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Summary

The possibility to investigate DNA variability at the population scale enables funda-

mental insight into the genetic architecture of heritable traits. Cutting-edge genomic ap-

proaches, methods, and computational tools are being developed at an unprecedented

pace to keep up with rapidly increasing volumes of data. Such technological advances

enable comprehensive exploration of genetic variability in livestock and how its intri-

cacies impact aspects such as population management, economic traits, and diseases.

Accurate detection and validation of variants (genotyping) is crucial for downstream

analysis. This dissertation aims at exploring the key factors, introduced in Chapter 1,

that affect the identification of variants and the genotyping accuracies using Brown

Swiss cattle as an exemplary bovine population.

Chapter 2 assesses the impact of reference genomes on genomic studies. Whole

genome sequencing short reads of 161 bovine samples from the BSW breed were used to

compare mapping statistics, variant detection, and genomic downstream analyses when

two different reference genomes were used. These genomic analyses included functional

annotation, signatures of selection, genotype-phenotype association testing and genomic

heritability of phenotypic traits explained by dense markers. The reference genomes

used were the curated and widely accepted Hereford-based ARS-UCD1.2 and the highly

continuous, haplotype-resolved Angus-based UOA_Angus_1. The results indicate that

no crucial differences in read mapping, genotype detection and accuracy arise when the

two different assemblies are used. However, assembly flaws (chromosomal truncation)

and limitations in the annotation of the haplotype-resolved assembly were evident and

affected the detection of variants which may possibly be linked to phenotypes of inter-

est. Accounting for these assembly and annotation boundaries, breed-specific primary

assemblies can be readily integrated in genomic analyses of target breeds.

Chapter 3 compares the variant genotyping accuracy of two variant callers: GATK

and DeepVariant. 50 BSW samples with coverages ranging from 4- to 63-fold, for 33 of
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which microarray data were available and could be used as a truth set, were used to

validate the called genotypes. The variant caller that performed better for bovine short

read sequencing (DeepVariant) was then used to generate a series of haplotype refer-

ence panels. The second goal was to evaluate the impact of size and composition of

such reference panels, as well as the sequencing coverage (between 0.01- and 4-fold), for

the imputation of low-pass data to (higher-coverage) sequence level. A set of 24 BSW

samples with coverages higher than 20-fold were used to validate the imputed geno-

types. The parameters to choose a suitable variant caller and composition of haplotype

reference panel for imputation are thoroughly determined in this chapter. Provided a

sufficient number of sequenced samples (n = 150), breed-specific haplotype panels can

perform better in imputation than larger multi-breed haplotype panels.

Chapter 4 reports on a preliminary exploration of methylation patterns across bovine

CpG dinucleotides and their clustering in CpG islands. Long-read sequencing data for

120 BSW bulls, with an average coverage of 14.5-fold, were screened for the most fre-

quent epigenetic modifications (5mC). Two different tissues from the male reproductive

system (105 testis samples and 15 epididymis samples) were analysed. Initial inspection

of differential methylation models among tissues and individuals was performed. Con-

sidering the phenotypical effect of epigenetic modifications, the methylation status of

CpG islands can be directly connected to genotypic variation.

This thesis leverages cutting-edge tools and methods to further understand variation

in bovine. It produces relevant conclusions, duly expanded in Chapter 5, for optimised

genomic analyses regarding what reference genome is best suited, which variant caller

yields most accurate genotyping and how haplotype reference panels are composed

ideally. Two additional examples are provided on how genetic variants are key for in-

novative approaches. First, this thesis demonstrates the use of a proper set of reference

haplotypes (DNA stretches where variants are inherited together) for the imputation of

low-coverage data. Second, it links properly called genotypes to methylation variability.

This thesis introduces and explores a computational framework to study the importance

of variation in livestock and the scope of its applications.
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Zusammenfassung

Die Möglichkeit, DNA-Variabilität auf Populationsebene zu untersuchen, ermöglicht

einen fundamentalen Einblick in die genetische Architektur vererbbarer Merkmale. In-

novative genomische Ansätze, Methoden und rechnerische Werkzeuge werden in un-

vergleichlichem Tempo entwickelt, um die immer grösser werdenden Datensätze zu

verarbeiten. Diese technologischen Fortschritte ermöglichen eine umfassende Unter-

suchung der genetischen Variabilität bei Nutztieren und ihre Auswirkungen auf Themen

wie Populationsmanagement, Wirtschaftlichkeit und Krankheit. Präzise Erkennung und

Validierung der genetischen Varianten (Genotypisierung) ist entscheidend für nachfol-

gende Analysen. Ziel dieser Dissertation ist es, die in Kapitel 1 vorgestellten Schlüs-

selfaktoren zu untersuchen, die die Identifizierung der Varianten und die Genauigkeit

der Genotypisierung mithilfe der Daten von Brown Swiss (BSW) Rindern als exemplar-

ische Rinderpopulation zu untersuchen.

In Kapitel 2 werden die Auswirkungen von Referenzgenomen auf genomische Stu-

dien bewertet. Mit Short-Read-Ganzgenomsequenzen von 161 Rinderproben der BSW-

Rasse wurden Mapping-Statistik, Variantenerkennung und nachfolgende genomische

Analysen mit zwei unterschiedlichen Referenzgenomen verglichen. Diese genomischen

Analysen beinhalten funktionale Annotation, Selektionssignaturen, Genotyp-Phänotyp-

Assoziationstests und durch dichte Marker erklärte genomische Vererbbarkeit phäno-

typischer Merkmale. Als Referenzgenom wurden der kuratierte und weithin anerkan-

nte Hereford-basierende ARS-UCD1.2, sowie der kontinuierliche haplotyp-aufgelöste

Angus-basierende UOA_Angus_1 verwendet. Die Resultate zeigen keine entscheiden-

den Unterschiede in Bezug auf Read-Mapping, Genotyperkennung und Genauigkeit,

wenn die zwei unterschiedlichen Assemblies verglichen werden. Jedoch sind Fehler

im Assembly (Chromosomenverkürzung) und Einschränkungen bei der Annotation

des haplotyp-aufgelösten Assembly ersichtlich und beeinflussen die Erkennung der

Varianten, die möglicherweise mit relevanten Phänotypen in Verbindung stehen. Unter

Berücksichtigung dieser Assembly- und Annotationsfehler können rassenspezifische
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primäre Assemblies leicht in genomische Analysen der Zielrassen integriert werden.

In Kapitel 3 wird die Genauigkeit der Genotypisierung von Varianten mit zwei Vari-

antencallern verglichen: GATK und DeepVariant. Die abgerufenen Genotypen wurden

anhand 50 BSW-Proben mit einer 4- bis 63-fach Abdeckung validiert (wovon für 33

Proben Microarray-Daten vorhanden waren und als Wahrheitssatz dienten). Der Vari-

antencaller mit besserer Leistung in Short-Read-Sequenzierung bei Rindern (DeepVari-

ant) wurde anschliessend gebraucht, um eine Reihe von Haplotyp-Referenzpanels zu

generieren. Das zweite Ziel war es, sowohl den Einfluss der Grösse und Zusammenset-

zung dieser Referenzpanels als auch die Sequenzierabdeckung (zwischen 0.01- und 4-

fach) für die Imputation von Low-Pass-Daten zu (höher-abgedecktem) Sequenzlevel

zu evaluieren. Mit einem Set von 24 BSW-Proben mit mehr als 20-facher Abdeckung

wurden die imputierten Genotypen validiert. In diesem Kapitel werden die Param-

eter für die Wahl eines passenden Variantencallers und die Zusammensetzung des

Haplotyp-Referenzpanels für die Imputation gründlich untersucht. Unter der Voraus-

setzung, über genügend sequenzierte Proben (n = 150) zu verfügen, schneiden rassen-

spezifische Haplotyp-Panels für die Imputation besser ab als Haplotyp-Panels mehrerer

Rassen.

Kapitel 4 umfasst eine vorläufige Erkundung der Methylierungsmuster von CpG

Dinukleotiden und deren Cluster in CpG-Inseln bei Rindern. Es wurden Long-Read-

Sequenzdaten von 120 BSW-Stieren mit einer durchschnittlichen 14.5-fach Abdeckung

auf die häufigsten epigenetischen Veränderungen untersucht (5mC). Zwei unterschiedli-

che Gewebe des männlichen Reproduktionssystems (105 Hoden-Proben und 15 Epididy-

mis-Proben) wurden analysiert. Erste Untersuchungen unterschiedlicher Methylierungs-

modelle zwischen Gewebe und Individuen wurden durchgeführt. Unter Berücksichti-

gung der phänotypischen Ausprägung epigenetischer Veränderungen kann der Methyl-

ierungsstatus der CpG-Inseln direkt mit der genotypischen Variation in Verbindung

gebracht werden.

In dieser Arbeit wurden innovativste Instrumente und Methoden verwendet, um
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Variationen bei Rindern besser zu verstehen. Für die Optimierung genomischer Anal-

ysen werden Schlussfolgerungen gemacht in Bezug auf welches Referenzgenom am

besten geeignet ist, welcher Variantencaller die präziseste Genotypisierung liefert und

wie die Haplotyp-Referenzpanels idealerweise zusammengesetzt sein sollten. Zusät-

zlich werden zwei Beispiele gemacht, wieso genetische Varianten für innovative Ansätze

entscheidend sind. Erstens demonstriert diese Arbeit die Verwendung von geeigneten

Referenz-Haplotypsets (DNA-Abschnitte mit zusammen vererbten Varianten) für die

Imputation von nicht-dichten Daten. Zweitens können richtig abgerufene Genotypen

mit der Methylierungsvariabilität in Verbindung stehen. Mit dieser Arbeit wird ein

Berechnungsrahmen erarbeitet, um die Bedeutung von Variabilität bei Nutztieren und

deren Anwendungsbereich zu untersuchen.
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Thesis Outline

The thesis is structured as follows:

Chapter 1 provides a literature review to introduce genetic variation and the ele-

ments that intervene in its proper detection. A series of applications requiring highly

accurate variants are subsequently described.

Chapter 2 assesses the impact of reference genomes for a range of genomic analyses,

using the Brown Swiss cattle breed as a target species. This chapter is published in BMC

Genomics.

Chapter 3 reports on the comparison of the genotype accuracy yielded by two

widespread variant callers. It additionally explores how the composition of haplotype

reference panels affect the imputation of low-pass data at different coverage folds. This

chapter is published in Genetics Selection Evolution (GSE).

Chapter 4 introduces preliminary results of methylation patterns in two tissues of

the male reproductive system of cattle. The distribution and variability of 5mC modifi-

cations across the genome and within CpG islands are explored.

Chapter 5 provides a general discussion, and outlook for future research.

The image cover was created with the assistance of DALL·E 2
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General Introduction
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Identification of genetic variation in livestock

Bovine populations have a high nucleotide identity. The average number of homo-
logue nucleotides (biochemical structures that form the basic constituent of DNA) that
are identical between any two individuals within the same population often exceeds
99.9% [1, 2, 3]. The remaining < 0.1% determines the uniqueness of individuals. There-
fore, a confident determination of such polymorphic nucleotides (genetic variants) is
paramount to the success of genomic investigations [4].

Sequencing data

Obtaining the digital representation of the nucleotides for a complete genome is not
trivial. Current technologies cannot read and reproduce a copy of the ⇠3 billions of
nucleotide bases (Gb) from a typical mammalian genome at once. Instead, as part of
the whole-genome sequencing (WGS) approach, the DNA is divided into small pieces
and sequencing machines provide digital copies of such subsets of the genome (reads).
Next-generation sequencing (NGS) technologies enable massively parallel sequencing
generating millions of reads per instrument run [5]. Short-read technologies (e.g., Illu-
mina) are the most used form of NGS. Illumina machines generate short sequencing
reads that typically vary between 30 and 150 base pairs (bp) with sequencing error rates
< 0.1%. Third-generation sequencing (also known as long-read sequencing) are newer
technologies mainly dominated by Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) which generate sequencing reads of hundreds of kilobases (Kb) in
length but with higher error rates (5 - 15%) [6, 7]. PacBio’s most recent “HiFi” circular
consensus sequencing offers a compromise between read length (15 - 20-kbp) and ac-
curacy (error rate of 0.1 - 1%) [8]. Given the large number of sequencing reads needed
to cover a genome, even tiny error rates cause thousands of wrongly represented nu-
cleotides. The confidence in the determination of the nucleotides depends on the cover-
age, the number of strings of reads that cover a certain position (locus) of the genome
[9]. Regardless the technology used (long or short reads), high-coverage WGS is pro-
hibitively costly for large-scale bovine population studies [10]. For sequence data to
be used routinely in research and breeding, low-coverage whole genome sequencing
(lcWGS) is a cost-effective strategy that allows population-scale screening of the entire
genome [11, 12].

Reference genome

Reference genomes are a point representation of the structure and organization of
the genome of a species [13]. They are an important prerequisite for many genomic anal-

2



CHAPTER 1. GENERAL INTRODUCTION

yses and have been integral to the discovery of molecular genetic variants. The assembly
of complex eukaryotic reference genomes has been fostered by recent technological im-
provements in long-read sequencing (see Fig. 1.1) [14, 15, 16]. The Vertebrate Genome
Project [17], the Darwin Tree of Life project [18], the Earth Biogenome Project [19] and
other efforts are underway to generate reference quality genomes for hundreds of thou-
sands of species in the coming years.

Figure 1.1: Genome Assembly. Long-read data generated with third-generation se-
quencing are used to assemble genomes that foster variant discovery - adapted from
[20].

However, a single reference genome does not fully reflect the extent of genetic varia-
tion within a species [21, 22]. Reference genomes tend to derive from a single individual
or a reduced subset of inbred individuals [23, 24, 25, 26]. This poses the risk that private
alleles (this is, nucleotides in specific positions - loci - that are only present in the selected
individual) become the reference while segregating alleles (common in the population)
are considered as variants.

The current cattle reference genome (ARS-UCD1.2) [27] was derived from an inbred
Hereford cow and her sire [26] and belong to one of the most common breeds in use
for beef production globally. Given the decreasing error rates and increasing output
of sequencing technologies, it is now possible to generate multiple reference quality
genomes per species, tailored to the research needs. Trio-binning [28] is a method that
uses parent-specific information to sort long sequences and simplifies the generation
of reference genomes [28]. Some of the highest quality bovine genomes to date have
been produced with trio-binning: yak (Bos grunniens), gaur (Bos gaurus), Brown Swiss,
Original Braunvieh, Scottish Highland, Angus, Piedmontese and Simmental (Bos taurus
taurus), and Nellore and Brahman (Bos taurus indicus) [28, 29, 30, 31, 32].

3



CHAPTER 1. GENERAL INTRODUCTION

Genotyping

The bovine genomics community heavily relied on SNP (single nucleotide polymor-
phism) microarrays to characterize genetic differences between individuals. SNP mi-
croarrays comprise hundreds of thousands of probes that target genomic regions where
variants have been previously discovered by sequencing and comparing to a reference
genome [33]. The flanking regions of the variable position hybridise with the probes
and so the presence of the variant can be detected. Microarrays are designed to inter-
rogate common genetic markers in mainstream breeds. Such markers (SNPs) tend to
be more frequent than random SNPs and may thus be not representative of all breeds
[33]. Largely diverged breed-specific variants are typically less accessible and underrep-
resented in these arrays [34]. This effect is known as ascertainment bias [35].

Unlike the targeted genotyping (determination of the alleles) of SNP microarrays,
WGS screens all the nucleotides of an individual genome without previous information
about the position of polymorphic sites [36]. Polymorphic sites can be discovered and
genotyped through the correct alignment of the sequencing reads to the relevant ge-
nomic locations in the reference genome and comparison of the differences [37, 38, 39].
These differences are due to variants present in the sequenced reads or errors either in
the sequencing platform or in the reference genome [39]. The improvements in sequenc-
ing technologies and reference genomes are therefore tightly linked with the improve-
ment of alignment rates [40]. The combination of a complete, high-quality reference
genome and accurate and well-mapped reads that overlap segregating polymorphic sites
in a population enable variant discovery and genotyping via resequencing (see Fig. 1.2)
[37, 38, 41]. But read alignment is an important computational challenge [39, 42]. Reads
in divergent regions are more prone to be misaligned, especially in highly polymor-
phic regions and for samples that are divergent from the reference genome as the reads
span more nucleotide mismatches [11]. Reference genomes originating from individuals
closer from the sequenced individuals reduce the computational burden. Additionally,
the error rate of genotyping is increased by the reference bias, a preferential bias towards
the reference allele during read alignment that causes misalignment for reads containing
non-reference alleles [11, 43].

Short-read sequencing technologies are accurate for the genotyping of small-variants
such as SNPs and insertions and deletions shorter than 50 nucleotides or base pairs (IN-
DELs) [44]. Large fractions of the genome comprise repetitive regions which are less
accessible with short reads as the mapping can be ambiguous and hence part of the
variation can be missed [15]. Long-read sequencing can overcome limitations of short
reads by substantially improving variant detection inside difficult-to-map parts of the

4



CHAPTER 1. GENERAL INTRODUCTION

Figure 1.2: Resequencing and de novo assembly. NGS enable identification of genetic
variants and assembly of genomes. Credit: Cathleen Shaw / HudsonAlpha Institute for
Biotechnology: https://www.hudsonalpha.org.

genome, such as centromeres and sex chromosomes [45, 46]. With the improvement of
base callers, long-read data can also simultaneously detect some epigenetic base modi-
fications at the nucleotide level, such as methylated cytosines (5mC) [47]. Methods have
been developed for both ONT (detection of deviations in the electric signal) and PacBio
HiFi data (analysis of polymerase kinetics) [47, 48, 49].

Sequence variant genotyping accuracy typically decreases with lower sequencing
coverage [50, 51, 52]. The identification of true genotypes from lcWGS (< 4-fold) is chal-
lenging because the impact of sequencing errors is more relevant. As a trade-off, more
individuals can be sequenced and characteristics such as the frequencies of the alleles
segregating in a population can be obtained [12]. For a limited amount of sequencing,
the discovery of variants is maximised by sequencing samples at low coverage [53, 54].

Genotyping tools - variant callers

The choice of the software used for variant discovery and genotyping is another
factor that impacts the detection of accurate callsets [55, 56, 57]. GATK [42, 58] is a
widely used tool by the livestock community for variant calling purposes. It facilitates
to accurately identify differences between the reads and the reference genome [36, 59].
A combination of the software DeepVariant [60] and GLnexus [61] has emerged as an
alternative, especially in human-related genomic studies, with a deep learning model
trained on validated human variants [36, 62]. Comparison of the performance between
GATK and DeepVariant has been performed from multiple angles in humans [36, 55].
The shared goal of both GATK and DeepVariant-GLnexus strategies is to leverage mul-

5
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CHAPTER 1. GENERAL INTRODUCTION

tiple samples to identify and recalibrate the genotypes of the variable genomic positions
in a population [42, 60]. Joint variant calling of large cohorts can help differentiating
true positive variants from sequencing errors and data processing artifacts [42, 63]. It
also increases variant calling sensitivity in regions with low coverage by estimating (im-
puting) genotypes from similar samples [42, 63]. This substantial improvement makes
joint-calling of variants computationally intensive [42, 63].

1.2 Imputation of genetic variants

Even if all the above-mentioned developments, technologies and tools are considered
and optimised, not all the variants identified are confidently genotyped. lcWGS is more
affordable than higher-coverage strategies but the genotyping accuracy of the resulting
data is suboptimal. Genotype imputation is a statistical approach to infer unknown or
low-confident genotypes from observed genotypes from other samples [64]. Genomic
stretches including groups of variants that are inherited together are referred to as hap-
lotypes [9] and are at the core of genotype imputation (see a simplified example of hap-
lotypes in Fig. 1.3). The likelihood that two nearby variants segregate together increases
with the proximity of the variants and is a phenomenon so-called linkage disequilib-
rium (LD) [37]. Individuals in bovine populations are more related than wild popu-
lations (given the limited effective population sizes) and typically have less LD decay
[65, 66, 67]. This facilitates the imputation of variants in cattle, as there are more possi-
bilities that information is available from neighbouring variants in tight linkage [52, 67].
Taken together, appropriate sequencing strategies and powerful imputation methods
enable the generation of large datasets of individuals with sequence data at a low cost
[68]. Imputation can be challenging in genomic regions with a high concentration of
polymorphisms or for variants that are rare in the population (with low minor allele
frequencies - MAF) [67, 69, 70].

Imputation of high coverage cohort genotypes

Imputation tools have been developed for the inference of missing genotypes in high
coverage data (e.g., BEAGLE [71]). The set of variants refined with BEAGLE is obtained
as an imputed VCF file, a row-oriented tab-delimited text file specialised for the storage
of genetic variants [72]. When properly phased (separated by paternal/maternal origin),
imputed VCF files can be considered as a collection (panel) of the haplotypes present in a
population. High quality reference panels contain accurate variants from a large number
of samples; this is, a large breadth of haplotypes well representative of the population

6



CHAPTER 1. GENERAL INTRODUCTION

Figure 1.3: Haplotypes. Haplotypes made up of 3 biallelic positions. The 3 distinct
haplotypes (AGT, GTA, AGA) contain biallelic SNPs (A or G, G or T, and A or T)
at the 3 variant positions in this locus. Credit: Dr. Ellen Prediger / Lubio science:
https://www.lubio.ch/blog/genotyping-terms/.

[63, 73, 74]. Catalogues of variants, such as the 1000 Bull Genomes consortia [4] contain
information about haplotypes from different breeds and populations. Further efforts
have been made to compile exhaustive catalogue of haplotypes in cattle [75, 76, 77]. The
generation of reference panels was typically optimised by sequencing the key ancestors,
which are expected to carry many of the high-frequency haplotypes in the population
[78]. However, the access to larger scales of sequencing data enables a growing number
of haplotypes from different ancestries, which increases the completeness of the panels
and particularly the number of rare variants [76, 79].

Haplotype panels and their use for imputation

Haplotype reference panels contain information about the polymorphic sites that
tend to segregate together in a population [75, 80]. For samples with similar ancestry
to the haplotypes, they facilitate the imputation of unobserved genotypes that have
been assayed using microarray chips or lcWGS data [69, 81, 82]. Imputation from sparse
microarray to higher density chips by using large haplotype reference panels has been
routinely performed in animal breeding and cattle genomics and different methods are
available [51, 83, 84]. lcWGS is gaining momentum as an alternative for their decreasing
costs in both library preparation and sequencing [85]. However, given the shallow depth
of the sequencing data, imputation of lcWGS data is required to refine the genotype
likelihoods and fill the gaps between sparsely mapped reads [12, 86]. The combination of
sequencing and microarray data can lead to an improved imputation [50] but availability
of both is infrequent [87]. Imputation of SNPs microarray data and imputation of low-
pass data (see the schematic process in Fig. 1.4) have fundamental differences:
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• Imputation algorithms for lcWGS provide a higher level of uncertainty of homozy-
gotes and heterozygotes than array genotypes. Given the limited number of reads,
the stochasticity of the lecture of the different alleles may lead to miss or misread
the actual genotypes and so additional probability calculations are required [51].

• Low-pass data do not require a two-step imputation process, unlike what is gener-
ally applied for low-density SNP chips, with an intermediate higher density step
[82, 88].

• SNP arrays require prior knowledge about segregating variants and thus can only
genotype a limited number of known variants; rare variants are often not included
by design [10, 89].

• Although physical distances between variants have been optimised in microarray
chips, lcWGS can leverage higher LD values (denser variant span) to increase im-
putation accuracy [10, 90].

• Information from genotyping microarrays is summed across paternal and mater-
nal haplotypes, while sequencing reads come from either the paternal or maternal
haplotype. If the sequencing reads can be phased, imputation becomes much sim-
pler [85].

• The benefits of imputing sequence reads versus genotyping arrays appear consid-
erably greater for populations less similar to a given reference dataset [85].

Figure 1.4: Imputation with haplotype panels. lcWGS and microarray data can be im-
puted with haplotype reference panels - adapted from [91].

Overall, in humans, lcWGS at 0.1-0.25x captures a comparable amount of variation
than microarray data and lcWGS at 1-2x outperforms arrays at all frequencies, espe-
cially lower frequency variants [85, 86, 92]. The availability of large panels of reference
haplotypes coupled with sequencing data of a substantial amount of the population
at 2x yields high imputation accuracies [51, 76, 92]. The software GLIMPSE [86] lever-
ages reference haplotype panels and yields slightly better performance than BEAGLE
[71] for lcWGS imputation and has been successfully applied to livestock species [93].
Discrepancies exist on recommendations regarding the adequate composition of refer-
ence haplotype panels. The interplay of sequencing coverage of low-pass data, the size
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and the ancestry of the haplotypes reference panels impact imputation accuracy but the
extent has been hitherto underexplored in cattle [10].

Downstream analyses with imputed genotypes

High-density genotypes of hundreds or thousands of animals can be accurately ob-
tained via imputation, be it from high- or low-coverage WGS data. Combined with the
outstandingly well-documented phenotypic records from farmed species (such as fertil-
ity parameters or production traits), complex genotype-phenotype relationships can be
explored at unprecedented scales [34, 94, 95]. This combination is essential for down-
stream analyses that enable the prediction of genomic breeding values, increase the
power for genome-wide association studies (GWAS) at nucleotide resolution, fine map
regions harbouring candidate variants underlying quantitative traits and provide deeper
insights into function and complex trait biology [96, 97, 98, 99]. The availability of mil-
lions of imputed variants and thousands of phenotypes measured on a population scale
enable powerful association tests that can detect quantitative trait loci (QTL) [100]. QTLs
are genetic locations whose allele change is statistically linked to a measurable change in
phenotypic traits. Numerous examples have been described in cattle [101, 102, 103]. QTL
mapping is a valuable tool to elucidate the relationship between genetic variants and one
of the multiple categories of molecular phenotypes (molQTL) such as gene expression
(eQTL), splicing (sQTL), protein abundance, metabolomics, base methylation (meQTL),
histone modification (hQTL), chromatin activity and even the interplay of such features
[100, 104, 105, 106]. It is a necessary initial step towards the identification of putative
causal variants that can majorly contribute to phenotypic variation [107, 108].
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Abstract

Background: Reference-guided read alignment and variant genotyping are prone
to reference allele bias, particularly for samples that are greatly divergent from the
reference genome. A Hereford-based assembly is the widely accepted bovine refer-
ence genome. Haplotype-resolved genomes that exceed the current bovine reference
genome in quality and continuity have been assembled for different breeds of cattle.
Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the
accuracy of read mapping and sequence variant genotyping as well as downstream
genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly
continuous Angus-based assembly (UOA_Angus_1).

Results: Read mapping accuracy did not differ notably between the ARS-UCD1.2
and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality
variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance be-
tween sequence- and array-called genotypes was high and the number of variants
deviating from Hardy-Weinberg proportions was low at segregating sites for both
assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than
ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40
and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively,
but the overlap between both assemblies was low. Using the 161 sequenced Brown
Swiss cattle as a reference panel, we imputed sequence variant genotypes into a
mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-
step imputation approach. The accuracy of imputation (Beagle R2) was very high
(0.87) for both assemblies. Genome-wide association studies between imputed se-
quence variant genotypes and six dairy traits as well as stature produced almost
identical results from both assemblies.

Conclusions: The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for
reference-guided genome analyses in Brown Swiss cattle. Although differences in
read mapping and genotyping accuracy between both assemblies are negligible,
the choice of the reference genome has a large impact on detecting signatures of
selection that already reached fixation using the composite likelihood ratio test. We
developed a workflow that can be adapted and reused to compare the impact of
reference genomes on genome analyses in various breeds, populations and species.

Keywords: Reference genome comparison, Bovine, Alignment quality, Sequence
variants, Functional annotation, Signatures of selection, Genome-wide association
study
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2.1 Background

Representative reference genomes are paramount for genome research. A reference
genome is an assembly of digital nucleotides that are representative of a species’ genetic
constitution. Like the coordinate system of a two-dimensional map, the coordinates of
the reference genome unambiguously point to nucleotides and annotated genomic fea-
tures. Because the physical position and alleles of sequence variants are determined
according to reference coordinates, the adoption of a universal reference genome is re-
quired to compare findings across studies. Otherwise, the conversion of genomic coor-
dinates between assemblies is necessary [1]. Updates and amendments to the reference
genome change the coordinate system.

Reference genomes of important farm animal species including cattle, pig and chicken
were assembled more than a decade ago using bacterial artificial chromosome and
whole-genome shotgun sequencing [2, 3, 4]. The initial reference genome of domes-
tic cattle (Bos taurus taurus) was generated from a DNA sample of the inbred Hereford
cow L1 Dominette 01449 [3, 5]. An annotated bovine reference genome enabled system-
atic assessment and characterization of sequence variation within and between cattle
populations using reference-guided alignment and variant detection [3, 6]. A typical
genome-wide alignment of DNA sequences from a B. taurus taurus individual differs
at between 6 and 8 million single nucleotide polymorphisms (SNPs) and small (< 50
bp) insertions and deletions (INDELs) from the reference genome [7, 8]. More variants
are detected in cattle with greater genetic distance from the Hereford breed [9]. The
bovine reference genome neither contains allelic variation nor nucleotides that are pri-
vate to animals other than L1 Dominette 01449. As a result, read alignments may be er-
roneous particularly at genomic regions that differ substantially between the sequenced
individual and the reference genome [10]. The use of consensus reference genomes or
variation-aware reference graphs may mitigate this type of bias [11, 12, 13].

The quality of reference genomes improved spectacularly over the past 15 years.
Decreasing error rates and increasing outputs of long-read (> 10 Kb) sequencing tech-
nologies such as PacBio single molecule real-time (SMRT) [14] and Oxford Nanopore se-
quencing [15] revolutionised the assembly of reference genomes. Sophisticated genome
assembly methods enable to assemble gigabase-sized and highly-repetitive genomes
from long sequencing reads at high continuity and accuracy [16, 17, 18]. The application
of “trio-binning” [19] facilitates the de novo assembly of haplotype-resolved genomes
that exceed in quality and continuity all previously assembled reference genomes. This
approach now offers an opportunity to obtain reference-quality genome assemblies and
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identify hitherto undetected variants in non-reference sequences, thus making the full
spectrum of sequence variation amenable to genetic analyses [17, 19].

Reference-quality assemblies are available for Hereford (ARS-UCD1.2) [20], Angus
(UOA_Angus_1) [17] and Highland cattle [21]. In addition, reference-quality assemblies
are available for yak (Bos grunniens) [21] and Brahman (Bos taurus indicus) [17] which
are closely related to taurine cattle. Any of these resources may serve as a reference
for reference-guided sequence read alignment, variant detection and annotation. Linear
mapping and sequence variant genotyping accuracy may be affected by the choice of the
reference genome and the divergence of the DNA sample from the reference genome [22,
23, 24, 25]. It remains an intriguing question, which reference genome enables optimum
read mapping and variant detection accuracy for a particular animal [11, 12, 13].

Here, we assessed the accuracy of reference-guided read mapping and sequence
variant detection in 161 Brown Swiss (BSW) cattle using two highly continuous bovine
genome assemblies that were created from Hereford (ARS-UCD1.2) and Angus (UOA_-
Angus_1) cattle. Moreover, we detect signatures of selection and perform sequence-
based association studies to investigate the impact of the reference genome on down-
stream genomic analyses.

2.2 Results

Short paired-end whole-genome sequencing reads of 161 BSW cattle (113 males, 48 fe-
males) were considered for our analysis. All raw sequencing data are publicly available
at the Sequencing Read Archive of the NCBI [26] or the European Nucleotide Archive
of the EMBL-EBI [27] (see accession IDs in Additional file 1).

Alignment quality and depth of coverage

Following the removal of adapter sequences, and reads and bases of low sequencing
quality, between 173 and 1,411 million reads per sample (mean ± standard deviation:
360 ± 165 million reads) were aligned to expanded versions of the Hereford-based ARS-
UCD1.2 and the Angus-based UOA_Angus_1 assemblies that included sex chromoso-
mal sequences and unplaced scaffolds (see Methods) using a reference-guided align-
ment approach. The Hereford assembly is a primary assembly because it was created
from a purebred animal [20]. The Angus assembly is haplotype-resolved because it was
created from an Angus x Brahman cross using “trio-binning” [17]. The average num-
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ber of reads per sample that aligned to sex chromosomes, the mitochondrial genome
and unplaced contigs were slightly higher for UOA_Angus_1 (66 ± 39 million) than
ARS-UCD1.2 (64 ± 38 million).

We considered the 29 autosomes to investigate alignment quality. The total length of
the autosomes was 2,489,385,779 bp for ARS-UCD1.2 and 2,468,157,877 bp for UOA_An-
gus_1. An average number of 295 ± 131 and 293 ± 130 million reads per sample aligned
to autosomal sequences of ARS-UCD1.2 and UOA_Angus_1, respectively. The slightly
higher number of reads that mapped to ARS-UCD1.2 is likely due to its longer autoso-
mal sequence. In order to ensure consistency across all analyses performed, we retained
263 ± 118 (89.28%) and 261 ± 117 (89.17%) uniquely mapped and properly paired reads
(i.e., all reads except those with a SAM-flag value of 1796) that had mapping quality
higher than 10 (high-quality reads hereafter) per sample, as such reads qualify for se-
quence variant genotyping using the best practice guidelines of the Genome Analysis
Toolkit (GATK) [28, 29] (Table 2.1). The number of reads that mapped to the autosomes
but were discarded due to low mapping quality (either SAM-flag 1796 or MQ < 10)
were almost identical (32 ± 20 million) for both assemblies (Additional file 2). Most
of the discarded reads (83.37% for ARS-UCD1.2 and 82.29% for UOA_Angus_1) were
flagged as duplicates.

Table 2.1: Mapping statistics for the 161 BSW samples. Summary statistics ex-
tracted from the BAM files after aligning the samples to either the ARS-UCD1.2 or
UOA_Angus_1 assembly. Uniquely mapped and properly paired reads with MQ > 10
are considered as high-quality reads. The percentage of autosomal reads that are high-
quality reads is calculated per sample and per chromosome. Coverage of high-quality
reads is calculated per sample and per chromosome.

Parameter Unit ARS-UCD1.2 UOA_Angus_1

Autosomal reads Million 47,502 47,128
Million / sample 295 ± 131 293 ± 130

Autosomal high-quality reads

Million 42,418 42,029
Million / sample 263 ± 118 261 ± 117

% / sample 89.28 ± 5.06 89.17 ± 5.06
% / chromosome 89.28 ± 0.34 89.17 ± 0.56

Coverage fold / sample 14.13 ± 7.26 14.11 ± 7.25
fold / chromosome 14.13 ± 0.14 14.11 ± 0.15

The mean percentage of high-quality reads was slightly higher (0.10 ± 0.63) for the
ARS-UCD1.2 than UOA_Angus_1 autosomes but greater differences existed at some
chromosomes. The proportion of high-quality reads was higher for the ARS-UCD1.2 as-
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sembly than the UOA_Angus_1 assembly at 16 out of the 29 autosomes. The greatest dif-
ference was observed for chromosome 20, for which the proportion of high-quality reads
was 2.03 percent points greater for the ARS-UCD1.2 assembly than the UOA_Angus_1
assembly (P = 4.5 x 10-4). Of 8.59 ± 3.81 and 8.69 ± 3.88 million reads that aligned to
chromosome 20 of ARS-UCD1.2 and UOA_Angus_1, respectively, 7.66 ± 3.42 and 7.57 ±
3.38 million were high-quality reads. Among the 13 autosomes for which the percentage
of high-quality reads was greater for the UOA_Angus_1 than ARS-UCD1.2 assembly,
the greatest difference (0.75 percent points) was observed for chromosome 13.

Average genome coverage ranged from 8.8- to 62.4-fold per sample for both assem-
blies. The mean coverage of the BAM files was nearly identical for the ARS-UCD1.2
(14.13 ± 7.26) and UOA_Angus_1 (14.11 ± 7.25) assembly. Chromosome wise, no differ-
ences were detected (P = 0.36) across the two assemblies considered. The mean coverage
was between 13.76 (chromosome 19) and 14.45 (chromosome 27) for ARS-UCD1.2 and
between 13.76 (chromosome 19) and 14.52 (chromosome 14) for UOA_Angus_1.

Sequence variant genotyping and variant statistics

Single nucleotide polymorphisms (SNPs), insertions and deletions (INDELs) were
discovered from the BAM files following the GATK best practice guidelines [28, 29]. Us-
ing the HaplotypeCaller and GenotypeGVCFs modules of GATK, we detected 24,760,861
and 24,557,291 autosomal variants from the ARS-UCD1.2 and UOA_Angus_1 align-
ments, respectively, of which 22,744,517 (91.86%) and 22,559,675 (91.87%) high-quality
variants were retained after applying site-level hard filtration using the VariantFiltration
module of GATK (Additional file 3). The mean transition/transversion ratio was 2.15
for the high-quality variants detected from either of the assemblies.

For 32.40 and 33.80% of the high-quality variants, the genotype of at least one out of
161 BSW samples was missing using the ARS-UCD1.2 and UOA_Angus_1 alignments,
respectively. Across all chromosomes, the number of missing genotypes was slightly
higher (P = 0.087) for variants called from UOA_Angus_1 than ARS-UCD1.2 alignments.
The percentage of variants with missing genotypes was highest on chromosome 12 in
both assemblies. At least one missing genotype was observed for 49.79 and 37.39% of
the chromosome 12 variants for the UOA_Angus_1 and ARS-UCD1.2-called genotypes.
Beagle [30] (version 4.1) phasing and imputation was applied to improve the genotype
calls from GATK and impute the missing genotypes.

112 sequenced animals that had an average fold sequencing coverage of 13.47 ± 6.45
and 13.46 ± 6.44 when aligned to ARS-UCD1.2 and UOA_Angus_1, respectively, also
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had Illumina BovineHD array-called genotypes at 530,372 autosomal SNPs. We consid-
ered the microarray-called genotypes as a truth set to calculate non-reference sensitiv-
ity, non-reference discrepancy and the concordance between array-called and sequence-
called genotypes (Table 2.2). The average concordance between array- and sequence-
called genotypes was greater than 98 and 99.5% before and after Beagle imputation,
respectively, for variants called from both assemblies. We observed only slight differ-
ences in the concordance metrics between variants called from either ARS-UCD1.2 or
UOA_Angus_1, indicating that the genotypes of the 112 BSW cattle were accurately
called from both assemblies, and that Beagle phasing and imputation further increased
the genotyping accuracy.

Table 2.2: Comparisons between array-called and sequence variant genotypes. Non-
reference sensitivity (NRS), non-reference discrepancy (NRD) and the concordance
(CONC) between array-called and sequence-called genotypes for 112 BSW cattle that
had BovineHD and sequence-called genotypes at 530,372 autosomal SNPs.

GATK hard filtering GATK hard filtering + Beagle imputation
NRS NRD CONC NRS NRD CONC

ARS-UCD1.2 99.14 2.75 98.13 99.77 0.60 99.59
UOA_Angus_1 99.37 2.45 98.09 99.88 0.47 99.64

Because Beagle phasing and imputation improved the genotype calls from GATK,
the subsequent analyses are based on the imputed sequence variant genotypes. Af-
ter imputation, 81,674 (0.36%, 72,121 SNPs, 9,553 INDELs) and 104,217 (0.46%, 75,342
SNPs, 28,875 INDELs) variants were fixed for the alternate allele in ARS-UCD1.2 and
UOA_Angus_1, respectively (Additional file 3). Both the number and the percentage of
variants fixed for the alternate allele was higher (0.10 percent points the latter, P = 0.027)
for the UOA_Angus_1 than the ARS-UCD1.2 assembly. While the proportion and num-
ber of SNPs fixed for the alternate allele did not differ significantly (P = 0.65) between
the assemblies, 0.61 percent points more INDELs (P = 1.45 x 10-9) were fixed for the
alternate allele in UOA_Angus_1 than ARS-UCD1.2. 22,488,261 and 22,289,905 variants
were polymorphic (i.e., minor allele count � 1) among the 161 BSW animals in ARS-
UCD1.2 and UOA_Angus_1, respectively (Table 2.3). The number of variants detected
per sample ranged from 6.91 to 8.58 million (7.28 ± 0.15) in ARS-UCD1.2 and from 6.93
to 8.44 million (7.26 ± 0.15) in UOA_Angus_1. More SNPs and INDELs were discovered
for the ARS-UCD1.2 than UOA_Angus_1 assembly.
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Table 2.3: Variants segregating among 161 BSW samples. Number of high-quality non-
fixed variants discovered after aligning the samples to ARS-UCD1.2 and UOA_Angus_1
assemblies. Numbers in parentheses reflect the variant density (number of variants per
Kb) along the autosomes.

ARS-UCD1.2 UOA_Angus_1
Non-fixed variants (per Kb) 22,488,261 (9.03) 22,289,905 (9.03)

Non-fixed SNPs (per Kb) 19,557,039 (7.86) 19,446,648 (7.88)
Non-fixed INDELs (per Kb) 2,931,222 (1.18) 2,843,257 (1.15)

To take the length of the autosomes into consideration, we calculated the number of
variants per Kb. While the overall variant and INDEL density was slightly higher for
the ARS-UCD1.2 assembly, the SNP density was slightly higher for the UOA_Angus_1
assembly (Table 2.3).

The number and density of high-quality variants segregating on the 29 autosomes
was 2.04 (P = 0.51) and 0.45 (P = 0.39) percent points higher, respectively, for the ARS-
UCD1.2 than the UOA_Angus_1 assembly (Fig. 2.1, Additional file 4). The difference
in the number of variant sites detected from both assemblies was lower for SNPs (1.71
percent points) than INDELs (4.28 percent points). Chromosomes 9 and 12 were the
only autosomes for which more variants were detected using the UOA_Angus_1 than
ARS-UCD1.2 assembly. Differences in the number of variants detected were evident for
chromosomes 12 and 28. While chromosome 12 has 29% more variants when aligned to
UOA_Angus_1, chromosome 28 has 31% more variants when aligned to ARS-UCD1.2.

Figure 2.1: Total number of variants of autosomes for both assemblies. Number of
variants detected on autosomes when the 161 BSW samples are aligned to the ARS-
UCD1.2 (blue) and UOA_Angus_1 (orange) assembly.
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The variant density of 26 out of the 29 autosomes (except for chromosomes 9, 12
and 26) was higher for the ARS-UCD1.2 assembly than the UOA_Angus_1 assembly.
However, the density of INDELs was only higher for chromosome 12. Chromosome 23
had a higher variant density than all other chromosomes for both assemblies, with an
average number of 13 variants detected per Kb. The high variant density at chromosome
23 primarily resulted from an excess of polymorphic sites within a ⇠5 Mb segment (be-
tween 25 and 30 Mb in the ARS-UCD1.2 and between 22 and 27 Mb in UOA_Angus_1)
encompassing the bovine major histocompatibility complex (BoLA) (Additional file 5).
Other autosomes with density above 10 variants per Kb for both assemblies were chro-
mosomes 12, 15 and 29. We observed the least variant density (⇠8 variants per Kb) at
chromosome 13. Chromosome 12 carries a segment with an excess of variants at ⇠70 Mb
in both assemblies. Visual inspection revealed that the segment with an excess of poly-
morphic sites was substantially larger in UOA_Angus_1 (7.6 Mb) than ARS-UCD1.2 (3.5
Mb) (Fig. 2.2). The variant-rich region at chromosome 12 coincides with a large segmen-
tal duplication that compromises reference-guided variant genotyping from short-read
sequencing data and that has been described earlier [31, 32, 33]. Because of the greater
number of variants and variant density in UOA_Angus_1, this extended region had
a large impact on the cumulative genome-wide metrics presented in Table 2.3. When
the same metrics were calculated without chromosome 12, the average density of both
SNPs and INDELs was higher for ARS-UCD1.2 than UOA_Angus_1 (Additional file 6).
Segments with an excess of polymorphic sites were also detected on the ARS-UCD1.2
chromosomes 4 (113-114 Mb), 5 (98-105 Mb), 10 (22-26 Mb), 18 (60-63 Mb), and 21 (20-
21 Mb). The corresponding regions in the UOA_Angus_1 assembly showed the same
excess of polymorphic sites. However, these regions were shorter, and their variant den-
sity was lower compared to the extended segment at chromosome 12. The strikingly
higher number (+31%) of variants discovered at chromosome 28 for ARS-UCD1.2 than
UOA_Angus_1 was due to an increased length of chromosome 28 in the ARS-UCD1.2
assembly (Fig. 2.2).

Of 22,488,261 and 22,289,905 high-quality non-fixed variants, 848,100 (3.78%) and
857,206 (3.83%) had more than two alleles in the ARS-UCD1.2 and UOA_Angus_1 align-
ments, respectively (Additional file 7). Most (69.75% for ARS-UCD1.2 and 69.09% for
UOA_Angus_1) of the multi-allelic sites were INDELs. The difference in the percent-
age of multiallelic SNPs across assemblies was negligible. However, the difference in
percentage of multiallelic INDELs was 0.69 percent points higher (P = 2.55 x 10-9) for
UOA_Angus_1 than ARS-UCD1.2 autosomes.

In order to detect potential flaws in sequence variant genotyping, we investigated if
the genotypes at the high-quality non-fixed variants agreed with Hardy-Weinberg pro-
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Figure 2.2: Density of variants across chromosomes 12 and 28. The number of variants
within non-overlapping windows of 10 Kb for chromosome 12 (A) and 28 (B). The x-axis
indicates the physical position along the chromosome (in Mb). The number of variants
within each 10 Kb window is shown on the y-axis. Assembly ARS-UCD1.2 is displayed
above the horizontal line (blue) and assembly UOA_Angus_1 is displayed below the
horizontal line (orange).
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portions. We observed 218,734 (0.97%) and 243,408 (1.09%) variants for ARS-UCD1.2
and UOA_Angus_1, respectively, for which the observed genotypes deviated signifi-
cantly (P < 10-8, Additional file 7) from expectations. The proportion of high-quality
non-fixed variants for which the genotypes do not agree with Hardy-Weinberg propor-
tions is 0.12 percent points higher for the UOA_Angus_1 than ARS-UCD1.2 assembly. At
chromosome 12, 3.29 percent points more variants deviated from Hardy-Weinberg pro-
portions for the UOA_Angus_1 than the ARS-UCD1.2 assembly (Additional file 8); more
than twice the difference observed for any other autosome. When variants located on
chromosome 12 were excluded from this comparison, we observed 199,304 (0.92%) and
180,264 (0.85%) variants for the ARS-UCD1.2 and UOA_Angus_1 assembly, respectively,
for which the observed genotypes deviated significantly (P < 10-8) from expectations.

Functional annotation of polymorphic sites

Using the VEP software, we predicted functional consequences based on the Ensembl
genome annotation for 19,557,039 and 19,446,648 SNPs, and 2,931,222 and 2,843,257
INDELs, respectively, that were discovered from the ARS-UCD1.2 and UOA_Angus_1
alignments. Most SNPs were in either intergenic (66.30% and 56.56%) or intronic regions
(32.55% and 42.09%) for ARS-UCD1.2 and UOA_Angus_1, respectively (Table 2.4, Ad-
ditional file 9). Only 224,549 and 262,775 (1.15% and 1.35%) of the SNPs were in exons
for ARS-UCD1.2 and UOA_Angus_1, respectively. The majority of INDELs was in either
intergenic (65.76% and 55.95%) or intronic regions (33.84% and 43.47%) for ARS-UCD1.2
and UOA_Angus_1, respectively (Table 2.4, Additional file 9). Only 11,561 and 16,391
(0.40% and 0.58%) INDELs were in exonic sequences. While the number and propor-
tion of variants in coding regions was similar for both assemblies, we observed marked
differences in the number of variants annotated to intergenic and intronic regions. The
percentage of SNPs and INDELs annotated to intergenic regions is 9.74 and 9.81 per-
cent points higher, respectively, for the ARS-UCD1.2 than UOA_Angus_1 assembly. In
contrast, the percentage of SNPs and INDELs annotated to intronic regions is 9.54 and
9.63 percent points higher, respectively, for the UOA_Angus_1 than the ARS-UCD1.2
assembly. According to the Ensembl annotation of the autosomal sequences, intergenic,
intronic and exonic regions span respectively 61.53, 34.77 and 3.80% in ARS-UCD1.2 and
52.32, 42.32 and 5.36% in UOA_Angus_1.

Either moderate or high impacts on protein function were predicted for 89,812 and
103,576 SNPs, and 10,259 and 11,847 INDELs (0.46 and 0.53% of the total annotated SNPs
and 0.35 and 0.41% of the total annotated INDELs), respectively, that were discovered
from ARS-UCD1.2 and UOA_Angus_1 alignments (Tables 2.5 and 2.6). The number of
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Table 2.4: Number of SNPs and INDELs annotated using the VEP software per region
and assembly. Annotated SNPs and INDELs are classified by region were detected. The
total number of annotated variants per assembly and region are displayed here. The
table lists only the most severe annotation. The percentage of variants placed in each
region per variant type and assembly is shown between parentheses.

ARS-UCD1.2 UOA_Angus_1
SNPs INDELs SNPs INDELs

Exonic regions (%) 224,549 (1.15) 11,561 (0.40) 262,775 (1.35) 16,391 (0.58)
Intronic regions (%) 6,365,765 (32.55) 992,015 (33.84) 8,185,503 (42.09) 1,236,006 (43.47)

Intergenic regions (%) 12,966,725 (66.30) 1,927,646 (65.76) 10,998,370 (56.56) 1,590860 (55.95)

variants with putatively high or moderate effects was higher for the UOA_Angus_1 than
ARS-UCD1.2 assembly for 14 of 16 functional classes of annotations. Differences across
all autosomes were observed for SNPs that potentially affect splice acceptor variants (345
for ARS-UCD1.2 and 395 for UOA_Angus_1, P = 0.032) and SNPs that potentially cause
the loss of a stop codon (155 for ARS-UCD1.2 and 218 for UOA_Angus_1, P = 0.037).
Differences across all autosomes also resulted for INDELs that potentially cause inframe
deletions (1,761 for ARS-UCD1.2 and 1,972 for UOA_Angus_1, P = 0.0035), INDELs that
potentially cause inframe insertions (850 for ARS-UCD1.2 and 985 for UOA_Angus_1,
P = 0.0013) and INDELs that potentially cause the gain of a stop codon (218 for ARS-
UCD1.2 and 288 for UOA_Angus_1, P = 0.016).

Table 2.5: SNPs in high or moderate effect categories. Number of SNPs in high and
moderate (marked with an asterisk) effect categories per assembly.

ARS-UCD1.2 UOA_Angus_1
Missense variant* 86,634 99,773

Stop gained 1,466 1,911
Splice donor variant 506 525

Splice acceptor variant 345 395
Start lost 271 319
Stop lost 155 218

Signatures of selection

Next, we investigated how the choice of the reference genome impacts the detection
of putative signatures of selection in the 161 BSW cattle. We used the composite likeli-
hood ratio (CLR) test to identify beneficial adaptive alleles that are either close to fixation
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Table 2.6: INDELs in high or moderate effect categories. Number of INDELs in high
and moderate (marked with an asterisk) effect categories per assembly.

ARS-UCD1.2 UOA_Angus_1
Frameshift variant 6,289 7,435
Inframe deletion* 1,761 1,972
Inframe insertion* 850 985

Splice donor variant 291 298
Splice acceptor variant 292 292

Stop gained 218 288
Protein altering variant* 87 107

Start lost 20 14
Stop lost 11 15

Transcript ablation 5 6

or recently reached fixation [34]. As information on ancestral and derived alleles was not
available, we considered 19,370,683 (ARS-UCD1.2) and 19,255,155 (UOA_Angus_1) se-
quence variants that were either polymorphic or fixed for the alternate allele in the 161
BSW cattle. The CLR test revealed 40 and 33 genomic regions (merged top 0.1% win-
dows) encompassing ⇠2.5 and ⇠2.48 Mb, and 29 and 27 genes, respectively, from the
ARS-UCD1.2 and the UOA_Angus_1 alignments (Fig. 2.3, Additional file 10, Additional
file 11).

A putative signature of selection on chromosome 6 encompassing the NCAPG gene
had high CLR values in both assemblies (CLRARS-UCD1.2 = 4064; CLRUOA_Angus_1 = 3838).
Another signature of selection was detected for both assemblies upstream of the KITLG
gene on chromosome 5 (ARS-UCD1.2: 18.48 - 18.86 Mb, CLRARS-UCD1.2 = 655; UOA_An-
gus_1: 18.48 - 18.84, CLRUOA_Angus_1 = 657). However, most of the signatures of selection
were detected for only one assembly. A putative selective sweep on chromosome 13
was identified using the ARS-UCD1.2 but not the UOA_Angus_1 assembly. The pu-
tative selective sweep was between 11.5 and 12 Mb encompassing three protein cod-
ing (CCDC3, CAMK1D and ENSBTAG00000050894) and one non-coding gene (ENSB-
TAG00000045070). The top window (CLR=1373) was between 11,962,310 and 12,022,317
bp. In order to investigate why the CLR test revealed strong evidence for the presence
of a signature of selection in ARS-UCD1.2 but not in UOA_Angus_1, we investigated
the corresponding region in both assemblies using dot plots, variant density, alternate
allele frequency and alignment coverage. The dot plot revealed that the orientation of
bovine chromosome 13 is flipped in the UOA_Angus_1 assembly. The putative signature
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Figure 2.3: Genome wide distribution of selection signals from CLR. Selection signal
distribution for both ARS-UCD1.2 (top panel) and UOA_Angus_1 assemblies (bottom
panel). Red dotted line shows top 0.1% signal.

of selection is next to but clearly distinct from a region with a very high SNP density
and sequence coverage in both assemblies (Additional file 12). We detected 350 SNP
within the top window (5.87 SNP / Kb) of which 145 were fixed for the alternate allele.
Within the corresponding region on UOA_Angus_1, we detected 209 SNP (3.48 SNP /
Kb) of which 13 were fixed for the alternate allele. This pattern indicates that the 161
sequenced BSW cattle carry a segment in the homozygous state that is more similar
to the UOA_Angus_1 than ARS-UCD1.2 reference genome. We observed the recipro-
cal pattern for a putative selective sweep on chromosome 22 that was detected using
UOA_Angus_1 but not ARS-UCD1.2 (Additional file 13).

Genome-wide association testing

Next, we imputed genotypes for autosomal variants that were detected using the
two assemblies for 30,499 cattle that had (partially imputed) Illumina BovineHD array-
derived genotypes. The average imputation accuracy (Beagle R2) was 0.87 ± 0.27 (me-
dian: 0.99) in the ARS-UCD1.2 and 0.87 ± 0.26 (median: 0.99) in the UOA_Angus_1
assembly. To prevent bias resulting from imputation errors, we removed variants that
had low frequency (minor allele count < 3), low accuracy of imputation (Beagle R2 <

0.5) or for which the observed genotypes deviated significantly (P < 10-6) from Hardy-
Weinberg proportions from the imputed data. Following quality control, 12,761,165 and
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12,602,069 imputed variants were respectively retained (with imputation accuracy of 0.95
± 0.11 and 0.95 ± 0.10) for genetic investigations in the ARS-UCD1.2 and UOA_Angus_1
dataset representing 56.75 and 56.54% of the 22,488,261 and 22,289,905 high-quality seg-
regating variants. We then carried out genome-wide association studies (GWAS) be-
tween imputed sequence variant genotypes and six traits, including stature and five
dairy traits (milk yield, fat yield, protein yield, protein and fat percentage), for which
between 11,294 and 12,396 cattle had phenotypes in the form of de-regressed proofs. The
resulting Manhattan plots appeared very similar for both datasets (Fig. 2.4, Additional
file 14). Across the six traits analysed, the number of significantly associated variants
was similar when the association analyses were performed using imputed sequence
variants identified in the two builds. The difference in the number of significantly as-
sociated variants (P < 10-8) between the two builds is mainly due to variants that had
P-values that were slightly above the threshold of 10-8 in one but not the other build.

Figure 2.4: Manhattan plots for fat percentage, protein percentage, and milk yield.
Number of significantly (P < 10-8) associated variants in GWAS for seven traits. Es-
timated genomic heritability for stature and six dairy traits. Manhattan plots show-
ing association of sequence variants - imputed using ARS-UCD1.2 (blue and grey) and
UOA_Angus_1 (orange and grey) - with fat percentage (A), protein percentage (B) and
milk yield (C). The orientation of some autosomes (e.g., chromosome 14 & chromosome
20) is flipped between ARS-UCD1.2 and UOA_Angus_1. The number (in thousands)
of variants - imputed using ARS-UCD1.2 (blue) and UOA_Angus_1 (orange) - signif-
icantly (P < 10-8) associated with the seven traits considered for GWAS (D). Genomic
heritability estimated using all autosomal variants imputed using ARS-UCD1.2 (blue)
and UOA_Angus_1 assemblies (orange) (E). Standard errors of the estimates are indi-
cated in read lines.
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To investigate if causal variants can be readily identified from both assemblies, we
inspected the QTL for dairy traits at chromosomes 14 and 20, respectively, for which
p.Ala232Lys in DGAT1 encoding Diacylglycerol O-Acyltransferase 1 and p.Phe279Tyr
in GHR encoding Growth Hormone Receptor have been proposed as causal variants
[35, 36]. The accuracy of imputation for the Phe279Tyr variant in the GHR gene was
0.92 and 0.88 for the ARS-UCD1.2 and UOA_Angus_1 assembly, respectively. In the
association studies for milk yield, fat percentage and protein percentage, for which
chromosome 20 QTL was detected, the p.Phe279Tyr variant was the most significantly
associated variant in both assemblies. The SNP is located at 31,888,449 and 39,903,176
bp on the ARS-UCD1.2 and UOA_Angus_1 build (the orientation of chromosome 20 is
flipped in UOA_Angus_1). The frequency of the milk yield-increasing and fat and pro-
tein content-decreasing tyrosine-encoding T allele was 12.90 and 13.02% in ARS-UCD1.2
and UOA_Angus_1, respectively, and the P-values for milk yield, fat percentage and
protein percentage were 3.18 x 10-12, 1.11 x 10-42, 6.98 x 10-50 and 7.40 x 10-14, 6.89 x 10-38,
5.57 x 10-48.

Two adjacent SNPs (ARS-UCD1.2: g.611019G>A & g.611020C>A; UOA_Angus_1:
g.81672806C>T & g.81672805G>T; the orientation of chromosome 14 is flipped in UOA_-
Angus_1) in the coding sequence of DGAT1 cause the p.Ala232Lys substitution that has
a large effect on milk yield and composition. In 161 sequenced BSW cattle of our study,
the alternate allele was detected in the heterozygous state in two and one animals us-
ing the ARS-UCD1.2 and UOA_Angus_1 datasets. When imputed into array-derived
genotypes of the mapping cohort, the lysine variant had a frequency of 0.0082 (Beagle
R2: 0.98) and 0.0002 (Beagle R2: 0.82) in the ARS-UCD1.2 and UOA_Angus_1 imputed
genotypes. An association study between imputed sequence variant genotypes and fat
percentage revealed strong association (P = 1.46 x 10-76) at the proximal region of chro-
mosome 14 encompassing DGAT1 in the ARS-UCD1.2 data (Fig. 2.4A). The top associ-
ation signal resulted from a variant at position 420,486. The P-value of the p.Ala232Lys
variant was only slightly higher (P = 2.18 x 10-76). Using the UOA_Angus_1 imputed
data, we detected strong association at the corresponding region (Fig. 2.4A). The most
significantly associated variant (P = 1.80 x 10-76) was at 81,673,955 bp. However, the
p.Ala232Lys variant was not associated with fat percentage (P = 0.33). Also, the DGAT1
gene was missing in the Ensembl annotation of the UOA_Angus_1 assembly.

Next, we estimated the genomic heritability (h2) for stature and six dairy traits using
a genomic restricted maximum likelihood estimation (GREML) approach. Therefore, we
built a genomic relationship matrix separately for each assembly using the genotypes
of all imputed autosomal variants that had minor allele count > 3 and imputation ac-
curacy (Beagle R2) > 0.5. The estimates for the genomic h2 did not differ for all seven
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traits (Fig. 2.4E). We then partitioned (genomic) h2 by the 29 autosomes using the two
imputed datasets. As seen for the total h2, we found no difference in variance explained
by individual autosomes between the two assemblies.

2.3 Discussion

We investigated whether the choice of the reference genome impacts genomic analyses
in BSW cattle that have been sequenced with short paired-end reads. To the best of our
knowledge, such an evaluation had not been performed so far in cattle. A Hereford-
based genome assembly [20] is accepted by the bovine genomics community as ref-
erence genome for reference-guided alignment and variant detection in both taurine
and indicine cattle [8, 9]. Recently, the application of sophisticated methods to assem-
ble long sequencing reads provided reference-quality assemblies for cattle breeds other
than Hereford [17, 21]. None of these novel reference-quality assemblies has been con-
sidered as a reference genome for sequence variant analysis so far. The genetic distance
between the reference genome and the target sample and the properties (GC content,
genome size, proportion of repeats) of the reference genome impact reference-guided
mapping and variant genotyping [17, 24, 25, 37, 38]. To investigate reference-guided
sequence analyses from different assemblies, we aligned short sequencing reads of 161
BSW cattle to the Hereford-based ARS-UCD1.2 and Angus-based UOA_Angus_1 as-
semblies. Widely used metrics (contig N50, scaffold N50, BUSCO completeness) sug-
gest that both assemblies are of reference quality [17, 20]. The sequence read mapping
and variant genotyping accuracy did not differ notably between the ARS-UCD1.2 and
UOA_Angus_1 assemblies, indicating that both assemblies are suitable for reference-
guided genome analyses in BSW cattle. The BSW, Angus and Hereford breeds are closely
related as these breeds diverged relatively recently [39]. Greater genetic distance be-
tween the target breed and the reference genome might compromise mapping rate and
alignment quality [24, 25, 40]. However, it is worth mentioning that the orientation of
some chromosomes is flipped in UOA_Angus_1 (i.e., the beginning of the chromosome
corresponds to the end in the corresponding ARS-UCD1.2 entry). This does not affect
sequence read mapping and variant genotyping but needs to be considered when com-
paring selection signatures and association signals across assemblies.

The number and density of INDELs that segregate in 161 BSW cattle was slightly
lower when variants were called from the UOA_Angus_1 than ARS-UCD1.2 alignment.
However, the proportion of multiallelic INDELs and INDELs fixed for the alternate al-
lele was higher in the UOA_Angus_1 than ARS-UCD1.2 alignment. In fact, the absolute
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number of INDELs fixed for the alternate allele was three times higher when the se-
quence data were aligned against the UOA_Angus_1 assembly. An excess of artefactual
INDELs in long-read sequencing-based assemblies was noted by Watson and Warr [41].
Both the ARS-UCD1.2 and UOA_Angus_1 assembly were constructed from PacBio con-
tinuous long reads. While ARS-UCD1.2 was polished with short reads and manually
curated, this step was not as extensively carried out for the UOA_Angus_1 assembly
[17, 20]. Our results may indicate that UOA_Angus_1 contains somewhat more artefac-
tual INDELs than ARS-UCD1.2. However, the absolute number of artefactual INDELs
is low for both assemblies and their genotypes are likely to be discarded from most
downstream analyses as most of them will be fixed for the alternate allele. Importantly,
the concordance between sequence- and array-called genotypes was very high and the
number of variants deviating from Hardy-Weinberg proportions was very low at segre-
gating sites for both assemblies, indicating that reliable genotypes can be obtained from
both ARS-UCD1.2 and UOA_Angus_1.

The length of chromosomes 12 and 28 differs considerably between the assemblies.
A large segmental duplication affects chromosome 12 in both assemblies. This duplica-
tion compromises the mapping of sequencing reads, thereby causing misalignments and
flaws in the resulting genotypes [31, 32, 33]. An excess of variants, including many for
which the genotypes deviate from Hardy-Weinberg proportions, was detected for both
assemblies within the segmental duplication. Because the segmental duplication is two
times longer in UOA_Angus_1 than ARS-UCD1.2, the genome-wide number of vari-
ants, variant density, proportion of missing genotypes and number of variants deviating
from Hardy-Weinberg proportions was higher using UOA_Angus_1. At chromosome
28, the variant density was similar for both assemblies, but the absolute number of vari-
ants detected was lower for UOA_Angus_1 because the chromosome was shorter. The
UOA_Angus_1 assembly lacks approximately 9.5 million bases that likely correspond to
the ARS-UCD1.2 chromosome 28 sequence from 36,496,661 bp onwards. According to
the Ensembl (build 101) annotation of ARS-UCD1.2, this segment encompasses 67 genes
that are consequently missing in the autosomal annotation of UOA_Angus_1.

Differences in the functional annotations predicted for variants obtained from ARS-
UCD1.2 and UOA_Angus_1 were evident from the output of the VEP tool. The number
of variants annotated to inter- and intragenic regions differed between the assemblies
because the length of these features differed in the annotation files. The accuracy and
quality of the annotation depend on whether a posterior manual validation of structures
and functions is performed [42, 43]. An example for a striking difference in the coding
sequence between both annotations is DGAT1, a gene that harbours a missense variant
(p.Ala232Lys) with a large impact on dairy traits [36]. Our GWAS identified a QTL for
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dairy traits at chromosome 14 in both assemblies. The QTL encompassed DGAT1 using
the ARS-UCD1.2 annotation. However, DGAT1 was not annotated at the corresponding
sequence of the UOA_Angus_1 assembly. Given the manual curation efforts of the ARS-
UCD1.2 annotation in contrast to the mere computational-based inference of annotations
for UOA_Angus_1 from the Ensembl database, we suspect that the latter produces more
erroneous annotations [43]. In fact, the ARS-UCD1.2 assembly is currently the widely
accepted and universally applied bovine reference genome [44, 45]. It is very unlikely
that this will change soon because besides the completeness and continuity of the refer-
ence assembly, its functional annotation is crucial for downstream analyses. While tools
exist to lift physical coordinates from one genomic context to another based on flanking
sequences, this approach is cumbersome. Consequently, errors and gaps in the func-
tional annotations of bovine reference-quality assemblies other than ARS-UCD1.2 are a
major obstacle to switch references. The application of an augmented reference genome
that contains ARS-UCD1.2 and its functional annotations as backbone as well as variants
detected in other assemblies might solve such problems [12, 46].

We applied the composite likelihood ratio test to detect alleles that are either close
to fixation or already reached fixation using genotypes obtained from both references.
Supplying information about ancestral and derived alleles to the composite likelihood
ratio test is required to determine which allele has been under selection and increases
the statistical power to detect signatures of selection [34, 47]. Although we were unable
to differentiate between ancestral and derived alleles, we identified strong signatures
of selection from both assemblies at regions encompassing genes that were previously
detected in different cattle breeds including BSW [48, 49, 50]. However, quantifying
the overlap between the signatures of selection detected in our and previous studies
is not readily possible. First, a resource like AnimalQTLdb [51] that would allow for
a systematic assessment of signatures of selection across studies does not exist. Sec-
ond, differences in marker density and parameter settings (e.g., folded versus unfolded
site frequency spectrum) may affect the mapping precision and preclude an immediate
comparison between studies. Third, the use of different assemblies, as it was the case
in our study, results in coordinates that need to be lifted from one to another assem-
bly. By visually inspecting the genes encompassed by the signatures of selection and
manually lifting coordinates from ARS-UCD1.2 to UOA_Angus_1, we were able to con-
firm that the signatures of selection at chromosome 6 encompassing the NCAPG and
on chromosome 5 upstream KITLG were indeed identical between both assemblies and
detected previously in BSW cattle [50, 52]. This finding suggests that plausible signa-
tures of selection can be identified using folded site frequency spectrum. However, we
also detected signatures of selection that did not overlap between both assemblies. For
instance, a strong selective sweep on chromosome 13 was only detected using the ARS-
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UCD1.2 assembly, while a putative sweep on chromosome 22 was only detected using
the UOA_Angus_1 assembly. These differences were unexpected because the two as-
semblies were constructed from breeds that diverged relatively recent. In fact, Hereford
and Angus are both taurine beef breeds that originate from Great Britain and phyloge-
netic analyses suggest that they are closely related [39]. The BSW cattle breed is also a
taurine breed of European ancestry. When the BSW samples were aligned to the ARS-
UCD1.2 assembly, the chromosome 13 region harbouring the signature of selection was
depleted for variation, suggesting that the selected allele(s) already reached fixation. In
fact, we observed many variants that were fixed for the alternate allele within the top
windows at chromosome 13. These variants were absent when the sequencing data were
aligned to UOA_Angus_1, because their alternate alleles in ARS-UCD1.2 correspond to
reference alleles in UOA_Angus_1. Thus, our findings suggest that detecting selective
sweeps that already reached fixation with the composite likelihood ratio test depends
on the relationship between the study population and the reference genome if a folded
site frequency spectrum is used. The CLR test would reveal the same regions from both
assemblies if only segregating sites are considered for the analysis. However, restricting
the analysis to segregating sites bears a risk of missing sweeps that already reached
fixation.

To our knowledge, a quantitative assessment of differences arising from the use of
different reference genomes had only been performed in humans at a single nucleotide
variant (SNV) level [25, 38]. Recently, Low et al. [17] mapped 38 cattle samples from 7
breeds against the Brahman and Angus assemblies to detect larger structural variants
that may be involved in the adaptability of indicine cattle to harsh environments. We
considered 161 BSW cattle for a thorough characterization of reference-guided analyses
from two assemblies. As such an evaluation may be regularly performed in the future
for many species, we developed a workflow that can be adapted and reused for varies
breeds, populations and species [53]. In fact, our evaluation is the first to compare se-
quence variant discovery from primary and haplotype-resolved assemblies. Therefore,
our findings also show that haplotype-resolved reference-quality assemblies may readily
serve as reference genomes for linear read mapping and variant genotyping.

2.4 Conclusions

Our results suggest that both the ARS-UCD1.2 and UOA_Angus_1 assembly are suit-
able for reference-guided genome analyses in BSW cattle. The choice of the reference
may have a large impact on detecting signatures of selection that already reached fixa-
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tion. Furthermore, curation of the reference genomes is required to improve the charac-
terisation of functional elements. The workflow herein developed is a starting point for
a comprehensive comparison of the impact of reference genomes on genomic analyses
in various breeds, populations and species.

2.5 Methods

Data availability and code reproducibility

Short paired-end whole-genome sequencing reads of 161 BSW cattle were considered
for our analyses. Accession numbers for all animals are available in Additional file 1.

In order to investigate the effect of different assemblies on downstream analyses,
we considered the current bovine Hereford-based reference genome (ARS-UCD1-2) [20]
and an Angus-based reference-quality assembly (UOA_Angus_1) [17] that was gener-
ated from a F1 Angus x Brahman cross. The assemblies were downloaded from the pub-
lic repositories of the NCBI (GCA_002263795.2, GCA_003369685.2). The UOA_Angus_1
assembly does not contain the X chromosomal sequence because it represents the pater-
nal haplotype of a male animal. The ARS-UCD1.2 assembly was created from a female
cow, thus does not contain a Y chromosomal sequence. For the sake of completeness, we
expanded the ARS-UCD1.2 assembly with the Y chromosomal sequence from Btau 5.0
and the UOA_Angus_1 assembly with the X chromosomal sequence from ARS-UCD1.2.

We compared the assemblies regarding mapping and variant calling, functional an-
notation, detection of signatures of selection, imputation and genome-wide association
testing. Alignment, coverage, variant calling, imputation, annotation and analysis work-
flows were implemented as described below using Snakemake [54] (version 5.10.0).
Python 3.7.4 has been used for running custom scripts as well as for submission and
generation of Snakemake workflows.

Unless stated otherwise, the R (version 3.3.3) software environment and ggplot2
package (version 3.0.0) were used to create figures and perform statistical analyses.
Paired t-test and Kruskal-Wallis rank sum test were applied to assess differences be-
tween assemblies for normal and not normal distributed values, respectively.
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Alignment quality and depth of coverage

Quality assessment and control (removal of adapter sequences and reads and bases
with low quality) of the raw sequencing data was carried out using the fastp software
[55] (version 0.19.4) with default parameter settings. Reads were discarded when the
phred-scaled quality was below 15 for more than 15% of the bases.

When necessary, the resulting FASTQ files were split into up to 13 read-group-
specific FASTQ files to facilitate the read group aware processing of the data using gdc-
fastq-splitter [56] (version 0.0.1). The filtered reads were subsequently aligned to both
the ARS-UCD1.2 and UOA_Angus_1 assemblies (see above) using the MEM-algorithm
of the Burrows-Wheeler Alignment (BWA) software [57, 58] (version 0.7.17) with op-
tion -M and –R to mark shorter split hits as secondary alignments and supply read
group identifier and default values for all other parameters. Samblaster [59] (version
0.1.24) was used to mark duplicates in the SAM files, which were then converted into
the binary format by using SAMtools [60] (version 1.6). Sambamba [61] (version 0.6.6)
was used for coordinate-sorting (sort function) and to combine the read group-specific
BAM files into sample-specific sorted BAM files. Duplicated reads and PCR duplicates
of the merged and coordinate-sorted BAM files were marked using the MarkDuplicates
module from Picard Tools [62] (version 2.18.17).

Uniquely mapped and properly paired reads that had mapping quality greater than
10 were obtained using SAMtools view -q 10 -F 1796. We considered a phred-scaled
mapping quality threshold of 10 to retain only reads (referred to as high-quality reads)
that qualify for variant genotyping according to best practice guidelines of the GATK
[28, 29].

The mosdepth software [63] (version 0.2.2) was used to extract the number of reads
that covered a genomic position in order to obtain the average coverage per sample and
chromosome. We considered only high-quality reads (by excluding reads with mapping
quality < 10 and SAM flag 1796).

Sequence variant genotyping and variant statistics

We used the BaseRecalibrator module of the Genome Analysis Toolkit (GATK - ver-
sion 4.1.4.1) [64, 65] to adjust the base quality scores using 115,815,241 (ARS-UCD1.2)
and 87,710,119 (UOA_Angus_1) unique positions from the Bovine dbSNP version 150,
as known variants. To obtain the coordinates of known sites for the UOA_Angus_1
assembly, we used liftover coordinates obtained from the mapping of 120 bases flank-
ing the known ARS-UCD1.2 positions to UOA_Angus_1 using the MEM-approach of
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BWA (see above) with option –k 120 to consider only full-length matches. To discover
and genotype variants from the recalibrated BAM files, we used the GATK according
to the best practice guidelines [28, 29]. The GATK HaplotypeCaller module was run to
produce gVCF (genomic Variant Call Format) files. The gVCF files were then consoli-
dated using GenomicsDBImport and passed to the GenotypeGVCFs module to geno-
type polymorphic SNP and INDELs. We applied the VariantFiltration module for site-
level filtration with the following recommended thresholds to retain high-quality SNP
and INDELs: QualByDepth (QD) > 2.0, Qual > 30, Strand Odds Ratio (SOR) < 3.0, Fish-
erStrand (FS) < 60.0, RMSMappingQuality (MQ) > 40.0, MappingQualityRankSumTest
(MQRankSum) > 12.5, ReadPosRankSumTest (ReadPosRankSum) > 8.0 for SNPs, and
(QD) > 2.0, Qual > 30, Strand Odds Ratio (SOR) < 10.0, FisherStrand (FS) < 200.0,
ReadPosRankSumTest (ReadPosRankSum) > -20.0 for INDELs. Only variants with a
genotyping rate of 50% or higher (this is, minimum of 161 alleles - AN) were consid-
ered. Variants not meeting all the criteria were discarded.

Beagle [30] (version 4.1) haplotype phasing and imputation was run to improve the
raw genotype calls and impute missing genotypes. The genotype likelihood (gl) mode
was applied in order to infer missing and adjust existing genotypes based on the phred-
scaled likelihoods of all other non-missing genotypes.

Alternate allele frequency was calculated using the `–keep-allele-order –freq` flags
with PLINK 1.9 [66] and non-segregating variants were subsequently filtered out from
the imputed VCF file with the option `–mac 1 –remove-filtered-all` from VCFtools [67].
Biallelic variants have been retrieved by using the filter `–min-alleles 2 –max-alleles 2`
with VCFtools. Index and stats for the relevant VCF files were generated through tabix
[68], VCFtools and BCFtools [69], respectively. Per-sample stats were obtained by adding
the `-v` flag when generating the stats with VCFtools. Observed genotypes were tested
for deviation from Hardy-Weinberg proportions using the `–hwe 10e-8` and `–hardy
–recode` flags with PLINK 1.9 [66]. Transition and transversion ratio of SNPs were cal-
culated via VCFtools.

Functional annotation of polymorphic sites

Functional consequences of high-quality and non-fixed SNPs and INDELs were pre-
dicted according to the Ensembl (release 101) annotation of the bovine genome assembly
ARS-UCD1.2 and UOA_Angus_1, respectively, using the Ensembl Variant Effect Predic-
tor tool (VEP - version 91.3) [70] with default parameters and `–hgvs –symbol` nomen-
clature. The classification of variants according to sequence ontology terms and the
prediction of putative impacts on protein function followed Ensembl guidelines. Basic

41



CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

statistics of the annotation were calculated using AGAT [71] (version v0.5.1).

Signatures of selection

Signatures of recent selection were identified using the composite likelihood ratio
(CLR) approach implemented in Sweepfinder2 [72]. We considered 19,370,683 (ARS-
UCD1.2) and 19,255,155 (UOA_Angus_1) biallelic SNP (segregating sites and SNP that
were fixed for the non-reference allele) to calculate the CLR in 20 Kb windows with pre-
computed empirical alternate allele frequency. The top 0.1% windows were considered
as putative selective sweeps. Adjacent top 0.1% windows were merged into regions. The
gene content of the regions was determined according to the annotations from Ensembl
(release 101) using BEDTools [73].

Dot plots

To identify sequence similarities and dissimilarities between the two assemblies, we
inspected chromosome wise dot plots of pair-wise sequence alignments using LASTZ
[74] (v1.04.03) with the options `–notransition –nogapped –step=20 –exact=50` using
repeat-masked assemblies which we downloaded from Ensembl (release 101).

Imputation

Microarray-derived SNP genotypes were available for 30,499 BSW cattle typed on
seven low-density (20k-150k) and one high-density chip (Illumina BovineHD; 777k). Co-
ordinates of the SNP were originally determined according to the ARS-UCD1.2 build. To
remap the SNP to the UOA_Angus_1 assembly, we used liftover coordinates obtained
from the mapping of 120 bases flanking the BovineHD probes to the UOA_Angus_1
assembly using the MEM algorithm of BWA [57, 58] with option –k 120 to consider only
full-length matches. Both the original and the remapped genotype data were imputed
(separately) to the whole genome sequence level using a stepwise approach with refer-
ence panels aligned to the respective genome assemblies. First, genotypes for all animals
typed at low density were imputed to higher density (N = 683,752 (ARS-UCD1.2) and
622,699 (UOA_Angus_1) SNP) using 1,166 reference animals with BovineHD-derived
genotypes. In a second step, the partially imputed high-density genotypes were imputed
to the sequence level using a reference panel of 161 sequenced animals. Both steps of
imputation were carried out with Beagle 5.1 [75]. Variants with MAC > 3 (or) deviating
significantly from Hardy-Weinberg proportions (P < 10-6), (or) with imputation accu-
racy (Beagle R2) less than 0.5 were filtered out. The imputed data with variants aligned
to the ARS-UCD1.2 and UOA_Angus_1 assembly respectively, contained genotypes at
12,761,165 and 12,602,069 sequence variants.
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Genome-wide association testing and estimation of genomic heritability

We tested the association between phenotypes in the form of de-regressed proofs
for six traits and sequence variants in between 11,294 and 12,434 BSW cattle. We consid-
ered phenotypes for stature (N=11,294), milk yield (N=13,388), protein yield (N=12,392),
fat yield (N=12,388), protein content (N=12,439), and fat content (N=12,434). The SNP-
based association study was carried out using a linear mixed model implemented with
the MLMA-approach of the GCTA software package [76]. The model included a ge-
nomic relationship matrix built from 560,777 autosomal SNPs that were typed on the
BovineHD chip (positions mapped according to ARS-UCD1.2) and four principal com-
ponents to account for relatedness and population stratification. The genomic heritabil-
ity was estimated for the six traits using the genomic restricted maximum likelihood
(GREML) approach implemented in GCTA [76]. Therefore, we used genomic relation-
ship matrices (GRM) that were built from all imputed autosomal sequence variants. We
also partitioned the genomic heritability onto individual autosomes using GRM built
from variants of the respective autosomes.

References

[1] Hao Zhao, Zhifu Sun, Jing Wang, Haojie Huang, Jean Pierre Kocher, and Liguo Wang. CrossMap: A
versatile tool for coordinate conversion between genome assemblies. Bioinformatics, 30(7):1006–1007,
apr 2014. ISSN 14602059. doi: 10.1093/bioinformatics/btt730.

[2] Lawrence B. Schook, Jonathan E. Beever, Jane Rogers, Sean Humphray, Alan Archibald, Patrick
Chardon, Denis Milan, Gary Rohrer, and Kellye Eversole. Swine Genome Sequencing Consortium
(SGSC): A strategic roadmap for sequencing the pig genome. In Comparative and Functional Genomics,
volume 6, pages 251–255, jun 2005. doi: 10.1002/cfg.479.

[3] The Bovine Genome Sequencing and Analysis Consortium, Christine G. Elsik, Ross L. Tellam, Kim C.
Worley, Richard A. Gibbs, Donna M. Muzny, George M. Weinstock, David L. Adelson, Evan E. Eichler,
Laura Elnitski, Roderic Guigó, et al. The genome sequence of taurine cattle: A window to ruminant
biology and evolution. Science, 324(5926):522–528, apr 2009. ISSN 00368075. doi: 10.1126/science.1169
588.

[4] LaDeana W International Chicken Genome Sequencing Consortium., Overall coordination:, Hillier.
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate
evolution. Nature, (432):695–716, 2004. doi: https://doi.org/10.1038/nature03154. URL www.nature
.com/nature.

[5] Ross L. Tellam, Danielle G. Lemay, Curtis P. Van Tassell, Harris A. Lewin, Kim C. Worley, and Chris-
tine G. Elsik. Unlocking the bovine genome. BMC Genomics, 10:193, apr 2009. ISSN 14712164. doi:
10.1186/1471-2164-10-193.

[6] The Bovine HapMap Consortium, Evan E. Eichler, Roderic Guigó, Debora L. Hamernik, Steve M.
Kappes, Harris A. Lewin, David J. Lynn, Frank W. Nicholas, Alexandre Reymond, Monique Rijnkels,
Loren C. Skow, et al. Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle
Breeds. Science, 324(5926):522–528, apr 2009. ISSN 00368075. doi: 10.1126/science.1169588.

[7] Sandra Jansen, Bernhard Aigner, Hubert Pausch, Michal Wysocki, Sebastian Eck, Anna Benet-Pagès,
Elisabeth Graf, Thomas Wieland, Tim M. Strom, Thomas Meitinger, and Ruedi Fries. Assessment

43

www.nature.com/nature
www.nature.com/nature


CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

of the genomic variation in a cattle population by re-sequencing of key animals at low to medium
coverage. BMC Genomics, 14(1), jul 2013. ISSN 14712164. doi: 10.1186/1471-2164-14-446.

[8] Hans D. Daetwyler, Aurélien Capitan, Hubert Pausch, Paul Stothard, Rianne Van Binsbergen, Ras-
mus F. Brøndum, Xiaoping Liao, Anis Djari, Sabrina C. Rodriguez, Cécile Grohs, Diane Esquerré,
Olivier Bouchez, Marie Noëlle Rossignol, Christophe Klopp, Dominique Rocha, Sébastien Fritz, André
Eggen, Phil J. Bowman, David Coote, Amanda J. Chamberlain, Charlotte Anderson, Curt P. Vantassell,
Ina Hulsegge, Mike E. Goddard, Bernt Guldbrandtsen, Mogens S. Lund, Roel F. Veerkamp, Didier A.
Boichard, Ruedi Fries, and Ben J. Hayes. Whole-genome sequencing of 234 bulls facilitates mapping
of monogenic and complex traits in cattle. Nature Genetics, 46(8):858–865, 2014. ISSN 15461718. doi:
10.1038/ng.3034.

[9] L. Koufariotis, B. J. Hayes, M. Kelly, B. M. Burns, R. Lyons, P. Stothard, A. J. Chamberlain, and S. Moore.
Sequencing the mosaic genome of Brahman cattle identifies historic and recent introgression including
polled. Scientific Reports, 8(1), dec 2018. ISSN 20452322. doi: 10.1038/s41598-018-35698-5.

[10] Jacob Pritt, Nae Chyun Chen, and Ben Langmead. FORGe: Prioritizing variants for graph genomes.
Genome Biology, 19(1):220, dec 2018. ISSN 1474760X. doi: 10.1186/s13059-018-1595-x.

[11] Danang Crysnanto, Christine Wurmser, and Hubert Pausch. Accurate sequence variant genotyping
in cattle using variation-aware genome graphs. Genetics Selection Evolution, 51(1):21, may 2019. ISSN
12979686. doi: 10.1186/s12711-019-0462-x.

[12] Danang Crysnanto and Hubert Pausch. Bovine breed-specific augmented reference graphs facilitate
accurate sequence read mapping and unbiased variant discovery. Genome Biology, 21(184), 2020. doi:
https://doi.org/10.1186/s13059-020-02105-0. URL https://doi.org/10.1186/s13059-020-02105-0.

[13] Sara Ballouz, Alexander Dobin, and Jesse A. Gillis. Is it time to change the reference genome? Genome
Biology, 20(1):1–9, 2019. ISSN 1474760X. doi: 10.1186/s13059-019-1774-4.

[14] John Eid. Real-Time DNA Sequencing fromSingle Polymerase Molecules. Science, 323(5910):130–133,
jan 2009. ISSN 00368075. doi: 10.1126/science.1162986.

[15] Alexander S. Mikheyev and Mandy M.Y. Tin. A first look at the Oxford Nanopore MinION sequencer.
Molecular Ecology Resources, 14(6):1097–1102, nov 2014. ISSN 17550998. doi: 10.1111/1755-0998.12324.

[16] van Dijk Erwin L., Yan Jaszczyszyn, Delphine Naquin, and Claude Thermes. The Third Revolution in
Sequencing Technology. Trends Genet, 34(9):666–681, sep 2018. ISSN 13624555. doi: 10.1016/j.tig.2018
.05.008.

[17] Wai Yee Low, Rick Tearle, Ruijie Liu, Sergey Koren, Arang Rhie, Derek M. Bickhart, Benjamin D.
Rosen, Zev N. Kronenberg, Sarah B. Kingan, Elizabeth Tseng, Françoise Thibaud-Nissen, Fergal J.
Martin, Konstantinos Billis, Jay Ghurye, Alex R. Hastie, Joyce Lee, Andy W.C. Pang, Michael P. Heaton,
Adam M. Phillippy, Stefan Hiendleder, Timothy P.L. Smith, and John L. Williams. Haplotype-resolved
genomes provide insights into structural variation and gene content in Angus and Brahman cattle.
Nature Communications, 11(1), dec 2020. ISSN 20411723. doi: 10.1038/s41467-020-15848-y.

[18] Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. Haplotype-
resolved de novo assembly with phased assembly graphs. aug 2020. doi: http://arxiv.org/abs/2008
.01237. URL http://arxiv.org/abs/2008.01237.

[19] Sergey Koren, Arang Rhie, Brian P. Walenz, Alexander T. Dilthey, Derek M. Bickhart, Sarah B. Kingan,
Stefan Hiendleder, John L. Williams, Timothy P.L. Smith, and Adam M. Phillippy. De novo assembly
of haplotype-resolved genomes with trio binning. Nature Biotechnology, 36(12):1174–1182, 2018. ISSN
15461696. doi: 10.1038/nbt.4277.

[20] Benjamin D. Rosen, Derek M. Bickhart, Robert D. Schnabel, Sergey Koren, Christine G. Elsik, Eliza-
beth Tseng, Troy N. Rowan, Wai Y. Low, Aleksey Zimin, Christine Couldrey, Richard Hall, Wenli Li,
Arang Rhie, Jay Ghurye, Stephanie D. McKay, Françoise Thibaud-Nissen, Jinna Hoffman, Brenda M.
Murdoch, Warren M. Snelling, Tara G. McDaneld, John A. Hammond, John C. Schwartz, Wilson Nan-
dolo, Darren E. Hagen, Christian Dreischer, Sebastian J. Schultheiss, Steven G. Schroeder, Adam M.
Phillippy, John B. Cole, Curtis P. Van Tassell, George Liu, Timothy P.L. Smith, and Juan F. Medrano.
De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience, 9(3),
mar 2020. ISSN 2047217X. doi: 10.1093/gigascience/giaa021.

44

https://doi.org/10.1186/s13059-020-02105-0
http://arxiv.org/abs/2008.01237


CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

[21] Edward S. Rice, Sergey Koren, Arang Rhie, Michael P. Heaton, Theodore S. Kalbfleisch, Timothy
Hardy, Peter H. Hackett, Derek M. Bickhart, Benjamin D. Rosen, Brian Vander Ley, Nicholas W. Mau-
rer, Richard E. Green, Adam M. Phillippy, Jessica L. Petersen, and Timothy P.L. Smith. Continuous
chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. Giga-
Science, 9(4):1–9, apr 2020. ISSN 2047217X. doi: 10.1093/gigascience/giaa029.

[22] Rachel M. Sherman, Juliet Forman, Valentin Antonescu, Daniela Puiu, Michelle Daya, Nicholas
Rafaels, Meher Preethi Boorgula, Sameer Chavan, Candelaria Vergara, Victor E. Ortega, Albert M.
Levin, Celeste Eng, Maria Yazdanbakhsh, James G. Wilson, et al. Assembly of a pan-genome from
deep sequencing of 910 humans of African descent. Nature Genetics, 51(1):30–35, jan 2019. ISSN
15461718. doi: 10.1038/s41588-018-0273-y.

[23] Jacob F. Degner, John C. Marioni, Athma A. Pai, Joseph K. Pickrell, Everlyne Nkadori, Yoav Gilad,
and Jonathan K. Pritchard. Effect of read-mapping biases on detecting allele-specific expression from
RNA-sequencing data. Bioinformatics, 25(24):3207–3212, oct 2009. ISSN 13674803. doi: 10.1093/bioinf
ormatics/btp579.

[24] Torsten Günther and Carl Nettelblad. The presence and impact of reference bias on population ge-
nomic studies of prehistoric human populations. PLoS Genetics, 15(7), jul 2019. ISSN 15537404. doi:
10.1371/journal.pgen.1008302.

[25] Yan Guo, Yulin Dai, Hui Yu, Shilin Zhao, David C. Samuels, and Yu Shyr. Improvements and impacts
of GRCh38 human reference on high throughput sequencing data analysis. Genomics, 109(2):83–90,
mar 2017. ISSN 10898646. doi: 10.1016/j.ygeno.2017.01.005.

[26] Rasko Leinonen, Hideaki Sugawara, and Martin Shumway. The sequence read archive. Nucleic Acids
Research, 39(SUPPL. 1), jan 2011. ISSN 03051048. doi: 10.1093/nar/gkq1019.

[27] Rasko Leinonen, Ruth Akhtar, Ewan Birney, Lawrence Bower, Ana Cerdeno-Tárraga, Ying Cheng, Iain
Cleland, Nadeem Faruque, Neil Goodgame, Richard Gibson, Gemma Hoad, Mikyung Jang, Nima
Pakseresht, Sheila Plaister, Rajesh Radhakrishnan, Kethi Reddy, Siamak Sobhany, Petra Ten Hoopen,
Robert Vaughan, Vadim Zalunin, and Guy Cochrane. The European nucleotide archive. Nucleic Acids
Research, 39(SUPPL. 1), jan 2011. ISSN 03051048. doi: 10.1093/nar/gkq967.

[28] Geraldine A. Van der Auwera, Mauricio O. Carneiro, Christopher Hartl, Ryan Poplin, Guillermo del
Angel, Ami Levy-Moonshine, Tadeusz Jordan, Khalid Shakir, David Roazen, Joel Thibault, Eric Banks,
Kiran V. Garimella, David Altshuler, Stacey Gabriel, and Mark A. DePristo. From fastQ data to high-
confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioin-
formatics, (43):1110, 2013. ISSN 1934340X. doi: 10.1002/0471250953.bi1110s43.

[29] Broad_Institute. Germline short variant discovery (snps + indels), 2021. URL https://gatk.broadinst
itute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-.

[30] Brian L. Browning and Sharon R. Browning. Genotype Imputation with Millions of Reference Samples.
American Journal of Human Genetics, 98(1):116–126, jan 2016. ISSN 15376605. doi: 10.1016/j.ajhg.2015.
11.020.

[31] George E. Liu, Mario Ventura, Angelo Cellamare, Lin Chen, Ze Cheng, Bin Zhu, Congjun Li, Jiuzhou
Song, and Evan E. Eichler. Analysis of recent segmental duplications in the bovine genome. BMC
Genomics, 10, dec 2009. ISSN 14712164. doi: 10.1186/1471-2164-10-571.

[32] Derek M. Bickhart, Yali Hou, Steven G. Schroeder, Can Alkan, Maria Francesca Cardone, Lakshmi K.
Matukumalli, Jiuzhou Song, Robert D. Schnabel, Mario Ventura, Jeremy F. Taylor, Jose Fernando Gar-
cia, Curtis P. Van Tassell, Tad S. Sonstegard, Evan E. Eichler, and George E. Liu. Copy number variation
of individual cattle genomes using next-generation sequencing. Genome Research, 22(4):778–790, apr
2012. ISSN 10889051. doi: 10.1101/gr.133967.111.

[33] Hubert Pausch, Iona M. MacLeod, Ruedi Fries, Reiner Emmerling, Phil J. Bowman, Hans D. Daetwyler,
and Michael E. Goddard. Evaluation of the accuracy of imputed sequence variant genotypes and their
utility for causal variant detection in cattle. Genetics Selection Evolution, 49(1), feb 2017. ISSN 12979686.
doi: 10.1186/s12711-017-0301-x.

45

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-


CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

[34] Rasmus Nielsen, Scott Williamson, Yuseob Kim, Melissa J. Hubisz, Andrew G. Clark, and Carlos
Bustamante. Genomic scans for selective sweeps using SNP data. Genome Research, 15(11):1566–1575,
nov 2005. ISSN 10889051. doi: 10.1101/gr.4252305.

[35] Sarah Blott, Jong-Joo Kim, Sirja Moisio, Anne Schmidt-Küntzel, Anne Cornet, Paulette Berzi, Nadine
Cambisano, Christine Ford, Bernard Grisart, Dave Johnson, Latifa Karim, Patricia Simon, Russell Snell,
Richard Spelman, Jerry Wong, Johanna Vilkki, Michel Georges, Frédéric Farnir, Wouter Coppieters,
and Vialactia Biosciences. Molecular Dissection of a Quantitative Trait Locus: A Phenylalanine-to-
Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is
Associated With a Major Effect on Milk Yield and Composition. Genetics, 163(1):253–66, jan 2003.
ISSN 0016-6731.

[36] Bernard Grisart, Wouter Coppieters, Frédéric Farnir, Latifa Karim, Christine Ford, Paulette Berzi, Na-
dine Cambisano, Myriam Mni, Suzanne Reid, Patricia Simon, Richard Spelman, Michel Georges, and
Russell Snell. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense muta-
tion in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12
(2):222–231, 2002. ISSN 10889051. doi: 10.1101/gr.224202.

[37] Kathryn C. Asalone, Kara M. Ryan, Maryam Yamadi, Annastelle L. Cohen, William G. Farmer, Debo-
rah J. George, Claudia Joppert, Kaitlyn Kim, Madeeha Froze Mughal, Rana Said, Metin Toksoz-Exley,
Evgeny Bisk, and John R. Bracht. Regional sequence expansion or collapse in heterozygous genome as-
semblies. PLoS Computational Biology, 16(7), jul 2020. ISSN 15537358. doi: 10.1371/journal.pcbi.1008104.

[38] Bohu Pan, Rebecca Kusko, Wenming Xiao, Yuanting Zheng, Zhichao Liu, Chunlin Xiao, Sugunadevi
Sakkiah, Wenjing Guo, Ping Gong, Chaoyang Zhang, Weigong Ge, Leming Shi, Weida Tong, and
Huixiao Hong. Similarities and differences between variants called with human reference genome
HG19 or HG38. BMC Bioinformatics, 20, mar 2019. ISSN 14712105. doi: 10.1186/s12859-019-2620-0.

[39] Jared E. Decker, Stephanie D. McKay, Megan M. Rolf, Jae Woo Kim, Antonio Molina Alcalá, Tad S. Son-
stegard, Olivier Hanotte, Anders Götherström, Christopher M. Seabury, Lisa Praharani, Masroor El-
lahi Babar, Luciana Correia de Almeida Regitano, Mehmet Ali Yildiz, Michael P. Heaton, Wan Sheng
Liu, Chu Zhao Lei, James M. Reecy, Muhammad Saif-Ur-Rehman, Robert D. Schnabel, and Jeremy F.
Taylor. Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS
Genetics, 10(3), 2014. ISSN 15537404. doi: 10.1371/journal.pgen.1004254.

[40] Justin Bohling. Evaluating the effect of reference genome divergence on the analysis of empirical
RADseq datasets. Ecology and Evolution, 10(14):7585–7601, jul 2020. ISSN 20457758. doi: 10.1002/ece3
.6483.

[41] Mick Watson and Amanda Warr. Errors in long-read assemblies can critically affect protein prediction.
Nat Biotechnol, 37(2):124–126, feb 2019. ISSN 15461696. doi: 10.1038/s41587-018-0004-z.

[42] Sajeet Haridas, Asaf Salamov, and Igor V. Grigoriev. Fungal genome annotation. In Methods in Molec-
ular Biology, volume 1775, pages 171–184. Humana Press Inc., School of Life and Medical Sciences
University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK, 2018. doi: 10.1007/978-1-4939-7
804-5\_15.

[43] Erin McDonnell, Kimchi Strasser, and Adrian Tsang. Manual gene curation and functional annotation.
In Methods in Molecular Biology, volume 1775, pages 185–208. Humana Press Inc., School of Life and
Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK, 2018. doi: 10.1
007/978-1-4939-7804-5\_16.

[44] Leif Andersson, Alan L. Archibald, Cynthia D. Bottema, Rudiger Brauning, Shane C. Burgess, Dave W.
Burt, Eduardo Casas, Hans H. Cheng, Laura Clarke, Christine Couldrey, Brian P. Dalrymple, Chris-
tine G. Elsik, et al. Coordinated international action to accelerate genome-to-phenome with FAANG,
the Functional Annotation of Animal Genomes project. Genome Biology, 16(1):57, mar 2015. ISSN
1474760X. doi: 10.1186/s13059-015-0622-4.

[45] Emily L. Clark, Alan L. Archibald, Hans D. Daetwyler, Martien A.M. Groenen, Peter W. Harrison,
Ross D. Houston, Christa Kühn, Sigbjørn Lien, Daniel J. Macqueen, James M. Reecy, Diego Robledo,
Mick Watson, Christopher K. Tuggle, and Elisabetta Giuffra. From FAANG to fork: application of
highly annotated genomes to improve farmed animal production. Genome Biology, 21(1):285, dec 2020.
ISSN 1474760X. doi: 10.1186/s13059-020-02197-8.

46



CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

[46] Danang Crysnanto, Alexander S Leonard, Zih-Hua Fang, and Hubert Pausch. Novel functional se-
quences uncovered through a bovine multi-assembly graph. BioRxiv, jan 2021. doi: 10.1101/2021.01.
08.425845. URL https://doi.org/10.1101/2021.01.08.425845.

[47] Christian D. Huber, Michael DeGiorgio, Ines Hellmann, and Rasmus Nielsen. Detecting recent selec-
tive sweeps while controlling for mutation rate and background selection. Molecular Ecology, 25(1):
142–156, jan 2016. ISSN 1365294X. doi: 10.1111/mec.13351.

[48] Sophie Rothammer, Doris Seichter, Martin Förster, and Ivica Medugorac. A genome-wide scan for
signatures of differential artificial selection in ten cattle breeds. BMC Genomics, 14(908):1, 2013. doi: ht
tps://doi.org/10.1186/1471-2164-14-908. URL http://www.biomedcentral.com/1471-2164/14/908.

[49] Lingyang Xu, Derek M. Bickhart, John B. Cole, Steven G. Schroeder, Jiuzhou Song, Curtis P. Van
Tassell, Tad S. Sonstegard, and George E. Liu. Genomic signatures reveal new evidences for selection of
important traits in domestic cattle. Molecular Biology and Evolution, 32(3):711–725, 2015. ISSN 15371719.
doi: 10.1093/molbev/msu333.

[50] Meenu Bhati, Naveen Kumar Kadri, Danang Crysnanto, and Hubert Pausch. Assessing genomic
diversity and signatures of selection in Original Braunvieh cattle using whole-genome sequencing
data. BMC Genomics, 21(1), jan 2020. ISSN 14712164. doi: 10.1186/s12864-020-6446-y.

[51] Z. Hu, C. Park, and J. Reecy. Building a livestock genetic and genomic information knowledgebase
through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 47(1), 2019.
ISSN 03051048. doi: 10.1093/nar/gky1084.

[52] Heidi Signer-Hasler, Alexander Burren, Markus Neuditschko, Mirjam Frischknecht, Dorian Garrick,
Christian Stricker, Birgit Gredler, Beat Bapst, and Christine Flury. Population structure and genomic
inbreeding in nine Swiss dairy cattle populations. Genetics Selection Evolution, 49(1), nov 2017. ISSN
12979686. doi: 10.1186/s12711-017-0358-6.

[53] ETH_Animal_Genomics. Github repository: Reference assembly choice, 2021. URL https://github.c
om/AnimalGenomicsETH/Reference_assembly_choice.

[54] Johannes Köster and Sven Rahmann. Snakemake-a scalable bioinformatics workflow engine. Bioinfor-
matics, 28(19):2520–2522, 2012. ISSN 14602059. doi: 10.1093/bioinformatics/bts480.

[55] Shifu Chen, Yanqing Zhou, Yaru Chen, and Jia Gu. Fastp: An ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics, 34(17):i884–i890, sep 2018. ISSN 14602059. doi: https://doi.org/10.1093/bioinformati
cs/bty560.

[56] Kyle Hernandez. Cli for splitting a fastq that has multiple readgroups, 2020. URL https://github.c
om/kmhernan/gdc-fastq-splitter.

[57] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 25(14):1754–1760, jul 2009. ISSN 13674803. doi: 10.1093/bioinformatics/btp324.

[58] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. mar 2013.
doi: http://arxiv.org/abs/1303.3997. URL http://arxiv.org/abs/1303.3997.

[59] Gregory G. Faust and Ira M. Hall. SAMBLASTER: Fast duplicate marking and structural variant read
extraction. Bioinformatics, 30(17):2503–2505, sep 2014. ISSN 14602059. doi: https://doi.org/10.1093/bi
oinformatics/btu314.

[60] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo
Abecasis, and Richard Durbin. The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16):2078–2079, aug 2009. ISSN 13674803. doi: 10.1093/bioinformatics/btp352.

[61] Artem Tarasov, Albert J Vilella, Edwin Cuppen, Isaac J Nijman, and Pjotr Prins. Sambamba: fast
processing of NGS alignment formats. 31(12):2032–4, 2015. doi: 10.1093/bioinformatics/btv098. URL
10.1093/bioinformatics/btv098.

[62] Broad_Institute. Picard tools, 2021. URL http://broadinstitute.github.io/picard/.

47

https://doi.org/10.1101/2021.01.08.425845
http://www.biomedcentral.com/1471-2164/14/908
https://github.com/AnimalGenomicsETH/Reference_assembly_choice
https://github.com/AnimalGenomicsETH/Reference_assembly_choice
https://github.com/kmhernan/gdc-fastq-splitter
https://github.com/kmhernan/gdc-fastq-splitter
http://arxiv.org/abs/1303.3997
10.1093/bioinformatics/btv098
http://broadinstitute.github.io/picard/


CHAPTER 2. IMPACT OF THE REFERENCE ASSEMBLY CHOICE

[63] Brent S. Pedersen and Aaron R. Quinlan. Mosdepth: Quick coverage calculation for genomes and
exomes. Bioinformatics, 34(5):867–868, mar 2018. ISSN 14602059. doi: 10.1093/bioinformatics/btx699.

[64] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, Andrew
Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, and Mark A. DePristo. The
genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing
data. Genome Research, 20(9):1297–1303, sep 2010. ISSN 10889051. doi: 10.1101/gr.107524.110.

[65] Mark A. Depristo, Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire, Christopher Hartl,
Anthony A. Philippakis, Guillermo Del Angel, Manuel A. Rivas, Matt Hanna, Aaron McKenna, Tim J.
Fennell, Andrew M. Kernytsky, Andrey Y. Sivachenko, Kristian Cibulskis, Stacey B. Gabriel, David Alt-
shuler, and Mark J. Daly. A framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nature Genetics, 43(5):491–501, may 2011. ISSN 10614036. doi: 10.1038/ng.806.

[66] Christopher C. Chang, Carson C. Chow, Laurent C.A.M. Tellier, Shashaank Vattikuti, Shaun M. Purcell,
and James J. Lee. Second-generation PLINK: Rising to the challenge of larger and richer datasets.
GigaScience, 4(1), feb 2015. ISSN 2047217X. doi: 10.1186/s13742-015-0047-8.

[67] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo,
Robert E. Handsaker, Gerton Lunter, Gabor T. Marth, Stephen T. Sherry, Gilean McVean, and Richard
Durbin. The variant call format and VCFtools. Bioinformatics, 27(15):2156–2158, aug 2011. ISSN
13674803. doi: 10.1093/bioinformatics/btr330.

[68] Heng Li. Tabix: Fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics, 27
(5):718–719, mar 2011. ISSN 13674803. doi: 10.1093/bioinformatics/btq671.

[69] Heng Li. A statistical framework for SNP calling, mutation discovery, association mapping and pop-
ulation genetical parameter estimation from sequencing data. Bioinformatics, 27(21):2987–2993, nov
2011. ISSN 13674803. doi: 10.1093/bioinformatics/btr509.

[70] William McLaren, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R.S. Ritchie, Anja Thor-
mann, Paul Flicek, and Fiona Cunningham. The Ensembl Variant Effect Predictor. Genome Biology, 17
(1), jun 2016. ISSN 1474760X. doi: 10.1186/s13059-016-0974-4.

[71] J. Dainat. Agat: Another gff analysis toolkit to handle annotations in any gtf/gff format., 2021. URL
https://www.doi.org/10.5281/zenodo.3552717. Version v0.5.1.

[72] Michael Degiorgio, Christian D. Huber, Melissa J. Hubisz, Ines Hellmann, and Rasmus Nielsen.
SweepFinder2: Increased sensitivity, robustness and flexibility. Bioinformatics, 32(12):1895–1897, jun
2016. ISSN 14602059. doi: 10.1093/bioinformatics/btw051.

[73] Aaron R. Quinlan and Ira M. Hall. BEDTools: A flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841–842, jan 2010. ISSN 13674803. doi: 10.1093/bioinformatics/btq033.

[74] Robert S Harris. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsylvania State Univer-
sity, USA, 2007. URL https://dl.acm.org/doi/book/10.5555/1414852.

[75] Brian L. Browning, Ying Zhou, and Sharon R. Browning. A One-Penny Imputed Genome from Next-
Generation Reference Panels. American Journal of Human Genetics, 103(3):338–348, sep 2018. ISSN
15376605. doi: 10.1016/j.ajhg.2018.07.015.

[76] Jian Yang, S. Hong Lee, Michael E. Goddard, and Peter M. Visscher. GCTA: A tool for genome-wide
complex trait analysis. American Journal of Human Genetics, 88(1):76–82, jan 2011. ISSN 00029297. doi:
10.1016/j.ajhg.2010.11.011.

48

https://www.doi.org/10.5281/zenodo.3552717
https://dl.acm.org/doi/book/10.5555/1414852


Chapter 3

The size and composition of haplotype reference
panels impact the accuracy of imputation from
low-pass sequencing in cattle

Audald Lloret-Villas1, Hubert Pausch1 and Alexander S. Leonard1

1 Animal Genomics, ETH Zürich, Zürich, Switzerland.

Published in Genomics Selection Evolution (2023) 55:33

Contribution: I participated in conceiving the study, designing the experiments,
analysing the results and writing the manuscript. I also developed and com-
piled reproducible pipelines.

49



CHAPTER 3. HAPLOTYPE PANELS FOR THE IMPUTATION OF LOW-PASS DATA

Abstract

Background: Low-pass sequencing followed by sequence variant genotype im-
putation is an alternative to the routine microarray-based genotyping in cattle. How-
ever, the impact of haplotype reference panels and their interplay with the coverage
of low-pass whole-genome sequencing data have not been sufficiently explored in
typical livestock settings where only a small number of reference samples is avail-
able.

Methods: Sequence variant genotyping accuracy was compared between two
variant callers, GATK and DeepVariant, in 50 Brown Swiss cattle with sequencing
coverages ranging from 4 to 63-fold. Haplotype reference panels of varying sizes
and composition were built with DeepVariant based on 501 individuals from nine
breeds. High-coverage sequence data for 24 Brown Swiss cattle were downsampled
to between 0.01- and 4-fold to mimic low-pass sequencing. GLIMPSE was used to
infer sequence variant genotypes from the low-pass sequencing data using different
haplotype reference panels. The accuracy of the sequence variant genotypes that
were inferred from low-pass sequencing data was compared with sequence variant
genotypes called from high-coverage data.

Results: DeepVariant was used to establish bovine haplotype reference panels
because it outperformed GATK in all evaluations. Within-breed haplotype refer-
ence panels were more accurate and efficient to impute sequence variant genotypes
from low-pass sequencing than equally-sized multibreed haplotype reference pan-
els for all target sample coverages and allele frequencies. F1 scores greater than 0.9,
which indicate high harmonic means of recall and precision of called genotypes,
were achieved with 0.25-fold sequencing coverage when large breed-specific haplo-
type reference panels (n = 150) were used. In the absence of such large within-breed
haplotype panels, variant genotyping accuracy from low-pass sequencing could be
increased either by adding non-related samples to the haplotype reference panel or
by increasing the coverage of the low-pass sequencing data. Sequence variant geno-
typing from low-pass sequencing was substantially less accurate when the reference
panel lacked individuals from the target breed.

Conclusions: Variant genotyping is more accurate with DeepVariant than GATK.
DeepVariant is therefore suitable to establish bovine haplotype reference panels.
Medium-sized breed-specific haplotype reference panels and large multibreed hap-
lotype reference panels enable accurate imputation of low-pass sequencing data in
a typical cattle breed.
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3.1 Background

More than one million cattle are genotyped every year using the microarray technology
for the purpose of genomic prediction [1]. Access to whole-genome sequence variants
can improve the accuracy of genomic predictions and facilitates the monitoring of trait
associated alleles [2]. However, costs are still too high to sequence all individuals from
a population to a sufficient coverage for calling variants.

Low-coverage whole-genome sequencing (lcWGS) followed by genotype imputation
has emerged as an alternative with comparable costs to genotyping microarrays but with
substantially higher marker density (tens of millions versus tens of thousands) to obtain
genotypes for a target population [3, 4, 5, 6]. Sequencing coverage as low as 0.1-fold can
be used to infer sequence variant genotypes that are as accurate as those obtained from
genotyping microarrays, especially for rare variants, while sequencing coverage greater
than 1-fold can have much higher accuracy [5]. For many imputation methods, reference
panels that are representative for the target populations are a prerequisite for the accu-
rate imputation of genotypes from lcWGS [7, 8, 9]. The 1000 Genomes Project (1KGP)
and the Haplotype Reference Consortium (HRC) established such reference panels for
several human ancestry populations [10, 11] and made them available through dedi-
cated imputation servers [12]. A bovine imputation reference panel established by the
1000 Bull Genomes project is frequently used to infer sequence variant genotypes for
large cohorts of genotyped taurine cattle, thus enabling powerful genome-wide analy-
ses at the nucleotide level [13]. Sequenced reference panels are available for other animal
species [14, 15], but they lack diversity as they were established mainly using data from
mainstream breeds and thus are depleted for individuals from local or rare populations.

An exhaustive set of variants and accurate genotypes are crucial to compile infor-
mative haplotype reference panels. The Genome Analysis Toolkit (GATK) has been fre-
quently applied to discover and genotype sequence variants in large reference popula-
tions of many livestock species [3, 14]. DeepVariant has recently emerged as an alterna-
tive machine learning-based variant caller [16]. Several studies suggest that DeepVariant
has superior genotyping accuracy compared to GATK [17, 18, 19, 20]. However, Deep-
Variant has rarely been applied to call variants in species other than humans [21, 22].

In this study, we benchmark sequence variant genotyping of DeepVariant and GATK
in a livestock population. Then, we build haplotype reference panels of varying sizes and
composition with DeepVariant, and use GLIMPSE to impute sequence variant geno-
types for cattle that had been sequenced at between 0.01- and 4-fold. We show that
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within-breed haplotype reference panels outperform multibreed reference panels across
all tested scenarios, provided that a sufficient number of sequenced samples is available.

3.2 Results

Variant calling with GATK and DeepVariant

We compared sequence variant calling between GATK and DeepVariant for 50 Brown
Swiss (BSW) cattle for which the sequencing depth ranged from 4 to 63-fold (19.26 ±
11.09) along the autosomes. GATK and DeepVariant identified 18,654,649 and 18,748,114
variants, respectively, of which 7.79% and 8.38% were filtered out because of their low
quality (Table 3.1). In total, 16,147,567 filtered variants were identified by both callers,
but 1,053,716 and 1,292,671 variants were private to GATK and DeepVariant, respectively
(Fig. 3.1a). Overall, DeepVariant had more private SNPs than GATK, but GATK had
more private INDELs than DeepVariant (Additional file 15). 416,642 variants had the
same coordinates but different alternative alleles. These discrepant sites were primarily
INDELs (83%, as opposed to the 12% of INDELs in all shared variants). Multiallelic sites
accounted for 3.44% and 3.31% of the variants (0.33% and 0.28% of the SNPs, and 23.22%
and 23.94% of the INDELs) that passed the quality filters of GATK and DeepVariant,
respectively. Multiallelic sites were enriched among the variants private to either GATK
or DeepVariant (Additional file 16).

The biallelic variants called by GATK had a higher percentage of homozygous refer-
ence (HOMREF) and heterozygous (HET) genotypes whereas the biallelic variants called
by DeepVariant had a higher percentage of homozygous alternative (HOMALT) geno-
types (Fig. 3.1b and Additional file 17a). Missing genotypes were very rare (<0.01%) for
GATK-called biallelic variants but accounted for 2.72% of the DeepVariant-called geno-
types (Additional file 17b). Beagle phasing and imputation increased the number of
HET genotypes for both GATK (mostly transitioning from HOMREF) and DeepVariant
(mainly due to the refinement of missing genotypes) (Additional file 17c).
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Table 3.1: Summary of the variants called by GATK and DeepVariant (DV). Multiallelic sites are presented in parentheses. Ti:Tv ratios
are restricted to biallelic SNPs. Functional consequences are predicted for biallelic SNPs / biallelic INDELs.

Variant caller Sets Variants SNPs INDELs Ti:Tv ratio
High impact predicted

SNPs / INDELs
GATK Raw 18,654,649 (831,391) 16,135,130 (58,049) 2,617,546 (773,342) 2.16 2,680 / 4,493
GATK Filtered-out 1,453,366 (239,008) 1,271,522 (8,577) 279,871 (230,431) 1.66 428 / 500
GATK Filtered 17,201,283 (592,383) 14,863,608 (49,472) 2,337,675 (542,911) 2.20 2,252 / 3,993

DV Raw 18,748,114 (702,173) 16,554,438 (54,438) 2,401,933 (647,735) 2.24 3,530 / 2,778
DV Filtered-out 1,571,454 (270,963) 1,174,815 (11,834) 393,927 (259,108) 2.19 1,061 / 612
DV Filtered 17,440,238 (577,997) 15,361,785 (42,899) 2,240,627 (535,098) 2.24 2,474 / 2,240

a

104 / 1855 / 4461 

3 / 19 / 20

4 / 2 / 5

1 / 1 / 0

b c

Figure 3.1: Comparison of the variants called between DeepVariant (DV) and GATK. a) Intersection of variants called with each
variant caller (or both) and the Ti:Tv ratio of the biallelic SNPs of each set. b) Percentage of imputed genotypes called by each variant
caller. c) Intersection of variant calls with truth genotyping arrays, where only variants at intersecting positions are retained. Variants
with a low, moderate and high predicted impact from the intersecting sets are indicated.
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Functional consequences on the protein sequence were predicted for all biallelic vari-
ants. DeepVariant identified 9% more SNPs that were predicted to have a high impact
on protein function than GATK (Table 3.1 and Additional file 18). Around one fourth
of the high impact SNPs detected by DeepVariant (24%) were not detected by GATK.
GATK identified 78% more INDELs that were predicted to have a high impact on pro-
tein function than DeepVariant. More than half of the high impact INDELs detected by
GATK (52%) were not detected by DeepVariant.

We investigated the ratio of transitions to transversions (Ti:Tv) to assess variant qual-
ity. Deviations from an expected genome-wide Ti:Tv ratio of ⇠ 2.0-2.2 indicate random
genotyping errors or sequencing artifacts [17, 20, 23, 24]. The Ti:Tv ratio was 2.16 and
2.24 for raw SNPs identified by GATK and DeepVariant, respectively (Table 3.1). While
the Ti:Tv ratio was higher (2.20) for the GATK variants that met the quality filters, vari-
ant filtration had no impact on the Ti:Tv ratio for SNPs called by DeepVariant. The
Ti:Tv ratio of the filtered-out SNPs was substantially lower for GATK (1.66) than for
DeepVariant (2.19). SNPs private to GATK had lower Ti:Tv ratios than those private
to DeepVariant (Fig. 3.1a). Substantial differences in the Ti:Tv ratio (0.81 points) were
observed between overlapping and GATK-private SNPs but were smaller (0.18 points)
between overlapping and DeepVariant-private SNPs.

Accuracy of variant calling

Thirty-three sequenced cattle also had between 17,575 and 490,174 SNPs genotyped
with microarrays. The filtered biallelic SNPs called with GATK and DeepVariant (query
sets) were compared to those genotyped with the microarrays (truth chip set). The vast
majority (98.82%) of the SNPs present in the truth chip set was called by both tools
(Fig. 3.1c). The number of overlapping SNPs present in the truth chip set was slightly
larger for DeepVariant than for GATK. 1.06% (n = 5309) of the SNPs present in the
truth chip set were not called by any of the software as biallelic SNPs. However, 3497
of these SNPs were present at the same position but had different alternative alleles
(e.g., multiallelic SNPs or INDELs) in DeepVariant versus GATK while the other 1812
positions were truly missing. Most of the biallelic SNPs private to the chip set (5265)
were also missing in the raw calls from the variant callers. DeepVariant filtered out
more variants present in the truth chip set than GATK.

The analysis of variant effect predictions for the filtered variants revealed that most
low/moderate/high impact variants were called by both GATK and DeepVariant (99.4%,
98.8%, and 92.8%, respectively). However, DeepVariant additionally called 5/2/4 bial-
lelic SNPs predicted as low/moderate/high impact respectively, while GATK only called
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0/1/1 (Fig. 3.1c). Some of the low/moderate/high impact biallelic SNPs private to
GATK (1 out of the 2) and DeepVariant (5 out of the 11) were called either as multi-
allelic SNPs or as INDELs by the other caller (Additional file 19). Only half (1 out of 2)
of GATK’s private variants have a MAF higher than 0.5, while most (9 out of 11) of the
DeepVariant’s private variants do, which suggests that GATK misses more variants that
might have a larger impact in populations.

Genotyping accuracy of variant calls

GATK and DeepVariant called 492,265 and 493,145 variants from the truth chip set,
respectively. GATK missed (8.13%) and miscalled (10.13%) more truth variants than
DeepVariant. Around 90.6% of the discrepancies between the sequence variant geno-
types and the truth chip set in both variant callers were due to missing genotypes in the
sequence set. Of those, GATK missed proportionally more HOMALT than DeepVariant,
and DeepVariant missed proportionally more HET variants. For the remaining ⇠9.4%
of mismatching genotypes (miscalled), GATK miscalled proportionally more HOM vari-
ants, and DeepVariant significantly miscalled proportionally more HET variants (Addi-
tional file 20). However, after imputation, the proportion of HET positions miscalled was
higher in the GATK set and the proportion of HOMREF positions miscalled as HET was
significantly higher in the DeepVariant set.

Recall, precision and F1 score of the filtered query sets were calculated to assess the
genotyping accuracy for both variant callers. DeepVariant had strictly better F1 scores
than GATK for the filtered data (mean of 0.9719 versus 0.9694, Fig. 3.2a and b). The dif-
ference was small but significant (Wilcoxon signed-rank test, p=2.3x10�10). As expected,
lower coverage (<20x) samples benefited from imputation, improving their F1 scores
to values that were comparable to high-coverage samples. Imputation improved GATK
genotypes more than DeepVariant genotypes at lower coverages, which could be due
to better calibration of genotype likelihoods, but DeepVariant was still strictly better
for coverage-folds higher than 7x. Overall, DeepVariant still had a significantly higher
mean F1 score for the imputed data (0.9912 versus 0.9907, Wilcoxon signed-rank test
p=4.2x10�05, Fig. 3.2c).

We examined variant genotyping accuracy through Merfin [25]. Merfin filters out
variants when the proportion of “reference” and “alternate” k-mers for that variant
from the sample’s short sequencing reads does not match the genotype and thus is
likely incorrect. HET genotypes obtained with both GATK and DeepVariant had less
support from the sequencing reads, as they are more difficult to genotype correctly than
HOM genotypes. For both HET and HOMALT, more of the genotypes of DeepVariant
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Figure 3.2: Comparison of the F1 values obtained with hap.py from GATK and Deep-
Variant (DV) variant calls against the truth chip set for 33 samples. a) Imputation
improves genotype accuracy for sequence coverages lower than 20x but has little impact
for sequence coverages higher than 20x. b) DV has a higher F1 score for every sample
than GATK for post-filter variants. The high confidence set indicates the 17 microarray
genotyped samples out of the 24 samples used later as a truth set for GLIMPSE impu-
tation. c) Similar to (b) but for post-imputation variants.

than of GATK were supported (Fig. 3.3a). The difference between the tools was statis-
tically significant for both genotypes (two-sided paired Wilcoxon test, pHET=3.6x10�19,
pHOMALT=1.8x10�19).

In addition, we compared Mendelian concordance rate between the sequenced duos
and trios across the two variant callers. There were only two family relationships in the
previously examined 50 samples, and so we evaluated the concordance on a separate
set of 206 samples (see Methods) forming seven trios (both parents available) and 142
duos (one parent available). DeepVariant had less genotypes that are in conflict with
Mendelian inheritance compared to GATK (2.3% versus 3.8%, Fig. 3.3b, one-sided paired
Wilcoxon signed-rank test p=1.3x10�24). This was due to DeepVariant calling both more
genotypes that were compatible as well as fewer that were incompatible with parent-
offspring relationship.

Generation of a sequencing validation set for lcWGS imputation

We benchmarked the accuracy of low-pass sequence variant imputation in a target
population consisting of 24 BSW samples with a mean autosomal coverage of 28.12 ±
9.07-fold. DeepVariant identified 15,948,663 variants (87.77% SNPs and 12.23% INDELs)
in this 24-sample cohort of which we considered 13,854,932 biallelic SNPs as truth set.

The sequencing reads of these 24 samples were randomly downsampled to mimic
medium (4x and 2x), low (1x, 0.5x, 0.25x, and 0.1x), and ultralow (0.01x) sequencing
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Figure 3.3: Genotyping accuracy of variant calls validated with sequencing reads and
Mendelian relationships. a) Filtering rate of heterozygous (0/1) and homozygous alter-
nate (1/1) variant calls post-imputation for GATK and DV. Higher filtering rate indicates
the genotype/allele is not consistent with k-mers from the same-sample sequencing
reads. b) Mendelian violation rate for 206 separate samples, with either 2 family mem-
bers (Duo) or all 3 (Trio). Mendelian violations are defined as genotypes in the offspring
that could not have been inherited from the parents. In the case of duos, only variants
homozygous in the parent can be confirmed as violations of Mendelian inheritance.

coverage. We then aligned the reads to the reference sequence and produced genotype
likelihoods from the pileup files. Subsequently, genotypes were imputed with GLIMPSE
considering nine haplotype reference panels, and compared to the truth set to determine
the accuracy of imputation.

The nine haplotype reference panels varied in size and composition. Five haplotype
reference panels contained 150 cattle (full panels) of which either 0%, 10%, 25%, 50%
or 100% were from the BSW breed (i.e., the breed of the target samples). The other four
panels contained either 75 or 30 cattle (reduced panels) that were either from the BSW
breed or from breeds other than BSW (see Methods). DeepVariant identified between
17,035,514 and 28,755,400 sequence variants in the nine haplotype reference panels (Ta-
ble 3.2). The full BSW panel contained 5,167,875 fewer biallelic SNPs than the full non-
BSW panel. The 50% multibreed panel had the largest number of variants shared with
the truth set and the smallest number of variants present in the truth set but missing in
the reference panel, closely followed by the BSW panel. The reduced non-BSW panel (30
samples) had the smallest number of shared variants and the largest number of variants
that were present in the truth but missing in the reference set.
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Table 3.2: General overview of the haplotype reference panels: number of samples, coverage and number of variants called. Shared
and private variants are considered through exact matching (position and alleles). Values are the mean of 3 replicas per haplotype panel.

Panel Samples Coverage Variants Biallelic SNPs
SNPs shared

truth-query sets
Truth SNPs missing in

haplotype panel
SNPs private to
haplotype panel

BSW 150 9.40 22,493,568 19,682,362 13,537,126 317,806 6,145,236
BSW 75 9.65 19,883,488 17,345,201 13,373,462 481,470 3,971,739
BSW 30 9.42 17,035,514 14,839,600 12,810,541 1,044,391 2,029,059

Multibreed
(50%) 150 10.48 27,710,504 24,325,185 13,568,744 286,188 10,756,441

Multibreed
(25%) 150 10.86 28,755,400 25,266,484 13,531,721 323,211 11,734,763

Multibreed
(10%) 150 11.44 28,608,506 25,126,433 13,427,451 427,481 11,698,982

Non-BSW 150 11.78 28,303,738 24,850,237 13,075,827 779,105 11,774,410
Non-BSW 75 11.78 25,059,239 21,968,792 12,868,909 986,023 9,099,883
Non-BSW 30 11.45 21,011,311 18,402,870 12,283,284 1,571,648 6,119,586
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Assessment of lcWGS imputation with the different haplotype panels

Increasing the number of reference haplotypes enabled higher F1, recall and preci-
sion scores in all tested scenarios (Fig. 3.4a and Additional file 21). Imputation accuracy
also improved with increasing lcWGS coverage, with the biggest change between 0.01x
and 1x coverage, and continued to improve with diminishing returns between 1x and
4x coverage. The difference in accuracy between panels also decreased as coverage in-
creased.

Figure 3.4: Genotyping accuracy from low-pass whole-genome sequencing. a) F1 score
between truth and imputed variants. b) GLIMPSE INFO score achieved with different
sequencing coverages and haplotype panels. c) Differences (subtraction) between F1
and GLIMPSE INFO average scores for different sequencing coverages and haplotype
panels. d) Squared dosage correlation (r2) between imputed data and truth set, stratified
by MAF for lcWGS at 0.5x. Panels are indicated with colours and number/percentages
of BSW samples are indicated with different shapes of points. Multibreed panels contain
150 samples. Points indicate the average of the results for all variants in three replicates.

The largest BSW haplotype reference panel (n = 150) performed better than any
of the multibreed panels at all sequencing coverages. Multibreed panels outperformed
BSW panels with a larger number of BSW samples, especially at low coverage. For in-
stance, a large multibreed panel containing 10% BSW samples (n = 15) produced higher
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F1 scores than a smaller breed-specific panel containing two times more BSW samples
(n = 30). Similarly, a large multibreed panel containing 25% BSW samples (n = 37) pro-
vided higher F1 scores than a smaller breed-specific panel containing two times more
BSW samples (n = 75) for lcWGS below 1-fold coverage. Accuracies were similar be-
tween large multibreed panels and smaller breed-specific panels when the coverage of
the lcWGS was higher than 1-fold. All results were validated by three different confor-
mations of the haplotype reference panels (replicas). Standard errors accounting for all
the replicas did not overlap for any of the haplotype panels (Additional file 22a).

The INFO score [26] was higher for all BSW panels than for the multibreed panels
across all coverages (Fig. 3.4b). A higher proportion of variants were imputed with an
INFO score greater than 0.6 in the BSW than in non-BSW or multibreed panels (Ad-
ditional file 22b). Therefore, panels for which the average INFO score was higher had
also a major proportion of variants with high imputation quality, potentially selected for
downstream analyses. The differences between BSW panels and the others were larger
than those between multibreed and non-BSW panels. The average values of F1 and the
average INFO scores were closer for the variants imputed with BSW panels (Fig. 3.4c).
The differences between both metrics decreased as the coverage of the lcWGS increased
(Additional file 22c and d).

The variants were then stratified by MAF, and the squared correlation of genotype
dosages (r2) was calculated (Fig. 3.4d). The correlations increased along with the MAF
similarly for all the panels. The highest correlations were for BSW panel (150 samples)
and multibreed panels (50% and 25%). The values increased substantially between 0-0.1
MAF and continued to increase slowly until the MAF reached 0.5 for all panels.

3.3 Discussion

Higher F1 scores against a microarray truth set, improved k-mer based variant filtering,
and the fewer Mendelian errors suggest that DeepVariant is a superior variant caller to
GATK for bovine short read sequencing. These results extend the evidence of the Deep-
Variant’s greater accuracy that was established in multiple human studies [17, 18, 19, 20].
Ti:Tv ratios in the expected range of 2-2.2 [23, 24] suggest that variant calls private to
DeepVariant contain genuine variants, whereas the lower Ti:Tv ratio in variants private
to GATK indicate an excess of false positives. DeepVariant revealed more SNPs that
have an impact based on their annotation, likely providing additional putative trait-
associated candidates for downstream analyses. DeepVariant was approximately 3.5x
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faster in end-to-end variant calling compared to GATK, due to greater multithreading
potential and to the fact that it does not require pre-processing like GATK’s base re-
calibration step (Additional file 23). The peak memory usage was approximately 65%
higher for DeepVariant than for GATK (81 GB versus 49 GB). Although our work fo-
cused on CPU-only machines, DeepVariant also offers GPU acceleration (roughly 1.9x
faster overall), while GATK has no official GPU support, although there are third-party
developments (roughly 1.4x faster overall) [27].

To the best of our knowledge, our study is the first to establish bovine haplotype
reference panels with DeepVariant. A within-breed panel consisting of 75 samples en-
abled us to genotype more than 13 million sequence variants in animals sequenced at a
0.5-fold sequencing coverage with F1 scores greater than 0.9. Larger haplotype reference
panels (n = 150) from the same breed as the lcWGS data outperform multibreed panels
across the whole low coverage spectrum (from 0.1- to 1-fold) and MAF, including rare
variants. The development of such panels is a feasible alternative to using much larger
multibreed panels, such as the 1000 Bull Genomes project imputation reference panel
[13]. Such large panels, encompassing huge within- and across-breed diversity, may be
regarded as the most complete and thus best genomic resources available in bovine
genomics. However, using such large panels may be detrimental for breed-specific im-
putation (also described by Nawaz et al. [28]), as we observed many relevant sites were
filtered out before imputation due to being multiallelic, resulting in a lower F1 score
than the 75 sample BSW panel at 1-fold coverage and higher. The use of within-breed
panels is also more computationally efficient and are 18% to 33% faster than that of
multi- or different-breed panels of the same size (Additional file 24), and approximately
7 times faster than using the 1000 Bull Genomes Project panel.

In the absence of an adequately sized breed-specific panel (e.g., less than 30 animals),
F1 scores of 0.9 can also be reached either by increasing the coverage of the lcWGS
or by adding distantly related samples from other breeds to the haplotype panels as
even animals from seemingly unrelated breeds may share short common haplotypes.
Both options will provide accurate sequence variant genotypes at affordable costs for
samples from rare breeds, where large breed-specific haplotype reference panels cannot
be easily established. For instance, F1 scores > 0.92 are observed at a 2-fold sequencing
coverage for all tested haplotype panels with small differences among them. This is
likely because higher coverages provide more information for imputation from the own
sequencing reads, while lower coverages rely on the information from haplotypes in
the panels. We also achieved F1 scores of 0.9 with large multibreed panels containing
only 10% of within-breed samples (n = 15). However, reference panels that contain only
few samples from the target breed are in general less informative as evidenced by the
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lack of about 100K truth SNPs that were present in same-size breed-specific panels.
Additionally, a threshold of non-related haplotypes from which only marginal gains to
imputation accuracy are observed have been described [15, 28, 29]. Overall results are
compatible with similar studies with haplotype panels of both larger and smaller sample
sizes [15, 28, 30]. Genotypes imputed from lcWGS enable the prediction of genomic
breeding values and facilitate powerful genome-wide association studies at nucleotide
resolution [3, 31].

Although imputation accuracy (F1) and GLIMPSE’s predicted imputation accuracy
(INFO score) are respectively averaged over each sample and each variant, we note that
F1 (truth) is strictly higher than INFO (estimation). The differences appear to be more
pronounced for reference haplotype panels that are constituted from a different breed
to the target sample and at lower coverages (i.e., less than 0.25-fold coverage, where
GLIMPSE’s INFO scores are inaccurate [6]). While, for example, multibreed panels are
nearly as equally accurate as the 150 sample BSW panel, the INFO scores are notably
lower. Similarly, the INFO score drops more rapidly for lower coverages, suggesting that
a fixed threshold may be unnecessarily conservative given the slower decay in F1. The
GLIMPSE INFO score is also positively correlated with variant MAF, and thus filtering
based on INFO predominantly removes low-frequency variants. While INFO and other
imputation accuracy scores are still useful, additional care should be taken in deter-
mining a constant filtering threshold as more and different panels become available for
use.

3.4 Conclusions

DeepVariant outperforms GATK for calling variants from bovine short sequencing reads
and can be readily used to establish informative haplotype reference panels. Medium
sized breed-specific haplotype reference panels enable accurate imputation of millions of
sequence variant genotypes from low-pass (0.5-fold) sequence data. The same degree of
accuracy of the imputed genotypes is achieved from larger multibreed reference panels
that lack individuals from the target breed but contain individuals from distantly related
breeds. Increasing the sequencing coverage compensated to a certain extent the lack
of representative animals in the reference panels. Nevertheless, suboptimal haplotype
reference panels lack variants private to the breed under study, especially rare variants.
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3.5 Methods

Data availability and code reproducibility

Short paired-end whole-genome sequencing reads from 501 cattle from nine breeds
were used: 327 Brown Swiss (BSW), 50 Fleckvieh, 13 Hereford, 57 Holstein, 2 Nordic
Red, 14 Rätisches Grauvieh, 10 Simmental, 25 Tyrolean Grauvieh and 3 Wagyu cattle.
Accession numbers for the raw data are available in the online version of the publication
[32].

Computational workflows were implemented using Snakemake [33] (version 7.5.0 or
newer). The R software environment (version 4.0.2) and ggplot2 package [34] (version
3.3.2) were used to create figures and perform statistical analyses. Scripts and workflows
are available online [35].

Alignment, mapping quality and depth of coverage

Raw short sequencing reads were filtered with fastp [36] (version 0.23.1), and Mul-
tiQC [37] (version 1.11) was applied to collect the quality metrics across samples. Reads
were split per read groups with gdc-fastq-splitter [38] (version 1.0.) and subsequently
aligned with bwa-mem2 [39] using the -M and -R flags to a manually curated version of
the current bovine Hereford-based reference genome (ARS-UCD1.2) [40] that included
a Y chromosome as described in [41].

Samblaster [42] (version 0.1.26), Sambamba [43], samtools [44, 45] (version 1.12), and
Picard tools [46] (version 2.25.7) were used to deduplicate and sort the BAM files.

We calculated average coverage with mosdepth [47] (version 0.3.2) considering all
aligned reads that had a mapping quality (MQ) � 10.

Comparison between variant callers

Testing set

Fifty BSW cattle with coverages ranging from 4 to 63-fold were selected as testing set
for a comparison between GATK and DeepVariant.
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GATK

We used the BaseRecalibrator module of GATK [23, 48] (version 4.2.2.0) to adjust the
base quality scores of the deduplicated bam files using 115,815,224 unique positions
from the Bovine dbSNP version 150 as known variants. Multi-sample variant calling was
performed with the GATK HaplotypeCaller, GenomicsDBImport and GenotypeGVCFs
modules according to the best practice guidelines [49, 50]. We applied the VariantFil-
tration module for site-level filtration using the thresholds indicated in [41] to retain
high-quality single nucleotide polymorphisms (SNPs) and insertion/deletion variants
(INDELs).

DeepVariant + GLnexus

DeepVariant [16] (version 1.2) was run on the deduplicated bam files using the WGS
Illumina-trained model, producing a gVCF output per sample. The gVCF files were
then merged and filtered using GLnexus [51] (version 1.4.1) with the DeepVariantWGS
configuration but with the revise_genotypes flag set to false.

VCF imputation and statistics

We used Beagle 4.1 [52] (27Jan18.7e1) to improve genotype calls and impute sporadically
missing genotypes from genotype likelihoods (gl mode). INDELs were left-normalised
using bcftools [45] (version 1.12 or 1.15) norm. Variant and genotype counts, and Ti:Tv
ratios were calculated with bcftools stats and bcftools query. VCF files were indexed with
tabix [53, 54].

Variant annotation

Functional consequences of SNPs were predicted based on the Ensembl (release 104)
annotation of the bovine reference assembly using the Variant Effect Predictor tool (VEP)
[55] (version 106) with default parameter settings.
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Evaluation of the accuracy of variant calling

Microarray-derived genotypes from 33 cattle that also had sequence-derived genotypes
were our truth chip set. We intersected the truth (microarray) and query (WGS variants)
VCF files using bcftools isec with both the -c none (exact - only matching REF:ALT al-
leles are allowed) and -c all (position - all coordinate matches are allowed) flags, and
retained biallelic SNPs with bcftools view to compare the genotypes. Three-way inter-
section overlaps were counted with bedtools multiinter [56] and visualised with UpSetR
[57, 58]. Since the microarray data contains fewer sites than WGS, we intersected the
truth and query sets. Only positions where the truth genotypes were not homozygous
for the reference allele (i.e., the variants that segregate within the target samples) were
retained. We calculated recall (percentage of true positives in the query set), precision
(proportion of matching genotypes in both truth and query sets), and F1 scores (har-
monic mean of precision and recall) using hap.py [59] (version 0.3.9) on a per-sample
basis. Agreement between the imputed variant alleles/genotypes and raw sequencing
reads was assessed with Merfin’s k-mer-based filtering method [25] (commit fc4f89a).
A k-mer database was prepared using Meryl (commit 51fad4b) with a k-mer size of 21
and minimum k-mer occurrence of 2 in the short sequencing reads. Variants that were
poorly supported, i.e., the alternate sequence (variant and flanking regions) appeared
less often in k-mers than the reference sequence did in a genotype-aware proportion,
were filtered out.

We assessed Mendelian consistency in filtered but not-imputed data from parent-
offspring pairs and trios (accession IDs can be found in the online version of the publi-
cation [32]) using the bcftools +mendelian plugin [45]. We calculated discrepancy rate as
the number of inconsistent sites divided by the total number of non-missing sites. For
duos (dam-offspring or sire-offspring) only homozygous sites were considered. Assess-
ing discrepancy was only possible when the parent genotype was homozygous (0/0 or
1/1).

Imputation of low-pass sequencing data

Generation of the haplotype panels

The BSW reference panels contained 150, 75 and 30 samples that were randomly selected
from 303 BSW samples. The non-BSW panels contained 150, 75 and 30 samples that were
randomly selected from 174 non-BSW samples. The multibreed panels were randomly
selected from a combination of the above, and they contained 150 samples of which
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50%, 25%, and 10% were BSW samples and the remaining were non-BSW. Three random
replicates for each panel were created. Sequence variant genotypes were called for each
panel with DeepVariant and sporadically missing genotypes were imputed with Beagle
4.1 [52] (27Jan18.7e1) as described above.

Truth sequencing set, truth variants and subsampling

Variants were called with DeepVariant and GLnexus as described previously for 24
BSW samples with a coverage higher than 20-fold to generate a truth set for assessing
imputation accuracy. The raw whole-genome sequencing reads of the 24 BSW samples
were then downsampled with seqtk [60] to mimic 4x, 2x, 1x, 0.5x, 0.25x, 0.1x, and 0.01x
coverage, and subsequently aligned to ARS-UCD12 as described previously.

Genotype likelihoods for the variants that are present in the haplotype reference
panel were estimated from the subsampled read alignments with bcftools mpileup and
bcftools call. These were then imputed using the different haplotype panels and GLIMPSE
[61] (version 1.1.1). We used 2-Mb windows and 200-kb buffer sizes during the chunk
step followed by phasing and ligation to produce the final imputed variant calls.

Comparison of true and imputed variants

The accuracy of the imputed sequence variant genotypes was assessed with hap.py as
described above. The minor allele frequency (MAF) of the imputed sequence variants
was calculated with PLINK [62] (version 1.9). The estimated imputation quality was
retrieved from the INFO flag from the VCF files produced by GLIMPSE with bcftools
query. Pearson squared correlation between expected and actual dosages (r2) was calcu-
lated with the bcftools stats.
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4.1 Background

Genetic variants are responsible for only part of trait variation [1]. Epigenetic marks are
transmitted during meiosis and become critical for regulating gene expression and hence
the phenotype of the cell [1, 2]. Methylation is an important aspect of the epigenome,
with a central role in cell differentiation and development [2, 3]. DNA methylation in-
duces epigenetic variations to the cytosine bases in the DNA sequence via the addition
of a methyl group through the action of DNA methyltransferase [1]. Differential methy-
lation may contribute substantially to variation in bovine traits, including production
and fertility [1, 3]. The most common form of methylation occurs at the fifth carbon of
the pyrimidine ring of cytosines (5-methylcytosine (5mC)) and is an essential modifica-
tion for normal mammalian development and gene regulation [4, 5, 6]. This modification
exists mostly at CpG dinucleotides and to a lesser degree in non-CpG contexts [1]. CpG
sites occur with high frequency in genomic regions called CpG islands (CGIs) [7].

Commonly used methods for detecting 5mC rely on Illumina BeadChip platforms
or involve sequencing with bisulfite treatment [2, 4, 8]. Chip-based sequencing is lim-
ited to a predefined subset of ⇠850,000 CpG methylation sites (around a 3% of the 3.7
million total sites in mammalian genomes) [1, 8]. Bisulfite treatment, on the other hand,
is a harsh process that converts unmethylated cytosines into uracils, which results in
extensive DNA degradation and requires high amounts of input DNA [1, 2, 4]. Single
molecule real time (SMRT) sequencing with ONT and PacBio overcomes these limi-
tations by offering the possibility to obtain the canonical base sequencing and cytosine
methylation status simultaneously with around half of the coverage required by bisulfite
sequencing methods [2, 9, 10]. Long reads span more variants and thus can additionally
reduce the high mapping uncertainty linked to short-read sequencing and be assigned
to the relevant haplotypes (phased) [5, 6, 9]. Pacific Biosciences (PacBio) is a SMRT se-
quencing platform that uses circular consensus sequencing [11] to produce high fidelity
(HiFi) reads as illustrated in Fig. 4.1. PacBio SMRT sequencing also reveals 5mC base
modification based on signature changes in polymerase kinetics as the base is replicated
by the polymerase [12]. Different copies of the same molecule can present considerable
kinetics variability and thus computational tools are required to confidently identify the
methylation status [6]. Sequencing advances have been accompanied by the rapid de-
velopment of software tools to measure and call base modifications within these data
[9, 12].
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Figure 4.1: PacBio SMRT sequencing. Prepared DNA sample is bound to the poly-
merase (brown) via a linker (yellow) and placed onto the flow cell. A DNA-
polymerase complex is connected to the bottom of each nanowell and a mix
of fluorescently labelled nucleotides is added. The incorporation of each fluo-
rescent nucleotides leads to a burst of light captured in the raw video data.
A base calling algorithm translates the fluorescent intensity signal into its orig-
inal DNA sequence. Credit: Laura Olivares Boldú / Wellcome Connecting Sci-
ence: https://dam.wellcomegenomecampus.org/web/5410f7067f6803c7/yourgenome-
illustrations/.

Single-molecule methylation data offer access to the variability of methylation across
individual molecules (coordinated patterns of DNA methylation occurring in blocks)
and reads [8, 9]. The DNA methylation patterns of different physiological conditions,
development phases, and cell types are of enormous interest to interpret the mammalian
gene regulation mechanism [3]. Here, 5mC modifications from HiFi data are used to
perform a preliminary analysis of the methylation patterns along 39,376 autosomal CGIs
in 105 testis samples and 15 epididymis samples from 120 different BSW bulls.

75

https://dam.wellcomegenomecampus.org/web/5410f7067f6803c7/yourgenome-illustrations/
https://dam.wellcomegenomecampus.org/web/5410f7067f6803c7/yourgenome-illustrations/


CHAPTER 4. METHYLATION PROFILES WITH HIFI DATA

4.2 Results

120 sequenced male animals had an average fold autosomal coverage of 14.49 ± 7.88. 15
of the samples were sequenced from epididymis and 105 were sequenced from testes,
yielding an average fold autosomal coverage of 12.70 ± 1.75 and 14.74 ± 8.37, respec-
tively. Four of the testis samples were sequenced with both a Sequel IIe and a Revio
machine and had an average fold autosomal coverage of 50.1 ± 5.2.

On average, 25.22M ± 0.67M of the autosomal cytosines were methylated across the
120 samples, ranging from 21.70M to 25.82M. 63.7% of the 5mC variance among samples
was explained by the tissue type, as clusters of the two surveyed tissues were well
defined (Fig. 4.2). The distribution of methylation scores across the CpG dinucleotides
was clearly skewed towards methylated 5mC in both tissues (Fig. 4.3). The number of
CpGs reached consistent peaks between 2 - 6 and 90 - 97 methylation scores for all
samples. Considering only the 5mC nucleotides that had a minimum coverage of 6-
fold, the number of methylated 5mC (methylation score > 80) was 6.88 and 7.32 times
the number of unmethylated 5mC (methylation score < 20) for epididymis and testis
samples, respectively.

Figure 4.2: Principal Component Analyses of the 5mC sites of the 120 analysed sam-
ples. 105 testis samples (blue circles) cluster in the bottom left corner and 15 epididymis
samples (pink circles) cluster in the upper right side.
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Figure 4.3: Distribution of methylation score across the 120 samples (105 testis and 15
epididymis).

39,376 annotated CpG islands (CGIs) were considered across the bovine autosomes
(see Methods). The number of CGIs per chromosome ranged from 401 (chromosome 28)
to 2,306 (chromosome 18). The average number of CpG dinucleotides within the CGIs
along the genome was of 64.54 with a substantial variability (standard deviation of 72.57)
ranging from 0 to 2,270, although 75% of the CGIs contained less than 90 CpGs and only
2% exceeded 250 CpGs per CGI. 4.0% and 1.2% of the CGIs did not have methylation
information (0 CpGs) for at least 25% of the samples or had a low methylation variability
(< than 1 standard deviation) for testes and epididymis, respectively. The resulting CGIs
(38,904 for testis samples and 37,793 for epididymis samples) can be considered for
further association studies.

The methylation patterns of several genes that were reported to be differentially
expressed in testis and epididymis [13] were visually explored for a subset of sam-
ples. Gene TBX4 (ENSBTAG00000009968) is expressed in testis but not in epididymis
whereas gene CACNG7 (ENSBTAG00000007506) is expressed in epididymis but not in
testis. The 5mC methylation of these CpG dinucleotides was consistently higher for epi-
didymis than for testis in both instances. The mean methylation score of the closest
CGI (within the gene body) was 39.86 and 41.29 for testis, and 84.80 and 84.76 for epi-
didymis for TBX4 and CACNG7, respectively. Fig. 4.4 illustrates visual differences in
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CpG methylation in the body of both TBX4 and CACNG7 genes.

Figure 4.4: 5mC methylation patterns for 2 samples of epididymis (above) and 2 sam-
ples of testes (below). Genes TBX4 (19:11607447-11633858) and CACNG7 (18:61607183-
61622688) are surveyed.

4.3 Discussion

The 5mC methylation landscape is tissue-dependent and is tightly linked to genetic
variation and gene expression [7, 14]. The combined development of sequencing tech-
nologies and base-callers offer an unprecedented opportunity to quantify formerly un-
detected epigenetic information [15]. This exploration serves as a proof of concept for
direct retrieval and quantification of 5mC modifications from long-read data in bovine
tissues. Distinguishable methylation patterns were observed across tissues, but variabil-
ity also existed within tissue-specific samples. Asymmetrically methylated CpG dyads
(hemimethylated CpGs) [16] were infrequent since the vast majority of the CpG dinu-
cleotides were either fully methylated (preferentially) or fully unmethylated.
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Hundreds of annotated CGIs had no methylation information. Even the highest cov-
erage sample (56-fold) had 0 CpGs in 395 CGIs, mainly at the end of the chromosomes.
Telomeres and centromeres are typically formed by repetitive regions that are challeng-
ing to assemble and annotate [17]. HiFi sequencing reads span long repeats and can bet-
ter align to these regions. Hence, plausible reasons why no sequencing reads mapped
these CGIs could be the flaws in the reference assembly or the alignments being consid-
ered as secondary. CGIs were filtered when not enough methylation information was
available or when the variability was low, as these CGIs are not informative for down-
stream analyses. A substantial difference of 2.8 percent points was detected between
filtered CGIs in epididymis and testes. Such differences are likely caused by the lower
coverage (average of 2-fold) of epididymis samples in comparison to testes. The main
factor that influenced filtering was the lack of CpGs in at least 25% of the samples in
a given CGI: 3.5% and 1.1% of the CGIs in epididymis and testis, respectively. The re-
maining 0.5% and 0.1% CGIs were filtered due to similar methylation scores (less than
1 standard deviation) across all samples.

5mC methylation in the gene body showed different patterns in several genes that are
expressed tissue-specifically. The biological context of methylation calls is complex and
depends on the chromosomal location and the relationship with expression [7]. Gener-
ally, when methylation is found in CpGs that are part of genes, transcription is increased
[1]. This was aligned with the observations for gene CACNG7 but not for gene TBX4,
which held the reverse pattern. Fig. 4.4 offers only a snapshot of the methylation status
within the gene body, but further context of methylation is required to fully under-
stand the repression/enhancement of expression (for instance the methylation patterns
in promoters or transcription start sites (TSSs)). Methylation or unmethylation of CGIs
in such regions directly affect the accessibility to transcriptional activation and hence
the enhancement of gene expression [1, 2, 4, 8, 18]. Large number of samples from dif-
ferent tissues and the inclusion of non-coding sequences in the analysis would enable
the statistical exploration of differentially methylated regions and its relation to gene
expression.

In heterozygous alleles and providing cis activity of the QTL (this is, alleles affecting
proximal features), phenotypes such as methylation can be measured on the maternal
chromosome in comparison to the parental chromosome [5]. Dozens of genes, includ-
ing SNURF, PLAGL1, NAP1L5, ZIM2, IGF2, SLC38A4, TSSC4, SNRPN, MEST, IGF2R
or PEG10 are imprinted in mammals [1, 4]. A visual exploration showed no clear dif-
ferences between phased methylation profiles of these genes in high coverage samples
(50.1-fold) that were sequenced with both Sequel and Revio machines. A further sys-
tematic determination of differentially methylated regions in imprinted genes as well
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as other regions with parent of origin effect will enable allele-specific QTL analysis,
similarly to what Prowse-Wilking et al. [18] performed with heights/peaks of histone
modifications.

4.4 Methods

PacBio High Fidelity (HiFi) reads from 48 and 72 samples were sequenced on 158 SMRT
cells with a Sequel IIe and with a Revio, respectively. Four of these samples were se-
quenced with both machines. Default CCS parameters were used, resulting in onboard
5mC methylation calls.

The reads were aligned with Minimap2 (v2.24) [19, 20] using the flags “-x map-hifi
-y -Y” to a manually curated version of the current bovine Hereford-based reference
genome (ARS-UCD1.2) [21] that included a Y chromosome as described in [22]. Cov-
erage of the CRAM files was calculated with samtools coverage (minimum mapping
quality of (-q) 20).

Single nucleotide variants (SNVs) were called with DeepVariant [23] (version 1.5.
- PACBIO model). The gVCF files were then merged and filtered using GLnexus [24]
(version 1.4.1 - DeepVariantWGS configuration).

Site methylation probabilities from the mapped HiFi reads were generated by the
tool “aligned_bam_to_cpg_scores” (pb-CpG-tools [25]) using the “model” pileup mode.
The aligned reads were phased with HiPhase [26] (version 0.9.0) with default parameters
using the haplotype information from 20.80 million variants. A BigWig summary was
created and a PCA was generated with the tools multiBigwigSummary and plotPCA of
deepTools2 [27] (version 3.5.1), respectively.

The bovine coordinates for the bovine CpG islands (CGIs) were downloaded from
the University of California Santa Cruz (UCSC) Genome Browser website [28]. Un-
masked regions were included since repetitive regions may be differentially methylated
[7]. The CpGs were mapped and binned into 39,376 unmasked CGIs and their methy-
lation scores averaged with “bedtools map” [29]. A matrix with the methylation scores
for all CGIs (rows) and samples (columns) was prepared. CGIs for which 25% of the
samples or more had no methylation information (0 CpGs) were discarded, along with
the CGIs where the methylation score variability was low among the samples (less than
1 standard deviation).
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General discussion
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CHAPTER 5. DISCUSSION

Variation is paramount for genetic diversity, evolution, breeding, and any sort of
genomic exploration. This thesis provides a comprehensive overview of the factors that
impact the identification of DNA sequence variants in cattle and how variant genotyping
can be optimised. It then shows how accurate variant discovery and refined genotyping
are required for downstream analyses, allowing the identification of genomic regions
involved in phenotypic traits and biological functions.

5.1 Impact of reference genome in genomic analyses

Given the importance of read alignment in variant detection, the extent to which the
utilisation of different reference genomes affects both mapping and subsequent vari-
ant discovery and genotyping was investigated in Chapter 2. Overall, similar mapping
performance, variant diversity (number of SNV, density of variants, variants fixed af-
ter imputation) and variant accuracy between the Hereford-based taurine reference and
the haplotype-resolved Angus assemblies were observed. In addition to the analyses
already presented, the accuracy of mapping short reads from BSW samples against fur-
ther bovine reference genomes was also investigated (Table 5.1). Short-read WGS data
from 19 animals were mapped to four different assemblies. Two of the assemblies were
widely accepted bovine reference genomes: the previous version BosTau4.0 (Btau4.0) [1]
and the current ARS-UCD1.2 [2]. The reads were also mapped to two haplotype-resolved
reference-quality genomes that were created previously: the Angus assembly generated
by Low et al. [3] and the BSW assembly generated by Leonard et al. [4]. Unsurprisingly,
reference genomes from the target samples’ population increased read mapping accu-
racy compared to assemblies from distinct breeds. There were two metrics for which
the BSW reference genome was not the best assembly to map to and for which the cu-
rated ARS-UCD1.2 stood out: the proportion of autosomal high-quality reads and the
percentage of multi-mapping autosomal reads.

The proportion and number of unplaced contigs (genomic regions normally formed
by repetitive regions that cannot be integrated into the chromosomal structure), as well
as the average number of reads spanning unplaced bases (reads not considered for
downstream analyses) are also good indicators of assembly quality. Only 3% of the
ARS-UCD1.2 assembly is formed by unplaced contigs, in contrast to 9% of the BSW
haplotype-resolved assembly. However, the higher percentage of longer contigs (> 0.1
Mb) among these unplaced contigs in the BSW assembly, as well as a lower coverage of
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Table 5.1: Mapping stats for different bovine assemblies. Short-reads WGS data of
19 BSW cattle were used for the evaluation. High-quality reads (HQR) are uniquely
mapped and properly paired reads with quality greater than 10. The metrics considered
best for each category are highlighted.

Btau4.0 ARS-UCD1.2 UOA_Angus_1 BSW
Unmapped reads (%) 0.309 0.038 0.051 0.021

Reads mapping to autosomes (%) 78.77 82.46 81.78 85.90
Autosomal HQR (%) 83.81 88.74 88.62 85.91

Autosomal HQR per sample (M) 204.67 227.89 225.74 229.24
Multi-mapping autosomal reads (%) 0.57 0.22 0.25 0.23

Genomic % of unplaced contigs (> 0.1 Mb) 9.72 (4.71) 3.17 (1.24) 3.56 (1.77) 9.15 (8.39)
Unplaced contigs (> 0.1 Mb) 11,869 (494) 2,180 (112) 1,405 (127) 949 (597)

Mean coverage of unplaced contigs (> 0.1 Mb) 15.95x 17.76x 11.67x 1.37x

the sequencing reads in these regions, indicate that repetitive regions may be wrongly
collapsed in the ARS-UCD1.2 assembly or wrongly expanded in the BSW assembly.

It is important to note that the breeds of all tested assemblies, along with the target
sequencing data breed (BSW), belong to the taurine sub-species and diverged relatively
recently. Long-reads sequencing approaches enable individual research groups to create
better assemblies than huge consortia few years ago. It may be interesting to repeat our
comparative study with haplotype-resolved genomes and target populations belonging
to more distant breeds. It would be insightful to observe the performance of genomic
analyses using farther reference genomes, especially in livestock species for which the
quality of the available reference genomes is not as good as in cattle.

Applying sequencing and technological advances to the update of existing reference
genomes is another conspicuous approach to improve genomic analyses. All mapping
and assembly metrics explored in Table 5.1 were clearly better for ARS-UCD1.2 than the
previous bovine version Btau4.0. The advent of telomere-to-telomere (T2T) assemblies
[5] enables the most contiguous and comprehensive representation of the genomes to
date thanks to long and accurate sequencing reads and software developments. These
complete assemblies have been achieved so far for the human genome [5] and include
less explored regions (often not included in the analyses for alignment limitations) such
as centromeres, unplaced contigs and sex chromosomes [6, 7, 8, 9]. Similar efforts in
cattle are underway. The availability of better assemblies will allow the detection of
currently undetected variants, such as the ones located in alternative contigs [10] or in
missing chromosomal sequences (almost 10 million bases encompassing dozens of genes
are missing from the UOA_Angus_1 assembly - see Chapter 2). Overall, the combination
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of T2T bovine assemblies and accurate long reads will help improve the mappability in
challenging regions of the genome (such as the highly repetitive MHC complex in chro-
mosome 23) and variant calling, both identifying novel variants as well as detecting false
variants caused by the incomplete nature of previous assemblies. Given the higher qual-
ity of the newly generated reference genome, increasingly marginal gains are expected
in the future. There are nevertheless still undetected variants and even such marginal
gains can have implications in phenotypic traits and disease as described by Li et al. [10].

A primary problem to transition to an updated version of the reference genome is
the strong connection to historical analyses. Combination and comparison of newly gen-
erated aligned reads with older alignments or microarrays based on previous versions
require a convoluted step of remapping or translating (lifting over) the genomic coordi-
nates, as illustrated in Fig. 5.1. More powerful tools for automatic genomic lift-over are
required in order to pivot away from single reference genomes and apply population-
specific approaches that leverage previous findings and resources [11].

Figure 5.1: Limitations for lifting over coordinates. Remaping is challenged by inser-
tions and deletions between the old and the new reference sequences - adapted from
[11].

A major alternative to canonical assemblies exists for in population-specific analy-
ses in cattle. Augmented genomes (also known as graph genomes or pangenomes) are
non-linear reference sequences that contain ARS-UCD1.2 as a backbone as well as other
highly contiguous bovine assemblies [12]. Bovine graph genomes aim at including the
global breed diversity and thus integrate multiple haplotype assemblies that are be-
ing generated for different breeds [13]. The main application of pangenome references
would be the improvement reference-based sequence mapping workflows. Not requir-
ing the generation of breed-specific reference genomes for accurate alignment (see im-
provements when using the BSW assembly in Table 5.1), augmented genomes can reduce
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mapping biases by including an ample range of reference genomes. Pangenomes have
been described to improve unbiased variant detection, particularly in repetitive regions
of the genome, and identification of novel functional sequences in cattle [4, 13, 14, 15, 16].
Pangenome approaches are novel compared to linear approaches and widespread adop-
tion of graph-based approaches is a challenge. Continuous development and application
of the relevant methods is foreseen for the coming years [17]. Provided the complete ex-
pansion of an ecosystem of tools for analyses of graph-based genome sequences and
availability of diverse reference-quality haplotypes, T2T-based pangenomes can be an
alternative to analyses using population-specific reference genomes.

5.2 Variant calling

The greater variant calling accuracy achieved with the combination of DeepVariant and
GLnexus led to the identification of a larger set of variants in Chapter 3. These variants
can be then included in comprehensive reference panels, which improve imputation,
association testing and the identification of potentially causal variants [18]. Given this
superior performance of the pipeline DV-GLnexus in bovine short-read data in compar-
ison to GATK and the consistent development of the tools (e.g., allowing mixed-ploidy
calling), its implementation is encouraged for variant calling and genotyping efforts.
But even when efficient pipelines like DV-GLnexus are used, scope for improvement is
observed in variant discovery.

Limitations in variant discovery and validation
Variants have been jointly called for different cohorts through the analyses of Chap-

ters 2, 3 and 4. The resulting callsets included between 15.95M and 28.76M autosomal
SNPs and INDELs that helped quantifying the impact of the reference genome, enabled
the comparison of two variant callers, formed haplotype reference panels, served as
truth set for the assessment of imputation approaches, and provided the information
for phasing methylated reads. And whilst most of the variants segregating in the popu-
lation were captured (> 99% of the genetic variation is composed by SNPs and INDELs
[19]), a large portion of genetic variation is missing from these analyses across all variant
classes and genomic regions and regularly neglected in genomic analyses. Due to tech-
nical limitations, namely the prevailing use of short reads and software constrictions, ge-
nomic research in livestock has mainly focussed thus far on the discovery of autosomal
SNPs. In fact, some analyses, such as lcWGS imputation with GLIMPSE [20], are further
limited to only biallelic SNPs. INDELs and especially structural variants (SVs - more
than 50-bp deletions, insertions, tandem duplications, inversions and translocations) are
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also systematically overlooked in most of the studies analysing variant identification
[21] and benchmarking genotype imputation efforts in cattle [22]. Increasingly contigu-
ous assemblies make possible the assembly of highly repetitive and poorly assembled
regions (e.g., sex chromosomes), often excluded from genomic analyses [22, 23]. Accu-
rate long reads facilitate the mapping in such regions and moving forward will enable
the genotyping of undetected SNPs, INDELs and SVs, which can have phenotypically
and functional importance [24, 25, 26].

The validation of the identified variants is also not free of burden. Variant validation
is essential when variant calling pipelines are benchmarked or when the accuracy of
variant imputation is estimated. Before sequencing technologies substantially reduced
the error rates, microarray-derived genotypes were more accurate than those obtained
by sequencing and have been consistently used in bovine studies to validate the variants.
Indeed, microarray-called genotypes were used as a truth set in Chapter 2 to calculate
non-reference sensitivity (NRS), non-reference discrepancy (NRD) and the concordance
(CONC) between array-called and sequence-called genotypes. The same approach was
used in Chapter 3 to evaluate the precision, recall and F1 scores for the genotypes identi-
fied with both variant callers. However, the use of microarray-derived genotypes as truth
set has some limitations. They carry an overestimation of accuracy due to ascertainment
bias, since the polymorphisms included in the arrays are particularly accessible [12].
The bovine genomics community would leverage a ground truth like the Genome in a
Bottle (GiaB) [27] or similar datasets available in humans [28]. Such a high confidence
truth-set would enable unbiased evaluation of the accuracy of genotype assignments in
cattle. Analogous to Yun et al. [29] and Betschart et al. [30] in humans, the results from
our studies could be corroborated on the light of such resource. Further tools for variant
validation are available and can be complementary to existing approaches. Merfin [31],
for instance, is a k-mer-based filtering approach that points out discrepancies between
variant calls and the sequencing data. While recently implemented into the Vertebrate
Genomes Project (VGP) pipeline [32], the studies from Leonard et al. [4] and the one de-
scribed in Chapter 3 are the first to evaluate variant accuracy with Merfin using bovine
sequencing data. Further studies in plant genomics applied such method thereafter [33].
Validating the variants through comparison across studies is also complicated given the
different metrics (or different definitions of such metrics) used [34]. This challenge is
also encountered for calculations of imputation accuracy and further discussion on such
disparity of criteria is presented in the following section (5.3).
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5.3 Remarks on imputation of lcWGS

Microarray chips versus lcWGS
Since the development of the bovine SNP genotyping assays around 15 years ago

[35], the livestock breeding community has been using microarray chips for the identifi-
cation of variants. Micoarrays fostered animal productivity, health, and the accuracy of
selection within genetic improvement programs [35, 36]. The availability of array data
for thousands of animals has allowed the imputation to sequence level and its use for
genome-wide association testing. Nosková et al. [37] showed that methods for imputing
lcWGS to sequence data in livestock are readily available with much higher variant den-
sity than microarray data (>350 times). The suitability of this approach is corroborated
in cattle (Chapter 3). lcWGS thus allows the collection of orders of magnitude more data
at a similar cost than microarray genotyping technologies and has been suggested as the
primary data resource for imputation and downstream analyses [38]. The competitivity
of low-pass data for imputation purposes has been also demonstrated commercially [39].
Even so, the implementation of lcWGS in routine livestock genotyping campaigns, ge-
nomic prediction and breeding strategies is not straightforward. Hundreds of thousands
of samples are genotyped every year by breeding associations and fast turnarounds are
required. Transitioning from established machinery and protocols to sequencing and
computational imputation is very costly, can slow down the operational pipeline and
the potential benefits may be insufficient for the breeders. High accuracy of genomic
predictions is among the top interests of breeding strategies and WGS has limited po-
tential to improve the accuracy of genomic predictions compared to marker arrays [40].
Academic goals, such as precise detection of QTL and understating of underlying bio-
logical mechanisms, require instead the maximum of variants for the maximum number
of samples to be duly genotyped. Therefore, while imputation of lcWGS is a major ad-
vance for genomic studies in research environments, it might not be so beneficial for
farmers and breeders.

In Chapter 3, the adequate composition of haplotype panels for an optimised im-
putation of low-pass data was investigated. For single-breed bovine populations it is
argued that sequencing 150 animals at high coverage is sufficient to build haplotype
reference panels that yield high imputation accuracies (F1 > 0.9) for lcWGS samples
(0.1- to 1-fold). The generation of such a haplotype reference panel for breeds that are
not mainstream might require a substantial initial investment when public data are not
available. Once the haplotype reference panel is built, the sequencing of new samples
at low coverage is feasible and affordable for large-scale analyses and enables powerful
association studies with a lower number of animals.
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Composition of haplotype reference panels
Representative haplotype reference panels are at the core of many of the methods for

genotype imputation. The utilisation of multibreed haplotype reference panels for im-
putation purposes in livestock has been successful and encouraged over breed-specific
haplotype reference panels (coinciding with the target population) for microarray data
in a range of studies [22, 41, 42, 43, 44, 45]. However, as lcWGS data have been used
for imputation, more accurate performances were reported for breed-specific haplotype
reference panels (both in swine [45] and cattle (Chapter 3)). Despite having the larger
number of variants, multi-breed haplotype panels include a reduced representation of
haplotypes from the target breed and are thus less informative for the target population
than same-size single-breed panels. This limited number of breed-specific haplotypes
combined with the presence of haplotypes from other breeds affect threefold: the ab-
sence of breed-specific variants, the existence of out-breed variants and the presence
of multiallelic variants population-wise (which are biallelic in the target breed). These
conditions result into genotypes not being imputed (poorer imputation quality has been
reported for underrepresented populations) [18], variants from different breeds being
spuriously imputed (false positives) [44] and variants not being considered for impu-
tation due to some imputation tools (e.g., GLIMPSE) not allowing multiallelic variants.
Additionally, imputation with breed-specific haplotype panels is computationally more
effective. It is worth mentioning that haplotyping and the construction of haplotype ref-
erence panels will be greatly simplified by long-read data as these become increasingly
available [46].

Lack of consensus in imputation metrics
Akin to the validation of variants (section 5.2), evaluation of variant accuracy after

imputation is sensitive to the metrics and the ground callset used and can lead to differ-
ent interpretations [18, 22]. The disparity of the parameters being used (some indicated
in Fig. 1.4) causes discrepancies in how variant accuracy is evaluated and precludes an
immediate comparison across similar publications. The number of metrics used in live-
stock studies broadly ranges from a) the correlation between imputed genotypes and
observed in the truth set (r) [22, 42, 44, 47, 48], b) the correlation between true genotypes
and imputed dosages [49, 50], c) the squared correlation between the true and imputed
dosages (r2) [45], d) the percentage of genotypes imputed correctly among the total im-
puted genotypes (concordance rate) [22, 42, 44, 45, 47], e) the concordance adjusted for
chance agreement (imputation quality score, IQS) [44, 50], and f) allele concordance [47].
Rowan et al. [44], even described how some of the metrics (r and especially concordance
rate), might be adequate for most of the variants but overestimates the accuracy of impu-
tation for low-MAF variants. Accuracy at heterozygous sites is also suggested as a more
sensitive measure than overall accuracy [51]. In Chapter 2, the variants were validated
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by calculating three metrics between microarray-called (truth set) and sequence-called
genotypes: non-reference sensitivity (NRS), non-reference discrepancy (NRD) and the
concordance (CONC). This was aligned to previous bovine studies [12]. In Chapter 3,
the metrics resulting from the haplotype VCF comparison tool “hap.py” (F1, recall and
precision) were used to determine the accuracy of variants, in accordance with similar
studies in humans [18, 30]. The hap.py metrics were complemented with the Pearson
squared correlation between expected and actual dosages (r2). As of today, cutting-edge
studies validating genomic variation still rely on F1 scores [52] and r2 seems to be one
of the most popular metrics when reporting the accuracy in relation to the MAF [45].

The lack of a truth callset also hinders filtering from the imputed dataset. It is diffi-
cult to reach a balance between the removal of false positives (depending on quality and
frequency) while keeping relevant variants important for further analyses (e.g., GWAS).
Some of the tools in such downstream analyses already account for the uncertainty of
imputed variants by accommodating dosage scores, the probability associated to each
variant of having one of the three genotypes [53]. Since this is not always the case and
universal cut-offs do not exist [31], other metrics are required for an informed decision
on setting a quality threshold. Imputation tools often provide themselves an internal
confidence value for every imputed variant, but these are not always corresponding
[54]. For instance, whilst BEAGLE provides the estimated squared correlation metric
(r2) between the estimated and the true allele dosage for the marker [55], GLIMPSE or
IMPUTE2 generate an INFO score that is computed at each variant against the refer-
ence panel allele frequency and the estimated allele frequency and obtained from the
genotype dosages [56]. In Chapter 3, the imputation accuracy against a truth set (F1)
is related to the GLIMPSE INFO score to interpret the relationship between both. This
connection highlights the careful usage of the estimated accuracy metrics provided by
imputation tools to set reasonable cut-offs for downstream analyses without unwillingly
remove low-frequency variants.

5.4 Relevance of functional annotation

The assignment of functional properties to each region of the genome is essential for the
interpretation of biological implications of polymorphic loci. Provided a complete and
correct annotation file, usually shared alongside the genome coordinates of high-quality
assemblies, the impact of the variants can be anticipated and further functionally vali-
dated. However, confidently predicting the functional annotation to the different regions
is challenging and laborious [10] and newly assembled reference genome usually lack
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associated annotations. Despite the existence of more automated tools (such as protein-
to-genome aligners, albeit limited to coding regions [57]), manual curation within fully-
fledged annotation pipelines is still required to obtain reliable annotation sets [58, 59].
In fact, one of the most relevant differences detected when comparing the use of ref-
erence genomes in Chapter 2 were the predicted location of the variants. While the
percentage in coding/exons regions was similar, the percentage of variants annotated to
intergenic regions was ⇠10 percent points higher in ARS-UCD1.2 and the percentage of
variants annotated to intronic regions was ⇠10 percent points higher in UOA_Angus_1.
Since the manual annotation performed in ARS-UCD1.2 increases its reliability, the ex-
tra number of potentially high impact variants found with the UOA_Angus_1 assembly
may be unreliable, and further validation is warranted. Even if new bovine reference-
quality assemblies are equally or more contiguous and accurate than existing ones, the
errors and gaps in the functional annotations are a major obstacle to switch references
[60]. Annotations are also crucial for the benchmarking of variant callers. Thanks to the
comprehensive annotation of the ARS-UCD1.2 reference genome, the detection of bio-
logically important variants (often disease-causing or involved in production traits) can
be duly compared across pipelines and tools. The findings from other studies [61] as
GATK misses more functionally relevant variants that can have large impact in bovine
populations were confirmed in Chapter 3. Also because the reliability of the existing
bovine annotations, the coordinates of CpG islands could be retrieved for the study of
methylation patterns in bull samples in Chapter 4.

5.5 The role of genetic variation in other omics data

Methylation variability among individuals is influenced by genetic variation [62]. To
fully understand how genetic variation may affect phenotypes via the methylome, it is
necessary to profile methylation states across the genome and see how and where they
vary across animals and breeds [63]. Profiting from a uniquely large dataset of bovine
long-reads with haplotype-phased methylation information from different tissues and
development stages, Chapter 4 paves the way for a comprehensive exploration of methy-
lation patterns in CpG islands. The identification of the loci that impact methylation
(meQTLs) is a promising further exploration that can facilitate uncovering genetic regu-
latory mechanisms. Furthermore, the availability of long-read RNA-seq data as well as
the new bio-computational frameworks to detect histone and base modifications other
than 5mC (e.g., m6A- and 2’-O-methylation) in long reads [64, 65, 66] shed new light on
the intertwined multi-omic relationship between genomic variation, epigenetic modifi-
cations, histone accessibility and gene expression.
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5.6 Good praxis in computational biology

Bioinformaticians and computational biologists have an important responsibility in the
development and implementation of ethical and responsible research, in terms of data
and code openness as well as environmental impact. I have implemented reproducible
and optimised pipelines during my doctorate to comply with the FAIR principles (Find-
ability, Accessibility, Interoperability, Reusability) [67] and reduce the electrical power
implications of my analyses. For the sake of consistency and performance optimisation,
given the multiple times read-alignment has been performed across the different anal-
yses (⇠ 600 samples), a reproducible alignment pipeline was created [68]. While more
customisable and containerised solutions may exist in the meantime, such an automa-
tised pipeline was not openly available when this project started and has proven to be
an important resource for a range of genomic analyses. Several publications leveraging
this computational workflow have been since published [69, 70, 71, 72, 73].

Additionally, benchmarking of software and tools has been continuously performed
in order not only to keep up with the rapid pace of bioinformatic development but also
to optimise and update the pipelines. This complies with the eighth recommendation of
Grealey et al. [74], according to which using the most up to date software is “the quickest,
easiest, and potentially most impactful way to reduce one’s carbon footprint”. Newer
versions of the tool BWA-MEM2 [75], for instance, heavily reduced the memory required
for read alignment [76]. Utilisation of the workflow manager Snakemake [77] and the
multi-thread features, available for most of the software, increased the parallelisation of
analyses and allowed scaling these up to larger cohorts. Also, as indicated in Chapter
3, the utilisation of single-breed haplotype panels for the imputation of lcWGS is more
computationally efficient than multi-breed panels. All software and versions that have
been used and the pipelines that have been developed for the preparation of this thesis
are openly accessible from the Animal Genomics Github repository [78].
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[58] Tomáš Brůna, Heng Li, Joseph Guhlin, Daniel Honsel, Steffen Herbold, Mario Stanke, Natalia
Nenasheva, Matthis Ebel, Lars Gabriel, and Katharina J. Hoff. Galba: Genome annotation with
miniprot and AUGUSTUS. BMC Bioinformatics, 24(1):327, August 2023. ISSN 1471-2105. doi:
10.1186/s12859-023-05449-z.

[59] Lars Gabriel, Tomas Bruna, Katharina Jasmin Hoff, Matthis Ebel, Alexandre Lomsadze, Mark
Borodovsky, and Mario Stanke. BRAKER3: Fully Automated Genome Annotation Using RNA-Seq
and Protein Evidence with GeneMark-ETP, AUGUSTUS and TSEBRA, September 2023.

[60] Yan Guo, Yulin Dai, Hui Yu, Shilin Zhao, David C. Samuels, and Yu Shyr. Improvements and impacts
of GRCh38 human reference on high throughput sequencing data analysis. Genomics, 109(2):83–90,
March 2017. ISSN 0888-7543. doi: 10.1016/j.ygeno.2017.01.005.

[61] Yi-Lin Lin, Pi-Chuan Chang, Ching Hsu, Miao-Zi Hung, Yin-Hsiu Chien, Wuh-Liang Hwu, FeiPei Lai,
and Ni-Chung Lee. Comparison of GATK and DeepVariant by trio sequencing. Scientific Reports, 12:
1809, February 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-05833-4.

[62] Meritxell Oliva, Kathryn Demanelis, Yihao Lu, Meytal Chernoff, Farzana Jasmine, Habibul Ahsan,
Muhammad G. Kibriya, Lin S. Chen, and Brandon L. Pierce. DNA methylation QTL mapping across
diverse human tissues provides molecular links between genetic variation and complex traits. Nature
Genetics, 55(1):112–122, January 2023. ISSN 1546-1718. doi: 10.1038/s41588-022-01248-z.

100

https://faculty.washington.edu/browning/beagle/beagle_5.4_18Mar22.pdf
https://faculty.washington.edu/browning/beagle/beagle_5.4_18Mar22.pdf
https://odelaneau.github.io/GLIMPSE/docs/tutorials/getting_started/%237-imputation-accuracy


CHAPTER 5. DISCUSSION

[63] Jessica Powell, Andrea Talenti, Andressa Fisch, Johanneke D. Hemmink, Edith Paxton, Philip Toye,
Isabel Santos, Beatriz R. Ferreira, Tim K. Connelley, Liam J. Morrison, and James G. D. Prendergast.
Profiling the immune epigenome across global cattle breeds. Genome Biology, 24(1):127, May 2023.
ISSN 1474-760X. doi: 10.1186/s13059-023-02964-3.

[64] Anupama Jha, Stephanie C. Bohaczuk, Yizi Mao, Jane Ranchalis, Benjamin J. Mallory, Alan T. Min,
Morgan O. Hamm, Elliott Swanson, Connor Finkbeiner, Tony Li, Dale Whittington, William Stafford
Noble, Andrew B. Stergachis, and Mitchell R. Vollger. Fibertools: Fast and accurate DNA-m6A calling
using single-molecule long-read sequencing, April 2023.

[65] Doaa Hassan Salem, Aditya Ariyur, Swapna Vidhur Daulatabad, Quoseena Mir, and Sarath Chandra
Janga. Transcriptome-wide single molecule mapping of 2�-O-Methylation (Nm) sites in Nanopore
direct RNA sequencing datasets using the Nm-nano framework, February 2023.

[66] Mitchell R. Vollger, Jonas Korlach, Kiara C. Eldred, Elliott Swanson, Jason G. Underwood, Kather-
ine M. Munson, Yong-Han H. Cheng, Jane Ranchalis, Yizi Mao, Elizabeth E. Blue, Ulrike Schwarze,
Christopher T. Saunders, Aaron M. Wenger, Aimee Allworth, Sirisak Chanprasert, Brittney L. Duer-
den, Ian Glass, Martha Horike-Pyne, Michelle Kim, Kathleen A. Leppig, Ian J. McLaughlin, Jessica
Ogawa, Elisabeth A. Rosenthal, Sam Sheppeard, Stephanie M. Sherman, Samuel Strohbehn, Amy L.
Yuen, Thomas A. Reh, Peter H. Byers, Michael J. Bamshad, Fuki M. Hisama, Gail P. Jarvik, Yasemin
Sancak, Katrina M. Dipple, and Andrew B. Stergachis. Synchronized long-read genome, methylome,
epigenome, and transcriptome for resolving a Mendelian condition, September 2023.

[67] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau
Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds,
Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole
Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost
Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-
Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted
Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen,
Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend
Mons. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data,
3(1):160018, March 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.18.

[68] Audald Lloret-Villas. Animal genomics eth github: Alignment and mapping statistics, 2021. URL
https://github.com/AnimalGenomicsETH/Reference_assembly_choice/tree/master/Alignment.

[69] Meenu Bhati, Xena Marie Mapel, Audald Lloret-Villas, and Hubert Pausch. Structural variants and
short tandem repeats impact gene expression and splicing in bovine testis tissue. Genetics, page
iyad161, September 2023. ISSN 1943-2631. doi: 10.1093/genetics/iyad161.

[70] Xena Marie Mapel, Naveen Kumar Kadri, Alexander S. Leonard, Qiongyu He, Audald Lloret-Villas,
Meenu Bhati, Maya Hiltpold, and Hubert Pausch. Molecular quantitative trait loci in reproductive
tissues impact male fertility in a large mammal, July 2023.

[71] A. Nosková, A. Mehrotra, N. K. Kadri, A. Lloret-Villas, S. Neuenschwander, A. Hofer, and H. Pausch.
Comparison of two multi-trait association testing methods and sequence-based fine mapping of six
additive QTL in Swiss Large White pigs. BMC Genomics, 24(1):192, April 2023. ISSN 1471-2164. doi:
10.1186/s12864-023-09295-4.

[72] Elena O’Callaghan, Paula Navarrete-Lopez, Miriama Štiavnická, José M. Sánchez, Maria Maroto, Eva
Pericuesta, Raul Fernández-González, Ciara O’Meara, Bernard Eivers, Margaret M. Kelleher, Ross D.
Evans, Xena M. Mapel, Audald Lloret-Villas, Hubert Pausch, Miriam Balastegui-Alarcón, Manuel
Avilés, Ana Sanchez-Rodriguez, Eduardo R. S. Roldan, Michael McDonald, David A. Kenny, Sean
Fair, Alfonso Gutiérrez-Adán, and Patrick Lonergan. Adenylate kinase 9 is essential for sperm func-
tion and male fertility in mammals. Proceedings of the National Academy of Sciences, 120(42):e2305712120,
October 2023. doi: 10.1073/pnas.2305712120.

[73] Esther Ewaoluwagbemiga, Audald Lloret-Villas, Adéla Nosková, Hubert Pausch, and Claudia Kasper.
Genome-wide association study and regional heritability mapping of protein efficiency and perfor-
mance traits in swiss large white pigs, in prep.

101

https://github.com/AnimalGenomicsETH/Reference_assembly_choice/tree/master/Alignment


CHAPTER 5. DISCUSSION

[74] Jason Grealey, Loïc Lannelongue, Woei-Yuh Saw, Jonathan Marten, Guillaume Méric, Sergio Ruiz-
Carmona, and Michael Inouye. The Carbon Footprint of Bioinformatics. Molecular Biology and Evolu-
tion, 39(3):msac034, March 2022. ISSN 1537-1719. doi: 10.1093/molbev/msac034.

[75] Vasimuddin Md, Sanchit Misra, Heng Li, and Srinivas Aluru. Efficient Architecture-Aware Accelera-
tion of BWA-MEM for Multicore Systems. arXiv:1907.12931 [cs, q-bio], July 2019.

[76] bwa mem2. bwa-mem2 github, 2020. URL https://github.com/bwa-mem2/bwa-mem2.

[77] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall, Christopher H. Tomkins-Tinch,
Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O. Twardziok, Alexander Kanitz, Andreas Wilm,
Manuel Holtgrewe, Sven Rahmann, Sven Nahnsen, and Johannes Köster. Sustainable data analysis
with Snakemake. F1000Research, 10:33, 2021. ISSN 2046-1402. doi: 10.12688/f1000research.29032.2.

[78] Animal Genomics ETH. Eth animal genomics group github, 2023. URL https://github.com/Anima
lGenomicsETH.

102

https://github.com/bwa-mem2/bwa-mem2
https://github.com/AnimalGenomicsETH
https://github.com/AnimalGenomicsETH


Supplementary Material
Chapter 2

103



A
PPEN

D
IC

ES

Additional file 1
Sample IDs

BSW cattle IDs. Accession IDs of the 161 bovine samples used for our study.

SAMEA5159792 SAMEA5159791 SAMEA5159788 SAMEA5159783 SAMEA5159785 SAMEA5159799 SAMEA5159787
SAMEA5159761 SAMEA5159782 SAMEA5159775 SAMEA5159786 SAMEA5159784 SAMEA5159798 SAMEA5159781
SAMEA5159780 SAMEA5159797 SAMEA5159769 SAMEA5159778 SAMEA5159771 SAMEA5159779 SAMEA5159772
SAMEA5159773 SAMEA5159793 SAMEA5159770 SAMEA4644727 SAMEA4644728 SAMEA4644765 SAMEA4644766
SAMEA4644769 SAMEA19314418 SAMEA19315168 SAMEA4644754 SAMEA4644755 SAMEA4644756 SAMEA4644735
SAMEA4644757 SAMEA4644739 SAMEA4644741 SAMEA4644742 SAMEA4644758 SAMEA4644743 SAMEA4644762
SAMEA4644763 SAMEA6163199 SAMEA6272095 SAMEA6272096 SAMEA6272098 SAMEA6272099 SAMEA6272104
SAMEA6272105 SAMEA6272106 SAMEA6272108 SAMEA6272111 SAMEA6272116 SAMEA5159861 SAMEA5159863
SAMEA5159864 SAMEA5159865 SAMEA5159866 SAMEA5159867 SAMEA5159868 SAMEA5159869 SAMEA5159870
SAMEA5159871 SAMEA5159872 SAMEA5159873 SAMEA5159874 SAMEA5159875 SAMEA5159885 SAMEA6163175
SAMEA6163176 SAMEA6163177 SAMEA6163180 SAMEA6163182 SAMEA6163185 SAMEA6163186 SAMEA6163187
SAMEA6163188 SAMEA6163189 SAMEA6163190 SAMEA6163191 SAMEA6163192 SAMEA6163193 SAMEA6163194
SAMEA6163195 SAMEA19847668 SAMEA32997418 SAMEA32981668 SAMEA5714976 SAMEA5415485 SAMEA5159847
SAMEA32982418 SAMEA5415486 SAMEA5564716 SAMEA5415489 SAMEA5714979 SAMEA5159853 SAMEA5415488
SAMEA5714971 SAMEA32980918 SAMEA7573623 SAMEA7573624 SAMEA7573625 SAMEA7573627 SAMEA7573628
SAMEA7573631 SAMEA7573632 SAMEA7573633 SAMEA7573635 SAMEA7573636 SAMEA7573637 SAMEA7573639
SAMEA7573640 SAMEA7573642 SAMEA7573645 SAMEA7573646 SAMEA7573647 SAMEA7573649 SAMEA7573549
SAMEA7573551 SAMEA7573553 SAMEA7573554 SAMEA7573555 SAMEA7573556 SAMEA7573559 SAMEA7573560
SAMEA7573561 SAMEA7573562 SAMEA7573564 SAMEA7573565 SAMEA7573567 SAMEA7573570 SAMEA7573571
SAMEA7573573 SAMEA7573578 SAMEA7573583 SAMEA7573587 SAMEA7573588 SAMEA7573589 SAMEA7573591
SAMEA7573592 SAMEA7573593 SAMEA7573597 SAMEA7573599 SAMEA7573604 SAMEA7573607 SAMEA7573608
SAMEA7573610 SAMEA7573614 SAMEA7573616 SAMEA7573617 SAMEA7573539 SAMEA7573540 SAMEA7573541
SAMEA7573542 SAMEA7573543 SAMEA7573544 SAMEA7573545 SAMEA7573546 SAMEA7573547 SAMEA7573548104
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Additional file 2
Discarded reads

Number of mapped reads contained in the original files but not considered for
our study. Number of reads mapped to sexual chromosomes and to unplaced contigs
for both assemblies. Low quality mapping includes the number of reads filtered out
when considering only uniquely mapped properly paired reads with a mapping quality
threshold of 10. Sample-wise mean and standard deviation can be found between paren-
theses. The length of the sexual chromosomes and unplaced contigs is also included.

ARS-UCD1.2 UOA_Angus_1
Million reads Length (Mb) Million reads Length (Mb)

Chromosome X 1,805 139 1,649 139
Chromosome Y 374 43 432 16

Unplaced contigs 8,127 87 8,603 97
Sexual chromosomes and unplaced contigs 10,321 (64 ± 38) 10,684 (66 ± 39)

Low quality mapping 5,084 (32 ± 20) 5,099 (32 ± 20)

105



APPENDICES

Additional file 3
Number of variants during the different filtering steps

Number of variants during the different filtering steps: from original variants to
high-quality and non-fixed variants. Original variants are considered as the raw variants
retrieved from GATK. Low quality variants are discarded during hard-filtering and fixed
variants are identified when the minor allele count (MAC) is set to 1 in VCFtools. The
percentage of variants to the original variants before hard-filtering are in parentheses.

ARS-UCD1.2 UOA_Angus_1
Variants before hard-filtering 24,760,861 24,557,291

SNPs before hard-filtering 21,529,068 21,385,798
INDELs before hard-filtering 3,231,793 3,171,493

Variants discarded by hard-filtering 2,016,344 (8.14) 1,997,616 (8.13)
SNPs discarded by hard-filtering 1,789,081 (8.31) 1,762,677 (8.24)

INDELs discarded by hard-filtering 227,263 (7.03) 234,939 (7.41)
Total number of fixed variants after hard-filtering and imputation 256,256 (1.03) 269,770 (1.10)

Total number of fixed SNPs after hard-filtering and imputation 182,948 (0.85) 176,473 (0.82)
Total number of fixed INDELs after hard-filtering and imputation 73,308 (2.27) 93,297 (2.94)
Fixed variants for the alternate after hard-filtering and imputation 81,674 (0.33) 104,217 (0.42)

Fixed SNPs for the alternate after hard-filtering and imputation 72,121 (0.33) 75,342 (0.35)
Fixed INDELs for the alternate after hard-filtering and imputation 9,553 (0.30) 28,875 (0.91)

High-quality and non-fixed variants 22,488,261 (90.82) 22,289,905 (90.77)
High-quality and non-fixed SNPs 19,557,039 (90.84) 19,446,648 (90.93)

High-quality and non-fixed INDELs 2,931,222 (90.70) 2,843,257 (89.65)
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Additional file 4
Variant density of the autosomes for both assemblies.

Number of variants detected per kilo base pair (Kb) along autosomal sequences of
161 BSW samples when aligned to the ARS-UCD1.2 (blue) and UOA_Angus_1 (orange)
assembly.
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Additional file 5
Density of variants across chromosomes 13 and 23.

The number of variants is shown within non-overlapping windows of 10 Kb for
chromosome 13 (A) and 23 (B). The x-axis indicates the length of the chromosome (in
Mb). The number of variants within each 10 Kb window is shown on the y-axis. As-
sembly ARS-UCD1.2 is displayed in the top panel (blue) and assembly UOA_Angus_1
is displayed as a mirror image in the bottom panel (orange).
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Additional file 6
Density of high-quality and non-fixed variants per Kb along the autosomal

genome

Unlike Table 3 in the main text, densities are calculated here when chromosome 12
is not considered.

ARS-UCD1.2 UOA_Angus_1
High-quality and non-fixed variants per Kb 8.99 8.89

High-quality and non-fixed SNPs per Kb 7.82 7.76
High-quality and non-fixed INDELs per Kb 1.17 1.13
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Additional file 7
Number and percentage of multiallelic variants.

Percentage of multiallelic variants is obtained from the division of multiallelic vari-
ants to non-fixed high-quality variants. Multiallelic variants are identified when the
’-min-alleles 2 -max-alleles 2’ flag is set in VCFtools. Alleles not in Hardy-Weinberg
proportions are the number of variants with P-value below the threshold of 10-8 when
testing for Hardy-Weinberg proportions with PLINK. Percentages are between paren-
theses.

ARS-UCD1.2 UOA_Angus_1
Multiallelic variants (%) 848,100 (3.78) 857,206 (3.83)

Multiallelic SNPs (%) 256,545 (1.32) 264,980 (1.34)
Multiallelic INDELs (%) 591,555 (20.21) 592,226 (20.90)
Alleles not in HWE (%) 218,734 (0.97) 243,408 (1.09)

Additional file 8
Density of variants deviating from Hardy-Weinberg proportion for chro-

mosome 12.

The number of variants differing from Hardy-Weinberg proportion are plotted as
non-overlapping windows of 10 Kb along the autosomal sequence. The y-axis relates
the variant density, number of variants per 100 Kb, for each 10-Kb-windows.
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Additional file 9
Summary of the annotated sequence ontology classes of SNPs and INDELs

SO terms are described by Ensembl. Total number of high-quality and non-fixed
annotated SNPs and INDELs for both assemblies that were annotated using the release
101 annotation files with VEP tool.

ARS-UCD1.2 UOA_Angus_1
SNPs INDELs SNPs INDELs

intergenic_variant 11,638,948 1,711,642 9,711,869 1,389,027
intron_variant 6,255,771 970,043 8,019,897 1,203,207

upstream_gene_variant 716,481 116,312 693,951 109,258
downstream_gene_variant 611,296 99,692 592,550 92,575

synonymous_variant 117,628 0 122,781 0
missense_variant 86,634 0 99,773 0

3_prime_UTR_variant 69,582 14,052 121,959 24,291
5_prime_UTR_variant 25,688 4,641 27,838 4,999

non_coding_transcript_exon_variant 18,579 2,279 37,976 5,540
splice_region_variant 13,598 2,667 14,553 2,884

stop_gained 1,466 218 1,911 288
splice_donor_variant 506 291 525 298

splice_acceptor_variant 345 292 395 292
start_lost 271 20 319 14
stop_lost 155 11 218 15

stop_retained_variant 86 3 90 7
non_coding_transcript_variant 4 4 17 12

coding_sequence_variant 1 63 26 42
frameshift_variant 0 6,289 0 7,435
inframe_deletion 0 1,761 0 1,972
inframe_insertion 0 850 0 985

protein_altering_variant 0 87 0 107
transcript_ablation 0 5 0 6

start_retained_variant 0 0 0 3
Total 19,557,039 2,931,222 19,446,648 2,843,257

Additional file 10
Candidate selection signatures detected using ARS-UCD1.2 as reference.

Genomic coordinates, CLR values, P-values and encompassed genes for 40 candidate
selection signatures.
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Chr Start_bin End_bin LR p_value Gene_id Gene_name
1 11909358 11949363 307.87 0.0006832907281 . .
2 61732510 61752514 443.46 0.0005627100114 ENSBTAG00000013302 R3HDM1

2 61812528 61832531 236.53 0.0007636778726
ENSBTAG00000026842,
ENSBTAG00000043334 U6, ZRANB3

2 73795136 73815140 195.91 0.0008922973038 . .
2 118664905 118684908 200.92 0.000860142446 ENSBTAG00000017855 ITM2C
2 119305044 119325048 237.48 0.0007476004437 . .
5 4422441 4442444 172.15 0.0009807231628 . .
5 15464355 15484358 181.43 0.0009405295905 ENSBTAG00000026966 RASSF9
5 18484879 18864943 654.65 0.0004421292947 . .
5 18884948 18904950 174.97 0.0009646457339 . .
5 39248477 39288483 332.4 0.0006511358704 ENSBTAG00000012624 PDZRN4
5 46269694 46289697 207.54 0.0008279875882 . .
5 76054857 76074859 167.74 0.001012878021 . .
6 36965109 37025116 801.44 0.0004260518658 . .

6 37045120 38025251 4063.6 1.60774289e-05
ENSBTAG00000005932,
ENSBTAG00000005932 DCAF16, NCAPG

6 38045255 38065256 243.55 0.0007315230148 . .
6 38665338 38685340 197.61 0.0008762198749 . .
6 38705344 38725346 372.06 0.000627019727 . .
6 47946592 47966594 274.62 0.0007074068715 . .
6 48086611 48106613 187.2 0.0009244521616 . .
6 82531263 82571267 175.2 0.0009566070194 . .
7 87913975 87973987 361.87 0.0006350584415 ENSBTAG00000050706 lncRNA
7 93715212 93735215 227.64 0.0007797553015 ENSBTAG00000003144 KIAA0825

10 9412209 9492226 379.34 0.0006189810126 ENSBTAG00000007371 SCAMP1
10 19254433 19274437 189.97 0.0009164134472 ENSBTAG00000012981 HEXA

10 19294442 19314446 236.89 0.0007556391582
ENSBTAG00000012981,
ENSBTAG00000025814 HEXA, TMEM202

10 70426000 70446003 202.99 0.0008440650171
ENSBTAG00000020880,
ENSBTAG00000053337 ARMH4, pseudogene

11 98935806 98995813 220.33 0.0007958327304
ENSBTAG00000015436,
ENSBTAG00000015436 SLC27A4, SLC27A4

11 99075826 99095828 205.11 0.0008360263027 ENSBTAG00000030566 GLE1
13 11522254 11542255 546.23 0.0004742841525 ENSBTAG00000040490 CCDC3
13 11622267 11642268 173.93 0.0009726844483 . .
13 11662272 11682273 282.1 0.0006913294426 ENSBTAG00000008650 CAMK1D
13 11762285 11822291 602.97 0.0004582067236 ENSBTAG00000008650 CAMK1D

13 11862298 11922304 846.99 0.0004180131513
ENSBTAG00000008650,
ENSBTAG00000008650 CAMK1D, CAMK1D

13 11962310 12022317 1372.63 0.000393897008
ENSBTAG00000008650,
ENSBTAG00000008650 CAMK1D, CAMK1D

14 40641384 40681396 224.91 0.000787794016 . .
14 40701404 40721410 196.43 0.0008842585894 . .
16 24027957 24047962 382.96 0.0006109422981 ENSBTAG00000010460 MARK1
21 32563431 32583436 170.14 0.0009968005916 ENSBTAG00000020441 HMG20A
22 3010076 3030083 180.02 0.000948568305 . .
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Additional file 11
Candidate selection signatures detected using UOA_Angus_1 as reference.

Genomic coordinates, CLR values, P-values and encompassed genes for 33 candidate
selection signatures.

Chr Start_bin End_bin LR p_value Gene_id Gene_name
1 137438317 137478322 311.92 0.0008184897648 . .

2 17663600 17743615 841.63 0.000421400671
ENSBIXG00000019970,
ENSBIXG00000019990 protein_coding

2 17763620 17783623 522.31 0.000567270134
ENSBIXG00000019970,
ENSBIXG00000019990 protein_coding

2 26365305 26405312 812.12 0.0004376083891 . .
2 78575535 78595538 250.21 0.0009562553688 . .
3 13562358 13582360 272.74 0.0008995283554 ENSBIXG00000026575 lncRNA

3 22823888 22863893 403.23 0.0007455550333
ENSBIXG00000024473,
ENSBIXG00000024473 CHD1L, CHD1L

3 72712126 72812141 556.98 0.0005186469797 . .
4 114410784 114430787 235.77 0.001004878523 ENSBIXG00000005066 DDC
5 18475816 18835845 657.1 0.0004700238253 . .
6 37268147 37288149 671.8 0.0004619199663 . .
6 37308153 37328155 996.08 0.0004132968119 . .

6 37348158 38348296 3837.77 1.620771812e-05
ENSBIXG00000001446,
ENSBIXG00000001446 DCAF16, FAM184B

6 113158688 113178689 420.87 0.000696931879 ENSBIXG00000023411 SORCS2
10 38786770 38826776 403.43 0.0007374511742 . .
10 38846780 38906790 308.93 0.0008265936239 . .
11 36244408 36264409 335.29 0.0008022820467 ENSBIXG00000017054 PSME4
11 65707622 65727623 461.66 0.0006321010065 . .
11 65927646 65947647 334.11 0.0008103859058 ENSBIXG00000006581 lncRNA
11 102031584 102051585 257.41 0.0009238399326 ENSBIXG00000010765 CFAP77
14 41571833 41591836 234.04 0.001012982382 ENSBIXG00000018543 lncRNA
15 46674925 46694930 616.91 0.0004862315435 . .
15 46714937 46754949 573.34 0.0005024392616 . .
16 6821274 6841276 264.23 0.0009157360735 . .
17 1820474 1840478 414.32 0.0007131395971 ENSBIXG00000012569 TLL1

17 1920496 1980508 832.49 0.0004295045301
ENSBIXG00000005990,
ENSBIXG00000012551 lncRNA, protein_coding

22 12289822 12369857 541.3 0.0005267508387 ENSBIXG00000009047 SCN11A
22 12830060 12890085 526.75 0.000559166275 ENSBIXG00000008950 protein_coding
24 16032916 16052921 266.1 0.0009076322145 ENSBIXG00000007455 protein_coding
24 25735873 25755878 295.47 0.0008671129192 . .
25 5462749 5482758 280.81 0.0008914244963 ENSBIXG00000030306 RBFOX1
26 36882914 36922929 246.56 0.0009724630869 . .
26 37002963 37082996 384.01 0.0007536588924 ENSBIXG00000010951 lncRNA
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Additional file 12
Selective sweeps on chromosome 13.

Chromosome 13 region in ARS-UCD1.2 from 10,501,688 - 12,506,844 Mb and cor-
responding region on UOA_Angus_1 between 71,231,671 73,018,009 Mb with high-
lighted six selective sweep region from 11.5 Mb to 12 Mb. (A) Dot plot between the
two assemblies, (B) SNP density per Kb (red line represents the average SNP den-
sity/chromosome), (C) Standardized coverage per 0.5 Kb, (D) Alternate allele frequency
of each SNP (each dot is per SNP).

A B

DC
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Additional file 13
Selective sweeps on chromosome 22.

Chromosome 22 region in ARS-UCD1.2 from 11,928,425 - 12,925,926 Mb and corre-
sponding region on UOA_Angus_1 between 12,003,259 13,000,720 Mb with highlighted
two selective sweep region. (A) Dot plot between the two assemblies, (B) SNP density
per Kb (red line represents the average SNP density/chromosome), (C) Standardized
coverage per 0.5 Kb, (D) Alternate allele frequency of each SNP (where each dot is per
SNP).

A B

C D
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Additional file 14
Genome Wide Association Study (GWAS).

Manhattan plots showing association of sequence variants - imputed using ARS-
UCD1.2 (blue and grey) and UOA_Angus_1 (orange and grey) - with fat yield (A),
protein yield (B) and stature (C).
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Additional file 15

Percentage of overlapping variants across the different GATK and DV sets.

Two different intersection modes were used: exact match (same coordinates, and REF and ALT alleles) and position match (only
coordinates were queried - in parentheses).

Overlapping variants (%) Overlapping SNPs (%) Overlapping INDELs (%)

Biallelic GATK 93.39 (93.55) 95.37 (95.38) 77.97 (79.35)
DV 91.98 (92.15) 92.61 (92.71) 86.47 (87.18)

Multiallelic GATK 37.17 (60.45) 24.73 (25.82) 41.26 (71.84)
DV 38.10 (61.95) 17.52 (27.94) 34.41 (60.02)

Additional file 16
Number of total and multiallelic SNPs shared and private for the different GATK and DV sets.

Two different intersection modes were used: exact match (same REF and ALT alleles) and position match (only coordinates were
queried - in parentheses).

Overlapping variants Private variants
SNPs Multiallelic SNPs Multiallelic SNPs (%) SNPs Multiallelic SNPs Multiallelic SNPs (%)

GATK 14,071,834 (14,134,549) 36,257 (45,367) 0.26 (0.32) 791,774 (729,059) 13,215 (4,105) 1.67 (0.56)
DV 14,071,834 (14,244,141) 36,257 (39,134) 0.26 (0.27) 1,289,951 (1,117,644) 6,642 (3,765) 0.51 (0.34)
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Additional file 17
Summary of genotypes.

a) Percentage of filtered genotypes called by each variant caller. b) Number of filtered
genotypes called by each variant caller. d) Number of imputed genotypes called by each
variant caller.
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Additional file 18
Biallelic variants (SNPs / INDELs) annotated with VEP.

Biallelic variants (SNPs / INDELs) annotated with VEP and classified depending on
the likely functional effects: high, moderate, low and modifier. Variants were considered
before and after filtering (exact match for filtered out). Variants were also divided de-
pending on whether were called by both variant callers (shared) or only one (private) -
position matches were accepted.

Set High Moderate Low Modifier

GATK

Raw 2,680 / 4,493 67,180 / 1,657 90,955 / 3,403 15,667,553 / 1,985,337
Raw private 546 / 2,283 10,390 / 674 11,327 / 990 926,538 / 452,647
Raw shared 2,134 / 2,210 56,790 / 983 79,628 / 2,413 14,741,015 / 1,532,690

Filtered 2,252 / 3,993 57,675 / 1,522 82,618 / 3,126 14,574,453 / 1,883,261
Filtered private 362 / 2,089 7,503 / 598 8,714 / 820 664,190 / 401,763
Filtered shared 1,890 / 1,904 50,172 / 924 73,904 / 2,306 13,910,263 / 1,481,498

Filtered out 428 / 500 9,505 / 135 8,337 / 277 1,093,100 / 102,076

DV

Raw 3,530 / 2,778 69,525 / 1,162 88,839 / 2,833 16,125,916 / 1,748,769
Raw private 1,396 / 572 12,733 / 175 9,213 / 421 1,384,901 / 216,078
Raw shared 2,134 / 2,206 56,792 / 987 79,628 / 2,412 14,741,015 / 1,532,691

Filtered 2,474 / 2,240 58,457 / 1,068 80,765 / 2,730 15,013,146 / 1,700,025
Filtered private 584 / 338 8,283 / 142 6,863 / 424 1,102,883 / 218,527
Filtered shared 1,890 / 1,902 50,174 / 926 73,902 / 2,306 13,910,263 / 1,481,498

Filtered out 1,061 / 612 11,214 / 135 8,226 / 348 1,142,970 / 134,643
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Additional file 19
VEP annotation of GATK and DV private variants.

MAFs greater than 0.05 are bolded, and HOMALT samples refers to the number
of samples with 1/1 genotypes for the variant (out of a maximum of 33 genotyped
samples). Some variants were present in the other caller but as a different variant than
predicted by truth. Truly missing variant calls are indicated by “-“.

Variant caller Position Predicted impact MAF HOMOALT samples Reason not intersecting
GATK 9:78221981 Moderate 0.78 21 INDEL
GATK 19:46232626 High 0.02 0 -

DV 5:116965831 Low 0.09 1 -
DV 6:37374718 Low 1 33 -
DV 11:15257933 Low 0.57 10 INDEL
DV 15:1094876 Low 0.75 16 -
DV 25:20777430 Low 0.13 1 -
DV 15:49709135 Moderate 0.06 2 -
DV 18:61285359 Moderate 0.08 0 Multiallelic
DV 4:49174950 High 0.02 0 INDEL
DV 7:41125658 High 0.26 1 Multiallelic
DV 10:27971463 High 0.01 0 INDEL
DV 15:49811331 High 0.29 3 -
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Additional file 20
Genotyping accuracy of variant calls.

Categorisation and comparison of filtered (a) and imputed (b) genotypes detected
with hap.py, where the colour intensity indicates the percentual differences between
GATK and DeepVariant (DV).
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Additional file 21
F1, recall and precision scores when comparing the truth set and the query

sets (different coverages and panels).

Numbers in pure panels indicate the number of samples. Percentages in multibreed
panels indicate the proportion of BSW samples. The top values for each metrics and
coverage are highlighted.

Metric Panel 4x 2x 1x 0.5x 0.25x 0.1x 0.01x

F1

BSW (150) 0.9663 0.9575 0.9456 0.9269 0.9009 0.8490 0.6934
BSW (75) 0.9655 0.9543 0.9381 0.9167 0.8855 0.8245 0.6609
BSW (30) 0.9608 0.9436 0.9198 0.8906 0.8513 0.7853 0.6215

Multibreed (50%) 0.9642 0.9554 0.9422 0.9239 0.8966 0.8385 0.6722
Multibreed (25%) 0.9629 0.9529 0.9382 0.9188 0.8901 0.8296 0.6518
Multibreed (10%) 0.9614 0.9494 0.9320 0.9099 0.8786 0.8144 0.6229
Non-BSW (150) 0.9552 0.9394 0.9138 0.8819 0.8405 0.7677 0.5442
Non-BSW (75) 0.9526 0.9342 0.9042 0.8676 0.8218 0.7443 0.5291
Non-BSW (30) 0.9444 0.9208 0.8818 0.8361 0.7837 0.7061 0.5097

Recall

BSW (150) 0.9700 0.9565 0.9380 0.9144 0.8810 0.8167 0.6423
BSW (75) 0.9677 0.9515 0.9293 0.9008 0.8607 0.7858 0.6064
BSW (30) 0.9591 0.9367 0.9059 0.8686 0.8189 0.7394 0.5679

Multibreed (50%) 0.9665 0.9528 0.9338 0.9092 0.8736 0.8018 0.6170
Multibreed (25%) 0.9650 0.9500 0.9293 0.9034 0.8665 0.7921 0.5975
Multibreed (10%) 0.9628 0.9459 0.9222 0.8934 0.8535 0.7756 0.5702
Non-BSW (150) 0.9523 0.9317 0.8993 0.8596 0.8100 0.7243 0.4961
Non-BSW (75) 0.9457 0.9222 0.8849 0.8394 0.7835 0.6939 0.4760
Non-BSW (30) 0.9282 0.8995 0.8526 0.7974 0.7350 0.6475 0.4535

Precision

BSW (150) 0.9626 0.9586 0.9512 0.9398 0.9218 0.8839 0.7534
BSW (75) 0.9632 0.9571 0.9472 0.9331 0.9118 0.8672 0.7262
BSW (30) 0.9625 0.9507 0.9340 0.9138 0.8863 0.8373 0.6862

Multibreed (50%) 0.9620 0.9580 0.9507 0.9392 0.9208 0.8788 0.7383
Multibreed (25%) 0.9609 0.9559 0.9473 0.9346 0.9152 0.8709 0.7171
Multibreed (10%) 0.9599 0.9530 0.9419 0.9269 0.9051 0.8572 0.6864
Non-BSW (150) 0.9583 0.9473 0.9287 0.9054 0.8746 0.8167 0.6027
Non-BSW (75) 0.9597 0.9465 0.9245 0.8978 0.8641 0.8026 0.5956
Non-BSW (30) 0.9611 0.9431 0.9133 0.8788 0.8392 0.7763 0.5818
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Additional file 22
Genotyping accuracy from low-pass whole-genome sequencing.

a) F1 score between truth and imputed variants, with error bars accounting for the
three replicas. b) Percentage of imputed variants with a GLIMPSE’s estimated accuracy
higher than 0.6. Relationship between F1 score and estimated imputation accuracy for
lcWGS at 0.1x (c) and 1x (d). Panels are indicated with colours and number/percentage
of BSW samples in different point shapes.

Additional file 23
Compute resources used by DeepVariant (DV) and GATK to pre-process

aligned BAM files, call variants per sample (gVCF stage), and jointly genotype
and filter variants (pVCF stage).

Times are listed as CPU hours, and peak memory usage across all stages is given
in gigabytes. DV does not require pre-processing. Jobs were submitted to nodes with
different CPUs and non-exclusive use, and so these figures do not represent precise
benchmarking. However, any node/usage variability is minor compared to the differ-
ences in total CPU hours used between DV and GATK.

Variant caller Preprocessing (h) gVCF stage (h) pVCF stage (h) Peak memory (GB)
DV - 577 3 81

GATK 820 999 233 49
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Additional file 24
CPU hours required to impute different coverages and panels for 3 repli-

cates.

Compute time was dominated by panel size followed by panel composition, while
the input coverage had limited effect.
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