementary Fig. S8).

Moreover, using the number of assigned reads in mOTUs2 profiler, we compared the bacterial composi-
tion of the samples from the Adadle woreda with samples from other communities adopting differing lifestyles 
(Table 2, Supplementary Fig. S9A, Supplementary data 3). Notably, using PCoA of Bray–Curtis’s distance, we 
confirmed the previous results from amplicon sequencing that samples from the Adadle woreda clustered away 
from all the other samples on the first and second components (Supplementary Fig. S9C, Supplementary data 7). 
In addition, Ward’s linkage method for hierarchical clustering at species level resulted in the same two clusters 
(P+ and P−) (Supplementary Fig. S9D). Samples from the Adadle woreda clustered uniquely in the low Prevo-
tella abundance cluster (P−), similarly to samples from Lima, Peru (100% in P−) and the USA (89.7% in P−). 
Moreover, the clusters repartition was significantly different (χ2 test p value < 0.05, Supplementary data 7) from 
samples from Tanzania (54.5% in P+), traditional Peruvian communities (60% in P+), Zimbabwe (78.9% in P+) 
and El Salvador (80% in P+). Finally, we observed lower relative abundance of both BloSSUM and VANISH taxa 
compared to children from industrialized countries and traditional communities, respectively (Supplementary 
Fig. S9B, p value  < 0.05) and high relative abundance of Lactobacillaceae, Bifidobacteriaceae, Erysipelotrichaceae 
and Streptococcaceae (Supplementary Fig. S9B).

Overall, these results show that the observed fecal microbiota composition was robust across all sequenc-
ing methods and taxonomic assignment tools and confirmed the distinctive bacterial composition of the fecal 
samples of children from the Adadle woreda in Ethiopia.

Samples from the Adadle woreda enriched in pathways reflecting dietary habits
To explore the functional profile of the children’s fecal microbiota, we used HUMAnN3 to predict the abundance 
of microbial metabolic pathways present in our shotgun metagenomic dataset33. HUMAnN3 detected 1,400,457 
evolutionary-related protein-coding sequences grouped in gene families which mapped to 490 known microbial 
pathways (Supplementary data 3). The total abundance of genes that contributed to a pathway accounted on aver-
age for 5.97% while the ones that did not contribute to any known pathways accounted for 69.57%. Additionally, 
the total abundance of reads unmapped to any known gene accounted on average for 24.46% (Supplementary 
Fig. S10). Out of the 490 detected pathways, 26 were uniquely found in samples from the Adadle woreda. In 
samples from other communities, we found 23 additional pathways not observed in samples from the Adadle 
woreda. Finally, 268 out of 490 pathways were detected in every sample from the Adadle woreda, among these 
pathways 95 were detected in all samples from both agropastoralists from the Adadle woreda and all other 
populations. Metabolic pathways were grouped in 7 superclass categories 1, with biosynthesis being the most 
abundant superclass (4.35 ± 0.0044%), followed by degradation/utilization/assimilation (0.96 ± 0.0021%) and 
generation of precursor metabolites and energy (0.55 ± 0.00062%) (Supplementary Fig. S10, Supplementary data 
7). Further, pathways were classified in 46 superclass categories 2, with the first 5 most abundant being amino 
acid biosynthesis (1.20 ± 0.0016%), nucleoside and nucleotide biosynthesis (0.84 ± 0.0014%), cofactor, carrier, and 
vitamin biosynthesis (0.77 ± 0.00079%), carbohydrate biosynthesis (0.43 ± 0.00052%), followed by carbohydrate 
degradation (0.38 ± 0.00091%) (Supplementary Fig. S10, Supplementary data 7).

In addition, we noticed different species contributing to metabolic pathways in the feces of geographically 
distant communities. Amongst the 95 detected species, 20 contributed to a metabolic pathway in all communities, 
such as Escherichia coli, or Ruminoccoccus torques. While 39 were involved uniquely in samples from the Adadle 
woreda, including Bifidobacterium catenulatum, Bifidobacterium longum and Lactobacillus ruminis, 25 species, 
notably Blautia obeum and Treponema succinifaciens, were not involved in any of the metabolic pathways found 
in the samples from the Adadle woreda (Supplementary Fig. S11). Additionally, we noted a high diversity of 
Streptococcus species contributing to metabolic pathways in samples from the Adadle woreda. These species were 
notably involved in carbohydrate degradation pathways, including starch (PWY-6731), lactose (LACTOSECAT-
PWY) and galactose (PWY-6317), (Fig. 4) as well as stachyose (PWY-6527), sucrose (PWY-5384, PWY-621), and 
glycogen (GLYCOCAT-PWY, PWY-5941) (Supplementary Fig. S12, Supplementary data 3).

Last, we used Ward’s linkage method for hierarchical clustering of the samples and identified two clusters 
(Clust1 and Clust2) (Supplementary Fig. S13). Samples from the Adadle woreda (14/15) and from the transitional 
community of Lima, Peru (8/8) clustered mostly in Clust2 and samples from the USA (29/29), El Salvador (9/10), 
and the traditional populations of Tanzania (10/11), Zimbabwe (18/19) and Peru (10/10) clustered mostly in 
Clust1 (Supplementary data 7). Out of the 513 pathways, we identified 228 that showed significant differences 
in abundance between the two clusters (Wilcoxon rank test at a significance threshold of 0.05 with Bonferroni 
correction for multiple comparisons, Supplementary data 7). Of these, 6 were enriched in Clust1 and 222 were 
enriched in Clust2.

Amino acid biosynthesis superclass 2 was significantly different between the two clusters (p value = 1.272e−10) 
but contrasting results were observed at the pathway level with 37 out of 47 pathways related to amino acid bio-
synthesis enriched in Clust2 (Supplementary Fig. S14). Out of the 27 carbohydrate degradation pathways, only 
mannan degradation (PWY-7456, p value = 7.367e−4) was enriched in Clust1 while 12 pathways were enriched 
in Clust2, including the degradation of lactose (LACTOSECAT-PWY, p value  = 3.696e−5), galactose (PWY-
6317, p value = 2.221e−5), d-arabinose (DARABCATK12-PWY, p value = 4.17e−8), and stachyose (PWY-6527, 
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p value = 2.143e−5). Starch degradation was not enriched in either of the clusters (PWY-6731, p value > 0.05) 
(Fig. 4, Supplementary data 7).

Resistome
Finally, to assess for the presence of putative resistance genes in the gut microbiome of children from the Adadle 
woreda, we quantified the antibiotic resistome by mapping genes to the reference database CARD35. Among the 
15 samples, we found 166 putative antimicrobial resistance (AMR) genes, potentially conferring resistance to 
29 functional drug classes (Supplementary data 3). Antibiotic efflux was the most frequently detected encoded 
resistance mechanism, followed by antibiotic target protection, antibiotic target replacement, antibiotic target 
alteration, antibiotic inactivation, and reduced permeability (Fig. 5). We observed that AMR genes predicted to 
confer resistance against tetracycline were the most common, followed by AMR genes related to resistance against 
fluoroquinolones, penams (penicillin), and macrolides (Fig. 5). The most abundant genes were tet(O), followed by 
dfrF, tet(W), tet(40), and Bifidobacterium adolescentis rpoB mutants conferring resistance to rifampicin (Fig. 5).

In samples from other communities, genes, such as tet(O), tet(Q), and tet(W), conferring resistance against 
tetracycline were consistently the most commonly detected resistance genes. Resistance against macrolide and 
streptogramin antibiotics and specific AMR genes, such as cfxA6 and cfxA2, related to resistance to cephamycin 
were also frequent in samples from all communities. Additionally, in samples from the transitional community 
of Lima, resistance against rifamycin and mupirocin-like antibiotics conferred by Bifidobacterium adolescentis 
rpoB and Bifidobacterium bifidum ileS, respectively, were the most common resistance genes detected (Supple-
mentary data 7). While samples from the Adadle woreda seem to cluster away from the other communities on 
the x-axis of the PCoA of the Jaccard distance, our data suggests that the position of the samples is correlated 

Figure 4.   Enrichment of carbohydrate degradation pathways in the different clusters. (A) Stacked bar 
plots of the log10 of the relative abundance of species contributing to pathways PWY-6731, PWY-6317 
and LACTOSECAT-PWY. (B) Carbohydrate degradation pathways enriched in the different clusters. 
DARABCATK12-PWY: D-arabinose degradation I, LACTOSECAT-PWY: lactose and galactose degradation 
I, PWY-6317: galactose degradation I, PWY-6527: stachyose degradation, PWY-6731: starch degradation III, 
PWY-7456: mannan degradation. Hierarchical clustering of the samples using Ward’s linkage method. Pathways 
enrichment in the clusters tested with MaAsLin2 at q-value < 0.05. (***q < 0.05). N = 102.
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with the sequencing depth (Supplementary Fig. S15). Additionally, the presence and absence of the putative 
AMR genes and the drug classes were tested using generalized linear models, but none were significantly differ-
ent between the communities.

Figure 5.   Overview of the resistome in the feces of children living in the Adadle woreda. From left to right: 
Antimicrobial Resistance genes (AMR). Drug classes to which AMR genes confers resistance. Resistance 
mechanism given by the AMR genes. tet tetracycline, dfr dihydrofolate reductase, rpoB rifamycin-resistant 
beta-subunit of RNA polymerase, mef major facilitator superfamily antibiotic efflux pump, ileS isoleucyl-tRNA 
synthetase, penam penicillin. N = 15.

Table 2.   Additional sequences sourced from previously published studies.

Country Population/region Age range (years) Lifestyle N Study

16S rRNA gene amplicon sequencing samples

 Primer set 1 705

  Central African Republic Bangui 2–5 Transitional 274 55

  Madagascar Antananarivo 2–5 Transitional 431 55

 Primer set 2 679

  Bangladesh Dhaka (Mirpur) 3–4 Transitional 51 56

  Cameroon Baka, Bantu 4–5 Traditional 5 57

  China Nagqu, Hongyuan, Gangcha, Lhasa, Tianzhu, Gannan 
(Tibet) 2–5 Traditional 24 58

  El Salvador South of San Salvador 2–5 Transitional 29 59

  Malawi Mayaka, Mbiza 2–3 Traditional 13 16

  Peru
Matses, Tunapuco 2–5 Traditional 11 15

Lima 2–5 Transitional 8 59

  Sweden Halmstad 3–4 Industrial 335 26

  Tanzania Hadza (Sengeli, Hukamako) 3–5 Traditional 35 42

  USA
St Louis, Philadelphia, Boulder 2–5 Industrial 8 16

Los Angeles 2–5 Industrial 141 60

  Venezuela Platanillal, Coromoto 2–5 Traditional 19 16

Shotgun metagenomic sequencing samples 87

  Peru
Matses, Tunapuco 2–5 Traditional 10 15

Lima 2–5 Transitional 8 59

  Tanzania Hadza 2–4 Traditional 11 23

  El Salvador South of San Salvador 2–5 Transitional 10 59

  Zimbabwe Chihuri, Mupfure 2–5 Traditional 19 61

  USA Rhode Island 2–5 Industrial 29 62



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21342  | https://doi.org/10.1038/s41598-023-47748-8

www.nature.com/scientificreports/

Discussion
Here, we characterized the fecal microbiota composition and function of 59 agropastoral children, aged 2–5 years, 
from the Adadle woreda of the Somali Regional State of Ethiopia. With the use of 16S rRNA gene amplicon and 
shotgun metagenomic sequencing, our data suggest that these children harbor a specific microbiome. This com-
munity composition may reflect their dietary habits and that their microbiota is closer to that of children from 
transitional communities than to that of children living similar traditional lifestyles.

The observed difference in the microbiota composition between the agropastoralist children from the Adadle 
woreda and children from other communities is in line with the diet adopted by the population of the Adadle 
region. Their diet has an extremely low variety and consists mainly of milk and to a lower extent of starch-rich 
foods such as rice and wheat. None of the children had meat or fish in the last 24 h prior to sampling. Only a 
few children consumed tomatoes or onions but no other vegetables or fruits were reported as being consumed 
the day prior sample collection27. This is reflected in the composition of the fecal microbiota with, notably, a 
higher abundance of Streptococcaceae, Bifidobacteriaceae, Lactobacillaceae as well as Akkermansiaceae and a 
lower abundance of Bacteroidaceae, Prevotellaceae, Succinivibrionaceae, and Spirochaetes.

The higher relative abundance Akkermansiaceae, Bifidobacteriaceae and Lactobacillaceae is most likely due 
to the high consumption of milk in our study group. Indeed, Akkermansiaceae was recently shown to thrive on 
milk oligosaccharides in vitro36 and Bifidobacteriaceae and Lactobacillaceae are well known to be boosted by 
the consumption of dairy products11. Streptococci thrive on simple sugars37,38 and their high abundance might 
therefore be associated with the consumption of wheat and rice, one of the main food items consumed by the 
agropastoralists besides milk27. Additionally, metagenomic analysis of the bacterial community of Ethiopian 
traditional fermented camel milk39, a commonly consumed milk in the Adadle region alongside milk from other 
livestock40, revealed that species of Streptococci were amongst the most abundant and most prevalent detected 
bacteria. This may further explain their high abundance in fecal samples from the Adadle woreda. Interestingly, 
two Bifidobacterium species, Lactobacillus ruminis, and diverse Streptococcus species were found to be contrib-
uting to the degradation of carbohydrates. This suggests a primordial role of Streptococci in overall community 
metabolism in the samples from the Adadle woreda. Pathways for the degradation of lactose, one of the main 
constituent of milk41, and d-galactose, one of the mono-saccharides forming lactose and stachyose, as well as 
simple carbohydrates such as d-arabinose and fucose were enriched in fecal samples from the Adadle woreda. 
These pathways likely reflect the abundant consumption of milk and food products composed of simple sugars 
in this community.

Species of the Bacteroidaceae family have been previously associated with a higher consumption of animal 
fat and protein in westernized societies18,19,42. The very low levels in Bacteroidaceae observed in our study group 
are likely linked to the low consumption of these food items. The enrichment of metabolic pathways related to 
amino acid biosynthesis observed in our study might be linked to the low protein consumption by the agropas-
toral children from the Adadle woreda. However, little is known on this subject and more investigations would 
be needed. In contrast with earlier studies15,42–44, we did not observe an increased abundance of Prevotellaceae, 
Succinivibrionaceae, or Spirochaetes, which were previously associated with a traditional lifestyle17. This findings 
suggest that these taxa are likely dependent on the fiber-rich vegetables and fruit-based diets often observed in 
other traditional communities18. In our study, we observed an extremely low abundance of Prevotella, which 
contrasts with other studies of the fecal microbiome of populations with a traditional lifestyle14–16,19,20,45. Inter-
estingly, Treponema succinifaciens, a member of the Spirochaetes family, was not found to be involved in any 
metabolic pathway in samples from the Adadle woreda but found to be involved in the degradation of D-galactose 
in samples from El Salvador and traditional communities of Peru, Tanzania, and Zimbabwe. This virtual absence 
of Prevotella, Succinivibrionaceae and Spirochaetes is probably a result from the adaptation of the microbiota to a 
diet poor in fiber and complex carbohydrates in the agropastoral children from the Adadle woreda.

The high abundance of Erysipelotrichaceae and Erysipelatoclostridiaceae is of surprise, as these families have 
been shown to increase upon consumption of a high-fat, westernized diet in mice46. Additionally, members of 
these families have been found in the gut microbiota of cattle, notably in Mongolia47. We hypothesize that the 
higher level of these taxa might be due to the closeness of the children with cattle. Further, the consumption of 
camel milk, in which fat matter is one of the main component,41 could promote the growth of these taxa.

Additionally, we assessed the presence of putative antibiotic resistances genes in the feces of children living 
in the Adadle region. AMR genes mapped to the CARD database and predicted to confer resistance to antibi-
otic such as tetracycline, fluoroquinolones, penams (penicillin) and macrolides were notably detected, and we 
noticed variations in the pool of putative AMR genes in the different communities, but these differences were 
not statistically significant. The observed AMR genes were predicted by mapping against the CARD database, 
representing known genes. Other complementary machine learning methods as well as structural approaches 
should be used in future studies to predict putative AMR genes. Additionally, the expression of the observed 
AMR genes would need to be evaluated experimentally to confirm the resistance potential found in the feces of 
children from the Adadle woreda.

Even though the children from the Adadle woreda follow a traditional agropastoral lifestyle, we observed that 
their fecal microbiota composition and function was significantly different than the one in children from other 
traditional communities. In recent years, numerous studies have highlighted the associations between bacterial 
taxa and specific lifestyles14–16,19,20,45,48–50. In accordance with these studies, we showed that the agropastoral way of 
living of the children from the Adadle region shapes their microbiome. However, we observed different bacterial 
taxa being more prevalent and abundant than the usual taxa found to be associated with traditional communities. 
These differences are likely due to the high specificity and limited variety in the diet consumed by the children of 
the Adadle woreda. These findings highlight the importance of including dietary information in studies aimed 
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to characterize the intestinal microbiota. Further, additional factors such as the presence of parasitic infections 
or periods of dietary restrictions might also influence the microbiota composition in the Adadle region27,28.

Our study has several notable strengths: to the best of our knowledge, it is the first study to describe the 
fecal microbiota in the Somali Regional State of Ethiopia. Further, the specific diet, dominated by milk prod-
ucts and starch-rich foods, is widely different from the diet of children previously studied. Last, using both 16S 
rRNA gene amplicon sequencing using two different primer pairs as well as shotgun metagenomic sequencing 
allow us to robustly profile the microbiota composition of the children from the Adadle woreda. However, as 
expected, using different sequencing methods and profiling tools revealed slightly differing results depending 
on the chosen method and tools. While the comparison between groups were not influenced by the profiling 
tools and sequencing methods, the description of the microbiota composition varied in abundance. As any study 
including secondary data analysis, our study has a few limitations. These include bias introduced by the fact 
that we were not able to control for sampling, storage, and DNA extraction methods in the data retrieved from 
public repositories. Further, the small sample size in our study group could influence the observation made on 
the microbiota composition and function of children from the Adadle woreda. This point should be addressed 
in future studies with larger sample sizes.

In conclusion, this study reveals a unique fecal microbiota composition and function of agropastoral chil-
dren living in the Adadle woreda in the Somali regional state of Ethiopia. This unique microbial profile is likely 
influenced by their specific and low-diversity diet. Our study highlights the need to further understand the 
microbial composition of communities with different lifestyles and geographic origins in a bid to improve our 
knowledge on microbiota dynamics and the associated health outcomes. Such advances could ultimately be used 
to develop personalized and effective treatments for dysbiosis-associated diseases. This study sets a baseline for 
further research assessing dysbiotic microbiota which may occur during regular periods of malnutrition in the 
Somali regional state. Future research may also characterize livestock microbiota, as agropastoral communities 
live in very close proximity to their livestock and under poor sanitation and hygiene conditions. A One Health 
approach characterizing the microbiome in an interconnected manner will be crucial to better understand the 
specific profile found in this population.

Methods
Cohort/study population
This study included feces from 59 children aged 2–5 years, sampled in the context of a previous study on para-
sitic infection and micronutrient status conducted in the Adadle woreda (district) of the Somali regional state 
of Ethiopia, in the dry season between July and September 201627. This region is mostly inhabited by pastoral 
and agropastoral Muslims. The original cross-sectional cohort study included 387 subjects from pastoral and 
agropastoral households, but only a small fraction corresponded to the age group selected for (2–5 years), had 
a height for age z-score score above − 1.5, and had a fecal sample available for DNA extraction and microbiota 
analysis (Supplementary Fig. S16). In total, 59 samples from children living in 3 different kebele (municipalities), 
Gabal, Higlo and Buursaredo were sent for 16S rRNA amplicon sequencing and 15 for whole-genome shotgun 
metagenomic sequencing (Supplementary Fig. S15).

Sample collection, DNA extraction and sequencing
Stool samples were collected as described by Osman et al.27. Briefly, plastic containers with detailed instructions 
for collection of fresh stool sample were given to mothers or caregivers and collected the same day of sample 
preparation and freezing at the local health facility. DNA was extracted using a commercial kit (QiaAmp DNA 
Mini Kit, Qiagen) with an additional bead-beating step according to a pre-established protocol51. In brief, 100 mg 
of feces were homogenized by bead-beating with 0.7–1.2 mm Granat beads (BioLabProducts GmbH) in 250 μl 
2% Polyvinylpolypyrrolidone (PVPP) buffer (Sigma Aldrich). Then DNA extraction steps were conducted as 
indicated by the DNA extraction kit’s manufacturer.

Extracted DNA samples were shipped to two different sequencing service providers (Microbiome Insights, 
Vancouver, Canada and Integrated Resource, Dalhousie University, Halifax, Canada) where library generation 
and sequencing were performed. At Microbiome Insights, library preparation was performed using the primer 
set v4.SA501-v4.SA508 (forward) and v4.SA701-v4.SA712 (reverse) (referred as primer set 1), targeting the 
16S V4 region52. The amplicon library was sequenced on a MiSeq using the MISeq 500 Cycle V2 Reagent Kit 
(2 × 250 bp paired-end). At Dalhousie University, library preparation was performed using the 515F/806R primer 
pair (referred as primer set 2) which amplifies the V4 region of the 16S rRNA gene53,54. The amplicon library was 
sequenced on Illumina MiSeq (2 × 300 bp paired-end) using V3 chemistry.

Whole-genome shotgun metagenomic sequencing was performed by Eurofins Genomics (Eurofins Genom-
ics Europe Sequencing GmbH, Konstanz, Germany) using the Illumina HiSeq (Sequence mode NovaSeq 6000 
S2 PE150 XP).

Secondary data analysis of previously published studies
Additional sequences for reference groups were sourced from either the Afribiota project55 (Table 2, Supplemen-
tary data 2, using primer set 1 with primers v4.SA501-v4.SA508/v4.SA701-v4.SA712) as well as several additional 
published studies (Table 2, Supplementary data 2, using primer set 2 with primers 515F/806R). The final 16S 
rRNA amplicon sequencing dataset included in addition to the 59 sequences from the Adadle woreda, 705 fecal 
samples from the Afribiota project (Primer set 1) and 679 fecal samples from other previously published studies 
(Primer set 2) described in Table 2. The shotgun metagenomic dataset included in addition to the 15 samples 
from the Adadle woreda, 87 samples from previously published studies (Table 2, Supplementary data 2).



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21342  | https://doi.org/10.1038/s41598-023-47748-8

www.nature.com/scientificreports/

Lifestyle classifications of the different populations are based on the original publications. Briefly, hunter-gath-
erers, pastoralists, agropastoralists and agriculturalists were classified as traditional; populations living in rural, 
peri-urban and urban area of low- and middle-income countries as transitional; populations from urban North 
American and European cities as industrial. Samples from the Adadle woreda are classified in this manuscript 
as Adadle agropastoralism in order to separate our samples from samples from other traditional communities.

Bioinformatic analysis of the 16S rRNA gene amplicon sequences
Bioinformatic analysis was performed using DADA2 (v1.22) according to a previously well-described standard 
pipeline63. Briefly, retrieved sequences were filtered and trimmed based on the sequencing quality (240nt forward 
reads, 220nt reverse reads) and paired-end reads were merged after dereplication and sample inference (Supple-
mentary data 2). Taxonomy was assigned by matching the sequences to the Silva reference database (v138.1)64. 
Sequences alignment and phylogenetic tree construction were performed using DECIPHER (v2.22.0)65 and 
phangorn (v2.10.0)66 packages. Samples with less than 5′000 reads were excluded from the analysis. Further, 
mitochondrial DNA, chloroplasts as well as sequences with an assignment not belonging to the kingdom of 
Bacteria and Archaea were removed. Out of the 59 samples sent for amplicon sequencing, 54 using primer set 
1 and 13 using primer set 2 passed quality filtering and inclusion criteria for analysis. Each primer dataset was 
processed separately, and the final taxonomy and sequence count tables were then joined for the final analysis 
(Supplementary data 3, 4, 5).

Raw sequences sourced from other studies were processed as described above in DADA263. Individual studies 
were processed independently until merging of the sequence tables for joint chimeras’ removal and taxonomy 
assignment. The sequences that passed the quality control are summarized in Supplementary data 2. Resulting 
amplicon sequence variants (ASVs) tables and taxonomy tables were filtered and processed as described above.

To correct for differences in sequencing depth for alpha and beta diversity analysis, samples were rarefied 
to 5′000 reads (Supplementary Fig. S17). Alpha diversity (species diversity) was measured using the Faith’s 
phylogenetic diversity. For β-diversity analysis, singletons were removed, and logarithmic transformation was 
applied for principal coordinates analysis (PCoA) of WeightedUniFrac, Bray–Curtis, Jaccard and Generalized 
UniFrac distances at species level. Hierarchical clustering was performed using Euclidian distance and Ward’s 
linkage method. The Calinski–Harabasz’s index was calculated to obtain the optimal number of clusters to split 
the dendrogram resulting from the hierarchical clustering. Differential abundance analysis was performed using 
SIAMCAT (v1.14.0)30 and LefSe31 from the microbiomeMarker package (v1.0.2)67.

Bioinformatic analysis of whole‑genome shotgun metagenomic sequences
Shotgun metagenomic data were first treated with fastp (v0.20.1)34 for quality control, trimming of adapters and 
quality filtering. Taxonomic assignation was performed using mOTUs profiler version 232 with the output in 
number of reads (Supplementary data 3) to corroborate the 16S rRNA taxonomic profile. Mitochondrial DNA, 
chloroplasts, as well as sequences with an assignment not belonging to the kingdom of Bacteria and Archaea 
were removed from the abundance table.

Profiling of microbial metabolic pathways was performed with HUMAnN 3.0 (v3.0.1)33 using the taxonomy 
abundance table obtained with MetaPhlAn3 taxonomic profiler33, the full ChocoPhlAn database (v296_201901b) 
from the BioBakery333 and the UniProt database (UniRef90_annotated_v201901b_full)68. The utility script 
humann_renorm_table with output in relative abundance was used to normalize the default HUMAnN’s output 
reads per kilobase (RPK) and correct for different samples sequencing depths (Supplementary data 3). Metabolic 
pathways were classified using the MetaCyc Metabolic Pathway Database (MetaCyc 19.1) at the superclass 1, 
superclass 2 and pathways levels69.

To identify antimicrobial resistance genes, the Resistance Gene Identifier (RGI bwt v6.0.0) was used to map 
reads on the Comprehensive Antibiotic Resistance Database’s protein homolog model (CARD, v3.2.5, Supple-
mentary data 3)35. Results were filtered for genes with at least 100 mapped reads and 80% coverage. Further, reads 
per kilobase million (RPKM) was used to correct for gene length and sequencing depth efforts.

Biostatistics analysis
Biostatistical analysis was performed in the R environment and language (v4.1.2, R Core Team, 2021) using the 
packages phyloseq (v1.38.0)70, vegan (v2.5-7)71, microbiomeMarker (v1.0.2)67, microbiome (v1.6.5)72, ape (v5.6-
1)73, picante (v1.8.2)74 and clusterCrit (v1.2.8)75. Data visualizations were realized with packages RColorBrewer 
(v1.1-3)76, ComplexHeatmap (v2.13.1)77 and ggplot2 (v3.3.5)78. The detailed R-scripts can be found on github 
(https://​github.​com/​Vonae​schLa​bUNIL/​Pasto​biome).

Relative abundance differences and Faith’s phylogenetic diversity differences were tested using Wilcoxon rank 
test at a significance threshold of 0.05 with Bonferroni correction for multiple comparisons. Differential abun-
dance was analyzed using SIAMCAT (v1.14.0)30 and LefSe31 from the microbiomeMarker package (v1.0.2)67. A 
pseudo-count of 1e-4% was added to relative abundances of 0 for logarithmic transformation. Analysis of variance 
using distance matrix was performed using ADONIS2 from vegan (v2.5-7)71 package with Benjamini–Hochberg 
correction for multiple comparisons. Enrichment of pathways was analyzed using MaAsLin2 (v1.8.0)79 and 
SIAMCAT (v1.14.0)30.

Ethical approval
The study was conducted according to the declaration of Helsinki, and ethical clearance was obtained from the 
Review Committee of the University of Jigjiga in Ethiopia (JJU-RERC 002/2016) and the Swiss Ethics Com-
mittee of Northwest and Central Switzerland (Ethikkommision Nordwest- und Zentralschweiz; EKNZ BASEC 
UBEreq. 2016-00204). A material transfer agreement was established by the Food, Medicine and Health Care 
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Authority of Ethiopia for the shipment of fecal samples from Ethiopia to Switzerland. All the parents/caregiv-
ers of the participating children gave oral and written consent prior to the study enrollment of their children.

Data availability
All raw data included in this study have been uploaded to NCBI Sequence Read Archives under accession number 
PRJEB61656. The datasets analyzed during the current study are available in the NCBI Sequence Read Archives 
repository under accession numbers: PRJEB48119, PRJNA547591, PRJNA392012, PRJNA381333, PRJEB13051, 
PRJEB3079, PRJEB38986, PRJNA300541, PRJEB27068, PRJEB27517, PRJNA521455, or on figshare repository, 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​70112​72.​v3.
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