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Abstract. A meteorological mesoscale model is used to predict the local urban climate at 250 m 
resolution. The authors propose a hybrid machine learning approach to improve the prediction 
accuracy and remove simulation bias. Two case studies are presented to show the improvements 
of the simulation accuracy. Based on the hybrid model results, using cooling degree hours is 
proposed as an insightful time-dependent index to map local hotspots and assess the difference 
of cooling loads between rural and urban environments.  

1.  Introduction  
 
Due to the increasing magnitude and occurrence frequency of heatwaves and their important impact on 
buildings and urban environments, there is an urgent need for predicting the urban climate and local 
microclimate more accurately. During heatwaves, outdoor and indoor thermal comfort may deteriorate 
leading to excessive heat stress on pedestrians and inhabitants. This negative impact may increase with 
climate change, for example rendering passive cooling by night ventilation ineffective and requiring the 
use of active cooling. Moreover, we know that cities show an urban heat island (UHI) effect, and that 
specific neighborhoods become hot spots during heatwaves. There is an urgent need to provide building 
and urban physics studies with appropriate environmental boundary conditions taking into account the 
local urban climate.  
 Mesoscale Meteorological Models (MMM) are commonly used for limited area weather prediction 
applications. They are driven by lateral boundary and initial conditions from global circulation models. 
They model the time dependent state of the atmosphere on a regular grid. Subgrid scale physics is 
represented by parametrized models. These parametrized processes usually include radiation, cloud 
physics, boundary layer, land use interaction but can also include urban climate effects. There are 
multiple urban canopy parametrizations with different approaches and model complexities available to 
use with MMMs. The use of these schemes however requires the availability of detailed data describing 
the urban environment, like building geometry, land use data and thermal properties of buildings.  

Recently, the authors coupled MMMs with their in-house Computational Fluid Dynamics (CFD) 
urban microclimate model which is solved using OpenFOAM [1]. In this one-way coupling approach, 
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boundary conditions from MMMs are used to drive the urban microclimate model by interpolating wind 
and temperature profiles at the boundaries of the CFD domain. The urban microclimate model also 
considers heat and moisture transport in the urban and building materials, as well as longwave and 
shortwave radiation exchange and heat and moisture impacts of vegetation. MMM results have also 
been used by the authors as input to Building Energy Simulation (BES) tools to analyze summer 
overheating and excess building cooling demand during heatwave days and hot summers [2]. The 
authors compared WRF (Advanced Weather and Research Model) MMM predictions with weather 
station measurements and used the forecast data as input for Energy+, finding that building cooling 
demand can be highly underpredicted during hot summers using standard reference meteorological data.  

Here we present a new approach to increase prediction accuracy for local urban climate simulations. 
This method is based on a hybrid workflow, where MMM simulation output is improved with 
measurements-based machine learning, in order to simulate city scale climatic conditions and providing 
accurate spatial boundary conditions for the CFD-based local urban microclimate model.  

The paper is organized as follows. First, we present two mesoscale meteorological models, compare 
their results with measured data from three sources and propose an improvement of the models using 
machine learning. Then, we analyze the urban heat island based on the MMM results using the cooling 
degree hours metrics. Finally, we finish with conclusion and outlook for future research. 

2.  Mesoscale meteorological modelling (MMM) for the urban climate  
MMMs, such as WRF (Advanced Weather and Research Model) [3] and COSMO (Consortium for 
Small-scale Modelling) [4], commonly used for weather prediction [5], can also be configured to study 
the urban climate at 250 m resolution. The methods are based on a down-nesting of initial and boundary 
conditions coming from global models like GFS (Global Forecast System), ECMWF (European Centre 
for Medium-Range Weather Forecasts) or nested models derived from the global ones like MeteoSwiss 
COSMO-2/1. At the boundaries of the spatial domain, lateral boundary conditions are prescribed which 
come from higher scale results and a relaxation zone is implemented to blend the forced conditions at 
the boundaries together with the atmospheric model of a limited area [6]. Figure 1 shows as an example 
a three down-nesting approach for the city of Zurich, where the largest domain D01 has a grid size of 
6.25 km and the smallest domain D03, which is the domain of interest, a grid size of 250 m. 

 
 

a) 

 

b) 

 
 
 

Figure 1a). Nested domain setup for WRF Simulations of Zurich with three domains D01, D02 and D03.  
Figure 1b). Ground truth sensor locations in Zurich and its surroundings 
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Several physical processes occurring at urban scale cannot be taken into the calculations in MMMs 
at the scale of 250 m and are represented by parametrized models. In COSMO, we use as urban canopy 
parametrization the double-canyon effect parametrization (DCEP) model for multi-layer urban canopy 
representation proposed by Schubert et al. [7]. This model takes into account the radiation exchange for 
two neighboring canyons treating direct and diffuse radiation separately. Building morphology in each 
250×250 m2 area is grouped in four categories with different street orientation, building height and street 
width. The use of DCEP needs a detailed preparation of input data such as building geometry, and 
radiative and thermal properties of urban surfaces, which can be processed from data such as LIDAR or 
building databases. In the present study, COSMO-DCEP simulations are performed with a timestep of 
5 seconds and with hourly model output. Mussetti et al. [8] studied the performance of this method for 
Zurich and showed that the performance of the model improved the prediction of the urban climate when 
using a higher resolution of 250 m compared to a commonly-used resolution of 1 km.  

In WRF, NOAH LSM (Land Surface Model) is used to model the exchange of heat and moisture 
between soil and the atmosphere.  The NOAH scheme is widely used in operational weather forecasting 
and is considered to be one of the default LSM schemes in WRF [9]. It was developed through an 
interdisciplinary research project, grouping several universities and US governmental agencies, and 
continues to be improved by WRF developers. The LSM scheme plays a critical role in predicting 
surface and near-surface variables like air temperature at 2 m, surface temperature, wind speed and 
energy fluxes between the atmosphere and the ground. In our WRF setup, we use the NOAH LSM 
directly, without any additional urban canopy model.  

Figure 2a shows the locations of three measurement stations in Zurich used for comparison with the 
results of WRF and COSMO. These three stations belong to three different environment types. Kaserne 
station is situated in downtown Zurich and part of the National Air Pollution Monitoring Network 
(NABEL). SMA station is located on a south-west facing hill around 170 m above the city center. The 
airport station is situated just outside of the city, in an area not considered fully rural.  

 
 

a) b) 

  
 

Figure 2 a). Locations of selected measurement stations in Zurich 
Figure 2b). Comparison of air temperature at 2 m height between WRF, COSMO and measured data, the latter measured at a 
meteorological measurement station in central Zurich (NABEL) during a summer period from June 10th 2019 until July 10th 

2019 

Figure 2b compares the predictions of air temperature from the closest COSMO and WRF cell at 2 
m height above ground with the measured data for the heatwave during June 2019 at the urban station 
Kaserne. The summer period contains a heatwave, with air temperatures above 30° for at least eight 
consecutive days.  
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Both models show differences between measurements and predictions. WRF overpredicts daily 
peaks especially between June 20th and June 23rd but also on June 15th and June 18th. COSMO predicts 
the daily peaks better but predicts too warm nights, for example from June 20th until June 23rd and on 
June 26th and 27th.  Table 1 shows the RMSE (Root Mean Square Error) values for all stations. None of 
the RMSE values are bigger than 3°C. COSMO with the computationally-intensive urban canopy 
performs clearly better. Remarkably, WRF with the default NOAH LSM is not much worse especially 
in the fully urban environment like the one at Kaserne station.  

 
Table 1. RMSE values of COSMO and WRF predictions with selected measurement stations during heatwave from June 10th 

to July 10th 2019 

Reference station COSMO  WRF 

Kaserne (downtown) 1.26°C 1.87°C 
SMA Fluntern (semi urban) 1.82°C 2.76°C 
Airport (semi-rural) 1.57°C 2.8°C 

 
It is however clear from the above results that a further improvement of MMM simulation results 

can be necessary. We present a hybrid method based on Machine Learning (ML) to improve the 
agreement between simulation and observation data.  

Our method is illustrated for a WRF simulation in the domain of interest. The WRF simulation results 
(referred to as WRF-only) are corrected for the bias between simulation and measured data with a 
machine learning approach (referred to as WRF+ML). We use two different Swiss cities as case studies: 
Bern and Zurich. In both cities, a dense network of microclimate stations are built in the last three years 
to provide diverse ground truth data over the whole city. Figure 2 b) shows the spatial distribution of 
temperature sensors over Zurich and its surrounding environment. In addition to the sensors in the urban 
environment, there are also sensors in the rural environment all over the Canton of Zurich [10]. These 
stations measure the temperature of the local environment, which is also the target variable for the 
machine learning submodel. The authors experimented with different ML algorithms. It is found that 
the best RMSE performance is provided using a random forest approach. The WRF simulation was 
carried out over two summer months from June 1st until July 31st, 2019. This timespan includes several 
heatwave periods with maximum temperatures over 30°C for more than three consecutive days but also 
colder days with average or below average temperatures. Data from all stations are used for training the 
model, but it would also be possible to classify the stations by the associated environment. All dynamic 
variables of the WRF output are included as predictors. The most significant ones are found to be T2 
(Temperature at 2 m, feature importance: 0.77), followed by GRDFLX (Ground heat flux, feature 
importance: 0.049), TH2 (Potential Temperature at 2 m, feature importance: 0.014) and MU 
(perturbation dry air mass in column, feature importance 0.007).  

Additional static data like topography, land classification according to cadaster and exposition are 
also included. None of the additional static data has any positive influence on the prediction accuracy. 
One possible explanation for this is the indirect inclusion of the static data in the WRF simulation itself, 
i.e. WRF already uses static datasets, like topography and land use data, for boundary layer, surface and 
soil parametrization. Hence, including this data into the ML process does not introduce new information. 

Table 2 shows the RMSE values between WRF-only (without any bias correction), WRF+ML 
predictions and the unseen testing dataset from all sensor locations, respectively. A remarkable 
improvement of the accuracy of the predictions is observed showing a decrease of RMS from 2.82°C to 
0.74°C. 
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Table 2. RMSE of WRF-only and WRF+ML predictions 

 WRF  WRF+ML 
(testing dataset) 

RMSE 2.82°C 0.74°C 
 

 
Figure 3 aggregates the temperature differences between measurements and WRF-only and 

WRF+ML approach to hourly box plots of the distribution over the whole simulation period. One can 
clearly see that the WRF-only approach underpredicts the temperature in the mornings but overpredicts 
the evening temperature. This trend is visible for all stations and has been already observed in other 
simulation cases by the authors. By applying our machine learning model, we can eliminate this bias 
completely. This leads to lower RMSE values and a significant increase of the prediction accuracy. 

We carried out a similar case study for the City of Bern. Gubler et al. built a low-cost sensor network 
covering the city of Bern to measure air temperatures in different urban neighborhoods [11]. The used 
data is collected for the summer period 2018. A 250 m x 250 m WRF simulation is carried out for the 
available longest period, where data is available from all sensors. This ends up being a simulation period 
from June 25th until July 8th, a comparatively shorter time span.  

The RMSE between measurements and WRF-only approach results in a high value of 3.19°C. With 
our hybrid approach we could improve the predictions to a RMSE value of 0.94°C.  However, we note 
that the simulation period is quite short and there are some uncertainties about the performance of these 
low-cost sensors, especially about shielding during direct solar irradiation.   

A further step is to transfer the fitted model from one city to another. Since we found the best results 
for the Zurich case, we transfer the trained Zurich model and test it on the Bern data. In this case we 
found no improvement and RMSE even increased to 3.4°C. There are multiple possible reasons for this 
observation: the comparatively short simulation period for the city of Bern did not fit the model well; 
the simulated year, 2018, is different from the 2019 one used to fit the model in Zurich; the sensors in 
Berne are not the same device types as in Zürich and can react differently in similar conditions. All these 
issues can influence the model performance.  

We conclude that using measured data in the city can significantly improve the RMSE values and 
accuracy of the predictions. This approach is very promising and computationally much less expensive 
than the use of parametrized urban canopy models. It also needs no additional static input data. One 
possible future application would be to use crowdsourcing public measurement networks like Netatmo 
as input dataset for ML [12]. 

 

 
Figure 3. Boxenplot of hourly differences between measurements, WRF-only and WRF+ML for the simulations in Zurich 
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3.  Urban heat island characterization using cooling degree hours (CDH)  
Using cooling degree hours (CDH) as metrics, we analyze the cooling energy demand spatially over the 
Zurich agglomeration and identify the urban heat island (UHI), showing the capacity of this method to 
locate hot spots. The cooling degree hours for a certain set point temperature is defined as: 

CDH!! = " #
𝑡" − 𝑡#, 𝑡" 	> 𝑡#	
0, 						𝑡" ≤	 𝑡#

$

"%&

 (1) 

 
where ts equals the set point temperature, k the simulation hour, n the total hours of the considered period 
and tk the predicted temperature at 2 m height. In this analysis, we choose a set point temperature of 
22°C, which is considered to be a reasonable temperature for an average insulated building with limited 
summer cooling measures. A higher setpoint temperature may be used for buildings with passive 
cooling, decreasing the CDH.  

Figure 4a shows the map of CDH for the summer period of 2019 for the Zurich agglomeration. The 
highest CDH values are observed for the city center, for agglomerations along the lake of Zurich and 
extensions of the city along the valleys surrounding the city of Zurich. Figure 4b shows a map of soil 
sealing (asphalt or concrete pavement) or imperviousness in %. We observe a close correlation between 
sealed soil and CDH, which indicates that dense urban areas with less greenery show higher air 
temperatures and CDH. Overall, we note that CDH values of approaching 6000 are seen in Zurich 
compared to the average values lying between 2500 and 4000 for the suburbs and less than 2500 in the 
rural areas. Figure 5 shows the relative increase of the CDH for the urban environment compared to the 
rural area. The urban and rural areas are defined based on land use categories. We exclude all urban area 
and water bodies for the calculation of a rural average. We then calculate the relative difference in CDH 
between the rural average and the local CDH values. We observe that parts of the city of Zurich and its 
surrounding agglomeration show increases up to more than 100%, meaning that the cooling demand as 
estimated by CDH is for a building in the city to be twice the amount than a similar building located in 
the surrounding rural area. 
 

 
Figure 4 a). CDH map for Zurich with a set point temperature of 22°C from 2019-06-01 until 2019-09-30.  

Figure 4 b). soil sealing in [%] of the same domain, based on [13] 

 



13th Nordic Symposium on Building Physics (NSB-2023)
Journal of Physics: Conference Series 2654 (2023) 012147

IOP Publishing
doi:10.1088/1742-6596/2654/1/012147

7

 
 
 
 
 
 

 
Figure 5. Relative change of CDH between local CDH and average rural environment in % 

 
It is however important to note that the CDH is a proxy for the real cooling energy demand of a real 

building, which may vary depending on an array of parameters. It should be considered as a general 
metrics to map cooling energy demand spatially and indicate hot spots to be studied in more details.  

4.  Conclusions  
Understanding the urban heat island and its impact is a key for sustainable and comfortable living in 
cities around the globe. Due to climate change, this topic is becoming even more important. However, 
urban climate simulations by mesoscale meteorological models with urban parametrizations can become 
computationally expensive and spatial climate measurement data is scarce, both factors making it 
difficult to identify local hotspots in cities. 

In this paper, the authors introduce a new hybrid method to improve mesoscale meteorological 
simulations of the urban environment. This approach is based on common WRF simulations with an 
added machine learning algorithm trained by a measurement grid in the domain of interest. It is shown 
that the accuracy of the results can be improved significantly. It is also showed how these improved 
simulations can be used to calculate cooling degree hours, an insightful time-based index for evaluating 
hot spots in the urban environment.  

These improvements reduce the simulation complexity and can help researchers and practitioners to 
assess hot spots more quickly in a city. With a broader deployment of sensor networks seen in cities it 
will be possible to use this method in more cities. It is also possible to harvest citizen science networks 
like Netatmo and use the data for training and validation of the model. 

We also introduce cooling degree hours, a new metric to assess local hotspots on mesoscale in cities 
like heating degree days or hours in Building Physics. With this number, it is straightforward to detect 
spatial variability of the urban heat island effect and evaluate different parts of cities for future spatial 
planning and densification. We show a clear spatial correlation between sealed areas and cooling degree 
hour values. With a rural average, one can have a relative measurement between city and its 
environment.  

A possible next research step is to transfer the hybrid model from one city to another and investigate 
the performance in a completely new setting. Furthermore, one could find out the necessary kind of 
training cities and sensors for broad application to other cities. Finally, these improved results of the 
local climate can be used for further building physics analyses, such as the study of the durability of 
building envelopes and heating and cooling energy demand or for public health studies. 
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