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Abstract
It is well-known that the 2-Thief-Necklace-Splitting problem reduces to the discrete Ham Sandwich
problem. In fact, this reduction was crucial in the proof of the PPA-completeness of the Ham Sandwich
problem [Filos-Ratsikas and Goldberg, STOC’19]. Recently, a variant of the Ham Sandwich problem
called α-Ham Sandwich has been studied, in which the point sets are guaranteed to be well-separated
[Steiger and Zhao, DCG’10]. The complexity of this search problem remains unknown, but it is
known to lie in the complexity class UEOPL [Chiu, Choudhary and Mulzer, ICALP’20]. We define
the analogue of this well-separation condition in the necklace splitting problem – a necklace is
n-separable, if every subset A of the n types of jewels can be separated from the types [n] \ A by at
most n separator points. Since this version of necklace splitting reduces to α-Ham Sandwich in a
solution-preserving way it follows that instances of this version always have unique solutions.

We furthermore provide two FPT algorithms: The first FPT algorithm solves 2-Thief-Necklace-
Splitting on (n − 1 + ℓ)-separable necklaces with n types of jewels and m total jewels in time
2O(ℓ log ℓ) + O(m2). In particular, this shows that 2-Thief-Necklace-Splitting is polynomial-time
solvable on n-separable necklaces. Thus, attempts to show hardness of α-Ham Sandwich through
reduction from the 2-Thief-Necklace-Splitting problem cannot work. The second FPT algorithm tests
(n − 1 + ℓ)-separability of a given necklace with n types of jewels in time 2O(ℓ2) · n4. In particular,
n-separability can thus be tested in polynomial time, even though testing well-separation of point
sets is co-NP-complete [Bergold et al., SWAT’22].
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1 Introduction

The necklace splitting problem is one of the most famous problems in fair division. It is usually
illustrated by the following story: two thieves have stolen a valuable necklaces with n different
types of jewels (diamonds, rubies, etc.). They want to divide their bounty fairly between
them, that is, in such a way that both of them get the same number of jewels of each type.
As cutting through the necklace takes a lot of effort, they want to do this with as few cuts as
possible. A mathematically inclined thief who knows the necklace splitting theorem [1, 3, 12]
will realize that no matter how the jewels are ordered on the necklace, n cuts will always
suffice for this. However, all known proofs of this result are of a topological nature and do
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15:2 An FPT Algorithm for Splitting a Necklace Among Two Thieves

not give our thief any information on how to find the cuts. Thus, a more algorithmically
inclined thief might wonder whether a set of n cuts can be found efficiently. Unfortunately, it
turns out that the search problem of finding n cuts is in general PPA-complete [11], making
an efficient algorithm unlikely. In this paper, we study separability conditions under which
the thieves can find the cuts efficiently.

The ideas for the separability conditions stem from a variant of another famous fair
division problem, namely the Ham Sandwich problem. The Ham Sandwich theorem [19]
states that any d point sets (or mass distributions) in Rd can be simultaneously bisected by a
single hyperplane. Again, finding such a Ham Sandwich Cut is in general PPA-complete [11].
However, under the assumption that the point sets are well-separated (which we will formally
define in Section 2), the cut is unique [18] and the corresponding search problem lies in the
complexity class UEOPL [5]. UEOPL is a subclass of PPA. It is conjectured to be a strict
subclass, with a recent paper showing a black-box separation between the two classes [14].

The Ham Sandwich problem and the necklace splitting problem are intimately related.
In fact, the necklace splitting theorem can be proved by lifting the necklace with n types of
jewels to the moment curve in Rn, which is the curve parameterized by (t, t2, t3, . . . , tn), and
then applying the Ham Sandwich theorem. By the same idea, the PPA-hardness for the Ham
Sandwich problem follows from the PPA-hardness of the necklace splitting problem. In the
well-separated setting, no hardness result is known for finding the now unique Ham Sandwich
cut. A natural approach to show for example UEOPL-hardness of this problem would be to
show hardness for a necklace splitting variant whose lifts give well-separated point sets. This
leads to the definition of n-separable necklaces, which we again define formally in Section 2.

However, as we show in this paper, this approach will not work, as the necklace split-
ting problem on n-separable necklaces can be solved in polynomial time. Relaxing the
notion of separability further, we get an FPT algorithm for the necklace splitting problem,
parameterized by the separability:

▶ Theorem 1. 2-Thief-Necklace-Splitting can be solved in time 2O(ℓ log ℓ) + O(m2) on every
(n− 1 + ℓ)-separable necklace C with n types of jewels and m total jewels.

We also provide an FPT algorithm to check whether a necklace is (n− 1 + ℓ)-separable.
This is again in contrast to the Ham Sandwich problem, where it has been shown that
checking well-separation is co-NP-complete [4].

Our work provides the first FPT viewpoint on the necklace splitting problem, which so
far has only been studied from the viewpoint of approximation algorithms [2].

2 Preliminaries

2.1 Separability and Unique Solutions
▶ Definition 2 (Necklace). A necklace is a family C of disjoint finite point sets in R. The
sets in C are called colors.

Note that in the literature, the points in each color c ∈ C are also called beads or jewels
of color c. Furthermore, this kind of necklace is sometimes also called an open necklace, since
the colors are arranged in R and not on a cycle.

For simplicity, in the rest of this paper we assume that each color has an odd number of
points. All of our results can be adapted to the more general setting without this restriction,
or even to the setting where colors are finite unions of intervals. However, the definitions
and proofs have to be adjusted carefully. We discuss these possible extensions of our results
in the full version of the paper.
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Since colors in a necklace are disjoint, we can view our necklace as a string over the
alphabet C: each color defines one character and the sequence of characters is defined by the
order in which the colors appear when going from −∞ to ∞, with consecutive occurrences
of the same color yielding just one character. See Figure 1 for an example.

We call the number of occurrences of a color c in this string the number of components it
consists of. We say a color c ∈ C is an interval, if it consists of exactly one component. In
other words, a color c is an interval if its convex hull does not intersect any other color c′ ∈ C.
In Figure 1a, the green color c is an interval, whereas the red color a is not, it consists of
two components.

▶ Definition 3 (Separability). A necklace C is k-separable if for all A ⊆ C there exist k

separator points s1 < . . . < sk ∈ R that separate A from C \ A. More formally, if we
alternatingly label the intervals (−∞, s1], [s1, s2], . . . , [sk−1, sk], [sk,∞) with A and A, for
every interval I labelled A we have I ∩

⋃
c∈(C\A) c = ∅ and for every interval I ′ labelled A

we have I ′ ∩
⋃

c∈A c = ∅.
The separability sep(C) of a necklace C is the minimum integer k ≥ 0 such that C is

k-separable.

a
b

c

(a) “a b c a” is 2-separable.

a
b

c

(b) “a b a c” is 3-separable.

a
b

c

(c) “a b a b c” is 4-separable.

Figure 1 Necklace C with 3 colors a, b and c.

Note that for a necklace with n colors, sep(C) ≥ n− 1, and this is tight, as can be seen
in Figure 1a. Our definition of k-separability is strongly related to the well known notion of
well-separation.

▶ Definition 4. Let P1, . . . , Pk ⊂ Rd be point sets. They are well-separated if and only if for
every non-empty index set I ⊂ [k], the convex hulls of the two disjoint subfamilies

⋃
i∈I Pi

and
⋃

i∈[k]\I Pi can be separated by a hyperplane.

A set of two colors in R is 1-separable if and only if it is well-separated. Furthermore we
observe the following property.

▶ Lemma 5. Let C be a set of n colors in R. Let C ′ be the set of subsets of Rn obtained by
lifting each point in each color of C to the n-dimensional moment curve using the function
f(t) = (t, t2, . . . , tn). Then the set C is n-separable if and only if C ′ is well-separable.

Proof. If C is n-separable, for each subset A of C, there exist n points S = (s1, . . . , sn)
partitioning C into intervals alternatingly labelled A and A. Let H be the hyperplane that
goes through these separator points S lifted to the moment curve. By [15, Lemma 5.4.2], at
each separating point, the moment curve passes from one side of H to the other. The points
belonging to intervals labelled A lie on one side of the hyperplane and the points belonging
to intervals labelled A lie on the other side. Since this holds for all subsets of C, it follows
that C ′ is well-separated.

If C ′ is well-separated, for each subset A′ of colors, there exists a hyperplane that separates
A′ from C ′ \A′. By [15, Lemma 5.4.2], this hyperplane intersects the moment curve at at
most n points. These points define the separator points that show that C is n-separable. ◀

ISAAC 2023
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The problem of Necklace Splitting is that two thieves want to split the necklace they stole
into equal parts with as few cuts as possible. Mathematically we partition the necklace into
several intervals which belong to each thief in turn.

▶ Definition 6 (2-Thief-Necklace-Splitting). Given a necklace C with n colors, find n split
points that split the necklace into n + 1 open intervals alternatingly labelled A+ and A−, such
that for each color c ∈ C, the union of all intervals labelled A+ contains the same number of
points of c as the union of all intervals labelled A−.

It is well known that there always exists a solution to this problem [1, 3, 12]. Note that
due to our assumption of every color containing an odd number of points, every solution
must contain exactly one point per color as a split point.

a
b

c

A+ A− A+ A−

(a) Solution for “a b c a”.

a
b

c

A+ A− A+ A−

(b) Solution for “a b a c”.

a
b

c

A+ A− A+ A−

(c) Solution for “a b a b c”.

Figure 2 Example of solutions to 2-Thief-Necklace-Splitting.

▶ Theorem 7. Let C be an n-separable necklace with n colors. There is a unique solution to
2-Thief-Necklace-Splitting on C.

In order to prove the above theorem, we consider the classical reduction of 2-Thief-
Necklace-Splitting to the Ham-Sandwich problem obtained by lifting the points to the
moment curve, as it appeared in many works before [7, 11, 15, 17]. However, since the
necklace we apply this reduction to is n-separable, by Lemma 5, the resulting points are
well-separated, which allows us to apply the following stronger version of the Ham-Sandwich
theorem due to Steiger and Zhao [18].

▶ Lemma 8 (α-Ham-Sandwich Theorem, [18]). Let P1, . . . , Pn ⊂ Rn be finite well-separated
point sets in weak general position1, and let α1, . . . , αn be positive integers with αi ≤ |Pi|, then
there exists a unique (α1, . . . , αn)-cut, i.e., a hyperplane H that contains a point from each
color and such that for the closed positive halfspace H+ bounded by H we have |H+∩Pi| = αi.

Proof of Theorem 7. We lift all the points in C to the moment curve. The points are in
general position [15] (and thus also in weak general position). By Lemma 5 if C is n-separable,
then the point sets lifted to the moment curve are well-separated.

By the α-Ham-Sandwich theorem there exists a unique (⌈ |c1|
2 ⌉, . . . , ⌈ |cn|

2 ⌉)-cut that halves
all colors. This cut is a hyperplane H that goes through n lifted points, one point of each
color. These points define a solution Q = (q1, . . . , qn) of 2-Thief-Necklace-Splitting.

Assume that the solution Q is not unique, i.e., there is another solution Q′ ̸= Q to C.
The points Q′ lifted to the moment curve define another hyperplane H ′ ≠ H with one point
of each color, which is also a (⌈ |c1|

2 ⌉, . . . , ⌈ |cn|
2 ⌉)-cut. But by Lemma 8 there is a unique

hyperplane with this property, so Q′ cannot exist. ◀

1 Weak general position is a condition that requires only subsets of the points of the form {p1, . . . , pn, pn+1}
for pi ∈ Pi for 1 ≤ i ≤ n and pn+1 ∈ P1 ∪ . . . ∪ Pn to be in general position.
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In this proof, we do not use the property that Lemma 8 guarantees that there is a solution
for every choice of α, we merely use it for the guaranteed uniqueness of a solution for a
halving cut.

Note that the opposite direction of Theorem 7 does not hold, i.e., there are necklaces with n

colors which are not n-separable but still have unique solutions for 2-Thief-Necklace-Splitting,
see Figure 2c for an example.

2.2 Graph-Theoretic Aspects
To argue about the separability of necklaces, we wish to think about graphs rather than
strings or even point sets. For every necklace, we thus define its walk graph:

▶ Definition 9 (Walk graph). Given a necklace C, the walk graph GC is the multigraph with
V = C and with every potential edge {a, b} ∈

(
V
2
)

having multiplicity equal to the number of
substrings “ab” plus the number of substrings “ba” in the string describing C.

The walk graphs of the example necklaces in Figure 1 can be seen in Figure 3.

a b

c

(a) Walk graph for “a b c a”.

a b

c

(b) Walk graph for “a b a c”.

a b

c

(c) Walk graph for “a b a b c”.

Figure 3 Walk graphs of the examples in Figure 1.

Note that given a necklace C as a set of point sets, both the string describing it as well
as the walk graph can be built in linear time in the size of the necklace

∑
c∈C |c| .

Recall that a graph is Eulerian if it contains a Eulerian tour, a closed walk that uses all
edges exactly once. A graph is semi-Eulerian if it contains a Eulerian path, a (not necessarily
closed) walk that uses all edges exactly once.

▶ Observation 10. The walk graph of a necklace is connected and semi-Eulerian.

Recall the following well-known fact about semi-Eulerian graphs.

▶ Lemma 11. In a semi-Eulerian (multi-)graph, at most two vertices have odd degrees.

The separability of a necklace turns out to be equivalent to the max-cut in its walk graph.

▶ Definition 12 (Cut). In a (multi-)graph G on the vertices V , a cut is a subset A ⊆ V .
The size µ(A) of a cut A is the number of edges {u, v} in G such that u ∈ A and v ̸∈ A. The
max-cut, denoted by µ(G), is the largest size of any cut A ⊆ V .

▶ Lemma 13. For every necklace C, we have sep(C) = µ(GC).

Proof. For every subset A ⊆ C, the number of separator points needed to separate the colors
in A from C \A is given by the size of the cut A in GC , since the edges going over this cut
correspond one to one to the points in the necklace where the necklace switches from a color
in A to a color not in A, or vice versa. Thus, the max-cut µ(GC) corresponds to the maximal
number of separator points we need to separate any two subsets of colors. ◀

ISAAC 2023



15:6 An FPT Algorithm for Splitting a Necklace Among Two Thieves

In our proofs we will often show that certain structures or properties do not appear in
walk graphs of necklaces with bounded separability. The general strategy for these proofs will
be to show that walk graphs with these structures or properties have a large max-cut, and
thus the corresponding necklaces cannot have the claimed separability. Our main tool for this
is the following bound, originally conjectured by Erdős [10] and proven by Edwards [8, 9].

▶ Theorem 14 (Edwards-Erdős bound). A simple connected graph G with n vertices and m

edges has a maximum cut µ(G) of at least ω(G) := m
2 + n−1

4 .

Since walk graphs are not simple graphs, we will use a corollary of the following strength-
ening, due to Poljak and Turzík [16]:

▶ Theorem 15 ([16]). For a connected graph G with weight function w : E → R+, there
exists a cut of weight at least∑

e∈E w(e)
2 + t(G, w)

4 ,

where t(G, w) is the weight of a minimum-weight spanning tree of G.

▶ Corollary 16. A connected (multi-)graph G with n vertices and m edges has a maximum
cut µ(G) of at least ω(G) := m

2 + n−1
4 .

For determining the separability of a necklace, we will use an algorithm due to Crowston,
Jones and Mnich [6] to decide max-cut beyond the Edwards-Erdős bound.

▶ Theorem 17 (FPT algorithm [6]). There exists an algorithm that decides whether for a
given simple connected graph G with n vertices and m edges the max-cut µ(G) is at most
ω(G) + k in time 2O(k) · n4.

This is a so-called fixed-parameter algorithm; for any fixed parameter k, the algorithm
runs in polynomial time in n, with the exponent not depending on k. Note again that this
algorithm only works on simple graphs, thus, we will need to alter the walk graphs to be
able to apply this algorithm.

3 An FPT Algorithm for 2-Thief-Necklace-Splitting

In this section we show Theorem 1:

▶ Theorem 1. 2-Thief-Necklace-Splitting can be solved in time 2O(ℓ log ℓ) + O(m2) on every
(n− 1 + ℓ)-separable necklace C with n types of jewels and m total jewels.

The algorithm we use is recursive, based on the following crucial observation.

▶ Theorem 18. Let C be an (n− 1 + ℓ)-separable necklace with n colors. If n ≥ 6ℓ + 2 there
must exist

(i) two neighboring colors that are both intervals, or
(ii) one color that only consists of exactly two components.

Proof. Since the walk graph is semi-Eulerian, it contains either 0 or 2 vertices with odd
degree (recall Observation 10 and Lemma 11). A color that is an interval has degree 2,
unless it is at the beginning or end of the necklace. A color that consists of more than
two components has degree at least 6 (or 5 or 4 if it is at the beginning and/or end of the
necklace).
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Let A ⊆ C be the set of intervals. Note that if no two intervals are neighboring, we can
pick all the intervals as a cut A, which has size at least µ(A) ≥ 2|A| − 2. Since we know that
µ(GC) ≤ n− 1 + ℓ, we must have that |A| ≤ n+1+ℓ

2 .
Assume that the theorem does not hold, and that there thus exist no neighboring intervals

and no color consisting of exactly two components. We can then bound the sum of degrees∑
c∈C deg(c) ≥ 2 · n+1+ℓ

2 + 6 · (n − n+1+ℓ
2 ) − 2 = 4n − 2ℓ − 4. Thus, the number of edges

|E| in GC is bounded |E| ≥ 4n−2ℓ−4
2 = 2n − ℓ − 2. Due to Corollary 16 we thus get that

µ(GC) ≥ 2n−ℓ−2
2 + n−1

4 = 5
4 n − ℓ

2 −
5
4 . By the assumption n ≥ 6ℓ + 2, we therefore have

µ(GC) ≥ n − 3
4 + ℓ, which is a contradiction to the assumption that µ(GC) ≤ n − 1 + ℓ.

Thus, the theorem follows. ◀

To use Theorem 18 to recursively solve smaller instances, we need to make sure that
the separability of the smaller instances translates back to the separability of the original
instance. The following two lemmas provide this necessary correspondence.

▶ Lemma 19. Let C be a necklace. Let C ′ be the necklace obtained by removing two
neighboring intervals c, c′ from C. Then, sep(C ′) = sep(C)− 2.

Proof. In the walk graph, removing two neighboring intervals corresponds to replacing a
path (a, c, c′, b) of length 3 by a direct edge connecting a and b.

Every cut A′ ⊆ C ′ in GC′ of size k can be extended to a cut A ⊆ C in GC of size k + 2:
For every vertex v ∈ C ′, we have v ∈ A′ iff v ∈ A. Furthermore, c ∈ A iff a ̸∈ A′ and c′ ∈ A

iff b ̸∈ A′. Thus, sep(C) ≥ sep(C ′) + 2.
Similarly, every cut A ⊆ C in GC of size k induces a cut A′ = A∩C ′ of size at least k− 2

in GC′ . Thus, sep(C ′) ≥ sep(C)− 2, and we get sep(C ′) = sep(C)− 2. ◀

▶ Lemma 20. Let C be a necklace on n colors that is (n− 1 + ℓ)-separable. The necklace C ′

obtained by reducing a color c ∈ C to a subset ∅ ⊂ c′ ⊂ c is still (n− 1 + ℓ)-separable.

Proof. By simplifying a necklace, we cannot increase its separability. ◀

We are now ready to present Algorithm 1, an FPT algorithm to solve 2-Thief-Necklace-
Splitting on (n−1+ℓ)-separable necklaces. The strategy is to reduce the given necklace either
by removing two neighboring intervals, or by removing one of the two components in a color
that consists of exactly two components. By Lemmas 19 and 20, if C is (n− 1 + ℓ)-separable,
the resulting necklace C ′ is again (n′ − 1 + ℓ)-separable (for n′ = |C ′|), and can thus be
solved recursively. The solution of the reduced case is then extended back to a solution of
the original necklace. A necklace can be reduced as long as Theorem 18 applies, and thus we
only need to solve the case n < 6ℓ + 2 directly.

For an example of the execution of the algorithm, see Figure 4 and Figure 5. Note
that these small instances would technically be solved by brute-force and merely serve as
illustrations.

Proof of Theorem 1. We first argue for correctness of Algorithm 1. By Theorem 18, if we
reach line 8 we can always find a color which consists out of exactly two components, so the
algorithm can never fail to finish.

We have to argue that our algorithm returns a correct solution in both line 6 and line 15.
(i) Line 6: The constructed solution splits the two neighboring intervals correctly. Since

we place two splits, the parity of the partition outside of these intervals does not change
in comparison to the solution Q obtained recursively. Thus, all other colors are also
split correctly.

ISAAC 2023



15:8 An FPT Algorithm for Splitting a Necklace Among Two Thieves

Algorithm 1 RecursiveNS.

Input: An (n− 1 + ℓ)-separable necklace C with n colors.
Output: n split points.

1: if n < 6ℓ + 2 then
2: Q← BruteForce(C)
3: return Q

4: else if there exist two neighboring intervals c, c′ ∈ C then
5: Q← RecursiveNS(C \ {c, c′})
6: return Q ∪ {median(c), median(c′)}
7: else
8: c← a color consisting of two components c1, c2
9: c′ ← largest component of c

10: if |c′| is even then
11: Add a median point to c′

12: Q← RecursiveNS((C \ {c}) ∪ {c′})
13: {q} ← Q ∩ c′

14: q′ ← q shifted right/left by ⌈min(|c1|,|c2|)
2 ⌉ points of c′ ▷ direction depending on parity

of number of split points in Q between c1 and c2
15: return Q \ {q} ∪ {q′}

(ii) Line 15: The constructed solution splits color c correctly, and q′ lies in the same
component of c as q, since c′ is the larger of the two components. Shifting the split
within the same component of c does not change the partition outside of this component
in comparison to the solution Q obtained recursively. Thus, all other colors are also
split correctly.

It remains to argue for the runtime of Algorithm 1. Clearly, we only use the brute-force
approach at line 2 once. In an (n− 1 + ℓ)-separable necklace with n < 6ℓ + 2, each color has
at most O(ℓ) components. For each guess of one component per color, it can be determined
in polynomial time in ℓ whether this guess admits a solution. There are at most ℓO(ℓ) guesses,
thus we can solve this base case in time 2O(ℓ log ℓ).

In the rest of the algorithm, on each level of the recursion we reduce the number of points
in the necklace by at least one, and we can make the necessary adjustments and find the
needed colors in linear time in the number of points. Thus, the total runtime of the algorithm
is 2O(ℓ log ℓ) + O(

∑
c∈C |c|)2, as claimed. ◀

a
b

c

(a) Original necklace.

a
b

c

A+ A−

(b) Reduced necklace.

a
b

c

A−A−A+ A+

(c) Solution.

Figure 4 Example step of Algorithm 1 using the reduction of removing two neighboring intervals
(b and c).

For the special case of n-separable necklaces, i.e., ℓ = 1, we get the following corollary:

▶ Corollary 21. Finding the unique solution for 2-Thief-Necklace-Splitting on an n-separable
necklace with n colors takes polynomial time.
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a
b

c

(a) Original necklace.

a
b

c

A− A+ A−A+

(b) Reduced necklace.

a
b

c

A+ A− A+ A−

(c) Solution.

Figure 5 Example step of Algorithm 1 using the reduction of removing a component from the
two-component color a.

Until now, both Theorem 1 and Corollary 21 work under the initial promise that C is
(n− 1 + ℓ)-separable (or n-separable respectively). If the algorithm fails because none of the
cases applies, this certifies that the input necklace was not (n−1+ ℓ)-separable. On the other
hand, Algorithm 1 may run successfully, even if the input necklace is not (n−1+ℓ)-separable,
and if it does run successfully, its output is always a correct solution. Since Algorithm 1
can produce these “false positives”, it cannot be used to decide (n− 1 + ℓ)-separability. We
tackle that problem in the next section.

4 Testing Separability

At first, it seems like finding a polynomial-time algorithm for deciding whether a necklace is
(n−1+ℓ)-separable may be futile, since we have the following theorem due to Guruswami [13]:

▶ Theorem 22 ([13]). Given a Eulerian graph G and an integer k, deciding whether the size
of the max-cut µ(G) ≥ k is NP-complete.

Since to compute the separability of a necklace we need to compute the max-cut of its
walk graph, and since every Eulerian graph is the walk graph of some necklace2, we get the
following corollary:

▶ Corollary 23. Given a necklace C of n colors and an integer k, deciding whether C is
k-separable is co-NP-complete.

However, not all hope is lost. To check whether a necklace is (n− 1 + ℓ)-separable, we do
not need to compute the max-cut of its walk graph, we merely need to check whether it is at
most (n− 1 + ℓ). We next provide an FPT algorithm that checks (n− 1 + ℓ)-separability for
fixed parameter ℓ. With ℓ = 1 this shows that testing n-separability of n colors is solvable in
polynomial time, even though both testing k-separability of n colors with k as input as well
as testing well-separation of point sets are co-NP-complete [4]. More generally, we show the
following theorem:

▶ Theorem 24. There exists an FPT algorithm for fixed parameter ℓ that can decide whether
the max-cut of a given semi-Eulerian multigraph GC with n vertices is at most n − 1 + ℓ,
i.e., it can decide whether µ(GC) ≤ n− 1 + ℓ in time 2O(ℓ2) · n4.

By Theorem 17, there exists an algorithm that decides whether a simple graph G with n

vertices and a fixed parameter k has a max-cut of size µ(G) ≤ ω(G) + k = |E(G)|
2 + n−1

4 + k

in 2O(k) · n4 time. But our input graph GC is a multigraph and we have no bound on its
number of edges, nor on the distance between ω(GC) and n − 1 + ℓ. In order to use this
algorithm to decide separability, we need the following:

2 Simply find a Eulerian path through the graph and place one point per character in the respective color.
If some color has an even number of points, add one more to an existing component.
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1. Derive a graph G′
C from GC such that we can lower bound |E(G′

C)| and thus ω(G′
C).

2. Prove that there is a bounded number of multi-edges in G′
C .

3. Transform G′
C into a simple graph G′′

C by blowing up its multi-edges by a constant factor.

In the following, we will use the term interval for intervals on necklaces as well as their
corresponding vertices interchangeably. The intervals in C correspond to the vertices in GC

with degree at most 2, except for possibly one vertex of degree 2 that is both the starting and
ending point of the fixed Eulerian path; this single vertex does not correspond to an interval.

▶ Lemma 25. Given a semi-Eulerian multigraph G on n vertices, we can either detect that
µ(G) > n−1+ℓ, or we can build a multigraph G′ on n′ vertices such that |E(G′)| ≥ 3

2 n′− ℓ
2−1,

and such that µ(G) ≤ n− 1 + ℓ if and only if µ(G′) ≤ n′ − 1 + ℓ.

Proof. Given a multigraph G, let G′ be the result of applying Lemma 19 on G exhaustively.
As long as there are two adjacent intervals in G, we can remove the two intervals, thus
reducing the maximum cut size by 2. In each such step we remove 2 vertices, 3 edges and
add 1 new edge. Thanks to Lemma 19, we have the desired correspondence between µ(G)
and µ(G′).

Assume there are at least n′+ℓ
2 + 1 intervals in G′. Then the cut A in G′ with all intervals

on one side and all other vertices on the other side has size µ(A) ≥ 2 ·( n′+ℓ
2 +1)−2 = n′ +ℓ. It

follows that µ(G′) ≥ µ(A) > n′− 1 + ℓ. In this case we can thus detect that µ(G) > n− 1 + ℓ.
In the other case, there are strictly fewer than n′+ℓ

2 + 1 intervals in G′. All other vertices
have degree at least 4 (excluding the start and end vertex). Therefore the sum of degrees in
G′ is ∑

v∈V (G′)

deg(v) ≥ n′ + ℓ

2 · 2 + n′ − ℓ

2 · 4− 2 = 3n′ − ℓ− 2.

Thus the number of edges in G′ is |E(G′)| ≥ 3
2 n′ − ℓ

2 − 1. ◀

We can now see the following.

▶ Observation 26. Given this bound on |E(G′)|, the bound ω(G′) given by Corollary 16 can
be bounded by

ω(G′) ≥
3
2 n′ − ℓ

2 − 1
2 + n′ − 1

4 = n′ − ℓ

4 −
3
4 .

Thus, by the process of eliminating neighboring intervals, we have managed to get the
difference between (n′ − 1 + ℓ) and ω(G′

C) to be a constant depending only on ℓ.
Next we show that the total multiplicity M of the multi-edges in G′

C cannot be too
large. We show that if G′

C has maximum cut size at most n′ − 1 + ℓ, the total multiplicity of
multi-edges can be bounded by a function solely depending on ℓ, and not n or |E(G′

C)|.

▶ Lemma 27. In a multigraph G on n vertices with µ(G) ≤ n− 1 + ℓ, the total multiplicity
of the multi-edges in G is at most 2ℓ2.

Proof. Let G′ be a weighted simple graph with an edge of weight m− 1 for every multi-edge
of multiplicity m ≥ 2 in the graph G. Note that the total weight of G′ is at least half of the
total multiplicity of multi-edges in G.

Let F be a spanning forest in G′ with total weight w. Given F , we can build a spanning
tree T of G of total weight n− 1 + w, since every edge of F of weight m′− 1 corresponds to a
multi-edge of multiplicity m′ in G, and all additional edges used to make F into a spanning
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tree have weight 1. Since every tree is bipartite, the weight of T is a lower bound on the
max-cut of G: µ(G) ≥ n − 1 + w. Thus, for a given G with µ(G) ≤ n − 1 + ℓ, the total
weight of F must be at most ℓ.

We thus only need to show that in a simple weighted graph (in our case, G′), in which
every weight is at least 1, and whose maximum-weight spanning forest has weight at most ℓ,
the total weight of the graph is at most ℓ2. To see this, we successively remove spanning
forests from G′ until G′ is empty. Every spanning forest we remove has weight at most ℓ. As
every edge has weight at least 1, every vertex in G′ has degree at most ℓ. Thus, we are done
after removing at most ℓ spanning forests. Thus, the total weight of G′ is at most ℓ2.

We conclude that the total multiplicity of multi-edges in G can be at most 2ℓ2. ◀

Finally, we show how G′
C can be transformed into a simple graph G′′

C . Let a and b be
vertices in G′

C with a multi-edge of multiplicity m between them. We construct the graph
G′′

C from G′
C by removing the multi-edge between a and b and introducing m paths of length

three from a to b, all going through separate vertices. See Figure 6 for an example application
of this process.

a b ⇒ a b

i1,1 i1,2

i2,1 i2,2

Figure 6 Example of blowing up a multi-edge of multiplicity 2 to make the graph simple.

This process is again constructed in such a way that the change of the max-cut is
predictable:

▶ Lemma 28. Let G be a multigraph on n vertices. Let a and b be vertices in G with a
multi-edge of multiplicity m between them. Let G′ be the result of blowing up the multi-edge
between a and b in G. Then, µ(G′) = µ(G) + 2m.

Proof. Let A ⊆ V (G) be some max-cut in G with µ(A) = µ(G).
We distinguish between two cases. If the multi-edge goes across the cut, i.e. a ∈ A and

b /∈ A, the same cut in G′ has m fewer edges (namely the multi-edge) and 3m edges more,
namely all of the newly introduced edges of the paths, see Figure 7a. If the multi-edge
between a and b is not in the max-cut of G, there is a cut in G′ that has 2m new edges,
namely one of each newly introduced path, see Figure 7b. Thus, a max-cut of size µ(G) in G

implies a cut of size µ(G) + 2m in G′, and thus µ(G′) ≥ µ(G) + 2m.
For the other direction, consider a max-cut A′ of G′. Since A′ is maximal, it must either

contain all 3m intermediate edges between a and b, and put a and b on different sides of the
cut, or it must put a and b on the same side of the cut, and contain exactly 2m intermediate
edges (see again Figure 7). Thus, there must exist a cut A in G which contains exactly 2m

fewer edges than A′, and we get µ(G) ≥ µ(G′)− 2m.
We conclude that µ(G′) = µ(G) + 2m. ◀

We are now ready to put this all together and describe the algorithm proving Theorem 24.

Proof of Theorem 24. We prove that Algorithm 2 is correct and runs in time 2f(ℓ) · n4.
Correctness follows from Lemma 25, Lemma 27 and Lemma 28. Clearly, all steps except
the invocation of the FPT algorithm of Theorem 17 in the last line can be performed in
O(n2 + ℓ2).
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a b ⇔

a

b

i1,1

i1,2 i2,1

i2,2

Graph G Graph G′

(a) Case 1: The multi-edge is in max-cut of G.

a

b

...

...
⇔

a

b

i1,1

i1,2

i2,1i2,2

...

...

Graph G Graph G′

(b) Case 2: The multi-edge is not in max-cut of G.

Figure 7 Change of max-cut size when blowing up a multi-edge of multiplicity 2.

Algorithm 2 FPT algorithm for testing µ(GC) ≤ n − 1 + ℓ with fixed parameter ℓ.

Input: A semi-Eulerian multigraph GC on n vertices.
Output: True iff µ(GC) ≤ n− 1 + ℓ.

1: G′
C ← GC

2: while there exist neighboring intervals in G′
C do

3: Remove two neighboring intervals from G′
C .

4: n′ ← |V (G′
C)|

5: i← The number of intervals in G′
C .

6: if i > n′+ℓ
2 then return false ▷ based on Lemma 25

7: M ← The total multiplicity of multi-edges in G′
C .

8: if M > 2ℓ2 then return false ▷ based on Lemma 27
9: G′′

C ← The result of applying Lemma 28 to every multi-edge in G′.
10: return µ(G′′

C) ≤ (n′ − 1 + ℓ) + 2M ▷ using FPT algorithm of Theorem 17.

We choose k such that when we call the FPT algorithm of Theorem 17 with G′′
C and k it

decides µ(G′′
C) ≤ (n′−1+ ℓ)+2M , i.e., we choose k such that (n′−1+ ℓ)+2M = ω(G′′

C)+k.
Therefore let k := ((n′ − 1 + ℓ) + 2M)− ω(G′′

C).
For bounding the runtime of this invocation, we need to check that k is dependent only

on ℓ. Recall that by Observation 26 we can bound (n′ − 1 + ℓ)−ω(G′
C) ≤ 5

4 ℓ− 1
4 , a quantity

depending only on our parameter ℓ. To relate ω(G′′
C) to ω(G′

C), we can see that blowing
up a multi-edge in G′ of multiplicity m adds 2m edges and 2m vertices and thus changes
ω by 2m

2 + 2m
4 = 3

2 m. Thus we have ω(G′′
C) = ω(G′

C) + 3
2 M . We can now put everything

together and get k ≤ 2M + 5
4 ℓ− 1

4 −
3
2 M = 1

2 M + 5
4 ℓ− 1

4 , and since M ≤ ℓ2, we get that k

is bounded by O(ℓ2). Thus, the final invocation of the algorithm of Theorem 17 runs in time
2O(ℓ2) · n4. ◀

5 Conclusion and Further Directions

In conclusion, we proved that 2-Thief-Necklace-Splitting on n-separable necklaces has a
unique solution and can be solved in polynomial time. Also n-separability can be tested in
polynomial time. Furthermore, we showed that 2-Thief-Necklace-Splitting, which in general
is known to be PPA-complete, admits an FPT algorithm for the parameter ℓ such that the
input necklace is (n− 1 + ℓ)-separable. Lastly, we showed that testing (n− 1 + ℓ)-separability
is also FPT, even though testing well-separation of point sets in Rn is co-NP-complete.
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The condition of n-separability is only sufficient for uniqueness of the solution to 2-Thief-
Necklace-Splitting. An interesting followup question is whether there also exist necessary
conditions for such uniqueness.

As our main open question we wonder how our algorithm for 2-Thief-Necklace-Splitting
can be extended to more general settings. Firstly, can we also find polynomial time algorithms
for k-Thief-Necklace-Splitting under the constraint of n-separability? Secondly, instead of
halving every color class, can we maybe find an algorithm to find any (α1, . . . , αn)-cut? The
existence of these cuts is also guaranteed by Lemma 8, however our algorithm really only
works for halving, since if we are not halving, the solution is not guaranteed to split a color
with two components in the bigger component.

Another interesting followup question is whether one can lift the definition of k-separability
into higher dimensions. In other words, for n point sets P = {P1, . . . , Pn} in Rd, can each
subset A of P be separated from P \ A by k hyperplanes? Well-separation then becomes
1-separability. Thus, deciding k-separability for k as input or even for the case k = 1 is
co-NP-hard. It is likely that special cases such as d-separability or n-separability are also hard
to decide. While well-separation is also contained in co-NP, this is not clear for k-separability
for k > 1. Like 2-Thief-Necklace-Splitting, which has a unique solution under the condition
of n-separability, one could also investigate whether there are other geometric problems
which gain interesting properties under the condition of the input being well-separated, or
k-separable for some k.

Finally, can we extend our FPT algorithm for deciding µ(G) ≤ n− 1 + ℓ on semi-Eulerian
multigraphs to work on all connected multigraphs? Furthermore, can we maybe also decide
µ(G) ≤ ω(G) + ℓ (to get a direct analogue of the algorithm of Crowston, Jones, and Mnich
for multigraphs) and not just µ(G) ≤ n− 1 + ℓ?
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